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Abstract

The issue of open, or outflow, boundary conditions is important to the nu-
merical simulation of incompressible viscous flows. But there are few studies of
this problem because it is very difficult to give exact mathematical conditions
for finite and artificial boundaries.

In this paper, four types of open boundary conditions are compared
numerically in a two-dimensional flow past a square cylinder using a finite dif-
ference method. They are a free outflow condition and three kinds of Sommer-
feld radiation conditions based on the free stream velocity at infinity, the Hal-
pern’s analysis, and the local velocity. The free outflow condition deforms ve-
locity and pressure fields, while the Sommerfeld radiation condition using the
free stream velocity has the least influence on the flow.

1. Introduction

Many problems in fluids mechanics are defined on unbounded domain. Numencal treat-

ment of the boundary conditions (BCs) is an important issue. Kawaguti”, in the earliest
numerical simulation of a steady flow around a circular cylinder, projected the unbounded
domain onto the bounded one and used an asymptotic solution at infinity as an boundary
condition. However, it is impossible to extend this method to unsteady and high Reynolds
number flows or flows around a complex geometry of which asymptotic solutions are gener-
ally unknown. Therefore we usually bound the domain and give artificial boundary condi-
tions. Unfortunately, these BCs are not set by Nature, so no one can provide mathematically
permissible BCs for Navier-Stokes equations™. ). Because these equations are elliptic, so that

the exact solution is not determined without considering whole domain.
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Many papers in the finite difference literature use the free outflow boundary condition,
also called the zero gradient condition, for open or outflow boundary condition (OBC).
These papers mainly discuss the results in upstream and local region, and little attention is
devoted to the influence of BCs. Then we showed numerically in our previous paper3) that it
is inappropriate to apply the free outflow boundary condition to a wake of two-dimensional
square cylinder.

On the other hand, Gresho and Sani® held the OBC Minisymposium (1991) to compare
some OBC:s and to find one that works best. The Sommerfeld radiation condition seemed to
be good, which condition was first suggested by Sommerfeld” for a wave equation. Later,
some form of this condition for Navier-Stokes equations were suggested. In this work, we will
apply a free outflow BC and three kinds of Sommerfeld radiation condition to a two-dimen-
sional flow around a square cylinder and compare them numerically.

2. Problem definition and boundary conditions

The two-dimensional flow around a square in an unbounded incompressible fluid will be
considered. Mathematically, the boundary conditions at infinity are,

u=1,v=0,P=0 (X¥+y —») (1)

Here u and v are velocity components in the x- and y-directions, respectively, in a Cartesian
reference frame; P is pressure. They are nondimensional form based on free stream velocity
Uy, the length of the square side dimension H and the constant density p. In numerical simu-
lations, we introduce the bounded computational domain as shown in Fig. 1 and give the arti-
ficial boundary conditions. At the inflow and side boundaries, the free stream conditions are
applied. At the outflow boundary, the four types OBCs will be tested for the velocity.
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Fig. 1 Problem definition and coordinate.
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OBC 1: free outflow condition®

ou _0dv _
dx ox (2)

OBC 2: Sommerfeld radiation condition using the free stream velocity components; U=1
and V=0"

du du Qz
L rudi=0, G+ug= 3

OBC 3: Sommerfeld radiation condition by Halpern and Schatzman®

du du av _
+U6x 0, 2 0 (4)

OBC 4: Sommerfeld radiation condition using the local velocity components; u and V)

du du du av dv av _
8t+ c?x+ —O 6t+u5;c +u5§ =0 (5)
OBC 1 is based on the assumption that the computational domain is sufficiently long.
Radiation condition was introduced by Sommerfeld in order to solve the problem of os-
cillation which was defined on unbounded domain and had source of energy. He considered
that energy radiating from the source should dissipate to infinity. Then at the boundary, the
only wave equation radiating to out of domain was considered, and the equation for wave en-
tering from infinity was vanished. For the flow problem, the radiation condition at the out-
flow boundary is

Ju Qt_t
or teox =0 (6)

where c is a phase velocity of wave'®. This condition requires that the flow is hyperbolic in
nature. We consider as following for elliptic or parabolic systems.

The coordinate transformation from a frame fixed spatially to a frame moving with the
free stream velocity, U=1 and V=0, lead to;

x =x—Ut

u=u—U
y =y

Vi=y
=t

where prime denotes any variable associated with the moving frame. Then we assume that
near the outflow boundary diffusion is small, and the flow is approximately steady in the
moving frame;
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.y
& =0 (7

The equation (7) becomes (3) in the fixed frame and that equation is the same one represent-
ing the Taylor’s hypothems , which is linear and hyperbolic. Then it’s general solution is;

u(x, fy = f(x — Ui

which is determined by the flow upstream in a zone of dependence.

OBC 3 is suggested by Halpern and Schatzman for the Oseen equations. We investigate
whether this OBC is appropriate for a nonlinear flow.

Nataf was employed the nonlinear equations (5) replaced U and V in the linear equa-
tions (3) on local velocities, « and v for simulation of the steady flow past a two-dimensional
ellips. We investigate whether this OBC is appropriate for a unsteady flow.

For the pressure OBC, we employ the Neumann BC obtained by applying the normal
component of the momentum equation on outflow boundarylz)

3. Numerical Method

The governing equations are the Navier-Stokes equations and continuity equation for a
unsteady incompressible viscous flow;

2 1
ST @ Vu=—=VP+5 Vau ®)
divu=0 )

where Re is the Reynolds number. The pressure Poisson equation is derived by operating on
(8) with divergence operator to give,

V2P = —div{(u- Vyu) + 2-v’D — 22 (10)

where D divu. We solve (8) and (10) using the numencal procedures based on the MAC
method'”. First, we calculate P**" from (10) assuming D™ is zero,

1 . n n Dn
VIP™ = —div{(u"- V)u'} + &, (11)

where n is the integration time step. For the time integration of (8), the Euler backward
scheme is used except the nonlinear convection terms which are linearized by evaluating the
convection velocity at n level,

ntl

" —u" n, o prtl o 1 g2t
L@V = -V P+ eV (12)
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The third order upwind difference scheme by Kawamura and Kuwahara'* is employed
for the spatial discretization of the convection terms,

u_a_g — + 8(uiy —Ui) T Uiy
ox)i 12Ax

o — 4y 6, — 4u tu;
+ %| ui’ Uity it+1 A;C i—1 Up (13)
The other terms are discretized by the second order central difference scheme. The Neumann
type BCs are discretized by the second order upwind scheme. The resulting set of algebraic
difference equations is solved iteratively using the incomplete LU decomposition conjugate
gradient squared (ILUCGS) method.

The numerical grid is a uniform and non-staggered one with grid increment
Ax=Ay=0.1, and the time increment is Ar=0.01. The Reynolds number is 100. All our cal-
culations were performed on the FACOM VP2600 at Nagoya University Computation
Center.

4. Numerical Results

4.1. Computational conditions

We tested seven cases as shown Table 1, to compare the influence of different OBCs.
Computations are performed on two regions. One is a short region, —8<y=+8, 0=<x=28,
and the other is a long region, —8< y<+8, 0<x=<68. All the instantaneous results are the
values of various quantities at a particular time in the vortex shedding cycle. This time is
chosen to be the instant when the lift coefficient C, is changing from a negative value to a
positive value; i.e. passing through zero from below.

Table 1. Computational conditions.

Case OBC Outflow Boundary Grid
Case 1 OBC1 x=128.0 281 x 181
Case 2 OBC2 x=28.0 281 x 181
Case 3 OBC3 x=28.0 281 X 181
Case 4 OBC4 x=28.0 281 X 181
Case 5 OBC1 x=68.0 681 x 181
Case 6 OBC2 x=68.0 681 x 181
Case 7 OBC4 x=68.0 681 x 181

4.2.  Results on the long region

Fig. 2(e), 2(f) and 2(g) are instantaneous pressure contours on the long region. Although
these contours disagree near outflow boundary due to the influence of different OBCs, they
agree qualitatively near the square. In many previous papers which compared deferent nu-
merical methods or numerical conditions, mainly qualitative judgments were made and quan-
titative evaluations were not sufficient. We define the following integration value to evaluate
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Fig. 2 Pressure contours.
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quantitatively the difference between each cases;
y=+8 ) 3
g.(50) = [ | 600 = Boues(un0) dy (14)
y=—

where ¢ is an arbitrary variable. Equation (14) is the integration of difference between the
solution of Case 6 and the other case over y at any section of x. This is similar to usual L’
norm of the functional analysis. The subscript e denotes the integration value of (14). Since
$.(0,7) equal zero due to the same Dirichlet boundary condition at the inflow boundary, that
value at x=0 is excepted in figures of ¢, which will be shown later.

Fig. 3 shows instantaneous u,,v, and P, of Case 5 and Case 6. As x approches the out-
flow boundary, each value becomes large. For comparison, the integration values of the solu-
tion of Case 6 itself, defined as following, are also shown.

y=+8
600 = ([, ewmoln))’ @) (15)
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In the upstream region from x=28, where the same position with the outflow boundary on
the short region, u, of Case 5 and 7 are less than 1% of u,, and P, of Case S and 7 are also
less than 1% of P;. v, changes periodic in x direction. The position of minimum of v, corre-
sponds to the center of each vortex, where v, becomes relatively large and about 10% of v,.
But v, at other position is enough small for v,. Therefore we regard the solution of Case 6 as
‘exact’ one when we discuss the results on the short region.

4.3. Results on the short region

Fig. 2(a), 2(b), 2(c) and 2(d) show instantaneous pressure contours of Cases 1~ 4 on the
short region. In Case 1, large pressure gradient in y direction occurs at the outflow boundary.
In Case 4, positive pressure region occurs near the outflow boundary. On the other hand, the
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Fig. 5 Variation of integration values u,, v, and P, with x on the short region.
————— Case 1 ------Case 2
Case 3 ————Case 4

Table 2. Integration values u,, v, and P, at x=28 on the short region.

Case U, Ve P,

Casel 6.476 X 107" 5.497 x 107 1.136 x 10*°
Case2 3.895 X 1072 2.322 X 1072 5.808 x 1072
Case3 3.842 X 1072 3.088 X 1072 5.662 X 1072

Cased 4951 X 1072 3.645 X 107> 1.695 % 107"
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contours of Case 2 and Case 3 are quite similar with those of Case 6. Fig. 4 shows the instan-
taneous velocity and pressure profiles at x=28. Those of Case 1 are clearly different form
other cases. In Case 1, v is nearly constant and P has large gradient near x=0. Near the side
boundary, u, v and P oscillate considerably and are not smooth solutions. By contrast, the
profiles of Case 2, 3 and 4 seem to be similar qualitatively. Then, we show the variations of
u,, v, and P, with x in Fig. 5 and the values of them at x=28 in Table 2. All values of Case 1
are much larger than other cases. The values of Case 2 agree with those of Case 3, so that we
can not distinguish them except at x=28, where especially v, of Case 3 is slightly larger than
the one of Case 2. Though the values of Case 4 are partially smaller than those of Case 2 and
Case 3, they increase rapidly as close the outflow boundary, so that P, of Case 4 at x=28 is
especially larger than ones of Case 2 and 3.

It is important whether the given OBC is able to approximate well the natural outflow of
vorticity at the boundary or not. Fig. 6 shows instantaneous vorticity contours. Fig. 6(e) is the
result of Case 6, the ‘exact’ solution, and the periodic vortex pattern due to Kdrman Vortex
Street are observed in it. The distribution of vorticity obtained with Case 2 is much similar to
Case 6. In Case 1 and Case 3 the sign of vorticity is inverted and negative value occur close
the outflow boundary. In contrast, in Case 4 the region of positive vorticity is larger than

4
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Fig. 6 Vorticity contours.
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Fig. 7 Variation of integration values w, with x Fig. 8 Temporal variations of the kinetic energy
on the short mesh. norm E and the enstrophy Q.
————— Case 1 ------ Case 2
Case 3 ———— Case 4

Case 6. For the quantitative evaluation of the vorticity distribution, we define w, as the inte-
gration of difference of w based on (14). The variation of w, with x are shown in Fig. 7(a) for
the whole region and in Fig. 7(b) for the partially region near the outflow boundary. w, of all
cases have the maximum value at the outflow boundary. The maximum value of Case 2 is
smallest in the four cases on the short region.

4.4.  Comparison of integration parameters and norms

Some integration parameters, a Strouhal number S¢, a lift coefficient C, and a drag co-
efficient C, are very important for a flow around a structure. These parameters are given in
Table 3 where notation denotes the time mean value. We suggested in previous paper that Cp
tend to be influenced by OBC. C, of Case 5, 6 and 7 on the long region, are the same and
have little influence from each OBCs. However the period of shedding cycle 7 on the short
region is shorter and Cy, is larger than the results on the long region. Especially C,, of Case 1
is largest among four cases on the short region and it’s difference from the result on the long
region is also largest.
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Table 3. Integration parameters.

Case T St C. Cp

Casel 7.64 0.1309 +0.448 1.633
Case2 7.66 0.1305 +0.450 1.627
Case3 7.67 0.1304 +0.450 1.627
Case4 7.66 0.1305 +0.451 1.627
CaseS 7.68 0.1302 +0.451 1.624
Caseb 7.67 0.1304 +0.450 1.624
Case7 7.68 0.1302 +0.450 1.624

We introduce two norms for quantitative evaluation of velocity fields on whole computa-
tional domain. They are the kinetic energy norm E and the enstrophy Q, as follows;

y=+8 . x=28
- 12
e=[ [, gy (16)
y=+8 , x=28
- 1.
N a7

Fig. 8 shows the temporal variations of E and Q. The origin of time corresponds to the
instant when the lift coefficient C, of each case is changing from a negative value to a posi-
tive value. The temporal variations of E obtained Case 1 and Case 4 are obviously different
form one of Case 6 for those mean value and phase. The value of Case 2 agree with one of
Case 3. The phase and amplitude of both cases are similar with Case 6, though the mean
value of both cases are larger than that of Case 6. The kinetic energy on each grid point are
same order and contribute to integration of the kinetic energy norm identicaly except grid
points close the wall boundary of a cylinder. Then the differences of the kinetic energy norm
due to the difference of verocity fileds near the outflow boundary are obviously observed in
Fig. 8. On the other hand, the difference of the enstrophy between each case is small. Since
the magnitude of vorticity near the outflow boundary is quite smaller than that near the wall
of a square cylinder, the difference of vorticity near the outflow boundary due to the in-
fluence of OBCs contribute little to the integration over the whole domain and does not give
any obvious difference to the enstrophy.

5. Discussion

We summarize and discuss the results of the previous section. The free outflow boundary
condition implicitly imposes dv/dy=0 in addition to (2), because dv/dy=0 is derived from
the free boundary condition and the continuity equation (9). As the result, v of Case 1 is
nearly constant at the outflow boundary, as shown in Fig. 4. It is physically incorrect that v is
always constant with y in the wake, so that the results obtained with OBC 1 on the short re-
gion are quite different from the ‘exact’ results on the long region. This condition has been
used commonly in the finite difference method, but there are some questions about it’s ap-
propriateness.
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In contrast, the results of three types Sommerfeld radiation condition on the short region
are similar with those on the long region. The values of u,, v,, P, and w, in OBC 2 are smal-
lest respectively at the outflow boundary. Also, the variation of the energy norm in OBC 2
agree with the result on the long region. Therefore this condition is most accurate in the four
types OBCs tested here.

The results obtained with OBC 3, the Sommerfeld radiation condition by Halpern and
Schatzman, agree with those of OBC 2 in upstream region. It is due to the same condition
with OBC 2 for u. But v, and w, are slightly larger than the results of OBC 2 at the outflow
boundary and the vorticity of OBC 3 has a inverted sign as shown in Fig. 6(c). It is due to the
different condition of v; i.e. dv/dx=0.

OBC 4, the Sommerfeld radiation condition using the local velocity, was applied for the
steady flow by Nataf. However, Lugt and Hausslingls) pointed out that it is unacceptable to
use the local velocity u which implies that V P is neglected. Because the vortices in the wake
are of Hamel-Oseen type and thus have a pressure distribution with non-vanishing V P, which
was experimentally shown by Timme'®. The value of P, obtained with OBC 4 is large near
the outflow boundary, then OBC 4 seems not to be able to evaluate pressure accurately.
Therefore OBC 4 is not appropriate for the unsteady vortex shedding flow. But for the
steady flow, OBC 4 may be good as shown by Nataf, since the local velocity in the steady
wake has little temporal variation and is nearly equal to the mean velocity.

The above discussion suggests that the Sommerfeld radiation condition using the free
stream velocity is best among the four types OBCs tested in this study. The Navier-Stokes
equations may have hyperbolic nature approximately in the wake and the Taylor’s hypothesis
works well.

6. Conclusions

The conclusions that can be drawn from this study are as follows.

1. The free outflow boundary condition is physically inappropriate and deform both velocity
and pressure fields near the outflow boundary.

2. The results of the Sommerfeld radiation condition using the free stream velocity on the
short region are most similar with the results on the long region among the four types
OBC:s tested in this study.

3. The results of the Sommerfeld radiation condition by Halpern and Schatzman agree with
those of the condition using free stream velocity, except near the outflow boundary where
the vorticity has a inverted sign.

4. The Sommerfeld radiation condition using the local velocity gives the larger error for
pressure.
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