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Abstract

A rotating shaft driven by a universal joint suffers an angular
velocity fluctuation which is decided by an angle between the driven
shaft and the drive shaft rotating with a constant speed. An existing
shaft surely has some moment of inertia. Therefore the driven shaft
needs a moment to make the angular velocity fluctuation even if it
does not take frictions or external loads against its rotation. This
moment evidently concerns a torsional vibration. Simultaneously the
driven shaft gains a moment perpendicular to the shaft, a secondary
moment. The secondary moment causes a lateral vibration in the
driven shaft. The lateral vibration consists of components which
vibrate with even multiple as large as the rotating speed of the drive
shaft.

When an asymmetrical shaft is used as a shaft driven by a universal
joint, the asymmetrical shaft experiences vibrations influenced by the
angular velocity fluctuation of shaft. The vibrations consist of unstable
vibrations and forced vibrations. The unstable vibrations occur not
only at the major critical speed but also at a half of it. The forced
vibrations appear when the asymmetrical shaft is horizontally assembled,
and they occur not only at a half but also at a quarter of the major
critical speed.
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General Introduction

This paper explains, when a rotating shaft is driven by a universal joint, what
characteristics of vibration and what dynamical properties the driven shaft has.
The universal joint is what is called Cardan joint or Hooke's joint which has
spherical double-crank mechanism containing a cross-pin. J. Cardan (1501-1576,
Italian) invented a universal joint, and R. Hooke (1635-1703, Englishman) found out
that the universal joint transmits non-uniform rotating speed. This quantitative
relation is found in the paper of R. Burkhalter and others?. Though a universal
joint does not uniformly transmit a rotation, the universal joint has advantages
that it can stand high load and can be assembled more easily than a constant speed
joint such as a bhall joint. Therefore the universal joint is being used also at
present to transmit a power from a rotating shaft to the other one which make a
certain joint angle. As such machines, there are transport machines, machine tools,
and work machines.

While the critical speed of a rotating shaft has been studied by many investi-
gators, including R. Grammel?’, A. Stodola®>, and J. P. Den Hartog*) since W. J.
Mec. Q. Rankine®> performed the first investigation on the dynamics of a rotating
shaft in 1869. From the end of the 19th century to the beginning of the 20th
century, the most part of investigations concerned the critical speed of a shaft
system or the determination of a natural frequency. But it invites a fall of relative
rigidity and a diversification of vibration phenomena that machines grow larger.
Consequently the engineering study has began to head also vibration phenomena
which was not considered before. Also the subject of the investigation took up
many topics, the vibration through a critical speeds~?), the vibration of an asym-
metrical shaft or rotor10~15) the nonlinear vibration of a rotating shaft16,17> the
vibration of a rotating shaft supported by bearing with anisotropic rigidity8~29),
and the vibration of a rotating shaft being accompanied with angular velocity
fluctuation21:22). Thus many investigations have explained the causes and the
characteristics of the vibration generated in a rotating shaft system. The results
of these investigations gave a principle guiding to a vibration-proof counterplan for
every kind rotating machines, and made possible more quiet operation of turbines,
pumps, motors and so forth.

We can often find such examples as a universal joint is used between two
rotating shafts which make a certain joint angle. A vibration-proof counterplan for
these rotating machines becomes more complicated because a universal joint causes
vibrations based on its mechanism.

Several investigations concerned the vibration of a rotating shaft driven by a
universal joint, which is also the subject of the present study. There is a well known
relation about angular velocities between the drive shaft and the driven one!s23:24),
This relation is a base for the elucidation of vibration problem. Applying this
relation for analyses of the vibration, we have conveniences by expanding the
angular velocity of the driven shaft into Fourier series. The Fourier series
expansion will be shown in Chapter 1 of the present paper.

B. Porter2® and V. Zeman2$> analyzed the instability of the torsional vibration,
and S. H. Crandall et al.2”> analyzed the instability in the shaft system with an
asymmetrical rotor. O. Foppl?®), S. Fujii2?®, and R. M. Rosenberg??> treated the
vibrations of the shaft whirling with odd multiple as large as the drive speed.
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This odd multiple vibrations were elucidated by the explanation that they are caused
by multiplicational action of the angular velocity fluctuation and the eccentricity.

We cannot find but the investigation by S. Fujii et al.?®> which concerns the
vibrations of shaft whirling with even multiple as large as the angular velocity of
the drive shaft. They explained that the even multiple vibrations are caused by
frictions between the cross-pin and the yokes of a universal joint. But the report
deals with the frictions only between one pin of the cross-pin and one yoke,
furthermore it does not exactly give the relative angular velocity between the
yokes and the cross-pin. The vibration caused by these frictions will be treated in
Chapter 3 of the present paper.

R. Burkhalter et al.D), J. A. Kayser3?D), and S. Kato32 analyzed the vibration of
the shaft whirling with the angular velocity equal to two times as large as the
rotating speed of the drive shaft. They assumed that the drive shaft has simulta-
neously a constant angular velocity and a constant torque. But it is clear under the
simple dynamical consideration that this assumption does not hold.

Besides the above mentioned papers, there are studies on the speed character-
istics of a universal joint33~35 and on the response of a universal joint used as
gyroscoped®),

An approximate solution must be frequently treated when equations of motion
can be not exactly solved because they have small parameters, that is, parametric
excitation terms, nonlinear terms and the like. As for methods to analyze approxi-
mately, there are the perturbation method, the method of averaging, the method of
Van der Pol, the method of harmonic balance and so forth in addition to the
asymptotic method3? which will be used in Chapters 4 and 6 of the present paper.
Some one of these methods makes what is a called secular term generate in the
approximate solution (the method of Poison), and the other does not show the
method for higher order approximation (the method of Van der Pol).

The present paper deals with the following driven shaft systems. The driven
shaft system in Chapter 1 to Chapter 3 is composed of a flexible shaft with
circular section and a symmetrical rotor. The driven shaft system in Chapter 4 to
Chapter 6 is composed of an asymmetrical shaft and a concentrated mass. In all
the chapters, the driven shaft is supported by a universal joint at one end and by
a ball bearing at the other end.

The assumptions applied to each of chapters are as follows;

(1) The drive shaft is rigid, and it rotates with a constant angular velocity w.

(2) Each of parts of the universal joint is also rigid, and the universal joint
has neither a discrepancy of center or a play.

(3) The felxible driven shaft has no distributed mass.

(4) The deflection of the driven shaft does not influence the rotating speed
of the driven yoke, namely, that of the driven shaft.

Chapter 1 gives a consideration on the the transmission mechanism of moment
by a universal joint. The universal joint generates a secondary moment perpendic-
ular to the driven shaft when the shaft suffers a load against its rotation. The
generation of this secondary moment is dynamically explained. Force and moment
equivalent to the secondary moment are considered. They are regarded to act at
the position of a rotor installation to the shaft.

Chapter 2 discusses the characteristics of the forced vibration caused by the
secondary moment. Analytical and experimental examinations are performed on
how the secondary moment changes when the joint angle or the drive speed o is
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changed.

Chapter 3 deals with the forced vibration generated on account of frictions
between the cross-pin and the yokes. The frictions are considered to be viscous
and of Coulomb.

Chapter 4 analyzes the unstable vibration which occurs when an asymmetrical
shaft is driven by a universal joint. It is mentioned how the angular velocity
fluctuation influences on the vibration excited in the asymmetrical shaft.

Chapter 5 gives a physical iaterpretation on the unstable vibration of the
asymmetrical shaft in Chapter 4, and discusses on the generation mechanism. When
the unstable vibration occurs, it is considered how the whirling mode relates with
the increase in rate of dynamical energy of the shaft system.

Chapter 6 deals with the forced vibration caused by the shaft asymmetry,
angular velocity fluctuation, and gravity when an asymmetrical shaft is driven by
a universal joint and also is horizontally assembled. In this chapter, analyses and
experiments are performed on the asymmetrical shaft which whirls with the angular
velocity of even multiple as large as the drive speed w.

1. Generation of Even Multiple Vibrations
by Secondary Moment38:39

1. 1. Introduction

As is well known, a shaft driven by a universal joint makes a resonance at an
angular velocity ® which is equal to one of the integer submultiples of natural
angular frequency p (p==+=Ne, N=2, 3, 4, ...), and has a violently whirling lateral
vibration. Each of these vibrations has a frequency of integer multiples of the
shaft angular velocity. Vibrations with only the frequencies which are equal to odd
integer multiples of the angular velocity (N=2k-+1, k=1, 2, 3, ...) have been
treated analytically?1,23:29), Fujii et al.?® assumed the vibrations of even multiples
of the angular velocity (N =2k) caused by frictions between a cross-pin and yokes of
a universal joint. There have been many investigations regarding 2e vibration!»31,32),
in which analyses are performed under the assumption that a drive shaft has both
a constant angular velocity and a constant drive torque. However, if the angular
velocity of the drive shaft is assumed to be constant, then the drive torque can, in
fact, no longer be constant, and it should be determined only by a load resisting
the rotation of the driven shaft.

This chapter shows that a universal joint generates the secondary moment, by
which the driven shaft makes the even multiple vibration.

1. 2. Moment transmitted to the dviven shaft through a universal joint

A universal joint considered here is assumed to have no play, no friction, and
no misalighment in its center. As shown in Fig. 1. 1, let the center lines of a
drive shaft and a driven shaft be the z,; and z axes, respectively. These two axes
cross at the joint center A and make the joint angle «,. In two stationary rectan-
gular co-ordinate systems A-%q,1¥aZa1 and A-%.y.2, the y, axis is perpendicular to
the z.;Az plane. Consider the following two pins forming the cross-pin of the
universal joint: one is called the W pin, which always exists in the x.;¥, plane, and
the other is the © pin, which always exists in the x,y, plane. A rotating angle of
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Drive yoke

Fig. 1. 1. Moment transmitted to driven shaft through universal
joint (when there is no friction between a cross-pin

and yokes, i. e., Mo'=0).

ki
) V=
k&@
Zg
Q

b4
Surface of revolution
with generatrix AP

Surface of revolution
with generatrix AQ
Fig. 1. 2. Relation between stationary
rectangular co-ordinate systems
A-xg1va%q1 and A-xgy02

(LPAQ=LQAT=nr/2).

the drive shaft is represented by ¥, and
that of the driven shaft by ©. These
angles ¥ and @ are zero when the W pin
and © pin coincide with the x,; and y,
axes, respectively. Let one end of the
Y pin be P, and that of the @ pin be Q.

We introduce here the unit vectors
i, J, k, k1, p(¥), and ¢(@) as shown in
Fig. 1. 2. The unit vectors i, 7, k, and
k%, have the same directions as the x,,
Ya, 2, and z,; axes; p(¥) and ¢(@) have
the same ones as AP and g@, respec-
tively, and they are given by the fol-
lowing equation (1. 1) as can be seen
from Fig. 1. 2.

p@)=cosa,cos Zi +sin¥ j+ sina,cos ¥k

g(@)=—sin@itcosbj

(1.1

Scalar product of p(¥) and ¢(@) must be zero because of their orthogonal condition

as follows:
p()-q(6)=0 1.2
Substitution of Eg. (1. 1) into Eq. (1. 2) vields the following relation2®
tan @:—M (1.3)
cos &,

that is,
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. L _cosa,cos ¥ [ m "
Sin =2, c0s f=—"2 e ( —2—<aa<—2—) (1.4
where
H(?)=1-—sin?«a, cos? ¥ (1.5

The ¥ pin moment transmitted from the drive yoke to the ¥ pin is equal to
the ® pin moment exerted on the driven yoke through the © pin. This speaks for
itself by the law of action and reaction. It is assumed that there exists no friction
between the cross-pin and the yokes in this chapter. Accordingly, the W pin moment

given by the drive shaft has no component in the direction of W pin (—A—P)); and the
© pin moment acting on the driven yoke either has no component in the direction

of ® pin (E@). Thus the universal joint can transmit only a moment perpendicular
to the plane PAQ containing the cross-pin. This moment vector M, is expressed
by the vector product as shown in Fig. 1. 2:

IW.@O:MQOP(QF) X‘Z<9> (1'6>

Generally, since the direction of the moment vector M., coincides neither with
the center line of the drive shaft (z,, axis) nor with that of the driven shaft (z
axis), the vector M,, has a component perpendicular both to the drive shaft and
to the driven shaft.

As shown in Fig. 1. 1, the moment #,, is resolved into the following three
components: My in the z direction, and M} and My in the AQ and AT directions
perpendicular to the z direction, respectively. The moment Mo has influence on
the rotation of the driven shaft, and the moment M}, and M} have influence on the
lateral vibration of the driven shaft. Reference to Fig. 1. 2, and use of Egs. (1. 1),
(1. 4), and (1. 6) yield the following equations:

MG:Mao'k:Mao'\/mT

Mo=M,-q(6) =0 .7
Mg:];{[ao-q(@+_725):Mao sin o, cos ¥

The components My, My, and My of the moment Mg, in the z.1, p(¥), and p(¥+
z/2) directions are derived as follows:

cos a,
* VH)
My=Mq-p(7)=0 (1.8)

My=MoFy =M, (— sin &, i-+cos &, k) =M

o R sin a, sin 7
MQ" MCLO p( + 2) MaO )\/H*——-—‘“([p,)

Differentiating Eq. (1. 2) with respect to time ¢, and using Egs. (1. 1), (1. 4),
(1. 7), and (1. 8), we have
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. S 1. .
P aO) =T 2 OVETy =@My —6M)=0  (L.9)

where the dot over the variables ¥ and @ means differentiation with respect to f.
From Eq. (1. 9) the following two equations are obtained :

L COS A,
O=1-Gr e (1.10)
My =My6 (1.11)

Equation (1. 10) is a familiar relation?4> between the angular velocity of the drive
shaft and that of the driven shaft. Equation (1. 11) shows clearly that the time
rate of work done by the drive shaft (the left-hand side of Eq. (1. 11)) and that
by the driven yoke (the right-hand side of it) are equal to each other; this shows
the truism that there is no energy loss in a frictionless universal joint.

Figure 1. 1 shows all the moments and forces acting on the shaft driven by a
universal joint which has no friction between the cross-pin and the yokes. In this
figure the force vectors R and — R are the reactions given by the bearing B and
the drive shaft, respectively; they are proportional to the moment My in magnitude,
and coincide with © pin (A_é) in direction.

In the following, the drive shaft is assumed to rotate with a constant angular
velocity o, and W pin is assumed to exist in a plane containing both the Zq1 and z
axes when {=0, namely,

i (1.12)

Here, a revolutional angle © is given as a known function of time; if a dynamical
property is given to the driven shaft system, then My is obtained from Eq. (1. 7),
and a secondary moment MY is determined by

. . cos ¥

Mg=Mgsin aavm (1.13)
Consider a driven shaft system such as shown in Fig. 1. 3. A flexible shaft S,
has a uniform circular cross section of length /, and has a balanced symmetrical
rotor D. Point A supported by a rigid drive shaft is a center of the universal
joint. One end of the flexible shaft S, is simply supported at the point A. The
rotor D is mounted at a position S which is at distances of « and & from the
shaft ends A and B, respectively. The secondary moment and also the angular
velocity of the driven shaft are assumed
l not to be influenced by deflection in the

a b driven shaft.
DL_O ' L. For convenience, an equivalent force
— ] F and an equivalent moment M at the
A M S Sh B point S are considered instead of a moment
M M; which acts at the point A in the
F direction perpendicular to the driven shaft.
Fig. 1. 3. Force F and moments M, M; Simultaneous action of F and M causes
in driven shaft. the same deflection and the same angle of
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deflection in the driven shaft as caused only by the moment M;. Use of the theory
of elasticity gives

_ 3M; M,

F= 22 , M= 5 (1.14)
whether the support condition at the shaft end B is simple or fixed. The positive
directions of the vectors F, M, and M; are shown in Fig. 1. 3.

, Let a torsional angle at the point S with respect to the point A be 6;,—6, the
positive direction of which is the same as the shaft rotation. The torsional angle
©,—6 and the rotating angle O, are given by the following equations:

Mg=—0,(6,—06) (1.15)
1,6,=—0,(0,—0)—M, (1.16)

where, I, denotes a polar moment of inertia of the rotor D, d; a spring constant
for a twist of shaft between A and S, and M, a constant resisting moment acting
on the driven shaft end B.

Equation (1. 10) can be transformed into the following form®*!:

O=w(1+2 3 &¥2cos Nwt) (1.17)
N=2,4,
Here the coefficient ¢ is given by the following equation:
=3 3 2k
c=cos d, 3 chk_l(i%—“a) (1.18)
k=1

which is a function only of the joint angle a, as shown in Fig. 1. 4. Equation (1.17)
shows clearly that the component fluctuating with the angular velocity Now is
2we¥/2 in magnitude. Since the coefficient
¢ consists of even powers with respect to
the joint angle a,, the following approxi- 0.4

mate equation } }

Eq. (1.18)
——l—c{ 24 _1._@ 4 (1 18)/ 03 /
R 7 R ' v e Eq. (1.18)

can also be used instead of the infinite 0.2 /

polynomial (1. 18). The broken line in /
Fig. 1. 4 indicates the value ¢ derived 0.1

from Eq. (1. 18)’, and it shows a fairly
good approximation to Eq. (1. 18) when /
o, is smaller than =z/6. Substitution of

Eq. (1. 17) into Eq. (I. 16) gives the O T2 T/6 T/4 T3
following differential equation with re- Qg rad
spect to the torsional angle 6;—6: Fig. 1. 4. Variation of coefficient ¢ by

joint angle aq.

#1 Although the direct derivation of Eq. (L. 17) is very difficult, the equivalence of Eq.
(1. 17) to Eq. (1. 10) may be proved rather easily.
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I,(6.:~6) +5,(0.~6) =2I,0* 3} "N sin Nut—M, (1.19)
N=2,4,
Substituting the solution of Eq. (1. 19) into Eq. (1. 15), we have

Meg=M,—08, > &"*d, sin Nwt
N=2,4,

Joe 2NILw? (1.20)

NS, —1T »(Nw)?

As pointed out in the introduction, a drive torque My acting on the drive yoke

should not be presumed in advance, and it is determined necessarily by Egs. (1. 7)

and (1. 8), namely,

_ Cos &, __ - w2 Cos d,
My=Mo-ge—=M,~58, 57 &' dy sin Nat)- 52 e T (1.21)

Here one may set up a stationary rec-

Y(Ya) tangular co-ordinate system O-xyz parallel
to A-x,9,2 in which point S overlaps with

the origin O when there is no deflection

Fa---- Fy in the driven shaft. Substituting MY in
® Eq. (1. 13) into M; in Eq. (L. 14), we
My M obtain the equivalent force F and moment

M expressed on the O-xy plane (Fig. 1. 5).

{
Fx E X(xa) Comparison of Eq. (1.10) with Eq. (1.17)
o\ Ol M T vl
COS &, _ N2 [/
T 1+2N:§,-~€ cos N¥
Mg (1. 22)

Fig. 1.5. Force F and moment M equiv-
alent to secondary moment Mg".

Use of Egs. (1. 4), (1. 13), (1. 20), (1. 22),
and Fig. 1. 5 gives the following ¥ compo-
nents F, and M,, and y components F,

and M, :
Fo=—3Mo gn g
2a
- —7% tana,sin 20t (142 31 ¢"*cos Nut) (M,—~0, 3] &"dysin Nur)
F,= 3% o cos 0
= sina,(1+cos 20) (1 +2 33 e*cos Not) (M, —3, 5] <"*dsin Not)

(1.23)
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_aF __al,
M,= 3’, M,= —5= (1.24)

Apparently, the equivalent force (1. 23) and moment (1. 24) have the components
of whirling velocities =No (N=2, 4, 6, ...). Consequently, when any one among
+Nw is nearly equal to the natural angular frequency p in relation to a whirling
motion of the shaft (i. e., @=+p/N holds well), the shaft undergoes a violent
lateral vibration whirling with any one angular velocity among +Na. Also, when
the drive shaft rotates with an angular velocity nearly equal to one of the even
integer submultiples of the natural frequency regarding torsional vibration of the
driven shaft, the shaft may have a violent lateral vibration accompanied by a violent
torsional vibration.

1. 8. Experiments

Experiments are performed for the purpose of confirming the analytical results
obtained in section 1. 2. Lateral deflections and angles of deflection at the mounting
point S of a rotor D are measured for the joint angle a, and the axial moment M.

A universal joint used in the experi-
ments is shoym in Fig. 1. 6. This joint is #5104 : #6002
not one available on the market but one Yoke Cross-pin
produced especially for the present inves-
tigation, and has the following character-
istics: Both single-row radial ball bearings !
(nominal No. 6002) and thrust ball bearings - +——
(nominal No. 51104) are used between the ;
cross-pin and yokes. Consequently, play

and frictions between the cross-pin and

the yokes will be smaller than those of %%

the conventional universal joint obtained {66mm

on the market. The coefficient of the

viscous friction to the relative swinging Fig. 1. 6. Universal joint used in

motion between the cross-pin and the experiments.

yokes is about 0.3 s-N-.m/rad, and the

moment caused by Coulomb’s friction is 0.81 mN.m. The magnitude of play is about
0.01 mm. The driven shaft S, is made of mild steel with a uniform circular section,
and one end B of it is supported in fixed condition (Fig. 1. 3). The dimensions of
the driven shaft are /=625.4 mm in length (¢=237.5 mm, 5=387.9 mm) and 17.97
mm in diameter.

The experiments are performed as follows: A moment M, is externally given
at the shaft end B, and its direction is clockwise as viewed from the driven shaft.
Under the action of the moment M,, the drive shaft is fixed to rotate. Therefore
w=0 and dy=0 hold, and from Eq. (1. 20) the moment M, exerted at the point A
is

Mo=M, (1. 20y’

Thereupon static deflections and angles of deflection at the point S are measured.
The following equations
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aF, a N
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(1. 25)

are used for non-dimensional quantities. They are shown as functions of ¥ in Fig.
1. 7, where « and 7y in Eq. (1. 25) are the spring constants of shaft deflection. The
solid line and the broken line in Fig. 1. 7 represent the calculated values from the

following equations

1.5
| Me Fyx Fy
|0.32N'-m @ @
13.55 ® '® rExperimental
1.0 F18.79 & O
=~ —— —===Theoretical
®
S 19y @-0543rad  4o9
3, PN 4
505 7 ;
2 2 Blee
S g, | A48 e
U{S 0@ Q. ¥ )
@
@@ @
-0.5 -
0 /4 /2 3T/4 T
Vv rad

Fig. 1. 7. Variations of equivalent forces
Fz, Fy by rotating angle ¥ of
drive shaft.

Fig. 1. 8. Variations of equivalent forces
Fz, Fy by drive moment Ms
acting on driven shaft.

aF,  3sina,sin2¥

M, A7 (7Y
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W:%rad e
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000543708 /7 ° s
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. (O] -
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e

D

4 -
Dz

e
/.

P
® o7 Q=0328rad

&
- Qa=0rad

al’, _ 3sin a, cos «,(1+ cos 27)

Me_

45 (7

(1. 26)

which are given by substitution of Egs. (1. 4), (1. 13), and (1. 20)’ into Eq. (1. 23).
Figure 1. 8 shows the measured results for the purpose of confirmation of the
proportional relation (1. 25) between the equivalent forces F,, I/, and the moment
Mg when ¥'==/6 rad for many values of M,. Since these measured values coincide
well with the calculated values, it is clear that the lateral deflection of the shaft

is generated by the secondary moment

5, and the analytical results derived in
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section 1. 2 are valid.

1. 4. Conclusions

In this chapter, consideration has been given to the mechanism of a moment
transmitted by a universal joint. Also, a dynamically clear interpretation has been
proposed for generation of a secondary moment which concerns a lateral vibration
of the driven shaft. The results obtained may be summarized as follows :

(1) Owing to the secondary moment generated by the universal joint, the
driven shaft makes a resonance and has a number of forced lateral vibrations.
These vibrations increase when the drive shaft rotates with an angular velocity
nearly equal to one of the even integer submultiples of natural angular frequencies
in the driven shaft system. The whirling angular velocities of these vibrations are
equal to even integer multiples of the angular velocity of the drive shaft.

(2) An equivalent force and moment acting on a rotor mounted on the shaft
can be used instead of the secondary moment.

(3) When the drive shaft rotates with a constant angular velocity, the shaft
driven by a universal joint rotates with the angular velocity represented by simple
Fourier series (Eq. (1. 17)). Use of this equation can facilitate vibration analyses
for the driven shaft system.

(4) The experimental results show validity of the present analyses.

2. Analyses and Experiments on Even Multiple Vibrations
by Secondary Moment*?

2. 1. Introduction

A secondary moment generated by a universal joint has components fluctuating
with even multiple of an angular velocity of drive shaft. The manner in which
these fluctuating components change due to a joint angle and an angular velocity is
investigated. Equations of motion in consideration of the fluctuating components
are introduced, and the solution is given as forced vibration. Experiments are
conducted for each magnitude of the joint angle and the drive moment concerning
torsional vibration, and the even multiple vibrations generated in the driven shaft
are measured. The analyses and the experiments indicate that the even multiple
vibrations generated in the experimental apparatus are caused mainly by the sec-
ondary moment.

2. 2. Rotating force and moment equivalent to secondary moment

A drive shaft and a driven shaft are shown schematically in Fig. 2. 1. The
drive shaft carrying a flywheel F is rigid, and it rotates with a constant angular
velocity w. The driven shaft S, with no initial bend is flexible, and it has a
uniform circular cross section, [ in length. One end of the shaft S, is supported
by a universal joint J and the other end by a self-aligning double-row ball bearing B.
At the point S of the shaft a balanced rotor D is mounted. Notations, co-ordinate
systems, and terms are the same as those in Chapter 1 except when they are
especially mentioned.

The secondary moment is assumed not to be influenced by a small deflection
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Flywheel F B

\ Rotor D 7
Drive shaft
N4 |
—%
}E%u 2| [ 5
V=w
L Fig. 2. 1. Shaft S, and rotor D driven by
Universal joint J a universal joint J.

of the driven shaft. Therefore, no reference to self-sustained vibration or para-
metric vibration is made41,42),

The equivalent force and moment given by Egs. (1. 23) and (1. 24) are expanded
into Fourier series, and are written as follows:

F.=F+iF,=F[0]+ 3 {F[+Nole™+F[~Nole "} } @1
M,=—iaF./3 (i=+-1)

where F, and M, are rotating vectors represented on a complex plane which has
the x axis as real axis and the y axis as imaginary axis. The components F[0] and
F[+Nw] of the equivalent force are classified according to loads against rotation
of the shaft. One is a component due to the constant moment M,

_@M@lz z%- sin @, (1+¢)
’ } 2.2)
iﬂ%ﬁf&: z%em-l{a o) ?sin @+ (1—e?)tan @)
b

the other is a component due to the torsional vibration of the shaft section AS,
eF0] _ 3 _etana, 31 <,
8t 8 k=24,

AFTENG] _ 3 unnl (1 ety tan

5 P ‘ek(dk+N+dk>—-DA’} (2 3)

k=24,

FA+esina [ 20D g 5 (d,—d)+ D ]

where

™
X}

D,=0, Dy= d,, K=4, 6, - 2.4)

k

I
)
-

The characteristics of F[4+Nw] are explained in Figs. 2. 2 and 2. 3(a), (b),
and (c) which show the numerical results of Egs. (2. 2) and (2. 3). In these figures
notations [0], [+2w], [—207, ... represent F[0], F[+2w], F[—2w], ..., respec-
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tively. Figure 2. 2 shows the influence of @, on the equivalent force due to M,.
The magnitude of these forces, as is known from Eq. (2. 2), depends only on the
joint angle @,, and does not concern the angular velocity of the drive shaft w.
Equivalent forces except for F[0], F[+207], F[+4w0], and F[-+6w’] are very small
when «, is smaller than =/4. Figures 2. 3(a) and (b) show the equivalent forces in
the case that the drive shaft rotates with an angular velocity nearly equal to
one-second and one-fourth as large as the natural angular frequency of torsional
vibration p,=+/§,/T,- These equivalent forces, except for the torsional resonance
(w/p:=1/N), vary monotonously with the angular velocity w. As shown in Fig. 2.
3(a), F[+2v] is nearly equal to F[—2w7] in absolute value and differs from it in
sign. Accordingly, resultant force F[+2w]et29t+ F[ —2w]e~t2¢t varies only in the
y direction. Figure 2. 3(c) shows the equivalent forces for the joint angle aq,
where o/p,=0.3. These equivalent forces show a steep increase for a certain value
of @,. Thus the equivalent force F, is generally given by composition of the
vectors rotating with the angular velocities --Nw. The component (2. 2) due to
the constant moment differs in phase by #/2 from the component (2. 3) due to the
torsional vibration.

The equivalent moments, apparently from Eq. (2. 1), have the same character-
istics as the equivalent forces.

2. 3. Equations of motion and their solution

Equations of motion of the shaft system shown in Fig. 2. 1 are introduced on
the following assumptions: The rotor D is well balanced, subjected only to the
equivalent force and moment. The displacements of the rotor D, that is, z and 4,
concerning its translation and inclination, are considered

2=x+1y, 6,=0,+10, (2.5)

Variables x# and y are x and y components in deflection, and ¢, and 6, are angles
projectional to the xz and yz planes of deflection angle of shaft at the position S
where the rotor is mounted, respectively.

Equations of motion have been reported22:43,44) for a shaft which rotates with
variable speed. The equations of motion involve the second order of a small
displacement. Here considering the angular velocity of the rotor D

bi=w{l+ 3 "2(2+Ndy)cos Not) (2. 6)

N=2,4
we arrive at the following equations of motion:

mi+c.Z+az+710,=F,
. - . ° <2’ 7)
I, —il,w0,+c30,+00,+72=M,

where m is mass of the rotor; @, 7, and § are spring constants of the shaft; ¢,
and ¢, are viscous damping coefficients for translation and inclination of the rotor,
respectively.

In the following discussion, the terms [+ Nw] vibration and [—Nw]] vibration
are used. They are vibrations of the driven shaft whirling with the angular velocity
Nw. The [+ Nw] vibration means a vibration of the -shaft whirling in the same
direction as the drive shaft rotation, and the [ —Nwo7] vibration that of the shaft
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whirling in the reverse direction.
The forced vibrations for z and 4, are given in the following form:

Z:A[Oj‘i‘v:;i {A[+Nw]eint+ A[_Nw]e~iNmi}

(2.8)
6.=B[0]+ S\ {B[+Nole" +B[~Nale

N=2,4,

where, A[07] and B[0] are the static deflection and the static angle of deflection,
Al +Nw] and B[+Nw] are the complex amplitudes of the [+Nw] vibration,
Al —Nw7 and B[ —Nw7]] are those of the [—-Nw] vibration.

Calculated amplitudes A4[ +2w] and A[+4w] are shown in Figs. 2. 4(a), (b),
(), and (d). In these figures, the solid line (p:/+/a/m=0.816) shows the results
which are calculated by using parameters of an experimental apparatus (experiment
[ for rigid coupling C, in section 2. 4); the broken line (p./+a/m=1.042) shows the
results which are derived by using torsional rigidity d./(al?) somewhat larger than
that of the experimental apparatus. As can be seen from Fig. 2. 4, p,/2 and p,/4 in
this apparatus nearly coincide with the critical speeds w, +2w] and oJ-+4w] of
the [+2w] and [ +40] vibrations for p./+/a/m=0.816, whereas they are separated
for pe/va/m=1. 042.

Figure 2. 4(a) shows the amplitude | A +2w7]| in the case that the drive shaft
rotates near the critical speed w.[+2w0]/+va/m=0.448. The amplitude is consider-
ably large in this neighborhood because p,/2 is nearly equal to w. +2w]. Figure
2. 4(b) shows that the double frequency vibrations passing through the critical
speed do not change in phase because the phase reverses twice. When p,/2 is
different from w, +2w7, the double frequency vibrations generated near w,[ +2w]
are smaller than those when it is nearly equal to w.[-+2w«w] and a new peak of
amplitude due to the torsional resonance appears near w=p,;/2. The [—2w7] vibra-
tion has the peak of amplitude near the critical speeds w. [ —2w]/v/a/m=0.435 and
1.041, and near the resonance point of the torsional vibration. The characteristic
of the [—2w] vibration near w/+/a/m=0.435 is similar to that of the [+2]
vibration. In this experimental apparatus, w.[+2w]/+va/m=0.448 is nearly equal to
o [—207]/va/m=0.435; accordingly, the double frequency vibrations are seemingly
reduced to a rectilinear vibration.

Figure 2. 4(c) shows the amplitude | AL +4w]]| in the case that the drive shaft
rotates near the critical speed w.[-+407/+a/m=0.223. The left-hand peak of the
two peaks shown by the solid line is due to the torsional resonance. The [+4w]
vibration reduces to zero in amplitude at an angular velocity (w/+/a/m=0.207)
slightly larger than p,/4. This is known from Fig. 2. 3(b) too. A phase diagram is
shown in Fig. 2. 4(d). The [—4w] vibration makes a resonance near /+«/'g/m=
0.219 and 0.596, and its amplitude is smaller than that of the [+4w] vibration.

The [+Nw] vibrations concerning the deflection angle are similar to the
deflection in characteristic.

The angular velocity © of the driven yoke has components which vary with the
even multiples of w. Accordingly, the torsional vibration makes a resonance when-
the drive shaft rotates with one of the even submultiples of the natural angular
frequency concerning torsional vibration. As a result, the secondary moment due
to the torsional vibration excites an even multiple lateral vibration, and this



et
(o)

H. Ota and M. Kato

1.0 T m

i ik

[H -
508 -Vl | !
= ! i
dosk o
X BR |
< i !
304k My . “

| \
(3]
] /,"/ \
202 / \
£ / N

/s N

< = ———] (‘):w?HZw] .

035 040 045 050 055
Angular velocity w//a/m

(a) Amplitude

T

of [+2uv] vibration.

arg Al+2w]
le)
T

ﬂ

~

3
(")
@
[9)]

1 1 I

035 040 045 050 055
Angular velocity w/fa/m

(b) Phase angle

of [+2w7] vibration.

arg Al+4w]

Amplitude a(|Al+4wl] /Sy

o
[S)

o
o
@

0.06,

o
(o]
N

O
Q
o

W=we[+4w]
] !

020 021 022 023 024
Angular velocity w/i/a/m

(c¢) Amplitude of [ +4w] vibration.

Py
i / V) = 1,042
0.816
" L4
! ! 1 1 1
020 021 022 023 024

Angular velocity w//a/m

(d) Phase angle of [+4w] vibration.

@q=0.271 rad, Ip/(mI2)=0.04609, I/(mI2)=0.02315,
7/ (al) =—0.1931, 3/(al2)=0.1891, a/I=0.3798,

81/ (12)=0.03074, c1/+/ma=0.0073,

czv/afm/ (@12)=0.00038, M,=0.
Fig. 2. 4. Amplitude and phase angle of even multiple vibrations.

resonance diagram has a peak similar to normal resonance.

2. 4. Experiments

2. 4. 1. Experimental apparatus and method

A schematic diagram of the experimental apparatus is shown in Fig. 2. 5. Drive
source is 5 kW D. C. motor, which drives a shaft S4; through a stepless speed
converter, V-belt, and V-pulley. A flywheel F with a large polar moment of inertia
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Additional
apparatus Apa

f Y ¥
frcchometer] ]Ampliﬂer{ |Amp[iﬂer| Osci{logruph] {Synchroscope]
w Yy X %

V-Pulley )
—,~Flywhe IF

\lladifionol
rotor Dq

B Bz Cr

Universal joint J
“\v-Belt

Ssgeepggss H D.C.motor Fig. 2. 5. Schematic plane diagram of experimental

converier apparatus and measuring system.

f
i s

is mounted on the shaft S,; so that it rotates with a constant speed. The shaft
Sq; drives a shaft S,, connected directly with the drive yoke of the universal joint
J through either a rigid coupling C, or a flexible one C.. The coupling C; is made
of a coil spring with a torsional rigidity smaller than that of a driven shaft S,.
When the coupling C; is used in place of the coupling C,, a secondary moment will
be much smaller. The driven shaft S, is made of round-bar steel, and carries a
rotor D of thin disk form. An additional apparatus A,, is prepared to be attached
to or detached from the shaft end B. The additional apparatus A,, consists of an
additional rotor D, and a rigid shaft supported by two bearings Bs, B;. The
torsional natural frequency can be varied by removing the rotor D..

Polar moment of inertia of the flywheel F is 0.8028 kg-m?. The rotor D is
377.2 mm in diameter, 7.1 mm in thickness, 6.196 kg in mass, [,=0.117 kg-m? in
polar moment of inertia, and I=0.0561 kg-m? in diametral moment of inertia. The
driven shaft S, is /=625.4 mm (¢=237.5 mm, 0=387.9 mm) in length, 17.97 mm
in diameter, 1.912 kg in mass, 207.4 GPa in Young’s modulus, and 81.54 GPa in
shear modulus. Torsional rigidity of the flexibie coupling C. is 1.42 N.m/rad.
Polar moment of inertia of the additional rotor D, is Ip,=0.0200 kg-m?. The
viscous damping coefficient of lateral vibration is 9.8 N.s/m.

Experiments consist of the following [ and [I.

(1) Experiment [: The additional apparatus A,, is removed. The joint angle
aq is set at 0.117, 0.218, 0.271, and 0.426 rad. Amplitudes are measured in the
case that either the rigid coupling C, or the flexible one C, is used.

(2) Experiment [[: The additional apparatus A,, is attached, and the drive
shaft S, is connected directly to the shaft S,y by the rigid coupling C,. The joint
angle a, is set at 0.105 rad. Amplitudes of the driven shaft are measured either
with the additional rotor D, attached or without the rotor D,.

2. 4. 2. Experimental results and consideration

Vibratory waves obtained in experiment [ are shown in Figs. 2. 6(a) and (b),
and the amplitudes are shown in Figs. 2. 7(a), (b), (c), and (d). The amplitudes
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One revolution Rotating mark

sl \
y IO.Smm '
y 0.5mm .

Rotating mark

x ' 10.5mm . » / IO S

Time — 218, Time — WO.ls
(@) w<wd +207] (=826 rpm). (b) w>wl +20] (@=920 rpm).

Fig. 2. 6. Vibratory waves of [ 2] vibrations in rigid coupling C, (@y=0.117 rad).

obtained from experiment [| are shown in Fig. 2. 8. Notations [4+207, [+3w],
[4dw], ... in Figs. 2. 7 and 2. 8 represent the lateral vibrations whirling with
two, three, four, ... times as large as w; abbreviation R. C. or F. C. in Fig. 2. 7
indicates that the coupling C, or C; is used.

Figures 2. 6(a) and (b) show the vibratory waves x, y for the rigid coupling
C, and the joint angle a,=0.117 rad when the drive shaft rotates near the critical
speed w, [ +2w]. Figure 2. 6(a) shows the vibratory waves at the angular velocity
lower than w,[+207], while Fig. 2. 6(b) indicates those at higher velocity. The
comparison between the phase of the vibratory wave and the rotating mark of the
rotor reveals that the double frequency vibration varies largely by 4.85 rad in
phase when the angular velocity o is passed through w.[-+2w7] (refer to Fig. 2
4(b)). Apparently, this characteristic appears due to a simultaneous resonance of
the lateral and torsional vibrations. The double frequency vibration is certainly a
forced vibration caused by a secondary moment. The amplitude of the y direction
is larger than that of the x direction because the [+2w] and [—2w] vibrations
simultaneously make a resonance.

The amplitudes for each joint angle a, of 0.117, 0.218, 0.271, and 0.426 rad
are shown in Figs. 2. 7(a), (b), (¢), and (d), respectively (experiment ]). The even
multiple vibration for the flexible coupling C; is much smaller than that for the
rigid coupling C,. This shows that the main cause of the even multiple vibration
is the secondary moment M}, proportional to the drive moment M, which the
universal joint gives to the driven shaft (refer to Eq. (1. 13)). When the rigid
coupling C, is used, the even multiple vibration increases with the joint angle aq,
and the [+2e] vibrations have a component predominantly in the y direction.

The calculated results of the rotating forces F[ 4+ Nw] equivalent to the sec-
ondary moment Mg are shown in Table 2. 1. F[+2w] is nearly equal to F[—2w] in
absolute value, opposite to F[—2w] in direction. Except for F[+2w], F[+Nw] is
larger than F[—Nw7] in absolute value. These coincide well with the results shown
in Fig. 2. 7. Figure 2. 8 shows the resonance curves when the additional rotor D,
is attached or detached (experiment [I). The amplitude of the [+2w] vibrations
with additional rotor D, is considerably smaller than that without D,, while the [+4w]
vibrations change little. The calculated results about the rotating forces F[+Nw]
are given in Table 2. 2. These values match well the results shown in Fig. 2. 8.
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Fig. 2. 7. Comparison of even multiple vibrations [Nw] in rigid coupling
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Table 2. 1. Comparison of equivalent forces for rigid coupling C,
and those for flexible coupling C; (¢e=0.271 rad).

Rigid coupling C, Flexible coupling C:
o/ a/m N - -
aF[+Nwl/8: | aF{—Nw]/8; | aF[+Nw]l/é;: | aF_ —~Nw]/o:
0. 448 2 —2.15%x10-3 2.16x10-2 —7.83x10-7 7.61x10-7
0. 223 4 —3.09%x10-4 1.32x10-5 7.16x10-7 2.14x10-8
0.148 6 —7.83x10-6 1. 49 10-7 —2.15x10-8 —5.00x 1010




Amplitude AlzNw] mm

the even multiple vibration, especially for [4+2w] and [+4w] vibrations.
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Table 2. 2. Comparison of equivalent forces without additional
rotor D, and those with D, (ag=0.105 rad).
Ipa/Ip=0 Ipa/Ip=0.1791
o/ VETT N pa/lp pa/Ip

aF[+Nwl/6; | aF[—Nwl/d: | aF[+Nwl/8, | aF[~Nwl/5;
0.496 2 1.69x 104 —1.69x 104 1.12x10-4 —1.12x 104
0.248 4 —3.16x10-5 —2.04x10-7 —4.30x10-5 —1.96x10-7
0.165 6 ~—1.00x10-7 —4.20x10-10 | —1,85%x10-7 —6.07x10-10
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Fig. 2. 8. Comparison of even multiple
vibrations [Nw] without
additional rotor D, and those
with D, (Experiment IJ).

Since the above-mentioned experi-
mental results coincide well with the ana-
lytical results in section 2. 3, the even
multiple vibrations are clearly caused by
the secondary moment MY}.

2. 5. Conclusions

Forced vibrations due to the secondary
moment of a universal joint are studied,
and the results obtained may be summa-
rized as follows:

(1) When the drive shaft rotates with
an angular velocity o nearly equal to even
integer submultiple of the torsional or
lateral natural frequencies, the driven shaft
makes a resonance and undergoes an even
multiple vibration.

(2) A constant moment M, resisting
the rotation of the driven shaft causes the
[+Nw] vibrations (N=2, 4, 6, ...), in
which the driven shaft whirls forward
with even integer multiples of angular
velocity Nw. When the joint angle a, is
small, only the [+2w7] vibration is caused
and its amplitude increases proportionally
to aq.

(3) The secondary moment by the
torsional vibration is the main cause of
The

amplitudes increase steeply with a joint angle a, larger than a certain value.

(4) The even multiple vibration caused by the constant resisting moment M,
differs by #/2 in phase from that by the torsional vibration.

(5) An appropriate dimension of the driven shaft system causes large [—2w]
and [+4w] vibrations near the major critical speed too.
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3. Foreced Vibrations Caused by Frictions
between a Cross-Pin and Yokest®

3. 1. Introduction

A rotating shaft driven by a universal joint can make vibrations because of
frictions between a cross-pin and yokes of the universal joint.  This chapter
investigates the force exciting the driven shaft system by viscous and Coulomb’s
frictions for the relative angular motion between the cross-pin and the yokes. And
it is explained what lateral vibrations the driven shaft performs. Analyses and
experiments showed the following results. Viscous friction between the cross-pin
and the yokes can hardly cause a vibration. When the vibration occurs, the amplitude
increases with the larger joint angle. Coulomb’s friction causes the vibration
independent of the joint angle.

3. 2. Moment given to the driven shaft through a universal joint

Moment due to viscous and Coulomb’s frictions are assumed to act on the
relative angular motion between the cross-pin and the yokes. When frictions does
not act on the relative motion between the cross-pin and the yokes, the transmitted
moment of universal joint 74,, is expressed by the vector product (I. 6). When
the frictions act, the transmitted moment %, has both components of p(¥) and
q(0) directions. Let these components be My and M, respectively. Then M, is
given by the following equation.

M =M +Myp(F)+Moq(0) CY)

The moments M, and M} caused by the frictions are obtained as follows.
Let ¥’ be an angular velocity of ©
pin about W pin, and @ be an angular

15‘ ) \{elocity of W pin about ® pin. T hat is,

K\ 6 ng(" ¥ is the component of Ok to the direction
& p@), and @ is that of ¥k; to the di-
R rection g(@). Then ¥ and & are given

by the following equations (refer to Fig.

f luti N
Surface of revolution 3. 1 and appendix).

with generatrix AP

U =@k p(7)=0sin a, cos ¥
0 =Vk,-q(0) =¥ sin a,sin
3.2)

where dot notation means differentiation
with respect to time f{. The drive shaft

Surface of revolution . .
gives W pin the moment

with generatrix AQ

Fig. 3. 1. Relation between a cross-pin

A-PQ and two stationary
rectangular co-ordinate

systems A-xalyazal’ A-xayaz which pOintS to p(?[f) direCtiOn, and @
(/PAQ=/QAT=n/2). pin gives the driven shaft the moment

My=—c,¥' —Myosgn(¥") (3.3)
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M’GZCQQI+MGQ Sgn(9/> (3. 4)

which points to g(©) direction. Where ¢y and My, are a coefficient of viscous
friction and a moment caused by Coulomb’s friction for the relative angular motion
between the drive yoke and W pin, and ¢, and My, are those for the relative
angular motion between the driven yoke and ® pin, respectively.

Considering Egs. (1. 3) and (1. 4), we obtain each components Mg, My, and My
of the transmitted moment 77, to k, (@), and g(O+r/2) directions as follows.

MG:Ma'k

=MooV H(T) —cy0sin’® @, cos? ¥'—M,,| sin a, cos ¥| (3.5)
My=M,-q(0)
=co¥ sin @, sin @+M,, sgn(sin @, sin 0) (3.6)

My=M,-q(O+7/2)
=M, sin o, cos ¥+ {cy0 sin @, cos ¥'+M,, sgn(sin a, cos ¥)} /Z (7)

3.7

in which My influences the torsional vibration of shaft, My and My the lateral
vibration.

Furthermore, the component of 34, to %, direction, namely, the drive torque
My is given by the following equation.

Mg/:,iwa‘kl
=M, cos &,/ H(TY +ce¥sin? a, sin? O+ M| sin @, sin 6| (3.8)

Energy loss E, per unit time is found by differentiating orthogonal condition
of the cross-pin (1. 2) with respect to time ¢ and by using Egs. (3. 5) and (3. 8).

EL:?.?.MW_QMQ
= (cow?sin® O+ c,6% cos® 7) sin? a,
+wMg|sin @, sin @|+6My,|sin a, cos 7| 3.9

Equation (3. 9) shows that E,>>0 holds and the drive shaft needs a surplus torque
E,/o owing to the frictions.

The quantity M} is a known function of time #, and M4 of Eq. 3. 7) is
rewritten by using Eq. (3. 5) and eliminating M., as follows:

Mg ={Mgsin a, cos ¥+ cy0sin @, cos ¥+ My, sgn(sin a, cos ¥}/ H ()
(3.10)

The quantity My is decided by a dynamical character of the driven shaft system.
The secondary moment concerning My (the first term in the right-hand side of Eq.
(3. 10)) coincides with Eq. (1. 13) in Chapter 1.
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3. 3. Vibration caused by viscous friction

A driven shaft of Fig. 3. 3 is considered. The sections AS and SB of the shaft
have uniform circular sections, which may differ from one another in diameter.

This section explains characteristics of the forced vibration caused by the
viscous friction between the cross-pin and the yokes. That is, My and My are
assumed to be given by the following equations.

Myg=cgwsin &, sin 6
_ (3.11)
My=ce@sin a, cos ¥/ /H(F)

The method similar to Chapteryl gives Y(Y,)
a force F' and a moment M’ equivalent to
My and those F and M" equivalent to o
©, which act on the rotor D. Figure 3. 2
shows the equivalent forces F’ and ' and
the moments M’ and M"” shown in the xy A, m”
plane. The following equations hold re- @
gardless of the supporting condition at
the shaft end B, that is, whether the shaft X(Xq)
o . ® (A)
end B is simply supported or fixed.

MI
F'=3M;/(2a), M'=—M¢/2
F'=3M}/(2a), M"=—M};/2 Mg
(3. 12) Fig. 3. 2. Equivalent forces F’' and F"

and moments M’ and M" acting
on a rotor D.

Using Egs. (1. 17) and (1. 18) vields
Fourier series for F,, F,, M, and M,
which are the sums of each components of F', F”/, M’, and M" to the directions x
and y as the following equations.

F,= >} F,ysin N¥

weEd (3.13)
Fy:FyO«%Ngg.mFW cos NV
M.=aF,/3, M,=—aF./3 (3.14)
where
GF ./ w— (3/32) "~ (1— %) tan d,
AN e (Co—0p) —Co (N —2+2Ne+ (N+2) e?} sin’a, ]
aF /0= (3/4) tan aa{cea— &)+ 6y cos (142 3] aﬁ)} 515

aF /o= (3/4)e"" tan a,

% [—cea—e)ucw cos aa{N<1+s>2/2wze+4 S skﬂ

k=1
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Because the exciting moments M, and M, are proportional to the exciting
forces F, and —F,, F, and F, are considered hereafter. Equations (3. 13) and (3.
15) show that F'; and F, generally consist of components of even multiple as large
as the drive speed w. Therefore the driven shaft can make even multiple vibrations
with the frequencies No (N=2, 4, ...).

A small parameter

e, = sin a, (3.16)

is considered in order to expand Eq. (3. 15) into power series of e, If small
quantities of e, to the fifth or more powers are neglected, the following equations
are obtained by using Eq. (1. 18).

afyp/w=3e,(Co—cy)/4—3cicy/8
aF/w=3e;(co—2cy)/16
aly/w=3e,(Co+cy)/4-+3e3(co+2¢y) /16 3.17)
aFy,/w=—3e,(Co—cCy)/4-+3eicy/4
aly,/w=—3el(co—2c,)/16

Generally, Foy and F,x (N=2,4,...) are small quantities of the order of &,¥1.
In a universal joint on the market, the friction between W pin and the drive yoke
is nearly equal to that between © pin and the driven yoke. Accordingly,

CQZC;p (3. 18)

is assumed to hold in Eq. (3. 17). Then the relation (3. 18) cancels the exciting
forces of the order of e, which are caused by the viscous friction between © pin
or W pin and the yoke. Consequently, if small quantities of e, to the third or
more power are neglected, the exciting forces F, and F, are reduced to the
following equations.

F,=0

(3.19)
F,=3¢,co0/(2a)

That is, the driven shaft only has a static deflection caused by a constant force to
the y direction perpendicular to the plane containing both the drive shaft and the
driven one. Exciting forces are not recognized until small quantities of the order
of e,% are taken into account under the condition (3. 18), and then the vibration
components of 2w and 4w appear. But the forced vibrations with frequencies 2w
and 4w are very small, and the vibration due to viscous friction can be considered
hardly to occur. Thus, in order to suppress a vibration caused by the viscous
friction, the coefficients of the viscous friction ¢y and cg should be made equal to
each other and, obviously, the joint angle «, must be small.

3. 4. Vibration caused by Coulomb’s friction

When Coulomb’s friction between the cross-pin and the yokes is considered, the
moments My and My can be given by the following equations
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My=>M4, sgn(sin 8)

M =My, sgn(cos ¥) /v ATY

Here the case of sina,>0, namely, 0<la,<(7/2 is treated.
Equivalent forces F, and F,, the sums of each components of F' and F” to
the directions x and y are expressed by the same form as Eq. (3. 13).

(3. 20)

aF oy = (3/8) Moo 08 &, 33 (PatPist) G isossai= o)
B3/ M o sec 2y 3] (—DH (P Pay) (47472 — b7
0F 0= (3/8)Moo(QGi+2 5 QG + B/ M| @02 3 (—)'Qu}

aF, = 3/ Moo @Gt 33Qu(G 1o +GCransa)
l

+ (3/2)MW0{6N/2Q0+ ;Zl (_1>ka(§k—Af/Zl+E}a-(-z\'/z)}

(3.21)
, where
Gk: i (chn>4<incn~lz> SinZn o,
Bk 24n—1
P,=4/{(2k—1)x} (3.22)

Qi=—4/{(4k* 1) 7}

The exciting moments M, and M, are given by Eq. (3. 14). The exciting forces
F, and F, caused by the Coulomb friction consist of the frequency components of
even multiple as large as the drive speed w, and they excite the rotating shaft to
the even multiple vibration. The magnitudes of these frequency components are
independent of @ (the force caused by the viscous friction is proportional to ).
The terms of the order of e,% are generally contained in power series for e,=
sine, of Eq. (3. 21), picking up only these terms produces the following equations

GF oy=(3/4) (Pyys+ Py ypot) (Moot (—1) %2 M o)
aF,=3(Meoo+Myo)/m (3.23)
aF,,=(3/2) Qo {Mgo+ (-—]')N/QM&D’O}

Here the case of Myo=Mg, is considered. Then the exciting terms for odd
integer of N/2 disappear, the exciting forces F, and F, are approximately ex-
pressed by the following equations.

T4 w-ia.. N?2—1 sin N¥
= (3.24)
_12Mg, 1 1 ’
F,\’_ Ta (7 N=42,8,‘.. Nz__l COs N@)
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That is, the forced vibrations with the frequencies of 4w, 8w, ... can occur in the
driven shaft, they have the amplitudes of the order of ¢,°. Such the other
vibrations as 2w, 6w, ... have the amplitudes of the order of ¢,2. Thus, for the

vibration caused by the Coulomb friction, the effect of vibration proof cannot be
expected even if the joint angle «, is made small. But, by putting as My,=Me,,
the vibrations with frequencies 2w, 6w, ... can be fairly suppressed.

3. 5. Experiments

The following experiments are performed to confirm the analytical results of
section 3. 4. Figure 3. 3 shows a schematic diagram of experimental apparatus. The
drive shaft drives a steel shaft S, through a universal joint J, and has a flywheel
F. The driven shaft S, carries a rotor D of thin disk form. Bearings B, and B,
are plummer blocks (nominal No. S513), B; is a self-aligning double-row ball
bearing (nominal No. 1203). The universal joint used in the experiments is shown
in Fig. 3. 4. This joint is an article on the market, a joint of Kyowa C-35 type.
Each tip of the yokes, as shown in Fig. 3. 4, has a small internal thread. Four
bolts B,;, B.s, B.s, and B, are properly tightened, and the frictions between the
cross-pin and the yokes are changed. The majority of frictions is considered to be
Coulomb’s friction. The moments My, and My, caused by the friction are measured
from the wave form of the damped free vibration in non-rotation (@=0). For an
example, we consider the case that a free vibration is made in a plane perpendic-
ular to W pin. If the frequency is p, and the change in amplitude per one period
is 4A(<C0), then My, is given by the following equation3®8,46),

Myo=—A4Amap*/6 (3.25)

Myo=DMg, is adopted and only My, is used as parameter because many measurements
nearly give Myo=Mg,.

Main dimensions of the experimental apparatus are as follows: Polar moment
of inertia of the flywheel F is 0.341 kg.m2. The rotor D is 350 mm in diameter,
6.3 mm in thickness, 4.690 kg in mass, 0.0718 kg-m? in polar moment of inertia,
and 0.0359 kg-m? in diametral moment of inertia. The driven shaft S, is 207.4 GPa

- Rotor D X Driven shaft Sp
Flywheel F
V-Pulley / Drive shaft Sy

, /Xa Yoke  Cross-pin
it %' \ Bti, Btz \ Btz
ISIEe
7 7 c
are N0 . )
Universal joint J —O I -, o
= V-Belt -
[ Stepless e
speed 0 D.C. motor
| converter : 14l mm B4
Fig. 3. 3. Schematic plane diagram of Fig. 3. 4. Universal joint with friction

experimental apparatus. between a cross-pin and yokes.
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in Young’s modulus, 81.54 GPa in shear 06

modulus, 3.49 kg in mass, ¢=300 mm in °Myo=0.26Nm x direction
length and 40 mm in diameter of the ° 037Nm 2w
section AS, 5=360 mm in length and 20 0.4
mm in diameter of the section SB. T

Figure 3. 5 shows the amplitudes of 02
the even multiple vibrations for the joint g j
angle a,=0.183 rad. The vibrations of E
frequencies 3@ and 5w occur too, they are § O
considered to be caused by that the eccen- =2 T
tricity coexists with the angular velocity 204 qw y direction

€
fluctuation. The vibrations of frequencies < 3w
2w, 4w, and 6w are considered to contain )
the vibrations caused by the secondary 0.2 6w Sw ew
moment. We can recognize that the vi- M
bration with frequency 4w increases in 0
amplitude with larger My,. This coincides 400 600 800 1000 1200
well with the analytical results for the Rotating speed w rpm
forced vibration caused by the Coulomb Fig. 3. 5. Change of even multiple vibra-
friction in section 3. 4. tions due to friction moment
My, in a universal joint
3. 6. Conclusions (2 =0.183 rad).

This chapter has dealt with the vi-
brations generated by the frictions between the cross-pin and the yokes of a
universal joint. The results obtained may be summarized as follows:

(1) The viscous friction generally causes the vibrations with the frequencies
of even multiple as large as the angular velocity of the drive shaft. These
vibrations increase with larger joint angle. When the friction between the cross-
pin and the drive yoke is equal to that between the cross-pin and the driven yoke,
such even multiple vibration hardly occur. Accordingly for vibration proof the
coefficient of the viscous friction in the drive side should be made ‘equal to that
in the driven side.

(2) Also the Coulomb friction generally causes the vibrations with the fre-
quencies of even multiple as large as the drive speed w. The magnitudes of these
vibrations are independent of the joint angle. When Coulomb’s friction between the
cross-pin and the drive yoke is equal to that between the cross-pin and the driven
yoke, the vibrations with frequencies 2w, 6w, ... are very small in amplitude, and
the vibrations with frequencies 4w, 8w, ... show the conspicuous magnitudes. Thus
the vibrations caused by the Coulomb friction do not become small even if the
joint angle becomes smaller. The vibrations with frequencies 2w, 6w, ... can be
fairly suppressed when the friction between the cross-pin and the drive yoke is
equal to that between the cross-pin and the driven yoke.

Appendix

Fujii et al.?® discuss that the relative angular velocity about one side pivot of
the cross-pin in a universal joint is
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—d,wsin wi (3. 26)

, which gives a projection angle of conical motion with a vertical angle 2a,. But

this relative angular velocity (3. 26) coin-

. cides neither with ¥” nor with @ of Eq.
@ (3. 2).

Drive shaft f Driven shaft Let’s confirm the relation (3. 2) ac-

~wt cording to Fujii and others. When the drive

- shaft is viewed from the co-ordinate

= \g7 system A-XYz fixed in the driven shaft,

29 A % -Z  the drive shaft rotates about the center

? ; axis Az of the driven shaft. The motion

7] of this rotation can be expressed by

’ Eulerian angles 6, ¢, and ¢(=0). Quantities

. ¢ and ¢ give the relative angular velocities

Fig. 3. 6. Eulerian anic?’l?s 0 and ¢ to ShO_W about the pivots of the universal joint.

angular positions of a cross-pin.  p Fig. 3. 6 the following equations

Cos (= sin «, CoS wit
3.27)

tan ¢= —tan «, sin wi

are obtained, and differentiation of Eq. (3. 27) with respect to time ¢ yields

0=wsin &, sin wi/+/T— sin® &, coS? wl
(3.28)

¢=—w tan a, cos wt/(1+tan? a,sin? wt)

Putting ¥=w? in Eq. (3. 28) and using Egs. (1. 3), (1. 4), and (1. 5) arrive at an
expression similar to Eq. (3. 2). Here, 6=6' and ¢= —¥" hold. Furthermore, if the
first equation in Eq. (3. 28) is expanded into power of a, and the terms of a, to
the third or more powers are neglected, then it becomes the same form as Eq.

(3. 26).

4. Unstable Vibration of an Asymmetrical Shaft
due to Angular Velocity Fluctuation?,4®

4. 1. Introduction

In an asymmetrical shaft rotating with a constant speed, an unstable vibration
occurs near the major critical speed49~51), Then the shaft whirls forward with the
same angular velocity as that of shaft rotation.

This chapter deals with lateral vibrations of an asymmetrical shaft driven by
a universal joint. The driven shaft with asymmetrical stiffness is vertically
assembled, and is connected by the umiversal joint to a rigid drive shaft which
rotates with a constant angular velocity. The shaft system is assumed to have a
concentrated mass at the middle point of the shaft with no distributed mass.
Equations of motion of the shaft are given by simultaneous equations with para-
metric excitation, and the solution is obtained in asymptotic expansion form. The
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analytical results explain some characteristics concerning the unstable vibrations
which are generated on account of the angular velocity fluctuation.

4. 2. Equations of motion

A rotating shaft system driven by a universal joint is assumed as shown in Fig.
4. 1. Bearing B is a self-aligning double-row ball bearing. The flexible driven shaft
AB is supported simply by points A and B, and it has an asymmetrical stiffness.
The concentrated mass m is attached at the middle point S of the shaft.

As shown in Fig. 4. 2, k; and k, represent maximum and minimum values of
spring constant for deflection at the point S. The direction of maximum rigidity
coincides with S1 direction which turns by angle § from the © pin (AQ) in the
same direction as the shaft rotation. Of course, the direction of maximum rigidity
(S1 direction) is at right angles to that of minimum rigidity (52 direction).

When the vibration is not steady due to small perturbations, that is, the
asymmetry and the angular velocity fluctuation of shaft, the drive source delivers
an energy to the driven shaft. In this case, the universal joint gives a moment to
the driven shaft. Since this moment is a small quantity of the second order of the
shaft deflection52), the influence of such moment can be ignored. The secondary
moment mentioned in Chapters 1 and 2 does not occur, provided that no resisting
moment acts on the shaft rotation. When z axis is taken vertically, the equations
of motion for the deflections x, v at the point S are given by the following:

mE+ e+ kﬂ'z“kz % — kl;kz {x cos2(8+p)+ysin2(6+p)}=0
4. 1)

my oy atkey BiFs (5 sin2(6+) —y c0s2(0+8)} =0

where ¢ is a viscous damping coefficient for lateral vibration of the point S.
We introduce a parameter

¥

b=~ Tt Iog) / (2m) (4.2)

which is the rms value of natural angular frequencies of the asymmetrical shaft.

Y, Ya
B+L
l 2
@ A .
</’ PRI
Y Driven shgft with 3 m
Yo asymmetricot stiffness S(X,Y)
: Asymmetrical
8 P M3 shaft
¥ pin
Drive shaft
Fig. 4. 1. Asymmetrical shaft driven by Fig. 4. 2. Co-ordinate systems viewed

a universal joint. from z direction (k1 >k2).
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The asymmetry of the shaft
d=(ki—ky) /(R tk,) 4.3)
and the damping ratio

(=c¢/(@2mp) 4.4)

are assumed to be small quantities of the same order as ¢ given by Eq. (1. 18).
The rotating angle ® of the driven shaft is obtained by integrating Eq. (1. 17)
with respect to time as follows:

EN/Z

N=2,4,: N

By using the notations d,,=¢/p? (¢ is acceleration by gravity), i=+/"7, and the
following non-dimensional quantities

Z=X+i¥Y=e"(x+iy)/0s

0=wt-+2 sin Not (4.5)

(4. 6)
t=pt, Q=w/p
Eq. (4. 1) is rewritten as the following equation
Z+Z=cf(8r, Z, Z) 4.7

, where
ef(ﬂf, 7, Z)=~2CZ+ A7[ei297+ Z ez\l/z{ei(!\{+z)9'r__ei(N——z)D'r}:r (4_ 8)
N=2,4,

Z is a conjugate complex number of Z. Dot notation means differentiation with
respect to non-dimensional time = after Eq. (4. 7).

As Eqgs. (4. 7) and (4. 8) do not contain B, stability of the driven shaft is
independent of the angle 8 between the principal axis S1 of shaft cross section and
the © pin.

4. 3. Analyses of vibration
The solution of Eq. (4. 7) for e=0 is given by

Z = Agi D AkeiTron 4.9

Consider the case that the frequency obtained by substitution of Eq. (4. 9) into
Eq. (4. 7) is nearly equal to the natural angular frequency. Then

1—(k2)i=d=ch (k=1, 2,-+) (4.10)
holds, and Eq. (4. 7) is rewritten as the following equation
Z+(k£)22=e{f(gr, Z, Z)—kZ} 4.1D)

Here, asymptotic solutions of Eq. (4. 11) are given by applying the method of
Bogoliubov and Mitropolsky37>. As it is not expected until the second approxima-
tion that the effect of the angular velocity fluctuation is recognized, the second
approximate solutions are studied. In the following, the solutions for 2=1 and
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k=2 are shown, and the unstable condition and the characteristic of unstable
vibration are examined.

4. 3. 1. k=1 (&=1)

Z:__Aei(m+w>+A*eﬂ—ﬂf’r@*)—%em”’“”’*) (4.12)
A=—cA-3L sin 20+ A sin(@-+0%)
O=d, -—2-%003 20 52{1914}4 cos (0 -+ 0%)
(4.13)
A= —zar— L sin@+0%)
e cdA y
0} d¥— SOAF cos (D @*)
where
D N SRR it
.1 ., d*—A4%2)2 .
di=—g(d—o 15"

Equation (4. 13) is transformed into linear differential equations for U, V, U%,
and V* defined by the following expressions:

U=Acos @, V=Asin @ }
U= A% cos 0%, V¥= A¥*sin 0%

(4.15)

A characteristic equation is derived from the linear differential equations. The
unstable conditions of the shaft system are obtained by the Routh-Hurwitz stability
criteria. Concerning the motion of representative points on the (U, V) and (U¥,
V#) planes, the statically unstable condition is either of (a) or (b),

(@ F<0
(4.16)
(b) Fi>0, G420, GI—4(F+409>0
and the dynamically unstable condition is
Gi— 4 +4:H<0 (4.17)
where
J— 2 2 A ®2 Pr “ . 82,42
Fy=(di+0— )@+ —— 5 2 paiar—20 -4 )
(4.18)

Gi=di+dt+60——L - (1-26)
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In the following the terms S-type unstable vibration and D-type unstable
vibration are used. The former is a vibration in which representative points
expressed on the (U, V) and (U*, V*) planes show a statically unstable behavior,
the latter in which representative points show a dynamically unstable behavior.
Thus, the S-type unstable vibration has a constant angular velocity of whirling and
its amplitude increases monotonously with an exponential function of time. On the
contrary, the D-type unstable vibration is accompanied by periodic fluctuation both
of its amplitude and angular frequency.

When the rotating shaft system satisfies inequality (4. 16) or (4. 17), a small
disturbance gives the shaft system such behavior as follows: Either (a) or (b) of
the condition (4. 16) generates the S-type unstable vibrations whirling with angular
velocities +£2 and 32. The magnitude of the unstable vibration whirling with 382
is about 4/8 times as large as that whirling with —£. Because the frequency does
not fluctuate,

=0, G*=0, =0 (4.19)

holds (refer to Eq. (4. 13)), where r=A4%/A is used. Equations (4. 13) and (4. 19)
decide the amplitude ratio x and the phase angles @, @* of the unstable vibrations
whirling with 2 and —@. The shaft system for ¢=0 has also the damped vibrations
whirling with —2+®* and 32—@*(0*+0), and at the same time it undergoes the
S-type unstable vibration whirling with £. In this case cos20=20d,/4 is decided
by ®=0, and the unstable condition 20A4/A= —2¢0Q— 4sin 20>0 coincides with the
unstable condition which is attained when an asymmetrical shaft rotates with a
constant angular velocity51),

Under the condition (4. 17), the shaft undergoes the D-type unstable vibrations
whirling with angular velocities 2+®, —2-+@*, and 32— d*.

4.3 2. k=2 (2=1/2)

- €207+ D) & ,i(—2074H0F) 44 —ip__ 4A%* (47— 0%)
Z=Ae + A*e +tpre To07 ¢ (4. 20)
A=—cA— Zg (Asin 20— A*sin (0 0%}
s o ed A% ”
O=d, oA {A cos 20— A* cos (0 + 0%)}
(4.2
A% = g A% zf’QA sin (@4 0%)
] d} ——M*COS(@‘F@ )
where
_ 1 (., dP44?
4= (d - 162° )
(4.22)

w1 (. ., d*—442/3
s
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Consider the motion of representative points on the (U, V) and (U*, V¥)
planes by using transformation (4. 15) for Eq. (4. 21). The statically unstable
condition is

F,<0 (4. 23)
and the dynamically unstable one is
G —4(I7,+4cH <0 (4. 24)
where
g2 o e24? w2 w2y eod? ®__OF2_ e?4?
Fo=(d+0 el ) @ o) — oo (s 20— o)
(4. 25)
G,=d2+ds2+622+ e?4?
S T E

When the condition (4. 23) is satisfied, the rotating shaft undergoes the S-type
unstable vibrations whirling with angular velocities +2£ and 4£. The magnitude
of the unstable vibration whirling with 482 is about 4/3 times as large as that
whirling with —28£. As Eq. (4. 19) holds in this case, the amplitude ratio xr=A%*/A4
and the phase angles ¢ and ¢* are determined. The center of vibration deviates
from the equilibrium point O, and this deviation is about 4 times as large as that
of the 282 vibration.

When the condition (4. 24) is satisfied, the rotating shaft undergoes the D-type
unstable vibrations whirling with 2Q+@, —20+0% and 4Q2-®* The center of
vibration deviates, and the magnitude and direction of this deviation fluctuate with
time.

When =0, any vibration caused by an external disturbance damps with time.
This is directly understood by Eq. (4. 21) without examining the conditions (4. 23)
and (4. 24).

As for k=3, 4, ..., that is, £=1/3, 1/4, ..., one needs to use higher order
approximate solutions (the third, fourth, ..., order).

4. 4. Numerical results and discussion

Here numerical calculation is performed by using the analytical results in
section 4. 3.

4. 4. 1. =1

Figure 4. 3 shows the unstable regions obtained from the conditions (4. 16)
and (4. 17). In this neighborhood there is no region which satisfies the dynamically
unstable condition (4. 17) but only a statically unstable one (4. 16). Accordingly, it
is expected that each of the representative points on (U, V) and (U*, V*) planes
goes away on a straight line from the origin. Figures 4. 4(a) and (b) show the
results obtained by integrating directly Eq. (4. 13) for the purpose to confirm this.
Fach initial value of U, V, U*, and V* is put as 0. 001, which is used to obtain the
following numerical integration too. The interval of two circle marks adjoining
each other on these solution curves corresponds to the time when the drive shaft
makes five rotations. Each of the representative points goes away on a straight
line from the origin, and it is seen that the S-type unstable vibration occurs. At
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the same time the other vibration A%*e?(=2°+?" occurs too. This vibration cannot
occur when the shaft rotates with a constant angular velocity. The values of Q¢/
(2r) show that the vibration whirling forward develops more quickly than that
whirling backward. Furthermore, Fig. 4. 3 shows that the fluctuation of shaft
angular velocity enlarges unstable region.

Figure 4. 5 shows the locus of a whirling shaft given by Egs. (4. 12) and (4. 13).
The interval of two circle marks adjoining each other on the locus corresponds
to the time when the drive shaft rotates by one-eighth. The locus is drawn while
the drive shaft rotates twice after the growth of the vibration to a certain extent.
The arrow shows the direction of whirl. The shaft locus makes a spiral with an
elliptical form, and the shaft moves counterclockwise due to the amplitude ratio
r=A%*/A<1. Consideration of Eq. (4. 13) under the condition (4. 19) shows that
the amplitude ratio # is a small quantity of the same order as e.

Here, consider a parameter u representing the real part of a solution to the
characteristic equation derived from Eq. (4. 13). When p is positive, it is called
the negative damping coefficient!5), which represents the growing rate of vibration
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Fig. 4. 5. Locus of whirling shaft.

in the unstable region. The calculated results of p are shown in Fig. 4. 6. It takes
a maximum value near the middle of the unstable region. Figure 4. 6 shows that
the vibration grows more near the boundaries of unstable region while it is
suppressed near the center, due to the fluctuation of the shaft angular velocity.

4. 4. 2. 2=1/2

Three unstable regions appear in this 0.3
case. Figure 4. 7 shows the unstable
regions obtained by numerical calculation

of inequalities (4. 23) and (4. 24). It is 30-2 -

not until both asymmetry of shaft stiffness §

4 and angular velocity fluctuation e combine &

that these unstable regions come to occur. & Ol ‘_-- 3

For no damping {=0 (the boundaries are © e §;000| N r

indicated by broken lines), the statically 0 L AgBLC

unstable regions extend to two points A 0.49 0.50 0.5l
and C on the line e=0, while the dynami- Angular velocity (2

cally unstable region extends to a point Fig. 4. 7. Influence of angular velocity
B. For a certain value of &, the widest fluctuation on unstable region.

unstable region extends to the point A,
the second narrowest and the narrowest unstable regions extend to the points B
and C, respectively. Accordingly, a small viscous damping ( is apt to extinguish
the unstable region extending to the points C, B, and A in order. The width of
unstable region has the order of 4 when 2=1, and it has an order lower than e4
when 2=1/2.

The numerical integration of Eq. (4. 21) gives the solution curves of Figs. 4. 8
(a) and (b) and Figs. 4. 9 (a) and (b), which are the results in statically and
dynamically unstable regions, respectively. These curves on the planes (U, V) and (U*,
V*) represent the forward whirling Aei297+? and the backward one A¥ei(-247+0%,
The interval of two circle marks adjoining each other on the solution curves cor-
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Fig. 4. 9. £=0.4994, 4=0.1, ¢=0.1, £=0.001.

responds to the time when the drive shaft makes 50 rotations.

The solution curves of Figs. 4. 8 (a) and (b) are similar to those of Figs. 4. 4
(a) and (b), showing the S-type unstable vibration. But as mentioned in the
following, this S-type unstable vibration differs in its characteristic from the
vibration when £=1. The locus of the shaft derived by Eqgs. (4. 20) and (4. 21) is
shown in Figs. 4. 10(a) and (b). The locus creates a spiral with an elliptical form.
The center of vibration deviates slightly from the origin. In the unstable region
extending to the point C (£=0.5024), the backward whirling vibration is grater
than the forward whirling one. The vibration increases so slowly that it seems to
be steady.
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Fig. 4. 10. Locus of whirling shaft (4=0.1, ¢=0.1, {=0.001).

As shown in Figs. 4. 9 (a) and (b), the solution curve makes a spiral with an
elliptical form in the dynamically unstable region. Accordingly, the D-type unstable
vibration occurs and is accompanied by a complex fluctuation in amplitude and
angular frequency. The shaft locus is shown in Figs. 4. 11 (2), (b), and (©). With
time, the locus changes in its form. Each locus of (a), (b), and (c) is shown while
the drive shaft rotates twice. In the passage time between (a) and (b), or (b) and
(c), the drive shaft makes 23 rotations and the whirling of shaft reverses in direc-
tion. When the shaft whirls once, the locus seems to be an ellipse. Figures 4. 11
(a), (b), and (¢) show that the amplitude as a whole increases changing the direction
of the principal axis of the ellipse and the whirling direction with time.

Figure 4. 12 shows the calculated results of the negative damping coefficient

2 2
fr.
| | 527
525 \
0O 0
;‘ \ _@I.:
\ 502/ 21T
. 500 . ‘
-2 Y
-2 =1 0 i 2 -2 =1 0] I 2
X X
(a) 27/(2x)=500—502. (b) 27/(2x)=525—527.

Fig. 4. 11-1. Locus of whirling shaft (2=0.4994, 4=0.1, ¢=0.1, {=0.001).
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u#. The coefficient # takes a maximum value near the middle of the unstable region.
This is similar to the case Q2=1. The maximum value of ¢ becomes larger and
larger as the coefficient of angular velocity fluctuation ¢ increases. As for the
same value of ¢, the lower or higher rotating speed region has the largest or
smallest maximum value of x. For e=0.2, the comparison between Fig. 4. 6 and
Fig. 4. 12 shows that the maximum value of x in the lower speed region near
£=1/2 is about one-tenth as large as the maximum value near £=1.

4. 5. Conclusions

The unstable vibrations of an asymmetrical shaft driven by a universal joint
are analyzed, and the results may be summarized as follows:

(1) When the drive shaft rotates near its major critical speed, the driven
shaft with asymmetry makes unstable vibrations whirling both forward and
backward. The absolute value of the whirling angular velocity coincides with the
rotating speed of the drive shaft. The amplitude of vibration whirling forward is
larger than that whirling backward. As a result, the shaft locus becomes a spiral
with an elliptical form.

(2) The unstable region at the major critical speed increases slightly in its
width due to the angular velocity fluctuation based on the mechanism of the
universal joint. This angular velocity fluctuation promotes the vibration near the
boundary of the unstable region, whereas it suppresses the vibration near the
middle.

(3) Near the rotating speed at half of the major critical speed, three unstable
regions appear. It is not until the asymmetry of shaft stiffness and the angular
velocity fluctuation combine that these unstable regions begin to grow.

(4) Of these three unstable regions, the higher rotating speed region generates
a forward whirling vibration larger than a backward whirling one. The lower
rotating speed region generates a backward whirling vibration larger than a forward



On the Lateral Vibrations of a Rotating Shaft Driven by a Universal Joint 4]

whirling one. When the unstable vibrations occur in these two regions, the driven
shaft whirls with an angular velocity equal to twice the angular velocity of the
drive shaft.

In the mid region, the driven shaft generates the unstable vibration with a
complex fluctuation in amplitude and angular frequency.

(5) Near the rotating speed at half of the major critical speed, the width of
the unstable region and the growth rate of vibration are considerably smaller than
those near the major critical speed.

(6) The stability of the shaft system is not influenced by the angle between
the principal axis of the shaft cross section and the direction of the cross-pin.

5. Generation Mechanism of Unstable Vitrations Caused by a
Shaft Asymmetry and an Angular Velocity Fluctuations®

5. 1. Introduction

A driven shaft system treated in this chapter is the same as Chapter 4. This
chapter presents physical explanations for the unstable vibrations of the asymmet-
rical shaft driven by a universal joint and also for their generation mechanism.
For this purpose, some studies are made of the relationship between the natural
angular frequency and the unstable region. Then, an increase in the rate of
mechanical energy is determined.

5. 2. Natural angular frequency and unstable regions

Considering the small quantity up to the second order both of an asymmetry 4
and of a coefficient of the angular velocity fluctuation &, we obtain the following
equation of motion concerning the mass point S:

Z+Z=4Z (e +cet—¢) G

For =0, an exact solution of Eq. (5. 1) exists, and this solution is given in
the form

Z = qeiPm+e) | gkgil28 P70} (5.2)

In Eq. (5. 2), po=pe; (j=1, 2, 3, and 4) are given by the following equations*9.

1701:!2—}—521, pOZ:‘Q—-LQI
(5.3)
Dos=8+ 83, poa=8—12,
where,
D=VPH1I+ Vig 27
' v (5. 4)
2,=V QP 1— VAQ* 1+ £

The frequencies pq; and py, are always real numbers, while py3 and py, become
complex numbers when the following inequality holds.

Q1< VAP A7 (5.5
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Then the shaft system generates an unstable vibration whirling with angular
velocity £ in addition to the steady state vibrations with the natural angular fre-
quencies pg1, Po2-

The second approximation by the asymptotic method gives the following results
about the unstable conditions of the shaft system.

When 2=1,
(@ F,<0 (5.6)
() F.>0, G,<0, Gi—4F, <0 5.7
When £2=1/2,
(@ F,<0 (5.8)
(b) G;—4F,<0 5.9
where,
o

G,= det_f;;_z.(l—zeq

L g Q=@iea2)
di=—zi1—2 . |
¥ 1 o2 (1__‘92)2_42/2]
di=yg |- 2
F.=d.d%— 242\t 1Ay (5.10)
= (E:dt =) —
ZAZ

Gz:d§+d’§2+_}%@7

— 1 o 2 (1__4‘92)2_‘__4112
4= {110 oy

o Ly _gge (A—4@DT-447/3 )
df=—4 {1 40 ) |

When e=0, it is easily verified that inequality (5. 7) does not hold. Now
relation (5. 5) is assumed to give an exact result about the unstable region for
¢=0, and we consider the unstable condition (5. 6). Putting ¢=0 in relation (5. 6)
yields

ZF 02 Z_AZ 2
e L G il IR (5.11)

The first approximation gives the relation (1-—.£2)2-—42<0, which coincides with
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inequality (5. 5). On the other hand, inequality (5. 11) which is supposed to have had
its degree of accuracy increased by the second approximation does not apparently
coincide with inequality (5. 5). But simple transformation of the equation derives
inequality (5. 5) from inequality (5. 11). Accordingly, inequality (5. 6) degenerates
to inequality (5. 5) when e—0. Thus, inequality (5. 6) gives the condition for
generation of the unstable vibration when £=1 and e=0.

When 2=1/2, the unstable regions appear near the rotating speeds which satisfy
F,=0 and G,2—4F,=0 derived by putting ¢=0 in relations (5. 8) and (5. 9).

25= (-4 /4
Qi=1-4%/3)/4 (5.12)
2=(1+4%/3)/4

These values 24, 25, and £ coincide with the abscisas of three points A, B,
and C lying on the base line ¢=0 in Fig. 5. 1.

Substituting Z=X+1Y into equation of motion (5. 1), and separating real and
imaginary parts, we obtain the following equations.

X+Q+edhXx

=A(X cos 287-+Y sin 2027) +ed (X cos 427 +Y sin 4927)
(5.13)

V4+Q—ed)Y
=4(Xsin 207—Y cos 227) -+ ed (X sin 427 —Y cos 4827)

Equation (5. 13) shows that the asymmetrical shaft system driven by a universal
joint is equivalent to a dynamic superposition of the following three systems:

A mass system supported by the springs with such unequal rigidities as 1+e4
in X direction and 1—ed in Y direction, and two asymmetries 4 and ¢4 rotating
with constant angular velocities £ and 28, respectively.

This equivalent model system is shown in Fig. 5. 2. The rotating shaft system
is considered to have vibrational characteristics similar to the asymmetrical shaft

y
Y 207
A Rotating
0.2 " }csymmetry
_ €4
v \web
b=
:Gé O.l - A |
&= X
[h]
S
0O ¢
0.49 0.50 0.51 P
Angular velocity 2- o]

Fig. 5. 1. Unstable region. Fig. 5. 2. Equivalent model system.
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supported by the pedestals with directionally unequal rigidities. Consequently, the
whirling locus of the shaft becomes generally elliptic. The shaft system has the
natural angular frequencies +p,; (j=1, 2, 3, and 4), and it produces vibrations
with frequencies 482 p,; which are caused by the second term of the right-hand
side of Eq. (5.13), that is, by both shaft asymmetry and angular velocity fluctuation.
The angular velocity 2=, is a resonant point where frequencies 482 —pos and Py
meet, and £=.0¢ is a resonant point of 42+ po, and —p,,. The angular velocity
£=4Lp is a resonant point of 42+p,, and pys, and also of 42—p,; and —Do2-
Hence, 24, £z and £, are the solutions of 22—po3=0, 42+ pos—pos=0, and
282+ po2=0, respectively.

The second approximate solution by the asymptotic method yields the simulta-
neous differential equations concerned with amplitudes 4, A% and phases @, 0% of
the vibrations whirling forward and backward. These equations are transformed into
linear differential equations concerning U, V, U*, and V* of Eq. (4. 15). If g
are solutions of the characteristic equation derived from the linear differential
equations, then the general form of Ae?=U+{V is given by

Aet?=gr [ A,g" MO0 4,600 (5.14)

Also, A*e*® is expressed similarly. Then 2 represents the natural angular frequency
in the rotating co-ordinate system.

According to the asymptotic method, the vibration recognized in the first
approximation is regarded as the natural vibration of the system. The natural
angular frequencies p, viewed from the stationary co-ordinate system are deter-
mined as follows. When £2=1,

Ds=84%, —L4A (6.15)
because the natural vibration is Z=Aei®+?) 1 4*pi(-27+0% When R=1/2,
De=28+2, —202+2 (5.16)

because the natural vibration is Z=Aei(29t+0) | f*pi(=20t+0"
Especially for e=0, the following result is obtained. When £:==1,

A=—{44/028)} sin 20
D=d,—{4/(22)} cos 20 (6.17)
A¥=0, @¥=—dx
For the unstable condition D;=d;2%—{4/(22)}2<0, 1=0 holds, and we have
pi=8, po=—0—d* (5.18)
For the stable condition D;>>0, 1=+/D; holds,
bs=82++D;, p=—82—d} (5.19)

The frequency —@2—d,* corresponds to pop in Eq. (5. 3), and £+ +/D; corresponds
to pos. Consequently, natural vibrations with frequencies po3z, pos, and 282 —pos =724
exist. The vibration of p,, is not contained here because it is considered a small



On the Lateral Vibrations of a Rotating Shaft Driven by a Universal Joint 45

one of —{4A%/(8£22)} ei327-9% which is recognized in the second approximation
and is excited by a natural vibration of pg,.
When £=1/2 and ¢=0, we obtain

A=0, O0=d,, A*=0, ¢¥*=—d} (5. 20)
and

The values p, of Eq. (5. 21) correspond to p,3 and pyp of Eq. (5. 3). Accordingly,
the natural vibrations of p,, and py; exist near this rotating speed. The vibrations
of po1 and py, are not included here, because they are both small vibrations as
well as — {4A*/(822)}¢?327-9" when £=]1.

Furthermore, when g is a positive value, this represents “the negative damping
coefficient.” We mentioned this in chapter 4.

Figures 5. 3 (a) and 5. 3 (b) show the numerical results about the natural
angular frequencies 2. These figures present the curves of di, vD;, d» and d.%
which are the values of 2 when ¢ — 0. The abscissas of the points A, B, and C in
Fig. 5. 1 coincide with those of the intersecting points A, B, and C at which d,=0,
dy¥*=—d,, and d,*=0 hold in Fig. 5. 3 (b), respectively. The values of py; in Eq.
(5. 3) coincide well with p, in Eqs. (5. 18), (5. 19), and (5. 21).

0.03
0.10 dz
/D i 0.02 P&
~ Unstable = LN
005~ ju " 001 RO \ A
~N , e
0 - / 0 dz §v 7 NG
0.9 1.0 1 0.49 KNB050C 051
Angular velocity 2 Angular velocity 2
(a) £=1. (b) £=1/2.

Fig. 5. 3. Natural angular frequencies (4=0.1, ¢=0.1).

5. 3. Energy supplied to rotating shaft system

This section presents an explanation for the energy supplied to a rotating
shaft system which generates an unstable vibration.
The following non-dimensional quantities are used in Eqgs. (5. 25) to (5. 30).

Fy=F,/(m9), My=Mg/(m9s,.)
W'=W /(mgo.p) (5.22)
T'=T/(m98.), V'=V/(m98:)

Primes which show non-dimensional quantities are omitted hereafter.
As shown in Fig. 5. 4, let & be an angle of deflection OS measured counter-
clockwise from the direction S2 (x') with shaft minimum rigidity. Then, the
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following equations hold.
sin §= (—Xsin §+Y cos 0) /| Z|
(5.23)
cos §= (X cos O+Y sin ) /| Z|
Using the following relation

O+&=tan"1 (V/X) (5.24)

, we obtain the whirling component 7', of the restoring force F of the asymmetrical
shaft (/") represents the centripetal component)*2,

Fo=—4|Z|sin 22 (5. 25)

The whirling force F', is generated by the drive torque Mgy transmitted to the
driven shaft by the universal joint. Therefore the following equation holds.

MQ-:——A}lesin 2& (5. 26)
Using Egs. (5. 23), (5. 26), and the following relations
ei28281297+ Sei4ﬂ’r_ S“{— e
§=0-+2e0 cos 2Qc+ -

, we obtain the supplied energy per unit time W,

W=M¢0
= — 40 Im[ Z? (074297 1 2¢¢™1407) ] (5.27)
or
Y (142¢ cos 207) sin 22 (5. 28)
VIVAG

where, the symbol Im [ 7 shows an imaginary part of [a complex number]. The

#2 Refer to Fig. 2 in reference (52).
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value of Eq. (5. 28) for £=1 should differ considerably from that for £2=1/2,
because & depends on the rotating angular velocity of the shaft and the whirling
mode.

On the other hand, kinetic and potential energies 7" and V' of the shaft system
are given by the following equations:

T=(X*+Y?%) /2
V=(1—4)(X*+Y?) /2+4(X sin 6—Y cos 0)*

(5. 29)

Calculating the increase in the rate of mechanical energy of the shaft system T+V
from Eq. (5. 29), we obtain

T+V=X{X+X—4(X cos 20+Y sin 20)}
+Y{Y +Y —4(Xsin 20—Y cos 20)}
+46{(X?—Y?) sin 20 —2XY cos 26} (5.30)

The first and second terms in the right-hand side of Eq. (5. 30) are equated to zero
from Lagrange’s equations of motiont”™. Thus it is confirmed that the increase in
the rate of mechanical energy of the shaft system 7'+V coincides with W of Eq.
(5. 27).

Figures 5. 5 to 5. 7 show numerical results of calculation on the increase in
the rate of the energy W/(4£2|Z?) and on the angle &= /%’ OS when an unstable
vibration occurs. In these figures initial values are always taken as U=V=U*=V*
=0. 005.

When £=1, the results are shown in Fig. 5. 5, with solid or broken lines for
e=0.1 or 0 (with or without fluctuation in angular velocity). Here W is divided
by |Z|2 to examine the increase in the rate of energy for the same shaft deflection.
The rotating speeds 2=0.949 and 1.048 are near the boundaries in the unstable
region. When the shaft rotates once at 2=0.949 or 1.048, the average value of
W/(482\Z|2) for e=0.1 is larger than that for e=0. When £=1, the average value
for e=0 is larger. This fact corresponds to the analytical results concerning the
negative damping coefficient # mentioned in Chapter 4.

When &= —n/4, energy is supplied at the maximum rate. When £2=1, the angle
& takes somewhat different values from —=x/4, because the shaft whirls along an
elliptical curve and the angular velocity of whirling fluctuates. Consequently, it
is more difficult for the shaft system to obtain energy than when e=0. When
£2=0.949 and 1.048, energy enters the shaft system more easily than when =0,
because the angle £ takes some values nearer to —=z/4 than when ¢=0.

Figures 5. 6 and 5. 7 show the increase in the rate of energy during a half
rotation of the shaft when £=1/2. Figure 5. 6 shows the results for the S-type
unstable vibration which occurs in the unstable region extending from the point A
in Fig. 5. 1. Here A>A* always holds. Figure 5. 7 shows the results for the
D-type unstable vibration which occurs in the unstable region extending from the
point B in Fig. 5. 1, and for A<{A*. Unlike the case of £=1, the energy can go
not only into the shaft system but also out of it.

The change of & in Fig. 5. 6 differs from that in Fig. 5. 7. This is due to a
difference of modes in which the shaft whirls. The value W/(42|Z|?) corresponding
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to angle & shows that it is determined only by the sign of sin2& whether the
energy goes into or out of the shaft system.

In the unstable region extending from the point C in Fig. 5. 1, A<A* holds,
and a result similar to Fig. 5. 7 is obtained. The analytical results by the second
approximation in Chapter 4 give the following equations.

When £=1,

4A°

5 sin 20

Lo
(5.31)

20 AX?
cos 20 = v (d1~ vk d’{‘)

When £=1/2,
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d o, gse . cdA®
»—d—T—(A + ARy = —5ge Sin 20
) (5.32)
. 4 A2 :
b=d,— 2,@ cos 20—~ (d4+0%)

Whichever the case is, it is seen that d(A2?-+A*2)/dz>0, namely, the increase in

energy of the shaft system occurs under

sin 20<0. Consequently, when the shaft

makes the S-type unstable vibration, the locus of the representative point on the
plane (U, V) ought to exist in the second or fourth quadrant. When the shaft

makes the D-type unstable vibration at

2=1/2, the representative point on the

plane (U, V) may exist in the first or third quadrant too, and the energy of the
shaft system may decrease its average during one rotation of the shaft.

5
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Fig. 5. 7. Increase in rate of energy
during growth of D-type
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We calculate the average value of W
during one rotation of the drive shaft
from t1=Nz/8 to t,=(N+2)7/82 (N is
an arbitrary positive integer) :

W,,L:——Q»S‘ZWCZT
277.' Ty
The following equations are obtained with
an accuracy of the second order of small
quantities e, 4.

Wm:A[nljmean (‘Ql""?l) }
Wm:A[n2]mean (’Q._-‘l/2>

(5.33)
where,
7.5
£2=04994
A €=0.1, A=0.]
5.0 |~
&
25+
0
-25 1 I L
320m 480 640

Rotating angle Qr

Fig. 5. 8. Increase in rate of energy
during growth of D-type
unstable vibration.
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= — DA% sin 20— 4 A A% sin (0 — 0%) +~—1~4i§£iA*2 sin 20%
(5. 34)

(1402 . 1—-482% 4. "
/;2—( 10 ZeQ)A sin20+ 50 T A% gin 20°

When the rotating shaft generates the S-type unstable vibration, 7; and 7, take
values proportional to 42 or A*2. Accordingly, the average energy supplied to the
shaft changes in accordance with e2#7(u is the negative damping coefficient).

‘When the shaft generates the D-type unstable vibration (£2=1/2), it is expected
that 7, will change in a complex manner. Figure 5. 8 shows the numerical result
of 7, in this case. The initial values are taken as U=V =U*=V*=0. 005. According
to Fig. 5. 8, the average value of the increase in the rate of energy sometimes
becomes negative during about 7 rotations of the drive shaft.

5. 4. Conclusions

In this chapter, physical considerations were made of an asymmetrical shaft
driven by a uriversal joint, and the generation mechanism of unstable v1brat10n
was explained. The results obtained may be summarized as follows: ,

(1) When the shaft rotates near the major critical speed, the angular velocity
fluctuation decreases the growth of unstable vibration near the middle of the
unstable region. This phenomenon relates to the fact that angle & becomes more
remote from —x/4 due to angular velocity fluctuation. Near the boundaries of the
unstable region, the angular velocity fluctuation increases the growth of unstable
vibration because angle & comes closer to —=m/4.

(2) When the shaft rotates near half the major critical speed; the unstable
regions appear separately at three rotating speeds of Eq. (5. 12), as determined
only by the asymmetry 4.

(3) The energy supplied to the asymmetrical shaft has components which
fluctuate periodically. The average energy supplied during one shaft rotation
increases monotonously in proportion to the second power of amplitude when the
S-type unstable vibration occurs. But it fluctuates periodically, and sometimes
takes a negative value during several shaft rotations when the D-type unstable
vibration occurs.

6. Forced Vibrations of an Asymmetrical
Shaft Caused by Gravity®4

6. 1. Introduction

There are many reports®5~59 on the lateral vibrations of an asymmetrical
shaft. The characteristics of the vibrations are summarized as follows:

(1) When an asymmetrial shaft rotates near the major critical speed, the
shaft generates unstable vibration whirling forward with an angular veloc1ty of
shaft.

(2) In a horizontal shaft, a forced vibration is excited by gravity. This forced
vibration whirls forward twice during one shaft rotation, and makes a resonance
near half the major critical speed.
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Such vibration phenomena occur in an asymmetrical shaft which rotates with a
constant angular velocity. There have been no investigations reported on the shaft
system driven by a universal joint and accompanied with an angular velocity fluctu-
ation. We analyzed, in Chapters 4 and 5, the unstable vibrations in such a rotating
shaft system, and explained the behavior of shaft.

This chapter deals with a horizontal asymmetrical shaft driven by a universal
joint, and explains the forced vibrations generated under the triple effect of gravity,
shaft asymmetry, and angular velocity fluctuation. The universal joint combines a
rigid drive shaft rotating with a constant angular velocity and a horizontal driven
shaft with asymmetry in rigidity. The asymmetrical shaft system is the same as
that of Chapter 4 except that the shaft is horizontally assembled. The equations
of motion are simultaneous equations with parametric excitation and sinusoidal
external force. Accordingly, these equations are solved by the same method as
Chapter 4, and the steady state solutions are obtained from the approximate solution.
Experiments are performed to confirm the propriety of the analytical results too.

6. 2. Equations of motion

Consider an asymmetrical shaft system
as shown in Fig. 4. 1. Where the y axis Y, Ya

points upward vertically. Figure 6.1 shows >
the relation between a cross-pin and a

stationary rectangular co-ordinate system. kg/' 0+p
Gravity m¢ acts on mass point S in nega- ‘

tive direction of y. S(x,Y)

We introduce he.re a. non.-d1men51onal Asymmefricci
complex number which is given by the shaft
shaft deflection x, y: .

¥ pin

Z=(%+1y)/0,+iU, 6.1

where a special notation U, (=1) is used
to indicate the gravity term.

An equation of motion is obtained by  Fig. 6. 1. Cross-pin and stationary co-
adding a gravitational force —mg to the ordinate system viewed from
right-hand side of the second equation in z direction (k1>k3).

Eq. (4. 1), as follows:

Z+Z=cf(9, Z, 2) (6.2)
where,
ef (1, Z, Z2)=—2Z+ e (Z+iU,)[e** + > e
N=2,4,.
e {ei(?&"l*z)f)f___ei'(N'Z)ﬂT}] (6 3)

6. 3. Solution for forced vibration

The same method as used in Chapter 4 is applied in analyses, the second
approximate solution of the equation of motion (6. 2) is shown in asymptotic
expansion form for the case of resonance. In addition, the characteristics of
vibration due to gravity are described.
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6.3. 1 9=1/2
Z Agl(z-‘?“ (DLLA*QZ( 297+W)+ j:;l “2p-0) fZAS; 8“49""“’*”‘2’3) (6 4)
i _rq_ ed
A=A,
AU { d B ¢ N
49 1( 16;32)008 @ 23)+msm(@ ZB)J

aﬁ:dz—fg%m cos 2(0— ) — A* cos (D 0% —28))

(6.5)
4
— 4[{99 {<1~ 15‘92 )sm(a‘) 28) —— 453 cos (0 — 2/3)1
“—26)
k= —d¥— 485’24* cos (@ -+ % —20)
where,
d=1-—40% (6. 6)

, and d, and d,* are given by Eq. (4. 22).
Steady state solution for A4, @, A* and 0% are obtained when the following
conditions are given in Eq. (6. 5).

A=0, 6=0, A*=0, ¢*=0 6.7

These numerical results are shown in Fig. 6. 2. The parameters used are those
obtained from the experimental apparatus indicated in section 6. 4. Oblique lines in
Fig. 6. 2 show the unstable regions which are explained in Chapter 4. [—2w]
vibration occurs for 0 (a,#0), though it does not occur for e=0. Accordingly,
it is seen from Eq. (6. 4) that the shaft generates [+4w] vibration with amplitude
44%/3. The static deflection of shaft is

K+ iy=8,{—i+ A0~}

, which is obtained from Egs. (6. 1) and (6. 4). An equilibrium point of vibration
(x, ¥) depends on A and @, and it does not come just under the origin O.

Here, a critical speed £;,, is considered. The critical speed £;,, makes an
infinite amplitude for no damping ({=0), and it satisfies the following equation

42d%(409d,+ed) —?4*=0 (6.8)
Especially for ¢=0, £,,, is given by the solution of

d;=0 (6.9
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Fig. 6. 2. Amplitude and phase of [ +2w] Fig. 6. 3. Critical speed £21,2 near
vibrations. 2=1/2.

As seen from the results of Chapter 4, the solution 2=, of Eq. (6. 9) coincides
with the borders of the unstable region in which the S-type unstable vibration
occurs.

Numerical results for the critical speeds £;,, are shown in Fig. 6. 3. Four
critical speeds (solid lines) exist for e=0, but one critical speed (chain line) does
for ¢=0. Three critical speeds seem to exist in Fig. 6. 2 because of damping.
The amplitude of [ +2w] vibration becomes zero at a certain value 2, of £, which
is the solution of d,*=0. This value £, is shown by the broken line in Fig. 6. 3.
In Fig. 6. 2, there is a rotating speed at which the [+2o] vibration is sharply
reduced, and the [ +207] vibration vanishes for (=0 at that rotating speed.

6.3.2. 8=1/4
Z:Ae‘“""*@t&—A*e“““””’*’

- 14;1;2 gi(-287=0%28) 56,4;; pi6QT=0%+28) | 21‘42%2 2i(287+28) (6. 10)

A=—CA+ 85; A sin (0 -+ 0% —20) + E‘ggf cos(@——Zﬂ)\



54 H. Ota and M. Kato

ed A* Can_om _ edU, . .
O=d,+ 2 S04 cos (O + @*—20) &in’ sin (0 —20) 61
i K *_
Ar=—gax—-2 4 Asin (0 0% —2p)
'*:_ * 8AA sk
0 di— BOAF 5 COS (D +0*—20)
where,
1 w2 d?4+164%/3
di=gg(d s1g )
6.12)
e 1 (. . 216475 (
di=gg(d— o)
d=1—-16£%

A steady state solution is obtained by substituting Eq. (6. 7) into Eq. (6. 11).
Figure 6. 4 shows the numerical results for the amplitudes 4 and A* and the

5
A=0.119

« 4T 24=0.50I rad
< €=00655
<3 £=0.590 rad
-§ £=0.001
=2
Q.
£
<

|

0

T

Phase &, &*

— A
0.24 0.25 0.26
Angular velocity 2

Fig. 6. 4. Amplitude and phase of [ +4w]
vibrations.

phases @ and 0* of [+4w] and [—4w]
vibrations, respectively. According to Egs.
(6. 10) and (6. 11), the [+4w] and [—4w]
vibrations for e=0 vanish with time, and
the shaft generates only [ +2w7] vibration
with the amplitude 44/3. For e=0, the
shaft generates [ —2w] vibration with the
amplitude 44A4/3, and [+6w] vibration
with the amplitude 444*/5 in addition to
[+4w] and [—4w] vibrations. The ampli-
tudes A and A* become larger with an

0.260

0.255

0.250

Critical speed (24

0.245

0.240 L ' '
0 005 0.0 0.5 020

Asymmetry A

Fig. 6. 5. Critical speed 21,4 near
2=1/4.
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increase of e, and they have two peaks. Of the rotating speeds at which two peaks
appear, a lower rotating speed gives A>>A* and a higher one gives A<{A* The
two peaks of A* are nearly equal each other in height.

The critical speeds £,,, are given as the solutions to the following equation.

642°d,d%—e24*=0 (6.13)

Numerical results of the critical speeds £,,4 are shown in Fig. 6. 5. Two critical
speeds emerging near £=1/4 separate with an increase in shaft asymmetry or in
angular velocity fluctuation. Near this rotating speed, the amplitude A4 also
becomes zero at a certain rotating speed £,, which is a solution of d,*=0. This
value £, is also indicated by a broken line in Fig. 6. 5. The value of £, is equal
to the rotating speed at which the amplitude A becomes small between the two
peaks in Fig. 6. 4, and it becomes zero for {=0.

6. 4. Experiments

6. 4. 1. Experimental apparatus and its method

Figure 6. 6 shows a schematic diagram of the experimental apparatus as viewed
downward from top. The dimensions of the experimental apparatus are the -same
as Fig. 2. 5 except for a driven shaft S, and a rotor D. Each of the driven shaft
S, and the rotor D, as shown in Fig. 6. 7, is separated into two parts at the
middle. The driven shaft is assembled with the rotor by a screw. Then the
combined asymmetry 4 of driven shaft can be varied arbitrarily by changing the
coupling angle of the two asymmetrical shafts.

The rotor D is 90 mm in diameter, 150 mm in length, #m=6.890 kg in mass,
6.976% 1073 kg-m? in polar moment of inertia, and 1.658x1072 kg-m? in diametral
moment of inertia about the gravity cemter. The driven shaft S, is 723 mm in
length, 2.078 kg in mass, 207.4 GPa in Young’s modulus, and 81.54 GPa in shear
modulus.

Horizontal and vertical components x and y of rotor displacement are detected
by pickups P, and P,, and pulse per one rotation of the drive shaft is detected by
pickup P,. These measured values are recorded in a data recorder.

le‘a recorder[ [Oscmogroprﬂ {Synchroscope]

[ — 1

Tochome’rer} {Ampl fier [ FAmphﬁer[ lAmphf ier l
X

ff,gomm
$20

P :ﬁl |50Mmm
el ﬁ Fig. 6. 7. Assembled driven shaft Sy
g and rotor D.
Bi B2 Universal joint J
V-Pulley
ive shaft
Drive sha Fig. 6. 6. Plan of experimental apparatus.
=—V-Belt
Srepless |
[ ]: | {D.C. motor
L converrer
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6. 4. 2. Experimental results and some discussions

Figures 6. 8 to 6. 13 show resonance curves obtained by frequency analysis of
the experimental data.

Figures 6.8 to 6. 10 show amplitudes and phases of [+2w7] and [ —2w] vibrations.
In Fig. 6. 8 the shaft asymmetry is very small (4=0.004); The results of section
6. 3 tell that the vibrations can hardly occur. But the forced vibration by the
secondary moment can occur, because the rotor used in the experiments is not a
concentrated mass (refer to appendix). Increase of asymmetry 4 magnifies [+2w]
vibration, whereas it hardly influences the [—2w7 vibration. Each of the [+2¢]
and [—2w] vibrations consists of the following two forced vibrations. One is a
vibration generated by the triple effect of gravity, asymmetry, and angular velocity
fluctuation. The other is one caused by the secondary moment. The former [+2w]
vibration is nearly in phase with the latter [+2w7] vibration, and the former [ —2w’]
vibration is different by =/4 in phase from the latter [—2w7 vibration. By this
the above-mentioned phenomenon can be explained (see also Figs. 6. 9 and 6. 10).

The amplitudes and phases of [+4w]and [ —4w] vibrations at 2=1/4 are shown
in Figs. 6. 11 to 6. 13. In Fig. 6. 11 the asymmetry is very small (4=0.004), and
the [+4w7] and [—4e] vibrations generated here are the forced ones caused by the
secondary moment. When the asymmetry 4 increases as shown in Figs. 6. 12 and 6.

1.0
o+2wl
ogt+ @© [-2w]
£

c 06 ':' EO,G -
£ i S
04t : E
o :__04 B
g ) ! g- ()
= L o
502 <oz o A %D%*hrm
< .

O 1 1 i

T oo s teestestels
2
E)CC_, Q |—esRersegetesss—Tocoo00on 5

4=0004, aq=0.50! rad ' £=0.119, ag=0.50I rad
- £=0778rad, {=0.0008 " £=0.590rad, £=0.0009
o] .
- ! 1 1 1 -1 1 : : ‘
400 500 600 700 ‘800

400 500 600 700 800
Rotating speed w rpm
Fig. 6. 8. Amplitude and phase of [ +20] Fig. 6. 9. Amplitude and phase of [ +20]
vibrations. vibrations.

Rotating speed w rpm
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Fig. 6. 10. Amplitude and phase of [+Zw] Fig. 6. 11. Amplitude and phase of [+4w]
vibrations. vibrations.

13, the rotating shaft generates a vibration under the triple effect of gravity,
asymmetry, and angular velocity fluctuation in addition to the vibration by the
secondary moment. In Fig. 6. 13 two peaks of amplitude appear at w=273 rpm and
286 rpm. When =286 rpm, [ —4e] vibration is larger in amplitude than [ +4o]
vibration. This coincides well with the analytical results of Fig. 6. 4.

The above-mentioned experimental results coincide well with the analytical
results in section 6. 3 except the influence of the forced vibration caused by the
secondary moment. Thus the analytical results are confirmed to be valid.

6. 5. Conclusions

The results obtained in this chapter may be summarized as follows:

At nearly half the major critical speed:

(1) In addition to [+2w] vibration whirling forward, the rotating shaft
generates [ —2w7] and [ +4e7] vibrations whirling backward with double and forward
with quadruple as large as @, the angular velocity of the drive shaft. The [+4w]
vibration has about 4/3 times as large as the amplitude of [ —2e7 vibration.

(2) The resonance curves of [+2w] and [—2w] vibrations have four peaks at
most, namely, four critical speeds exist. These critical speeds coincide with
boundaries of the region in which S-type unstable vibration occurs. The peaks are

reduced to three by small damping.
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(3) [+2e] vibration is sharply reduced at a certain rotating speed among the
four critical speeds, and the amplitude becomes zero at that rotating speed when
there is no damping.

At nearly a quarter of the major critical speed:

(4) The rotating shaft generates [+20], [—2w], and [+6w] vibrations in
addition to [+4w7] and [—4e]] vibrations. The [—2w] vibration has about 44/3
times as large as the amplitude of the [ +4w] vibration, and the [+6w] vibration
has about 44/5 times as large as the amplitude of the [ —4w7] vibration. The
amplitude of [+2e] vibration is nearly equal to 44/3.

(5) The amplitudes of [+4w] and [ —4w] vibrations have two peaks.

(6) The [+4w] vibration becomes very small at a certain rotating speed
between these peaks, and the amplitude becomes zero at the rotating speed when
there is no damping.

(7) Near a peak at the lower speed, the [+4w7] vibration is larger than the
[ —4o] vibration, and vice versa near a peak at the higher speed. Two peaks of
[—4w] vibration are nearly equal in height.
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Appendix

The amplitude and phase of the vibration caused by the secondary moment of
a universal joint are obtained by using
the analytical results in Chapters 1 and 2. 6
Figure 6. 14 shows the result for [+2«]
and [ —2w7] vibrations. In this numerical
calculation, the same parameters as those
in Fig. 6. 8 are used. Torsional rigidity
8, of driven shaft is determined under an
assumption that the shaft has a uniform
rectangular section 18mm x 12mm. Notation
I, indicates a polar moment of inertia of
rotor, and / is the shaft length.

An amplitude [mm] is obtained by
multiplying the non-dimensional amplitude
shown in Fig. 6. 14 by 46,,=0.75 mm in
Eq. (4. 6). An angular velocity o [rpm] 0 .

Amplitude

30

Phase

is obtained by multiplying the non-dimen- 0.45 0.50 0.55
sional angular velocity £ by p=1095 rpm Angular velocity (2
in Eq. (4. 2). Thus, it is known that the Fig. 6. 14. Amplitude and phase of [ 2]
amplitude and phase characteristics in Fig. vibrations due to the secondary
6. 14 coincide well with those in Fig. 6. 8. moment.
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