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Abstract

Constitutive and evolution equations of creep and creep damage in
polycrystalline metals are formulated by taking account of their micro-
structural mechanisms. The representation of the microstructural
changes induced by creep damage in terms of a tensorial internal state
variable and the oriented nature of the creep damage are first dis-
cussed. Then, by assuming that the effect of material damage in creep
consists in the magnification of the stress effect due to internal
fissures and voids, the constitutive and evolution equations for creep
and creep damage are expressed as a set of tensorial functions of a
net stress tensor and a damage effect tensor of rank two. These
equations are specified in conformity with the experimental results
reported so far. The relation between the present theory and the
previous ones is also discussed. Finally, the present theory is applied
to the creep damage analysis of a thin-walled tube subjected to non-
steady combined tension and torsion.

1. Introduction

Modern technology often requires inelastic analyses of structural components
subject to complicated history of loading in order to assure their reliable and safe
One of the major difficulties of these analyses consists in finding
accurate constitutive relations which describe the material response under various
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service histories in non-conventional environments. Since inelastic deformation
is usually accompanied with microstructural changes of materials, the development
of such constitutive equations should be performed by taking account of the princi-
pal mechanisms of the microstructural change due to the inelastic deformation, and
should be done on the basis of mathematically consistent methods.

Because the material deterioration in the process of creep is one of the most
important phenomena in the design of high-temperature equipments of longer ser-
vice life, the problems of creep damage theory have been an objective of many
papersi~4).  Kachanov® first proposed a phenomenological theory of creep damage
in uniaxial state of stress, and his theory has been extended to multiaxial state of
stress by several researchers. However, the majority of them have been formulat-
ed on the assumption of the isotropy of the damage, or formulated by taking
account of the damage anisotropy but only with respect to principal stress coordi-

nates fixed in the material5~8), Though Kachanov? and Hayhurst and Storakers?
proposed creep damage theories by representing the damage state on a plane in a
material by a vector in the corresponding direction, these theories have not been
formulated in a form of a tensorial relation and hence are not applicable to non-
steady multiaxial state of stress.

According to the experimental investigations reported so far, it has been
observed that the creep damage in usual polycrystalline metals advances mainly due
to the nucleation and the growth of voids and fissures at grain boundaries per-
pendicular to the direction of maximum principal stress at each instant10~13),
Therefore, in order to formulate an accurate theory of creep damage, it is nece-
ssary to incorporate these structural changes of oriented nature in the condition
of multiaxial and non-steady state of stress.

In the present paper, a continuum theory of creep and creep damage in poly-
crystalline metals is formulated by representing the microstructural change due to
creep damage in terms of a symmetric tensor of rank two as an internal state
variable. After elucidating the relation to the previous theories, the present
constitutive equation is applied to the creep damage analysis of a thin-walled tube
under non-steady combined state of stress.

2. Constitutive and Evolution Equations of Creep and Creep Damage*

2. 1. Damage Tensor and Constitutive Equation

Materials subjected to creep at elevated temperature for long time is usually
accompanied with time-dependent internal deterioration called creep damage. The
creep damage in polycrystalline metals and alloys is induced by the nucleation and
the growth of microscopic round voids (r-type voids) or wedge-shaped cracks
(w-type cracks) on grain boundaries, mostly perpendicular to the direction of the
maximum principal stress!0~13), The coalescence of these cavities into macroscopic
cracks leads to the final fracture of the materials.

In order to develop an elaborate theory of creep and creep damage in metals,
it is necessary first to express the effect of these cavities in terms of appropriate
macroscopic variables, and then to formulate the relations which govern the evolu-

% See the footnote of p. 188.
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tion of these variables.

When Vakulenko and Kachanov developed a continuum theory of cracked elastic
media, they represented an assembly of these cracks by a crack-density tensoy of
rank two as follows!4):

Q:Tlf_ﬁg gm)w @ n®dS,, 2.1)

k=1
where V is the volume occupied by a material element in the initial state, Sw
denotes the initial surface of k-th crack in V, n» and &% are a unit normal
vector and a relative discontinuous displacement at a point on S¢, due to crack
opening, and the symbol & stands for the tensor product.

Since equation (2.1) holds for an assembly of cracks, it is applicable also to
creep damage induced by w-type cracks, because the surface element of grain
boundary before crack initiation and the relative discontinuous displacement to
crack opening correspond to S¢, and 5 in equation (2.1), respectively. For
r-type cavities, on the other hand, S, and 5%’ might not be defined readily,
because the mechanism of cavity growth which occurs due to the condensation of
vacancies at the void surfacel®~12) is different from that of crack initiation.
However, since r-type cavities grow also on boundaries perpendicular to the applied
stress, the creep damage caused by the r-type cavities will have the similar
oriented nature to that of w-type cracks. Thus, let us define S¢) and ® as the
initial element of grain boundary occupied by k-th cavity and the normal vector to
Sy with the magnitude equal to the thickness of the cavity measured along the
normal to S, respectively. Then, equation (2.1) applies also to r-type cavities.

Since the component of 5 parallel to n® corresponds to the crack opening
displacement and will be more effective in creep damage than that perpendicular
to n), we allow for only the former component. Then, £ in equation (2.1)
reduces to a symmetric tensor.

Since creep rate and rate of damage growth may depend on history of inelastic
strain in the material matrix as well as the current state of stress and material
deterioration, they may be specified as

D=G(o, 2, ) (2.2)
Q=H(s, 2, 1) 2.3)

where D, ¢ and « are rate of deformation tensor, Cauchy stress tensor and a
certain parameter representing the microstructural changes of the matrix, respec-
tively. The rate of damage tensor é:Q+J2W-—WQ is the Jaumann derivative of
2, where a superposed dot and W denote material time derivative and a material
spin tensor.

2. 2. Specification of Constitutive and Evolution Equations

The effect of material damage in creep can be interpreted as the magnification
of the stress effect owing to the existence of internal voids and fissures. If the
increased effect of stress due to the damage can be represented by a nel siress
tensor S, it can be expressed by a tensor function of ¢ and £:

S=K(e, 2) 2.4)
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It is supposed that the mechanism of stress increase due to the damage mainly
consists of the reduction of the effective area in the material, and of the stress
concentration at cavities. If we take the former one as the principal mechanism
of stress increase, the tensor function & may be a linear transformation from e
to 8, and § should coincide with ¢ for vanishing £.

Then, if we expand the tensor function K by applying the representation
theorem for an isotropic tensor function of two symmetric tensors!®, and retain
the linear terms with respect to &, we have the expression

S=(1/2) (Do -+ o®) (2.5)
O=a, T+ a4 a,0° (2.6)

In the above equation, coefficients «; (=0, 1, 2) are scalar functions of {78, {r@2,
tr&3, and I denotes the identity tensor. In order that § may coincide with & for
vanishing damage, «,=1 should hold for £=9.

Since the tensor £ was assumed to be symmetric, the tensor @ is also symme-
tric and hence has three real principal values @@ (¢=1, 2, 3). If we take a rec-
tangular coordinate system x; (i=1, 2, 3) whose coordinate axes coincide with the
principal axes of @, the components of .§ can be expressed as

Sy=1/2) (@9 +09)0,; (i, j: no sum) 2.7)

It will be observed that the normal component of the Cauchy stress tensor o, (1:
no sum) and its shear component o,; (i) are magnified by the factors @< and
(0D 4+-0) /2, respectively. In other words, the stress components acting on the
i-th principal plane are magnified by the principal value @@, Thus, 1/0® can be
interpreted as the ratio of the reduction of the effective area in the i-th principal
plane of @,

On the other hand, if we take another system of rectangular coordinates y,
(=1, 2, 3) which coincide with the principal axes of &, equation (2.5) has the
component form

Sas=1/2)D s (6" +0®) (&, f: no sum) 2.8)

In this case, not only the principal stress o(® is magnified by @,,, shear component
(1/2)@ 0> occurs on the principal plane of ¢. Namely, the principal directions of
§ generally deviate from those of ¢ due to the effect of creep damage. Thus, @
in equation (2.5) stands for the effect of material damage on @, and hence we will
call it a damage effect tensor.

Since the inverse of the damage effect tensor ¥=@-1 has been interpreted as
the fraction of the effective area diminished by the material damage, it would be

more appropriate to consider ¥ as the rate of damage rather than ® and 2. 1If
the damage effect would consist only of the stress increase due to the reduction

of the effective area, D and ¥ could be prescribed in terms of § and x. However,
as already mentioned, there will be also the effect of stress concentration at the
tissures or voids. Though this non-linear effect of ¢ might be represented by
taking additional terms in the expression (2.5), the simple interpretation of &
would become difficult in this case. Therefore, in order to incorporate the effects

of stress concentration, we will represent D and T as function of @ as well as &



Constitutive Equations of Creep and Creep Damage in Polycrystalline Metals 183

and «:
D=G(S, @, k) (2.9)
T=F(S, @, «), T=0"1 (2.10)

As observed from equation (2.5), the initial value of & is the identity tensor I

If we apply the representation theorem for the isotropic tensor function of
two symmetric tensors!®), the function § of equation (2.9) is expressed as a tensor
polynomial with respect to S and @:

D=L+ 3D+ 9" +,5+ (DS + 50) + 5 (9*S + .50%)
865?43, (95 +5°0) (2.11)

where 8; (:=0, 1, ..., 7) are functions of « and the following ten basic invariants
of @ and §:

@, rd:, @, rS, rS? trS¢,

r(@S), w(@4S), w(®@S?), r(@*S?

(2.12)

By substituting equations (2.5) and (2.6) into equation (2.11) and comparing the
resulting equation with the expanded form of equation (2.2), it is shown that all
terms of equation (2.11) are not tensorially independent with respect to ¢ and £.
If we retain only the tensorially independent terms, equation (2.11) reduces to
a simpler expression

D =BT+ p,0+ 8,8+ BeS*+ 5, (0524 5°@) (2.13)

If the dependence of D on @ is disregarded furthermore, the above equation is
simplified as

D=8,I+ 8,81 3,57 (2. 14)

From the implication of equation (2.5), the inverse of the damage effect
tensor ¥ should be prescribed so that it may have principal values less than unity.
Moreover, in view of the mechanism of the material damage, the rate of the tensor
¥ may not be a continuous function of stress. Therefore it would be impossbile
to discuss the specific form of function 7 in equation (2.10) by expanding it into
a tensor polynomial as was done in equation (2.9).

According to the experimental observations on the polycrystalline metals under
multiaxial states of stress, there are two classes of rupture behaviour; one is
governed by the maximum principal tensile stress, while the other by the octahe-
dral shear stress!6>, The copper, for example, follows the former stress criterion,
and the fissures develop mainly on the plane perpendicular to the direction of
maximum principal tensile stress10~12,16)  On the other hand, though the alumi-
nium conforms to the octahedral shear stress criterion, it was found that cracks
and voids in the material develop in the same manner as in coppetr®18), Thus,
the effect of these cavities can be described by a principal component of & in the
tensile direction. This implies that the tensor & develops in the direction » and
vpti? of positive principal value of § and its deviator Sp, respectively. Since these
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cavities are not completely flat, they have also isotropic effect more or less.
Thus, in view of that ¥ diminishes according to the damage growth, equation
(2.10) may have the following form:

3

o 3
T=—rI— 3 MOLs® @ 9] 3T N[,? @ ,9] (2.15)
i=1

i=1

where y, A and N are a scalar valued function and tensor valued functions of
rank four of &, @ and &k, respectively. Furthermore, F£O[ ) @ »®7] of equation
(2.15) stands for MY}, . v$? v$?, and the indices ¢ and j are relevant only when
principal values S® and S, of § and S, are positive.

As a consequence, the tensile creep damage may be described by the first and
the second term of equation (2.15), if 7 and 77 are specified properly as func-
tions of maximum principal tensile stress or the octahedral shear stress of §. In

the case of shear stress, on the other hand, Hayhurst and Storoakers% observed in
their experiments on copper and aluminium disks under torsion extensive formation
of grain boundary voids on plane perpendicular to the direction of principal stress.
Therefore, equation (2.15) may apply also to the creep damage induced by shearing
stress. Creep damage in the condition of compressive stress can be expressed in
the third term of the right hand side of equation (2.15). However, this term is
supposed to be small, because significant microstructural change has not been
observed in this condition!1~16),

2. 3. Example of Constitutive and Evolution Equations

For the practical application, the equations (2.11) and (2. 15) must be specified
further. The process of creep damage is not incompressible by nature. However,
the volumetric change will be insignificant until immediately before the rupture,
and hence we will assume the isochoric deformation. If the creep theory of von
Mises type and the strain hardening hypothesis hold in the case of vanishing
damage, equation (2.14) can be expressed as

D :A/cm(?}jg) <n—1)/z§m

_ (2.16)
To=/21r(8,)?, =\ @rD*12ds
where J, denotes the second invariant of tensor S,, and A and 7 are material
constants.

By taking the term AU[»D @ »M7] from equation (2.15), we have a simple
anisotropic (non-homogeneous) creep damage law in a2 multiaxial stress state as
follows :

ﬁf___ —Bltr (T (2 s PLaSV+ (1—a) \/——_sz P @ p

(2.17)
SP=<max [S¥> (=1, 2, 3)
where creep damage is assumed to develop only on the plane perpendicular to
the direction of S, and the symbol < > stands for the Macauley bracket which
indicates the operation <A >=A4 if A>0 and <A>=0 if A<0. By taking the
first term 77 of equation (2.15), on the other hand, we obtain an isotropic
(homogeneous) creep damage law :
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=71, V=—Br{aSv+(l—a)y/3y, ) (2.18)

In equations (2.17) and (2.18), B, k, [ and « are material constants. A special
form of equation (2.17) and (2.18) together with equation (2.16) was already
employed by the present authors to analyse the creep damage process of thin-
walled tubes!?).

The creep rupture may be governed by the current states of stress o, damage
@ or ¥ and the parameter & as well as by the instantanecus rupture strength of
the material. However, the above equations of creep damage are usually highly
nonlinear with respect to &, and hence S increases rapidly immediately before the
rupture. Consequently, the creep rupture time may not be affected largely, even
if we do not take account of the instantaneous rupture strength. Thus, we assume
that the rupture occurs on a principal plane when one of the principal values of &
or ¥ attains to infinite or to zero, respectively.

3. Comparison with Previeus Theories

In order to show the validity and the applicability of the present theory, we
will now explicate its relation with the previous theories and apply it to the creep
damage analysis of a thin-walled tube under non-steady and combined state of
stress.

3. 1. Creep in Uniaxial State of Sitress

Let us consider the simplest case of uniaxial tension. In view of equation
(2.5), equations (2.16) through (2.18) reduce to

D= A(a/¥)" (3.1
V= —BU*(a/ V)" (3.2)

where D, ¥ and ¢ denote the components of D, ¥ and ¢ in the tensile direction,
respectively. From equations (3.1) and (3.2), it is readily seen that in this case
our theory reduces to that of Rabotnov!). The special case of k=0 in equation
(3.2), in particular, corresponds to Kachanov's theory?.

3. 2. Creep in Multiaxial State of Stress

In order to show the relation between the present theory and those proposed
in the previous papers, let us now consider multiaxial creep where principal axes
of stress are fixed in the material.

If we write the anisotropic creep damage law (2.17) in regard to the principal
axes of o, the rate of creep damage can be written as follows:

P — — B gD /D - (1 —a) \/73)7:?
N 3.3
P 3 () (3.3)

jzz <1/6)[<0<1)/g‘(1)_0(2))2+ (0(2)_6(3))2_%_ (0-(3)__0(1)/@"(1» 2] (3 4)

where o) >g(>¢@) and ¢>0. If we assume the steady-state creep (i.¢. m=0),
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equation (2.16) leads to
D®= AT 00/ IV = (1/2) (8P + ) ]
D®=A(3],) V2 ¢~ (1/2) (¢¥ 4oV /P1)] (3.5)
DO=AB] )" 09— (1/2) (89T +0)]

In the case of isotropic creep damage law (2.18), on the other hand, we have
the corresponding relations

7= —Blao® -+ (1—a) v/ 37, 14+ (3.6)
DO = AT LoD (1/2) (o9 +0) /1"
D®= AT )" 00— (1/2) (0P +0D) 1" @.n
DO = ATV Lo~ (1/2) (o -+02) /1
Jo= (A/OLED—a®)2 4 (0D —a) 2 (09— 2] 3.8

It will be observed that equations (3.3) through (3.5) and (3.6) through (3.8)
correspond to the non-homogeneous and the homogeneous case of the creep damage
theories of Hayhurst and Leckie®> and Goel®. It should be noticed that, though
these theories are valid only for fixed principal stress directions, our original
theory (2.16) through (2.18) are applicable also to the case of rotating principal
stress axes.

3. 3. Thin-Walled Tubes Subject to Tension Followed by Torison

So far we have shown that the theory developed in this paper comprises im-
portant creep damage theories in the literatures as its special cases. However,

since the theories of Kachanov?’ and Hayhurst and Storakers?> based on a vector
damage variable are not tensorial equations, they cannot be obtained from the
framework of our theory. Then, we will analyse a simple example of combined
loading solved by Kachanov?), and discuss the difference between these theories.
Hereafter the assumption of small deformation and the creep damage law (2.17)
with k=0 will be employed. ,

Let us consider a thin-walled tube which is subjected to axial tension ¢ for
the time interval 0<{{<?*, and then to torsion ¢ for ¢{>=#*  The circumferential
and the axial coordinates will be denoted by x and v, respectively.

Equation (3.2) gives the value of ¥, at f=¢*:

@':l;y:[1_B(l+1>glt*]1/(l+l) (3’ 9)

By use of equations (2.5) and (2.17), non-vanishing components of § in the pro-
cess of torsion are written as

Sm:syy: “Tﬁz‘zy/(ép‘xaxwyy‘wiy%
SM: <5/2) (Zﬁ.m"‘r wy)')/(zﬁxx?])‘yy” Zﬁiy)

As observed from these relations, the principal direction of S inclines always

(3.10)
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from the x-axis by 45° counter-clockwisely. Expressing the equation (2.17) with
respect to the rectangular coordinate system 0-&7 rotated from 0-xy system by
45° counter-clockwisely, we obtain

Veo=—BLaSV+(1—a)/ 3], I

. . (3.1D
Q’m = éE‘MZO
The initial conditions of these equations at f=¢* can be written as
U= = (1/2) A+ 174,
(3.12)

P, =—1/2) 1—¥%,)

Since creep rupture occurs when the minimum principal value of ¥ attains to
zero, the condition det ¥ =0 together with (3.11) and (3.12) determines the follow-
ing value of ¥ at the creep rupture time f:

(Fe) a=Q=15,)2/2QA+7%,) (3.13)
Then, the angle ¢ between the x-axis and the normal to the rupture plane are
¢=m/4+(1/2) arctan (298, /{(¥:0) »— V5 }]
=r/4-+(1/2) arctan [(1—F%L)/27%,7

(3.14)

From equation (3.11), furthermore, we obtain the creep rupture time frp as
follows:

T
S(?P'ss)n
SO=8e, =l /I P53, —(TE,)7]
Jo =@/ + () =V 5 /L Ty — (TE) P
In the case of a=1, equation (3.15) can be integrated analytically as follows:
Lp=rt+1/IBI+D) e L27%, /A +75,) I+ (3.17)

Fig. 1 shows the relation between the creep rupture time fr and the time of
stress change £* from tension to torsion in the case of a=1 and o=r, where #,
denotes the rupture time for uniaxial tension:

to=[B(+1)o"] (3.18)

[aSD+ (1—a) V/_g—j;"j“d@"fe:B(tR—t*) (3.15)

(3.16)

The solid and the dashed lines represent the result of the present analysis and that
of Kachanov calculated from the following equation2’ :

7, =—B(s,/¥,)" (3.19)

where the subscript v denotes the direction of the relevant plane, and ¥, and o,
are the damage variable and the normal stress with respect to the plane v. Equa-
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tion (3.19) is exactly the same as that of Hayhurst and Storakers?.

As will be seen from the figure, Kachanov's result which can be approximated
by a relation fz/t,=1*%/t,+1 for larger values of [ gives longer rupture times
than those of the present theory. This fact implies that the damage process of
torsion due to Kachanov's theory proceeds almost independently of the damage
accumulated in the preceeding process of tension. This is obviously attributable to
the simplified assumption in equation (3.19) that the rate of damage on the plane
v does not depend on the damage state of other planes. In the present theory, on
the other hand, since creep damage has been expressed in terms of tensorial
quantity damage developed in the process of tension has significant effect on the
subsequent process of torsion.

20
Present Theory L 90
5= B(SML L Dg, M 7
181 ¥ B(S) ¢ Vey L Present Theory
~~~~~ Kachanov's Theory o 7 r ?:-B(S“))Lg:m@km
&, =-BlO,p,) " /,/'/,/ 3 g Kachanov's Theory
RIS s UI ’ 75 &, =-B(O, A
> g=T /z //r P T
& L S 6
L oL—{fﬁ
g . o
L ____}:T 60
12+ 7 = W/\N
A TN
1.0 < 1 ! - /1
‘ . } ) 48 =
0 02 o 0.6 08 10 5 o or - o=
o it
Fig. 1. Relation between the rupture time Fig. 2. Relation between the direction
and the time of stress change. of fracture surface and the time

of stress change.

The variation of the rupture plane in relation to the time of stress change is
shown in Fig. 2. It will be noticed that the rupture plane predicted by Kachanov’s
theory is closer to that of torsion (¢=45°) than that of the present theory. This
is again attributable to the above mentioned feature of equation (3.19).

4. Coneclutions*

By representing the microstructural change of material in the process of creep
damage by a symmetric tensor of rank two, constitutive and evolution equations of
creep and creep damage were developed from the continuum mechanics point of

* Recently, the present authors developed a more elaborate and consistent theory of
anisotropic creep damage in polycrystalline metals and alloys!®. By postulating
that the principal mechanical effects of creep damage consist in the net area reduc-
tion caused by cavity formation in the materials, they described the damage states
by means of another second rank symmetric damage tensor specified by the three-
dimensional cavity-area density. Further development of this theory will be found
in the papers!®~21,
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view. Specific forms of these equations were derived by taking account of the
results of experimental observations reported so far. It was shown that most
creep damage laws in the literature can be obtained from the present theory as its
special cases.

Since the present theory was developed by incorporating the oriented nature
of creep damage and formulated in the framework of the non-linear tensor theory,
it has much more generality in comparison with the past empirical theories.
Besides the validity of the proposed theory, we should emphasize its feasibility in
creep damage analyses of structural components under general state of stress.
Another important feature of the present theory will be its versatility to develop
more elaborate constitutive equations.
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