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Abstract

A practical new method is presented for the determination of a
fundamental mode decay constant out of a decay curve with higher
mode contamination. Suppose one attempts to determine the decay
constant of a certain physical quantity whose fundamental component
decreases exponentially with time. If higher modes are included in the
measured values the logarithmic curve of the quantity deviates from
a straight line but approaches asymptotically to the latter, which re-
presents the decay of the fundamental mode. The authors introduced
an appropriate function which approximated the deviation, and devised
a practical method to get the fundamental decay constant. The new
method was applied successfully to the neutron population decay
experiments, which was carried out with a neutron generator with
pulsing function and a graphite stack. The calculational method may
apply to any decaying phenomena.

Introduction

There are many physical phenomena in which observed quantities decay ex-
ponentially with time. Examples of such quantities are: activity of radio-isotopes,
temperature of a cooling body, and neutron density in a moderator after a neutron
pulse injection. The constant which characterises this decay is called a decay
constant. Because one can explore the physical mechanism of the phenomena via
these decay constants in general, it is worth while determining the constant
with good accuracy. It is rather rare, however, to find a case where some quantity
decays with a single exponential form right from the time origin as

A@)=A exp (=), ¢y

*) Present Adress; Keio University, Fac. of Engineering.
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Generally, in the early time range of the decay, many transient components are
observed, and therefore, A(¢#) has to be expressed rather as

A()=A, exp (— M)+ A, exp (—ht) +A; exp(—*sl)
PR TRT 2)

where 0<2;<A3<A;<-. The first term of Eq. (2) is the fundamental mode
whose constant 2; we would like to determine, and the rest are the higher modes
which we would like to eliminate.

The ordinary scheme of determing A; is as follows. Taking advantage of the
fact that the higher modes decay faster than the fundamental mode, and that the
1n A(t) vs. t plot approaches asymptotically a straight line, one draws a tangent
to the asymptotic line and obtain the value of 2;. The disadvantage of this method
is that one discards the data points of early time range, where the statistical
errors are generally small. To improve this situation some calculating codes have
been made by several authors,m but they appear rather difficult to use. The pre-
sent authors devised a new, handy calculating methd of determining the fundamental
mode which is effective even for the case of accompanying higher modes. In the
following, the principle of the method will be described. The new method can be
applied to any decay phenomena in physics, but here, for convenience, will be ex-
plained for the pulsed neutron experiment of a moderator system.

Pulsed Neufron Experiment in a Graphite Stack?

A neutron source with pulsing function is placed within or adjacent to a gra-
phite system. Neutrons are slowed down to thermal energy in a few tens of
micro-second. The slowed-down neutrons which are called thermal neutrons diffuse
in the system. Some neutrons leak from the surface, and some are absorbed in
the system. As a result we observe a decay of thermal neutron population. If we
measure the thermal neutron flux at a fixed position in the system, it decay as

p(1)= > Ain€xp (—Himal), 3
where o
Mma=0(Za+DBtus), 4
and
B, ,=n"[(l/a)?+ (m/b)*+ (n/c)*]. ®)

Here, the shape of the moderator system is assumed to be a parallelepiped of a
dimension axbxXccm? including extrapolation distance.?> The indices /, m, and 7
are positive integers; 31, is macroscopic absorption cross section of the medium
and D is the diffusion constant. The A;n,’s are constants depending on the position.
The 2-value is the smallest when [, m, and # are all equal to unity, and increases
with I, m, n values. Arranging the series of Eg. (3) in the order of increasing
A-values, we can rewrite the series as

$() = 39, exp (—Id). ®)

The term of k=1 is the fundamental mode, and the rest are the higher modes.
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Neutron flux is measured by an appropriate detector placed at a certain posit-
ion in the system, and neutron detections are ordinarily converted to a series of
electric pulse train. The temporal decay of the counts of neutron is registered by
a multi-channel-scalor (MCS) system. '

The count in the 7-th channel of the MCS is given as

ir

CO=N{" <cpar, )
G=Dr

where T is the dwell time of each scalor, ¢ is overall detecting efficiency, and N

is the repetition number of neutron source bursts. Each burst is assumed to be of

the same intensity, and each yields the neutron flux given by Eq. (6). Using Eq.

(6), we get

C@=N{"  Siep, exp(~1,ndr

(i=DT k=1
=N§1 e/ Mlexp (LT)—1]exp (—2,T 1), ®
which can be rewritten as
C(Z>:ki Gk €xp (”)‘kT°i>7 i:]., 27 thy 13 (9>
=1

where [ is the largest channel number. In an actual experiment, we have to
consider other disturbing factors such as background counts, and the dead time of
the detector. We here assume that the corrections for them have already been
done. Our problem is then how to get the most probable value of A; using a data
which is in the form of Eq. (9).

Principle of Calculation

(i) The Case of a Single Mode

In the case of a single exponential mode, the counts of the MCS are, according
to Eq. (9), given as

C(i)=G,exp (—MT 1), 1))
Taking the logarithm of Eg. (10), we have
In C()=InG,— T -1, an

Therefore the In C(¢) vs. 7 curve shows a linear relation as in Fig. 1. Defining
the notations

C.(0)=InC(2), (12)
R,=In G4, (13)
Ry=—T, (14)

we write Eq. (11) as
Cl(i):R&+Rx'ia izl) 2; T I’ (15)
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and regard these equations as a set of observation equations* to which least square
method is to be applied.®> Using a conventional method of least squares, the most
probable values of R,, and R, can be obtained. Since T is known, then, the value
of 2, is obtained from R,. This is an idealized case, and rarely found in real
experiments.

(i) The Case of Accompanying Higher Modes

In this case, the In C(i) vs. i curve appears as in Fig. 2. The region of large
i-value may asymptotically become linear as already mentioned. Our objective is
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Fig. 1. The Characteristic of Single Fig. 2. The Characteristic of Multi-
Mode Exponential Decay. Mode Decay.

to obtain the tangent of this asymptotic line. For this purpose we define a func-
tion F which gives the deviation from the line, and adding this function to Eq.
(15), we try to fit the experimental curve.

Suppose we want to fit the curve up to the j-th channel. We put the deriva-
tive of F at j equal to zero, and adjust the decay of the F-function with a para-
meter X. Then an observation equation takes a form

Co(i) =Ru+Ruvi+R,-F (X, i, ), (16)

where we have introduced a parameter R, in combination with the F(X, ¢, )
function. Applying the method of least squares, we obtain the sum of the squared

*) The both sides of this equation are not necessarily equal for a chosen set of R,
and R, and measured values of C;(¥).
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residuals as
S0 = R WAD{CD) ~Ra=Rori=RyoF (X, i, DFILIW@DT, (D)

where, W (i) is the weight function on the 7-th channel. Using Eq. (17), we seek
the minimum value of S(X) by varying X. Once such an X is found, the values
of R, and R, for that X would give the fundamental mode which we are just
seeking.

Determination of the Function F(X, i, 7)

The determination of the function “F” may be accomplished by several ways.
The authors determined it by the following consideration. We note that when the
higher modes coexist the counts of i-th channel are expressed as in Eq. (9), where
A1<Ap<lA3<-+-. Eq. (9) can be rearranged as

C(#) =G, exp (—MT D)1+ (Gy/Gy)exp{— (A —2)T i} +
+(Gg/Gl)EXp{—(7\3~11>T.i}+...]. (18)

As { increases, exp{—(1;—4,)T+i} becomes small very quickly, because 1,—21;>0.
Then it would be legitimate to approximate the right side taking only the first
two terms in the square bracket, and taking the logarithm as

InC@) =In G —nT+i+In[1+(G;/G,) exp {— Oz — 1) T +i} ], (19

Furthermore, expanding the third term into Taylor series and taking its first term
we have

y

InCE)=InG,—MT i+ (G,/G)[exp {— (=2 T} (20)
Rewriting Eq. (20), we have
C@O)=R,+R.i+R,-y", i=1, -, I, (21)
where the parameters have been taken as
R,=(G,/G)), (22)
and
y=exp {"()‘Z—kl)T}. (23)

Comparing the form of Eq. (21) with Eq. (16), one immediately thinks of a possible
choice of R, and F (X, i, j) as

F(X, i, j)=X
with (24)
X=y.

With this choice, Eq. (21) is a set of observation equations analogous to Eq. (15),
and we could get the solutions of the normal equations derived form these equat-
ions, in principle. Provided that X is neither equal to one nor zero, one would
then use F(X, i, j) of Eq. (24) with X in the open interval 0<X<'1. Because we
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are dealing with experimental data with statistical fluctuations, however, we cannot
exclude a possibility that X happens to be unity or zero. If X=1 and 0, the deter-
minant constructed by the coefficients of the normal equations become 0, and we
cannot obtain solutions.* Furthermore, when X is close to one or zero it happens
that we lose many significant digits during the numerical calculation of the deter-
minant.

Consider, for example, the case of X near unity. Putting z=1—X, we have

Xt=(1—2)'=1—iz+ £ 2%(i—1) +

:1—(2+%z2+...)i+%_(z2+...)Z'z,.;_..._ (25)

Then, if X—1, Eq. (25) asymptotically approaches to a linear equation, since the
third term of Eq. (21) becomes almost linear with {. This spoils the advantage of
including the additional term R,-F (X, 7, j) in Eq. (16): the determinant of the
coefficient of the normal equations approaches zero, and thus one cannot find
healthy solutions.

For this reason, we have to select a more adequate function F, which can be
used even at the points X=1 or 0. With such an F one can find without fear a
value of X which makes S(X) minimum. From this consideration, it would be
reasonable to use a function which is constructed by substracting from the Eq.
(21) the tangent equation at i=j. At the same time we want to utilize the form
of Eq. (24) for X not equal either to unity or zero. As the result, we define the
function F as follows:

1 for i=1
(@) X=0; F(0, i, j)=
0 for i>1,
b) 0<X<1; F(X, i, jy=— K =X InX)— (X7—jX'In X) 26)

XX InX)— (X jXInX)

© X=1; FQ, i H=-4=2

Fig. 3. Curves of F(X, 7, j) v.s. i, with
7=30.

*) In fact, for the iteration scheme described later, the values X=0 and X=1 are
intentionally used as the initial values.
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These functions are shown in Fig. 3 for the closed interval 0<{X<(l. Note that
for the cases (b) and (¢) the function is unity at i=1, zero at i=j, and its deri-
vative equal to zero at i=j. For the case (¢) where X=1, the curve is parabolic.
As X decreases from one, the decay of the curve with ¢ becomes more significant ;
when X =0 [case (a)], it makes a &-function-like curve. We further point out
that F(0, 7, j) of case (a), and F(1, 7, j) of case (c) are the limiting values of
F(X, i, /) [of case (b)] as X approaches unity and zero,* respectively.

We put Eq. (26) into the third term of the observation equation, Eq. (16), and
determine R,, R, and R, which are respectively the initial value (at ¢{=0) of the
fundamental mode, decay constant 1, times T and the fraction of the higher mode
with the assumed X -value.

Calculating Method

There are many possible methods to calculate 1; by the above principle. Out
of them the following method chosen by the authors appears reliable. As Eq. (16)
is linear with respect to the unknowns R,, R, and R, we can readily derive a
normal equation, and get these values by conventional method of the least squares.
Then, the problem is just the determination of X.

According to our experience, the fo-
llowing method for getting X has been

practical and reliable. First, we select ; X 09 08 07 06 04 02
three points of X in the interval of 0< e IS
X<, as shown in the Fig. 4. The method X1,min 1
of the selection may be arbitrary. The X 2,min ,
authors took these points in equal inter- sk

vals in the scale of (1-X)'/2. With - 3
these points and the additional two points X4,min 4
at X =0 and 1, we calculate values of R,,

R, and R, from the observation equation [ o005 05 ors B
(16), substitute these values into Eq. (17) T-X

and get the values of S(X). Then out of Fig. 4. The Procedure of Getting an
the five points of X we determine the Optimum X -value.

value X1, min for which S(X) is the least.

As shown in the figure, the five points for

the next iteration are Xi, mia, its two neighbours in the previous iteraton, and the
midpoints of two intervals formed by the mentioned three points. We compare
the S(X) values again among the five points and determine the point X, min for
which S(X) takes a minimum. These procedures are illustrated in the figure for
five iterations. After the distance between the neighbouring points of X become
sufficiently small, we can determine the most probable value of X assuming that
the S(X) vs. X curve is parabolic. From this X-value we can get the most probable
values of R,, R, and R,, and determine finally the decay constant of the fundamental
mode.

*) One can show this by carefully taking the limits of the functions that appear in
the expression of F(X, 7, 7) in case (b). In the procedure, note that lime0d=1.

g0
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Results and Conclusion

To test the validity of this method, the authors carried out the following

calculations.

(i) A test with pseudo data

For the test calculations we need raw data with reasonable statistical fluctuat-
ions. At the same time it is desirable to have a prior knowledge on the value of
2; for that raw data. For this reason the authors generated a set of pseudo data
which simulate data of pulsed neutron experiments, and which fluctuate about the

decay

A()=A,exp (—Mt) + A, exp (—4;8) +A; exp (—2A31),

which has three decay components. If we put

t=T-.i,

the count in the i-th channel of the MCS is given as

Q@) =9,exp (—1T i) +g,exp (—1,T i)+ 95 exp (—1,T 1),

which corresponds to Egq. (9). To give
the statistical deviations to the function
Q@) in Eq. (28) we took for every { the
Gaussian random distribution®* about the
center value Q () with dispersion @ (7)1/2.
We call this curve C(i) which is shown
in Fig. 5. The parameters which chara-
cterise the pseudo data are tabulated in
Table 1. ,

In applying the present method the
validity of the result was tested by shi-
fting the initial channel of fitting as other
people have done with conventional me-
thods. The fitting procedure was carried
out between the ¢,-th channel and the j-
th channel, and i, was varied as j was
fixed constant. The result is shown in
Fig. 6-a. In the figure, the curve 4 is
obtained by the conventional single ex-
ponential fitting method, while the curve
B is obtained by the present method. In
Fig. 6-b, the fraction of the higher mode
component which is defined as R;/R, is
shown for the present method. It is

*) For the generation of this curve,
random numbers with Gaussian
distributions were used.

(27)
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Fig. 5. Pseudo Data Simulating a
Pulsed-Neutron Decay.
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Table 1.
Aq 1x108 b3 1000/s
Az 1/2x108 Ao 2000/s
As 1/3x 108 A3 3000/s
T 200us
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Fig. 6-a. Graph of the Calculated 2y’s, Fig. 6-b. The Fraction of Accompany-
Curve A: treated with the conven- ing Higher Modes. The fraction
tional single exponential is defined by R»/R,.
fitting.

Curve B: treated with the present
new method.

obvious that the result is improved significantly. It should be noted, however, that
as the initial channel number of fitting is increased the error suddenly becomes
large and calculated values fluctuate widely, as shown is the figure. It is consi-
dered that this is due to the increase of statistical error in the data.

iy Test with the actual pulsed neutron experiment data

As the next example we applied the present method to the data of a pulsed
neutron experiment in our laboratory.?> As shown in Fig. 7, a D-T neutron source
is placed adjacent to the center of a surface of a 150 cm x 150cm x 150 cm cubic
graphite system. Neutron detectors were placed at three positions A, B and C as
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Fig. 9. The Graph of Calculated ay’s.

The values were obtained with
the conventional single expo-
nential fitting.

Fig. 10. The Graph of Calculated 21’s.

The values were obtained with
the present new method.
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shown in the figure.

Experimental data are shown in Fig. 8. In the figure, the time origin of the
curves A and B were shifted to the 80th and 40 th channels for the ease of illust-
ration. Because the position B is at the center of the cube, one can expect no
second harmonic mode in the data, i. e., the values of Ajy4, A131 and 444, in Eq.
(3) disappear. Thus for this case the single exponential approximation should be
comparatively good, which indeed is the case in Fig. 9, where the results of con-
ventional single exponential fitting is illustated. Fig. 10 is the results of the fitting
by the present method. Comparing both figures it is obvious that the result is
excellent. Thus, the usefulness of the present method has been proved for cal-
culating the fundamental mode decay constant. The method was successfully appli-
ed to the above experiment of pulsed neutron with graphite, and the results have
been reported in the Reference (2).
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