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General Inmtroduction

It has become important in this age of high speed machinery to make clear
the vibration of shaft having rotating inequality which rotates with a rotor or
the vibration of a rotor with variable rotating speed.

Examples of rotating inequality, as seen in a two-pole generator or a two-
bladed propeller, are an unsymmetrical rotor which has rectangular two different
moments of inertia and a shaft having a key way or of rectangular section,
which has two different spring constants in two directions perpendicular to each
other.

In a rotating shaft system carring an unsymmetrical rotor, or in a rotating
shaft system with inequality in stiffness, there are unstable regions in the
neighborhood of both the major critical speed w: and the rotating speed ws at
which the sum of two natural frequencies of the system (p;+p;) is equal to
twice the rotating speed of the shaft (2 ws). The unstable vibrations appearing
in these unstable regions are treated for the system consisting of a rotor with
unsymmetrical inertia and a shaft with unequal stiffness which rotates with the
rotor.

Crandall and Brosens (1961) discussed a static unstable region of two degree-
of-freedom system with regard to inclinational vibration of a rotating flat shaft
with an unsymmetrical rotor. In Chapter 1, simultaneous effects of the unsym-
metrical rotor and the unsymmetrical shaft in a vibratory system of four degree-
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of-freedom system are appreciated and quantitative analytical results are obtained
which relate the width of the unstable- regions and the negative damping coef-
ficients of the unstable vibrations to the asymmetry in inertia, the inequality
in stiffness, and the relative orientation between the inequalities in inertia and
stiffness. Furthermore, elimination of two kinds of unstable region is realized
theoretically and experimentally.

In Chapter 2, it is described that a rotating shaft system carrying an unsym-
metrical rotor and supported by rigid bearing pedestals at each end of the shaft
is a four degree-of-freedom system, and so called “static unstable region” in the
neighborhood of the major critical speed can be eliminated by the adoption of
a flexible bearing pedestal at one end of the shaft, or by mounting an additional
mass on the shaft. Additional inertia force appearing by an increase of two
degree-of-freedom modifies the mode of vibration of the rotating shaft and the
inclination angle ¢ of the rotor vanishes.

Chapter 3 deals with the physical meaning of occurrence of these unstable
vibrations in the neighborhood of w: and ws by considering an input energy
from shaft end into the system without solving a frequency equation numerically.
The approximate results derived from taking energy into consideration coincide
fairly well with the exact ones obtained by numerical calculation.

In Chapter 4, lateral forced vibrations of a rotating shaft system with a
rotating anisotropy are discussed. Let the rotating speed of the shaft, the angular
velocity of the anisotropy, the natural frequency of the system, and the frequency
of an external periodic force exerted on the system be w, lw, p, and wo respectively.
Resonant phenomena can take place when wo=2lw—p as well as when wo=p in
such a vibratory system. It can be concluded that a forced vibration with a
frequency of wo or w¢=2Aw— w, builds up remarkably according as wi=p 0r wo
=%=2 w~—~p. Furthermore, by using the above conclusion, elucidated physical
meanings can be presented to some sorts of vibrations whose cause of occurrence
is relatively difficult to understand.

In Chapter 5, when the rotating speed of a rotor varies periodically with a
frequency of »w, the rotor is governed by differential equations having varying
coefficients with time. In such a system, it is usually expected that unstable
vibrations take place. It is found, however, that there occurs no unstable vi-
bration in rotating shaft systems with a variable rotating speed. Variable inertia
terms induced by the variable rotating speed result in forced vibrations with
frequencies of wo—vw, wot+vw as well as wo, where wo is the frequency of an
external force. It follows that at resonance wmi=p+wvw and w=p—ww, forced
vibrations with frequencies of wo—ww and wo+rw occur respectively. Further-
more, the external force with a frequency of o caused by unbalance of the rotor
yields three forced vibrations with frequencies of w, (1—»)w and (1+p)w.

Chapter 1. On Vibrations of a Shaft with Unsymmetrical
Stiffness Carrying an Unsymmetrical Rotor!® -2

1.1. Introduction

When two principal moments of inertia [;, [, about the axes perpendicular
to the rotating axis of a rotor are unequal, ie., Li=I, the rotor is called an
“unsymmetrical rotor”. It has been reported by the authors that in a rotating
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shaft system carrying an unsymmetrical rotor, there are two kinds of unstable
region in the neighborhood of both the major critical speed w:®' and the
rotating speed ws at which the sum of two natural frequencies pi+p. is equal
to twice rotating speed of the shaft 2wg®. In 1961, S. H. Crandall and P. J.
Brosens discussed the interaction through gyroscopic coupling between the inertia
and stiffness inequalities for unstable vibrations referring to the inclination
angles 6z, 6y of the rotor, which occur in the neighborhood of the major critical
speed wH9.

In this chapter, a vibratory system of four-degree-of-freedom consisting of a
rotating shaft with an unsymmetrical flexibility and an unsymmetrical rotor is
treated, in which the deflections x, y and the inclination angles §x, y of the rotor
couple each other through gyroscopic terms; and a quantitative analysis for the
unstable vibrations in the neighborhood of both wc and wq is derived, and the
simultaneous effects of the diametral inertia inequality of the rotor and the un-
symmetrical stiffness of the shaft on the unstable vibrations are explicitly ap-
preciated and the relation between the relative orientation of the principal axes
of moment of inertia to those of the stiffness of the shaft and the width of
unstable regions is realized. The results of the analysis also show that removal
of the unstable vibrations can be expected by adopting an appropriate combina-
tion of the inequalities in inertia and stiffness. The results of the analysis thus
obtained were verified by experimental results through four kinds of the shaft
system.

1.2. Equations of motion

In this paper a vibratory system consisting of a light elastic shaft with
unequal stiffness and an unsymmetrical rigid rotor is treated, in which the
deflections x and y and the inclination angles ¢» and 0, of the rotor couple each
other.

When it is assumed that there are no static and dynamic unbalance in the
rotor, the center M of the rotor coincides with the center of gravity G.

Let the principal moments of inertia about the three orthogonal axes, GZ,
GY: and GX: be Ip, I and I (I:>1) respectively in Fig. 1.1 and put I=(i+1.)/2,
4I=(I,—1I.)/2. The orthogonal coordinate systems o-xyz, G-XYZ are parallel to
each other, and those fixed on the rotor are G-X:Y:Z: and G-X;Y:Z:. Eulerian
angles 0, ¢ and ¢ are used for expressing the angular position of rotor. The
orthogonal coodinate system G-LKZ: is obtained by inclining the system G-NKZ
about the axis GK by 6§, which is obtainable by rotating G-XYZ about the vertical
axis GZ by ¢. And the orthogonal systems G-X»Y»Z and G-X:Y3Z: are obtained
by rotating the system G-LKZ, about the axis GZ, by ¢ and ¢-+¢. Let relative
orientation L X:GXs=LY:GY:=¢.

The angular velocities wxz, wr2, and wz: about the principal axes GX., GY3,
and GZ, are given as

wxr =0 sin ¢ — ¢ sin § cos ¢
wyz =0 cos ¢ -+ ¢ sin 0 sin ¢ (1.1
w0z =¢ cosf+¢

We may neglect the terms of powers higher than 3rd order of x, y and ¢ which
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are usually small compared with unity. We now introduce new variables as follows:

O=¢+¢, O.=0cos¢, f,=0sin¢ (1.2)

where 0, 6y are the projectional angles of inclination § to xz-, and yz-planes.
The total kinetic energy of the rotor is

where kinetic energy of translation 73 is

= 5 MG+ 5+ ) (1.3.1)
and kinetic energy of rotation 7% is
Ty = 5 pwbn + Lok + Loks)

= %[Iﬂ G+ G050y — 00,) ) + IG5+ 05) + A (67— 63) cos 20+ 2 0,0, sin2 6} ]
(1.3.2)
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If a force P and a couple M; are applied to the rotor which is mounted on
a circular shaft with equal stiffness and they result in a deflection » and an
inclination angle ¢ of the rotor, the following linear relationships exist:

P=ar+710, M:i=yrr+46 (1.4)

where «, 7, and ¢ are all spring constants of the shaft; « is the spring constant
between the force and the deflection, 7 is that between the force and the incli-
nation or the couple and the deflection, § between the couple and the inclination.
We now denote the spring constants in GXs-direction a+ da, 7-+47, 8+ 46, and
in GYs-direction a—dea, v—4dr, 6— 40 in Fig. 1.1. Let the displacement of the
center of gravity G be ', ', the inclination angle of GZ:;-axis be 6y, 6y in GXs-,
GYs-directions respectively.

The potential energy of the shaft V should be represented by the following
form,

V=%‘((a—!—Aa¢)x’z+2(T+ A7) x'0% -+ (8 + 45) 0%
+ 54 (= da) y'*+ 20 = dp)y/ By + (5 = 40) 0} (1.5)

There are the relationships (1.6) between stationary coordinates x, y, 0x, 0y
and rotating coordinates x', ¥, 0x, 05

=% cos(@+¢) + 7 sin(@+¢)

0 0,
(1.6)
x

= — sin(@+€)+g cos(@+¢)
y

xr
0z
y!
05 O

Substituting Eq. (1.6) into Eq. (1.5) we have

= 2@ (& +5)) + 2 (abe o 30) + 3(03+63)

+ g {da® = %) + 2 dr (x0: — 30) + 43(03 — 03)} cos 20 +€)
+{daxy + dr(x0y + y05) + 4000y} sin 2(8 + ¢) (1.7)
Now substituting Egs. (1.3) and (1.7) into Lagrange’s equation of motion (1.8)

when the system consists of no damping and of an rotor without any static and
dynamic unbalances

d (2T oT v
(38~ %0t o0 - (1.8)
in which ¢s is a generalized coordinate, we have the equations of motion. The
equation of motion regarding @ becomes
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10 = %Ip(fiyﬁx ~ laBy) + AT (05— 63) sin2 0+ 2 6.6, cos 2 6]

F{da(x®— ") + 2 dr (20, — y0y) + 4805 — 03) ) sin 2(O +¢)
—2{daxy+ dy(xfy+ y0) + 450,05} cos 2 (0 +¢) (1.9
Since all quantities of x, v, 0, and 6y are enough small compared with unity,
we may neglect the higher powers of them in Eq. (1.9), so Eq. (1.9) is appro-
ximately expressed as follows: I»0 =0, and it leads to @ =¢ + ¢ =w. Now putting
O=wt—m/2, we obtain the equations of motion regarding @, x, y, 6z, and 0y as
follows:
# = w = constant
M#E+ ax—+ 70, — da{x cos 2(wt +¢) +ysin 2(wt -+ <€)}
— dy{6: cos 2(wt + <) + Oy sin 2(wt + )} =0
M3+ ay+ 10y — da{xsin2(wt + &) —y cos 2(wt +¢)}
— dr{f;sin2(wt+¢) — 0, cos 2(wt+&)} =0

10x + Ipwly -+ 15+ 80, ~ 41+ n (0x o8 2 wt -+ Uy sin 2 wf) (1.10)

— dr{xcos2(wt+¢) +ysin2(wt+¢)}
~ 43{0:cos 2(wt+C) +0ysin2(wt+2)} =0

Iy — Ipwlx—+ vy + 00y — AI* ad? (6xsin2 ot — 6, cos 2 wt)

— dri{xsin 2(wt +¢) —y cos 2(wt +¢) }
— 48{0zsin 2(wt +¢) — 0y cos 2(wt +C)} =0 )

Next when the advanced angles & and % from the axis MY: are the directions
to which the eccentricity ¢ and the small angle r exist as shown in Fig. 1.2, we
can express 7T as follows:

FI1G. 1.2. Static unbalance ¢ and dynamic unbalance <.



8 Toshio Yamamoto ef al.

T=-5M[&+5—2e6{%cos (O+&)+ psin (B+8)}+e 6]

CII -

4 = Tp[(1 =) @ ~ 2 r8{f,cos (B +79) +bysin (49}
-+ @(“}xgy - dyﬁx)] +"12[[0:2:+ 05"}' 72@2"1‘ 2 T@(ﬂx CcOSs (@ +ﬂ)

+ by sin (@+4)}] +~12~A[[((5'§~ 63) cos2 @ +20.0y,sin2 6
+ 2@ cos 27+ 2 @b, cos (@ —x) +6,sin (6 —7)}] (1.3a)

The potential energy V is the same as Eq. (1.7), and the dissipation function F
is defined as F'=1/2¢,(#*+ 3*)+1/2+¢,(6: + 65) in the system with viscous damping,
where ¢, is viscous damping coefficient regarding x, y and ¢; is that regarding
Ox, 0.

Substituting Eqgs. (1.3a) and (1.7) and dissipation function F into Lagrange’s
equation of motion (1.8a)

d(oT\ oT , oV | oF _
(ﬁ(a_q;)“ aq.s aq.s BCIS ‘—'Qs (1.83.)

in which Qs is a generalized force besides restoring force, I»H =0, ie, O =0 is
derived, and the following equations of motion are derived by putting @ =wf—r/2.

M% + ¢1% + ax+ 10, — da{xcos 2(wt + &) +ysin 2(wt +¢)}

— 47{0, cos 2(wt +¢) + 0, sin 2(wt + ¢) } = Mew® cos (ot + &)
M3+ ¢+ ay—+ vy — da{xsin 2(wt+¢) — y cos 2(wt +¢)}

— A1{0sin 2(wt +¢) — 0y cos 2(wt + ¢) } = Mew’ sin (vt + &)

I8 + Iowly+ 0+ e+ 80, — Al « dit (fxcos2 wt+0ysin2 wt)

(1.11)
— dr{xcos2(wt+¢) +ysin2(wt+¢)} — 45{f, cos 2(wt + ¢)

+ 0y sin 20wt +¢) ) = 10 {(Ip = 1) cos (wt +7) — Al cos (wt — 1)}
Iy — Ipwls+ caliy + 7y + 660, — A[--dd—t (6, sin 2 wt — by cos 2 wt)

— dr{xsin 2(wt+¢) —y cos 2(wt +¢) } — 40{0, sin 2(wt + §)
— 0y cos2(wt+ )} =t (Ip—I) sin (ot +7) — Al sin (0t —7) }

For convenience’sake, the following dimensionless quantities are introduced:

ip=1Ip/T, 4=4IlI, x'=xNMJI, y =yWM/I,

e =eNMJI, t'=tNa/M, o =woVMjx, p' =pIM/a,

P =MI]e, & =Ms/(aD), ci=c/VGMea, cs=cNM/all,
du=daja, dpn=dr[r, dn=43/5

(1.12)

Inserting Eq. (1.12) into Eq. (1.11) and omitting primes on the dimensionless



On the Vibrations of a Rotor 9

quantities, the equations of motion for the unsymmetrical rotor carried by the
rotating shaft with unequal stiffness are rewritten in the form
£ +ai+x+70.— dnlxcos 2(wt+¢) +ysin 2wt + ) )
— 74140208 2{wt + &) + 0y sin 2(wi +¢) } = ew’ cos (vt + &)
Y 4+ay+y+r6y— du{xsin 2(wt+ <) — ycos 20wt + <)}
—~ rdi{ 0 sin 2(wt + <) — 0y cos Z(wt +¢)} =ew’ sin (0t +£)

0x| Zpa)ﬂy—i'Cgﬁx Tx+6ﬁx“'d°

~ rdi{x cos 2(wt +¢) + ysin Z(a)z‘—i—c)}

(1.13)
- 5A22<0xCOS Z(a)f+C) +6y sin 2((0t*l'<:)}

=tw{(ip—1) cos (wt+7) — dcos (wi —7)}
iy — ipwliy+ c2fy+ 7y + 60y — 4 d_t (lixsin 2 ot — b, cos 2 wt)

— rdidxsin 2(wf +¢) — ycos 2wt +£) )
— 84s5{ 0 8in 2(wt +¢) — 6, cos 2(wt +£) }
=7w™{{ip~1) sin (vt +%) — dsin (0t —7)}

Equations of motion for a symmetrical rotor mounted on a shaft with unequal
stiffness @ and an unsymmetrical rotor carried by a circular shaft!®® are
obtained by putting 4=0, £=0° and 4;;=0 in Eq. (1.13) respectively.

1.3. Forced vibrations

1. 3.1. Solutions of forced vibrations
Forced vibrations induced by ¢ and = are represented by

x_ cos cos sin

=B Gtk B = ASS ot ® Bt ot, ]

, _ [ (1.14)
« _ COS _ .COS sin

by =F g (0t +82) = Cain 9t F D og0t ,

where (1, . are phase differences between vibrations and the axis MY,. Inserting
Eqg. (1.14) into Eq. (1.13) we get the following determinant:

1—ducos2l—w —dysin2l—cw 7(1—4pc082¢) —7dpsin2¢
“‘duSil’lZC"f"Q(tJ 1+d11COSZC“(DZ —TAIZSiHZC T(l"}'dnCOSZC)
}aiji — T(l“A;gCOSZC) -—rdleiHZC 5(1“422C0524) "‘642285.1125"‘(‘2(0
+p—=1— D’
“TA]zSinzc 7(1+szcos2C) —ﬁdzzsinzc+02w 5(1+422C0524)
+(ip—1+ 4o
(1.15)

It is readily seen from Eq. (1.14), (1.15) that if the cofactor of the determinant
is denoted by Aij, the amplitudes of forced vibrations A, B, C, D are given by
the following equations:
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Alaij| = ew’ cos Ay +ew’sin £ Ay + 0’ (ip — 1 — d)cospAs + 10’ ip — 1+ 4)sinpAau
Blaijl =ew*cos tA+ew’ sin £An + 10 (ip— 1 — 4)cos pAs + t0’(ip — 1 + d)sin pAe
Clai;| = ew’ cos A+ ew’ sin £ A+t (ip — 1 — 4)cospAss + v’ (ip — 1+ 4)sin y A

Dl aij| = ew’® cosEA -+ ew’ sin £ Ay + 10’ (ip— 1 — ) cospAs + to’(ip — 1+ A)sin n A
(1.16)
1.3. 2. Unstable vegions of forced vibrations
When the relative orientation ¢ is equal to 0° or 90° and ¢;=c¢:=0, the ampli-
tudes A, B, C, D in Eq. (1.16) are given as follows: For the case of {=90°

4= {814 dp) + (ip—1— D w'}ew’ cos § — (1 + i) ro’ ip— 1 — 4) cos 7
(IF di= o)) {8(1+ d22) F (ip— 1 — 4) 0%} — 72 (1+ o)
B= {6(1 = dan) + (ip— 1+ 4) 0*yew’sin & — y(1 — dip) 0 (ip — 1+ 4) siny
(1=du—0?){0(1—d2)+ (ip— 1+ 4) w?*}— 73 (1 — 412)? (1.16 2)
.16a
Co (1+dn—0")t0’(ip—1— 4) cosy—r(1+ 4) e’ COSE
(IF dii— %) {8 (1 de2) + (ip— 1~ 4) 0*) — 7 (1+ dz)?
po 1—di— 00’ lip—1+4)siny — (1= 4p) ew’sin &
(1= du—0?){8(1—da)+ (ip—1+4) 0*} —7%(1— 41)*

For case of ¢=0° the sign of 4 in Eq. (1.16a) must be changed.

And the vanishing denominators in the equations of the amplitudes A, C and
B, D results in the following major critical speeds wea, wenn and we, wer sepa-
rately: For the case of ¢{=90°

ot A0+ 4 Gp— 1~ ) =50+ 4} = NVTUF I Gp— 1= 4) FO(LF de2) 1 — 4 (14 412) *(5p— )Y

ol 2ip—1—4) L
A7)

o {0~ 4 Up—14+ D =3 — 4} =T A1) Gp— 1+ )+ (1= 4) P~ 41— dn)* (p— 1+ 4)7*

wﬁn 2(ip—1-+4)

For case of ¢=0°, the sign of 4 in Eq. (1.17) must be changed. It suggests that
the magnitudes of the major critical speeds vary according to the value of the
orientation ¢.

In the range of |a@;j]<0 the forced vibrations become statically unstable!®,
and the boundary rotating speeds furnished by |ai;]=0 coincide with the major
critical speeds of Eq. (1.17). Accordingly there are two static unstable regions'®,
ie. the lower region [weu, wee] and the higher region [wen, wez].

Simultaneous effects of the asymmetry 4 of the rotor and the unsymmetrical
shaft stiffness 4;; will be discussed. The unstable regions are changed with the
value of 4, ¢, ¢ and ¢, as shown in Figs. 1.3 (a), (b), (¢) when i»=1.987, § =1.060,
r=—0.855, ds=dn=4di=42=0.1. Fig. 1.3 shows that elimination of the unstable
region can be realized by means of an appropriate combination of 4 and 4.
The couple of curves when ¢=90° in Fig. 1.3 (a) cross each other in the neigh-
borhood of 4=0.25. It shows that the unstable region vanishes even when ¢1=
¢:=0. The following condition for elimination of the unstable region is derived
by putting wes=wez2 0r wen=we in Eq. (1.17).
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F1G. 1.3. Unstable region between wez1 and weze (we2=0.736).
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14ds _ oy o Up=1=dWGp =14 4=0) £Vlip= T+ 4+0)'—4(p— 1+ N7}
—ds (lp—1+ D{lp—1—4~0) V(p—1—4+8)2—4(ip—1—4)7%}
_ g9 —-1
S TVIES (1.18)
Eq. (1.18) for 4s=0.1 and the upper sign results in 4=0.2487 which agrees with
the results shown in Fig. 1.3 (a). For comparison the major critical speeds of
the circular shaft system (i.e, 4s=0) with 4=0.322 are indicated by the symbol
O in Fig. 1.3 (a). As is seen in Fig. 1.3, the unstable region become smaller
with increasing of the damping, and finally they vanish for somewhat small
asymmetry 4 as shown in Fig. 1.3 (c).

1.3. 3. Response curves in the neighborhood of the major critical speed

Since there is no unstable region when 4=0.322, 45=0.1, c1=¢:=0.1 as shown
in Fig. 1.3 (c), the steady forced vibrations induced by e¢ and r occur in the
neighborhood of the major critical speed we.. The amplitudes E of deflection
induced by ¢ and r are shown by Figs. 1.4 (a) and (b) severally. Similar response
curves are obtained for the amplitudes F of inclination. The maximum values
of amplitude E are plotted against the orientation ¢ for cases of &, y=0°, 45°, 90°,
—45° in Figs. 1.5 (a), (b). For comparison, the amplitudes for the system with
4=0 and 4s=0 are indicated by the broken line curves in Figs. 1.4 and 1.5.

30
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,«_fO___.

25

| 25
: M\
d

20

|
i ¢
| .
10 a5e To] ] : \
E ;
, L
607 9P° 30
5 P e

crmplitude of deflection E/
ampiitude of deflection E/T

Lz
A=0,0s=0 }
o J 0
06 07 we 08 oc 06 07 We 08 09
rofating speed w rotating speed w
(a) Efe—w (§=0°) (b) E/r—w (7=0°)

(ip=1.987, 6=1.060, r=—0.855, 4=0.322, 4s=0.1, c1=c2=0.1)
FIG. 1.4. Response curve at wes.



On the Vibrations of a Rotor 13

20 : 30
ips1987 i 1987
JEea 5:1080 §+1060

\ ¥=-0855 \ Y-.0855

25 a=0322 2 2:0322

25201 . 84-01
¢=c;= Ol 7=90 €,=C3=0.1
45%,

(E/ D

(E/8)max
N
O

G
S,
=
@0
O,
—

52{/2‘3

maximurn amplitude of deflection
S
> &
o
maximum amplitude of deflection
S
N
&

L E=45°
L48:0,8:201 N e Py Yo ]
5 R 5 790"
e | 8:0. 800 | ,ka =%
I
o o 3 ° e o ° o 2
g 30 60 o0 o} 30 [ o0
orientation  § orientation  §
(a) (E/e)max—C diagram (b) (E/t)max—{ diagram

FiG. 1.5. The relation between the maximum amplitude of deflection and the
orientation { at wee.

1.4. Free vibrations

1.4.1. Frequency equation and the unstable region

If A=dn=4di2=402=0, e=7=0 and c;=c:=0 in Eq. (1. 13), the frequency equation
is

F=f(p) =0 =p)0+ipop—p) =7 =(p—p ) p—p)Pp—p)(p—p) =0 (1.19)
where P> 1>p>0>p> — 1> p, (1.20)

and p1, po, ps, and ps are the natural frequencies of the system consisting of a
symmetrical rotor and a shaft with equal stiffness «, 7, and §

The gyroscopic terms ipwly, — ipwl, in Eq. (1.13) result in lateral vibrations
of whirling. The asymmetry in inertia 4 as well as the asymmetries in stiffness
du, 4, and de result in the coexistence of free vibrations with frequencies p
and p=2 w—p1®. Therefore, the free vibrations should be expressed in the form

X COos +

, =4 Cospsz oA G pH:B p
(1.21)
g: c Coswasm pt+C cos 3 pt:FD p

Considering a rotating rectangular coordinate system o-x'y'z which rotates
about the z-axis with an angular velocity of o and assuming that the x’-axis
coincides with x-axis at £=0, we have the following relationships between coor-
dinates x, y, 0, and 6y, and coordinates #’, ', 8%, and 8, with reference to this
rotating coordinate axis:
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ot 5y S0 o, 0521908 or0) S0 ot (1.22)

X _ _,COS
=x' .
08 0y

sin

Substituting Eq. (1.22) into Eq. (1.13) and putting e=t=0, the following equa-
tions of motion are obtained with respect to x’, ¥', 0z, and 65}
4o+ (1—4d,c082¢— M) s —2w) — (cLo+ 4ysin2¢)y'
+ (1~ 455¢c082¢) 01— rdis8in2C 05 =0
e+ (1+4,c082¢— ™)y + 2 0k + (o — 4y, 8in2 Q) «!
+7(1+ 41pc0828) 0y — vd128in28+0,=0

.. . . (1.23)
(1= G+ el +{0(1 — 4 cos28) + (ip— 1 — D’} 0; — (2 — ip) 0y
~ (o 8482 C) Oy + (1 — A1,€0828) ' — 741, 8in 24y =0
(14+ DGy 4oy + {61+ dipcos 2C) + (ip— 1+ D 0’165+ (2 — ip) 0l
+ (Cow — 042 8Iin2¢) B4+ 7(1+ d15c082C)y — 741, 8in 2 x' =0
Assuming solutions of Eq. (1.23) to be written in the form
’ li
x A st 6x__ cest (124)

¥~ B® 6,°D

and substituting Eq. (1.24) into Eq. (1.23), we have the following characteristic
equation:

32+1"A11COSZC — 2 ws T(l“dlzCOSZC) “"TszSiIlZC
“(1)2+C13 ""AuSiﬂZC"‘CL(.O
2ws— 4y sin2¢ 41+ 45,c082¢ —yd;psin2¢ (14 dipcos2¢)
+ cw —wttes

0(s) =| (1= 4incos28)  —rdsin2C (1—-Ds*+es —2—ipws—co

+0(1— 4p,€0828) =84y sin2¢
+ (fp—1—4) o

—7diz8in2¢ (14 4120828 (2—ip) ws+ o (14 Ns*+cs

“'5Azzsinzc +6(1+AZZCOSZC)
+(ip— 1+ 4) &°
=K338+K7S7+ K586+K535+K484+K333+ K282+ K1$+Ko =0 (125)

where

Ki=1—~4>0 (0 2>ip>24>0)

Ki=2c(1-4)+2¢

Ki=p+Q—DHvi+4ce

Ki=2ci{n+1- A+ }+2c{n+ G+o")}

Ki=(o"+o)m+np+(1—02 0~ o'vs—27(1+ 4, —cho’
+dce(1+8+20")+2(27° 4+ 04dp0’) dcos 2¢

Ki=2c{(1+ o) m+n+274dc082¢} +2c{ (8 + o) w1+ 2}
—2(ci+ ) (1 + 45)
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Ko=vip+vm+ 278~ 4:)(2—ip) o — (1+ 8+ cc) (14 45

2 A1 (i + 840 — (s — 2 Ao+ Ay 45) 4€0s 28} + 4 el + 0°) (8 + o)
K=2al(1+ o) 9+742(2—ip) o — (3 + ") (1 + 43) + 2 6 di2dr

+2 440’ cos 28]+ 2 el (04 0) v+ {4 o' = (1+ ") (14 43) + 2 du 412 }]
Ky = {n}+29:441 0 co8 2 &+ (ddyy )} — [+ 2 74 4o’ (1 — w*) cos 2 €

+{40*(1 = )Y+ ocip+ v+ 2067 (1 — 4L) — cicio’)

(1.26)
in which

vi=2(14¢") +¢i
ve = (1 — ) — M5+ ci o®
vs = {iplip —2) +2(1 — Yo" +248
=5+ i — 2 044y cO8 2C (1.27)
n={ip—1) "+ 8} — 40" — 8"+ i’ — 2 8440 cos 2 ¢
7= (1— ) {(ip— 1) &*+ 3} — 7* + (8411 doo — 7°4%)
n={(p—1) &+ 6} 4+ (1 — &) dos — 2 7° 41

The unstable regions in which vibrations mount up exponentially exist in
the neighborhood of the rotating speed at which both f(p) =0 and () =7(p) =0
are satisfied, simultaneously.

If K, in Eq. (1.26) becomes negative, and hence the precondition for stability
that all K; (7=0,1,2,...,8) should be positive is not satisfied, Eq. (1.25) has a
positive real root s=m (m>0). Accordingly, Eq. (1.23) has solutions of x'=Ae™,
y!'=Be™, 0} =Ce™, and 0y =De™ and by substituting these solutions into Eq.
(1.22) we have unstable vibrations x=ae™ cos (wf+f), y=ae™ sin (wi+f), Oz=
be™ cos (wt+F') and fy=>be™ sin (wt-+p') with a frequency of w, in which m is
called a negative damping coefficient. This is why the unstable region appears
in the neighborhood of the major critical speed we.

For stability, there is another condition that all Hurwitz’'s determinants H;
(7=2,3,...,7) of Eq. (1.25) are positive. In the neighborhood of wa= (p:1+p2)/2,
the Hurwitz’'s determinant of the highest order or that of the 7th order H- takes
a negative value. Consequently, Eq. (1.25) has roots of conjugate complex with
a positive real part, i.e., s=m=ip' (m>0) which leads to x'= Ae™ cos (p't+ B1),
9! = Be™ cos (p't+ B), 0= Ce™ cos (p't+Bi") and 0y = De™ cos (p't+8y); refer-
ring to Eq. (1.22) they can be written in the form

x=e™[acos{(w+p)t+ B} +bcos{(w—p)t+B:}]
=e™{acos (Pyt+B) +bcos (Pot+B:) ) (1.28)
y=e"{asin (Pit+ ) +bsin(Pt+B))

fx and fy are written in a similar form. In Eq. (1.28)
P;:w-}-j?', Pz=a)—p’ . P1+P2=2LO (1-29)

Thus two unstable vibrations with frequencies P, and P.=2 w— P, appear simul-
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taneously in the unstable region near the rotating speed ws= (pi+p)/2 (. Pi=p,
P;=p,). On the boundary of stable and unstable region the relation m =0 holds.

Now we treat about the free vibration with no damping. Substituting Eq.
(1.21) into Eq. (1.13) and putting e=7r=0, c;=¢,=0, the following equation @#=0
is obtained.

H T 45, ¢c082¢ rdincos 2l 4y sin2¢  y4p.8in2¢ 0 0
G v412€0828 APpP+6dncos2l yd:sin23 §4nsin2l 0 0
4,€082% 7dincos2$ Vit P 0 0 — 4,8in2¢ -~ rdnsin2€
Dp) = 7d12C08 28 App+6dacOS2 L G O 0 —rdi2sin2¢ — §4msin2(
4y sin2¢ rdsin2g 0 0 I r dncos2( v42c082¢C
ydi28in2¢ ddnsin2¢ 0 [} 7 e 7d2c0828  APD+ 64 cos 2C
0 0 —dnsin2f —yd.sin2¢ 4,€0824 7dizcos2¢ H T
0 0 —ydesin2f —d4nsin2g ydncos 28 dpp+ 84 cos 2§ ¥ G
=0 (1.30)

Some calculation shows that Eq. (1.30) can be represented by the form @=a'=0
with
0 =ff + [ - 44GG — 7' £(HG + HG) — 6° M HH + 2 74,142 (G + G)

+ 207" dodon(H+ H) — 2(0dndu+ 745 v — £p* P HH

+28pp{ — V' du+ Pl (H+ H) — 5 doe HH } €08 2 ]+ { (841 dy — 7°43)"

+ 445D+ 2 440 pP(8dnd — 74D cOs 2C) =0 (1.31)
in which H=1-p" H=1-7"G=68+ipop—p’, G=0+ipwp—7, f= HG—7" and
/=HG~-7. When 4=0 and 4;=0, Eq. (1.31) reduces to @' =f7/=0. The
unstable vibrations take place in the neighborhood of the intersecting points of
the curves f=0 and f =0 provided that 4 and 4;; are somewhat small!®W,
Accordingly the nature of Eq. (1.31) in the neighborhood of these intersecting
points will be discussed. Sizice f=0 and f=0 are simultaneously held in this
intersecting point, e, HG = HG =7*, @ in Eq. (1.31) reduces to

0 = ff — ¢/ (HH) + ¢, =0 (1.32)

where

¢ =Q + R*+2QRcos2¢=(|Q| - RN =0

o o | (1.33 2)
=S8+ T*+2STcos2¢=(IS|—|TN*=0

=7 dn— P 4o (H+ H) + 04 HH
Q=1dn— 1 * _} (1.33b)
R=4ppHH, S=0d1de— 7° 41, T = ddnpp

It should be noted from Eq. (1.33a) that ¢, and ¢, take always the positive
values or zero. Under the assumption that the fourth power term of 4, 4i; in
Eq. (1.32), i, ¢1 can be neglected, it is concluded that the real roots of Eq.
(1.32) exist only in the ranges where the sign of ff is the same as that of HH
because of ¢,=0.

The natural frequency-the rotating speed diagram of the apparatus of the -
experiment IV for 4=4;;=0 is illustrated in Fig. 1.6 where the curves f=0 and
7 =0 are shown by full and broken line curves respectively. Further the lines
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FIG. 1.6. The relation between the roots of /=0, f=0 and
the rotating speed w.

H=0 (p==+1) and H=0 () =2w=+1) are added by thin lines in Fig. 1.6. In
Fig. 1.6 the real roots of Eq. (1.32) can exist only in blank regions and not in
hatched regions where the signs of f# and HH are different each other. In the
neighborhood of the cross point of f=0 and f =0 shown by the symbol O, there
is an unstable region because the curves #'=0 becomes as shown in Fig. 1.6 (a),
(b), and near the intersecting points shown by the symbol & in Fig. 1.6 (¢)
there is no unstable region'®. The rotating speeds of o of the intersecting points
Ci(wa), Celwez), D, 2(wa), and A1, 3(we) are as follows!V12:

2
i ={lip = 1= 8) £V (= 118) = 4(ip— D) 78}/{2(ip = 1)} s

2
wg

o = {5442 —ip)(14+8) = (4 —ip)Vis+8(2—ip) (6 — 1) }/{8(2—1p)*}  (1.35)
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The negative damping coefficient m takes its maximum value mm.~ at the center
of unstable region w=we, and w=w4. The value of m, Mmm.x and the width of
unstable region 2|&| are approximately given by means of Taylor expansion in
the form (1.36)~(1 38).

When there is no daming™®,

mm=/ ¢o/(§£ g; HE)=Y (1.36 a)

m o=V -4 (ggg;’ - 2%2;’ ) (0= a.0)? (1.37)

202 =47/ | zgg;’ - g’;g;’ | (1.38 a)
When there is damping®,

Monas = \/;; (v ﬂ}’ﬁiz - () (1.36 b)

o)z, | = 2L N (V=) [ (nme) (1.38 b)

| of/ow  of /2w |
offop T oflap |

where for unstable vibration in the neighborhood of we,

2 2\ 2

re+ (1 —wd) e
= 392)
e (2= i) (1 — w) (1.392

and for the unstable vibrations in the neighborhood of wa,
L2 VL IRY
o roat (1=ph.)e (1.39 b)

5.2 a2 vefo_ Lpwd
270+ (1-pho(2 - 22)

1.4.2. Static unstable vibrations

The static unstable vibrations take place in the neighborhood of the inter-
secting points Ci(p1=71) and C:(p.=7:), because R = dwi(l— 0?)*>0 and hence
the curves @'=0 take the form of Fig. 1.6 (a).

If the lower and upper boundaries wecii and we coincide with each other,
the unstable region obviously vanishes. Thus the relation wea=wcz2 0T wei = wer
results in the following condition for removal of the unstable region near the
major critical speed we:

4= +{TA11"‘2T4112(1—'UJ)"1‘042(1“‘0)) }/{L!?c(l"‘w)}z (1.403.)

provided that the higher-order terms consisting of 4, du, 412, and 4., are neglected.
In Eq. (1.40a) the upper and lower signs correspond to £=90° and ¢=0°, re
spectively. Egs. (1.33), (1.36) and (1.37) show that mm.x and 2|&| are functions
of the orientation ¢, and ¢=90° and ¢=0° furnish their minimum and maximum
values when Q = {74y — 2 17412(1 — w2) + 84n(1 — 02)*} >0; vice versa when Q<0,
because R>0 near wc.
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Since QR = d4s0i(1— 07wl + (6 — ¥ )1~ 0))?} is always positive for the
flat shaft with uniform cross section (4;;=4s), the following condition of remo-
vement of unstable region can be derived from ¢.=0, i.e, Q=R(£=90°):

d= 47 wi+ 5 — ) (1 — 02} J{wel 1 — wd) }? (1.40D)

For the apparatus of Fig. 1.3 (a), Eq. (1.40 b) furnishes 4s=0.1, 4=0.2493 which
agree with the result 4s=0,1, 4=0.2487 given by Eq. (1.18). In order to obtain
condition for removal of unstable region,

Eq. (1.40b) may be more convenient than .

Eq. (1.18). Incidentally, if the spring con- ©  excet soution peles7
stant 7 vanishes, i, r=0, the motions of x, — opprasimate solgion | 8 21060
v and 0 6y do not couple each other, for R | o
such a system QR is always positive in the. 2 i ?&
neighborhood of the higher major critical R \Qo
speed, i.e, the point C: because QR= : o N \

8 ddypwill — wd)*>0". For the apparatus of igf' \‘%@,’ B\ X
Fig. 1.3 with QR>0the width of the unstable  x \%’%\;
region 2|%|=wee—wen are plotted against 2 % B
the orientation ¢ in Fig. 1.7 where the ;% kY \\
damping coefficient c¢i=c¢; is adopted as a %L :
parameter. In Fig. 1.7, the results of ap- o E - |
proximate calculation through Eq. (1.38 a, 7 3 eion ;o s

b) are shown by full line curves and the
exact values obtained from Ki=|aij|=0 of
Eq. (1.15) are illustrated by the symbol O;
both results agree each other as is seen in Fig. 1.7. The existence of the fourth
power term ¢, in Eq. (1.32) which is assumed to be negligible gives plus effect
on removal of the unstable region because ¢:=0 and - ¢,/ (HH)<0 near the major
critical speed.

Fi1G. 1.7. 2|&|—C¢ diagram at wee.

1.4.3. Dynamic unstable vibrations

At the points Di(p: = p) and Do(p, = p1), HH=(1—p) (1 — p}) takes a negative
value because p;>1>p.>0, and hence there is an unstable region near D, and
D: because the form of the curves ¢'=0 becomes of Fig. 1.6 (b). The fourth
power term ¢4(=0) gives minus effect in this case because — ¢,/(HH)=0. The
negative damping coefficient m-the rotating speed » diagrams with a parameter
¢ for the system having ip=1, §=1.060, 7 =—0.855, 4=0.3, 45=0.1 and ¢=c.=0, and
for the system of Experiment IV are shown in Fig. 1.8 (a) and Fig. 1. 9 respectively.
The relation between the maximum value of m, i.e., Mm and the orientation ¢
is given in Fig. 1.8 (b) where the symbol O is the exact results of Fig. 1.8 (a),
the full line curve is of the approximate expression (1.36a); the former is
somewhat larger than the latter®. Since QR<O0 in this case the value of #amus
takes its maximum and minimum value at ¢=90° and ¢=0° separately, the rela-
tion of which is contrary to that of the static unstable vibration. For comparison
the approximate value #ma.,=0.1169 and the exact value #ma:=0.1214 of the system
with 4=0.3 and 4s=0 are illustrated by horizontal full and broken line respectively
in Fig. 1.8 (b). Incidentally the approximate value of #m.: when 4=0, 4s=0.1
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is 0.0195, the result of which is not shown
in the figure.

In general, the value of the orienta-
tion ¢ has a remarkable effect on unstable
vibrations appearing near both w. and
wd, and #Mm.x and the width 2|&| which
are approximately proportional to \/QBQ =
VOPT R* 2 QR cos 2 ¢ take their maximum
and minimum values at ¢=0° and ¢=90°
when QR>0, vice versa when QR <O0.

Assuming ¢.=0 at wa, i.e, @==R at
wd, the condition for removal of the
unstable region near wg is defined ap-
proximately in terms of 4, 4u, 4 and
4 as:

d= {74y — 774152 — pl — p?)
84 (1 =D (1 —pD}/

{pipo(1 = pD (1 —p0)} (1.41)

. where the upper and lower signs cor-

respond to ¢=90° and ¢=0°, respectiv

ely, and p: and p. are given from the

relations f=HG—7?=0 and pi-+p:=2 wa as follows:

Dro=watV{(3ip—4) s+ (2428 —ip) }/(4—ip)

(1.42)

The upper and lower signs in Eq. (1.42) correspond to p: and 2, respectively,
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and wq has already been defined in Eq. (1.35). The unstable region can be
removed in the case of ¢=90° or 0° according to whether the value of Q is
positive or negative at ws, because of R<0 at wa.

1.5, Experimental results

1.5.1. Experimental apparatus

The lateral vibrations take place in the vertical flat shaft S carrying an
unsymmetrical rotor R as shown in Figs. 1.10 and 1.11. And the whirling of
the shaft is measured optically by recording simultaneously lateral motions of
the disc edge both in x-direction and y-direction as shown in Fig. 1.12.2

Experiments are performed using experimental apparatus shown in Table 1. 1.
In Experiment I, as shown in Fig. 1.10, the experimental apparatus consists of
the vertical shaft of length /=504.5 mm with unsymmetrical stiffness supported
by ball bearings at both the upper and lower shaft ends and the unsymmetrical
rotor having =2 and 4=0.3041. The length « between the lower shaft end and
the rotor is 121.0 mm, and hence the length b between the upper end and the
rotor is 383.5 mm. As shown in Table 1.1, the shaft used in Experiment I has
unequal stiffness, Z.e., duxdiz=4». In Experiments II, III and IV, as shown in

| T ~303.0— -
i 47 == V-PULLEY
Y | | B— ]
g | N
7 i L 7 ‘ -COIL SPRING
7 o »4 9'882‘5) m 7 Nﬁ/@/
; sooR g3 | BEARING 3 €
| | e | 2 PEDESTAL o 3
g e | y / 3 ¢ 9 o
= ! 7 T ‘N z g §
| “ iy Z0O °
] < o S S =
b ] ool o
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< h o
18 9 | =Rl
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N
FI1G. 1.10. Experimental apparatus F1G. 1.11. Experimental apparatus (Experi-

(Experiment I). ment II, 11T and IV).
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Fig. 1.11, the vertical shaft of length /=
401.3 mm with unequal stiffness is supported
by ball bearings only at the upper shaft
end and the unsymmetrical rotor with 75<
1, 4=0.1207 (Experiment II), or 4=0.1744
(Experiment III), or 4=0.0903 (Experiment
IV) is mounted at the free lower shaft end.
In the upper shaft end the shaft are sup-
ported by two ball bearings equiped at a
distance of /,=36.0 mm. Ball bearings used
in Experiments I, II, III and IV are the
type of self-aligning double-row ball bearing
with 10 ¢ bore of #1200. All spring con-
stants in Table 1.1 are calculated by beam
theory.

1.5.2. Forced vibrations and static
unstable region

In Fig. 1.13 the response curves of
Experiment I in the neighborhood of the FIG. 1.12. Optical method of ex-
lower major critical speed we are shown periments.

TABLE 1.1. Dimensions of Experimental Apparatus

| Experiment I | Experiment II | Experiment III | Experiment IV

My kg 10.433 11.894 13.681 12.179
Ip kg cm s? 2.1790 0.4300 0.5512 0.3725
I kg cm s? 1.0935 0.5276 0.6072 0.4943
ar kg cm s? 0.3325 0.0637 0.1059 0.0446
a kg/cm 3.3617 % 102 0.2659 x 102 0.2659 x 102 0.2659 x 102
—7  kg/rad 3.5773x 103 0.5456 x 108 0.5456 x 103 0.5456 x 103
8 kg cm/rad | 6.2036x 10 1.4993 % 104 1.4993 x 10¢ 1.4993 x 10*
Ao kg/cm 0.1945 x 102 0.0274 x 102 0.0274 % 102 0.0274 102
—4r  kg/rad 0.1838 x 108 0.0480 x 108 0.0480 % 108 0.0480 > 103
48 kg cm/rad|  0.4258 x 10 0.1169 x 10* 0.1169 % 10* 0.1169 x 10*
~a/M-  rpm 16497.0 446.9 416.9 441.9
NI/M  cm 10.135 6.593 6.595 6.307

iv 1.9927 0.8150 0.9079 0.7536

3 1.7966 12.9729 12.9665 14.1786

-7 1.0499 3.1123 3.1108 3.2525

4 0.3041 0.1207 0.1744 0.0903

du 0.0579 0.1032 0.1032 0.1032

fe 0.0514 0.0880 0.0880 0.0880

Aoz ‘ 0.0686 0.0780 0.0780 3 0.0780
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FIG. 1.13. Response curves at wez (Experiment I).
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in case of ¢=0° and ¢=90° by the symbol O and @ respectively. In case of (=
0° the width of unstable region 2]|&| is 1382 rpm—1146 rpm =236 rpm, and there
is no unstable region in case of ¢=90°. The width 2|&| near we obtained by
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Experiments I, II, III and IV are plotted against the orientation ¢ in Figs. 1.14
(a), (b), (¢) and (d) where the approximate results through Eq. (1.38 a) and the
experimental results are shown by full line curves and symbols O severally; the
calculated results when 4=0, 4;;=0 and 4=0, 4;;=0 of Experiments I, I, III and
IV are added by chain and broken lines separately. It is seen from Eg. (1.38a)
that in Experiment I the widths 2{&| when ¢=0° and ¢=90° are approximately
equal to 197.3 rpm and 4.6 rpm respectively. Since in Experiment II, IIIl and IV
0z, 0y are smaller than x, y in the neighborhood of we, the effect of inertia
asymmetry 4 induced by the motions of 6 0y is also smaller than that of stif-
fness asymmetry d4;;, and hence the broken line of case 4=0, 4;;=0 locates
remarkably lower than the chain line of case 4=0, 4;;=0, and further the sim-
ultaneous effect of 4 and 4;; becomes somewhat small as shown in Figs. 1. 14 (b),
(¢) and (d). Through Experiments I, II, III and IV, QR takes positive value in
the neighborhood of the lower major critical speed wes.

Figs. 1.15 (a), (b) show the four natural frequencies puw, Pz, D0 and P« of
free vibration w=0, against the orientation ¢ with experimental and analytical
results which are denoted by O © @ @ and full-line curves, respectively. The
difference between two natural frequencies pz, pso and the difference between
b, Do increase with ¢ and take maximum values at ¢=90°. This fact is in
contrary to the width of the unstable region at major critical speed wc where
QR>0, ie for case of r=0 or case of the flat uniform shaft (4ij=4s).

~--= exact solution
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FIG. 1.15. puo, pio—{ diagrams.

1.5.3. Free vibrations and dynamic unstable region

Though the dynamic unstable region does not appear in Experiment I because
of {,=2%*, in Experiment II, III, IV there are unstable regions near w=wq=1216
rpm, 1205 rpm, 1190 rpm respectively.
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In Experiment II, IV for various values of ¢ experimental and analytical
results of the negative damping coeflicient m are denoted by @ and full-line
curves in Figs. 1,16, 1,17, respectively. The actual unstable regions come slightly
lower than the analytical values because a massless shaft was assumed. There-
fore, the latter is shifted to the lower side by 10 rpm (II), by 37 rpm (IV) in
Figs. 1.16, 1,17, respectively. The magnitudes of s and 2|%| increase with the
orientation ¢. Inserting the dimensionless quantities of Experiment IV (i5=0.7536,
0=14.1786, 7= —3.2525, 411=0.1032, 412=0.0880, 42.=0.0780, wq =2.7771, p1=5.0103, p.=
0.5438) into Eq. (1.41), it wil be seen that the negative sign corresponding to
¢=0° must be taken because it provides the positive value of 4. Although Eq.
(1.41) provides the value 4=0.0887, which is slightly different from the actual
value 4=0.0903 of the experimental apparatus used, inevitable damping forces?!®
existing in the apparatus entirely remove unstable vibrations near the rotating

speed wa as shown in Fig. 1.17.
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FIG. 1.16. m—w diagrams for {=5° 30°, 53° and 82° (Experiment II, wa).
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FIG. 1.18. #max, 2|60|—C diagram.

The approximate results of #mm.. and 2|&| through Egs. (1.36 a), (1.38 a)
are shown in Figs. 1.18 (a), (b) and (¢) for Experiments II, IIT and IV where
an appropriate scales are adopted so that the magnitudes of both #,., and 2 |&]|
can coincide each other, because the magnitude of #m.. i in proportion to that
of 2|&]. In Fig. 1,18, the symbols @ and O show the experimental results of

TABLE 1.2. Comparison between Experimental and Analytical Results

| Experiment| Experiment| Experiment Expenme;lt
i I I il /
rom 12288 2238 l 209.5 2214
Static unstable Woz P (1256) (220) (209) (219)
region . . 197.3 28.0 | 24.3 26.7
26| at (~0° rpm (236) (31) (29) (30)
rom 12284 11970 12272
wa p | (1216) (1205) (1190)
Dynamic unstable _ % 207 2.54 1.68
region M at {=90° rad/s | e B A
' 54.1 70.3 419
21&0| at {=90° rpm I (48) l (55) t (44)

Experimental results are shown in ( ).
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Mmax and 2 |%| respectively. Further the approximate analytical results for case
A4=0, 4;;%0 and 4x0, 4;;=0 are added by chain and broken lines severally. In
Experiments II, IIT and 1V, 2% and #mu,.. take their minimum and maximum
values at ¢=0° and ¢=90° separately at ws because QR<0. Comparison between
the analytical and experimental results is shown in Table 1.2 where the values
in ( ) are the experimental results, and 2 |&| at o is the value at {=0° where
it becomes maximum, and Mma.x, 2% | at wa is the value at ¢=90° where it takes
maximum value.

1.6. Conclusions

Obtained conclusions may be summed up as follows:

(1) In damped systems as well as in systems without damping, the approxi-
mate analytical values of the width of unstable region 2|&|, the negative damping
coeflicient m of the unstable vibrations agree well with their exact values.

(2) The values of 2{%| and #m.. of unstable vibrations appearing at both
we and wq are proportional to the magnitude of {Tw} =vyQ*+R*+2QFR cos2¢ and
the sign of QR becomes positive or negative according to dimensions of the ap-
paratus and whether w=wc or wa. If QR>0, ¢, takes its maximum and minimum
values at ¢=0° and ¢=90° respectively, vice versa if QR<0. Incidentally for
case of r=0 or case of the flat shaft having 4i;=4s, QR at w. is always positive.

(3) By means of an appropriate combination of 4 and 4i; so that |Q|=|R|
and cos2¢=—QR/|QR|, ¢: becomes equal to zero, and hence the unstable vibra-
tions at wc are removed perfectly and they at ws can almost vanish even though
there is the term of ¢a.

(4) Even when the static unstable region at w. vanishes by large enough
damping and the steady forced vibrations take place, the orientation ¢ has large
effect on the response curves of the forced vibrations. This effect is similar to
that on unstable region when ci=c=0.

(5) The difference between two natural frequencies pz, P, and the difference
between pun, Pn of free vibration when w=0, increase with ¢ and take maximum
values at ¢=90°. This fact is in contrary to the width of the unstable region
at major critical speed wc, for case of =0 or case of the flat uniform shaft
(Aij”——-*ds).

(6) The results of the analysis thus obtained were verified by four series of
experiment and elimination of the unstable regions at both w: and ws was
demonstrated.

Chapter 2. On Elimination of the Unstable Regions in a Rotating
Shaft System Carrying an Unsymmetrical Rotor?

2.1. Introduction

When an elastic shaft carrying an unsymmetrical rotor with unequal diametral
moments of inertia [, and L (I;>I) is supported at its both shaft ends by rigid
pedestals, the system can be treated as a four-degree-of-freedom one.

In this chapter, the authors have verified analytically and experimentally
that increase of degree-of-freedom of the system is effective for elimination of
static unstable regions!®® and dynamic unstable regions®, There are two
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theoretical methods for increasing the degree-of-freedom for the system. One is
adoption of a flexible pedestal and the other is putting a mass on the shaft at
the appropriate position. In this chapter the former method is mainly treated,
and several series of experiments are carried out and are compared with the
analytical results which give good agreement with the experimental results.

2.2. Equations of motion

The shaft carrying an unsymmetrical rotor with mass M is supported by a
rigid pedestal B and a flexible pedestal A as shown in Fig. 2.1 (a). It is assumed
that there is no unbalance in the rotor; it follows there from that the center of
the rotor coincides with the center of gravity G. Points o and 0. are the
equilibrium positions of the center of the rotor and the center of the equivalent
mass M, of the flexible bearing pedestal A, respectively, and o-xyz and o¢-xeyaz
are coordinate systems of the points G and G, severally, G-X,Y»Z: is the coordinate
system of the point G consisting of the principal moments of inertia of the rotor.
The directions of plus sign of the deflection » and the inclination angle 4 are as
shown in Fig. 2.1 (a). The vibratory system considered here is a massless,
uniform elastic shaft carrying an unsymmetrical rotor and supported by a
flexible pedestal having mass M,. Influence number of the shaft system ai;(=aji)
is introduced as follows:

X Y Qi Oy Py, P,
Or, 0y =\ an an as My, — Mgy (2.1)
Xay Ya Q3 Az Asg Pz, Pyy

where P:, Py: Components of inertia force of the rotor in x and y directions
Mz, Mey: Components of moment M, in x and y directions
Pax, Pay: Components of inertia force P, caused by the concentrated mass
Mg in xa, yq directions.

z
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Vv - A Dl

(a) ()
FIG. 2.1. Shaft system with a rotor and a mass.
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The inertia forces arising at the points G and G« are as follows:
Px'—_-"‘Mﬁ.é, Pyz""Mj;, Pax:'-“"Ma’k‘a, Pay:‘;Ma;‘}sa. (22)

The torsional vibrations of the shaft, the magnitudes of which are smaller than
0% and 6%, are neglected, and accordingly the rotating speed » of the shaft is
constant. Neglecting the powers higher than 6% and 65, the inertia moments
about G are given by using Euler’s equations of motion;

My = — Iz~ Ipwly,+ 4I- % (f,cos2wt+0ysin2 wt)
(2.3)

~ M= —Ily+Ipwlbe+ 4l 7% G,sin2 ot — 5 cos 2 wt)
Substituting Eq. (2.2) and (2.3) into Eq. (2.1), equations of motion of an un-
symmetrical rotor are derived. In these equations, when the influence numbers
@13, azs, as tend to zero, (or the mass of pedestal M. tends to infinity), they
coincide with equations of motion of a rotating shaft system carring an unsy-

mmetrical rotor supported at both shaft ends by rigid pedestals!®.

2.3. Unstable regions in the neighborhood of the major critical speed

Existence of gyroscopic moment of the rotor results in whirling motion of
the shaft, and there are two natural frequencies p and 7=2 w—p for each degree
of freedom, because of unsymmetrical rotor. Accodingly free vibrations should
take the form!®

COS~, Xa

COSﬁf—}-F p COS —

cos cos, Ox_ ; :E pzf»LF?a pt (2.4)
) a

-E ﬁt-&-E o Pt

Sub_s;titutiﬁg Eq. (2. 4) into Egs. (2.1), (2.2) and (2.3), and eliminating amplitudes
E, E, F, F, E; and E,, the following frequency equation is derived:

1— Mp*an 0 —(Ip* = yop)ay,  — (4D ppas. — Map ars 0
0 1-MP'an — (4D phar = (IP = IpwD) an 0 — MaP as:
. — Mp*ay, 0 1= (Ip* =~ Ipwp) @y, — (A1) pPas — Map as 0
0 —MPan. - (4D ppax 1= (IP —Ip0p) axn 0 — M7 azs
—~ Mptass 0 — (Ip*~ Ipwp) @z — (4D pPaz 1~ Map'ass 0
0 —MP'ayy, — (4D pPax — (IP* = IpoD) ax 0 1— MqP as
=0 (2.5

Expanding Eq. (2.5) and using Laplacian expanding theorem, Eq. (2.5) reduces
to

0 =ff — (4D)’p*Pgg =0 (2.6)
where
1~ Mpray —(Ip*—Ilpop)a. —Map'as
F=Ap)=| —Mp'a, 1—(Ip°—Ipwop)an — Mapax
—Mpray — (I —Tpwp)asx 11— Map'as
= —pUp—1Ip0)g-+nh (2.62)
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A Q12 Qs

4 Qi azz‘ Az Qa3 N
g=g(p) =MMa| @z @ ax p—M + M, P +an (2.6Db)
a1z Qo 1 Qo3 Qs
Qi3 Qez  Qss
an s .
}l=h(ﬁ) =MMa p ol (Mdn‘i‘Mndsg)P +1 (26 c)
Qi3 Qg
F=7p)=fp), g=9(B), i=h(D (2.6d)

Putting 47=0, natural frequencies of the system p; (i=1~86) carrying a sym-
metrical rotor are obtained from Eq. (2.6), and the following relation between
natural frequencies p; can always hold: 1> > ps>0> pi>ps> pe. Dynamically
unstable vibrations arise at the rotating speed was of the cross points of p—ow
curves on the p—o diagram, ie., at the rotating speed where the relation pi=p;
is satisfied, and amplitudes of two vibrations of p; and p; build up exponentially
as reported already®,

At the major critical speed, the relation w=p;=wc holds, and the major
critical speed wci is separated into weii and weiz because of the existence of 4l,
and in the region of weir<w<weiz the so-called “static unstable vibration” takes
place. As observed from the rotating coordinate system with w, the amplitude
becomes larger in the form of ¢™, so it is named static unstable vibration, but
the circumstance is not the same as in case of recti-linear vibratory system
with negative restoring force. Putting p=%=w in Eq. (2.5), the frequency
equation becomes as follows: ‘

D=0,-0,=0 (2.5a)
where
l=Mo'aw —Uxdl—1p)o’a, — Meotas
0, = —Mo'a, 1-UxdI—Ip) o*an — Maolay |=0 (2.5b)
— Mo*ars — (I Al —Ip) 0*aps 1 — Maw’ass

and wci1 is derived from the plus sign of =47 in Eq. (2.5b), i.e, 01=0, and wei»
is given from the minus sign, i.e, @ =0.

At the major critical speeds we, when 47/=0 in Eq. (2.5b), the relation
we1>we:>wes holds, and when 47+0, the unstable regions are classified® into the
following three cases (a), (b) and (c), because the relation Ii+5L=I=L—1>0
holds:

(a) When I,=I>I., there are two static unstable regions [wesi, wew] and

[wcn, a)czz].

(b) When L >L>1s, there are three static unstable regions [wes, weszl, [wen,

wezz] and [wen, ezl

(c) When I1>1,=1,, there are three static unstable regions [wesi, wesel, [wear,

a)czz] and [cocu, 00].

The amplitude of deflection is always larger than that of inclination angle
in the unstable regions [wesi, wes2] and [wez, wez], and the deflected shaft whirls
at the same angular velocity as the rotating speed o of the shaft. In the unstable
region [wea, we], the deflections at the points G and Ga, i.e., the centers of
gravity of mass of the rotor and the concentrated mass of the flexible pedestals.
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take the same phase, but in the unstable region [we, wc2], they take the opposite
phase.  In these vibratory modes, the inclination angle # and the amplitude F
can vanish by use of a pedestal having suitable mass and flexibility. Thus the
unstable regions can be eliminated by omitting the dynamical effect of asymmetry
4 which is induced by inclination angles 6x, 0y. Putting F=0 in Eq. (2.4), we
have

_EJ:_ o Male - 1—Mw2a11 - szalg (2 7)
E Maazs =~ Maotas 1— Maw*ass '
The concentrated mass of pedestal M, is given from Eq. (2.7) as follows:
yMa — a11(412a23\‘ - d%z [48) 2. 8)

M (@12023) @35 — s a§3

which shows that M, is defined by the known influence numbers of the system
aij. ‘The unstable region at the major critical speed vanishes only by adopting
the value of M, from Eq. (2.8) and the speed wc is obtained by Eq. (2.7) as
follows:

coi—“—{M((:m—fl-‘g;‘—?’—)}—l (2.9)

From Eq. (2.5b) the amplitude ratio Eq/E is derived as follows:

Ea _ 01585~ 02ds5 (2.10)

E 11 Aoz — Q12 13
Since in the influence numbers of the system shown in Table 2.1, the relations
an>0, @3>0 and a:>0 hold, and they result in M.>0, we>>0 and Eq¢/E>0 from
Eq. (2.8), (2.9) hnd (2.7), respectively, the width of the unstable region [we:,
wesel, 1.6., dwes=wesz— wen in the neighborhood of wes can be always eliminated when
aiz/as<0. On the other hand, at wc where the relation ai/a:s>0 holds and the
phases of G and Gq are opposite, there is a possibility of elimination of the
unstable region, i.e, dwe=0, but this possibility is restricted because signs of Mq
and o: in Egs. (2.8) and (2.9) can not always become positive. As shown in
Fig. 2.1 (a), there are the inertia force P=Mrw® at the center of gravity G of
the rotor, the inertia force Pu=Marqw® at the center of gravity Gq of the concen-
trated mass of the flexible pedestal and the gyroscopic moment M= ([= 4—1p)0*
about the point G, and hence the deflection curve of the shaft under these forces
and moment give the mode of vibration at the major critical speed. When the
relation Mae=P,=0 holds, the inclination angle # at the point G is not equal to
zero, while when Me=0 in Eq. (2.7), the inertia force P, at the point G, grows,
and the tangent of the deflection curve at G can become parallel to oz, hence,
the moment M; can vanish. From this it follows that there is no influence of
asymmetry 4I. It can be seen that the dynamical effect of the mass of the
pedestal is not the same as that of the dynamic absorber in recti-linear vibrations,
as above mentioned. In case of recti-linear vibration, the external force is canceled
by the added mass of the absorber at the resonance. On the other hand, the
force induced by the pedestal mass M. has effect upon the elimination of the
unstable region due to the asymmetry 4I of the rotor, and it has no effect on
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eliminating the external force.

In the rotating system carring an unsymmetrical rotor supported by a flexible
pedestal, the unstable region [weai, wei2] in the neighborhood of the major critical
speed wa where pi=w, can not be removed, because of inevitable presence of
inclinational vibration. In the flat shaft system, it is impossible to eliminate the
unstable regions at wc as well as wa, because there is always effect ¢f unsym-
metrical shaft stiffness, unless E=F=FE;=0.

For the system of additional mass on the shaft Pas, Pay, % and y. should
be replaced by Psy, Psy, s and ys in Eq. (2.1); M. by M in Eq. (2.2); and Ea
by Es in Eq. (2.4). From the condition F=0, ie., the condition that the rotor
does not incline, Ms/M, oc and Es/E can be obtained from Eq. (2.8), (2.9) and
(2.10), respectively. It is noticeable that the influence number a;; has to be
recalculated from Eq. (2.1) for each shaft system.

2.3.1. Free-free supported systems supported by a rigid pedestal B and a flexible
pedestal A
In a shaft system with uniform cross section freely supported at both shaft
ends, the spring constants of the shaft are defined by Eq. (1.4) in Fig. 2.1 (a),
and they are given as follows:

a’ —ab+ b a—b
a=3 lE]o***“&g‘b‘g“‘*‘y T = 31E[0 *avz—?)*z* [

. 0 (2.11)
8 =3IEL—5, ka=3(ED4I J

where E is Young’s modulus of elasticity, I, is moment of inertia of the area
of cross section of shaft, k. is spring constant of the flexible pedestal A. Using
Eq. (2.11) influence numbers a;; are as follows:

gh= 0 b =r b b
U ag -7t 1%ka’ S e IPka’ "B kg
(2.12)
Qoo = __—a_‘ + _L a93 — — asg = ..41;“
T ad-1? *he’ 7 lka’ * " ka

Observing Egs. (2.8) and (2.12) it is seen that M, is given as a function of a,
7, 0 and kea.

As is seen from Egs. (2.11) and (2.12), the relations ad—7*>0 and a@:<0
always hold; hence whenever a:;:>>0 holds, i.e., whenever P>0 and §>0 holds, the
unstable region [wes, wes2] can be eliminated completely. In order that a@i>0
can hold, the following two inequalities must be satisfied, as is seen from Egs.
(2.11) and (2.12):

a<blie., v<0), and ko=~ (ad— )b/ (+1*) >0 (2.13)

Inserting Eq. (2.12) into Egs. (2.8) and (2.9), the following three equations are
derived from the condition for dwes=0.

Mo _ (38— vybka+ (ad — ¥V 0/ (71D}

= (o179 (2.8a)
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(0:5~72)<Ma)_ (ad =790

(6—70) VM 71?
ad — 7

M5—1b)

(2.8Db)

(2.9a)

Whenever Eq. (2.13) holds, the unstable region at we can always be eliminated,
.e.,, dwes=0 holds, because the signs of Mg, ie., Eq. (2.8 a), and ke, i.e., Eq. (2.8b)
are always positive. On the other hand, when a>? (i.e., r>0), 212<0 is obtained
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(b) Ma—wes (i=2, 3) diagram
(we31)w0=1523.9 rpm, (wesz)o=1736.0 rpm, Dimensions of the
shaft system are shown in Eq. (2.20).

FI1G. 2.2. Boundaries of unstable region between wei1 and wein
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from Egq. (2.12), and the unstable region [wez, wee] can be eliminated, while in
order to remove the unstable region [wes:, wes], the rigid pedestal B and the
flexible one A must be exchanged for each other, i.e., a<b.

Fig. 2.2 (a), (b) show the relation between ks/a and the major critical speeds
wei with a parameter Me/M, and the relation between Mq/M and the major
critical speeds wei with a parameter kq/a. Since the rotor with the relation
Ip>L>1 is used in our experiments, there are two unstable regions [wes, wes]
and [wez, we]. At the rotating speed we=622.4 rpm which is shown by vertical
chain line in Fig. 2.2, and the value of which is given by Eq. (2.9a), the width
of unstable region dwe: becomes equal to zero. The hatched ranges in Fig. 2.2
(a), (b) show the unstable regions for cases of Mas/M=1, ko/a=1,respectively.
In Fig. 2.2 (a), when kqg— oo, the unstable region [wesi, wes] tends to the unstable
region [wes, wesnl- of the shaft system supported by rigid pedestals at both shaft
ends. In case of somewhat large value of Ms/M, decrease of magnitude of kq
results in reduction of the unstable region [wesi, wes2] appearing at the lower
rotating speed, and further in a shift of the higher unstable region [wcz, wes]
to the lower rotating speed. Accordingly in order to have no unstable region
throughout certain range of rotating speeds, it is necessary to adopt a somewhat
small value of Ma/M. Even in the extreme case of M,=0, it is effective to
eliminate the unstable region where kq/a is small. For case of 212<0, i.e., ke/a<
0.06701 from Eq. (2.12), there is no value of M. in (2.8 a) realizing dwcs=0,
because M.<0, i.e., because the ws curves do not intersect with the vertical
chain line w=w, in Fig. 2.2 (b). The
width of unstable regions, however,

becomes nearly equal to zero as easily E CWalem 22T pm |

seen from Fig. 2.2 (b). In Fig. 2.2, . F sWea=200rm /
the width of the unstable region at 3 *‘

the rotating speed o = Vke/M,, which 3]0 g o

is nearly equal to the major critical g - 0

speed, is extremely narrow. It shows & f

that only the vibration of flexible f e ) &N
pedestal A takes place. The major g i;c/ / IE%A(Z‘“’)
critical speed at wcs where the phase & T T G Ea 0 L

of G is the same as that of G4, comes il Sm— SR RN,
close to w=vVka/Ma as ke tends to a —2 [°5:ffsh
zero or M, tends to infinity, and the o :3”]“ L
major critical speed we of the same 1072 10" 1 10 102

phase (Of wes out of phase), comes equivalent mass of pedestal M/M

close to the unstable region [wes, FIG. 2.3. The relation between ke and

wesrle Of the rigid pedestal as k. tends
to infinity (or Mg tends to infinity).
The relation between ks and Ma

My with a parameter dwes= wesz— wes1 =const.
(Dimensions of the shaft system are the
same as Eq. (2.20)).

when dwe = wes2 — wesy = constant  is

shown in Fig. 2.3. There is a linear relation ko/a =0.07857 (Me/M)+-0.06701 which
is derived from Eq. (2.8 b), i.e., from the condition dwes=0. A larger value of
ke gives a larger width of dwes, and dwcs comes close to (dwes)»=212.1 rpm as
ks tends to infinity. Curves lying under the curve dwe=0 furnish the narrow
width of unstable regions shown in the left side of vertical chain line shown in
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Fig. 2.2 (a), (b).

2.3.2. A rotating shaft system having a concentrated mass and free-free supported
by rigid pedestals at both shaft ends

When, on the uniform elastic shaft supported by rigid pedestals A and B at
both shaft ends, the mass M is mounted at the point S separated by the distance
s from the pedestal B, M., Eq in Egs. (2.7), (2.8) and (2.10) must be exchanged
by Ms, Es, respectively. It is assumed that the system considered here is a
vertical shaft carrying an unsymmetrical rotor at the lower point from its mid-
point, .. a<b. For the case of a>b the relative position must be reversed.
There are two cases of s>b and s<b.

In the former case of s>5, the influence number ai; of Eq. (2.1) is given as
follows from beam theory:

e 0 _ ab gy = =T _ ablo—a)

" oad—1* T BIEL’ "7 «d—7" T 3IED

g U=8)2is—5-0") o« _ d-—ab+?

W 6 [El ’ ®= ad—7% 3I{EL
U205~ —38) _ Sf—s)

Gos = = 6 [EL S A Vi (2.14)

It is seen from Eq. (2.14) that the relation >0 always holds, and accordingly
the following two conditions between b and s should be satisfied simultaneously
in order that the relation dwe:=0 can hold:

N3 >b>1/2, 1>s>1—P=30 (2.15)

which are derived from the condition a<0 in Eq. (2.14). If Eq. (2.15) is
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FI1G. 2.4. Ranges of b and s for elimination of unstable region
at wes by added mass (in case of uniform shaft section).
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satisfied, we have the relation [~ vI2—3 52> b, from which the preliminary relation
s>b is derived.

In the case of s<b, au, an, ax and ax are the same as those in the case of
s>b as is seen in Eq. (2.14), and a3, a2 are as follows:

as(2ab+0"—s" s = s{2a(b—a) + (B* =)

s = 61ET ) G = 61E (2.16)

Since the relation a:s>0 in Eq. (2.16) always holds, the condition dwe=0 can
not be realized. Consequently it can be concluded that the condition of elimina-
tion of unstable region, ie. dwes=0 is Eq. (2.15) (cf. No. 5 in Fig. 2.4).

2.8.3. In the case of other supported conditions of rotating shaft system

When a flexible pedestal and a rigid pedestal are used at each end of the
shaft, there are four cases of No. 1~No. 4 shown in Table 2.1. In the case of
No. 1 the influence number a;; is represented in rather simple form as a function
of spring constants of the shaft and spring constant of pedestal k,. The problem
in the systems having fixed support is not treated in this paper, because ai; of
such a system contains bending stiffnesses (ED), (El)e, and lqs, @ and b, and
should be expressed in complicated form.

There are three cases of No. 5, 6 and 7, when the additional mass M is used,
as shown in Table 2.1. In the case of uniform shaft, @;; of the case No. 5 is
given by Egs. (2.14) and (2. 16), and in order to eliminate the unstable region of the
lower rotating speed side of the major critical speeds, the locations of the rotor

TABLE 2.1. Various Cases of Support Condition.

No. Type Note

} A cf. section
2 Bg b Q a EC 2.3.1
'% 2 3 D O:E 233
;_?5 / n .
3|3 b {—= 233
=2 4 f‘L B E:E 233
- S
: /5 B 5 © A 232
é 6 é-—-———U—Q—E 233

é—f‘ree support %———~ Fixed support
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and the additional mass, i.e., b and s should satisfy the condition (2.15). Ranges
of b and s satisfying the condition Eq. (2.15) are shown in shaded zones in Fig.
2.4 (No. 5). For the case of [/2>5>0 which is not treated in Eq. (2.15), such
zones are located in symmetrical positions with the point of symmetry s=6=//2.

Similar procedure leads to the conclusions that, in the case of No. 6 in Table
2.1, the conditions of dwc=0 are

U3 >b> (W2 -1
(2.17)
[>s>280/ 0" —b)
for s>b, and
W2 -=DI>p>1/3
- (2.18)
INBb=0)]U+b)>s>0

for s<b. In Fig. 2.4 (No. 6), the values of b and
s in shaded zones satisfy the above conditions.

In case of No. 7, the following relations are
derived:

21/3>b>1/2, 1>s>bl{{2(U—-5b)} (2.19)

and b and s satisfying Eq. (2.19) lie also in the
shaded zones of Fig. 2.4 (No. 7).

2.4. Experimental apparatus and experimental
results

Experimental apparatus is shown in Fig. 2.5.
The vertical shaft S of diameter d=11.60 mm, is
supported at its upper and lower ends by self-
aligning double-row ball bearings with 10 ¢ bore
(#1200). The rigid pedestals are shown by B and
C. By changing the length /. of the flexible pedestal
A which is chucked on the rigid pedestal C, the
flexibility of pedestal can be varied. And by
changing the magnitude of attached weight of the
flexible pedestal, we can vary the value of Ma.
Motions of the center of gravity G of the rotor,
and the center of gravity G, of the flexible pedestal
are recorded optically in y-direction. The influence
number a;; (in case of No. 1 in Table 2.1) in our experiment is obtained from
Egs. (2.11) and (2.12). Dimensions of our experimental apparatus are as follows:

Fi1G. 2.5. Experimental
apparatus (in case of the
system supported by a flexi-
ble pedestal).

I»=2.390 kg cm &, [, =1.590 kg cm &, I, =0.815 kg cm &, .
My =9.746 kg, a=10.19 cm, b=40.36 cm, d =1.160 cm l
d,=1.80 cm, a =5.377 x 10° kg/cm, 1= —5049x 10° kg/rad, J
8 =6.882x 10" kg cm/rad.

(2.20)

Spring constants of the shaft «, v and § are derived from Eq. (2,11) for the
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value E=2.1x10° kg/cm? The value of k. is directly measured. The value of
M. is derived from the natural frequency of the flexible pedestal A obtained
experimentally. The unsymmetrical rotor with Ip>I;>I. is used in our experi-
ments, and hence there are two unstable regions [wes;, wen] and [wea, wesl
For elimination of the region [wes, wes], the flexible pedestal A which has Ma
satisfying Eq. (2.8a) or k. satisfying Eq. (2.8 b) must be used.

Several series of response curves in the neighborhood of the major critical
speed wes are shown in Fig. 2.6, where the rotor is supported with two rigid
pedestals at both ends in Experiment I, and in Expriment II-a, b, c, the flexible
pedestal A having several values of k. is used. Throughout Experiments Il-a,
b, ¢, weight M. has nearly the same magnitude. On the other hand, in Experi-
ments IIl-a, b, ¢, response curves of which are shown in Fig. 2.7, ke is common
and M, takes several values.

As shown in Fig. 2.6, in Experiment I the unstable region near the major
critical speed wes is the rotating speed range of 1518~1697 rpm, hence (dwes)w=
179 rpm. When the flexible pedestal having suitable values of 2, and Ma is
adopted, the unstable region appearing in the neighborhood of the major critical
speed is removed, and the locations of the major critical speeds move to the
considerably lower rotating speed side, as shown in Experiment II-a, b and Ex-
periments III-a, b of Figs. 2.6, 2.7.

Although in these figures, only the response curves near the major critical
speed wes are shown, there is another major critical speed we. at a fairly higher
rotating speed side shown in Table 2.2, because of M./M=125. Further, ex-
periments are performed in the range of the rotating speed ©=170~1850 rpm;
no vibration, however, takes place, except for we. The relations between ke
and M. of Experiments II, III are shown in Fig. 2.3 by symbols O and @. The
former OO means that the unstable region exists, and the latter @ shows that
the unstable region can be eliminated. It is seen from Fig. 2.3 that the unstable
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Dimensions of the shaft system are the same as Eq. (2.20).

FIG. 2.6. Response curves and unstable regions at wes (Experiment I, II)
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FIG. 2.7. Response curves and unstable region at wes (Experiment III).

TABLE 2.2. Comparison between Experimental and Analytical Results of
Static Unstable Regions (Experiment I, II, III)

I
! I I
Experiment 1 ‘ - . -
{ a % b i [ a b c
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regions are eliminated by using M. and k. furnished by the point near the curve
Eq. (2.8b) and as the point deviates far from the curve, the width of the
unstable region increases, and finally it tends to (dwes) ».

The calculated values of the major critical speeds wesi, wes, wesz, wez, wez and
wez from Eq. (2.5 b), and the amplitude ratios (Ea/E)wmey, (Fa/E)we and (Ea/E)we,
derived from the ratio of cofactors Ais/An of the determinant (2.5b) are shown
in Table 2.2. The experimental results are shown in brackets, and they have
good agreement with the analytical results.

2.5. Elimination of dynamic unstable vibration

Generally speaking, when the number n of degrees of freedom (#=4 in this
paper) increases by 2, one static unstable region and (%/2) dynamic unstable
regions appear additionally. The relations between the natural frequency p;, i
and the rotating speed of the shaft w of unsymmetrical rotor with I,>IL>1, are
shown in Fig. 2.8 in which the shaft systems are the same as those used in
Experiment I in Fig. 2.6 and IIl-c in Fig. 2.7 except for the rotor. In Fig. 2.8 (a)
and (b), p—o diagrams of the case of the rigid pedestal (Experiment I') and of
the case of the flexible one (Experiment III'-c) are shown respectively. Natural
frequency p: (i.e. roots of f=0) of the symmetrical rotor (with 4/=0) and Z:=
2w—pi (i.e roots of f£=0) are shown by full and broken lines respectively, and
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ka=00, Mag=0 ka=88.90 kg/cm, Maug=1.40 kg
(a) Rigid pedestal used, Experiment I’ (b) Flexible pedestal used, Experiment III'-c

Ip=0.3725 kg cm s? [1=05314 kg cm 8% I>=04572 kg cm s? Myg=11.668 kg,
~a/M=2030.4 rpm. Other dimensions are the same as Eq. (2.20).

FI1G. 2.8. f=0, f~—-0 diagram expressed in dimensionless quantities (1.12),
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the straight lines p=xpg (roots of ¢=0) and p=xpg=2wFpg (roots of g=0)
are-shown by.fine lines. Real roots of Eq. (2.6) can exist only in unhatched
regions where the sign of ff is the same as that of gg as shown in Fig. 2.8.
When the unsymmetrical rotor is used, in the neighborhood of intersecting points
Ci,2,2, D2z, Gis and Hi,» of curves f=0 and f =0 shown by symbol (O, there
are unstable regions where the root p,  can not be shown by a curve because
it becomes a complex number®® in these ranges of w as shown in Fig. 2.8(b.1).
Meanwhile, in the neighborhood of the points A.s Ei,s and Fi,s shown by the
symbol @, there are no unstable regions where the root becomes a real as shown
in Fig. 2.8 (b. 2). It is verified, generally speaking, that ¢g=0 in Eq. (2.6 b) [or
h=0 in Eq. (2.6¢c)] has two positive roots p and pi: (or pi and ph.). And
further the following relation holds:

DiZDPaZpe P P23 P 0> pu> — pga2ps > — Py = ps (2.21)

because the roots of f=0, ie. pi, p., ps, ps, ps and ps tend to Ipw/l, pei, per, O,
—pg: and —pg1, respectively, as o tends to co. Denoting the ultimate value of pi
(i=2~5) when the rigidity 4. of the pedestal tends to « as (p;)., we have the
relation

D (D) 0> (D) TP > 0> 0> (P e > D5 (D) 0 > Ds (2.22)

and hence the following relations are derived from the relations (2.21) and (2.22).

We1 P Op > Wg > Wer > Wd > Wea } (2.23)

wey > (wcz)co > we2 > (wcs)w > w3

As is seen from Eq. (2.62a) the common root p* which is independent of o is
also the root of f=0, provided that either of two positive roots p? of two quad-
ratic equations ¢g=0 and ~2=0, which is independent of w, is a common root.
Accordingly the relation g=0 holds at the intersecting point of =0 and f =0,
and hence no unstable region arises in spite of 47=0.

2.5.1. Case of two common roots

When both two positive roots p? of equations ¢g=0 and 4=0 are common roots,
all ratios between coeflicients of the same order with respect to p in Eq. (2.6 b)
and Eq. (2.6 c¢) become equal. If

Ay = Aoz = 0 (2. 24)

all the other unstable regions vanish except the unstable region in the neighbor-
hood of we.

2.5.2. Case of single common root
When either of two positive roots p* of eqations ¢g=0 and 2=0 is common,
the common root p? is derived from (2.6 b) —aw = (2.6¢)=0 as follows:

> a, _aés_ { iz Uy ay 013'}
» —-<Ma + M)/ dzz}am 5133‘ 6 Qi2 Q23 (2.25)

Inserting the value p* denoted by Eq. (2.25) into Eq. (2.6 ¢), roots of the quadratic
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equation with respect to Ms/M coincide with Eq. (2.8), and substituting Eq.
(2.8) into Eq. (2.25), p? coincides with Eq. (2.9) and the amplitude ratio E</E
coincides with Eq. (2.10), and also F/E=0 yields easily.

In case that the relation ai/a:s<0 (ie., Eq/E>0) holds, the unstable regions
in the neighborhood of the rotating speeds wes, wa and wg which are the cross
points of the two straight lines ps=pg: and ps= — pg. and the curves Ps 2,1 can be
eliminated completely, provided that the value Ma/M calculated from Eq. (2.8)
is adopted. And in case that the relation an/a:x>0 (ie, E¢/E<0) holds, the
value Mq/M calculated from Eq. (2.8) is not always positive. If the value Ma/M
is positive, the unstable regions in the neighborhood of the rotating speeds wq,
wez and wr are eliminated completely, which are the cross points of the two
straight lines pr=pe: and ps= —pg and the curves Psz1.  And further adoption
of suitable values of M. and k. can result in that w. takes place at the adequately
higher rotating speed than (wes)». Accordingly, as shown in Fig. 2.6, the system
is thoroughly stable over the rotating speed range w=0~ (we)o~we. The exact
solutions of the unstable vibrations in the neighborhood of wes, wd, wer, wg, wr
and weq in Experiment III'-a, b, ¢ are shown in Table 2.3. In this experiment,
the value Mq/M derived from Eq. (2.82a) is 1.252.

As the relation Ip=I-+1; holds in our experimental apparatus, only a static
unstable region (we). appears in Experiment I, where the shaft is supported by
rigid pedestals at both shaft ends. In Experiment II and III where degree-of-
freedom increases by two, there are two static unstable regions near the rotating
speeds wes, wez, and also a dynamic unstable region in the neighborhood ws where
the relations we>wd>we and P+ Pi;=2 wg hold, and where two vibrations of
frequency P, P: build up exponentially at the same time?”. In Fig. 2.9 and
2.10, the negative damping coefficient m and the frequency Ps are shown for the
rotating speed of the shaft o, where the positive value m represents the degree
of instability of dynamic unstable vibrations. Experimental results are expressed
by circular marks, and exact solutions derived from @=0, i.e., Eq. (2.6) are shown
by full lines. In Table 2.4 both analytical and experimental results of width
of unstable regions, maximum value of m, i.e., mmsx are given. The analytical
values show good coincidence with the experimental results except for the values
m. Values m obtained from experiments are smaller than calculated ones.
Especially in Experiment II-b, IlI-a and III-b with small values of m, the dynamic
unstable vibrations do not take place in experiments, because of somewhat large
damping effect of a chuck between the flexible pedestal A and the rigid one C.
In Experiments III-a and II-b, conditions for elimination of the width of static
unstable region dwes, f.e., Eq. (2.8a) and Eq. (2.8Db), are nearly satisfied. In these
experiments it is interesting that the dynamic unstable regions 4ws in the nei-
ghborhood of rotating speed wa are eliminated simultaneously.

2.6. Conclusions

Conclusions obtained in this chapter are as follows:

(1) The unstable regions in the neighborhood of the major critical speed
(ves)» supported by rigid pedestals at both shaft ends are almost eliminated or
completely removed by using an appropriate flexible pedestal at one shaft end
side (or by putting an additional mass Ms at the suitable position of the shaft),
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TABLE 2.3. Comparison between Experimental and Analytical Results of
Dynamic Unstable Regions (Experiment I, II, III)
i 5 I
Experiment [ | - -
; s | B e | a b | o
Ma/M 0 | o064 | 0152 | 0.140 | 1252 | 0.677 | 0.144
S S — : ) ! ! !
ko/x ! o \ 0.0205! o.assgf 0.2842{ 0.1655 | 01653 | 0.1653
4 1 .
oa tPm | — { (1198388(;( 2538.2 (%3223%% | 1277.9 | 15526 (255456%
Dynamic | [ 20387 34370 3003.7
Dynamic | om rpm | (2002 | 25439 | (3ay7) | 12779 | 16694 | fheqc)
region | | 104.7} 577 | 108.9 | 0.0003 | 16.83 { 6363
[wa, o] | 490 TP L (114) | (0) | (110) | (0) (0) | (49)
; 1.908 | 0.128 | 3.217 | 00055 | 0.571 | 1.771
| mmax Tad/sec | | (1.08) | (0) | (0.31) | (0) ; (0) | (0.24)

( ): experimental values

TABLE 2.4. Analytical Results of Static and Dynamic
Unstable Regions (Experiment III')

]III
Experiment
a b ; c
Ma/M ; 1.046 0.566 0.120
kafa | 01653 0.1653 0.1653
. wes1 rpm | 5945 664.0 735.7
Stat‘r"e“?;Stable wes rpm | 5946 664.5 738.3
[ gion ] wos2 rpm 594.6 664.9 740.6
We3l, Wos2 Adewes rpm 0.036 0.91 4.82
N wa1 rpm 883.5 1069.3 1256.2
S&ﬁgn;m on | @a2 rpm | 885.8 1083.9 1300.0
un I e%‘ Awa rpm 2.35 14.63 43.79
oa, wa Mmax Tad/SeC 0.106 0.587 1.647
. wen rpm | 12014 1339.0 1685.3
Statfe“ilj;fable wer rpm | 13082 14938 2028.0
[ g ] wen rpm | 1439.0 1701.1 2712.1
We2l, ez Awes rpm 237.6 3621 | 102638
. on rpm | 22055 2455.7 3846.9
poymamic . g rpm | 22080 2466.3 3859.6
u [a © re]g | dwg pm 2.53 10.60 12.68
@ol, Gg2 Mmax Tad/sec 0.166 0.506 0.645
, om rpm | 2709.8 3082.7 5291.1
peoymamic o rpm | 31741 3653.0 6258.9
u : ﬁ dewn rpm | 464.3 570.3 967.5
wh1, Whe Mmax Tad/sec 17.32 20,98 33.32
. wen1 rpm | 4197.8 4585.4 71389
Statfeugjfable wor rpm | 4890.9 5211.0 7500.3
[ g ] weiz rpm | 7116.3 7319.2 8949.2
@ell, Weiz dwa rpm | 29185 2733.8 1810.3

I,=0.3725 kg cm s?, [1=0.5314 kg cm s? I.=04572 kg cm s?, My=
11,668 kg. Other dimensions are the same as Experiment III (Fig. 2.7).
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(2) Dynamic effect of the method mentioned here is different from that of
dynamic absorber used in recti-liner vibratory system: that is, the modification
of mode of vibrations due to the inertia force of the mass of flexible pedestal
or the additional mass on the shaft results in elimination of influence of asym-
metry of the rotor, :
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(3) Although the adoption of the methods mentioned here results in a new
static unstable region because of an increase of two-degree-of-freedom, it can be
expected from adoption of appropriate values of k2, and M. (or Ms) that a new
unstable region appears at a higher rotating speed than (wes)w.

(4) The method mentioned here is useful for elimination of the unstable
regions in the neighborhood wes, ws and wg (in case ai/a:s<0, i.e., Eq/E>0), or
wez, wa and wn (In case ai/ax>0, i.e, Ea/E<0). But it cannot be applied to the
rotating shaft system with unsymmetrical stiffness.

(5) Experiments using the most popular type of rotating shaft system show
that the experimental results in regard to the position of the major critical speed,
width of unstable region and amplitude ratio between the flexible pedestal and
the rotor agree with the analytical results.

Chapter 3. Unstable Vibrations Induced by Rotationally Unsymmetric
Inertia and Stiffness Properties®

3.1. Imtroduction

It has been already mentioned that there exist two kinds of unstable region
1919 in the system having such a rotor with unsymmetric moment of inertia and
in the system having such a shaft with unequal stiffness in lateral deflection,
and that they are affected remarkably by the combined orientation angle ¢ be-
tween unsymmetrical rotor and flat shaft'®~2,

These two unstable regions are called “static unstable region” and “dynamic
unstable region”, and in the former an unstable vibration grows according as
e™ cos wt, and in the latter it grows according as ¢™ (A cos Pit+ B cos P»t) where
the relation Pi+P.=2 ¢ holds. Mathematically speaking, when a free vibration
observed from the coordinate rotating at an angular velocity o is expressed in
the form of e%, one is statically unstable in the vicinity of w=w. where the
eigenvalue s has a real number m>0, and the other is dynamically unstable near
w=wq where s is a conjugate complex s=m=ip’. By solving the characteristic
equation we can find out the position and width of the unstable domain and the
exact value of m and p’ of the root s, but can not obtain the whole nature of
the unstable vibrations. On the other hand, using the approximate solution!?!3191920
obtained by applying the Taylor’s expansion theorem to the characteristic equation
near the rotating speed we or w4, we can easily obtain the approximate values
of the unstable vibrations. Moreover the obtained values fairly coincide with
the exact values, and therefore this approximate method is satisfactory for pra-
ctical uses. It is important to obtain the quantitative values related to unstable
vibrations, but it is also necessary to elucidate the mechanism introducing energy
into the shaft system and the physical condition that causes self-excited vibra-
tions. This chapter deals with the mechanism of input energy into system and
the physical meaning of the system of flat shaft having an unsymmetrical rotor.

3. 2. Static unstable vibration in the vicinity of the major critical speed

In Fig. 1.1, the terms of higher order than § being neglected, the sum of
kinetic energy 7 of the translation and rotation of an unsymmetrical rotor is
derived from Eq. (1.1), O=¢+¢=wt—r/2 and & =w as follows:



46 Toshio Yamamoto ef al.

2 T= MG+ ) + Ipwp + Loy + Lok
=M+ 0°7*) + Ip(0® — 090°) + 167 + ¢°6°) + 4I{(§°— ¢°6")cos 2 ¢+2 60 sin 2 ¢}

(3.1)
The potential energy V stored in the flat shaft is given as follows:
2V={a+dacos2(g+C+8&}r +2{rcosé+ drcos (2¢+2(+8)}r0
+ {8+ 46 cos2(p+¢)}16° (3.2)

3.2.1. Dynamical equilibrium of force and moment, and torque at the shaft end

Now we consider the statically unstable vibration in which the deflection of
the shaft gradually grows up and the deflection curve whirls at the angular
velocity of ¢ = ¢ = o in the vicinity of the major critical speed w.. As the oG
component of the rate of change of momentum about G is equal to the oG com-
ponent of the restoring force of flat shaft, the following equation holds.

—M¥#+Mo'r—{a-+doccos2(¢p+C+8) r—{rcos &+ drcos(2¢+2C+8) =0
(3.3)

From the dynamic equilibrium of the forces in the direction GT perpendicular
to oG,

—~2Mw? — dasin2(p+C+E)r—{rsing+drsin 2¢+2¢+8) =0 (3.4)

The first term in Eq. (3.4) is called “Coriolis’ force”. Also as the GL component
of the rate of change of angular momentum about G is equal to the GL com-
ponent of the restoring moment of shaft, the following holds.

@I-Ipwl+ 4§+ o®0sin2 ¢ — {rsin & — drsin(2¢+2¢+8)}r
+45sin2(gp+C)f=0 (3.5)

The first term agrees with “Coriolis’ moment” which is the integrated moment
about the axis GL due to the Coriolis’ force over the whole rotor. The GK
component of the rate of change of angular momentum is the same with the GK
component of the restoring moment, and, therefore, we have

—(I+4Icos2 )~ (Ip— I+ 4T cos 2 ¢) 0’0
—{rcosé+drcos (2¢+2C+8)yr—{5+46cos2(¢+O¥0=0 (3.6)

In addition, oz component of the rate of change of angular momentum is the
sum of the moment about oz of 2 Mw# which is the GT component of the rate
of momentum change about G, and the GZ component of the rate of change of
angular momentum about G. However, since the restoring moment of the shaft
causing the change of angular momentum about oz does not exist, it is necessary
to apply the torque 7> to shaft end from external source.

T, =2 Motr+2(I~ Ip) 0+ AL (§*+ §6) sin2 ¢ — 2 wif cos 2 ¢} (3.7)

The work done by torque applied to the shaft from external source in unit time
is the same as the increasing rate of total energy of the system, and, therefore,
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the following equation holds.

a

C!)Tr':- di

(T+V) (3.8)

It should be noted that » and § vary with time exponentially as follows:
r=ne™, 0=0™ (3.9)
where m is the negative damping coefficient.

3.2.2., Exact solution of statically unstable vibration (Case of flat shaft)

We have treated so far the particular case, i.e. an unsymmetrical rotor
combined with a flat shaft. We are now going to treat the most simple case
in which there is a symmetrical rotor mounted at the middle point of flat shaft
supported with ball bearings on both ends. In this case §=r=4r=4I=£=0 can
be assumed, and Egs. (3.3) and (3.4) expressing the dynamic equilibrium of force
in the direction oG and GT are shown as follows:

—~ M%7+ Mo*r—{a+ dacos2(¢+C)r=0 (3.3a)
—2Mo# — dasin2(¢+8)r=0 (3.4a)

By substituting Eq. (3.9) into Egs. (3.4a) and (3.3a), m and o are derived as
follows:

m = — decsin 2(¢ +¢)/ (2 Mw) (3.10)
o =mt+{a+ do cos2(p+ ) /M (3.11)

By eliminating ¢+¢ from Egs. (3.10) and (3.11), we have the relation of m and
w as follows:

m+ 2(0* + af/ M) m* + (o0 — a/M)* — (da/M)* =0 (3.12)

The calculated results from Eq. (3.12) are shown by full line in Fig. 3.1, para-
meter being taken as da/a. To eliminate da in Egs. (3.10) and (3.11) gives
the following relation between m and w.

m—2wcot2(p+C)em+ (a/M—w®) =0 (3.13)

And also the values of Eq. (3.13) are shown by broken line with parameter ¢+¢
in Fig. 3.1. The vertical double dotted chain line shows the major critical speed
we=va/M in the case of da=0. There are two roots of s in Eq. (3.12), and
the one is positive and the other negative. From Eq. (3.10), m takes positive or
negative value according to negative or positive value of sin2(¢+¢), and only
the former case (i.e, m>0) is shown in Fig. 3.1. Explaining physically, when
the flat shaft is held by the angle ¢+¢=90°~180°, the total energy of the system
is increased because of the existence of two components of the restoring force
of flat shaft, ie., not only Go component, but also tangential GT° component
—da sin 2(¢+¢)r>0. Coriolis’ force —2 Mw# in GT direction is generated as
the reaction that the restoring force accelerates the rotor in GT direction. In
order to keep the speed of rotor constant, it is necessary to apply the torque
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Tr (the first term in Eq. (3.7)) against that
due to Goriolis’ force —2 Mw#r about oz. By
using Eq. (3.11) the power w7Tr=2 Mw'r*m
applied to the shaft end is assumed to coin-
cide with the increasing rate of the total

energy 757 (TH+ V) ={M(m+ o) +a+
da cos 2(¢ + &) y#'m, and it is evident that Eq.

at the limit of unstable region is derived by
putting m=0, or ¢+¢=0°, 90°, respectively,
in Eq. (3.11). Putting 9(m?) /3(v*) =0 in Eq.
(3.12), we have the maximum value of
negative damping coefficient mu.. and the
rotating speed o when m is maximum in the
following forms.

FI1G. 3.1. Relation between m and w
(exact solution of flat shaft when 7=4r
=0 and da/a=0~1).

A fa
2a M’ 0=

Mmax =

T A
J1-(5%) /7
(3.12a)

3.2.3. Exact solution of static unstable vibration (Case of unsymmetrical rotor)

Now we consider the system in which an unsymmetrical rotor is mounted at
the middle point of round shaft, and inclination 8 and deflection # are not co-re-
lated with each other. In this case, »=r=da=d4r=45=£=¢=0 holds, and Egs.
(3.5) and (3.6) are given as

(21—1Ip) o+ AI(f+ 0*0) sin 2¢ =0 (3.5a)

—(I+4Icos2)i— (Ip—T+ dIcos2¢) 00 —36=0 (3.6a)
Substituting Eq. (3.9) into Eq. (3.5a) yields

sin2¢ = — (21— Ip) om/{4I(m* + o)} (3.14)

As 2I—-1I5>0 holds generally for any rotor, we have m<0 according to sin 2 ¢=0.
From Eq. (3.14) m is derived as follows:

_ dlwsin2¢

2 1=1p) (3.14a)

m o= —

When o is kept constant, provided that # is constant, ie. m =0 =0§=0, the GK
component of gyroscopic moment — ([p—I+4Icos?2 ¢)»*0 is balanced with the
restoring moment of the shaft —48f, but the GL component 4lw*sin2¢-0<0
increases the whirling motion of rotor, and, as the results, the energy of shaft
system is raised. Consequently, “Coriolis’ moment” (27~ I) wf >0 arises as the
reaction of the GL component of the gyroscopic moment which is the integrated
moment about G due to the centrifugal force. By substituting Eq. (3.9) into
Eq. (3.6a), the equation

(4 dl cos 2¢) mP + {6+ (Ip—~ I+ 4Icos2 ¢) 0*} =0 (3.15)
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is derived. Eliminating gb or 4I from Eq. (3 14) and (3.15) gives the following
m— relations!®,

(J+aDUI~ 4D m* 216+ (Ip =D 0"+ (21— Ip) 0" — 204D 0" Im"
e+ Up—T—4D "} {6+ Up—~I+4D "} =0 (3.16)

Im*— QI-Ip)wcot2 ¢gm+4{8+Up—D't=0 (3.17)

The torque 77 (the 2nd and 3rd terms in Eq. (3.7)) applied to shaft end from
external source becomes w7y =2 wf*m{{(I—d4lcos2¢—1Ip) w+ dlmsin2¢). This
value w7, also agrees with the increasing rate of the total energy by the use
of Eq. (3.15). The critical speed of unstable region is derived by putting ¢=0°,
90° in Eq. (3.15) as w=+v08/(I¥4I-1;). Rearranging Eq. (3.16), we have a
quadratic equation in mh.. derived from the condition of w having equal roots.

]p (21— IpYhax +4 621 — Ip){(31—1Ip) Ip— 21" +2(A[)}mmx+(2odl)2~0
(3.11a)

The value of » having mme is derived from 3(m?) /3(w?) =0 as follows:

o 200 —1Ip) = {U—Ip) "+ I* = 204D} minex
¢ =Ty = (4D7 (3.162)

In Fig. 3.2 the calculated values of Egs. (3.16) and (3.17) are shown with full
and broken lines, respectively. And the vertical double-dotted cham line is the

major critical speed we=+Vd/(I—Ip) in case of AI=0.

my173

Fi1G. 3.2. Relation between m and o
(exact solution of unsymmetrical rotor when
Iy/I1=2/3 and 4I/I=0~1/3).

negative damping coefficient

10 15 3w 20 25 30
rotating  speed W7
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3.2.4. Exact and approximate solutions of static unstable vibration (Case of an
unsymmetrical rotor mounted on a flat shaft)
By substituting Eq. (3.9) into Eqgs. (3.3), (3.4), (3.5) and (3.6), we obtain
three equations containing unknown values &, 0/r, m, » having ¢ as parameter.
Eq. (3.3b) is derived from Eq. (3.3).

o' —m' = A%, 0/7) (3.3b)
Eliminating mw from Egs. (3.4) and (3.5) gives Eq. (3.4D).

o' +m’ = B(&, 0/7) (3.4b)
And Eq. (3.6) becomes as follows:

o' +Cm’ =D&, 0/7) (3.6b)

where C is determined only by ¢, and A, B, and D are determined from ¢, £ and
6/r. By eliminating m? and »® from the above three equations, a quadratic
equation in term of §/r is derived. Since the unknown value £ is included in
the coefficients of the quadratic equation, we must determine the exact value of
¢ which satisfies Eq. (3.4).

The calculated results by the use of dimensions of shaft system in Chapter
1, ie, Mg=10433 kg, [,=2.179 kg cm s?, I1=1.426 kg cm s, L=0.761 kg cm &%,
a+ doc=(3.3617:0.1945) x 10? kg/cm, 7 4r=~ (3.5773+0.1838) x 10° kg/rad, §:+45=
(6.2036 +0.4258) x 10* kg cm/rad, w.=1228.8 rpm, are shown in Fig. 3.3. The exact
solutions of & for ¢=0°~180° are shown in Fig. 3.3 (a). They are shown by the
marks of © (¢=0°), ® (¢=45°) and ) (¢=90°) in the case that 4I0; 4da, 47,
and 480 hold, by the mark @ when 4I=0; da=d4r=46=0, and by the mark O
when 4I=0; da, 47, 460, and £¢=0°. We know that the inequality in inertia
gives larger effect on ¢ than that of inequality in stiffness. And the value of ¢
is very small when rotating inequality is small. Using the exact solution of ¢
in Fig. 3.3 (a), 0/r is derived as shown in Fig. 3.3 (b). By substituting ¢ and
6/7 into Eq. (3.3b) and (3.4D), we have the result of w and m as shown in Fig.
3.3 (b) and 3.3 (c), respectively. From Fig. 3.3 (b) and 3.3 (c), the relation
between m and o is obtained as shown in Fig. 3.3 (d). Exact solutions of m agree
with the positive real part calculated from the characteristic equation® which
is obtained by substituting Eq. (3.25) into Eq. (3.24).

As the combined effect of the asymmetry in rotor and inequality in shaft is
not made clear by the aforementioned method, approximate treatment is given
here by adding a suitable constraint to the shaft system. The shaft end torque
T required to keep the shaft at a constant angular velocity » under the constraint
of £=m=0, which holds in case without rotating inequality, is given as a gen-
eralized force with respect to ¢, by using Lagrange’s equation of motion
d (oT 2T oV
Tr=?t‘<‘éz°)“~é’¢“+”a? (3.18)
Substituting 7° and V obtained by putting ¢ =¢ =w and £¢=m=0 in Egs. (3.1)
and (3.2) into Eq. (3.18), we have
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Ty = — 4I6"0°sin 2 ¢ — (dar® + 2 dyrf + 456%) sin 2(¢p + ) (3.19)

By equating the amplitude ratios 0/7 obtained by putting £é=m=0 in Egs. (3.3)
and (3.6), the following is resulted.

o+ do cos 20+ C) — Mao® y =4 drcos 2(¢+¢)

7+ A7 cos 2(¢+C) T 0448 cos 2(¢p+8) + (Up— I+ 4l cos 2 ¢) »*
(3.20)

When the angles ¢ and ¢ are given, the values of w and 0/r are determined. The
second term (dar®+2 drr0+ 406%) in Eq. (3.19) is positive and the absolute value
of Ty of Eq. (3.19) takes the maximum and the minimum value at ¢=0° and
¢=90°, respectively. By combining unsymmetrical rotor with flat shaft at ¢=90°
and choosing the shape and dimensions of the rotor and shaft so that the relation
da+2 47 (0]r)+48(0/r)? = Alw?*(0/7)® holds, the unstable vibration in the vicinity
of w=wc is eliminated. The effect of 47 becomes maximum at ¢=135° and also
those of da, 4r and 46 become maximum at ¢+¢=135°. The approximate values
of 0/r and w given by - Eq. (3.20) are shown in Fig. 3.3 (b), but it is found, in
general, that there is hardly any difference between the approximate value and
the exact solution calculated by £x0°. Approximate solutions are shown by full
line (when 4/=0; da, 47, 40=<0), by broken line (when 4/=0; da=d4r=45=0),
by single dotted chain line (when 4I=0; da, 4r, 460, £=0°), and by double
dotted chain line (when 4l=da=dr=46=0), respectively. While the condition
of £=0 is kept, by assuming that the work o7y (£=m=0) applied to the shaft
end per unit time is nearly equal to the increasing rate of the total energy in
the shaft system (£=0°, m=*0), the following cubic equation in m is obtained by
the use of Eqgs. (3.1), (3.2), and (3.8).

b
7

A’ + Aom®* -+ Aym -+ Ag=0 (3.21)
where As;=M-+ (I-+ 4Icos2¢)(0/7)*
Ay =2 dlosin2 ¢+ (8/7)*
A= Mo+ a + da cos 2(¢ + ) + 2{r + dr cos 2(¢ -+ £) }(8/7) (3.22)
+ {8+ 45 cos2(p+C) — (Ip— I+ AT cos 2 )’} (0/7)*
Ao = dI0*sin 2 ¢+ (0] + wl{da +2 47 (8/7) + 45(6/7)"} sin 2(¢ + )

The approximate values of m, shown in Fig. 3.3 (¢) by the use of the value 8/7
and o given in Eq. (3.20), are a little larger than the exact one. Fig. 3.3 (d)
shows m—w diagrams derived from Figs. 3.3 (b) and (c), and there is also a
little difference between the approximate values and the exact ones, because of
the constrained condition of £=0° used.

3.3. Dynamic unstable vibration

3.3.1. Eguations of motion on rotating coordinate system

The equations of motion about the center of gravity G of unsymmetrical
rotor mounted on flat shaft are expressed!® by using four variables x, y, 6 and 85
as follows:

ﬁx:(} cos

y sin 0y sin ¢ (3.23)
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We now consider the coordinate system ¢-x'y'z rotating with the same angular
velocity  as the shaft. The plane x'oz is parallel to the principal axis GY3,
and when ox’ is determined so that it agrees with ox at the instant 7=0, the
equations of motion® about x', ¥, 0+ and 0 which are the projections of » and @
on the planes x'0z and y'0oz are given as follows:

M +{a—dacos2C— Mo}z’ — 2 Moy ~ da sin 2 £-y!
+{r—drcos2¢)0;— drsin2¢-05,=0

M3 +{a+dacos2C—Mw'}y + 2 Muw's — dasin2 Cox/
+ (y+drcos28) 0y — 4rsin2¢-0L=0

U= 4D %+ {8~ 45 cos 28+ (Ip— I — 4I) o} 01— (21— Ip) wll) (8.20)
—~A45sin2¢-0y+ (r — dycos28) x' — Arsin2¢+y' =0

U+4D G5+ {0+ 46 cos 2 ¢+ (Ip — I+ 4I) 0*} 0y + (21— Ip) wi
—A0SIn2C 0+ (r+ drcos 24) 3y — dysin2¢-x' =0 J

%! = Ae®, y' = Be™, 0= Ce", 0} = De" (3.25)

By substituting the solutions of the free vibrations given by Eq. (3.25) into Eq.
(3.24), the characteristic equation™®®1® is derived.

z=x"4+1y, 2=~y 0:=0%+1i05 0.=0i—ib) (3.26)

By using complex numbers z, Z, 6, and 7. given in Eq. (3.26), instead of x/, ¥,
0: and 03, Eq. (3.27) is derived from Eq. (3.24).

M3+2iMoz + (@ — Mo") z — dae’™ 5+ 70 — dre™ 0, =0
Tis = ATG 2+ 321~ Ip) wlz {6+ (Ip— I) 0*} 0 (3.27)
— (46e™ + AI*) 6, + 12 — dre’S 2 =0

When dI=da=4r=45=0, complex numbers z, 6: in Eq. (3.26) should take
the following form

z=Ee'?t g = pol@tr® (3.28)

due to the existence of Coriolis’ force ¢ 2 Mwz and Coriolis’ moment (2 7 — I) wbs.
Eq. (3.28) shows that the shaft makes a circular whirling motion at the angular
velocity of p/ on the rotating coordinate system. As long as the relation 10
holds, the arguments of z and ¢, have the same value and they are in phase.

In the cases of unsymmetrical rotor (4I%0; da=4r=48=0) or flat shaft
(41=0; dea, 4r, 460, £=0° or 90°), substituting z, 6. of Eq. (3.28) into Eq. (3.27),
and transposing the terms containing rotating inequality into the right hand
side shows that there occurs another vibration e~?+® making a pair to Eq.
(3.28) because of the existence of external force = (daE-+4rF)e-i#'t+® in the
first equation of Eq. (3.27) and also the external moment {47(w*— PO F+ (4rE+
46F)}e~"®'*+® in the second equation. Accordingly, z and @, should take the
following form
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z= Eei(p't+a) 4 E'e—i(p't+a), 0, = Fez(p't+a) -+ F‘e-xm'nm (3' 29)

The loci of z and 6, on the rotating coordinate system (x/, ¥'; 04, 65) become
ellipses, and their two principal axes coincide with ox’ and oy, respectively.

In general case that an unsymmetrical rotor is mounted on flat shaft at some
orientation ¢, if we substitute Eq. (3.28) into Eq. (3.27), and transpose the terms
containing rotating inequality into the right hand side, there occur an external
force (daE -+ 4rF)e-i@?'i+e=20)  and a moment dI (w?— p'?) Fe i+ 4 (4ArE
+ doF) e-i#tve=20  Accordingly z and 6, should take the following form.

2 =Eet(p’t+a) + Ee—-i(p’f+a1), ﬂz =Fez(1)’t+u) +F‘e—t(1‘)'t+az) (3.30)

3.3.2. Causes of dynamic unstable vibration

The principal axes of the ellipses of z, 6; on the rotating coordinate given
by Eq. (3.30) are advanced in the direction v by (a—a1)/2 and (a—a2)/2 to ox'
(GY>), respectively. Since the relation ai=a:=a« holds in the case of unsym-
metrical rotor, and ai=a,=a-—2¢ in the case of flat shaft, it can be said, that
ai=a; holds in general case 4I<0; da, 47, 46=<0. When we pose the condition
of ai=a,=& as is done in the Section 3.2.4 and restrict the whirling of rotor
so that the locus takes steady elliptic form, we shall calculate the torque 7
required to rotate the shaft end at a constant angular velocity o.

The principal axes of the ellipses of z, 0. exist in the direction advanced by
(a—&) /2 to ox'(GY2), and 0y'(GX,) exists in the direction further advanced by
B=90°~ (a—&)/2 to the principal axes of z, §.. Putting ¢'=p't—180°+ (a-+&)/2
and rewriting Eq. (3.30), we have

-1 oL font P -1 - Fin? e
Zn=2¢ O = B L Fe ' = 0,007 = B + Fe ™ (3.30a)

and the principal axes GX:(l;) and GX:(a-+da, v+ 4r, 8-+ 45) lie in the direction
advanced by B, f+¢ to the axis (¢'=0°) of the ellipse, respectively. Rewriting
Eq. (3.30a) yields the following relations

r=lzl, #= L1z, o=10:1, 6 = Lo,

T at
O=¢+¢=owt—90°

. d
0= wt—180°+argz, O =w-+ —-(argz),
. ar & (3.31)
¢ = wt — 180° 4 arg 42, ¢=w+%(arg0;),
¢=0—¢=90°—argb;=p —arg s

~

E=¢—~0=argl,—argz=arg ., —arg z,

where |z| and |f6:| are the absolute values of complex number z and 4, and
arg z, arg 0, are the arguments of z, ;. From Eq. (3.30a) the following rela-
tions are derived.
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lzal*=|2’=E*+E*+2FEE cos2 ¢, tan (argz,) ={(E—E)/(E+E)}tan ¢
[0:n|*=10:"=F*+F*+2FF cos 2 ¢', tan(arg 0z,) = {(F—F)/(F+F)}tan ¢

L= -Lid = —2pEE |2yl sin2 ¢!, Fo10n) = 0 0= 2/ FF /1025 sin 2 ¢

Zd[(argzn) = % (arg z) =p'(E*—E®) /| zal%

4 (argz,) = I (arg 0) =p/(F = )10z | |
(3.32)

The driving torque 7 of shaft at » is the generalized force with respect to
B in term of Lagrange’s equation of motion, 7.e.

Tr =

d (3T)_of , oV 5.3

dat\si /! o8 | o8

By calculating Eq. (3.33) by the use of Egs. (3.1), (3.2), (3.31) and (3.32), T~
is obtained as the sum of the torques due to da, 4r, 48 and 4I, as follows:

Tr = (Tr)sa+ (T v+ (Tr)ss+ (Tr) (3.34)
(Tr)re = — dac| 2z, |"sin 2(B+¢ — arg z,)
— da{2 EEsin2(B+¢) + E*sin 2(B+¢—¢') + E*sin2(B+C+ ¢} (3.342)
(T ar = — 2 47125 102] sin {2(8+¢) — arg z, — arg 0z»}
— 2 47{(EF +EF) sin2(8+¢) + EFsin (B+¢(~¢") + EF sin2(8+ ¢+ ¢')}

(3.34 D)

1l

Il

(Ty)as= — Aalﬁznlz sin 2(B+¢ —arg O2n)
— A3{2 FF sin2(B+ %) + Fisin2(B+¢— o)+ Fsin2(B+¢+¢)} (3.34¢)

i

(Tar = 4] (L 1021) {0+ & (arg 0 | 10:01 |-sin (g~ args.0)

- AI{w + g? (arg 0zn) } gt— [02n1"+cos2(8 — arg 0zx)
— A 2(0* — p)FF sin2 B+ (w+ ")’ F*sin 2(8 — ¢")
+(w—p)F*sin2(8+ ¢} (3.34¢d)

It

Since the each term of Eq. (3.34) has the period of =/p', there is possibility of
torsional vibration of =/p' in period. The mean value Tym of variational torque
T with respect to time is given as follows:

27
Trm = él?.yo (T‘:”) d&”’ = (Trm) sa (Trm) ar ( Trm) a5+ (\ Trm) Az (3- 35)

3.3.3. Approximate solution of dynamic unstable vibration
Substituting z and §; of Eq. (3.30a) into Eq. (3.27) gives the frequency
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equation under the condition of dynamical balance at the instant tan ¢'=0, and oo,

aqg— M(0*+ p'™) -2 Mop! Ta 0
=2 Mop! ap— M(ao®+p") 0 Th B
Ta 0 Sat (Ip—1Ip) * — Inp" — (21— 1) wp'
0 7o ~@2I-1Ip) wp' Sp+ Up—1) 0" —Ipp"
(3.36)
where
I“:Iid]cosZB, %a . o+ do cos 2(8+¢)
Ip ap
(3.36a)
T Oa

" =7xdrcos2(8+0), {Edbcos2(f+10)

T 3

The quartic equation (3.37) in the term of p'? is derived by expanding Eq. (3. 36).

Ksp" — Ksp" + K, p"* — Kop™ + Ko = 0 (3.37)

By putting da=4r=40=0 and cos28= =1, Eqgs. (3.36) and (3.36a) agree with
those of an unsymmetrical rotor mounted on circular shaft®®, Even if 8 and
¢ are given, two unknown values of w and p' are not determined only by Eq.
(3.36). Since the two roots among four ones of p? are always equal root in the

dynamically unstable region, the discriminant D(w) of Eq. (3.37) must be zero®.
Namely, we have

+27 KoK — 9 KKK +2 KD =0 (3.38)

By using the value of o that satisfies Eq. (3.38), Ks~ Ko, are obtained, and the
roots p' of Eq. (3.37) are calculated. As the relation A; @ Ay @ Ay ¢ Au=E+
E:E~E:F+F : F~F holds, the amplitude ratios E/E, F/F and F/E are
obtained by substituting o and p' into the cofactor of the determinant of Eq.
(3.36). If p is assumed for arbitrary o and ¢ in the stable region, four real
roots of p can be calculated, and the amplitude rations E/E, F/F and F/E are
obtained by Eq. (3.36) for each value of p’. If the relation Tym=0 is satisfied
by substitution of these values into Eq. (3.35), the value of 8 assumed is proved
right.

The negative damping coefficient m is derived in the following way. The

amplitudes E, E, F and F are assumed to be raised exponentially in the form
of Eq. (3.39).

E=FEye™, E=FEye™, F=Fy,e™, F=F,e™ (3.39)

The amount of (74 V) varies according to the change of torque 7 of #/p' in
period, and when only the term varying gradually in form e¢™ are picked up,

oTrm in the left hand side of Eq. (3.8) is equal to #{2(T-V)m—Ipe?) in the
right hand one. Therefore, we have
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2
The mean value of total energy with respect to time, (7+ V)= ?L’S (T+ V)dy,
can be obtained by the use of Egs. (3.1), (3.2), (3.31) and (3.32).

2T+ V=M + p"WE* +E*) +20p/(E* — E*) )+ Iplo* — 0" (F*+F?)
—op(F* = F) }+ Ko+ p")(F*+ F*) + 2 op! (F* = F*)}
~ 241" — p*) FF cos 2 B+ a(E*+ E*) + 2y (EF+ EF) + 6(F*+ F*)
+2{4aEE + 4y(EF + EF) + 40FF } cos 2(B+¢) (3.41)

The arithmetic mean value of (7+V) at the instants of tan ¢’=0 and o is found
to be the same as (74 V)m of Eq. (3.41).

In case an unsymmetrical rotor is mounted on circular shaft, the dimensions
in the previous papers® are as follows; for example Mg=11.637 kg, I,=0.4300
kg cm s% I1=0.5090 kg cm % 1,=0.3816 kg cm s, «a=3.120x10 kg/cm, 7= —6.450
x10* kg/rad, §=1.777 x 10* kg cm/rad, wa=1544 rpm. By using Egs. (3.36), (3.37),
(3.38), (3.40) and (3.41), approximate solutions of w, p', E/E, F/F, F/E and m
for B are shown in Fig. 3.4 (a). And the approximate solutions of E/E, F/F and
FJE are nearly equal to exact ones for the frequency # of Fig. 10 in reference®.
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F/E and B (approximate solution) and approximate solution)

F1G. 3.4. Case of shaft of circular cross-section having an unsymmetrical
rotor (near wq where dynamic unstable vibrations occur).
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Using the result in Fig. 3.4 (a), the approximate solution of the relation m and
p'—w is calculated and shown in Fig. 3.4 (b) by broken line. Exact solutions®
calculated by the characteristic equation derived from Eq. (3.24) and (3.25) are
shown by the mark @. The exact result shows good coincidence with the ap-
proximate one except for the values of m. The approximate values of m are
larger by 30~40% than the exact ones as shown in Fig. 3.3 (d), because the
restricted motion of rotor needs more torque Trm than that without restriction.
‘When the motion is left free, m becomes smaller.

As the second example we deal with the following case, whose dimensions
are shown in Chapter 1 (Experiment IV), ie, Mg=12.179 kg, I,=0.3725 kg cm s?,
1:=0.5389 kg cm % [,=0.4497 kg cm 8%, a+ da=(2.6589£0.2744) x 10 kg/cm, 747
= — (5.4555+0.4801) x 10? kg/rad, 0= 46=(1.4993+0.1169) x 10* kg cm/rad, ws=1227.2
rpm. Approximate solutions of w, p', E/E, F/F, F/E and m with respect to #
are shown in Fig. 3,5 (a). In case the orientation ¢ is equal to 0°, 45° and 90°,
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and B (approximate solution) (exact and approximate solution)

FIG. 3.5. Case of flat shaft having an unsymmetrical rotor (near wq where
dynamic unstable vibrations occur).
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the approximate solutions are drawn by full line. In case 4I%0; da=A4r=40=0,
and 4I=0; da, 47, 460, they are given by broken and single dotted chain line,
respectively. The relation of m and p'—w is also shown in Fig. 3.5 (b). Exact
solutions corresponding to full line are shown by the marks & (£=0°), ®({=45°)
®(£=90°), respectively. Also the exact ones corresponding to broken and chain
line are shown by marks &, O, respectively. As in case of Fig. 3.4 (b) the
approximate values of the location and the width of unstable region and the
frequency p' agree well with the exact ones. However, the approximate ones
of m take fairly larger value at wa than the exact ones, because the system must
be restricted at waq to the most in order to keep steady ellipitical movement.
Double dotted chain lines in Fig. 3.5 show the values of wa and (¥/E)., when
Al=da=Ar=46=0.

3.4. Conclusions

By considering an input energy from shaft end into the shaft system carrying
an unsymmetrical rotor, or with unequal stiffness, we made clear the physical
meaning and occurrence of two kinds of unstable vibrations. The approximate
results derived from energy consideration coincide fairly well with the exact
results obtained by numerical calculation of the characteristic equation.

Chapter 4. On the Forced Vibrations of a Rotor with
Rotating Inequality®192

4.1. Introductions

A rotating shaft system with an unsymmetrical rotor, or the one with an
unsymmetrical shaft stiffness may be regarded as be one of vibratory shaft systems
having a rotating inequality which rotates with the rotor, i.e., which rotates at
an angular velocity of the shaft w. In this chapter, the more general shaft
system in which there exists the rotating anisotropy with any rotating velocity
Aw is treated, where 2 is a certain constant, and the lateral vibrations appearing
in such a shaft system are studied.

Since a free vibration of a natural frequency p appears with the free vibra-
tion of a frequency 7=2 lw—p in the shaft system having the rotating inequality®,
one external periodic force of a frequency wo yields two forced vibrations of the
frequency wo and of=2Jlw— w, and hence resonant phenomena are observed
under the conditions of w=7 as well as of w=p. Analytical results show that,
in the state of resonance when wo= 7, the predominant vibration is not the forced
vibration of wo but is always the forced vibration of frequency wy (=2 Aw—wo)
which is apparently quite different from the frequency wo of the external force,
provided the rotating inequality is relatively small,

By using the above conclusion, elucidated physical meanings can be presented
to the whirl of synchronous backward precession appearing in the rotating shaft
supported by flexible bearing pedestals, the whirling of forward precession at
the so-called secondary critical speed which takes place in the horizontal flat
shaft and the whirling motion with a peculiar mode of backward precession
caused by a small difference in diameter of balls in ball bearings.
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4. 2. Eguations of wmotion, amplitude and amplitude ratio of forced vibrations

When there exists an anisotropy in shaft stiffness rotating at any angular
velocity Aw in a vibratory system consisting of a rotor and a light shaft, the
system is governed by the following equations of motion?:

ME+ ax+ 70;— da(xcos 2 Aot + y sin 2 Awt)

— dr(0x cos 2 Awt + 0y sin 2 kwt) = P cos (wot + B1)
M3+ ay+ 1y — da(xsin 2 2wt — v cos 2 dwt)

— dvr(0,sin 2 Awt — 0y cos 2 dwt) = Psin (wet + B;)
I+ Ipwly 4 15+ 80, — dv(x cos 2 Jwt + y sin 2 Awt)

— 45(05 cos 2 Awt + 0y sin 2 dwt) = My cos (wet + B2)
Iy — Ipwlx =+ 1y + 80y — dr(xsin 2 Aot — y cos 2 Awt)

— 45(0. sin 2 Aot — 6y cos 2 dwt) = M sin (wot + £:)

(4.1)

where «, 7, 0 are mean values of spring constants of the shaft, 4w, 47, 48 in-
equalities in shaft stiffness, P a magnitude of a periodic external force, M: a
magnitude of a periodic external moment, wo a frequency of disturbances, £, 8-
phase angles, and ¢ time. It is assumed that the anisotropies da, 4r, 48 in stiff-
ness are rather small quantities of order e, ie., da/a <1, dr/r <1, 45/6<1.

Since a gyroscopic moment acts to the rotor and there are the so-called
gyroscopic terms Ipwly, —Ipwl, in Eq. (4.1), recti-linear vibrations can not take
place in the system and all motions of the shaft of lateral vibrations become
whirling motions. Accordingly, a frequency of vibration is regarded as to be
an angular velocity of the whirl of the shaft and a positive frequency represents
a whirling motion of forward precession in which the direction of whirl is the
same as the direction of rotation of the shaft, and a negative frequency means
a backward precession in which the whirl is in reversed direction.

There exist terms of the rotating anisotropies da, 47, 45 in the equations of
motion as shown in Eq. (4.1), and hence free vibrations of a natural frequency
p as well as a frequency 7=2Aiw—p appear in the system, and one external
periodic force of a frequency we vields two forced vibrations of frequencies wo
and wy =220 —w,. It follows that free and forced vibrations in the system should
be represented by

3= A g Bt )+ A (Bit =)
(4.2)
Ox COS(plt+B)+BCOS( - 8"
by = J
;_ COS (wof+ B + E' COS (Qoi - B+ EMCOS (wot + B2) + E' cos (wol‘ B:) 1
(4.3)
Z;’ COS (a)ot +B) + F /COS (a)of - /) + Fu (wot+ B.) + El s (O’Ot — B J

where B, p' are phase angles, Ep», Eb, Fp, Fb and Ey, E}, Fy, Fiy are amplitudes
of forced vibrations induced by the disturbance P cos (wot+f1), P sin(wot+B:) and



On the Vibrations of a Rotor 61

M; cos (wot-+B2), My sin (wot-+8:) respectively, and Ep, Eu, Fp, Fy are amplitudes
of forced vibrations of the frequency wo and Eb, Ex, Fb, Fy are those of the
frequency o) =2 lw — w.

Substituting Eq. (4.2) into Eq. (4.1) and eliminating all amplitudes 4, A,
B, B, one obtains the following frequency equation:

D(p) =F(p) D) +¢(p) =0, (4.4)

in which p is a natural frequency, =2 lo—p, and

Fp)=H(pG(p) -7+
o(p) = —G(PG(P) () — {G(P) H(P) + H(P)G(P) + 2 * 1 (dr)*

_ 4.5

— H(P)H(P) (48 + 21 G(p) + G(P)} dax + Ay (4.5)
— 27 deco 45 + 2 7{ H(p) + H(P) } 47+ 48 + {dac 45 — (41)%}

H(pP) =a—Mp*, G(p) =08+ Ipwp— I C(4.6)

In the system without rotating anisotropy, ‘.., when all inequalities dw«, 47, 46
vanish, the frequency equation is reduced to

F(P) = (a— Mp*)(5+ Ipwp — Ip*) —v* = 0. 4.7

Inserting Eq. (4.3) in Eq. (4.1) yields amplitudes of forced vibrations as
follows:

Ep=P{Gf(w)) — G (dr)* — H'(45)" + 2 7+ dy+ 45}/ 0(wo)
Eb=P[GG' da — 1(G + G dy + v*+ 45 — { dec* 45 — (47)*} 461/ @ (wo)
Fp=Plrf(wy) — G+ da dy -+ 7+ doc= 48 -+ 7(47)* — He A+ 48} [ D a0)
Fh=P[yGeda — (GH'+ ) dy + 7H'+ 45 — { dec+ 46 — (47)*} 471/ D ()
Ewy = Mrf(0)) +7(dr)* — G+ dac=dy+ 7+ doc~ 45 — H'+ A7+ 45} | D(n,)
Ey =MlyG'da — (HG'+ 1*) dy + v H+ 46— { doc+ 45 — (47)*} 471/ 0 w0)
Fo = MAHf (w0) — G (da)* — H'(A7)* + 2 7+ da+ 47}/ 0(y)
Fly=My* de — v (H+ H") dy + HH' + 45— { dac* 45 — (47)*} 421/ D( ;)

(4.8)

in which

H= H{w) =a— Maoi, H =H(wh) =a— Moy }

4.9)
G = Glwy) =8+ Ipww, — Iws, G'=G(wh) =8+ Irwws— Iul (

Amplitude ratios between forced vibrations of frequencies wy and wf=2 lw — wo
are obtained from Eq. (4.8) as follows:

Eb _ GG e~ 1(G+ G dy+ 1~ 45 — {dac- 45— {47)"} 45
Ep Gf(wh) — G dy)* — H'(48)* + 2y dy- 45
F;’ TG'AQ“(GHI+72)AT+TH’.A(3‘~{Aa,da_(AT)?.}AT

Fe ~ 7f(w) — G da+dy+ 7 da> 45 + 7(dy)* — He 4y 48 (4.10)
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. _ Gl do — (GH' + 7)) dy + 71H- 45 — { dac* 46 — (A7)} dy
Ey (o)) — G da-dy+r-da+ 45+ v(dr)* — H' = dy+ 45
Vlig‘,‘_ vreda — y(H+ H') dy + HH' « 45 — { dac + 45 — ( 4y)* } dex
Fu Hf (0§) — G'(da)* — H'(47)* + 2 7+ dac > 7

The rotating shaft carrying an unsymmetrical rotor is also regarded as to
be a vibratory system with the rotating anisotropy, and is governed by the
following equations of motion®®:

MiE+ ax+10,= Pcos (wt+ 1)
M3+ ay+ 70y = Psin (ot + B1)

I+ Ipwly + x4+ 60, — Al-gt—(éx cos 2 wt -+ i, 8in 2 wt) = Mg cos(wet + 8:) (4.1a)

Iy — Ipwlz+ 7y + 66, —AI-%(ﬁxsinZa)t—- §,cos2 wt) = M; sin (wet + 5;)

For the vibratory shaft system with an unsymmetrical rotor, the following
relationships " corresponding to Egs. (4.5), (4.8), (4.10) are obtained in like
manner ¥,

o(p) = — (4D a — MPp*) (a — MDD p*F, (4.52)
Ep=P{Gf (w0) — (4D *H' w2} [ D(wo), Ep = Pedl+7v* 0wt/ (o),
e = — Prf(o))/®(wy), Fp= —Pedl-vH' v/ ®(w,),

(4.8a)
Ey= —Merf(od)|0(w), Ey= — M AI+vHowh/0(a,),
Fo = M:Hf (0) [0 ), Fiy= Mz Al HH wowi] O (o),
}E_'p__ AT wowg 7Ei___iff Huogws
Ee Gf(w)) — UD'H'wiwl’’ Ex  flw)) '
' ' 7 ’ (4.10 a)
FP _ Al- H’wo& _F_ﬂ__g_f‘!_’H'(DgO)O j
Fr flo) ~ Fu  flw)

4.3. Characteristics of the vibratory system with rotating inequality®

When the frequency wo of disturbances comes near one of the roots of £(p) =0,
i.e., a natural frequency p, one has f(wo) =0. Furthermore when wo, becomes nearly
equal to P, the relationship wi=P=21w—p leads to 21w — w = wyx=p, and hence
Flw)=0. Since o(p) in Eq. (4.5) is small of order ¢, the relationship f(ws) =0
or flw) =0 yields @(wo) = f(wo)*f(wy) +¢{w)=0. Accordingly, it can be seen
from Eq. (4.8) that, when f(w¢) =0 or f(w) =0, all amplitudes of forced vibra-
tions in Eq. (4.8) take large values and the system presents resonant phenomenon
because of small @(we) of order &

In the resonant state of wo=p, f(ws) in denominators of Eq. (4.10) is obviously
not small and hence all amplitude ratios in Eq. (4.10) become small of order da
etc., i.e., of order e. It follows that the forced vibration of the same frequency
wo as that of disturbances becomes remarkably larger than those of the frequency
oy =2 Aw— wp in the resonant state of we=p. On the other hand, in the resonant
state of wo=P, f(wi) becomes nearly equal to zero and all denominators in Eq.
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(4.10) take small values of order &%, and hence one has large amplitude ratios
of order ¢~ It leads to the following general rule which can be applied to the
vibratory shaft system with an anisotropy rotating at an angular velocity Aw:
“In the resonant state of wo= P, the forced vibration of the frequency w;=2iw — wo
which is apparently independent of the frequency wo of the external periodic
force builds up remarkably”.

The above general rule can be also applied to the rotating shaft system with
an unsymmetrical rotor, for which the relationships of Egs. (4.1a), (4.5a),
(4.10a) hold.

In the case when the source of the disturbance exists in the rotating shaft
system itself, the frequency wo of the disturbance is usually proportional to the
angular velocity o of the shaft, and hence one has

Wy = KW, (4.11)

where x is a certain constant. The resonant condition wo=7=22lw—p and Eq.
(4.11) yield the relationships

p=21—r)o=vo, w=p/v, (4.12)
in which v=221—¢k (4.13)

Insertion of Eq. (4.12) in Eq. (4.7) leads to
fwo) = (a— M) {6+vp—pl) 0*} — 7 =0, (4.14)

which can be solved analytically and yields

o = pP s = {alp—v(al+ M)y =ialp—v(al+ M) Y2 +4 v (ad—72) M(Ip—2I)
2vVEM(Ip—vl)

(4.15)

The rotating speed w given by the above equation furnishes the so-called
“resonant point” at which the frequency wo of the disturbance becomes equal to
=2 o—p.

In the case when wo is proportional to o, the general rule above mentioned
can be rewritten as follows: “In the neighborhood of the resonant point given
by Eq. (4.12) or (4.15), the system presents a resonant phenomenon because the
frequency wo of the disturbance becomes nearly equal to P, and the forced vibra-
tion of the frequency )

=2 2w~ wy=2 Ao — ko= vo=p, (4.16)

which is apparently independent of wo grows up remarkably”.

In the following several sections, elucidated physical meanings will be
presented to some sorts of forced vibrations upon use of the general rule obtained
in this section.

4.4. Forced vibrations of synchrvonous backward precession caused by flexible
bearing pedestal®®

The authors have pointed out® that forced vibrations of synchronous back-
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ward precession of frequency —w, whose absolute value is equal to the angular
velocity of the shaft, take place when a circular shaft is supported by bearing
pedestals which deflect slightly. In such a system, the pedestals hardly deform
in their longitudinal direction (y-direction) in which they are subjected to tension
or compression, while they can slightly deflect in their lateral direction (x-direc-
tion) in which bending moment acts to them. By taking into the deflection of
pedestal, one has slightly larger spring constants of the shaft in y direction than
those in x direction, and hence equations of motion of this system can take the
following form:

M+ (a — da) x+ (v — A7) 0, = Mew® cos (wt + £:1)
M3+ (a+ da)y+ (y+ dr) 0y = Mew® sin (ot + B;)
I+ Ipwly + (r — dr) x+ (5 — 40) 05 = (Ip — I) 70’ cos (0t + By)

Iy — Ipwle-+ (r -+ A7)y + (6 4+ 48) 0y = (Ip — I) t0” sin (ot + B2)

(4.17)

Since the anisotropy in bearing pedestals does not rotate and hence the
system governed by Eq. (4.17) can be regarded as the one of vibratory shaft
systems with the rotating inequality which rotates at Aw=0, it follows that

1=0, (4.18)
and P=2ko—p= —p. (4.19)

Disturbances induced by unbalances ¢ and ¢ have the frequency o, as is seen
from Eq. (4.17). Thus

wo = KW = (@, Sooe=1. (4.20)
Hence by Egs. (4.18), (4.20)
v=21—k=0—1= —1. (4.13a)

Substituting »=—1 into Eq. (4.15), one gets the resonant point

coz,l _ dalp+ D+ oM} £V{apt D) —6M}*+4 M (Ip+1) (4.152)
whs 2 M (Ip+I) ’
at which wi(=w) becomes equal to p(=—p), i.e, the relationship
w=plv=—p (4.122)
holds. Insertion of »=—1 into Eq. (4.16) yields the frequency
o =vo = — o (4.16 a)

of the forced vibration which builds up remarkably in the resonant state of wo= 7.

The above discussion leads to the following conclusion: “When bearing
pedestals deflect slightly, the forced vibration of synchronous backward precession
having frequency —« which is induced by unbalances e, = of the rotor builds up
in the neighborhood of the resonant point wm or ws where the angular velocity
o becomes equal to —p”.
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FIG. 4.1. p—o diagram and the posi-
tions of the critical speeds of synchro-
nous backward precession (A=0, x=1,
p=-—1).

One example of p— o diagram obtained
from Eq.(4.7) is illustrated in Fig. 4.1.
As shown in Fig. 4.1, the resonant points
on, wpz given by Eq. (4.15a) can be
obtained graphically from the intersecting
points B, B: where the straight line p=
—w intersects curves of p;, p« and the
relationships wo=w=p:= —ps and wo=0w=
D= —ps hold. i

The intersecting point C where the
straight line p=w intersects the curve
of p. gives the so-called major critical
speed we. In the neighborhood of we,
namely, in the resonant state of wo=w=p,
the forced vibration of synchronous for-
ward precession of frequency wo=4w
grows up remarkably larger than that
of frequency wt= — w.

One example of experimental results
is shown in Fig. 4.2 where the peaks of
synchronous backward and forward pre-
cessions appear in the neighborhood of
wb, wbe and we in Fig. 4.1 respectively.

Amplitudes and amplitude ratios of
forced vibrations of synchronous back-
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kg cm/rad, Other dimensions of the shaft system are the same

as Fig. 4.1).

FIG. 4.2. Whirling of synchronous backward precession of
frequency —o (at wu, wse).
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ward precession can be derived by putting 2=0, wo=w, P=Mew?, Mi=(Ip—1I)v0’
in Egs. (4.8), (4.10), respectively.

4.5, The secondary critical speed

It has been known that, in a horizontal shaft with small inequalities da, 47,
46 of shaft stiffness like a horizontal flat shaft, the phenomenon of the so-called
secondary critical speed caused by a gravity of the rotor takes place in the
neighborhood of w=w/2%%. It is, however, not so easy to understand the reason
why only the forced vibration of forward precession appears at the secondary
critical speed. Furthermore, it has been not plainly explained yet that, even
in the rotating shaft system in which the spring constant r vanishes and deflec-
tions and inclinations of the rotor do not couple each other and hence the
deflections are not subject to any influence of the gyroscopic moment, why the
gravity of the rotor acting in the vertical direction (y-direction) causes the
whirling motion of forward precession in xy-plane at the secondary critical speed.

Upon use of the general rule above mentioned, these questions can be made
clear as follows. Since the inequalities da, 47, 46 in shaft stiffness rotate with
the shaft and hence one has

Ao =, SoA=1 (4.21)

Let the external forces in the right hand side of the first and second equations
in Eq. (4.1), i.e, the external forces in x, y directions be Py, Py respectively.

Py=Pcos (wit+B), Py=Psin (wit+p1) (4.22)
By putting P=My, fi=-—n/2, w=0, one has
P,=0, Py = — My, (4.23)

which represents the gravity of the rotor acting vertically in y-direction.
Accordingly, the gravity can be considered as an external force of frequency
wo=0. Thus one has

wo = rw =0, Soe=0. (4.24)
From Egs. (4.21), (4.24), one obtains
py=22~k=2—-0=2, (4.13b)
wi=20— k0 =p0=2 0. (4.16b)
The resonant point is given by Eq. (4.12) as follows:
w=p/v=p/2. (4.12b)

Consequently, the phenomenon of the secondary critical speed can be explained
as follows: “In the neighborhood of the resonant point w=p/2 at which the
frequency wo(=0) of the external force, i.e., the gravity becomes equal to p=
2 do—p=2 w—p, namely, in the neighborhood of the secondary critical speed, the
forced vibration of forward precession having the frequency wo = vw = +2 v takes
place remarkably”.
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By substituting »=2 in Egs. (4. 14), (4.15),
one obtains analytically the secondary critical
speed. As shown in Fig. 4.3, intersecting
points Si, S: at which a straight line w=p/2
(p=+2 w) intersects curves of pi, p. furnish
graphically the secondary critical speeds s,
ws2. At rotating speed ), ws determined by
intersecting points Sj, S; at which a straight
line p=—2 @ crosses curves ps, ps, the phenome-
non of the secondary critical speed does not oc-
cur, because the whirling motion of backward YR
precession with a frequency — 2w cannot :
appear in the neighborhood of the secondary S: !

critical speed. ) :/’,’__\;kp
By putting 2=1, w=0, P=Mg, M:=0 in °\ &

Egs. (4.8), (4.10), one obtains amplitudes and S
amplitude ratios in the neighborhood of the Tolating speed o
secondary critical speed.

Since the relationship p=wc holds in the
rotating shaft system in which the spring
constant 7 becomes equal to zero, the resonant point of the secondary critical
speed is given by w=p/2=wc/2, which is a rotating speed of a half of the major
critical speed we.

It is easily seen from Eq. (4.10a) that, when the rotating inequality takes
its rise in the unsymmetrical rotor, the secondary critical speed does not appear
because all numerators containing wo(=0) vanish.

(=
£
£
£

notural  frequency p

War

F1G. 4.3. p—o diagram.

4.6. The whirl of backward precession of shaft supported by ball bearing™®

Balls in a ball bearing rotate around the center of the inner ring at the
following angular velocity w: which is determined under the condition that the
rolling contact is kept between balls and inner and outer rings:

w1 =Dw/{2(D+d)} =av, (a1 <1/2), (4.25)
where D and d are diameters of inner

ring and ball respectively. It has been X,(ot -Adt)
reported by one of the authors that a

difference in diameter of the balls results
in the anisotropy!® of shaft stiffness Y, (oes i) /
rotating at w; as shown in Fig. 4.4, and AR

s

~

this anisotropy causes the whirl!® of

backward precession of frequency (2 ai— I

1) w in cooperation with unbalances ¢, /

of the rotor. > / ~
The general rule previously mentioned

can elucidate this vibratory phenomenon.

In this case, the angular velocity of
inequality Aw is given by FIG 4.4. A difference in diameter of balls.
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Ao = 0, = oo, S dA=a, (4.26)
) DP=20—p=2a0—p. (4.27)

The frequency wo of disturbance induced by unbalances ¢, v is obviously equal
to the rotating speed w of the shaft.

Wy =KW= w, cok=1 (4.28)
From Egs. (4.26), (4.28), one has

v=2—k=2a —1, (»<0) (4.13¢)
wh=220—ko=vo=(2a;—1) o, (we<0) (4.16 ¢c)

Accordingly, the resonant point is given by
w=p/v=p/(2a~1). (4.12¢)

As is seen in Eq. (4.25), the value of a: is always smaller than 1/2, and hence
p=2a1—1 and v = vw take negative values. It follows that the vibration discussed
in this section is always a whirl of backward precession. In experiments
previously reported, self-aligning double-row ball bearing with «:1=1/2.65 was
used, and hence one got wi=ro=(2a,—1) 0= — 0/4.1.

The forced vibration studies in this section can be explained as follows: “In
the neighborhood of the resonant point w=p/p=p/(2a;~1) at which the frequency
wo(=w) of disturbances induced by unbalances e, r of the rotor becomes equal
to P=2 arw—p, the whirl of backward precession of frequency wo= (2a; — 1w ( <0)
grows up remarkably”.

By substituting »=(2a:~1) in Egs. (4.14), (4.15), one obtains analytically
the resonant point. As shown in Fig. 4.3, intersecting points £, E. at which a
straight line w=p/v [p=ro=(2a:~1) w] intersects curves of pi, ps determine the
resonant points wei, wes.

By putting 2=a1, wo=w, P=Mew’, Mi= (Ip—I)r0?* in Egs. (4.8), (4.10), one
obtains amplitudes and amplitude ratios of vibrations of wt= (2a;—1) 0.

4.7. Conclusions

Obtained conclusions in this chapter may be summarized as follows:

(1) In the rotating shaft system having an anisotropy which rotates at Zw,
the system presents resonant phenomena when the frequency wo of disturbances
becomes nearly equal to p=2iw—p as well as when wo=p.

(2) In such a system, one external force of frequency wo causes two forced
vibrations of frequencies w and wi =2 Aw — wo.

(3) In the resonant state of wo=p, the forced vibration of frequency wo builds
up remarkably larger than that of frequency ws.

(4) In the resonant state of wo=7p, the forced vibration of frequency wi=
2w — ws grows up remarkably larger than that of frequency wo.

(5) When the frequency wo of disturbance is proportional to the angular
velocity o of the shaft, the resonant point, the frequency w, of forced vibration
can be determined analytically even for the general vibratory system with 720.

(6) Upon use of the general rule of (4). elucidated physical meanings can
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be presented to some sorts of vibrations whose cause of occurrence is rather
difficult to understand.

Chapter 5. On Vibrations of a Rotor with Variable Rotating Speed®

5.1. Introduction

There is, in general, the so called “gyroscopic term” in equations of motion
of a rotor, whose magnitude is proportional to an angular velocity o of the rotor.
When the rotating speed » of the rotor fluctuates periodically, equations of
motion of the rotor turn into linear differential equations with variable coeffi-
cients?. In this chapter, effects of these gyroscopic terms, 7.e., the inertia terms
with variable coefficients are investigated. In these systems governed by equa-
tions with variable inertia terms, likewise in a flat shaft system?®, in a rotating
shaft system with an unsymmetrical rotor®® and in a system governed by
Mathieuw’s equation', it is expected that there are unstable regions where
unstable vibrations aggravate with time ¢#. Analytical results in this chapter,
however, show that there is no unstable region in the rotating shaft system
with fluctuations of the angular velocity . It is also found that characteristics
of forced vibrations appearing in such a system similar to those of the system
with unsymmetrical rotor™® are furnished by variable inertia terms. Further-
more, it is pointed out that the variable inertia terms with a frequency »w yield
forced vibrations with frequencies (1+»)w and (1—»)w as well as the frequency w.

5. 2. Equations of motion

First, the procedure to introduce the equations of motion will be briefly ex-
plained. In this section, it is assumed that there is no unbalance in the rotor.
It can be also assumed that lateral vibrations and torsional vibrations are not
coupled, even if torsional vibrations are induced by periodic fluctuations of the
angular velocity w. Accordingly, elastic forces P, Py and moments Mz, Myy of
the shaft acting on the rotor are given by®

Pr= —~ax— 10y, Mty = ~ 15— 50,
} (5.1)

Py= —ay—1l0y, — M= — 71y — 00y

where x, y are deflections of the rotor in x,y directions; 6y, 0, inclination angles
of the rotor in x, y directions; «, 7, 6 spring constants of the shaft.
Although equations of motion for x, y are given by rather simple forms

M= Py, M5 =P, (5.2)

a relatively complicate procedure is needed to obtain equations of motion for
0x, 0y, as explained in the following.

In a fixed coordinate system o-xyz in Fig. 5.1, the z axis is a bearing center
line, the origin o being an equilibrium position of a center of the rotor M(x, ¥)
which moves in the xy plane. Configurations of the rotor are illustrated by
those of a disk, as shown in Fig. 5.1, where MK denotes the line of intersection
of the disk and the xy plane, M-X,Y>Z: consists of three principal axes of the
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F1G. 5.1. Eulerian angles 6, ¢, ¢.

rotor, and the polar moment of inertia I is the principal moment of inertia
about MZ, axis, the diametral moment of inertia I is the principal moment of
inertia about MX. and MY, A coordinate system M-XYZ is parallel to o-xyz,
and MN is a projection of MZ: on the xy plane. Since angles

LZMZ =0, LXMN=¢, LY,MK=¢ (5.3)

are the so called “Eulerian angles”, angular velocities in the system are §, ¢
and ¢, whose directions are MK, MZ and MZ, respectively. As direction cosines
between three principal axes of moment of inertia MX,, MY,, MZ, and MZ-axis
are —sin @ cos ¢, sin 0 sin ¢ and cos § separately®, angular velocities wxs, wy2, and
oz in the directions of the principal axes are as follows:

MX, direction: wx =0 sin¢ — ¢ sin § cos ¢
MY, direction: wy; =46 cos¢+ ¢ sinfsin ¢ (5.4)
MZ, direction: wz, =¢ cosf+ ¢

Since angular momentums in directions MX., MY. and MZ: are Iwx:, Ioy. and

Ipwz1, respectively, the following Euler’s equations furnish time rate of change
of the angular momentums per unit time Hx, Hy: and Hz in these directions:

Hyy = Tary, — (I~ Ip) wyzwz1,
HYZ =Iébyz— (Ip'“[) Wz1Wx2, (5- 5)
Hm = [pd’m - (]— I) Wx2Wys = Ipcbm
Denoting direction cosines of three principal axes MX., MY. and MZ: with
respect to o-xyz as L, b, s} ma, me, ms; mi, #e, #s; time rate of change of the

angular momentums in x, ¥ and z directions as Hx, Hy and H., external moments
acting on the rotor as Mz, M:y and Mz, we get the following relationships:

Hy=Hph+ Hyo+ Hols = My
Hy = Hxomy + Hyay + Hzims = My, (5.6)
H, = Hxym + Hysno+ Hzpi s = Me
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When terms™smaller than the third can be neglected, components 6x, 0y of an
inclination angle 6 of the rotor can be represented by

fr=0cos¢, Oy,=0sing 5.7

By inserting values® of direction cosines /i, /: etc. and Egs. (5.1), (5.4), (5.5),
(5.7) into Egs. (5.2), (5.6), and by dropping terms smaller than the second,
equations of motion of the rotor are obtained as follows:
Ip@ = Mtzy
Mp+ay+7r6y=0

o (5.8)
I(}x“‘f‘]p‘a?(@ﬁy) +7x+60,=0
. d
I, —ngt-(@ﬁx) +ry+06,=0
where O=¢+¢ (5.9)

Since the moment M. in Eq. (5.8) is determined by states of a driver and a
follower of the shaft, ie, of a prime mover and a load on the shaft, it is inde-
pendent of values x, y, 0x, 0y. When My is given, © and & can be determined
from the first equation in Eq. (5.8). Itis assumed here that the angular velocity
6 fluctuates periodically with frequency »w, and is given by

0= w(l—2evcosvuwt) (5.10)

in which ¢ is a small quantity and » is a certain constant. By substituting Eq.
(5.10) into Eq. (5.8), by introducing dimensionless quantities Eq. (1.12) and by
omitting primes, Eq. (5.8) is reduced to

y+y+7‘6y=0;

(et ipwly —2 syipa)—gf (8y cos vwt) + rx+ 805 =0, (5.11)

iy — ipwly+2 eyz'pw%- (8 cos vot) + 7y + 80, =0

5.3. Free vibrations

In this section, a general form of solutions for free vibrations in the system
governed by Eq. (5.8) having variable inertia terms is presented, and further it
is verified that there exists no unstable region in such a system.

When the angular velocity @ pulsates periodically as shown in Eq. (5.10),
free vibrations of frequencies p—w»w, p+ro with small amplitudes of order e, those
of p—2vw, p+2vw with small amplitudes of order ¢ as well as free vibrations
of frequency p can occur. Accordingly free vibrations should be given by
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X COS —. COS

y =8 (pt+B)+ea o (pt+5)+ea'i (p't+RB)
+ezacps(pt+ B +e a"COS(p”t—i— B+ .
(5.12)
gx pCOS (pt-t—ﬁ) Tebcos(pt—l—ﬁ) i eb’COS (pt+B)
¥
Cos(pt+3>+e b"cos(p"t+8)+
where 8 is a phase angle, ... represents small terms of ¢, ¢, ..., and
D=p—vw, P =p+ve, p=p—2v0, P =p+2v0 (5.13)

Since gyroscopic terms are contained in equations of motion, motions of the shaft
are not rectilinear vibrations, but whirling motions. Consequently, a positive
or a negative sign of the frequency means a forward precession whose direction
of whirl is the same as that of the angular velocity o of the shaft or a backward
precession in which the shaft whirls in the opposite direction to that of »®. It
should be noticed that free vibrations of frequencies p—rw, p+vw can appear but
those of vw—p, —p—rw do not exist in the system 2.

Substituting Eq. (5.12) into Eq. (5.11), and dropping small terms of &, &,

., we get
Ha+ 10 =0, ya+Gb—vipwp(b+0') =0 l
Ha+vb=0, —vipopb~+7a+Gb =0 (5.14)
H'a'+ ' =0, —vipap'db+7rad+Gb' =0 I
in which
H=1-p', H=1-7, H'=1-p" } (5. 15)
G=0+ipwp—p G=0+ipwd—7, G =05+ irup' —p" )
Eliminating amplitudes a, b etc. from Eq. (5.14) and putting
F(P) = HG — 1" = (1= ") (8 + ipop — p*) — 7%, } (5.16)
T=F@), f1=Fp", ¢=0"i}0"pHDHS + p' H']) '
we get the following frequency equation:
D= fffl—eo=0 (5.17)

A natural frequency vs. rotating speed diagram, i.e., a p—w diagram obtained
from fff'=0, which is a frequency equation when e=0, is illustrated in Fig. 5. 2.
When 6 = constant, the frequency equation is reduced to f=09 whose roots pi,
b2, Ps, pa are shown by full line curves in Fig. 5.2 where curves f=0 and f'=0
are represented by broken and dotted line separately. Since the relationships
Eq. (1.20) and
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(i) 3 = s 4 = " P, t =0
D= by hi=mh 2t o } (5.18)

(i) D= ipw, po—>1, P30, pi—>—1, as w—

can be always satisfied®9, all p—w diagrams of the system consisting of the
elastic shaft and the rotor are similar to Fig. 5.2, and the number of the inter-
sections 4, A', ..., F, F/, between f=0, =0 and /=0, /=0 is always twelve.

If there is an unstable region in which
unstable vibrations aggravate, it should have
a width of order ¢, and it appears in the
neighborhood of the intersecting points A4,
..., F'®  In the neighborhood of the inter-
section C of two curves f=0 and /=0, there
is an unstable region when curves =0 take
forms as Fig. 5.3 (a), and no unstable region
in the case of Fig. 5.3 (b)™®®. In the nei-
ghborhood of C, the relations =0, 7=0 are
satisfied, and accordingly ¢=v"ij0’ppHIHSf,
and Eq. (5.17) reduces to

O = fIff— i pHHE) =0 (5.17a)

T
Unstable

F=0: 4=, F=0: (+)(=), f'=0: (@) (B)
[+10—1 FI1G. 5.3. @=0 curves.

F1G. 5.2. p—ow diagram.

provided small terms of order ¢ can be neglected. Since the curves #=0 exist
only in the region of the p—w plane in which the sign of /7 is the same as that
of pPHH, then ff-pPHH takes a positive value in the upper and lower regions
A, B in Fig. 5.3 (b), and it is negative in the left and right hand side regions
a, b in Fig. 5.3 (b). Accordingly, when ppHH>0, the positive value of f/ in the
regions A, B in Fig. 5.3 (b) changing its magnitude along the vertical chain
N
e é g ) >0

line dd takes its minimum value zero at the point C, and accordingly
o)

op* -
maximum value zero at C, thus EAV/R) <0 and ppHH (f{ ) >0 are obtained.

ap* op
From the above discussion, it can be concluded that in the neighborhood of the

>0 at C. When pPH 7<0, the negative value of ff takes its
aZ

and ppHH
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intersection C of two curves f=0 and f =0, there is no unstable region under

. — 2 ) . . DT _,of of
the condition ppHH o’ >(0. Since the relationship o Zap o holds

at C, the above condition can be rewritten as follows:

of of
pPHH = 55 op >0 (5.19a)
A similar procedure verifies that there exists no unstable region in the neigh-
borhood of the intersection of two curves f=0 and f'=0 under the condition

) of of"
ppHH’ap 55 >0 (5.19b)

It will be discussed whether the conditions (5.19a) and (5.19b) are satisfied
or not in the neighborhood of the intersections 4, B, ... in Fig. 5.2. Values of
f, F and f' on the p—w plane change their signs on the curves f=0, /=0 and
f'=0 respectively. Signs of f, £ and f' are illustrated by notations +, —, (+),
(=), [+1, [—], separately in Fig. 5.2. For instance, at the intersection 4 of
two curves f=0 and f=0, relationships 2f/op>0, 97 /op<0 hold, which can be
easily obtained from Fig. 5.2. Further, it is seen from Eq. (5.18) that relations
p=p1>0, P=pi—vo=p:<0, H=1—p;<0 and H=1-P"=1-pi<0 are satisfied at
the point A. Consequently, it can be found that condition Eq. (5.19a) holds at
A and there is no unstable region in the neighborhood of A. Similar discussion
as given in Table 5.1 leads to the conclusion that an unstable region does not
develop in the neighborhoods of all intersecting points A4, 4/, ..., F, F' in Fig.
5.2. Thus it can be concluded that, although equations of motion belong to
differential equations with variable coeflicients, unstable lateral vibrations cannot
appear in the rotating shaft system whose angular velocity fluctuates periodically
with frequency rw.

As seen in Fig. 5.2, there are many intersections of two curves F=0 and
J/'=0. In the neighborhood of these intersections, unstable regions with the
width of order ¢* may appear. These small unstable regions, however, are not
discussed in the present paper.

TABLE 5.1. Signs at the Intersections A4, A, ..., F, F’

= = | & |9 of of , R KA ) S 4

b\ b\ H B |G oy ppHH G5 5y b H | H oy A Gy
At — =] =14+ - + Al =+ — | = — | + +
Bi+ |~ | =+ + + + B | = |4+ 4+~ + |+ +
Cl+ |+ | =1+ |+~ + S+ i+ |+ |-+ +
D4+ |~ +|—|—- + Dl — |+ =+~ - +
Ejl+ |~ |+ 1+ + + Eri =1+ |+ + + - +
Fl— =4+ — 1+ |- + Ffri— == |+]—|+ +

5.4, Forced vibrations

5.4.1. Forced vibrations induced by an external force of a frequency wo

Since all vibrations appearing in the rotating shaft are whirling motions, an
external force represented by a rotating vector like a centrifugal force should
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be considered as one elementary force®. When there are many external forces,
the principle of superposition may be adopted. When the external force of a
frequency wo acts on the system, equations of motion are given by

£ x+ 705 = Pcos (ot + ')
J+y+ 70y =Psin (it + ")

Gutipwly—2 syipw% (0y cos pwrt) + yx+ 00 = M: cos {wot + B") (5.20)

Oy —ipwls+ 2 eyiparg? (0 cosvwt) + 79+ 60y = M; sin (wof + )

in which §’ and B” are phase angles. Forced vibrations of the system governed
by Eq. (5.20) can be expressed by

N e > (oot + 1) + sL’P (wotT B) +eEr g o it + )
+ Bugp” (it + B) + Bx o (@t + B") + eEygﬁf (it +8") + - - -
(5.21)
0 = Fe g (ant + B) -+ eF e o (it + §) + eFb 0> ol + §)
y
+ F 508 > (wof + B") + eFM > (@it + 1) + eFy COS( ot + ") + -
where- - - represents small terms of order ¢, ¢, ..., and
Do = wo— pw, W= wy+ vw (5.22)

It should be noticed that, although only vibration of a frequency 2 w—wo can
appear™ in the flat shaft system and in the shaft system carrying an unsym-
metrical rotor, in the system governed by Eq. (5.20) forced vibrations of wo—2 w
as well as wo+2 w can take place when »=2. In Eq. (5.21), amplitudes E», E»
and L, are those of vibrations of the deflections with frequencies o, @y and w}
respectively, which are caused by the external force P; and Ew, Ex and E’,
are amplitudes of forced vibrations of the deflections induced by the moment ;.
Amplitudes Fs, Fr, Fr and Fy, Fu, Fl are those of vibrations of the inclination

angles 0z, 0y. Inserting Eq. (5.21) into Eq. (5. 20), these amplitudes are determined
as follows:

Ep = P{Gofof s — %5 o’ ol @oHo fo + wo Hi f5) } [ D,
Ep = Pur*ipwmofs/ D, Eb=Por’ipwwhfolD,

Fp= — P{fofo/D Fp= — PoyipwwcHofi] D,

Fh= — Poripows Hyfo/ D, Ex= — M:1fofo/D, (5.23)
Ey= —M; vripwioH, /D, Eb=—M: vripwosHy fol D,
Fy =Mz Hofof3/ D, Fyu =M vipoosHIlofo/D,

Fly = My vipowy HyHy fo/ D
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where D = fofof s — v ij0 o Hy (@ H o f o + wh HbFo) (5.24)
Ho:].—a)g, E{):l‘*&-)g, H{,=1—-w62
Go =& +ipwwo — 0y, Go=08+ ipww,— @y, Go=0-+ipw0l— wi (5.25)

fo=F(w), fo=F (o), fo=f"(w0)

From Eq. (5.23), amplitude ratios between vibration of frequency we—rw and
wo, and between vibration of frequency we+vw and wo are derived as follows:

¢Ep _ ev7 i p0@0 o

Ep Gofofb— v ijw’ wi @o Hof o+ wbHofo)

— — . _ - ) (5.26a)
eFp _ el y _ SI/Zpa)lT?o[fo eln __&vip wwoH,

Fp Fy fo " Eu Jo
eE ) . evr’ip wwh fo _

EP’ Gofofo— ?Zpiif:a)zwo(&)'oﬁofé + wé’Héf;o) (5.26 D)
eFp  eFly  evipows Hy  eEYy _ evipwwo Hy

Fp ™ Fx  fi ' Ex  fi

It is seen from Eq. (5.24) that the relations fo=0, fo=0, fi=0, ie, w=p; (=1, 2,
3, 4), wo=pi-+vw (@o=pi), wo=pi—vw (we=p;) hold, the system presents the resonant
condition because of D=0. Accordingly, when the frequency we becomes nearly
equal to pi+vw, pi—vw as well as p;, forced vibrations occur and the resonant
phenomena take place.

Furthermore, it can be seen from Egs. (5.26a), (5.26b) that, for instance,
Fo=0, ie, wo=pi+ro results in large amplitude ratios in Eq. (5.26 a), and hence
forced vibrations of the frequency wo=wo—vw=p: develop and their amplitudes
become larger than those of the frequency wo. When fo=0, ie, wospi—pw holds,
magnitudes of amplitude ratios given by Eq. (5.26 b) take large values, which
results in larger amplitudes of vibration with frequency wi= w;-+vw=p; than
those of wo. Since at the resonance of f4=0, i.e, wo=pi, all amplitude ratios in
Egs. (5.26a), (5.26b) take small values of order ¢, forced vibrations occur with
the same fregency wo as the frequency of the external force. From the above
discussion, it can be concluded that in the resonant vibrations of frequencies
wo= pi-+vw and wo= pi—pw, forced vibrations of wox pi and w): pi become remarkably
larger, their frequencies, i.e., @), w; being apparently independent of the frequency
wo of the external force.

5.4.2. Forced vibrations caused by unbalances of the rotor

When an eccentricity e and a dynamic unbalance r exist at the angular
position ¢ and » respectively, which are angles measured from the axis MY, in
Fig. 5.1, coordinates of the gravitational center xg, ye, inclination angles of the
principal axis of moment of inertia 6., 0, are expressed by

Xg_%X_, COS
="+ ¢

= o (6+8), ﬁx‘=§;+rcos @+ (5.27)

6_\;1 sin

provided that terms of &, ¢' ... are neglected. In Eq. (5.27), the angle @ is
given by
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O=0+¢+nr/2 (5.28)
From Egs. (5.9), (5.10), the angle ¢+¢ is représented by

O+ ¢=ot—2esinvot + C (5.29)

where C: is an arbitrary constant determined by initial conditions. The eccen-
tricity ¢ in Eq. (5.27) is expressed by a dimensionless quantity, and the actual
value of eccentricity is given by evI/3. By being replaced %, y, 0x and 6y in
inertia terms by xe, ya, 0x and 6, in Eq. (5.11), respectively, the following equa-
tions of motion for the rotor with unbalances ¢ and ¢ can be obtained:

5C.G+x+7‘ﬁx:07
,;}5@+y+rﬁy:0)

T+ ipoly =2 evip0-5- (ﬁ},1 cos pt) + 7x+ 80, = 0, (5.30)

fiy1 — ip @l -+ 2 evip w% (8. cOS k) + 1y +60,=0

When there exist unbalances ¢ and z, the moments of inertia ip(Ip) and 1(I)
must be considered as the principal moments of inertia about the principal axes
passing through the gravitational center. By substituting Egs. (5.27), (5.28),
(5.29) into Eq. (5.30) and by rejecting small quantities of order &%, Eq. (5.30)
is rewritten as follows:

E+ x4 70.=ev’[cos (ot +&) +e(1—1v)cos {(1—p)wt+&}
+e(1+p)cos{(1+p) wt+£")],

F+y-+rly = ew’ [sin (ot + &) +e(1—)*sin {(1—») ot + &'}
+e(1+ )" sin {(1+ v) wt+E"}],

(}"x*%‘i‘p@f}y 2 SI/ZpCO (03} Ccos D(Dt) +rx+ 6ﬁx

(5.31)
=7’ (1 —ip)[cos &wt+7)’) +e(l—»)cos{(1—w)wt+7'}
+e(1+v)2cos{(1+v) wt+7"}],

iy —ipaliy -+ 2 eylpw (ﬁx cos pwt) + 1y -+ 80y
=m"(1—z‘p)[sin (mt+n')+e(1—y)2sin((1—«v) wt 7'}
+e(1+)sin {(1+2) ot +7"}]
in which
El $+C1 7(/2, E"=$+C1~n/2
} (5.32)
9 =9+Ci+n/2, 9'=9+C~n/2

Equation (5.31) shows that external forces of order ¢ with frequencies (1—2)w
and (1+4+»)w are induced by the fluctuation of the rotating speed of the frequency
vo. Since all lateral vibrations of the rotating shaft are whirling motions, except
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for shaft systems in which the spring constant r vanishes and hence deflections
and inclinations of the rotor are not coupled, a mode of vibration of the frequency
(»—1) @ is not the same as that of the frequency (1—»)w, and further peaks of
forced vibrations of frequencies (r—1)w and (1—»)w at the resonance appear
separately. For instance, in the rotating shaft driven by a universal joint, forced
vibrations of —w and 43w take place because of »=2, and those of +w and —3 w
do not occur. In this case, peaks of 4+ and —w, peaks of +3 w and —3 w appear
separately.

Ratios of magnitudes of the external forces of frequencies w, (1—») @ and
(1+2)w are 1 : e(1—p)?: e(1+»)? in the first and second equations as well as in
the third and fourth equations of Eq. (5.31). If there is no variable inertia
term in the third and fourth equations of Eq. (5.30), these ratios of magnitudes
of the external forces in the first and second equations of Eq. (5.31) are different
from those in the third and fourth equations. It is more clearly seen from the
following fact that equations of motion must be represented by Eq. (5.30) and

variable inertia terms must be given by — 2 svipa)—ad? (05, cosvot) and +2evipw

—57(0;«1 cos pwt) : Since all external forces of w, (1—») w and (1+4») © in the third

and fourth equations of Eq. (5.31) have a common coefficient of (1—ip), they
vanish for the shaft system in which the shape of the rotor is a sphere and hence
ip is equal to unity. From this it follows that there is no external force induced
by the dynamic unbalance r, because there must exist no dynamic unbalance in
the sphere. If there were no variable inertia term in Eq. (5.30), external forces
in the third and fourth equations of Eq. (5.31) would not vanish even if ip=1.
This is followed by a contradictory fact that external forces induced by the
dynamic unbalance r appears in the system consisting of the sphere without the
dynamic unbalance r.

It is natural? that forced vibrations of frequencies o, (1—»)w and (1+»)w
take place because of an existence of external forces of w, (1—p)w and (1+v)w.
However it should be noticed that, even if one assumes that only one external
force of o exists, three forced vibrations of w, (I1—»)w and (1+»)w induced by
variable inertia terms can appear. Accordingly it can be concluded that forced
vibrations of frequencies (1—p)w and (1+»)w are introduced by (i) external
forces of frequencies (1—»)w and (1+»)w which are induced by the fluctuation
of the rotating velocity of the frequency vw, and (ii) variable inertia terms.

5.5, Conclusions

Conclusions obtained from the above discussion can be summarized as follows:

(1) When the angular velocity of the rotating shaft fluctuates periodically
with the frequency vw, as shown in Eq. (5.10), there are variable inertia terms

—~ 2evipw 'gf'(ﬁy cos vwt) and 2 eyz'pw-d% (0cos vwt) in the gyroscopic terms of

equations of motion.

(2) Although equations of motion belong to differential equations with variable
coefficients when the angular velocity pulsates periodically, unstable vibration
does not take place, appearance of which is usually expected.

(3) There exist only free vibrations of pi—vw and pi+vw as well as p;. Those
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of po—p; and —pi—vw do not appear.

(4) The external force with the frequency wo causes forced vibrations of
frequencies wo~vw, wotvw as well as wo. Forced vibrations of vw—ws, —wo—ro,
however, do not occur.

(5) When wos=pi-+rveo and wos=pi—vo as well as wo=p;(p;i=natural frequencies),
resonance phenomena take place.

(6) When wo= pi, forced vibrations of we aggravate.

(7) When wo=pi-+vw and wo= pi—vow forced vibrations of Go=wo—vw, wy=wo+rw
build up remarkably, their frequencies being apparently independent of wo.

(8) External forces of (1—») w and (1+»)w are induced by unbalances ¢ and
- of the rotor. Those of (»—1)w and — (1+2) » do not appear.

(9) Forced vibrations of frequencies (1—»)w and (14»)w are caused both
by the fact (8) and by variable inertia terms in equations of motion.
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