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General Introduction

In a vibratory system having multiple degree-of-freedom and under parametric
excitation of frequency w, unstable vibrations of “summed and differential types”
having frequencies w: (5p:), w; (5p;) satisfying the relation witwj=w take place
with ordinary unstable vibrations?"® of frequency w appearing in the neighborhood
of twice natural frequencies, i.e., w=2p,, when o becomes nearly equal to sum
of and difference between two natural frequencies bi, Djy L6, o=pitpi=pi.

Some studies®™'® only on the possibility of occurrence of these kinds of
unstable vibrations have been made, and it seems that both detailed proposition
of solutions and discussions of characteristics of these kinds of vibrations have
not been carried out. In the present paper, through a similar procedure to
Kryloff and Bogoliuboff’s method, properties of these kinds of vibrations, i.e.,
solutions, frequencies, phase angles, amplitude ratios between two vibrations,
negative damping coefficients, location and width of unstable region in which two
unstable vibrations of frequencies w; and w; build up, and the relation between
initial conditions and solutions of vibrations are studied in detail, Further,
analytical results are compared with those of experiment and analog computer.

The first approximate analysis of vibrations of “summed and differential
types” in vibratory system without and with damping are treated in Chapters I
and II respectively. In Chapter III vibrations of “summed and differential types
of higher order” appearing at w= (pi+p,)/s=pij/s (s=2,3,---.) are discussed.
Chapter IV is concerned with vibrations of “summed and differential types” in
non-linear vibratory system. In Chapter V, forced vibrations of linear vibratory
system with one degree-of-freedom under parametric excitation are discussed.

Chapter 1. Vibrations of ‘““summed and differential types”’
without damping under parametric excitation®

1.1. Introduction

In the present chapter, vibrations of the so-called “summed and differential
types” in a linear vibratory system of multiple degree-of-freedom without damping
and under parametric excitation are treated, and analytical discussion of the first
approximate solutions are performed, in which higher powers of small quantities
are neglected. These vibrations consist of two vibrations having frequencies w;
and w; which satisfy the following relations:

wi = wj=w, 0;=pi, w;=pj, (1.1

where o is frequency of parametric excitation and p;, pjlisy; pi>ps i,7=1,2,
<« , h; h=number of degree of freedom) are two natural frequencies of the
system. Since Eq. (1.1) results in a relation w=p;+p,, it is seen that vibrations
of summed and differential types take place when a frequency o of parametric
excitation becomes nearly equal to the resonant frequency

bij = pi = pj. (1.2)

Characteristics of these vibrations are studied theoretically and experimentally,
and it is pointed out that solutions of the first approximation obtained through
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rather simple analysis can grasp sufficiently these vibratory phenomena. Further,
it is cleared up that unstable vibrations can occur only in summed type and not
in differential type.

1. 2. Equation of motion and preliminary analysis
Vibratory system of % degree-of-freedom without damping and under parame-
tric excitation of frequency o is governed by the following equation of motions:

h
Z (aln;:'\fm+ Ct!mxm) = EQXI cos wt. (l: 1, 2, ", ) (1.3)
m=1
In a dynamic system, the left side of Eq. (1.3) are terms of inertia and spring
force respectively, and the right side represents parametric excitation. In Eq.
(1.3) magnitude of parametric excitation ¢} is assumed to be small quantity.
Frequency equation of the system is

I (“lm—'pzalm) l =0, (1.4)

where p is natural frequency. Let cofactor of this determinant when p=pm be
Am,»s and putting

i
dim = Am, lm/\/ E Anr A, om A, rms (1. 5)

n, r

then transformation from generalized coordinate x; into normal coordinate X is
performed by

m=1

i
x!: Edlm}{m» (lz 1& 2? c vt 3 h)' (1.6)

Substitution of Eq. (1.6) into Eq. (1.3) attains the following equation of motion
expressed by normal coordinate:

h

X+ X1 = > etmXon COS ok, (1.7)
m=1
where
h
&m = Ednldnmezt = &ml. (18)

n=1
The sth and jth equations of Eq. (1.7) can be rewritten as

h

Xt ol Xi= (0~ DX+ > eimXmcos ot = fi,
" ' (1.9)

X+ 0iXj = (0} = p)) X; + Z,leijm cos wt = fj.
When frequencies w;, w; satisfy the relations of Eq. (1.1), all terms in the right
side of Eq. (1.9), i.e, f; and f; become small quantities, and hence approximate
analysis can be carried out. In this paper, a first approximate analysis through
the similar procedure to Kryloff and Bogoliuboff’'s method! is employed. Ac-
cordingly, the first step consists in taking X;,; and X ; in the following forms
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respectively:
Xij=ai;8in (wi,jt+¢:,7), Xi,j = ai,jwi, jcos (wi jt+©; ), (1.10)

and considering amplitudes a;,; and phase angles ¢i,; in Eq. (1.10) as functions
of time ¢ Differentiation of the first equation of Eq. (1.10) results in

Xij = dijsin (st + i) + ai j(wij -+ ¢1,5) cos (wi; £+ ¢:7),
and substitution of X;; in Eq. (1.10) into the above equation leads to

@i, sin (wi, it + €5,7) + a;, ;G4 j €os (wi it + ¢ ;) = (1.11)

Differentiating the second equation of Eq. (1.10) and inserting it into Eq. (1.9),
we get

@i,j 0,7 CO8 (@i, 5t + ¥i,j) — ai,j wi,5 %1, 8in (wi, it + €i ) = fi ;. (1.12)

Through Egs. (1.11), (1.12), the following differential equations are derived

&, i f L cos (wi it + 9i;),
f (1.13)
(,bi,i: - . ;ai Sln(w;;t%—%;)

Applying an approximate procedure of “average method” to Eq. (1.13), that is,
substituting Egs. (1.9), (1.10) into f;,; of the right side of Eq. (1.13) and eli-
minating all terms except for constant terms, Eq. (1.13) is rewritten as follows:

ai,j = ZL(Z]-;- sin (¢;,: + ¢; ),
N o (1.14)
Gij= — w"’zjwiﬁ“ * 42’:%;] cos (¢j,i + ¢i,j).
An assumption that solutions of vibrations are normal solutions® leads to
‘ O;=¢;=0. (1.15)
Consequently Eq. (1.14) is reduced to
Gi = = —2Y gin Cij, a5 = Z’:j’ sin ¢y, (1.16)
24i= «x 8{;‘% cos ¢;j, 245 = &j - COS @ij, (1.17)
in which
Gidk O5 =i, whj—pii=di;. (1.18)

In Egs. (1.1), (1.2), (1.14), (1.16), (1.17) and (1.18), the upper and lower signs
of + are adopted for vibrations of summed and differential types severally. In
Eq. (1.18), ¢i; is phase angle and detunings 4;,; are to be small quantities because
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of Eq. (1.1).

1. 3. Vibrations of summed lype
Referring the following relations given from Eq. (1.17)

cos’ ¢ = 4 4; 4;/ <, (1.19)
2 2 2
S il S ensl @) o G A didi e
16 wi wj S’ ¢ij = 16 wi w5 (1—cos ¢ij) = 15 wiw; (1.20)

and adopting the upper sign of + in Eq. (1.16), we have
di = plai, dj=pa, (1.21)
which leads to
aij=Aije™". (1.22)

Inserting Eq. (1.22) into Eq. (1.16), amplitude ratio for two vibrations of fre-
quencies »; and w; is given as follows:

ailaj=Ail Aj =V wj/oi. (1.23)

Although we have ai/a;=Ai/A;=+Jwj]w:, the upper sign -+ is employed here,
because difference between both signs can be canceled by difference of +z in ¢ij.
Substituting Eq. (1.23) into Eq. (1.17) in which the upper sign of = is adopted,
we have

dif 4j = (0} = ph [/ (0} — p3) = wil 0j, (1.24)
and from Eq. (1.24) and the relation of w=wi+e;, a cubic equation determining
frequencies w; and w; is given as follows:

2 ol j =3 woi j+ (" — pi— p) wij+phjo=0. (1.25)

So far as a first approximation, through Egs. (1.2), (1.18), (1.24) we obtain the
following approximate equations by which ; and »; can be determined more
easily than by Eq. (1.25)
wi,j = pi,i + Viil2, (1.26)
in which
Vij = o — (pi+pi) = o — pij. (1.27)

Similar process with the above furnish approximate values of detunings 4, ;,
phase angle ¢;; and negative damping coefficient u as follows:

4i,j = pi, i Vij, (1.28)
cos ¢ij = Vii/ Eij, (1.29)
p=VE; - V5/2, (1.30)

where
Eij = sij/ (2Vpi ). (1.31)
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1.3.1. Vibrations of summed type within unstable region
When the frequency o of parametric excitation comes near to the resonant
frequency pi;, and detunings 4;,; and V,; become so small that the relation

;24 4 4520, de, EL=VY (1.32)

holds, conditions of 0<cos? vij=1, 1z8in® ¢;;=0 and 4*=0 are satisfied as seen from
Egs. (1.19), (1.20) or Egs. (1.29), (1.30) and both vij and u become real numbers,
Denoting ¢;; with a value between 0 and = as ¢;;, from Eq. (1.29), we have

cos ¢ij = Vii/| Eij . (1.33)

When E;i;>0, +¢i; and —¢;; are adopted for + u¢ and —pt in Eq. (1.22) separately,
and vice versa when E;;<0, Through Egs. (1.10), (1.18), (1.22), (1.23), and
(1.33), solutions for X;, X, are given as follows:

Xi= Ae* sin (it + ¢;) + Be ™™ sin (wit+ o7), ] 1 30)
Xi=Voijwi{ Ae" sin (w;t = Gij — ¢i) -+ Be ™™ sin (wjt T ¢ — ) }, J{ -
in which the upper and lower signs correspond to conditions Ei;>0 and E;;<0
respectively, and A4, B, ¢i, ¢; are all arbitrary constants determined by initial
conditions. Once w or V;, is given, frequencies w; and wj, negative damping
coefficient 2 and phase angle ¢;; are given by Eq. (1.26), Eq. (1.30) and Eaq.
(1.33) severally, thus the solutions are settled. It should be noticed that both
unstable vibrations of frequencies w; and w,; have a common negative damping
coefficient .
By adoption of equal sign in Eq. (1.32) or putting £=0 in Eq. (1. 30), critical
frequencies we1, we: or critical detunings Vi, V. which decide boundaries between
stable and unstable regions are derived as follows:

ok | Byl 0% = x| Byl, (1.35)

in which the upper and lower signs are used for an upper boundary we:, V.:and
a lower boundary wc:, Ve. separately. As seen in Eq. (1.33), when E:;;>0 phase
angle ¢;; takes values =, 7/2 and 0 at w=we, Dij, wer respectively, and when
Ei;<0,0,7/2, n.

It is seen from the above discussion that when the frequency o of parametric
excitation comes near the resonant frequency p;; (=pi+p,;) and takes a certain
value between critical frequencies wc; and we., two vibrations of frequencies
wi{=pi) and w;j(=p;) build up simultaneously and thus unstable vibrations of
summed type take place. In the system with % degree-of-freedom, there are
h(h—1)/2 unstable regions of unstable vibrations of summed type.

Incidentally, analysis for ordinary unstable vibrations appearing in the neigh-
borhood of w=2p,(r=1,2,---, k) is discussed here. Through a similar procedure
with the above mentioned, we obtain the following equations of motion in place
of Egs. (1.16), (1.17):

ar = (errar/20)SIn2 ¢, & —4p}=2¢,c082¢,, (1.36)

which leads to
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X, = Ae*"* sin (0t/2 = ¢) + Be ™" sin (0t/2F ¢0),
(the upper and lower signs of = correspond to e,>0 and
err <0 separately)

pr =N err /207 = V}/2, (Vp=0—2Dr)

082 ¢y =2prVrlerr,  (m/2Z¢r20)

wer=2pr+ ler /207, we2=2pr— ler|/20r.

(1.37)

Results of Eq. (1.37) coincide with those of one degree-of-freedom system.

1.3.2. Vibrations of summed type in stable region
When o goes far off from p;; and passes wci, wce, L., the relation

e, <4 didj, ie. E} <V (1.32 2)

is held, ¢:;; and x can be not real because of cos?¢;;>1, sin’ ¢ij<0 and p*<0, as
seen through Egs. (1.19), (1.20). Putting

V V= — =4 didi— &)/ (16 wiw)) =~}£ (VL —Eij >0 (1.20a)
leads to
ai,; = Aije™, ((=V-1) (1.22a)
sin ¢;; = =+ 4 ivvowi 0/ & = 2 v/ Eij, (1.38)
and

Xi= Asin (w;+p) I+ Beos (wi+v)t+Csin (wi—v)t+ Dcos (w;—v) 1,
X;=A'sin (wj — v) ¢+ B’ cos (wj —») ¢+ C'sin (wj + p)t+ D' cos (wj+v)t

:wElE}\ C%[(Vij*%‘z W){A sin (wj — ») t — Bcos (wj — ») t}
+ (Vis —2p){Csin (wj +v)t— Dcos (wj+v)t1],
(1.34a)

where A, B, C and D are all arbitrary constants decided by initial conditions.
As represented in Eq. (1.34a), in stable region (o> we1, w<we:) free vibrations
with frequencies i, j+» take place and there is no unstable vibration. Observing
Eq. (1.34 a), it is seen that two vibrations of frequencies wi+» and wj—» as well
as wi—p and w,+v make a pair, and regardless of » a sum of frequencies in pair
is still equal to w=wi+w;. Further it is noticeable that amplitude ratios between
two vibrations making a pair are fixed independently of arbitrary constants, z.e.,
initial conditions, as shown in Eq. (1.34a) or the following equations:

\/AW B |4 | _ |B | _ !Et']'|
¢fii€z~[Aq'“lBﬂ"Vw#mﬂvﬁ+2”V L (1.39)
VoD Icl D] | E|

VCI+D™ TN T DN T Naifoi|Vi—2»]’ J

Through the similar analysis with the above, we find solution for ordinary stable
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vibrations in the neighborhood of w=2p, as follows:

sz A sin (CO/2+ l}r)t"E‘BCOS ((0/2+yr\)t
+ Asin{(w/2 —v,)t~ Bcos (w/2~v,)t, (1.37a)

Furthermore, it can be concluded that unstable vibrations of summed type
of higher order in the neighborhood of w=(pi+p;)/s (s=2,8,---) as well as
ordinary unstable vibrations of higher order do not appear, in so far as a first
approximation (see Chapter III).

1.4. Vibrations of differential type
Adopting the lower sign in Egs. (1.16), (1.17), we have

Gi,j= — p'a;j, (1.21B)
ai,j = Ai,je™. (1.22Db)

By a similar procedure with summed type, we get the following relations:

aifaj= Ai/Aj=Nwiloi, (1.23b)
dif dj = (0} = pD (w0} — p}) = — wil s, (1.24 1)
20)33-—3@@%—%—(wz—p%p})wﬁp?w:o, (1.25D)
2 0} + 3 wwj+ (0" — p} = pH wj — pjw =0,

wi =pi+Vij/2, oj=pi—Vi/2, (1.26b)
Vij = 0= (pi = pi) = © — pij, (1.27b)
di=piVij, dj= —p;Vij, (1.28b)
p=VE,+Vi/2. (1.30b)

Referring that 4 is always a real number as shown in Eq. (1.30b) and that ¢;;
is not real and given by

cos ¢ij = iVij/ Eij, (1.29b)
solutions of differential type are written as follows:

Xi=Asin (wi+p)t+ Bceos (wi+ p) i+ Csin (wi— p) t+ D cos (wi— u) £,
Xj=A'sin (wj+ p)t+ B'cos (wj+ p)t+ C'sin (wj— @) i+ D' cos (wj— p)t

1
Eij;

/QE(V,‘;—}—ZH)(A sin (wj+ )¢+ B cos (wj-+ p)t}
f\( wj

+ (Vis — 2 w){Csin (w; ~ p)t+ Dcos {wj ~ u) 1],
(1.34b)

Eq. (1.34b) is similar to Eq. (1.34a) and there is no unstable vibration of dif-
ferential type. In Eq. (1.34b), two vibrations of frequencies wi+x and w;+p as
well as w;—z and w;—p make a pair, and a difference of frequencies in pair is
still equal to w=w;—wj, and the amplitude ratios are given by
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¢£2+§7_ [A | _ |B] - | Ei;|

VAREB® T AT T Bl T Noilw; 1V =2l 20 b)
VCED* ¢l ID| _ | Eis e
VC2xDp™= T ¢ T D T VoilwilVi+2ul’

It is concluded that, in so far as a first approximation, no unstable vibration of
differential type of higher order in the neighborhood of w= (pi—p;)/s (s=2,3,-+*)
can appear (see Chapter III).

1.5. Verification of analytical vesults through experiments and analog computer

In this section, experiments and calculations by analog computer are performed
for vibrations of summed and differential type
which take place in a vibratory system of double
pendulums with two degree-of-freedom as shown
% Fig. 1.1, where the first and second pendulums of

I lengthes [/, I, and mass mu, m., are supported at
XK\ points Bi, Be; 6, I, are moments of inertia about
\

B

supporting points B:, B: and b, b, are distances
between B: and gravitational center G: and be-
tween B, and G, respectively; there are springs
having spring constants % and & at ends of both
pendulums. When the supporting point B vibrates
vertically with small amplitude ¢ and frequency
o, parametric excitation e cos of is induced and
the system shown in Fig. 1.1 is governed by Eq.
(1.3). If only number of degrees of freedom #,
suffixs 7 and j are replaced by 2, I and 2 separa-
tely, all results obtained up to now can be applied
for this system. Coefficients in Eq. (1.3) for this
system are given as follows:

F1G. 1.1. Vibratory system
of double pendulum.

au:L—l-le?, Qo =Gy = Mo 1Dy,  Qn =1,
o = (kl—i‘kz) li"l‘ (m1b1+7%2[1)g, a1 = Aoy =kzlxlz,

. , . (1.40)
@y =kols+ mabrg, e =ew (mb + maly),

& = ew’ms by,
where ¢ is gravitational acceleration. Thus frequency equation (1.4) reduces to
(anagz - aﬁz)pd‘ - (au oy —+ Qop 1) — 2 727 0(12)}52 -+ (Cfn Qg9 = afz) = Q. (1. 4-1)

1.5.1. Experimental apparatus and block diagram of analog computer
Experiment are carried out by experimental apparatus shown in Fig. 1.2.
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[ o

(30%)

§ tiooY

(304

=
- @ - 00: p12/1200 01: p22/1200
@ 02: 25e11/(3 ew?) 03: 25¢612/(3 ew?)
] @ 04: 25¢&01/(3 ew?) 05: 25¢22/( 3 ew?)
#{@D 06: initial condition 07: initial condition
P 10: 0.1 14: (0/200)2
é @ 15: w/10 16: /10
17: ¢
F1G. 1.2. Experimental apparatus. F1G. 1.3. Block diagram of analog com-

puter (SC=sign changer).

Through two stepless transmissions @, @, rubber coupling @, pulleies @, @ and
shaft @, rotation of motor @ is transmitted to rotor ® which consists of eccentric
shaft @®. Eccentricity ¢ of shaft ® can be changed by screw (@. Rotation of
the eccentric shaft ® is transformed to vertical rectilinear vibration e cos wt of
supporting point B; of the first pendulum @ through bearing &), joint @ and
guide ®. Further, on both pendulum ends with mass @, @), coil springs @), &)
are attached in order to adjust magnitude of natural frequencies of the system,
and horizontal motions of steel edges @, @ at the ends of the first and second
pendulums are recorded optically on oscillograph paper, thus vibrations referring
to generalized coordinates x1, a2 are obtained experimentally. Dimensions of this
xperimental apparatus are as follows:

mig=1910kg, m.g=1730kg, [ =0.963kgcms’, L =0.786kg-cm-s’
l; = lz = 30.0 cm, b1 = 18.85 cm, bz =17.35 cm, kl = kz =6.4 kg/cm,

and hence natural frequencies of the apparatus are

p1=13.863¢/s, p,=9.850c¢/s.
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Block diagram of analog computer used to obtain calculations for vibrations
referring to normal coordinates X, and X: is shown in Fig. 1.3, where sinusoidal
function generator to yield excitation e cos wt is shown in the lower figure and
it is inserted into the place shown mark 3 in the upper figure.

1.5.2. Results of experiments and analog computer

The p—w diagram for ¢=0.152 cm (E1=0.955 rad/s) is shown in Fig. 1.4,
where magnitudes of negative damping coefficient » as well as width of unstable
region of unstable vibrations of summed type are furnished, and also p of ordinary
unstable vibrations appearing in the neighborhood of w=2p, . are additionally
illustrated for comparison. In Fig. 1.4, the resonant frequencies w=pi+pr=pu
and o =2 p1,. are indicated by vertical chain lines. Curves of broken line in Fig.
1.4 are negative damping coefficients obtained from Egs. (1.30), (1.37), and
symbols OO, @ show results of experiments and analog computer separately, which
are given by the following equation

u=mm(a/a)/t rad/s, (1.42)

where ¢ is time and «, a: are amplitudes of vibratory waves obtained by experi-
ments and analog computer when =0 and ¢=¢ severally. In Fig. 1.4, results of
analysis agree with results of analog computer, while experimental results give
rather smaller values of » because of inevitable damping in the apparatus.

Negative damping coefficients u of unstable vibrations of summed type for
e=0.152 cm (E=0.955 rad/s) and ¢=0.093 cm (E:»=0.584 rad/s) given by Eq. (1.30)
are shown in Fig. 1.5, where the larger e, ie, Ep results in the larger u and
the wider unstable region.

0.80 1 LTS
(2P,) By expenment] }r“ (2R)
® 9
0.70 by anclog P
% R computer / A
o by analysis " odko \
060 ‘/ % T T [O < C,O T \\
3 (P + ) ’6 |
/ \ | ol
& 050 s : e ¥
3 / \ ? AREa
° '!. b / \\ JI |
X 040— 1 i : }
§ | o i ? o
g b |9dea | d A
5 ozob—bota — 5 I
8 [ > | ¢ ! .
o> [ ? | i ol b
£ oot \ 1R | P
g Y o] 0 of & ! [ !
3 Iy | RS ol
o 18 ol N8| ey %1 1
£ oloj—t i — 2 ¢ }
= | ‘ | I i | ol ! |
< o | | ‘ I | l |
ol-d J d s _Lsl ¢
194 196 198 =~ 200 236 238 274 276 278 280

frequency (@ %%

FIG. 1.4. p—ao diagram for unstable vibrations of summed
and ordinary types (e¢=0.152 cm).
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/
040 i
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// \&+152 am
N / \
e \
% 030 / \
/ /' 4\\\ \
E / / \ \
3 / o, \ €093 |
5 / / \
3 | / \ \
o 020 / oo v |
g. / / o, SIY \
£ / l
S / i \
2 / P , ! \;
5 | ! ° 'T o® Fo !
g cuop | 2 t
o . [e] k) T
| d ; e ] |
R ~ bo |
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] [e] : g }
000525 757 238 e

F1G. 1.5. Negative damping coefficient for unstable vibra-

tions of summed type.

frequency W %

0.20
O @ vy experiment /
@ by analog computer ,’
/
\ o —— by analysis /
0153 \e
£
©
@
010
005
000 236 237 238 239
frequency w %

FIG. 1.6. Boundaries of unstable region of vibrations of

summed type.
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In Fig. 1.6, boundaries wc: and wc. of unstable region given by Eq. (1.35)
are shown by broken lines, experimental results are given by symbols O, @, and
@ shows the lower limit of unstable region, and results of analog computer are
indicated by symbol @. In Fig. 1.6, difference in experimental results from those
of analysis and analog computer are caused by inevitable damping in experimental
apparatus.

In Fig. 1.7, frequencies oi,.+v and wi,: of stable and unstable vibrations
obtained by Egs. (1.26), (1.20a) (curves of broken and chain line), experiments
(symbols O, ®) and analog computer (symbols @, ®) (O, © =stable vibrations;
O, ® =unstable vibrations) are shown in Fig. 1.7. In the stable region of the
higher frequency side (the right side), only frequencies w:,»—v are obtained by
experiments and analog computer, and vibrations of w:».+» do not appear, and
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FIG. 1.7. Frequencies of stable and unstable vibrations of summed type.
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FIG. 1.8. Amplitude ratio of stable and unstable vibrations of summed type.
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vice versa in the stable region of the lower frequency side (the left side), because
in the higher frequency side amplitudes of wi, .~ are larger than those of w2+,
vice versa in the lower frequency side, as shown in Fig 1.8 and Eq. (1.39). It
follows that, in the stable region, vibrations with frequency nearer to natural
frequency build up remarkably. In Fig. 1.7, results of analog computer agree
with curves of broken line given by analysis, and experimental results differ from

them slightly.
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F1G. 1.9. Experimental results of no occurrence of unstable

vibration of differential type.

Amplitude ratios of vibrations of
summed type are given in Fig. 1.8,
where curves of broken line induced
by Egs. (1.23), (1.39) coincide with
results of analog computer. Inevitable
damping in experimental apparatus
results in some difference between
curves and symbols O within unstable
region.

Fig. 1.9 shows experimentally that
unstable vibration of differential type
cannot take place. Although there
is a resonant point pi=pi—p,=16.27
c/s in the experimental apparatus of
Fig. 1.9, only small vibrations due to
disturbance take place and no unstable
vibration appears in the neighborhood
of the resonant point p.. as shown in
Fig. 1.9.

In the range of » of Fig. 1.9, analog
computer furnishes only free vibrations
induced by initial conditions. Frequen-
cies and amplitude ratios of these
stable free vibrations of differential type
are shown in Figs. 1.10, 1. 11 severally,
where symbols @, O indicate results
of analog computer and full line curves
represent analytical results through
Egs. (1.26b), (1.30b), (1.39b). It is
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FI1G. 1.10. Frequencies of stable vibra-
tions of differential type.
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seen in Fig. 1.10 that the relation w=
w1 —w: are always satisfied between two
frequencies wi,2*» which make a pair.

Vibratory waves of unstable vibra-
tions of summed type appearing in the
experimental apparatus of double pen-
dulum are illustrated in Fig. 1. 12, where
the upper and lower photographs give
vibratory waves of the first and second
pendulums respectively and frequency
w of parametric excitation is furnished
by vertical black lines. Observing
vibratory waves, it is seen that the
relation w: w1 : w2=41:24:17, and hence
o=+ holds.

Vibratory waves of analog computer
are shown in Fig. 1.13, in which vibra-
tions of frequencies w: and . appear
separately because of normal coordi-
nate.

FIG. 1.12. Vibratory waves of unstable vibrations of summed type by
experiment of double pendulum (e=0.152 cm, w=23.67 c/s, p=0.19 rad/s, o : @1 :

wr=411:24:17).

F1c. 1.13. Vibratory waves of unstable vibrations of summed type by
analog computer (e=0.152 cm, 0=23.64 c/s, p=041rad/s, o w1 w=41:24: 17).
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1.6. Conclusions

Obtained results may be summarized as follows:

(1) In a vibratory system of multiple degree-of-freedom without damping and
under parametric excitation, two unstable vibrations with frequencies o; (= pi) and
wj{=p;) can simultaneously take place in the neighborhood of the resonant point
pij=pi+p;, that is, unstable vibrations of summed type can occur.

(2) Sum of frequencies w; and w; of unstable vibrations is equal to frequency
w of parametric excitation, ie., wi+w;j=aw.

(3) Solutions of this kind of unstable vibrations are obtained through Eq.
(1.34) and amplitude ratio, frequencies, negative damping coefficient, phase angle
and unstable region are given by Egs. (1.23), (1.26), (1.30), (1.33) and (1.35)
separately.

(4) In stable region of summed type, two free vibrations with frequencies
wi, ;v appear, and those solutions are found by Eq. (1.34a) and frequencies are
furnished by Egs. (1.26), (1.20a), and amplitude ratio by Eq. (1.39).

(5) Vibrations on boundaries between stable and unstable regions are always
stable.

(6) Vibrations of differential type consist of two free vibrations with frequen-
cies w;, j== ¢ as shown by Eq. (1.34 b), and frequencies are obtained by Egs. (1.26b),
(1.30b) and amplitude ratio by Eq. (1.39b).

(7) So far as magnitude of parametric excitation is somewhat small, as in
this paper, solutions of a first approximation are enough to grasp exactly vibratory
phenomena due to parametric excitation and they show good agreement with
results of experiment and analog computer.

(8) There is no unstable vibration of summed and differential types of higher
order in so far as a first approximation, and it can not appear experimentally.

Chapter I1. Vibrations of ‘“‘summed and differential types”
with damping under parametric excitation!®

2.1. Introduction

In this chapter, vibrations of summed and differential types in a linear vibra-
tory system with damping are studied in comparison with those in the previous
chapter, and it is found that damping force and especially value of damping ratio
explained later have considerable influences on characteristics of these vibrations,
that is, contrary to expectation, damping forces do not always make smaller
width of unstable region in which two unstable vibrations of frequencies w; and
w; build up simultaneouly; and that for vibrations of summed type with damping
properties of both unstable and stable vibrations, 7.e., solutions, frequencies, phase
angles, amplitude ratios between two vibrations and negative damping coefficients
can be represented in common forms except for a special case, while they are
given separately when there is no damping. Further, theoretical results obtained
by a first approximate analysis in which higher powers of small quantities are
neglected, are compared with results of analog cumputer.

2.2. Equation of motion and preliminary analysis
A vibratory system of s degree-of-freedom with damping and parametric
excitation of frequency o is governed by the following equation of motion refer-



70 Toshio Yamamoto and Akihiko Saito
ring to normal coordinate X;(I=1,2,---, &) in place of Eq. (1.7):
h
XI“E‘PZEXI = Z_]‘ <ElmeCOS a)t“’cl7er7n>, (2.1)

in which damping coefficient Cpn are assumed to be small quantity as well as
e satisfying Eq. (1.8).

Through a similar procedure to Section 1.2, that is, using Kryloff and
Bogoliuboff’'s method and assuming solutions of vibrations to be normal solutions,
Eq. (2.1) reduces to the following equations corresponding to Egs. (1.16), (1. 17):

. L eijaj . Cii R €ijGi . Cj;
G = £ -2 sin ¢y — 5t ai, = ———sin¢;— —5-a; (2.2)
g - 4 wi 7 2 iy 7 40)], 7] 2 7
aj; ai;
24; = +&ij ;jz— cos @, 24dj= xeij 72’; cos ¥ij, (2.3)

in which the upper and lower signs of = are adopted for vibrations of summed
and differential types respectively. Putting

wi,j = pi,i + 0i,5/2 ' (2.4)

and neglecting higher powers of small quantities, we have
di,j = 0i,iPi, i (2.5)
8; & 0j = 2{w — pij) =2 Vij, (2.6)
and hence Egs. (1.19) and (1.20) are rewritten by Egs. (1.31), (2.5) as follows:
COSZ%,‘:!}A,‘A;’/S?}-:Biﬁj/Efj, (2.7)
4= (416 wiw)) sin® ¢ = (B} — 8i0;) /4. (2.8)

2. 3. Vibrations of summed type
It is assumed that amplitudes a;,; are represented in the form

ai; = Aije™. 2.9

Substitution of Eq. (2.9) into Eq. (2.2) adopting the upper sigh of =+ yields
characterisitics equation with roots of the following negative damping coefficients:

w=ar,= —ml2 =N A L2 = — ni[2 £ NP+ Bl — 010512, (2.10)
where a; and a. correspond to the upper and lower signs respectively, and
m = (Cii+Cjj)/2, s = (Ci; — Cjj) /2. (2.11)

Equating amplitude ratio ai/a; given from Eq. (2.2) to that from Eq. (2.3), we
have the following relation:
4; wj AF wy a~+Ciil2 12 =+ EL — 0105

Aioj Ly 07 B . (2.12)
djo; A} s o+ Cyil2 — s =vns+ Eij— 8i0y

On the other hand, Egs. (2.4), (2.5) yield
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(i i)/ djm:) = 3:/85, (2.13)

provided that higher terms of small quantities are neglected. From Egs. (2.12),
(2.13), we obtain

| 885 = (Elj+Vij+n)/2 = J(EL+ Vi +u)  —4 VEEL/2 (for m=0), (2.14)
065 = V% {(for 7, =0). (2.14")

]

2.3.1. Vibrations of summed type when .0 (Cii=Cjj)

Detunings 9; and §; are determined through Egs. (2.6), (2.14) and it is verified
that employment of either the upper or lower sign in Eq. (2.14) results in the
same conclusion; then the lower sign is adopted here for brevity. Accordingly,
detunings 8:, d; are given as follows:

bi=Vijxvb—a, 6;=Vi+yb—a, (2.15)
where

a=(EL+m—Vi) (2, b=Nd+niV. (2.16)

In Eq. (2.15), both 8; and §; are real numbers because of a<b, and the upper
and lower signs are adopted for a; and a. separately when 7.Yi;>0, and vice
versa when 7,V;;<0. Using Eq. (2.15), Eq. (2.10) is reduced to

a= —m/2+Vb+al2, ay= —n/2~b+a/2, (2.17)

Where_ a1 and «: are real because of b+a>0. Introducing amplitude ratio Ail A;
=+V4;/4; from Eq. (2.12) and employing the upper sign -~ by the similar reason
mentioned in Chapter I, we have
A /}!Z _ /E dioi _ [oj [—m=iNbta (2.18)
A; TN 4 wi diwj wi N oy =vbta
in which the upper and lower signs are used for «; and a. respectively. Since
the relation £} —3;6;>0 is attained through Eq. (2.14), it is seen that both 0ij
and » of Egs. (2.7), (2.8) are real. Denoting ¢i; of value between 0 and » as
¢ij, we obtain

COS ¢ij = \/“Vf;?j —_ (b—ZS/lEgj L. (2.19)

From Egs. (2.7), (2.15), it is seen that when E;;>0, +¢;; and —¢;; are adopted
for a1 and . separately and vice versa when E;;j<0. Accordingly through
unstable and stable regions, solutions for X; ; are given as follows:

X; = Ae™ sin (wit + ¢;) + Be™ sin (0]t + ¢!),

2N EET T
X'Z\/"(’?L *\/—-——-—-,«;A;:-A ¥ in jl &= /i"—(:[i)
g [ ] e (it &= yj

[ NS gt (5 g o1
o R B s = g =),

(2.20)

in which the upper and lower signs correspond to conditions Ei;>0 and Ei;<0
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respectively and A, B, ¢;, ¢; are arbitrary constants determined by initial condi-
tions. In Eq. (2.20), a1,» and ¢;; are given by Egs. (2.17) and (2. 19) severally
and i, j, o}, ; are derived from the following equations which are attained through
Egs. (2.4), (2.15):

o, Vy Nb—a  wj_,. . Vi Vb—a

w;——pz"i‘ 5 = 9 (,O]/'—p]+ Tt 2 (221)
where the upper and lower signs correspond to wi,; and w},; respectively when
7n2Vi;>0, and vice versa when 7:Vi;<0.

Since a; is larger than a,, as seen in Eq. (2.17), putting a1 =0 in Eq. (2.17)

results in boundaries between stable and unstable regions as follows:

14+2
Vc1—-(0c12_pu—- + 2\/7 VE,'; 1Ci, (2.22)

c?2 c

where the upper and lower signs are used for the upper boundaries V¢i, we: and
the lower boundaries V.2, wc: separately, and

4= Cjj/Ci (2.23)

is damping ratio. When E}; <Ci;Cjj = 2C};, critical detunings Vei, Ve: cannot now
be real, and it follows that no unstable vibration can occur in the neighborhood
of the resonant point w=p;;. From Eq. (2.19), we are given phase angle ¢;; on
these boundaries decided by Eq. (2.22) as follows:

cos gij = = VE}; — CaCijl\ Eij, (2.24)

where the upper and lower signs are adopted for Vc: and Ve respectively, and
it is found from Routh’s method that vibrations on these boundaries are always
stable.

It is shown by the foregoing analysis that, when frequency o of parametric
excitation comes near the resonant frequency pi;j(=pi+p;) and detuning Vi;=w—pi;
takes a value between Ve: and Ve. and further the condition E};=Ci;Cj; holds,
negative damping coefficient a: becomes now positive and unstable vibrations of
summed type take place.

2.38.2. Vibrations of summed type when n.=0 (Cii=Cj;)

In this exceptional case, detunings d;,;, negative damping coeflicients a.,o,
amplitude ratio A;/A; and phase angle ¢i; should be attained through Egs. (2.147),
(2.6), (2.7), (2.10) and (2.12) as follows:

0i = dj = Vij, (2.25)
Q= —m/2 & Vol =—n/2= \/Ef;WVTf;/Z, (2.26)
AilAj=Vojlwi, (2.27)
cos ¢ij = | Vij/ Eijl, (0=¢gii<a). (2.28)

When detuning V;; is so small that the relation Vi <E} holds, 4, i.e, ai.» and
¢i; become real as seen in Eqgs. (2.26), (2.28). Consequently, we obtain the
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following equations for X; ; for this exceptional case:

Xi= Ae™ sin (ot + ¢;) + Be™ sin (w;t + ¢})
=¢ "I Ae* sin (wit + ¢ + Be ™ sin (wit + ¢},
Xj =voifwj{Ae™ sin (wjt = ¢ij — ¢ + Be™ sin (wjt= ¢is — €1}
=Yoifoje " A sin (wjt = ¢ij — ¢
+ Be " sin (wjt ¢ — €D ).

(for 7, =0, VL,<E})

- (2.29)

It is seen that insertion of #.=0 in Eq. (2.20) or addition of ¢~ /2! to the solu-
tions of unstable vibrations of summed type without damping, which are treated
in the previous chapter, yield the above equations. When «: becomes positive,
ie., p is larger than /2, unstable vibrations of summed type can take place,
while damped vibrations with frequencies w;,; occur in case of a, <0, i.e., u<ni/2.
Further it is obvious that boundaries between unstable and stable regions for
n.=0 and V;<E}; are given by putting 1=1 in Eq. (2.22).

On the other hand, when » goes far off from p;; and V}; becomes larger than
E};, u, a1, and ¢;; are not real numbers. Putting

V= ==V — B/, (2.30)

solutions Xj;,; in this case are represented by the following equations in which
term ¢~ /2! is added to solutions of stable vibration of summed type without
damping:

Xi=e U A4 sin (w;+ 1) ¢+ Bcos (wi+2)t+Csin(w;— )t
+ D cos (wi —v) £},
Xj= / BL e (V-2 0){Asin (wj—»)t— Bcos (wj —v) £} (2.31)
Eij \/ wj
+ (Vij =2 ) {Csin (wj+v) t — Dcos (wj +v) t],
(for n,=0, Vi>E})
where A, B, C, D are all arbitrary constants. Eq. (2.31) express simply free

yvibrations with damping.

Incidentally, applying the similar procedure above mentioned to ordinary
unstable vibrations appearing in the neighborhood of w=2p, (r=1,2, -, k), we
have the following equations of motion in place of Egs. (2.2), (2.3):

ar = grray/2 0) 8in 2 ¢, — Crrar/2, 1 (2.32)

wr—4pr=2e,Cc082%,.

From the above equations, solution X,, negative damping coefficient u,, phase

angle ¢r and critical detunings V,c1, V,c: of these kinds of vibrations are derived
respectively as follows:
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X, = e Pt Agmt sin (wt/2 = §,) + Be " sin (wt/2F ¢r),
for Vi<en /(2907
X, = P A sin (02 4+ v, ) -+ Beos (w/2 -+ vr) t
+ Asin (/2 — v t— Beos (0/2 — v t}, for V7>e,/(2p,)°,

=N [20° = V32, (Vr=0=20) 25
vy = \/vr _(:rr 2257 /2
COSZ(/)r zzprVr/err, (77/224)7‘20)

Vrizéz re 2pr= =\ (e/2P,)" — Chr.

It is seen that the results of Eq. (2.33) agree with those of one degree-of-freedom
system with damping.

2.4. Vibrations of differential type
By the similar procedure of summed type, we have

@i = = m2 =N — 4 (2= =2 Nny = B+ 0i5, (2.102)
diwj _ Ab wp __( meENmi—4
diwj ~ A e T (~nzr\/n§—-4li>’ (2.12a)

{ 8idj=(El—Vij—n) /2 = V(E, = Vi—n)*+4 E;Vi;/2, (for n,0) (2.14a)
0id; = — Vi;. (for n,=0) (2.14'a)

In Egs. (2.10a), (2.12a) the upper and lower signs correspond to «; and a:
respectively.

2.4.1. Vibrations of differential type when n:2><0 (Cii>Cjj)
Adopting the upper sign in Eq. (2.14a) by the similar reason mentioned in
vibrations of summed type, we get the following equations:

=Vij£Vb'—d, ajz—viji\/bt'&‘f (2.15a)
a':(nszgj—-Vg,-)/Z, \/d'2+nz ijr (216&)
oy = -1’L,/2+\/b'+a’/2, al= — /2 =0 +d'/2, (2.17a)
Ai/Aj =Vwji]wi VTV +a") [ (n, = Vb +a'), (2.182)
Ccos (/);] - \/b' —a' - vz]/lEl]l (Og{buéﬁ) (2 19 a)
Xi = Ae* sin (wit + ¢;) + Be® sin (wlt + ¢1),

L F nz—L\/ZJ"‘f'd ayl Lo e ‘
XJ—\/—C;?{\/ \/Z'JT:T Ae™ sin (wjt+§/}i]+‘,pi) (2‘203.)
Vb'+a' Be™t s o,
~L\/ﬂ2+vb+ , sin (m}t+¢5;+%)},

wi ., Vi ;/L—:g’ i, Vi b —=d"
=it g I A e (2.212)
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which correspond to Egs. (2.15), (2.16), (2.17), (2.18), (2.19), (2.20) and (2.21)
of summed type severally. In Eq. (2.20a), the upper and lower signs are
employed when #:Ei;>0 and n;Ei;<0 respectively, while in Eq. (2,21 a) they
correspond to wi,; and o ; when #,V;;>0 and vice versa when 7,V;; <0 separately.
In Egs. (2.15a)~(2.19a), 8., a2, Ai/A; and ¢;; are all real numbers because
of ¥'=a'>0. Furthermore, since Egs. (2.162a), (2.17a) result in both «: and a-
with negative values, Eq. (2.20a) represent simply damped vibrations.

2.4.2. Vibrations of differential type when n.=0 (Ci;=C;j)
Since this exceptional case is similar to Section 2.3.2, we obtain

di= —8; = Vij, (2.252a)
ane= —mf2 == —m/2 + iVEL+ V5/2, (2.26a)
Ail Aj =V —w;/wi =iVoiloi, (2.27a)
cos ¢i; = i| Vij/ Eij |, (2.282)

in which g is real and ay,z, ¢;; and A;/A; are not real. Accordingly, solutions
of this case are attained as follows:

Xi=e "N A sin (w;+ p)t+ Beos (wi+p) i+ Csin (0 — p)t
. + Dcos (wi — u) 1}, ,
1 [0 —mt ) ! (2.31a)
Xj:——z;]—_ 07 VLV 4+ 2 w){ A sin (wj+ p) £+ Beos (wj+ p)i}
+ (Vij =2 m{Csin (0j — u) ¢+ D cos (wj — p) £}],

which are same as the equations added ¢ /2! to solutions of differential type
without damping, and represent damped vibrations of frequencies w;, ;= .

Consequently, as shown in Sections 2.4.1, 2.4.2, unstable vibration of dif-
ferential type cannot occur.

2.5. Verification of analytical results through analog computer

Since in actual experimental apparatus it is difficult to produce various
damping forces exactly proportional to X, and to freely change magnitude of
damping coefficients Cii, C;; and value of damping ratio 1=Cjy;/Ci;, analog com-
puter is used to verify obtained analytical results. Comparison between both
results is made on a simple system with two degree-of-freedom, hence number
of degrees of freedom #, suffixs 7/ and j are replaced by 2, 1 and 2 respectively
for this system. In analog computer, we employ the following same dimensions
as those of the experimental apparatus in the previous chapter:
For vibrations of summed type

7 =13.863c/s, p2=9.850 ¢/s, pru=pi+p.=23.713 ¢/s,
En=6.28¢ rad/s, en=12.23x10%¢ (rad/s)?, 2=9.22x 10%¢ (rad/s)?,
e =14.33 x 10%¢ (rad/s)?,

For vibrations of differential type
m=25.0 ¢/s, p.=10.0 ¢/s, pro=p1—p.=15.0 ¢/s,

En=186¢rad/s, eu=5.25x10"¢ (rad/s)? 12=3.69x 10?¢ (rad/s)?,
e2=0.15x10% ¢ (rad/s)?,
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in which ¢ with dimension cm is amplitude of vertical vibration of a supporting
point introducing parametric excitation into a vibratory system of double pendulum
in the previous chapter. In the following figures, results of analysis are gra-
phically shown with broken and chain or full and dotted line curves which cor-
respond to stable and unstable vibrations without or with damping separately,
and results obtained by analog computer are indicated by symbols O, G, etc.
and @, @, etc., which respectively identify stable and unstable vibrations. The
vertical chain lines in Figs. 2.2~2.11 except for Fig. 2.5 illustrate the location
of the resonant point w=p:..

Block diagram of analog computer used to solve Eq. (2.1) is shown in Fig.
2.1, where there are damping circuits.

Figs. 2.2, 2.3 and 2.4 indicate boundaries of unstable vibrations of summed
type for various damping coefficients. As shown in Fig. 2.2, when #:=0, i.e,
damping ratio 2 is equal to unity, the smaller damping results in the wider
unstable region, and the situations are quite similar to those of ordinary unstable
vibrations caused by parametric excitation appearing in the neighborhood of
w=2p,. On the other hand, when 11, the circumstance is quite different from
the above as shown in Fig. 2. 3, where unstable region of vibrations with damping
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(30X hif o] 0.25
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® ] )
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FI1G. 2,1, Block diagram of analog computer,



rad/5s

EIE

On the Vibrations of “Summed and Differential Types” under Parametric Excitation 77
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Fi1G. 2.3. Boundaries of unstable region F1G. 2.4. Influence of magnitude of
for vibrations of summed type when A=¢l1. damping ratio 4 to boundaries of unstable

region of vibrations of summed type
with a common value of Ei2 min.

is wider than that with no damping; this tendency becomes more clear when
magnitude of parametric excitation Ei, takes a rather large value. Even if Eimia
=vyCuCn =V 21C,, derived from Eq. (2.22) is fixed, various values of damping
ratio A result in various unstable regions, as shown in Fig. 2.4.

Influence of 1 on unstable region can be more clearly represented in Fig. 2.5
than in Figs. 2.3, 2.4. In Fig. 2.5, ratios of width V. of unstable region when
Cux0, Cux0 to Ve when Cu=Cn=0 are plotted against Ei/Fimin, where Ep; is
magnitude of parametric excitation and Ei . is illustrated in Fig. 2.4. All
curves corresponding to various values of parameter 2 tend to a value of
(14 2)/(2v 2) as E; increases, and all curves except for 1=1 cross a horizontal
line of V¢/Ve=1. It means that, provided 1:<1, unstable region of vibrations with
damping always can be wider than one without damping in a range of larger
value Erw than [(1+21)/(1—2)| Eiq min.

Negative damping coefficients «, of vibrations of summed type given by Eq.
(2.17) are shown in Fig. 2.6, where a horizontal line of ;=0 is a boundary be-

e cm
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FIG. 2.5. Po/Peo—E1/E1zmin diagram
(Pe=width of unstable region for damping, eo=for no damping).

tween unstable and stable regions. Value of a; is represented by a continuous
curve through stable and unstable regions when there is damping, which is
expressed separately when there is no damping, as shown in Chapter L

Fig. 2.7 shows frequencies wi,» and wi,, of vibrations of summed type which
are expressed by a continuous curve of I or II through both stable and unstable
regions, while frequencies of stable and unstable vibrations are represented by
broken and chain line curves separately when there is no damping. Furthermore,
it is seen that the relation of w;+ w, = w)-+ ws = w always holds and w12, w1.. are
replaced as 2 and 1/ are exchanged. Vertical double chain lines in this figure
indicate boundaries of unstable regions.

For various damping coefficients, amplitude ratio A./A: is shown in Fig. 2.8,
where horizontal double chain lines represent amplitude ratios v 2 Vwz/w: on the
boundaries of unstable regions and amplitude ratio for «: and «: are replaced as
A and 1/ are exchanged.

Negative damping coefficients, frequencies and amplitude ratio of vibrations
of differential type are indicated in Figs. 2.9, 2.10 and 2.11. It is found from
Fig. 2.9 that a, is always negative, hence no unstable vibration of differential
type can occur. In Fig. 2.10, the relation w — w;= wi— w; = w holds.

Finally, vibratory waves of unstable vibrations of summed type obtained by
analog computer are illustrated in Fig. 2.12.
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FIG. 2.6. Negative damping coefficient a1 of vibrations of
summed type for various magnitudes of parametric excitation.

2.6. Conclusions

Obtained results may be summarized as follows:

(1) In a vibratory system with multiple degree-of-freedom and under para-
metric excitation, two unstable vibrations of summed type with frequencies
wi(=pi), 0j(=p;) satisfying the relation wi+w;j=w can simultaneously take place
in the neighborhood of the resonant point pi=pi+p;, even if damping forces
exist in the system. .

(2) For vibrations of summed type with damping, solutions, frequencies,
negative damping coefficients, amplitude ratios and phase angle of both stable

~and unstable regions have common forms, as seen in Egs. (2.20), (2.21), (2.17),
(2.18) and (2.19) respectively, while in vibrations without damping, they are
given separately for both regions.

(3) Magnitude of damping ratio A=Cj;;/Ci; has considerable influences on
unstable region of vibrations of summed type, that is:

(i) When 1=1, the smaller damping results in the wider unstable region
(Fig. 2.2).

(ii) When A1, rate of expansion of unstable region to increase of magnitude
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FIG. 2.7. Frequencies of vibrations of summed type.

of parametric excitation |E;;| becomes larger as A deviates from unity (Fig. 2.3).

(iii) When A1, unstable region of vibrations with damping can always be
wider than that without damping in a range of larger values of |Ei;| than a
certain value shown in (iv) (Figs. 2.3, 2.4 and 2.5).

(iv) A certain value of |E;;| mentioned above is |Eijmin(1+2)/(1—2]=
VCiCy71(1+2)/(1 = 1), which increases as 1 approaches unity (Fig. 2.5).

(v) If magnitude of parametric excitation |E;;| is smaller than |Etj mial =VCiiCij
unstable vibration cannot occur.

(4) Vibrations on boundaries between stable and unstable regions are always
stable.

(5) For both unstable and stable vibrations, the sum of or difference between
two frequencies of vibrations is always equal to the frequency of parametric
excitation.
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Chapter I1I. Vibrations of “‘summed and differential types
of higher order”’ under parametric excitation®®

3.1. Introduction

The first approximate solutions of vibrations of summed and differential types
appearing at w=p;;=p;-+p; have been studied in the previous chapters. In this
chapter, solutions of the »'th approximation, in which small quantities of ”-order
are taken into account, are analyzed by means of approximate method of so-
called “expanded Kryloff and Bogoliuboff’'s method for solutions of higher ap-
proximation in non-linear vibratory systems of single degree-of-freedom to multiple
degree-of-freedom”, and characteristics of vibrations of “summed and differential
types of higher order” of two frequencies w;i(=p;) and w;(= p5) which take place
in vibratory systems of multiple degree-of-freedom under parametric excitation
of frequency o are discussed. These vibrations appear when so (s=2,3,---)
becomes nearly equal to a sum of or a difference between two natural frequencies
bi, Dj, e, So=pitpi=pi;. It is seen that the s'th order vibrations do not take
place until the s’th approximation is taken up, and that there is no unstable
vibration of differential type of higher order as well as that of the first order
treated in the previous chapters, and that effects of damping on these vibrations
are similar to those of the first order, that is, existence of damping does not
always result in decrease of width of unstable regions.  Further, obtained
theoretical results are compared with those of analog computer, and they show
good agreement with each other.

3. 2. Equation of the n'th approximation
Equation of motion of system of / degree-of-freedom and under parametric
excitation of frequency is represented by the following equation:

h
X1+ X+ 25 (eomXm— eim Xy cOS ) =0, (I=1,2,++,h) (3.1)

m=1

in which magnitude of parametric excitation e/, is a small quantity of e-order
and damping coefficient Cz, should be assumed to be small quantity of s-order
because negative damping coefficients of vibrations of s'th order are also &5-order
as shown later. In order to treat with vibrations of summed and differential
types of s’th order with frequencies w; and w; satisfying the following relations:

So=wiEwispixpi=py (s=2,3, ), wrmps (f=1i 7), (3.2)

the #’'th and j'th equations of Eq. (3.1) should be rewritten as

X+ 0555+ 33 (Crm X — e fm Xom €OS 0it)
me=i, j
+ Z_(Cmem~ efmAmCos wt) =0, (f =1, 7) (3.3)

m%i, J
where
s .
Efm = EKfm = Sy, Crm=¢ Crpm. (3.4)

Solution X is assumed to be function of both amplitude ar and frequency wy, it
follows
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Xr=Xslay, wst+ 05 =Xs(ayz, 07), (3.5)
in which
Of=wrt-+@r. (3.6)

It is also assumed that phase angle ¢s is not function of time, and that dr, Xy
and & are written separately in the following power series in e:

0f=ws=wso+cwy, + gt

f f /.0 /"1' f.2 } (3.7)

wpo=pr (=471,

Xr=XroteXri+eXrat o, (3.8)

ar=Us=eUsr+Uso+ - (3.9)
Upon taking account that X, ; are functions of both am and Om (m=1,2,---, h)

as shown in Eq. (3.1), and that Uy, oy should be functions of am, X;,; are written
in the form

Lm=1 *

={ % A 2.\ ’ L dwy 0Xi oU, 2Xi
"{mﬁ:’j(“’x a0, T Vs aa.r/} Xi ;E,Ux( 50 90, T Oax oay >+

(3.10)

The symbol - - - in the above equation lies outside in further discussion, because
of containing no term concerned until suffixs i and j. When suffixs { and j are
exchanged in Eq. (3.10), X; is furnished. Substituting Egs. (3.7), (3.8), (3.9),
(3.10) into Eq. (3.3), the »’th order terms of ¢ yield the following differential
equation:

2 — 141.:\1 n-m v
( 2 px ”a’la‘?';) Xf,n+p2fo,:z = >_J {2} 2 Wy, 1 Oy, n—m—1 9 Xf‘m

x=1,7 2, y=i,j ~m=0 1=0 aﬁxaﬁy

nz—ln—-zm:—l U azXf m §7l—é—l U ang .
2 ® SRS 2 et oL
+ m=0§ [=0 x’l v B ! aﬁxaay + m=0 (=1 x’ ! Ug, nom=l aa):aay

+Cfxpx“a‘§9f’o "/Cfox, n—1 COS (ﬂi}, (3-11)

in which notation X means that all terms vanish when the lower limit in &
becomes larger than its upper limit. Putting =0 in Eq. (3.11), solution of the
zero approximation are derived:

Xro=arsinly (3.12)

and for n=1, 2, ---, solutions of the »’th approximation can be obtained succes-
sively through Eq. (3.11). When n<s, the following relationship is given by
putting coefficients of resonant terms sin 6y and cos 0y in Eq. (3.11) equal to zero:

Uf.1= Uf,z= = Uf,n—1=0 (3.13)

and hence
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(1) when #=27 (even)

W= Of3= " =wf, -1 =0,

wfex 0, wrax0, ..., 0f, n-2%0
. ! ’ (3.14)
(i) when z=27r+1 (odd)

WFELEWF 3= =0f g =0,

wf %0, wrax0 ..., 0f2-150.

Upon use of Egs. (3.13), (3.14), Eq. (3.11) is reduced to

(i) when n=27 (even)
r—=1r-m

o'X
(vzgapx 50, )Xf 27 lﬁfo = — o2 >0 Ox,21 Oy, 27 —m1) = Jé;ym

m=bl=0 o, y=i, 7

—2psUs2rcosby— >3 Crapa @ ~i~°— + 20 kpaXaor-1 €08 (0 % 05— ¢ij) /s,
k=1, J

@=1, 5
(3.15)
(ii) when z=27-+1 (odd)
r=1r—m aQX
(yg,px o+ ) Kparet 0 Xpera == 233 B onstonmrnn g5 5p
+2prwf 10 Sinlr—2prUfs, or+1COS 05— }_,JCfxpx a‘X”
+ 2.: i fr X, 2r €OS (0; = 05— 0i7) /s, (3.16)
in which
Gij = ¢i = 95 (3.17)
Introducing the following two symbols
Sre=sin{0s+ q(0; = 0; — ¢i;)/s}, (¢ = integer) (3.18)
Do =05~ pp+a(pi =p) s} 1, (f, f1=1i, ) (3.19)

in which sDgs.q is magnification factor of Sy 4, solutions of the »’th approximation
are obtained through Egs. (3.15), (3.16) as follows:

(i) when n=27 (even)

Xfn= Z >) af'F(f n, 1,208y 21, (3.20)

l=—p f/=4d,
(ii) when n=27r+1 (odd)

,.

Xin= >, Py af CF(f,m, f1,2014+1)Ss 2141, (3.21)
I=—(r+1}) f' =4,
where coefficients F(f,n, /', 21) and F(f,n, /', 21+1) containing symbol sDs.,
are successively determined through Egs. (3.12), (3.15), (3.16) and (3.19). For
example, for n=0, n=1 coefficient F is given by
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[ 1 (when f=f"),
F(f,0, f,0) =,
707 | 0 (when f= /", (3.22)
F(f: 1; f’3 = 1) =K1ff"fo’il/2.

Substituting Egs. (3.20), (3.21) into Egs. (3.15), (3.16) severally and putting
coefficients of resonant terms sin 6y, cosfy equal to zero, we get equation of
motion for vibrations of s'th order. It is, however, readly seen from Egs. (3.15),
(3.16) that occurrence of vibrations of summed and differential types of higher
order requires existence of cosfr in term of parametric excitation, ie., requires
that Uy,» does not vanish. Consequently vibrations of summed and differential
types of s’th order can appear when the s'th approximate analysis is performed.

3. 3. Vibrations of summed type of s'th order

Substituting Egs. (3.20), (3.21) into Egs. (3.15), (3.16), and putting #=s and
further putting coefficients of resonant terms equal to zero, equations of motion
are written in the following forms:

ai=¢ U,s—e<ﬁfp sin @;; — Cziiai),

M (3.23)
dj = Ujs= es(zg;f sin ¢i; — —%’—’«a]‘),
a; 25 i o 260
4 €08 Qi = =5 @ cos ¢ij = 5, (3.24)
in which
M= Z’isz(] s—1, j ~s+1)zj§} kifF(fys—1,14, —s-+1), (3.25)
=i, =1, j
Py = Ewi,zlwiiz(ywl) + 15, Qo= Swja1wj,0-n+Js (when s=27),
= =0 (3.26)
Py=2piwis, Qv=2pjwjs (when s=2r-+1),
L= 2 mifdF(f, 2r=1,1, =) +F(f,27r=1,41)}/2, [
g (3.27)

o= S rd R 2r=14 =D+ F(f,2r=1,5,D}/2. [
=4, 7

3.3.1. Vibrations of summed type of sth ovder without damping veferving the
following relations

29 'ZS

M* sin® ¢y = (Bl — B &y (3.28)
7 pi Py

Eij = M/(Z\/ﬁfﬁ}), (3.29)

a

%= 16 pips

which are given from Eq. (3.24), and putting Cii=C;;=0 in Eq. (3.23), we have
aij = Aije™". (3.30)

Through Egs. (3.23), (3.24), (3.30), amplitude ratio is furnished by

Ail Aj =NQo/Po =Npji/pi . (3.31)
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Now, putting

<

P

Wi, 210520+ I (for s=27),

[
—

P=PF~2piwis= {

0 (for s=27r+1),
r-1 . (3.32)
@i, 210,001+ Js  (for s=27),
Q=Qy—2pjwjs=1 1= j 7, 2(r=1) s
0 (for s=27r+1),
Gs _ Uy . Lo __ji f_ “Q
H= %_1‘8 (1,21 % wj,21) D <17i ES pj) (3.33)

(the upper and lower signs correspond to Gs and Hi respectively, and r=r—1
when s=27 and r=7 when s=2r+1),

Vii= o= (pi+pi)/s=w—pij/s, (3.34)
4= (sVi5—Go) /<, (3.35)

then frequencies w;,; are derived from Egs. (3.7), (3.14), (3.26), (3.31) and Po/p;,
€o/p; are determined from Eq. (3.31) as follows:

wi =pi+ (SVij+ Hs) (2, wj=pj+ (sViy— Hs)/2, (3.36)
Po/pi = Qu/pj = 4. (3.37)
Using Eq. (3.37), Eqs. (3.28), (3.24) are led to
i =5(EY — 49)/4, (3.38)
cos ¢ij = 4/ Eij |, (3.39)

in which, when E;;>0, +¢i; and —¢;; are adopted for +pt and —put in Eq. (3. 30)
separately, and vice versa when Eij<0. Accordingly solutions of Xi, 7 are written
in the following equations:

Xi = Ae* sin (w;t + ;) + Be™* sin (@it +¢)) 4+ - o,

Xj=Vpi/pj{Ae* sin (wit = dij — ¢;) + Be *wit F i — @)y -+« - -, } (3.40)
in which the upper and lower signs correspond to conditions E:;i>0 and E;j<0
severally, and A4, B, @i, ¢} are all arbitrary constants determined by initial con-
ditions. It is shown in Eq. (3.40) unstable vibrations of summed type of s’th
order take place, only when negative damping coefficient 2 of ¢S-order becomes
real number, ie., | Ei;|>|4].

Critical frequencies wei, wez (wei> wez) which decide boundaries between
unstable and stable regions, are derived by putting =0 in Eq. (3.38) as follows:

wcz=(pij+Gs+65]Eijl)/S, a)02=(pz'j+G—eleijD/5. (3.41)

It can be said from the above equation that unstable region (wei—we2) has width
of ¢-order and its center (wei+we:)/2 locates at the distance of ¢ order from
the resonant point pi;/s, regardless of number of order s.
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On the other hand, in the stable region of w>we: Or w<wez, 4 and ¢;; can
be not real numbers, and hence the following » is introduced:

= ==L E)[4>0. (3.42)

Through a similar procedure to vibrations of summed type of a first order without
damping in Chapter I, we attain the following equations for solutions Xj; ; in
stable region:

Xi-——Asin (i 40 t+ Bcos (w;+v)t+Csin (w;—»)t+ Dcos (wi—p)t+ * * +,

Iy
%= %[(“

+
(3.43)

in which A, B, C, D are all arbitrary constants decided by initial conditions. It
is seen that Eq. (3.43) represents simply free vibrations in which frequencies
wi+v and w;—v as well as w;—» and w;+v» make a pair.

st ){Asin (wj—v)t— Bcos (0j — v)t}

+v)z‘~Dcos(w]+u)t}J <.,

3.3. 2. Vibrations of summed type of s'th ovder with damping
It is assumed that amplitudes «;, ; are expressed in the form

ai, ;= A; e, (3.44)

Substitution of Eq. (3.44) into Eq. (3.23) yields the following negative damping
coefficients:

d=aro= — )2 =N+ 4 40 /2, (3.45)

in which the upper and lower signs are adopted for a: and «» severally, and 71,
n, are indicated in Eq. (2.11). By a similar procedure to Section 2.3, the fol-
lowing equations are obtained upon use of (Po/pi)/(Qo/p;) and (Po/pi)+ (Qo/Ps)
which are given from Egs. (3.23), (3.24), (3.44), (3.45) and Egs. (3.7), (3.32),
(3.34), (3.35) respectively:

{ Po/pi=d+Vb—a, Qip;j=4FVb—a, (when n,%0) (3.46)
P/Pton/PJ’:A, (when nz—_:O), (346’)
where

a=(Eh+ni—)2,  b=Vd+nd (3.47)

In Eq. (3.46), both Po/p; and Qo/p; are real numbers because of a<b, and when
n24>0 the upper and lower signs are employed for a: and a: separately, and vice
versa when 7,4 <0.

At first, the case of n2=0 (Cii=C;;) is discussed. In this case, Eq. (3.45) is
reduced to

== +Va+0) /2, ar=&(—n—Va+b)/2, (3.48)
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in which both a: and «, are real because of ¢-+5>0. Maximum negative damping
coefficient @im. 18 obtained by putting 4=0 in Eqs. (3.47), (3.48) as follows:

Qmax =&~ +VEL +72) /2. (3.49)

From Egs. (3.23), (3.48), amplitude ratio is rewritten as

Ail Aj =Npilpi V(= iy = Na+b) [ (n, = Va+b), (3.50)

where the upper and lower signs correspond to a; and a separatly. Denoting
phase angle ¢;; having magnitude between 0 and = as ¢;;, we have

cos ¢ = VA +a—~b/| Ei;|, (3.51)

in which, when E£;;>0, +-¢;; and —¢;; are employed for a: and «: severally and
vice versa when Ej;j<0. Thus solutions for X; ; through unstable and stable
regions are written as follows:

Xi= Ae™' sin (w;t + ¢;) + B sin (ot + @) + + « +,
L —é; / ne+ va+b gt e — ]
X; = Pj{ _%;MWT \/{Z-‘—b Ae™ sin ((0;7t (,)1j @; ) (3'52)
e =NaED per g ooy J
‘f“/m Be** sin (a?jtT¢’lj—‘fi)}+

In Eq (3.52), the upper and lower signs are adopted for E,;>0 and E;;<0
respectively, and frequencies wi,j, o, ; are decided by the following equations
which are attained by Egs. (3.32), (3.46):

Zf =pi+ (sVij+ Hs)/2 = £vb—al2,
‘ (3.53)

Z;{:Pj”’r (sVij — Hs)/2F £Vb—a/2,
7
where the upper and lower signs correspond to w;; and o} ; separately when
n:4>0 and vice versa n.4<0.

Putting «:=0 results in boundaries between stable and unstable regions as
follows:

1) 1 e (1A

oot = o+ G G S VEL —aCH], (3.54)
in which the upper and lower signs are used for w:: and w.. respectively, and 1
is damping ratio written by

A= Cji/Cii = ¢jil cii. (3.55)

It is seen from the above discussion that, when frequency » of parametric excita-
tion comes near the resonant frequency p;/s and takes a value between w.: and
w2 and further the condition E=C:iCj; holds, negative damping coefficient a;
of ¢f-order takes positive value and unstable vibrations of summed type of s’th
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order occur.
For the case of #:=0 (Cii=Cjj;), we get the following equations from Ea.
(3.46"):

o= —Em)2 =V = (—m £ VEL — 49)/2, (3.48")
Ail A; =\pilbi, (3.50")
cos ¢i; = A/ Eijl. (3.51")

It is obvious from Egs. (3.48'), (3.51) that both ai,: and ¢;; are real when Ei;=4’,
and hence solutions X;,; in this case are of the form which is obtained by putting
n:=0 in Eq. (3.52), or by adding ¢ ™" to solution of Eq. (3.40) of unstable
vibrations of summed type without damping. When «; takes positive value, i.e,
u is larger than ¢%./2, unstable vibrations can take place, while damped vibra-
tions with frequencies w;,; occur when a,<0, i.e, #<em/2. On the other hand,
u, a1,2 and ¢;; are not real numbers, when 42 becomes larger than Ej;. Accordingly
solutions X; ; in the latter case are found by addition of ¢~ “7™/** to solutions of
Eq. (3.43) of stable vibrations of summed type without damping and take the
form of damped vibrations with frequencies w;,;twv.

3.4. Vibrations of differential type of s'th order
In this case, we have the following equations in place of Egs. (3.23), (3.24):

, M'a; . Cii
a,-:é(—— L sin @;j — —"“'ai>,

4 pi 2

M{) c (3.23a)
aj = es< - MZ]E%L sin ¢;; — —-Qj—j—aj),
aj 2 P, a; 2
7:‘ COS Yij = — ~M;‘-’~, I COS P55 = — “]{%‘ (3.24a)

in which

M’fz ki F(f,s=1,7,s=1) = S g F(f,s—1,1 —s+1). (3.25a)
=4, S=% 7

3.4. 1. Vibrations of diffevential type of s'th order without damping

Through Egs. (3.232), (3.24a) in which we put C;;=C;;=0, the following
equations corresponding to Egs. (3.29), (3.30), (3.31), (3.34), (3.35), (3.36), (3.37),
(3.38), (3.39) respectively are obtained by a similar procedure to Section 3.3.1:

Elj=M'[(2Vpip), (3.29a)
ai,j = Ai je**, (3.30a)
Ail A; =N Q] Po =iNpi/pi, (3.31a)
Vij=w— (p:—pi)[s = o~ pijls, (3.34a)
4 = (Vi — Hs) /€, (3.35a)
0i = pi+ (sVij+ Gs) /2, 0j=pi+ (—sVii+G9)/2, (3.362)
Pi/pi= — Q/pj= 4, (3.37a)
p=ENEL+47)/4, (3.382)

cos ¢ij = — id'|El;. (3.39a)
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Referring the fact that p is always a real number as shown in Eq. (3.382a),
solutions of differential type are written as follows:

XI:ASin(wi—%u)t—}—BCOS(a)z‘+u)z‘+CSin(cog*-u)l‘*f*DCOS(a)g*-;z)l‘*f—"',
_ 1 Jpif_
El; v E[( 4=

+( -2+

f ){Asin (wj+p)t+ Bcos (wj+ p)t}

2/t

){Csm (wj— ) ¢+ D cos (wj— /J)l‘}J-}-
(3.43a)

The above equation represents simply free vibrations, frequencies of which w;-+
and w;+u as well as wi—~p and w;—p make a pair.

3.4.2. Vibrations of differential type of s'th order with damping
By a similar procedure shown in Section 3.3.2, we get the following equations
for n2:0 (Cii=Cj;5):

Pofpi=d' =NV ~a", Qfpj= — 4 =J0'=d, (3.46a)
@ =(nj—E}—4%)/2, b =Va*+nid", (3.472)
ar = (—mANI+0) /2, ar=(—m —Vd+0)/2, (3.48a)
Ail Aj =D pi Vi TNd+8) [y = Nd + 8 ), (3.50a)
cos ¢ij =Y —a'—A*/|El;l,  (0=¢ii<n) (3.51a)
Xi= A" sin (wit +¢;) + Be®t sin (olt+ ) + + + -,
\/Z?TjZingflﬁn(th¢”Taq (3.522)
'\//;;ZT\\?‘Z”:’EZ: Be* sin (wjtF¢ij+ ¢ )} +
= bit (Vi + G2 N2, 1
(3.53a)

z’/ =pi+ (—sViy+Gs) /2 x N —a'/2, J
7

which correspond to Egs. (3.46), (3.47), (3.48), (3.50), (3.51), (3.52), (3.53)
respectively. In Eq. (3.52a), the upper and lower signs are employed when
"o FE z,>0 and 7,££};<0 severally, while in Eq. (3.53a) they are adopted for wi, §
and o, ; separately when 7:4'>0, and vice versa when #,4'<0. In Egs. (3.46a)~
(3.51a), Po/pi, Qo/pj, a1,2, Ai/A; and ¢;; are all real numbers because of ' +a'>0.
Furthermore, since Egs. (3.47a), (3.48a) results in that both a: and a: are
always negative, Eq. (3.52 a) represents simply damped vibrations with frequencies
Wi, j. 0 4.

For a special case of n:=0 (Cii=C;;) we attain

Po/pi= — Q/pi =4, (3.46"a)
= —Em/2xN=pt = —m 2 iVEL+ 4°)/2, (3.48'a)

z/AJ”“/QO/PO ——l\/P;/Pz, (3.50"3)
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cos ¢ij = —id'|El;. (3.51'a)

Accordingly solutions for this case are given by addition of e MV to solutions
Eq. (3.43a) of differential type without damping and they are always damped
vibrations with frequencies wi, j-+ u.

Consequently, as seen from Sections 3.4.1 and 3.4.2, unstable vibration of dif-
ferential type cannot occur.

Incidentally, it is found that results derived by s=1 in Sections 3.2~3.4
coincide with those of vibrations of summed and differential types at a first ap-
proximation in Chapters I, IL

Furthermore, it can be verified that any other vibrations of summed and
differential types but those satisfying Eq. (3.2), for example, vibrations of
[pi=pitpe)/s] or [(2pi=pi)/s] (s=1,2,3,---), etc, could not take place,
because there is no resonant term cos 6 in parametric excitation of Egs. (3.15),
(3.16).

3.5. Verification of analytical results through analog computer

Since in actual experimental apparatus it is difficult to treat with the smaller
quantity than ¢?-order and to furnish viscous damping forces exactly proportional
to velocity, analog computer is used to verify obtained analytical results. Com-
parison of analytical results with those through analog computer is performed
in a system with two degree-of-freedom, and only vibrations of summed and dif-
ferential types of second order are examined by means of analog computer,
because they can be most easily investigated among all higher order vibrations.
If only number of degrees of freedom ki, number of orders of this vibrations s,
suffixs 7, j are replaced by 2, 2, 1 and 2 respectively in Sections 3.1~3.4, all
results obtained in the preceding sections can be applied for the system treated
in this section. In order to connect with results of vibrations of summed and
differential types of a first approximation in Chapters I, II, we adopt the following
dimensions in analog computer:

For vibrations of summed type of second order

p1=13.863¢c/s, p.=9.850c/s, pr=23.713c/s,
en=3.06x10%¢ (rad/s)? e:=2.31x10%¢ (rad/s)? e»=3.58 x10* ¢ (rad/s)?,

For vibrations of differential type of second order

$1=25.000 c/s, p>=10.000c/s, p2=15.000 c/s,
en=131x102¢ (rad/s)? er=0.92x10%¢ (rad/s)?, e»=154x10%¢ (rad/s)’

in which ¢ is eccentricity explained in Section 2.5. In the following figures
except for Fig. 3.1, analytical results are graphically shown by broken and chain
or full and dotted line curves which correspond to stable and unstable vibrations
without or with damping severally, and results obtained by analog computer are
indicated by symbols @, &, etc. and O, &, etc., which are employed for unstable
and stable vibrations separately. A vertical chain line illustrates location of the
resonant point o =p1/2.

Boundaries between stable and unstable regions of vibrations of summed type
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of the first, second and third orders
without damping are shown in Fig.
3.1, where the abscissa is detuning
Vi from the resonant frequencies
Dr/s(s=1,2,3). Itisseen that width
of unstable regions are ¢-order and
centers of unstable regions of higher
order deviate always at distance of
g?-order from the resonant point pis/s.
Unstable regions of vibrations of
summed type of second order with
damping are indicated in Figs. 3.2,
3.3; in Fig. 3.2 damping ratio 1=c¢:/
¢ is constant, and in Fig. 3. 3 product
of damping coefficients ¢y ¢ = Ach; is
fixed. The smaller damping force
results in the wider unstable region
when 1=1 (#:=0), while when Ax=1
(723=0), unstable region of vibrations
with damping can be wider than that
without damping in a range of larger
magnitude of parametric excitation
ez, and ratio of width of unstable
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stable regions of vibrations of summed type
without damping.

region to magnitude of parametric excitation e becomes larger as A goes off from
unity; this fact is also held in case of vibrations of the first order in Chapter II.
Figs. 3.4, 3.5 illustrate negative damping coefficients x and a; of vibrations
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F1G. 3.2. Boundaries of unstable region for vibra-
tions of summed type of second order when i=¢1.
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FI1G. 8.5. Negative damping coefficient a1 for vibra-
tions of summed type of second order with damping.

without and with damping severally, and frequency o at which p and «, take the
maximum values smax, @imex goes off from the resonant point pi./2 as e increases.
Negative damping coefficient of unstable and stable vibrations without damping
is represented by Egs. (3.38), (3.42) separately, while «: of vibrations with
damping is expressed by a continuous curve through both stable and unstable
regions as shown in Eq. (3.48).

Fig. 3.6 show frequencies . (curves I, II) and wi.+» (curves I, II") of
unstable and stable vibrations without damping, which are obtained by Egs. (3.36),
(3.42), and frequencies i, (curve I), wi,, (curve II) of vibrations with damping
are expressed in a common equation (3.53) through both stable and unstable
regions, as shown in Fig. 3.7. Further, it is seen that a sum of two frequincies
of vibrations is equal to twice frequency w in Figs. 3.6, 3.7, and w.. and w, , are
replaced when 2 and 1/2 are exchanged in Fig. 3.7. Double chain lines in Fig.
3.7 indicate boundaries of unstable region.

Amplitude ratios of vibrations without and with damping are illustrated in
Fig. 3.8, where curves I, II given by Eq. (3.31) show amplitude ratios of unstable
without damping and curves T, II' through Eq. (3.43) are amplitude ratios be-
tween two stable vibrations without damping having frequencies w;-+v and w;~v,
and curves 1”7, 11" from Eq. (3.43) express those of vibrations with frequencies
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w1~y and w.+p, while curves III~VI with damping obtained by Eq. (3.50) are
continuous through stable and unstable regions, boundaries of which are illustrated
by two horizontal chain lines, i.., lines of amplitude ratios vVp./prv 4. Amplitude
ratios for a; are a: as well as frequencies and are replaced, if 2 and 1/ are
exchanged.

Negative damping coefficient a: and frequencies w2 i, of vibrations of
differential type of second order are indicated in Figs. 3.9, 3.10. It is seen from
Fig. 3.9 that a, is always negative and hence any unstable vibration cannot
occur in differential type. Relation w, — w;= 0! — 0j=2 e holds in Fig. 3. 10.
Vertical double chain line in Figs. 3.9, 3.10 represent frequency o satisfying
4'=0, at which negative damping coefficient takes its minimum value and discon-
tinuity in frequency takes place.

Finally, vibratory waves of unstable vibrations of summed type of second
order with damping obtained by analog computer are illustrated in Fig. 3.11.

3. 6. Conclusions

Obtained results may be summarized as follows:
(1) In vibratory system with multiple degree-of-freedom and under parametric
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excitation of frequency , vibrations of
summed and differential types of higher
order with frequencies w; (=2), v (=p7)
satisfying the relation wi+wj=sw can
take place in the neighborhood of the
resonant point (p;=+p;)/s=pi;/s, and can-
not appear in the neighborhood of (p;-=-
pitpe)]s, (2p+pi)/s, ete.

(2) Vibrations of summed and dif-
ferential types of s'th order can appear
at the §’th approximation, and there are
unstable vibrations of higher order only
in summed type and not in differential
type.

(3) If magnitude of damping is larger
than eS-order, any unstable vibration of
summed type of s'th order cannot take
place.

(4) For unstable vibrations of sum-
med type of s’th order, width of unstable
region is ¢’-order and its center locates
at a e*-order distance from the resonant
point pij/s.

(5) When magnitude of damping
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FI1G. 3.11. Vibratory waves of unstable vibrations of summed type obtained
by analog computer.

(e12=3.46 x 10? rad?/s?, e=1.5 cm, 1=5, cuuce=0.01 rad?/s? 0=11.841c/s, w:o1:
w2=53:62: 44, a1=0.072 rad/s).

ratio A is not unity, e, A1, unstable region of vibrations with damping can
always be wider than that without damping in a range of larger value of e
than a certain value.

(6) For vibrations of summed type of higher order with damping properties
of both unstable and stable vibrations, that is, form of solutions, frequencies,
negative damping coefficients, amplitude ratios, phase angles can be expressed by
common forms except for a special case n,=0, while they are given separately
for both regions in vibrations without damping.

(7) The center of vibrations of differential type of s'th order, ie., frequency
o of parametric excitation at which 4’ vanishes, is also e*-order distant from the
resonant point pij/s.

(8) Putting s=1 in theoretical results for vibrations of summed and differential
types of higher order, the results of Chapters I, II are derived.

(9) Obtained theoretical results show a good agreement with results of analog
computer.

Chapter IV. Vibrations of “summed and differential types” under
parametric excitation in nomn-linear vibratory systems®

4. 1. Introduction

In the preceding chapter, vibrations of “summed and differential types” in
linear vibratory system of multiple degree-of-freedom under parametric excitation
have been studied in detail. In the present chapter, a first approximate solution
of these kinds of vibrations in non-linear vibratory systems both without and
with damping are treated through a similar procedure with that in Chapters I,
II, and properties of these vibrations, i.e., solutions, frequencies, phase angles,
amplitude ratios between two vibrations, negative damping coefficients and
unstable regions (amplitude—frequency diagrams) are discussed in detail. It is
seen that all of these properties are analytically represented as functions of
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amplitude, and that unstable vibrations can occur only in summed type and not
in differential type, and these unstable vibrations have so called “limit cycle”,
that is, vibrations appearing in unstable region grow up at the start and are
settled in steady state, in which they have constant amplitudes. On the other
hand, they increase without limitation in linear systems. Further, it is concluded
that effects of damping on these vibrations are similar to those of linear systems,
that is, width and shape of unstable region are modified by magnitude of damping
ratio and existence of damping does not always result in decrease of width of
unstable region. Theoretical results obtained by a first approximate analysis
are ascertained by analog computer.

4. 2. Equation of motion and preliminary analysis

Vibratory system of % degree-of-freedom with non-linear spring characteristics
and under parametric excitaion is governed Ly the following equation of motion
referring to normal coordinate X; (I=1,2,---, h):

A h
XIJFP?XZ = le (57me cos wi — C!me} - ”12, . 1Bmm sznXm', (4.1)
in which magnitude of parametric excitation e, damping coefficient Ci and
coefficient of non-linear term ;8m» are assumed to be small. Now we treat with
vibrations of summed and differential types with frequencies w; and w; satisfying
Egs. (1.1), (1.2), in like manner of Chapters I, IL. The ¢th and j'th equations
of Eq. (4.1) can be rewritten as

Xf"rpi:Xf = 2] .{emem Cos wt — Cmem> - B(Xi+ X7)°

m=i,3

+ 2] }\ISmem cos ot = CrmXm) — >3 ) 7B Xon X, (f=i7 42

mxd, j m, m! i,

where the following relation is introduced without failing generality:

B = rBii = 3 Bii = 3 rBji = fRjj. (4.3)

Through a similar procedure to Chapters I, II, Eq. (4.2) reduces to the following
equations of motion:

ciidi . Ci: , T Cis
=L sin ¢ — =2t ay, aj:-f-ism%j—%aj, (4.4)

a; = x
' 4 w; 2

24i= + eij—gécos Gij+ %3(45‘1‘2‘1})3
1
) (4.5)
2 4; = iEijai; cos ¢ij + o 8(&;1‘"2&3)’

in which the upper and lower signs correspond to vibrations of summed and
differential types respectively.

4.3. Vibrations of summed type
Assumnig « to be negative damping coefficient, we have

a = i/ ai, ;. (4.6)



100 Toshic Yamamoto and Akibiko Saito

4.8.1. Vibrations of summed type without damping .
Substitution of Eq. (4.6) into Eq. (4.4) in which the upper sign of = is
adopted and both Ci; and Cj; are neglected, leads to the following amplitude ratio:

aila; = w;iloi . 4.7

By using Egs. (2.5), (2.6), (4.7), (4.6) and eliminating phase angle ¢ij, then
detunings 6i,; are determined as follows:

3 B(bi _ Di\,.

B p,(pz bi ) (4.8)
3 N

Vi 55 (0 5o

Inserting Eq. (4 7) into Egs. (4.4), (4.5) in which phase angle are eliminated,
negative damping coeflicient « is derived as follows:

- Em - - S A (B B Da)) 4.9)
where
Eij = eij] \/415sz (4.10)

Further, phase angle ¢;; is obtained through Egs. (4.5), (2.5) and (4.8) as follows:

COS ¢ij = 'E%'{Vsj— ,E%._@w(vz?)/ + i; +4) } (4.11)

(i) Vibrations within unstable region
When frequency o of parametric excitation comes near to the resonant
frequency pij, and detuning Vi; becomes so small that the relation

EL={ V- %}%(%T% +4)a}f (4.12)
holds, negative damping coefficient « and phase angle ¢i; become real numbers
as seen from Egs. (4.9), (4.11), and hence amplitudes g, ; increase exponentially.
It is found in Eq. (4.9) that « decreases with increase of ai,; until « vanishes,
that is, @ and «@; are settled in steady state amplitudes aio and ajo respectively.
By adoption of equal sign in Eq. (4.12) or putting =0 in Eq. (4.9), the critical
detunings Vei, Vez (Ve1>>Ve2) are derived as follows:

Ver

L S B (bi  Di
V= 1Byl g (Bh+ Bt a)al (4.13)

pi

Detunings di,; and phase angle ¢, of steady state vibrations on these boundaries
are determined by the following equations which are attained by Egs. (4.8),
(4.11), (4.13): ,
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N 3B (P 2
8; = IthJE”f“IE{ 1}{;“{'2}@:07 y 14)
8= = | Eij|+ %Eg‘;(% +2)Cl;o,

cos ¢o = =+ 1, (4.15)

where the upper and lower signs in Eg. (4.14) correspond to V¢ and V.. res-
pectively and in Eq. (4.15) they are used for V¢: and V.. when E:;>0 and vice
versa when Ei;<0 separately. Consequently, steady state solution of X; ; are
given as follows:

o= diosin Loit 62, ! (4.16)
Xj= £Ywi/w;ai,sin (ojt — ¢, I
in which the upper and lower signs are adopted for V., and V.. when Ei;>0
and vice versa when E;;<0.

We discuss here stability problem of steady state solutions Eq. (4.16) by
mean of Routh’s method. Let

ai=0aio+&, Q=00+, Ci=Cio+C, Pi=Pi0+C; (4.17)

be solutions which differ slightly from steady state solutions aio, a@jo, @io and
@0 (pioct@jo=@o). Substituting Eq. (4.17) into Eq. (4.2) without damping and
neglecting all but linear terms in £ 9, &, ¢, we obtain
£ = (gi7/4 wilajo{Ci =+ &5) cos @+ 4 sin @y},
7

= (e15/4 wi){aio(Li + ¢5) cos @y + & sin @y},

= S G0 (T g 0y — 890 (¢4t sino
¢ Toi ais \ajs a )cos,o L aie (€; -+ ¢5) sin @,
3 -
-+ Z‘*g;’ (Eaio+ 279a;0), (4.18)
< 4wji ajo\ agio ajo T A i aio (Gt o0

3 A
-+ T 'f)‘]“ (najo+ 2 &asy).

Inserting the assumed solutions
£=86", =, G=Ciod?, =Gl (4.19)
into Eq. (4.18), the following characteristic equation is attained:
EZ'+ E:2’+ B2+ Eiz+ Ey =0, (4.20)
in which
E,=1, By=FE =FE,=0,

- BB (o o
B= 16 a)iwj( wj + wi

(4.21)
+4) AigQjio COS ¥y,
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It follows from Routh's theorem that steady state solutions for V. and V.. are
unstable and stable severally when >0, and vice versa when <0 and that
boundary condition between stability and instability of steady state solution is
E:=0, ie., ei;=0. Accordingly the boundary line derived by this boundary condi-
tion coincides with the so-called “back bone curve’ which is represented by

L _ 3 B (i Di i
Vi = g (55 + B4 d (4.22)

The curve of the above equation is also the curve furnishing the largest value
of negative damping coefficient

A rpax = l El] l/?n (4‘ 23)

(i1) Vibrations in stable region
When Vij>Vei or Vij<Vc:, a and ¢;; are real. Putting

V= —a’= 4| {Vi- §§]<' ij +4)a } - E%) (4.24)

we attain the following equations for solutions X;,; in stable region:

X;:= A sin (@ +v) i+ Bcos (w;+v)t+ Csin (wi — v) £+ D cos (w; — ),

Xj= 5= \//‘2%‘ (V4 + EL+2p){Asin (0j—») ¢t — Bcos (wj—v)t} (4.25)
4+ ( i\/4~;2+Ef;~2v)(CSin (wj+ )t~ Dcos (wj+v)tt],

where the upper and lower signs correspond to Vi;j>Ve: and Vij<V.. separately.
It is seen that Eq. (4.25) represents simply free vibrations in which frequencies
wit+v and w;j—p as well as w;i—p and w;-+» make a pair.

4.3.2. Vibrations of summed type with damping
From Eqgs. (4.4), (4.6) amplitude ratio is of the form

(ai/a;) = (a + Cjj/2) wi/ (a + Cii/2) w; = Kwj/ wi, (4.26)
in which
K= (a-+Cji/2Y/(a+ Cii/2). (4.27)

By a similar procedure to the previous section, we obtain

wodebns LA |
o= 2V~ 4 g (K5~ g pr)aih
cos @i = 132, 1+K[v, —§~~— (gj +2)+(§‘ +2)la] 420

Eliminating phase angle ¢;; in Egs. (4.4), (4.5), the following fifth degree equation
for negative damping coefficient « is attained from Eq. (3.26):
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wrrpl2 0 - (G ve)+ B e2la]

+4(a+Cii/2) + (a + Cjj/2) = EY, (4.30)

which cannot be solved analytically. It is seen from Eqgs. (4.26), (4.30) that real
roots of the above equation should satisfy the following relations:
For 1>1

(= —Nm+E/2<a< —Cyl2, —Cii/2<a<(—n+ i+ EL)/2,
For 1«1
(~7zl——\/2§~:];E§,~)/2<a<—Cﬁ/2, —ij/2<a<(—-721—}—\/723—}-5?;)/2,

Hence the function

£ = i 275 = § K2 +2)+ P +2la 3l

+4(a+ Cii/2)a+Cj/2) —E% =0

has at least one real root and others, real parts of which are negative, as shown

D i
2 2
4

5
H
i
[
I

|
|
|

(i) 1>1
i
i
A
A
\
AY
nxw‘gr—ﬁng -.‘%ﬁi ”% -.Clé:
(ii) 1<1

F1G. 4.1. Root a of fla)=0 for vibrations of summed
type with damping.
(e=magnitude of negative damping coefficient)
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in Fig. 4.1, and it follows that unstable vibrations of summed type take place
when the largest real root becomes positive, and damped vibrations appear when
it is negative.

Putting a =0 in Eq. (4.30) results in boundaries between stable and unstable
regions as follows:

Ver_ , 142 P 7 _?i B (P . bi \ 2

Vo= VB = iCh+ g g MG )+ gt ek, (s
in which the upper and lower signs are used for V¢, and Vea (Ve1>Vee) respectively.
Inserting Eq. (4.31) into Egs. (4.28), (4.29), detunings &, j, phase angle ¢o on
these boundaries of unstable regions are derived as follows:

= H e vIVEG —1Ch+ $ £ (12 +2)ab),

(4.32)
B BT AT 8 bi 2
6]_{i\/x‘/E iCTH+ -~Z§~»<7-§~+2)a50},
cos¢o= = VE},; —iCk/| Eijl,  (0=@=n) (4.33)

where the upper and lower signs correspond to V. and Ve: separately. Accordingly
steady state solutions of X, ; on these boundaries are obtained as follows:

Xi = aiosin (ot + ¢1),
n8in (st o+ i } (4.34)
®;)

= ‘/ioi/(xwi)—ﬂio sin (wjf + @5 —

Stability of X, X; of Eq. (4.34) will be studied. By a similar process with the
previous section, it is known that, for Eq. (4.34), coefficients of the characteristic
equation (4.20) are given by the following equations:

Ei=1, E;=Ciy+Cjj, Ee=0,

2 2
o2, m(E;—=CiuCy) 3 eiif i o
EZ_'%l + mcucjj 16 wWiw; ( wi + w; +4~> Clzodjocos 9009 (4‘35)
Ei=— I%%jf;(c”;"—; +ij%¥ +4n1>aioajo COS @y,

and it follows through Routh’s theorem that steady state solutions for V.. and
Ves are unstable and stable separately when >0, and vice versa when £<0.
Boundary between stability and instability of these steady state solutions is decided
by the following equation which agree with the so-called “back bone curve” for
vibrations with damping:

Vij = 3B {A(gﬁ +2) 12; +2}af~o. (4.36)

The curve furnishing the largest value of negative damping coefficient is repre-
sented from Eq. (4.30) as follows:

Vii= o oA K( 2 v o)+ ﬁ; +2|dh, (4.37)
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in which
K= (VEL +ni = m) | (VE + m+ mo). (4.38)

Substitution of Eq. (4.37) into Eq. (4.30) leads to the following largest value of
negative damping coefficient:

@max = (— = VEL +12) /2. (4.39)

Consequently, when detuning V;; takes a value
between V¢ and V.. and further the relation
E};=Ci;Cj; holds, negative damping coefficient
« takes a positive value and unstable vibrations
of summed type occur. However, they are
settled in steady state vibrations having a finite
amplitude a0, because « decreases with in-
crease of amplitude as shown in Eq. (4.30) and
it vanishes finally. On the other hand, when
Viji>Ve1, or Vij<V¢. damped vibrations take
place, amplitude of which reach to either steady
state amplitude or zero. If magnitude of
parametric excitation |Ei;| is smaller than
v Cii Cjj, unstable vibration cannot occur because
of «<0. Furthermore, the discussion above
mentioned is illustrated graphycally in Fig. 4.2,
where full and dotted line curves are employed
for stable and unstable steady state solutions
respectively.

amplitude

amplitude

(i) 8<0 4.4. Vibrations of differential iype

F1G. 4.2. Change of amplitude 4.4.1. Vibrations of differential type without
of vibrations of summed type. damping

< = initial 1i . .
(> =initial amplitude) Putting Cii=Cj;=0 in Eq. (4.4) where the
lower sign is adopted, we have the following amplitude ratio by a similar pro-
cedure to summed type:

aila; = ivwjilwi (4.7 2)

and through Eqgs. (4.5), (2.6) in which the lower sign is adopted, the following
equations corresponding to Egs. (4.8), (4.9), (4.11) are given:

Bi=Vi+ o —ﬁﬂ(ﬁ - ﬁ) a»

s b (4.82)

3= — Vij+ §~%(%—~ %})az,
o= = By +{vi- § L2+ E _a)] (4.92)
cos ¢ij = —i—é;{viyi ‘2‘7@%(% + }% w4)4&}2. (4.11a)
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Referring the fact that a and ¢i; as well as ai/a; are not real as shown in the
above equations, and introducing the similar relation to Eq. (4.24)

o [ e _ 3B (b D)V
po=—o = Z[Eij + {V,j g ﬁj(pi + b 4)611} ], (4.242)
the solutions of differential type without damping are written as

X; = Asin (w; + )t + Bcos (wi+ wit =+ Csin (w; — Wi+ D cos (wi — i,
Xj= — El\/?: [( = Vi —E5+2 m{Asin (oj+ ) t+ Bcos (wj+ )t}
i7 J

+(d:\/4u2—Efj—2m{Csin (wj— ) t+ Dcos (wj — u) 1],
(4.252a)

where the upper and lower signs are employed for solutions of the higher and
lower frequency sides. The above equation which is similar to Eq. (4.25) reprsents
simply free vibrations, frequencies of which wi-+4 and wj+p as well as wi—u
and w;j—, make a pair, and there is no unstable vibration.

4.4.2. Vibrations of differential type with damping
By a similar procedure shown in Section 4. 3.2, we get the following equations:

(ailaj)? = — (a+ Cjj/2) wi/ (e + Cii[2) wi = — Koj/wi, (4.26 2)
Y fog. 3B (i 1Di),
e L (s 3B (s LB
% 5 g J ! p (4.28 a)
§ _ OB (Pl L PP
8= 'K+1{ 2Vij+ ij(Kpj Kpj)ai},
o 2 N=K[ g 3 B gD b _ o\l
COS ¢ij = ‘E; 1+I{[ v:]+ —g‘p]XlK(p':* "2) -+ E —‘2;@,‘], (4.29 a)
wK, _i_@_ pi _ L bi l’.z

+d(a+ Cii/2) (e + Cj5/2) = — EY, (4.30a)

which correspond to Egs. (4.26), (4.28), (4.29), (4.30) separately. Taking account
that the real root « of Eq. (4.30a) exists in the following regions:

for 1>1
—Cife<a< (=m—VE—EY), (—m+Vmi—E}) <a< —Cul2,
for »<1

—Cij2<a<(—m—Nn—E/2, (=m+Vni—EY) <a< —Cj/2,

it is seen in Fig. 4.3 that neither real root or real parts of the other roots is
positive, and it follows that vibrations are always simply damped vibrations.

Consequently, as shown in Sections 4,4.1, 4.4.2, unstable vibration of dif-
ferential type cannot occur,
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4. 5. Verification of analytical results P
through analog computer
Since in actual experimental appratus
it is difficult to produce non-linearity
shown in Eq. (4.3) and viscous damping
forces exactly proportional to velocity,
analog computer is used to ascertain
obtained analytical results. Comparison TN
of analytical results with those of analog /
computer is performed in a simple system {
|
|

SM-TE-E T N NEE
2 . 2

el

of two dgree-of-freedom, and hence
number of degrees of freedom £, suffixs
1,7 are 2, 1, 2 respectively in this case.
Block diagram of analog computer §
simulating Eq. (4.2) is shown in Fig. 4.4, \ ;
where the following dimensions are |
adopted in order to connect with results \’ - /TEER
of vibrations in linear systems treated ; \
before.

)

p1=13863 C/S, p2=9850 C/S, pu :pr!*pz |
=23.713c/s, |

g11= 12.23 %< 10%¢ (rad/s)g, 812:9.22 x 10%¢ 3
(rad/s)?, ex=14.33 x 10%¢ (rad/s), 1
f=—0.312 kg/cm?®. |

. . (ii) 1<1
In the following figures, results given FIG. 4.3. Root a of f(a)=0 for vi-

by analysis are graphycally shown by brations of differential type with damping
chain and dotted or full and broken line (e=magnitude of negative damping
curves which correspond to stable and coefficient).

unstable steady state vibrations without

or with damping separately, and results by analog computer are indicated by
symbols O, &, etc. and @, @, etc., which are employed for stable and unstable
steady state vibrations respectively. A double chain line curve illustrates boundary
of stability of steady state solution.

Amplitude-frequency diagrams of vibrations of summed type for various
magnitudes of damping coefficient are indicated in Figs. 4.5, 4.6, 4.7, where
magnitude of amplitude of unstable steady state solutions takes a value between
both initial amplitudes which begin to increase and to decrease. As shown in
Fig. 4.5, when Cii=Cjj, i.., damping ratio 1 is equal to unity, the smaller
damping of the larger magnitude of parametric excitation results in the wider
unstable region. On the other hand, when 21 (Ci>=Cjj), width of unstable
region of vibrations with damping can be larger than that without damping in
a range of larger magnitude of parametric excitation | E::|, and degree of inclina-
tion of unstable region differ from that for 1=1, as shown in Fig. 4.6. Itis seen
in Fig. 4.7 that magnitude of damping ratio A has considerable influences on
degree of inclination of both unstable region and back bone curve, that is, in-
clinations for <1 and A>1 are more and less than for 1=1 respectively.
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00: 7%/1200

01: ps2/1200

02: 25e11/(3 e?)
03: 25e12/(3 ew?)
04: 25e1/(3 ews?)
05: 25en/(3 ew?)
06: initial condition
07: initial condition
10: 0.1

13: B

141 (@/200)?

15: @/10

16: w/10

17: e

80: Cu1/10

81: C12/10

82: Cn/10

83: Cu2/10

FIG. 4.4. Block diagram of analog computer.

curve  symbol Ex(%sf e 1,10, v © @
LI © ©553XI0° 06  Slable steady swfe

°® rrmveae
LU, W, © @ 369XI10° 04  nsrable steady state

§ 003 e

2 LINDII ©©® 06,
N A= 1LCuCar225(9%)
o

\ O0,I.V,% no damping

002

a

amplitude

ele}}

'1

230 T 235
w %
FIG. 4.5. Amplitude-frequency diagrams of summed
type vibrations without and with damping (A2=1),
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curve symbol CuCz g a EL@W }
2
11 O (rad/s) ©
oo ©® 025 stable sieady siate
mm O® 225 é HQ HIQN }

g 003 v W @@ 4.00 unstable steady state
B
AN €12:3.6901 (1%
g e-04°"

Q02

o
Q

amplitude

F1G. 4.6. Amplitude-frequency diagrams
of summed type vibrations with damping
(2x=1).

A
14.0 M
~ T o o ’
2 o9 N o=
S o 2
0o CuCoa= 225 (79%%)
[
13512 Bie= 5531077994
¢ -06°T
.
o]
le}
10.0 o0
- . 10?0 °
~ o0
]
3 /
95 P
(&3
230 335 240
W %

F1G. 4.8. Frequencies of stable steady
state vibrations of summed type with
damping.

curve symbol A [ OmO 0
1,1 e 5 stable stecdy state
e n,r 0o® | T eea
S E.m Qe W% b
= unstable steady state
N 0.03 E
g €12 =3.69:8(%
b e :0_407‘
CuCar225 (rogs .
_ 002 LN
c \
© ™
2 X
£
3
€
S 001
230 235 240
w s
Fi1G. 4.7. Influence of magnitude of

damping ratic 2 to amplitude-frequency
diagrams of summed type vibrations.

2.0 ! o
MW
A=
1.5
CiCz=2.25 (9% f
o € - 3691019
(=] e = 0'4 cm
1.O
2 H-0-0-(r0-0-0-0r0-0-0-0-0-0.0
9 A=
3
=
g 05
OO U T UTTT U O ouO-o0-0
A=
230 235 240
w %
F1G. 4.9. Amplitude ratio of stable

steady state vibrations of summed type
with damping.
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Frequencies w: and . of stable steady state vibrations of summed type with
damping (A=1) is shown in Fig. 4.8, where the relation of w1+w.=w always
holds.

Amplitude ratio of two steady state vibrations of summed type with damping
for various magnitudes of damping ratio are indicated in Fig. 4.9, in which
amplitude ratio increases with 2.

Negative damping coefficient—amplitude diagram of summed type vibrations
with damping is represented in Fig. 4.10, where frequency of parametric excita-
tion is fixed (w=23.47 c¢/s), and full line curve shows analytical results obtained
by Eq. (4.30). It is obvious that amplitude continues to increase until « becomes
equal to zero.

Finally, vibratory waves of unstable vibrations of summed type obtained by
analog computer are illustrated in Fig. 4.11, in which unstable vibrations are
settled in stable steady vibrations, in contrast with linear systems.

X [ .
2 ; PN
¢ 02 f i CiCor 6.25 (T994F
= En- 4I5x1G(TO9%S
2 € = 045¢M
o w= 2347 %
£8
Q. w
£ ol ,
o ¢
©
® i i
= o
[}
o
@
< ;
| o
0005 00! col5
omplitude  a. rad/~/kgecm

FI1G. 4.10. Negative damping coefficient-amplitude daigrams of summed type
vibrations with damping.

FIG. 4.11. Vibratory waves of unstable vibrations of summed type
with damping given by analog computer.
(e12=23.69 x 10? rad?/s?, e=0.4 cm, w=23.715 ¢/s, 2=5, c11¢22=4.00 rad?/s?).
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4. 6. Conclusions

Obtained results in the present chapter may be summarized as follows:

(1) In non-linear vibratory system with multiple degree-of-freedom and under
parametric excitation as well as in linear system, two unstable vibrations of
summed type with frequencies wi(=p:), wi(=p;) satisfying the relation wi+wi=o
can simultaneously take place when frequency o of parametric excitation becomes
nearly equal to the resonant point pij=pi+p;.

(2) These unstable vibrations could not increase indefinitely but are settled
in stable steady state vibrations having a certain finite amplitude.

(3) Sum of two frequencies of summed type vibrations is always egual to
frequency w of parametric excitation.

(4) Influences of damping on characteristics of summed type vibrations are
similar to those of linear system, that is, existence of damping does not always
result in small width of unstable regions and degree of inclination of unstable
region is varied considerably by magnitude of damping ratio.

(5) When coefficient of non-linear term B is positive, steady state vibrations
of summed type on the higher and lower frequency side are unstable and stable
respectively and vice versa when g is negative.

(6) Vibrations of differential type both without and with damping are simply
free vibrations, thus there is no unstable vibration of differential type.

(7) Difference in two frequencies of vibrations of differential type is always
equal to frequency .

(8) Theoretical results obtained by a first approximate analysis in which higher
powers of small quantities are rejected, show good agreement with results of
analog computer.

Chapter V. TForced vibrations of linear vibratory system
under parametric excitation®

5. 1. Introduction

It is well-known that the so-called “combination tones” of summed and dif-
ferential types take place?¥® when two periodic disturbing forces excite a
vibratory system with unsymmetrical non-linear spring characteristics. On the
other hand, in linear vibratory system under parametric excitation of frequency
£ and periodic disturbing force of frequency 2., forced vibrations having frequency
£1(=|2+2:]=p) which are similar to combination tones can occur when a sum
of and difference in two frequencies 2 and £2:, i.e, |2+ 2:] becomes nearly equal
to a natural frequency p. These vibrations appearing in the system with flat
shaft carrying a symmetrical rotor have been studied?®, while they take place
in a special case when frequency 2. of periodic disturbing force is equal to a
half of frequency 2 of parametric excitation, that, is, ratio of frequencies r=48/
2: is equal to 2.

In the present chapter, this kind of forced vibrations appearing in a single
pendulum system excited by both parametric excitation and disturbing force, the
frequencies of which are able to be given arbitrarily, is discussed analytically
and experimentally, and it is found that characteristics of response curves are
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influenced by magnitudes of parametric excitation and disturbing force, damping
coefficient and frequency ratio r=82/2,. For example, response curves of dif-
ferential type [£:=2-%2;] when £>2 and £<2 are quite different from each
other. Theoretical results are compared with those of experiment and analog
computer, and they show good agreement.

5.2. Equation of motion and preliminary analysis

A vibratory system of single pendulum with one degree-of-freedom is shown
in Fig. 5.1, where pendulum with length 7, (cm)
and mass m (kg-s?/cm) is suIEijorte;ll at the point } ecos nt
Bi: I, is moment of inertia about the supporting ‘
point B: and &; (cm) is a distance between B and Y, : 7. <> dicosizt+)
gravitational center Gi; there is a spring of spring B
constant % (kg/cm) at the end of pendulum and
it is assumed that a damping force having small AL
damping coefficient ¢ (kg-s/cm)exists in this system. °
The supporting point B; is furnished both vertical -
vibration e cos 2¢ and horizontal one di cos (2:¢-+¢) Gy \
(¢=phase angle) with small amplitudes e, d: (cm) :
and frequencies 2, 2, (rad/s) respectively. Motion ki
of a point K which is at a distance / (cm) from U '
the supporting point B is recorded, and it is given l_‘ K
by the following equation: X

" . FI1G. 5.1. Vibratory system
Mo &y + 0o 51—+ oy = g0 %, cOS Qf + dy cos (Dot + @), of single pendulum.

(5.1)

in which x (cm) is a distance between K and its equilibrium point, and

ma = L1, COZC[%/lg, koz(k1l§+m1bzg)/l§, \ (5.9)
Eo'zem;gzbzflg, de:dlmlggb;/lo. I o

For brevity, we introduce dimensionless quantities
t’*—“?lf, X‘-"«Jﬁ/x{), C':Co//\/$%0k0, Q':Q/ph .Q{:‘Ql/pl, l (5 3)
Qézgz/pl, ngea/ko:lhe,gf, d’:da/(koxo) :hzdlgé, ( .

in which p;( =Vko/mo) is natural frequency of the system, and x is a length of
unity, ie., xo=1 cm, and / ( = b/ (Bl +mbyg)), he(=hilo) are constants. Sub-
stituting Eq. (5.3) into Eq. (5.1) and neglecting primes, the following equation
of motion expressed by dimensionless quantities can be obtained:

XX+ X =¢ Xcos Qf-+dcos (2t +¢). (5.4)

Upon use of the above equation, forced vibrations haveing frequency £ which
satisfy the following relation:

Hh=2=x2]=1 (5.5)

are treated in the present chapter.



On the Vibrations of “Summed and Differential Types” under Parametric Excitation 113

5.3. Response curves

When frequency 2, is nearly equal to natural frequency p,=1, it is expected
that forced vibrations builds up and magnitude of its amplitude grows up
remarkably, and becomes comparable to that of harmonic vibration with frequency

2., Accordingly, a first approximate solution of Eq. (5.4) should be assumed
as follows:

X=Acos (2¢+¢)+ Bcos (2:1+ @,). (5.6)

In the above equation, the first and second terms are vibration statisfying the
relation of Eq. (5.5) and harmonic vibration severally. Inserting Eq. (5.6) into
Eq. (5.4), referring the relation of Eq. (5.5) and comparing coefficients of terms
with frequencies 2, and 2. respectively, the following equations are attained in
so far as 2,=02,:

—2c¢2B=¢gAsin (¢, 7¢) +2dsin (¢, — ¢),
2(1-2) B=aAcos (¢, 7¢,) +2d cos (¢, — ¢),
—-2¢2,A =¢eBsin ((;r’lr’vt(,c'g),
2(1 -~ .Qf) A= s, B cos ((Pli(,ﬁg).
Elimination of phase angle ¢, ¢; and ¢. in Eq. (5.7) yields the following equations
which furnish response curves of amplitudes A and B:
A*=[4{c" 2+ (1 - @D*}M1d [ F,

.8)
B =[4(c* 0+ (1 — 0O/ 1aY F, | (5.8

in which
F=c|o= 22 emra-on] +a-a) - 4 a-edicet+ a- 2.
€ &
(5.9)
Let frequency ratio 2/2: be x, we have
K=.Q/.Q3, .Q=I€.Q;/|Kill, ..(.722!21”161'11. (5.]0)

It is seen in Eq. (5.8) that amplitudes 4 and B are functions of four quantities,
i.e., magnitudes &, d of parametric excitation and disturbing force, frequency
ratio x and damping coefficient ¢. From Egq. (5.7), however, phase angle is given
as follows:

¢ T, = —tan" {c2/(1— 2}, (5.11)

The right side of Eq. (5.11) is the same form as phase angle in ordinary forced
vibrations. In Egs. (5.5) and (5.7) ~(5.11), the upper and lower signs of -+ or
+ are adopted for forced vibrations of summed type [2:=2-+2,] and differential
type [2,=.02—2,] severally.

Incidentally, analysis for forced vibrations in a special case 2;=%2,, ie., £=2
is discussed here. Eq. (5.10) is rewritten as follows:
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.91 = Qg=uQ/2 (512)

Thus, assuming that a first approximate solution of Eq. (5.4) in this case is
given by

X = Ccos (2t + ¢3) (5.13)

in place of Eq. (5.6), and comparing coefficients of terms with frequency ., we
have the following equations furnishing the same response curve as that obtained
in the paper (26):

(1-ehC= &aC oS 2 @3+ d cos (@5 — @), l

5
J (5.14)

—¢C = ilzgsinZ%-l-dsin (¢:—¢),

which are functions of phase angle ¢.

5.3. 1. Forced vibrations of differential type [2:=82—2;]

In the first place, influence of frequency ratio k=2/2. on response curve of
vibrations of differential type is examined for the system of ¢=0.175 cm, d,=0.015
cm, ¢=0.0059, 5 =0.0512 s?/cm, h,=0.9476 s?/cm. In Fig. 5.2 amplitudes A and B
in the neighborhood of resonant point 2,=1, ie., response curves for various
values of r are shown. In Fig. 5.3, the maximum value Am.. of amplitude A,
frequency £im.« and amplitude B at 2:... are represented against frequency
ratio «. ‘

Response curves when r is nearly equal to zero, i.e., r<1, are shown in Fig.
5.2 (a) where ©=0.01. It is seen from Eqs. (5.3), (5.10) that parametric excitation
e1 as well as £ take very small values when #<1. It results in small amplitude
A. The relationships Eq. (5.5) and <1 lead to £:=1 where amplitude B of
harmonic vibration of frequency 2. grows up remarkably as shown in Fig. 5. 2 (a),
because of resonance. When r<1, there are two 2;... as shown in Fig. 5. 3.
Accordingly there are two peaks of Am.. as shown in Fig. 5.2 (a), one appears
in the neighborhood of 2:=1, the other takes place at 2:=0.99, i.e., in the neigh-
borhood of 2.=1 where amplitude B of vibration of frequency 2. builds up with

————————
- I’\\‘ K»00l ]I 006/ o] Comiatie_] I
5 ! \ ! i e oo ‘\
X e ‘ '
LA W - i
e .8 { |
e ———— TN
LY S ﬁ ° / \ |
. /\/ } 002/~ VAl <
/A= el \
R L
v . ‘
098 100 T 058 100 02 os

(a) (b) (c) (d)

F1G. 5.2. Response curves of forced vibrations of differential type for various values
of frequency ratio «.
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FI1G. 5.3. x—Amax, Qimax, B curves in differential type (e
and d are variable).

amplitude A. Eq. (5.8) shows that the magnitude of A,.. of the former is
always larger than that of the latter. When small « increases gradually its
magnitude, 2ium.s 0f Auax of the latter goes rapidly far off the resonant point
£,=1. It should be noticed that only A... and B corresponding to 2;... of the
former, i.e., to 2., appearing at 2,=1 are illustrated in Fig. 5.3.

As r increases further, A,..x increases gradually its magnitude, and the resonant
point 2,=1 of B goes far off the point 2,=1 because of 2,=2,/|K —1]. It follows
that A... becomes larger than B, as shown in Fig. 5.2 (b) where r=0.7.

When r becomes nearly equal to unity, magnitudes of ¢, d of parametric
excitation and disturbing force as well as @, 2. take considerably large values,
as is seen from Egs. (5.3), (5.10). Conclusion that large values of ¢ and 4 in the
neighborhood of k=1 results in remarkably large values of Au.: and 2i..x, as
is seen in Fig. 5.3, can be derived from investigation of influence of magnitudes

L5 I
& :0.0403
d=00178 102
C=00059
K]
(01 mox
m =
- o
g. 1.00 §
£ c
* |
Amax.\/’l
i ! 098
8 \ \
— 5 \\~—1
o ) 10 15 20 25
K
FIG. 5.4. x—~Amax, P1max, B curves in differential type (&

and d are fixed).
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of e, d to response curves, which is discussed later. Incidentally, = Auax,
i — Q1 max curves when e, d=constant is shown in Fig. 5.4, where there is no peak
of Aumax, @imax in k=1, It shows that small e, d do not result in large Auw.s,
21 oas even if k=1, and large e, d result in large Aumax, 2imax as shown in Fig.
5.3, because Aumax, 21mx are functions of =, d.

As r approaches to 2, A, increases gradually and £,m.. shifts to the higher
frequency as seen in Figs. 5.3 and 5.4, and further the resonant point 2:=1 of
B comes near to the point £,=1 as shown in Fig. 5.2 (¢) (£=1.98), because of
the relationship 2,=2.=1 can again holds. It is seen in Fig. 5.2 (¢) that Auex
in the higher frequency side is larger than that of the lower side. Unstable
region of ordinary unstable vibration under parametric excitation furnished by

V- =9 —2sVe/d— (5.15)

approaches to the resonant point @,=1, because « is nearly equal to 2, that is,
2,=2,

Fig. 5.2 (d) (£=2.02) in which & is slightly larger than 2, illustrates different
characteristics of the response curve from Fig. 5.2 (c), and the resonant point
2,=1 of B is higher than 2:=1 and Au... for the lower frequency side is larger
than that of the higher side.

As r increases further beyond 2, Aum.« decreases and both 2... being larger
than unity and unstable region of free vibration under parametric excitation shift
rapidly to the higher frequency side. ~While 2imux in the lower frequency side
comes furthermore close to the resonant point £2,=1.

It can be said from the above mentioned discussion that, when « is small,
amplitude A of vibration of frequency & induced by small disturbing force e is
also small, and when r=1, amplitude A
becomes simply large because &, d, and

. . . 025 , :
unstable vibration does not appear, which ic= L875 ] L1oe
can take place only when r=2. C(‘:' ’8»8(')2;”’ 1 e

. . =0 I
Influence of magnitude of e, i.e., & curve V\/ - ;,- 8.1205“"‘
. . . L i ’ &
of parametric excitation on response 020 syb%b[;?mys's e-0075"
curve is shown in Fig. 5.5, where as « by andlog comeuter T omitads.
increases, both A and B grow up and I, m‘p‘?woe
. mplitude
21 max goes far off from the resonant point 015 g
2,=1. Influence of magnitude d of .
- - @

disturbing force is same as in case of <
ordinary forced vibrations, that is, both o, 010
A and B are represented by linear func- 3 og
tions of 4, and hence amplitudes A and g \°~=4
B are proportional to d and 2iumix IS oo 7 —
. I
independent of d. /a// / \o\

The larger damping results in the — ,1 4 ]
smaller amplitude as shown in Fig. 5. 6. |

. o 098 100 102

Frequency £i... decreases as damping o
increases when k<2 and vice veras when FIG. 5.5. Effect ¢f magnitude e of

{c> 2. Furthermore, curves and marks parametric excitation on the response
in Figs. 5.5 and 5.6 illustrate results curves in differential type.
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F1G. 5.6. Effect of damping coefficient ¢ on the response
curves in differential type.

obtained by Eq. (5.8) and by analog computer respectively.

5.8. 2. Forced vibrations of summed type [21=2+2:]

Since it is obvious from Eq. (5.10) that both frequencies 2 and 2. are always
smaller than unity, large magnitudes of ¢ and d, are required to obtain comparable
amplitudes with those of differential type. Accordingly somewhat large values
of ¢=25 cm and d1=0.25 cm are adopted for vibrations of summed type.

The r— Auwex, B1uax, B curves in summed type are shown in Fig. 5.7. Inthe
neighborhood of #=0 there is another £,... induced by resonant amplitude B for
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\ di= 025"
C =0.0059
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B
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Otk

e

F1G. 5.7, £—Amax, Qimax, B curves in summed type.
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2,=1, which goes away to the higher frequency side with increase of # and does
not approach again to the resonant point £2:=1, unlike in case of differential type.
It shows that resonant frequency of B is always larger than that of A in case
of summed type. As r increases, A..x increases and B decreases, and finally
Amax becomes larger than B. Amplitude A... begins decreasing monotonously
after it reaches its maximum value, because frequency 2. decreases as frequency
2 increases, as is seen from Eq. (5.10). While 2.« decreases monotonously as
«© increases. If both magnitudes of parametric excitation e and disturbing force
d are not functions of frequency £, and they are constants, Awm.. is always larger
than B and Au.x being infinity at #=0 decreases manotonously with increment
of k.

Response curves for various values of magnitude ¢ of parametric excitation
and damping coefficient ¢ are shown in Figs. 5.8, 5.9 severally, where the larger
magnitude ¢ or the smaller damping coefficient ¢ results in the larger amplitude
A as well as the smaller frequency 2:1..x. Further marks in these figures illustrate
results of analog computer.
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FI1G. 5.8. Effect of magnitude e of F1G. 5.9. Effect of damping coefficient
parametric excitation on the response ¢ on the response curves in summed type.

curves in summed type.

5.4. Experimental results

Experimental apparatus consists of a single pendulum, supporting point of
which is excited by both vertical vibration e cos 2f and horizontal vibrations di
cos 2:¢t. If two frequencies 2 and 2. are choosen so as to satisfy relation |2+ Q,|
= through two stepless transmissions, pendulum begins vibrating, and its motion
is recorded optically on oscillograph paper. Experimental apparatus has the
following dimensions:
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[;=0.273 kg-cm-s*, mi¢=0.711 kg, 2=2.01 kg/cm,
bi=17.0 cm, /1=15.8 cm, [,=185 cm, p:=7.41 c/s,

and hence ¢ and 4 in Eq. (5.4) are found by
e =eR =0.0512 e, d=h.d, 2} =0.9476 d, 0.

In experimental apparatus, vibrations can occur in differential type [2,=2-—2,]
and not in summed type [2,=2-+2.]. Since in summed type, as mentioned in
Section 5. 3.2, both frequencies 2 and 2. are always smaller than unity, and hence
large eccentricities ¢ and d; enough to furnish rather large magnitudes of ¢ and
d are obtained only by the larger values of eccentricities ¢ and d, which could
not be realized in our apparatus. Accordingly, comparison between both results
of experiment and analysis in this chapter is performed only in differential type.

Block diagram of analog computer used in the previous section is shown in

COS%t_ OFZ': I} (x)
&

g +|OV 00: &
COS N2t 01: d
) & 02: ¢
hy 03: initial condition
., cosnt 0‘3. 2 or 0
I 09— — Xorcosnar 05 '
06: 0.1

-100Y

(08 | +100
X

F1G. 5.10. Block diagram of analog computer.
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FIG. 5,11, Frequencies in differentjal type.
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Fig. 5.10, where the lower figure is sinusoidal function generator to yield two
periodic excitations of frequencies 2 and 2..

Both frequencies £ and 2. are shown against frequency £, in Fig. 5. 11, where
the relation 2,=2-2. holds always. In Fig. 5.11, full line curves indicate
analytical results obtained by Eq. (5.10). Response curves for various values of
frequency ratio », magnitude ¢ of parametric excitation and damping coefficient
¢ are illustrated in Figs. 5.12, 5.13 and 5. 14 respectively, where experimental
results agree with analytical results represented by curves and ascertain the
discussion in Section 5.3.1.

Vibratory waves of differential type appeared on experimental apparatus of
single pendulum are given in Fig. 5. 15, in which frequencies 2 and 2. are known
through the upper and lower vertical white lines severally, and vibratory waves
change periodically their shapes at intervals of marks A. At an interval of mark
A, there are 11 and 6 periods of parametric excitation and disturbing force, while
forced vibration of frequency £: vibrates 5 times, as shown in Fig. 5.15. It
follows that the relation £,=2-2,=11—-6=5 is satisfied. Fig. 5.16 shows
vibratory waves of differential type obtained by analog computer, in which the
relation 2, : 2 : 2.=58: 107 : 49 is realized.

FIG. 5.15. Vibratory waves of forced vibration in differential type by experiment

of single pendulum.
(x=1.833, ¢=0.175 cm, d1=0.015 cm, c¢=0.0059, 21=0.997, 21 : 2 : 2,=5:11:6)

FIG. 5.16. Vibratory waves of forced vibration in differential type by analog computer.
(£=2.184, ¢=0.175 cm, d1=0.02 cm, ¢=0.0059, 21=1.002, 2 : 2: 2:=58: 107 : 49).
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FIG. 5.17. Vibratory waves of forced vibration in sumn:ed type by analog computer.
(k=1.875, e=3.5 cm, d1=0.25 cm, ¢=0.0059, 2:=0.994, Q;:2:2:=23:15:8)

Further, vibratory waves of summed type given by analog computer are
illustrated in Fig. 5.17, where the relation 2,:2:2,=23:15:8 and hence £
=02+ 2, holds.

5.5. Conclusions

Characteristics of the forced vibrations having frequency 2,=|2+2.|, which
occurs in a vibratroy system with one degree-of-freedom excited by both para-
metric excitation having frequency 2 and disturbing force of frequency £:when
a sum of and difference in two frequencies, i.e., |2:82:| becomes nearly equal
to natural frequency p:=1, are made clear up both analytically and experimentally,
and it is seen that analytical results show good agreement with both results of
experiment and analog computer. Characteristics of response curves of this kind
of forced vibrations are influenced by the following four factors, i.e., frequency
ratio r=2/2,, magnitudes ¢, d, of parametric excitation and disturbing force,
damping coefficient ¢. Effects of frequency ratio » on response curves are worthy
of notice. Especially, it is noticeable that two response curves of vibrations of
differential type when r is somewhat smaller and larger than 2, are quite different
from each other. Further, it is seen that in vibratory system, treated in this
chapter, in which both magnitudes of parametric excitation = and disturbing
force d are functions of frequency 2, vibrations of summed type [ 2:=2+2.] is
difficult to grow up in comparison with those of differential type [2:=92—2.].
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