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Nomenclature

The following nomenclature is used in this paper:

A, B, C. D, a, b, ¢, d, e=amplitudes of shaft vibration,

E, F, E, F, Ey, Fr, Ef, Fy=amplitudes of natural frequencies p, 7,

Ao, Bs, Co, Do=amplitudes of stationary forced vibrations,

E, F, Ey, Fo, A, B, C, D=amplitudes of forced vibrations with circular fre-

quency wo,

E, F, E,, Fy, A", B!, C', D'=amplitudes of forced vibrations with circular
frequency wd,

A;ij;=cofactor of element a;;,

a:b=ratio representing the position of a rotor put on the shaft,

alel = eWg/ (Wa) I*=damping coefficient for deflections x, y,

Ce,» Cc, = critical damping coefficients,

D=discriminant of biquadratic equation,

d=diameter of shaft,

det (a:;) =determinant consisting of element a;j,

F =dissipation function,

£ 7 fir fir foo o, O, Go=frequency equations,

G =gravitational center of rotor,

G=0+ipop—1*, G=0+iwp—T

g=gravitational acceleration,

H=1-p* H=1-7

H;=Hurwitz's determinant of the 7 th order,

L,=nd'/64=moment of inertia of circular cross section of shaft,

I =principal moment of inertia about AMY,-axis,

I, =principal moment of inertia about MX,-axis,

I=(i+1:)/2=mean value of diametral moments of inertia,

Ilip=1Is/IT=polar moment of inertia about MZ:-axis,

i=+ —1=imaginary unit,
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i=MNW/[(Ig)/P [ =M;/P],
i, j, k=integers,
K;, Ki=the ¢ th order coefficients of the characteristic equation,
!=length of the shaft,
M =geometrical center of rotor,
My, LM} = MW/ agl)]=external moment acting on rotor with circular fre-
quency wo,
mlm' = my W] («g)] = negative damping coefficient,
Mmax = maximum value of negative damping coeflicient,
0%, y, z= rectangular coordinate system fixed in space
Pi, P,Mfrequenmes of unstable vibrations in unstable region,
b, bi, Di, bulp' = pYW/(ag)I=natural frequencies of lateral vibrations of the
shaft,
P=2w—p=natural frequency coupled with p,
P, p =natural frequencies referred to the coordinate system rotating with
shaft,
Qs=generalized force,
gs=generalized coordinate,
x*+y* = lateral displacement of rotor,
s=eigenvalue or complex root of characteristic equation,
' = tag/ W] = time,
T, T,, T:=kinetic energy of the system,
V, V! =potential energy of the system,
W =weight of rotor,
X=0+ip—1o? Xi=0+ (ip— 1D, Xo=0+ ({p—1+4d) e,
x, v, 2La', ¥ =x, yW W/ (Ig)] = rectangular coordinates of the point M,
%¢, Yo, zo =coordinates of the point G,
«, ao=spring constants of shaft,
a', a", B;i, Bj=phase differences,
tana, tanp, tana’, tanp =gradients of p, p’ in p—w and p’'—w diagrams,
7, vy = vV W/ (Ig)/al = spring constants of shaft,
AI=(Ii~1L) /2 [ 4=4I/I]=inertia asymmetry of rotor,
dea, 47, 40=rotating or stationary half differences between maximum and
minimum value of «, 7, and §,
du=dala, do=47[7, 4=46/6=rotating asymmetries of stiffness due to un-
symmetrical shaft,
ds=uniform asymmetry of flat shaft,
8, 8oL0'=0W/(agl)]=spring constants of shaft,
e=dafa, s=A47/7, s2=40/0=stationary asymmetries of stiffness due to flexi-
bility of bearing pedestals,
1»12——'312/~., ’u22=€22/5,
p=angular position of r, or deviation of p from po,
O=g+¢=0t-n/2, O1=g1+¢1,
4, 61, o, o1, ¢, y1=Eulerian angles denoting the angular position of the rotor
and disc surface,
Ox, 0y, 0x,, 0y, =components of 4, §; in x- and y-directions respectively,
¢=angular position of ¢, or deviation of v from oy,
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21&|=width of unstable region,
£1.2, 71,2 =deviations from stationary forced v1brat1on
r=dynamic unbalance, small deviational angle between AMZ:-axis and tangent
MZ, of the deflection curve of the shaft at the point M,
o =—(1-p% (1-7*)p*p" or phase difference,
w=0=0¢+d¢lo =V W/(ag)]=angular velocity of the rotating shaft,
a;o—clrcular frequency of external disturbance,
wh=2w—wmo=circular frequency of coupled vibration with excitation v,
we, e, = major critical speeds,
wae, wa=rotating speeds of the cross points A4, D,
wd,, wgi=upper and lower limits of unstable region near wa,
wyf, wg=rotating speeds where the relations p1=2w and p1=2w~1 hold,
Wy, 0v,, 0z, =components of angular velocity of rotor in MX,, MY, and
MZ;-directions.

# Dimensionless quantity ci’ is shown in the bracket, and the prime on it is often omitted.

General Introduction

The number of revolutions of rotary machine has been increased gradually,
and-digher performance has been demanded for machinery, and, as the result,
the problem of preventing vibration of the rotating shaft becomes of vital im-
portance in this age of high speed mechinery.

A peculiar and seemingly hopeless complex whirling of rotating shaft some-
times takes place at a specified rotating speed due to various causes, and this
speed is called “critical speed”. If the amplitude of whirling during the rotation
of shaft near the critical speed is large, it is a life and death matter to rotary
machinery and to humans whose lives often depend on the proper function of
rotary machinery. If the amplitude is not so large, the shaft is broken down by
fatigue due to repeated stress during long time operation, and the machine con-
taining the shaft is fatally damaged sometimes. Moreover, there are some cases
that it is difficult to pass over the critical speed even when the shaft is designed
to rotate at higher speed than the critical one. Even though it does not develop
into a serious accident, the vibration of the shaft makes the performance of
machine lower, causes noise, or is transmitted to near other machines, and, as
the result, many troubles take place.

In order to get rid of the shaft vibration, the causes of vibration must be
cleared up. Various vibrations of shaft investigated hitherto can be classified
into the following four groups according to the cause of initiation.

(1) Forced vibrations

When there is a small eccentricity e of rotor or a slight deviation r between
the polar axis of inertia and the tangent of shaft, resonant whirling is violently
induced at the vicinity of the angular velocity of rotating shaft which coincides
with the natural circular frequency of the shaft system because centrifugal force
by ¢ and centrifugal moment by r act on the rotating body periodically. This
critical speed is called “major critical speed”, at which whirling is the most
furious and takes place generally, and has been investigated? in detail by W. J.
Rankin (1869), S. Dunkerley (1894), A. Stodola (1903), S. Timoshenko (1928), L.
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Foppl (1929), D. Robertson (1933), and J. P. Den Hartog (1934). Furthermore,
such forced vibration can take place as secondary critical speed?®? caused in a
horizontal shaft having unsymmetrical bending rigidity, synchronous backward
precession? caused by directionally unequal flexibility of bearing pedestals, and
two types of forced whirling® of forward and backward precessions due to differ-
ence in diameter between steel balls of ball bearing.

(2) Forced vibrations genevated by non-linear spring characteristics

Since there is an “angular clearance” in single-row radial ball bearing, asym-
metric non-linearity takes place in the spring constants of shaft, and, as the
result, sub-harmonic and “summed and differential hamonic” oscillations are in-
duced®”,

(8) Self-excited vibrations

There are three types of self-excited vibration of shaft. From the view point
of “rotating field of resistance”®, the resistance acting to shaft is negative damp-
ing force that promotes the development of whirling. Oil whip or oil whirl
discovered by B. L. Newkirk? is induced by pressure of oil film in bearing, and
the preventive method for it has been investigated for long time™. A new
stability criterion' has been derived recently that can explain clearly many in-
consistent experimental results concerning oil whip. Hysteresis whirl generated
due to internal friction of shaft is induced not only by hysteresis of the shaft
material’®, but also by sliding friction at a sleeve or a hub to the shaft or be-
tween parts of a built-up rotor®. Further qualitative investigation has been
carried out by J. G. Baker™, F. M. Dimentberg, and A. Tondl'®. Moreover,
backward whirling due to dry friction between the shaft and guard ring is also
investigated.

(4) Unstable vibrations induced by inequality rotating together with shaft

(4.1) For a flat shaft or shaft with key way, the spring constant of the shaft
is not equal in all directions. When lateral vibration of a disc located at the
middle of shaft is constrained by a guide groove into only one direction, the
equation of motion of the disc is expressed as Mathieu equation with parametric
excitation, and some domains of the number of revolutions appear, in which the
vibration of the disc becomes unstable near the major critical speed'®. Even if
the guide groove is removed, similar unstable vibration takes place®®'. There
are some investigations®?)® concerning the combined effect of the inequality of
the spring constant of rotating shaft and that of bearing pedestals.

(4.2) For a shaft with such unsymmetrical rotor as two-bladed propeller or
armature of two-pole generator, similar unstable vibration with that of shaft with
non-uniform elasticity also takes place. D. M. Smith'® (1933), Y. Yamada® (1954),
L. Y. Banaf and F. M. Dimentberg® (1960), and S. Aiba®* (1963) report that
unstable vibration appears in the vicinity of the major critical speed. O. N.
Romaniv® (1960), S. H. Crandall and P. J. Brosens®® (1961) report the effect of
combination of unsymmetric rotor and flat shaft on the range of the unstable
domain near the major critical speed.

In this paper the authors treat experimentally and analytically several kinds
of forced and free vibrations of a shaft carrying an unsymmetrical rotor. The



6 Toshio Yamamoto and Hiroshi Ota

vibratory character of the shaft system with an unsymmetrical rotor is found to
be differ considerably from that with a symmetrical rotor.

This paper consists of eight chapters. In Chapter 1, a simple experimental
apparatus and methods of experiments are shown. Then fundamental four dif-
ferential equations of motion are introduced for lateral vibrations of the shaft??.

In Chapter 2, upon use of the equations established in Chapter 1, forced and
free vibrations with the modes of whirling are obtained. Unstable regions near
the major critical speeds and natural frequencies of the system without damping
are shown?".

In Chapter 3, response curves, unstable region and phase difference of forced
vibrations with viscous damping are calculated, and the effects of magnitudes of
damping coefficients and of angular position between static unbalance ¢, dynamic
unbalance = and the inertia axis MY: of rotor are studied®.

In Chapter 4, two forced vibrations of frequencies wo and wi= 2w — w, are
shown to take place simultaneously, when an unsymmetrical rotor with angular
velocity » is excited by a periodic external force having frequency w,. Depend-
ing on the circumstances, the amplitudes of the vibration of frequency w; become
remarkably larger than the amplitudes of the harmonic oscillations, i.e., the forced
vibration of frequency wo®®.

In Chapter 5, new regions of mstablhty to occur due to coexistence of rotating
asymmetry in inertia of rotor and stational small dissimilarity in stiffness of bear-
ing pedestals are shown analytically by using “approximation method”. These
unstable vibrations are experimentally ascertained by adopting a bearing pedestal
which is nearly rigid in x-direction, but somewhat flexible in y-direction®.

In Chapter 6, it is shown that in the neighborhood of the rotating speed wa,
where the relation p+p: =20 is satisfied, there is another unstable region in which
two unstable lateral vibrations with frequencies Pi(=p) and P.(=p.) take place
simultaneously and grow up steadily. Generally, frequencies P; and P, are not
equal to the rotating speed w of the shaft, and sum of these P+ P, is always
equal to 2¢°.

In Chapter 7, new unstable regions are shown to occur due to a distributed
mass of shaft®®. This distributed mass of shaft itself has sometimes a rather
low natural frequency of fundamental mode, and must not be always neglected,
though it is fully neglected through Chapter 1~6.

In Chapter 8, it is shown that a shaft with unsymmetrical stiffness has similar
unstable regions to those treated in Chapter 2 and 6, and approximation methods
found useful in Chapter 6 are also applicable. The general system with gyroscopic
terms and with a symmetrical rotor not mounted at the middle of the unsym-
metrical shaft is discussed??3?.

Chapter 1. Fundamental Equations®”

1.1. Introduction

There are three principal moments of inertia I, I;, and 1. about the three
principal axes passing through the geometrical center A of a rotor. The polar
moment of inertia [, is a principal moment of inertia about the rotating axis of
the rotor, and I and ;. are principal moments of inertia about the axes perpen-
dicular to the rotating axis. Rotors with /, and I, of equal magnitude, such as
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the cylindrical ones, are called symmetrical rotors. The rotors having [ and I
of unequal magnitude, such as two-pole generator or two-bladed propeller, are
known as unsymmetrical rotors.

1. 2. Experimental apparatus and methods of experiments

Various sorts of lateral vibrations take place in the vertical shaft S carrying
an unsymmetrical rotor R as shown in Figs. 1.1 and 1.2. Self-aligning double-
row ball bearings with a bore of 10¢ (£1200) are used. The rotor R is driven
by a V-belt, power supplied by a 5-HP, DC motor with speed variations of from
0 to 6000 rpm. In order to remove the disturbance from the velt, a coupling S,
consisting of a helical spring is inserted between the pulley V and the shaft S.
A guard ring G just above R is equipped to check the increase of deflections of
the shaft. The upper surface of the rotor R is made of disc, then the whirling
of the shaft is measured optically by recording simultaneously lateral motions of
the disc edge both in x-direction and y-direction. A small piece of celluloid P is
attached to the disc edge. The two beams of light from lamps Fi, F: are inter-
cepted by this piece at each revolution of the shaft and thus the record both of
rotating speed and of rotating direction of the shaft is obtained at the same time.

As shown in Fig. 1.2, the light from a lamp F:, passing through a condensing
lens L] placed before the disc, goes to a point B on the disc edge and is bent
90° by a prism Ps; and focused on a rotating film F by a lens L,. A slit S/ is
placed before F in order to make sharp images. At the same time another light

F1G. 1.1. Experimental apparatus FIG. 1,2, Optical method of experiments
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from F\, passing through a point A and reflected by prisms P, and P,, is focused
by a lens L.. A time mark 7 of 1/100 seconds is recorded on the film F at the
same time. In experiments the direction of OA (which is the direction of the
center line of bearing pedestal) is selected as x-axis, and the direction OB as
y-axis.

The dimensions of an unsymmetrical rotor mainly used in experiments are
as follows:

Diameter of disc edge=478.8 mm,

Weight W=9.746 kg,

Polar moment of inertia /,=2.390 kg cm s?

Diametral moment of inertia about MY,-axis [;=1.590 kg cm s?,

Diametral moment of inertia about MX,-axis I:=0.815 kg cm s

Four shafts used in experiments are shown in the following Table 1.1, where
the spring constants of the shaft made of mild steel «, 7, and § may be calcu-
lated by “Strength of Material”. Both ends of shaft are supported freely to in-
cline by self-aligning double-row ball bearings.

a = 3IEL(a’ — ab + b*) [ (a°h®), 1
r=3[EL.(a—b)/(a’?), (1.1
8 =3IEL/(ab), {

in which E=2.1x10° kg/cm? is Young’s modulus of shaft, [,=xd"/64 is moment
of inertia of the area of cross section of shaft, d is diameter of round shaft, a, &
are distances of the rotor from the lower and upper shaft ends, and shaft length
l=a+b.

For an over-hang shaft which is supported only at the upper shaft end and
used in experiments of chapter 6, spring constants «, 7, and ¢ are

a =6EL2mn+6)/dmn+3),
7= —6EL(2mn+3)/(4mn+3), (1.2)
§=6EL2mn+2)/I(4mn+3),

in which n=1/,/I, I, is the center distance between the upper and lower ball bear-
ings, / is the length of shaft from the lower bearing to the rotor, and » may be
considered to reduce to 0 if the shaft end is fixed to incline, m=1I,/I,, I is
moment of inertia of the area of cross section of shaft between two ball bearings.

1.3. Fundamental equations of motion

We treat with the rotating shaft system consisting of a light elastic shaft
and an unsymmetrical rotor with a weight W. Let o be the position of the geo-
metrical center M of the rotor when no whirl exists and consider the right-
handed rectangular coordinate system o-xyz fixed in space as shown in Fig. 1.3
in which z-axis is the bearing center line. Let M (x, v, 0) be the shaft center
where the rotor is mounted, and let G (x¢, v+, z¢) be the gravitational center of
the rotor. The point M remains always on the xy-plane when shaft whirls and
the rotor has five degrees of freedom. Now let us define the following five
rectangular systems passing through the geometrical center M as follows:

M-XYZ is the rectangular coordinate system through M paralleling the



On the Vibrations of a Shaft Carrying an Unsymmetrical Rotor 9

TABLE 1.1. Dimensions and Spring Constants of Shafts

No. a:b | lmm | dmm g mm 2 bmm «kg/em | —7 kg/rad éékgcm/rad
i i i i { i i
1 1:3 | 5082 | 1180 | 13L9 | 3763 | 2.725x10° | 3.023x10°  6.139x 10¢
2 | 1:4 | 5055 | 1160 | 1019 | 4036 | 5.375 - 5.047 | 6.881
3 37 & 507.0 | 11.88 . 1512 ; 355.8 | 2.055 | 2.204 . 5787
4 1:5 I 506.1 ’ 11.67 § 84.5 | 4216 ‘ 9.570 ; 7.700 . 8137
z
% Qo

disc surface

X Xe(l2)

F1G. 1.3. Rectangular ccordinates and Eulerian angles

system o-xyz.

BM-X.Y.Z, is the rectangular coordinate system which consists of three princi-
pal axes passing through M, and the inclination of which is denoted by using
Eulerian angles 7, o1, and ¢i.  In Fig. 1.3, the X.Vs-plane is named as the disc
surface.

M-X1Y1Z, is the system in which the X:Yi-plane coincides with the disc sur-
face. A small deviational angle r (i, dynamic unbalance) from an ideal mounting
is the angle between the principal axis /2, and the tangent MZ, of deflection
curve at M. The intersecting line X, of the disc surface and the X'Y'-plane
is perpendicular to the Z,MZ; plane and Y,MY; plane.

M-XoYoZy coincides with the system A/-X1Y:Z: provided that the shaft is
mounted perpendicular to the disc surface, i.e., v=0.

M-X'Y'Z, coincides with the system M-X,Y:Z: provided =90, and the incli-
nation of the system AM-X'Y'Z, is denoted by using Eulerian angles f, ¢, and ¢.

Let principal moments of inertia about the principal axes MZ:, MY, and
MX: be I, I, and I (Ii>1), respectively, and let I=(L+1)/2, 4dI=(L,—1,)/2.
These principal moments of inertia regarding A differ only by the order of ¢
from the principal moments of inertia regarding the geometrical center G. The
advanced angles ¢=_Y20MG, and 3=/ Y.MY, are the proceeding angles from the
axis MY> to the direction to which the eccentricity MG=¢, and the small angle
=Y MY, exist.
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We proceed to obtain the differential equations of motion by using Lagrange’s
equation. Kinetic energy of translation T3 is expressed in the form,

w

Tl‘-—‘— 2g

(te+ v+ 25). (1.3)

Let the rotating speed of shaft be w, and let the components of the angular
velocity in the MX.-, MY:-, and MZ,-directions be w2, wye, and wzi, severally.
Kinetic energy of rotation 7% is represented as follows:

Ty = %(Ipwél 4 Lok, + Lok,). (1.4)

Since the angular velocities of the rotor in the directions of MZ, MA: (i.e., the
intersecting line between the X:Y:-disc surface and the XY-plane), and MZ: are
&y, 0y, and ¢, respectively, wx,, oy, wz, are expressed as

Wy, = 0xsin¢1 - (:91 sinf,cos ¢'1y
Wy, = (1c08 ¢ + @1sinbysin ¢y, (1.5)

Wz, = gbl + ¢ cos0;.

We may neglect the terms of powers higher than 3rd order of small quantities
e, v, small variables z, y, 01, and their time derivatives which are all usually
enough small compared with unity. We now introduce new variables as follows:

Or=¢1+ ¢, O=0+¢,
g, = 61COS Py, 0= 0COSYP, (1.6)

By, = 0,8in¢@;, 0, =0sin¢@,

where 0., 0, are the projectional angles of inclination # to xz-, and yz-planes.
Substituting Egs. (1.5) and (1.6) into Eq. (1.4) we have

Ty = LI 61+ 0.0l = 0,050} + I+ 03)
4 AL{26,0,,8in20; + (0%, — 05,) cos26:}]. (1.7)
The total kinetic energy of the rotor T is
T=T+ T (1.8)
The potential energy of the shaft ¥ should be represented by the following form
V= k(a5 7l + 505) + 50 (85 +03) (1.9)

where spring constants «, 7, and & are given in Eq. (1.1) or (1.2). And the
dissipation function F is defined as follows:

F=galit+ 5+ a6y (1.10)
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where ¢; is viscous damping coefficient regarding deflection x, y, and ¢, is that
regarding projectional angles ., f,. Upon using the geometrical relationship of
G and the direction cosines of the three sets of axis M-XoVeZo, M-X:Y1Z:, and
M-XYZ with respect to each other, we obtain the following eight equations:

Se+ e+ ze=5+ 5 —2e6{icos (O+2) + ysin (0 +£)} + 67, (1.11)
61 =0+ —;—@{&xsin(@+7ﬂ - {)ycos(@+n)}—52—(0'xcos(@+n) +0ysin (6 +7) },

(’}x,ﬁy& - Liy,'ﬁxl = (jxﬁy - (jyﬁx - ’C? ) — 7&{@;8:&1 (@"*‘ﬂ) - 19yCOS (@ +77)}
—{dxcos (9 +7) + Oysin (B + 1)},
Ui+ 05 = 0%+ 05+ @+ 206{0c08 (0 +7) + Oy8in (0 + )},

Oy, = (1= )4ty + <0{ 050 (6 + 1) + ,c08 (B +7) } + %fz(ézsin (20 +27),

0z, — Oy, = (1 =% =05 + 276{0.cos (0 +7) — bysin (O+9)}
+ *GPcos (20 +279),

sin2@; =sin26 + —i;-[msin(@ —7) —sin(36+7)}
—0{cos (@ —3)+cos(30+)}],

o826 =cos26 + %[@{sin (B —9)+sin(30-+9)}

+0y{cos (@ —75) —cos (30 +4)}].

(1.12)

Substituting Eq. (1.11) into Eq. (1.3), and Eq. (1.12) into Eq. (1.7), we can ex-
press 7 of Eq. (1.8) as follows:

T=—%Eﬁ2+y2—266{£c05(@+5) + psin (6 + £)} -+ 6]
-+ '}2*]15[(1 =) = 2¢6{b:cos(@+ 1) + f,sin (O + )}
"i‘" 6(0;\:6;} - Uyﬁx):]
+ %«JMH 05+ 262+ 226{0xcos (O +7) + fysin (6+ 1) }]
+ —%AI[(KJ?; —03) cos20 + 20:0,sin26 + *6*cos 27
+276{l:cos (0 — ) + fysin (& — 3) }1. (1.8a)

Substituting Egs. (1.8a), (1.9), and (1.10) into Lagrange’s equation of motion
(1.13)

d(aT) 8T+8V oF

d(oT\_8T oV, oF _
d1\53s) " ogs Tog Tag = @ (1.13)

in which ¢s is a generalized coordinate, and Q; is a generalized force besides
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restoring force. The equation of motion regarding @ becomes

(1= ,+ _Vgi (T + 4Tcos27)<2)0

- qu(o'écos(@%- £)+ ysin (0 + &)+ (I, — Deliizcos (B +7)

+ysin (O + 1) } Ly (ol — i) + AI[20:015c0526
— (§% = 6%) sin26 — t{fcos(@ — 3) +fysin(@ — 7)1 1. (1.14)

Since all quantities of %, ¥, fx, iy, 6z, Oy, 0z Oy, e and ¢ are enough small com-
pared with unity, we may neglect the higher powers of them in Eq. (1.14), so
Eq. (1.14) is approximately expressed as follows:

LH=0 (1.14a)
and it leads to
O=¢+d=0  O=uwt—r/2 (1.14b)

This conclusion (1.14a) or (1.14b) coincides with the usual assumption taken by
most researchers. Eq. (1.14) means that the angular velocity of rotation 6 is
constant and that the rotation @ is independent on the whirling motion x, y. It
is recently insisted by A. Watari® that the assumption of constant angular speed
of rotation is not general, and that it introduces many misleading and incomplete
explanations, and that the whirl and the rotation relate with each other by
eccentricity and the motion is exactly decided only by using non-linear equations.
But the assumption (1.14a) or (1.14b) is kept enough, especially for the experi-
mental apparatus shown in Figs. 1.1 and 1.2 where the twisting rigidity of
coupling spring S, is very small and the couple between the rotation of shaft @
and lateral vibrations %, y, 0., and §, can be neglected as shown in Eq. (1.14).

Using the foregoing relationship (1.14b), we obtain the equations of motion
regarding x, y, 0, and 6, as follows™:

%5&+619&+wx+70x=~Ig’~ea)2cos(mt+5), (1.15)
”%V’“jiﬂl'ﬁy“ll"Qy‘*‘Tﬁyz“‘[g/;ew?Sin(wt"{‘f), (1.16)

i+ Iy + colin+ 72+ 80, — AI-% (fccos20t + bysin 2 wt)

= t0’{ (I, — I) cos(wt +9) — dicos(wt — )},  (1.17)
Iy — Iyl + iy + 7y + 86y — AI-%([ixsinZwt — fycos2wt)

= o™ (I, — I) sin(wt+ ) — dIsin(wt — 7)}. (1.18)

Putting 4I=0, O=wt—=/2—&, and f=7—¢ in Egs. (1.15), (1.16), (1.17), and (1.18) .
we obtain the equations of motion of the shaft carrying a symmetrical rotor®.
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Chapier 2. Forced Vibrations without Damping and
Unstable Vibrations near Major Critical Speed o/

2. 1. Introduction

The character of the vibratory shaft system with an unsymmetrical rotor
differs considerably from that of the shaft system mounting a symmetrical rotor.
In this chapter we study forced vibrations without damping and unstable regions
near major critical speed w., natural frequencies and amplitude ratios of free
vibrations of the system.

2.2. Major critical speeds and response curves
Particular solutions of Egs. (1.15) ~(1.18), when ci=c:=0 are
x=Ecos(wt+ By = A coswt — Bsin wt,
y = Esin(wi+ £81) = A sinwi -+ Bcos wf,
0x = Fcos(wt+ B.) = Ccoswi — Dsinwt,
0y = Fsin(wt + B2) = Csinwt + Dcos wt.

Eq. (2.1) represent the forced vibrations induced by periodic disturbing forces
caused by ¢ or r, and in Eq. (2.1) angles B and (. are the phase differences
between the vibrations and M Y,-axis. Substituting Eq. (2.1) into Egs. (1.15) ~
(1.18) when c¢i=c.=0, we can obtain the amplitudes 4, B, C, and D;

2.1)

4= Weo*[g{o~+ (I — I — 4D’ jcosé — (I — I — AI)mrcoso
(a—Wat[g) 6+ Tp—T—AD "} —71°

Wew?/g{6+ (Ip— I+ 4D ysing — (I, — I+ 4D we’ rsmv;
B=
(a—Wo?lg) {6+ Up—I1+4I) w*} —77
c= — (W/gew rcost+ (I — I — ADco* (e — Wo'/g)cosy
- (a—Waw?/g){8+ ([p—1—4I)*) —7* ’
~ (W/g)ewrsing + (I, — I+ dDvo’(a ~ Wo'/ g)sing
(a— WD) 6+ (Tp— I+ dD) o’y =7

D:

When the amplitudes 4 and C become infinite, the rotating speed o coincides
with the major critical speeds e, wenn, and when B and D become infinite,

agrees with the major critical speeds we», wer. At the major critical speeds, the
next relation holds,

=[(a— Wo*/{6+ [y~ I— 4D o’} — 1*]
x[a— W/ g)6+ (I — I+ 4D o'} — 1= 0. (2.3)

Solving Eq. (2.3), we have wen, w2, we, and wee;

0ty _ ally == 4D — W8/g = N{a(Tp—I— A1)+ Wojg1 =4 (I,— I— 4D Wr*/g

gy 2W(lp—1—-4D)/g
e, _ ally =1+ 4D = Wo/g = V{a(Iy—I+ 4D + Wo /g =4 (L, =T+ AD W9
(.0212 - ZW([P—I+AI)/Q

(2.4)
Putting 47=0 in Eq. (2.4), we obtain the major critical speeds w. for the
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vibratory shaft system with a symmetrical rotor (I=I=0L). Critical speeds wc,
weez are the lower major critical speeds and wen, wer are the higher. Critical speeds
wen, wer can appear only when [, is smaller than [;. In Figs. 2.1 (a), (b), the
response curves and the phase difference curves in the neighbourhood of the major
critical speeds wen, wee are shown. As amplitudes C and D of inclination angle
are remarkably small compared with ampitudes A and B of deflection, we show

here A, B and #: only. Amplitude E and phase difference ¢ in Eq. (2.1) are ex-
pressed by
E=V A LB, ]
(2.5)
0=f—f=t—tan"'A/B. |

Calculation is performed for the apparatus of Experiment II. As we see in Figs.
2.1 (a), (b), behaviors of vibrations are very much influenced by the magnitude
of the angle & between the MG direction and the principal axis MY5.

T TR " 1807 -
N TR wssiaren| | o ===
i @en= rem N B =
30 TR e = 1632 rem SR, e
| | Wen [725rem o] e
25 HN ! ; 135 3 : a
=y NI I — . /
N 3 | i ALy )~ AURAN
W ! { Nyt 7 el A
3% IRWTTTR Y N
R TR i \\\I\ / / \ w0 . VNG
§,5 \Qé'\‘Nl / R //k’% 70 \ N
N 1 ) = AV
S / /\ f/ \ oy I\
10 /’ NI S N \
/ ) o . - . " R
2 N \\l,l\ %45 oA A Wen= 1514 rom
5 bl e i Moo B 2N N ™
_’{/—;';/ @ ;(,_) @ IR § —”"{:,2/2‘5//\ $C nigié:ﬁrz
0 N ean | Gde 2z S foee . Cdea 174
300 00 500 /60 0 is0 A0 A0 200 S g -9 ‘U‘;’O e N @en
rolating Sspeed @ren Ee N N— -0
S —] -
& ~d M .
(a) Response curves NS A TS Wem—
N\, e
45 N YA Butq§ -
: / §-567.5"T
Ly N R
-90 2
FI1G. 2.1. Forced vibrations near major X ot
N R
critical speed weiz, wers (Experiment II) 35 oo,
5 N
21 ~J
B ;Q{i\_‘%‘__
180 Wer| @ Neea I

7300 M00 JS00 1600 i700 - 1800 1900 2000 2100
o " rolading  speed @ rem

(b) Phase difference curves

2.3. Unstable region near major critical speed
We treat the problems of stability of the system having an unsymmetrical
rotor by Andronow—Witt method. Putting the stationary amplitudes as A, B,

Co, and Dy in Eq. (2.1), and the small deviations from the stationary amplitudes
as £1,2, 71,2, we have



On the Vibrations of a Shaft Carrying an Unsymmetrical Rotor 15
A=A0+$1, B= Byt &, 1 (2.6)
C=Cotm, D=Dytm ) '

Inserting Egs. (2.1) and (2.6) into Egs. (1.15) ~(1.18) when ci=c.=0, the differ-
ential equations for small deviations £i,2, 71,2 are

(W/g)ér+(a— W[ e, — 20 W/ wés+ v =0,
(Mf/g)fz“}' (0( - Wa72/g)£2+ 2( W/g)w51+ T2 = O,

U= dAD5+ {0+ (Ip =T = 4D oy — (2] = I oo+ 74, = 0, 2.7
I+ 4D+ 6+ Tp — I+ 4D ™ yga+ (21 — L) wiy + 152 = 0.
Substituting
SR e .70
into Eq. (2.7), we can obtain the characteristic equation for s
K"+ Kis' + Kis* + Kos* + Ky = 0, (2.8)

where coefficients Ks~ K, are functions of » as shown in Eq. (2.3) and Eq. (2.9).

Ks=(W/g)*(I+ 4D(I - 4I),
K= (W/g) U+ 4D{6+ (Iy — I - 4Dy + (Wi I — 4D {6+ (Ip = I+ 4D o*}
+2(W/g) I+ 4D — 4D (a + Wo'lg) + (W/g)* (21— Ip)°0,
Ki= (W/¥6+ Iy = [— 4D+ (Ip~ T+ 4D 0"}
+2(W/g) T+ 4D (a+ W/ {8+ (I, — [ — 4D w®}
+2(W/gI I — 4D (a + Wo' [ {6+ (I, = I+ 4D &"}
I+ ADUT ~= AD e — W[+ 20 W/ g) (2T — Ip) a + W'/ g)o* — 2 Wi/ g,
Ko =20 W/g)a+ Wo'[ )6+ Iy — I — 4D " {6+ (I, — I+ 4D o}
+ (I+ 4D (a — W' ()46 + (Ip—T— 4D &'}
+ (I = AD(a — W'/ )N+ Ty — I+ 4D o}
=27 Ja+ Wolg— 3QI~I) Wo g+ (21 — Ip)*(a — Wu'/ g%’

(2.9)

Since Ks>0, Eq. (2.8) has at least one positive root for the rotating speed w
satisfying Ky<0 and the system becomes statically unstable. When K;=0, » has
the critical values between stable and unstable ranges, and its values just coin-
cide with w. given by Eq. (2.4). Consequently in the  regions [wen, wee] and
[wen, waz] the vibrations become statically unstable, because K,<0.

Generally the next relation (2.10) between three moments of inertia Ip, [,
and /. about principal axes through the gravitational center of rotor does hold

L+LhzLzh—L (e, 2I1=1,=224]). (2.10

Unstable regions are classified into the next three cases (a), (b), and (¢) for
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various values of I/l and 4I/I.

(a) y=Ii>1 (ie, Ip=I+4I). Since I,—I+4I=0, Eq. (2.3) has two real roots
wen, wee, and only one unstable region [we, wes] takes place.

(b)Y L>L>1, (ie, [—4I>1;). Since I,~I+4I<0, Eq. (2.3) has all four real
rOOtS we,,, e, e, and we,,, then two unstable regions [we,,, we,,] and Lo, we,.]
appear.

() >I,= (e, I+4I>1,=1—4I). As Ip—I+4I=0 and [,—I—4I<0, Eq.
(2.3) has three real roots we,,, wes,, and we,,, and then two unstable regions Lo,
G?f‘z:»j and [Cﬂc,,y oo ] exist.

Boundaries between stable and unstable regions given by the relation Ko=0
are shown in Fig. 2.2 where unstable regions represented by shaded areas are
shown for various values of parameter [,/I and 47/I. When I,/I=20, 1.0, and
0.4, for any 4I/I, unstable regions belong to (a), (c), and (b) respectively. When
Ip/I=15, (a) for 0<4I/I<0.5, and (c) for 0.5<4I/=<0.75. When I,/[=0.8, (b) for
0<4I/1<0.2 and (c) for 0.2<4I/I<0.4. The width of the lower unstable region
Lwe,,, we,] increases approximately proportional to the asymmetry 4I/] as seen
from Fig. 2.2.

. T
N Al
=08 !
< .
20
R i !
5 il
Q04 %)
N ' \“f\
w2 Eﬁ i
| \
i
g 05 10 5 20 25 30 35 7

rolaling speed /i aaTw

FI1G. 2.2. Unstable regions [wes1, wez2] and [we11, wein]

2.4. Natural frequencies and amplitude ratios of free vibrations
For convenience, we introduce the dimensionless quantities as follows;

LiT=ip, AI/I =4, NW[Ig) =2, WW/[Ug) =y, tlag/ W =1, L i211)
N @) = o', VW] (ag) =p', WWITg) a =7, W/ (gD =08 |

Substituting Eq. (2.11) into Egs. (1.15)~(1.18) when a=c¢=0, ¢=7=0, and
omitting primes on the dimensionless quantities, we have the equations of free
vibrations,

Jty+r0y, =0,
e+ ipolly = 7+ 06, — A°—gt—(fjxcosz wt -+ fysin2 ot) =0, (2.12)

iy — ipoliz=+ 7y + 00y — A'%(ﬁxsinZ wt — fycos2wt) =0,
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where p is the natural frequency of the system.

Though the present system is a four degrees of freedom system with gyro-
scopic terms ipwfy, —ipwlis, there are eight natural frequencies p;, Pi=2w—p;
(=1, 2, 3, 4) because of asymmetry of rotor, and a whirling motion of forward
or backward precession takes place. Consequently, free vibrations are represented

by

cos COos - cos FCosy,
ESlnpt+E P, —«F pt sm Pt { (2.13)

Inserting Eq. (2.13) into Eq. (2.12), we have the frequency equation

[ 1-p 0 7 0 %
det (a;) = _ =0, (2.14)
7 0 G —dpp
0 7 — 4pD G

where G=0+ipwp~p%, G=0+ip0p~7. The determinant Eq. (2.14) is expanded
to the equation of eight degrees for p.

20 5

4
Qg8
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s 3
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ST an
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8 d S
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Olo, p)={(1=pG - H U —- G- — LA —p) (1L - DI P =0 (2.15)

Since 7,=1.987, 4=0.322, §=1.060, and 7= —0.855 for the apparatus of Experiment
I, we calculated numerically the natural frequencies p, 7 by Eq. (2.15) using
the above values and showed the results in Figs. 2.3(a) and (b). When the
asymmetry is decreased gradually, the natural frequency p; would approach that
of a symmetrical rotor. The relations p1>1>p.>0>p:> —1>p always hold, pro-
vided 7=<0.

When o =0, natural frequency pio(=—Pi0) is given briefly from Eq. (2.15):

Do (143 =V (A+d=0)+4(1+ )7 1

N ’ o(i+4

P s (2.16)
ph_ (1= 443 =V(1—d=8) " +4(1= )72, [

P 2(1=4)

Though the frequency equation (2. 15) is the algebraic equation of eight degrees
in the variable p», Eq. (2.15) becomes the biquartic equation in the variable p'
putting p=w-+p', P=o—7p,
(A” = B*)(C" = D"* = F" =27 (A'C'- BF) +1' =0,
where A'=1—¢"—p", B=2wp', C'=06+ (ip— D> —p" (2.17)
l= M= p™), F' = (2~ ip)ap'.
From Eq. (2.17), the natural frequency is +p' referred to the rotatory coordinate
system with the rotating speed w.
To each of these solutions of Eq. (2.15) or (2.17) belongs a set of values £,
E, F, and F of free vibrations, which determines the configuration of vibration.
The ratio of amplitudes E, E F, and F is equal to the ratio of the cofactors A:;
of aij (j=1,2,3,4), ie, E:E:F:F=A: A Ais: A in the determinant (2.14).
The cofactors A;; are
Au=7{1 =G =71 —p",
A= Tzdp?},
Ap= T3 - 7’(1 - 52)5’
Au = - 7‘4(1 - 752)1)2;

(2.18)

Because of 4=0 for a symmetrical rotor, the amplitudes E, F of free vibrations
with the natural frequency 7 are zero. Consequently we can see that one of
the peculiar characteristics of the system having an unsymmetrical rotor is the
very existence of vibration . Fig. 2.4 shows the ratios of amplitudes E/E or
FJF for each natural frequency pi, 2,3« using the same numerical values of Fig.
2.3. In Fig. 2.4, both amplitudes E and F are zero at the rotating speed w where
p=2w is satisfied (i.e, in Fig. 2.3), and amplitude F is zero at w where p=
2w+1 (ie, ®O@ in Fig. 2.3).

2.5. Experimental results

We carried out the experiments of a vertical shaft, both ends of which are
supported by self-aligning double-row ball bearings (#1200) shown at Figs. 1.1
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F1G. 2.5. Response curves near we,;, we.

and 1.2. Polar moment of inertia 7,=2.390 kg cm s* and two other moments of
inertia of the rotor used are 1;=1590 kg cm 5%, 1,=0.815 kg cm s®>. Dimensions
of three shafts used in Experiment I, II, and III are given in No. 1, 2, and 3 of
Table 1.1, and spring constants «, 7, and § are calculated by Eq. (1.1).
Moments of inertia of the rotor used are I,>I:>1I, then the unstable region
belongs to the case (a). Response curves obtained in Experiments I, II, and III
are plotted on Fig. 2.5 in the vicinity of wc,,, v, for two different conditions of
balancing. The shaded regions are unstable regions. Comparisons of major
critical speed we.;, we,, Obtained by experiments with those given by Eq. (2.4)
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TABLE 2.1. Lower Major Critical Speeds (we,;, we..) and Natural
Frequencies (p20, P3o)

Experiwéw T Wes. TpM ? wcss rpm j pw cpm D3 cpm
Experi- | Experi- | “Experi- | . Experi- |
ment [ mental | ‘.Calculated‘ mental | Calculated1 ental Calculated mental !Calculgfffl
1 1160 | 1165 | 1243 | 1244 889 | 871 | 979 961
I 1518 1514 1697 | 1725 | 908 | 861 | 1056 1006
| | | |
I 1060 | 1112, 1100 i 1155 907 i 922 ' 977 986

are shown in Table 2.1, showing a good agreement. Also experimental results
and calculated values by Eq. (2.16) of natural frequency pu (vibration in the
plane perpendicular to MYs-axis), and P (perpendicular to MX,-axis) are shown
in Table 2.1. Natural frequencies p;, P:; in Experiment Il are shown by black
mark @ in Figs. 2.3 (a), (b).

2.6. Conclusions

(1) The rotating shaft carrying an unsymmetrical rotor is statically unstable
near its major critical speeds, and the unstable regions become wider as the
asymmetry gets larger. The number of unstable regions is one or two accord-
ing to the values of Ip, [, and L.

(2) The unstable region of the lower major critical speed (p:=7P.=w) vanishes
as the mounting point of the rotor on the shaft comes to the center of the shaft.

(3) There are eight natural frequencies p;, i (i=1,2,3, and 4) in the free
vibrations of a four degrees of freedom system treated in this chapter, and the

relation P;=2w—p: always exists.

(4) As the asymmetry disappears gradually, the natural frequency p: ap-
proaches that of a symmetrical rotor, and the amplitudes E, F¥ of free vibrations
peculiar to P; disappear.

(5) Conclusions (1), (3), and (4) except (2) are the same of a shaft with
unsymmetrical stiffness carrying a symmetrical rotor.

Chapter 3. Torced Vibrations with Viscous Damping®

3. 1. Introduction

A shaft carrying an unsymmetrical rotor is statically unstable near its major
critical speeds, and the unstable regions become smaller as damping forces are
larger, and they vanish when the damping coefficients ¢, ¢; reach critical values.
These critical damping coefficients cc,, ¢, are given in the present chapter. Then,
the response curves and phase differences’of forced lateral vibrations are studied;
they are found to depend very much upon angular positions_of-static and dynamic
unbalances. The characteristics of the response curves and phase differences are
very different from those of a usual vibratory system.

3.2. Damping effect on unstable region

The equations of motion of a shaft having an unsymmetrical rotor and damp-
ing forces are given in Egs. (1.15)~(1.18). For simplicity of calculation,
dimensionless quantities of Egs. (2.11) and (3.1) are introduced:

eNW/Ug) =, eg] (Wa) =ci, e W/(ag)/I=cs. (3.1)
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Substituting Eqs. (2.11) and (3.1) into Egs. (1.15) ~ (1.18), we have
X+ +a+ ply = eo’coslut + &),
e+ ov+ v+ 78y = eo’sin(wi -+ £),
G+ 2;50,?'53' el rx A 60, — A'E(% (G4cO82 wit—+ Jysin2 ot)

(3.2

= rw{ (3 — 1 cos(wt+4) — dcos(wt ~ 1)},

Uy = ipolls+ Colly -+ 73 -+ 50y ~— 4 %—( brsin2 wt — fycos2 wt)

= co*{ (ip — Dsin{wt + ) — dsinlwi — ) }.

When the rotor is excited by periodic disturbing forces due to ¢ and «, the shaft
whirls with the same angular velocity as the rotating speed of the shaft .

£ = Ecos(wt+ ) = Acosot — Bsinwt, 0 = Fcos(wt+ 8;) = Ccos wt — Dsinwt, }
y=Esin(wt+ 1) = A sinovt + Beoswt, 0y = Fsin (wt + B) = Csinwt + Dcos ot
(3.3)

Substituting Eq. (3.3) into Eq. (3.2), we have simultaneous linear equations of
A, B, C, and D of amplitudes of forced vibration.

(1= oA —cwB+ yC = ew’ CosE,
cwA+(1— ") B+ 71D =eu’sing,
yA+{0+ (ip— 1~ D" IC = cewD = (i — 1 — Dr’cosy,
7B+ qoC+H{d+(i,—1+ D"} D= (ip~ 1+ Dro’sing.

(3.4)

Let the determinant consisting of coefficients a;; in Eq. (3.4) be K| = det (a;).
The major critical speed w. is given by putting K; =0. When K is negative,
motions of the shaft become unstable and amplitudes 4, B, C, and D build up
exponentially. The motion of the shaft is in a critical condition between stable
and unstable when K, =0:

K={(1-)X—7"H 1= X~ 7+ X X + o™ (1 — °) -+ 2¢i07 0" + it =0,
(3.5)

where X =48+ (iy— 1), Xi2=08+ (ip—1F4)0% Eq. (3.5) can be rewritten as follows:

4 2 2 2 2 212 | 2 2 2 2 2 4
(1= + 1l ={(1—H X~ Tq P e X el — 0P+ 2000’ F cicho
(3.6)

which represents the relation between asymmetry 4 and the rotating speed w.

Differential equations for small deviations 2.z, 7.,. from the stationary ampli-
tudes are obtained in the same manner as Eq. (2.7), and substitution of Eq.
(2.7a) gives the following characteristic equation®® with damping for s:
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i32+cxs+(1“w?) —~2ws — ciw T 0
2ws+ o S+eas+(1-0?) 0 \ 7
7 0 (1= D'+ s — (2= ipws — =O
+{8F i~ 1~ D} ;
0 7 (2 —ip)ws+ cw (1+ A)S*+ cas + ‘
{6+ (p— 1+ DN’}
(3.7
Expansion of Eq. (3.7) gives the equation of eight degrees for s.
Kis®+ Kis"+ Kis® + KIs" + Kis' + Kis* + Kis”+ Kis + K, = 0. (3.8

When there is no damping, the coefficients Ki, K;, K|, K3, and K, in Eq. (3.8)
coincide with Ks, Ks, Ks, Ko, and K, of Eq. (2.9) which can be made to dimension-
less form of Eq. (6.4) by putting Ir=is, 4I=4, and W/g=a=I=1, and also
K=K =K|=K,=0. Constant term K, in Eq. (3.8) is the same as Eq. (3.5).

Because of Ki= K;>0, Eq. (3.8) has always one real positive root m at the
rotating speed o satisfying Ki;<0, then the unstable whirling motions of shaft
occur in the following forms

X _ pomCOS, Ox _ ;+ mtCOS
y—-E@ sin (C(?t T B[), 0)}——F€ sin(a)t+ Bz) (349)

Neglecting the higher terms than 3rd order of asymmetry 4 in Eq. (3.8), nega-
tive damping coefficient s at major critical speed w. is approximately obtained
as follows:

= Kim+ Ky = 0. (3.10)

The experimental data used in Experiment II stated in Chapter 2 are as
follows:

I, =2.390 kg cm s, I; =1.590 kg cm §°, [, =0.815 kg cm s°,
W =9.746 kg, [=50.55 cm, a:b=1:3.960, a =5.375% 10* kg/cm,
7= —5.047x 10° kg/rad, 6 = 6.881 x 10" kg cm/rad, Vag/W =2217 rpm,

VIg/ W =11.00 cm.

(3.11)

These values can be represented by dimensionless quantities of Eq. (2.11) as
follows:

i, =1.987, 4=0.322, y = —0.855, and 4 = 1.060. (3.11a)

The relations between the asymmetry 4 and the unstable range are given in
Fig. 3.2, where the curve AA furnishes the boundary curve for no damping
system, the curve BB for the system with damping coeflicients c1=¢;=0.05, and
the curve CC for ci=c¢,=0.10. Horizontal line DD (4=0.322) intersects the curve
AA at Ao =we,), Ao =) and the curve BB at Bi(we,), Bilwe,,), but it
does not cross the curve CC.
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The major critical speeds of a damped system can be determined not ana-
lytically but by numerical calculation of Eq. (3.5) or graphical procedure by Fig.
3.2, while major critical speeds w,,, we, (i=1,2) for no damping system are
furnished analytically as Eq. (2.4).
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F1G. 3.2. Boundaries of unstable region near we
ip=1.987, 1=-0.885, §=1.060, ©,=0.736
weo; =0.683, ey =0.778, we214=0.715, wsa24=0.746
|&0]/4=10.148, #mar/4=0.1056

The motion of the shaft carrying an unsymmetrical rotor becomes always
unstable near its major critical speeds provided 70 and no damping. Thus for
the shaft to run higher than the major critical speeds we must pass through
the critical speed rapidly enough or give the system a sufficient damping force.
When the damping coefficients ¢, ¢. are sufficiently large, the unstable regions
near the major critical speeds vanish, that is, the relation K/=0 always holds.
And we call the minimum values of damping coefficients which make K, always
positive the critical damping coefficients ¢, c.,, which are shown in Fig. 3.3.
Near the lower unstable region [wes, wee], the deflections x, y are so much larger
than the inclination angles 4., 0, that ¢ is more effective than ¢.. The points
A, B, and C in Fig. 3.3 correspond to the curves AA, BB, and CC in Fig. 3.2
respectively. When 4 is sufficiently small, v in Eq. (3.5) is approximately re-
placed by the value of w. given by Eq. (2.4) putting 4=0, and then an approxi-
mate equation for critical damping coefficients are as follows:

2 4
C 9 PR 9 9 2 9
q 7 e F i (1= b))+ 2c0,e,7 + Chichwe — Lol — 02+ b} =0. (3.5a)
— We
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Approximate coefficients ¢, ¢, are 0.20 777
shown with broken lines in Fig. 3.3. 74
Another approximate solution discussed . / / ’ g
in Chapter 5 and 6 gives directly ¢;,=  “oi5 /,/ vz
0.164 4 (ci=¢2), ¢1=0.2114(c;=0), and g8 O/// y 7
Ceo =0.740 4(¢c; = 0), and these values are ° g V|

<|c / /

shown with chain lines in Fig. 3.3.

3.3. Forced vibrations due to eccen-
tricity e
We can solve amplitudes A, B, C,

/

0.05

o1e 7 7
,;///

——— EXACT SCLUTION

CRITICAL DAMPING COEFFICIENT Ca

and D by Eq. (3.4). The amplitude E oo APPROXIMATE
of deflection being a vector sum of A A [
and B always coexists with the ampli- 0 02 04 06 08 10

. . . o« g UNSYMMETRY A
tude F of inclination angle consisting

of C and D, the former, however, pre-
dominates over the latter at the lower
unstable range [we,,, we,,] SO that the amplitude E is only considered here.

The amplitude E induced by centrifugal force ew® and phase difference ¢ are

F1G. 3.3. Critical damping coefficients
Cel, Ce2

Ele=+(A]e)*+(BJe)?, ¢=£&— B, tanp,= B/A, (3.12)
Ale=oT{(1~ " (XlXo+ c2m2) —? Xt cost + {ciw(XiXe + Go®) + FPow) sing]/ K, \
B/Z =W [—' (CLCO(X1X3+ Cza) ) -+ Tzco(O} cosé + {(l —w )(XLXO C'JO) ) - TZX2>Sin§]/K6.1

(3.13)

Response curves and phase difference curves when ¢i1=¢:=0.10 are shown in Fig.
3.4 (a), (b). When ¢ =¢.=0.10 the damping forces are too large for the motions
to be unstable, and the amplitude E becomes maximum near w. as shown in Fig.
3.4. The behavior of vibration is very much affected by the value of angular
position & For instance, when &= —45°, the amplitude £ is smaller than that of
a symmetrical rotor. In a symmetrical rotor the phase difference ¢ is nearly 90°
at the rotating speed w where the maximum amplitude takes place, but not so
in an unsymmetrical rotor. When the maximum amplitude appears, the phase
difference ¢ is very different from 90°, and it is 145°, 56°, and 127° for &=—45°,
0°, and 90° respectively. The following Eq. (3.14) are easily derived from Egs.
(3.12) and (3.13):

(E) ssis00 = (E)x, (&) sr1800 = (P)x. (3.14)

Then calculations may be done only for 90°=¢&>—90°. The relation between the
maximum amplitude (E/e)max and the angle ¢ is shown in polar coordinates in
Fig. 3.4 (c) which is nearly symmetrical about the axis£=45°. Clearly the curve
for symmetrical rotor (4=0) is a circle which is given by a broken line in Fig.
3.4 (c).

The points A:, A;in Fig. 3.4 (b) are the intersections between a horizontal
line ¢=90° and vertical lines w=wen, we, and we can approximately conclude that
curves ¢ for £=90° and 0° pass through these points A: and A. respectively.
This fact is generally explained by Egs. (3.12) and (3.13). That is, for £=0°,
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the relation

ol X X+ ca®) + 70w
tanfi= — = ) 3.
B X0 —-d ) Xe—7"+ a1 -0’ (3.15)

holds, while we have (1—-0*)X:—7"=( when w=wc: by Eq. (3.5). Consequently
the denominator of Eq. (3.15) is almost zero and we get ¢=—p£590°. It can be
also seen that ¢=90° at w=wen when £=90° by the similar procedure.

In Fig. 3.5 (a), (b), the unstable range [wend, wea) is represented by the
shadowed region which is determined by the points B; and B, in Fig. 3.2. The
amplitude E becomes larger as the rotating speed @ approaches weid, weza and
no stable amplitude exists really in the unstable range. The phase difference ¢
is nearly zero at a sufficiently lower rotating speed than w. and nearly 180° at a
sufficiently higher speed than we, for all values of &, similarly to the general vib-
ratory system. But ¢ changes discontinuously at w=wed, wena and for &= —45°,
it may be negative near the unstable range, that is, the forced vibration is ahead
of the external force as seen in a flat shaft system?®.
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3.4. Forced vibrations due to deviational angle

We can not perfectly eliminate ¢ and ¢ in an actual rotor and the vibration
that occurs is a vector sum of that induced by ¢ and that by r. Since the gyro-
scopic moment induced by ¢ lies in the direction wt-+7-+90°, the point M deflects
in the direction wt+7%. Now we consider the amplitude of deflection of forced
vibration by r. From Eqgs. (3.3) and (3.4), we have

Elr =V (AJ7)*+ (B/7)%, ¢ =17~ B, tanB, = B/ A, (3.16)
Alr =10l — Up— 1~ D{(Q — ) X2 — c1e0” — 7*} cosy
— p— 1+ DoieXs+ (1 — &) }singl/ K},

2 (3.17)
B/t =70 L(ip— 1~ Dewi{cXe+ (1 — o) }cosy
= Uy = 1+ D{(1 = D Xy — ciew” — 7*} singl/ K},
(E) g = (E)ny (9 s = (@) (3.18)

Amplitude E of deflection and phase difference ¢ are shown in Fig. 3.6 (a),
(b) where damping coefficients ¢; and ¢: are 0.10. The maximum amplitude
(E/e)max for £=90° is almost equal to that for £=0° in Fig. 3.4 (a), but (E/7)max
is not in Fig. 3.6 (a) in which the former is much larger than the latter, because
the gyroscopic moments for »=90" and #=0° are (ip—1+4d)rw? and (i,—1—4)70’*
respectively. The relation between the maximum amplitude (£/t)n.x and the
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angle % is shown in Fig. 3.6 (c¢) in which the symmetrical axis of the figure is
approximately the line »=65°. Fig. 3.6 (¢) is somewhat different from Fig. 3.4
(c). Also E and ¢ are shown in Fig. 3.7 (a), (b) where both ¢; and ¢, are 0.05.

3.5. Uncoupled system of two degrees of freedom (v=0)

So far we considered only the case of i,>1+4, in which there exists one un-
stable range [we, wee] and the forced vibrations of deflection take place in
more remarkable amplitude than those of inclination angle in the unstable range
[wea, we2]. In the case ip<1+44 treated here, however, there are two unstable
regions, the lower being [wen, wee], and the higher [wen, wez]. In the neighbor-
hood of the unstable range [weu, werz] the vibrations of inclination angle predomi-
nate over those of deflection.

Here is treated the simplest system where an unsymmetrical rotor is mounted
at the middle point of the shaft, 7., ¥=0, and the deflections x, y do not couple
with inclination angles 0., #y. and the major critical speeds are wei=wee=wc=1.
This system is considered the same as a single degree of freedom system of a
mass fixed to the middle of a beam with regard to deflection. The major critical
speeds wend, weizd for the system with damping coefficient ¢, are determined from

Eq. (3.5). In Eq. (3.5), putting r=c:=0, we get
K= X Xo+ cio” =0, (3.5Dh)
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werng _ 0{(1=14p) —¢3/(28) ) £ 0V —ip) =3/ (200 = {1 —4p)° — &£} (3.19)
(ﬂz“d_ (1“1}))2*'42 ' ‘

If the value with the radical sign of Eq. (3.19) vanishes or is imaginary, the un-
stable region [wend, wciza] disappears. When unsymmetry 4 is small, the critical
damping coefficent c¢.: is approximately gained by Eq. (3.5a) or (3.19) as follows:

cea= NG/ (1—1ip) = dwe. (3.20)

Boundary curves whether stable or unstable are shown in Fig. 3.8 for i,=2/3,

A4=0~1/3, and 7=0.
The amplitude F of inclination angle and the phase difference ¢ are obtained
from the 3rd and 4th equations of Egs. (3.3) and (3.4). .

Fle =y (C/t)*+ (D/?)z, ¢©=7+180°— 3, tanB = D/C, (3.21)
Clt=do"Llip—1— d) Xpcosy+ (ip — 1+ A cwsinyl/ K}, }

o . . , (3.22)
D/v= o[ = (ip— 1~ dewcosy+ (i — 1+ 4) X sinyl/ K.

Using the same values / and vIg/W as in Experiment II described in Chapter 2,
dimensionless quantities 7,=2/3, 4=0.1, r=0, §=5.313 and ¢:=0.7 are given by
calculation and the results are shown in Fig. 3.9 (a), (b).
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In section 3.4, (i,—1%F4) is always
positive and the positive moment (ip—1
TA)ve? acting on the shaft (¢<d) results
in inclining in the direction of wi-+7%, but
in this section the moment (i,—1F4)re’
takes always a negative value, in the
brackets of which the upper sign cor-
responds to »=0° and the lower sign to
7=90° so the shaft inclines in the direction
of wt+7-+180°. Phase difference ¢ for
7=90°, 0° just passes through the points
As, As which are intersections of lines
w=wen, wer and the horizontal line ¢ =90°.

3.6. Conclusions

(1) Unstable regions near major criti-
cal speeds become larger as the asymmetry
of rotor becomes larger, but they become
smaller as damping forces are larger.

(2) Unstable regions vanish when the
damping coefficients ¢, ¢ reach the critical
values cq, ¢ which are nearly in pro-
portion to the asymmetry.
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(3) Response curves and phase difference curves of forced vibrations induccd
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(b) Phase difference curves
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Chapter 4. Forced Vibrations Having the Circular Frequencies
Differing from the Rotating Angular Veloecity of the Shaft®V

4.1. Introduction

In the lateral vibrations of the shaft with an unsymmetrical rotor there are
twice as many natural frequencies as the number of degrees of freedom because
two free vibrations of natural frequencies p; and p;=2w—p; appear simultane-
ously for each degree of freedom. Consequently, when the periodic disturbing
force having the frequency wo (#w) is applied to the unsymmetrical rotor, two
forced vibrations of frequencies wy, and )= 2w ~ w, take place simultaneously.
Depending on the circumstances, the amplitudes of the vibration of the frequency
oy become remarkably larger than the amplitudes of the harmonic oscillation
with the frequency wo. Thus the idea generally accepted for the forced vibrations,
that “the frequency of the forced vibration is equal or relates to that of the ex-
ternal force” is not always applicable for the forced vibrations of the shaft
mounting an unsymmetrical rotor. In this chapter, the solutions for two forced
vibrations,the response curves, and the amplitude ratio between two forced vib-
rations are treated theoretically and the results are verified through experiments.

4. 2. Solutions for the forced vibrations

When the vibratory system consisting of a light shaft and an unsymmetrical
rotor is excited by the disturbing forces with the frequency wo (=), the follow-
ing dimensionless equations of motion are given:

%+ C],‘% + x+ Tgx == PCOS(Oot,

¥+ oyt v+ 8y = Psinwef,

O+ dpoliy+ ol + 7+ 66, — 4+ “g[(éxCOSZa)t+ Uysin2 wt) = M;cos wd, ] (4.1)
Gy = ipwly+ iy + 7y -+ 80y — A ;?; (Be8in2 ot — ycos2wt) = Misin .

in which P and M; are the magnitudes of the external force and moment with
frequency we, and we introduce the dimensionless quantities of Egs. (2.11), (3. 1)
and (4.2), and omit primes on them for convenience.

oN W] (ag) = oy, PNWI{Ig)/a = P!, MiW/(agl) = M. (4.2)

Because of asymmetry 4 two forced vibrations of frequencies o and wi= 20 — ws
take place simultaneously.

X cOS COSs COS COSs sin
y=ESin((l7gt+ UI)’J‘E' ((Dat*‘*“‘-ﬂ) = ot B ”t’Ji‘ A’Sin ’ B'C os ,ot, \[
g‘” COS(a)oZ‘"“ @) +FfC°S( Wi+ o)) =%, i+D wit +C' cos t+D"Sm ol - K
y sSin
(4.3)

Substitution of Eq. (4.3) into Eq. (4.1) results in the following equations.
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(1—-0)A—cwnB+7C=P, (1— DA — B+ vC' =
A+ (1—w)B+rD=0, aofA+ (1— o) B + TD’—O (4.0)
1A + JC — cawyD — dwowtC' = M, — dwonC+ 1A'+ J'C' — ol D' = 0, '
7B+ ¢aneC + JD + deon D! = 0, dwowiD + 7B + ¢0C' + J'D' =0
E=JA' B, E'=VJA"+D" F=JC+D}, F' = \/MC@"DE,} (4.5)
tane, = B/A, tan¢;= B'/ A/, tan¢, = D/C, tanw, = D'/C'. ’
J =8+ ipowo — oy, J' =08+ ipwwy— o . (4.6)

Let the amplitudes of forced vibrations with frequency wo for deflection and
inclination be E and F respectively; the amplitudes of forced vibrations with
frequency oy = 2w — wy for deflection and inclination be E’ and F’ respectively;
E, F, E' aud F' when c¢:=0, ¢2=0 be Ey, Fy, E; and F; respectively; the amplitudes
of free vibrations of frequency p without damping be Er and Fy; the amplitudes
of free vibrations of frequency P without damping be Ef, Fr. Though the ampli-
tudes £, F, E' and F' can be calculated through Egs. (4.4) and (4.5), they are not
represented by rather simple formulae. The amplitudes when there is no damping
force can be given by somewhat brief equations as follows:

By = PL(]~— 7]){ 1—wHh ] —yf Y — Aot (1~ wi] B
{1 — o] =71 1 — o) ] — 7 = Loyl (1~ w) (1 — o)),
B Prdwewi{r — j(1— wi)}
° 1= ]— 71— ] — 1) — Lotod (1 — o) (1 — obt), w7
By = —Pl—o] =7 Hr—j1— o)} o
{(1- o) ] =7 H{(1 = o) ] — 7% — Lo (1 — o) (1 — i),
= ~ Pdwyog(1 — wi){r — i1 — )}
A=) TP A= o] =7 = Lol (1 - ob) (1 — o)
In this equation
j= (M:/P). (4.8)

When the dimensions of the rotor and the shaft, the condition of supports of the
shaft at bearings and the position where the disturbance is exerted are known,

the dimensionless quantity j is given by the formula of “beam theory”. For the
freely supported shaft the value of j is given by

V(P —3a"—2) —ablb— ) (I°— a* — 2°) 3
F=NW/ o), TP P—d =) —blb—a)(F—3d—z  1oF 0=2=0,

N e —a“b(3b2—221+22) —ab(b—a)(b*~ 221+ 2"
7= \/W/(Ig)(az—ab+b2)(bz~—221+zz)+a(b——a)(3b2—221+227

(4.9)

for b<z<l,

in which z is the distance from the upper bearing to the position at which the
disturbance is applied to the shaft system.
For the fixed shaft
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- gwrrs 2ab’ (2P —3al—2b2) — ab(b— a)(2az + 3b] — 3zl)
I =W 50 b 37 (2az 36I=321) —35 (b—a) (2P —3al —2bzy 10F 0=2=h, l

e — 2% (bl — 2az2) — ab(b — a) (bl + 25z — 3z]) ;
I=NWIID 30~ G4 57 (bi+ 252 —320) +3a(b—a) (bI—2az) for b=z=l
(4.92)
When the lower pedestal is forced to make a displacement,
j= —ayW/(Ilg) for the freely supported shaft, (4.10)
j=—avW/(lg)/2 for the fixed shaft. (4.10a)

For our experimental apparatus, the dimensionless quantities are the values
in Eq. (3.112), and are used in numerical computations. The frequency equation
for the system is given by Eq. (2.15). When the frequency wo of the disturbance
coincides with p or P given by Eq. (2.15), the denominator in Eq. (4.7) vanishes
and the phenomenon of resonance takes place. As there are four p; and P; (i=
1, 2, 3, 4) for each value of the rotating speed w, as shown in Fig. 4.1, then there
are eight values of wo which satisfy the resonance conditions we=pi and wo=7i.

The characteristics of forced vibrations when we=p: (case I) considerably
differ from those when we= p; (case II), as shown in Fig. 4.2. For experiments
A and B which will be explained later in section 4.4, j in Eq. (4.8) takes the
values —0.927 by Eq. (4.10) and 1.001 by Eq. (4.9) respectively. Response curves
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of experiment A for case I (wi=p2) and case II (wo=P:) are given in Figs. 4.2
(a), (b) where o is 0.451 (1000 rpm) and the vertical chain lines show the location
of resonance wo=p:, wo=ps and the full and the chain lines give the amplitudes
of forced vibrations with frequencies vy and w; = 2w — o, respectively. In Fig. 4.2
(a) the amplitudes of w, are larger than those of w;. In Fig. 4.2 (b), however,
the amplitudes of w; are remarkably larger than those of wo and it is seen that
the periodic force having frequency wo results in the forced vibrations with con-
siderably large amplitudes and the frequency w, which is not equal to the fre-
quency we of the periodic force. Incidenially, in Fig. 4.2 (b), the amplitude E
when ci=c¢=0 vanishes at wo=1.093 and we=1.214, because the numerator in the
first equation of Eq. (4.7) becomes zero at wo=1.093 and 1.214.

4.3. Amplitude ratio of forced vibrations
4.3.1. Amplitude ratios without damping
From Eq. (4.7) we get the amplitude ratios

EQ rdwywydr = j(1— )} ] Fo': oo (1 = o’) (4.11)
Eo (]——f]){(l o] =7~ Lo (1— o), Fy (1~ o)) =7 o

Insertion of Eq. (2.15) into Eq. (4.11) yields

( 4pipi(1—ph) _ By
Ey .ug»p, (1= B+ ipepi— ) — 7 Er,

( ;) Apipi(1 — p}) _TFr

Fo/ =1 (1— ,? + i~ P — 1 Fr,

i PG z;)mp Vi T 5 (4.12)

(@5) 4pipi(1— P}) = Er

E wg =77 {1"‘?;}(5—7‘#’50152 f)g) -72 Ef’

(_F__o) _ Apxﬁ:(l "Pz Ff

Fo ml}=13'1 1 "p )(6+ Z;Mﬂp: pz) - f Ff

Eq. (4.12) mean that when there is no damping force, the amplitude ratios at the
resonance are equal to those of free vibrations. Furthermore Eq. (4.12) yield
the following reciprocal relations between cases I and II:

{Eé/Et))mD:p; * (E(;/Eﬂ)ruoa{;‘ = 17 (FU,/F0>:00=P1 (F /ro) \)0—])‘ = 1 (4. 13)

4.3.2. Amplitude ratios with damping
Substitution of Eq. (4.3) into Eq. (4.1) leads to
(1= ) E+yFcos (0, — ¢) = Pcos ¢,
— i+ rFsin(¢, — ¢,) = Psin¢y,
(1= oy VE'+vF cos (¢) — ¢1) =0,
~ B+ yFsin (@] — ¢)) =0,
7Ecos (¢~ @) + JF ~ dwywF! cos (¢, + ¢5) = M;cos¢,,
— rEsin (¢, — ¢) — cownF — doowiF sin (€2 + ¢3) = M, sin¢,,
~ dwown F'cos (€a+ ¢3) + vElcos (@] — @) + JJF =

doxorFsin (@2 + ¢}) + rE'sin (€] — ©}) -+ el F' = 0.

(4.14)
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Eliminating ¢|— ¢} from the 3rd and 4th equations of Eq. (4.14), we obtain
(EFN? = 74/{(1 = o)+ clw). (4.15)

Eliminations of ¢! — ¢}, ¢,+ ¢} and E' from the 3rd, 4th, 7th and 8th equations of
Eq. (4.14) result in
(5) - St (1= of' P+ Gol )

F (1= o ) (1= o) — 721+ o] T+ {1 — o) + ciogy” + clest’ ) -

(4.16)

Eliminating seven quantities ©;— ¢, ¢}~ &;, ¢+ ¢y, F, F', P and M: from the
eight relations of Eq. (4.14), we can obtain the equation of the amplitude ratio
E'/E which is somewhat complicated. Consequently, using the relations of Egs.
(4.15) and (4.16) we have a rather simple equation of the amplitude ratio E'/E
as follows:

EN?
(%) =
- P F/FYy -1 - wt) ¥+ o] B o
A=+t AT~ FIF R+ — o) (B FY -] Y Lo l(E' ) FPP - cowry — Cownol F/FY .
(4.17)

Egs. (4.16) and (4.17) give the amplitude ratios for forced vibrations with re-
spect to deflection and inclination of the rotor respectively.

Computations through Egs. (4.16) and (4.17) show that [1] the amplitude
ratios E'/E and F'/F of forced vibrations have approximately constant magni-
tudes throughout the neighborhood of the resonance no matter how the magni-
tudes of amplitudes themselves remarkably change as the value of we changes
as shown in Fig. 4.3, and [2] the amplitude ratios of forced vibrations in the
neighborhood of the resonance, i.e., at wo=p; Or wesPi, are approximately equal
to those of free vibrations, provided that the coefficients of damping are not so
large, as shown in Fig. 4.4. From the above facts [1] and [2], it can be con-
cluded that the relations

EE=(EE) wy=pi= (EVE) we=p:= Efl/ Ef  for case I (m=pi),

, ~ — } (4.18)
ENE=AEE) w-5i= (Es/ E)wv=p; = Ef/Ey  for case Il (we=Pi),

can be satisfied for the amplitude ratios of forced vibrations when woi=p: or we=Pi
and ¢, c2=10"2~10"2. For F'/F, the similar relations to Eq. (4.18) hold. In Figs.
4.4 (a) and (b), the amplitude ratios E'/E at the resonances wo=7ps; and wo=p:
are plotted against the coefficients of damping ci, ¢ respectively. It can be seen
that the ratio, when ¢ and ¢, are small, takes almost the same value as that of
free vibrations. The value of Ey/Ey (case I) or Ef/E; (case II) is indicated by
mark O in Figs. 4.3 and 4.4. The curves of (E'/E).,-j represented in Fig. 4.4
(b) will be discussed later as an exceptional case. For comprehensive discussion
of the amplitude ratio of forced vibrations, an analytical treatment of the ampli-
tude ratio of free vibrations is more convenient because the relations of Eq. (4.18)
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can be satisfied. The values of the amplitude ratios Ey/Es and Fy/Fy of free vib-
ration are plotted against the rotating speed w of the shaft in Fig. 4.5. Through
Figs. 4.5 (a) and (b) all absolute values of E;/Es and Fy/Fy are smaller than unity,
with an exception of curve EF in Fig. 4.5 (a). It means that excluding this ex-
ception, in case I (wo=p;) the amplitudes of the forced vibrations with the same
frequency wo as the disturbing force are always larger than the amplitudes with
the fregency w;=2w — wo, and vice versa in case II (wo= 5.
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There are the following exceptional cases (i) and (ii) in which the relations
in Eq. (4.18) are not satisfied. When (i) the amplitude ratios of free vibrations
and (ii) the magnitude of {y —j(1—owy} in Egs. (4.11), (4.17) are nearly equal
to zero, the approximation in Eq. (4.18) does not hold.

(i) For instance, at the points A4 (0=0.278), B (0=0.281), C (©=0.888), and
D (0=0.375) in Fig. 4.5 as well as -in Fig. 4.1 the numerator in Eq. (4.12)
vanishes and the amplitude ratios of free vibrations become zero, because of
D=0 at A, Pi=~1at B, P.=1 at C, and P:=1 at D. The exceptional cases ap-
pearing near the points A, B, C, and D are shown in Figs. 4.6 (b), (a), (b), and
(c) respectively. In Fig. 4.6, the amplitude ratios of forced vibrations for experi-
ment B (j=1.001) are shown against the rotating velocity o of the shaft and the
vertical broken lines indicate « at which the exceptional case (i) appears. In
Figs. 4.6 (b), (a), (b), and (c), the amplitude ratios |E'/E| or |F'/F| for small
damping coefficients of ¢=c¢1=c;=0.01, 0.05, 0.1 in the neighborhood of the points
A, B, C, and D are remarkably smaller than the amplitude ratios for ¢=0 which
are equal to the amplitude ratios of free vibrations as shown in Eq. (4.12).

(ii) For instance, since the value of {r —j{1 — wi)} vanishes at wo=+0.279 in
experiment A because of j=—0.927, then it takes a ‘quite small value 0.0064 for
the value of we=2.=0.269 shown in Fig. 4.4 (b). Consequently the existence of
only small damping coefficient ¢, or ¢ results in considerably smaller magnitude
of the amplitude ratio (E'/E).,-5, than the value Es/E;=12.35. In experiment B
(§=1.001), the value of {7y —~j(1 - !} vanishes for wo==+1.362. Accordingly it
becomes equal to zero at the points ¢ (w=0.079), b (0=0.573), ¢ (0=1.085), and
d (0=0237) in Fig. 4.1 where the horizontal lines p=+1.362 cross the curves of
P1, Ps, e, and p. respectively. As examples, the amplitude ratios in the neighbor-
hood of the points b and ¢ just mentioned are shown in Figs. 4.6 (c¢) and (b) re-
spectively, in which the remarkably small value of E'/E compared with that of
Ey/Eo= (E'/E)¢,=c.~ is given near the points b and c¢. As there is the term
{ ~j(1— o)} only in Eq. (4.17) and not in Eq. (4.16), the exceptional case (ii)
above discussed appears only in the amplitude ratio of deflection E'/E and not
in F'/F of inclination angle.
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The reason why such exceptional cases (i) and (ii) take place is as follows:
Let ¢ and damping coefficient ¢ be small, [¢*]i,2.; and [¢*]i,» be small quantities
having the same order as 2. In the exceptional case (i), for instance, since w,
becomes a small value ¢ in the neighborhood of the point A (»w=0.278) because
of m=P2=¢e=0, then wo=¢ results in {(1— ")) —7*} =[] through Eq. (2.15).
Consequently Eq. (4.16) takes the form of (F//F)*=[]i/{[*li+ ']+ [c*]e-[*]o} =
[*]:/[c*]: which is remarkably smaller than (F'/F)%, -c,-o=[1/[']=1/[&T:. In
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exceptional case (ii), the term {(J—7/)(F/F')’+ (1— o) (E'/F)*~]'} in the
denominator of Eq. (4.17) becomes small as ¢ when {r — j(1— w;)} = ¢=0, and Eq.
(4.17) takes the form of (E'/E)*={[*],+ [¢*1i}/{[£T+ [*]e} which is quite differ-
ent from (E'/E)}.como = (B4 Ey)® = [&11/[*]:.

The amplitude ratios E'/E, F'/F—the rotating speed o diagram in which the
exceptional cases (i) and (ii) do not take place is shown in Fig. 4.6 (d) where
the relations of Eq. (4.18) are satisfied and all F'/E and F'/F are approximately
equal to the amplitude ratios of free vibrations, ‘e, Ef/E; and Fy/Fy provided
c<1.

4.4. Experimental apparatus and experimental results

4.4.1. Experiment A

Experimental apparatus is shown in Fig. 4.7. The lower bearing pedestal A
is somewhat flexible only in y-direction
and its spring constant is 1.15x10° kg/cm.
The pulley V. with the eccentric weight
W, put on the top of the pedestal A is
driven with the rotating speed wo. Thus
the forced deflection of the pedestal A due
to the centrifugal force of W, results in
the disturbing force with the frequency
wo which can be changed by a stepless
transmission. Accordingly the experiment
A corresponds to the case when the dis-
turbances having their sources in the
machinery or the constructions near the
shaft system induce the forced vibrations
of the unsymmetrical rotor through the
bearing pedestal. The value of j in ex-
periment A computed by Eq. (4.10) is
j=-—0.927. Motions at the edge of the
rotor are recorded optically in both x- and
y-directions. By this method the whirl of
the rotor can be measured. Small pieces
of black celluloid P; and P: are attached FIG. 4.7. Experimental apparatus
to the disk edge and the edge of the (experiment A)
pulley V. respectively and furnish the
rotating marks for each revolution of the disk and the pulley. Dimensions of the
experimental apparatus are the same as in Eq. (3.11) and the dimensionless
quantities of Eq. (2.11) are given in Eq. (3.1la).

When at »=0.455 (1009 rpm) the eccentric weight W.=0.068 kg attached at the
radius 5.9 cm is rotated with wo=p., the response curves, .., the amplitude —awo
diagrams and the amplitude ratio as shown in Figs. 4.8 (a) (b) are obtained by ex-
periment. The experimental results in Figs. 4.8 correspond to Figs. 4.2 (a) and 4.3
(a), and for comparison the response curves, i.e., E, E'—wo diagrams and the ampli-
tude ratio Ej/E, which are analytically obtained are added in Fig. 4.8 (b). As the
vibrations on the recording oscillographic papers are not simple vibrations of
deflections but include the small component of vibrations of inclinations because
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of the coupled system of deflection and inclination, in place of E, £/, the notations
A, A" are used for the amplitudes obtained through experiments in Figs. 4.1, 4.8,
4.9. An example of vibratory waves is illustrated in Fig. 4.9 where the vertical
white lines are the rotating marks (of P; on the rotor R in x-, y-directions, and of
P, on the pulley V; in x-direction), and the horizontal fine white lines are furnished
on a scale of 1.0 mm for measuring the amplitudes. In Fig. 4.9 comparison of
the rotating marks with the vibratory waves between marks AA leads to o : wy :
;=517 3 and it is seen that the relation w)=2w — @ holds.

4.4.2. Experiment B
In experiment B, both lower and upper bearing pedestals are rigid and the
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disturbance with frequency wo is applied through an exciter which is attached to
the shaft at z=5/2, and then the value j is 1.001. The centrifugal exciter is
shown in Fig. 4.10. A rotor R: with unbalanced disc D' is driven by a rotor R
through three sets of pin P, curved leaf spring S, and pin P.. R; (R:) is sup-
ported freely to rotate around the shaft S (stater S:) by a single-row radial ball
bearing B: (B:). Response curves of experiment B are shown in Figs. 4.11 (a),

(b).

F1G. 4.10. Centrifugal exciter (experiment B)
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Fi1G. 4.11. Response curves (experiment B)

Examples of vibratory waves in experiment B are illustrated in Figs. 4.12
(a), (b), (¢) where vertical white lines both in x-, y-directions are the rotating
marks made by two pieces of celluloid put on edges of the rotor R and the disc
D'. As stated in section 4.3 the amplitudes of w; are larger than those of wp in
Figs. 4.12 (b), (c) because of case II, and vice versa in Fig. 4.12 (a) of case L

Marks in Fig. 4.6 (¢) are obtained by experiment B and they verify experi-
mentally the existence of the exceptional case (ii) discussed in section 4.3. The
frequencies of the disturbances wo at resonances in experiment A and experiment

B are represented by marks O, @, © and @ in Fig. 4.1.
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FI1G. 4.12. Vibratory waves (experiment B)

4.5. Conclusions

(1) In the vibratory shaft system with an unsymmetrical rotor, the distur-
bance of frequency wy (#w) results in two forced vibrations with frequencies wo
and wi =20 — w.

‘ (2) In case I when wo=pi, the amplitudes of frequency w, are larger than
those of w;. On the other hand, in case II when w=7P;, the vibrations having
the frequency « which is quite different from the frequency wo of the disturbance
build up remarkably and the amplitudes of the harmonic oscillations of frequency
wo are rather small.

(3) The fact stated in (2) has an exception corresponding to the curve EF
in Fig. 4.5 (a).
(4) At the resonances the reciprocal relation Eq. (4,13) of the amplitude
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ratio between cases I and II holds.

(5) The amplitude ratios of the forced vibrations occurring near the resonances
are approximately equal to those of the free vibrations, provided that the damp-
ing coefficients are not so large.

(6) The fact mentioned in (5) has two exceptional cases (i) and (ii) discussed
in section 4. 3.

Chapter 5. Unstable Vibrations Induced by Flexibility
of Bearing Pedestals®

5.1. Introduction

In the lateral vibrations of a shaft carrying an unsymmetrical rotor, a free
vibration of frequency p; always appears with another free vibration of frequency
Pi=2w—p;. If the bearing pedestals have different flexibilities in x- and y-di-
rections, the spring constants of the shaft in x-direction will differ from those in
y-direction. Coexistence of p; and P; and the small dissimilarity in spring con-
stants result in new zones of instability where the whirling mctions of the rotating
shaft become unstable. These unstable zones take place in the neighborhood of
the rotating speed » where the relation

pi=—pj, OF pi=—pj=20+p;

is satisfied, in which p; and p; are the natural frequencies of the system. In the
unstable zones, the system becomes dynamically unstable and vibrations with
frequencies pi, pj, pi and P, build up steadily. In the present chapter, the cause
of the occurrence of these vibrations, the extent of unstable zones, the motions
within the unstable zones and the effects of the damping force are analytically
and experimentally discussed.

5.2. Existence of zones of instability, motions in the unstable zones

Let the spring constants of lower bearing pedestal A and of upper bearing
pedestal B be fuy, kys (keyn>Fkys) and kus, kys (kus>kys) respectively, and the
spring constants of the shaft itself be ao, 7o, and o assuming the displacements
of bearing pedestals and the inclination angle of bearing center line z to be
negligibly smaller than x, y and 0. 8, respectively, and then the equations of
motions of the unsymmetrical rotating body supported by the flexible bearing
pedestals are obtained®,

W/ge%+ (a+ da)x+ (r+ 47)0: =0,
W/g5-+ (a — da)y+ (v — 47)8, =0,

Iy + Lpwly+ (r+ dy)x+ (8 + 40) 6. — AL+ %(0,;(:052 wt +lysin2wt) =0, { O-1)

Ty = Ipwle+ (7 — dr)y+ (8 — 48)8y — 4AI - —é—i-(i‘}':csiHZ wt— lycos2wt) =0,

where «, 7, and § are spring constants of the shaft including flexibility of bearing
pedestals; da, 47, and 48 are small differences in spring constants between x- and
y-directions as follows:
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(5.2)
For conveniene, we introduce the dimensionless quantities as follows:
daja=c¢, Ay/r=ex = kne, 45/0= 0= kne. (5.3)

Substituting Egs. (2.11) and (5.3) into Eq. (5.1) and omitting primes on the
dimensionless quantities, we have

%+ x- Tﬁx+ e(x+ Tﬁxgﬁx) = O,
FH+y+ 10y —ely+rr00y) =0,

(i + ipwly + 75+ 80+ e(rrix -+ Grewb) — A'C%(t‘)xCOSZwt +Gysin2wt) =0, [(5.13)
Gy = ipwle+ 1y + 60y — e(vhpy + Ornly) — A-g;(a‘xsinz wt — Gycos2wt) = 0.

In the first place, we consider a rather simple vibratory system in which the
spring constant v vanishes and motions of #, and #, do not couple with motions
of x and y. Putting 7=0 and =0, and

N =t, o/N6 =o', k=1, (5.4)

in Eq. (5.12) and omitting primes, we have the equations of motion of . and 0,
for the system of r=0.

e+ ipwliy + 05+ ey — A-%(t)xcosz wt+ bysin2wt) =0,
J (5.1 b)
/,.{}Y_ ipwf}x+ ﬁy - Sﬂy - A'gi(ﬁxsinzwt - [ijOSZ wt) = O.

If the bearing pedestals are rigid and the difference in spring constant ¢ vanishes,
the free vibrations of the system are represented by

0= }kj [Aicos (pit+ B:) + Bicos {{2w — pi)t — Bi}t],
: (5.5)
= 2]

23LA;sin (pit + Bi) + Bisin{ (20 — pi)t — Bi}],

where k is the number of degrees of freedom?®?. For the present system, however,
Eq. (5.5) do not satisfy Eq. (5.1b) because of 0. Since there is a difference
in spring constant e, the amplitudes of free vibrations in y-direction differ from
those in x-direction. Accordingly, free vibrations take the form
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ﬁx:Acospt=—12~(A +B)cosj)t+—%(A——B)cos(ap)t,
) (5.6)
0y = Bsinpt = (A-+B) sin pt + (A B)sin (— )1,

and a free vibration of forward precession having frequency p and one of back-
ward precession with frequency —p take place simultaneously. Further, free vib-
rations of frequencies P=2w—p and —p =2w+p should coexist with vibrations
of p and —p, because of unsymmetrical rotating body®”. Furthermore, unequal
amplitudes induced by unequal shaft rigidity e in vibrations of p and —p result
in vibrations of frequencies —F=p—2w and —(=p)=—2w—p through the similar
expression to Eq. (5.6). Repeating this procedure, ifree vibrations of the system
with unsymmetrical rotating body and unequal spring constant are represent by

the equations of infinite terms

cos

5 ACOSp+ Cos(zm p)HB“OS( — )b (20t Pt
Cos(p 2 )t—LaC.OS(sz p)z—LDCOS( 20— p)t
+ COS(4 +p)t+ECOSp 4 )t+ec?s(6a) Pt . (5D

Since vibration of —p is induced by small difference of spring constant e, the
value (A—B)/(A+B) in Eq. (5.6) is as small as the order of e. Thus, ampli-
tudes of A and « in Eq. (5.7) are in the zero order of ¢; and B, C, b and ¢ are
in the first order of ¢; D, E, d and e in the second order of . Inserting Eq. (5.7)
into Eq. (5.1b) and comparing the coeflicients, we obtain

G(p)A—dpQRw—p)ra+eB=0,
GRw—p)a—dpQuw—p)A+eL=0,
G(=p)B-4(=p)Qo+p)b+eA=0,
GCR2w+p) b—4(—p)Qw+p)B+eD=0,

G(p—2w)C—4(p—20)(4o—p)ctea=0, 5.8
Gdo—p)c—A4(p—20)(4o—p)C+eE=0,
G(—20=20)D—4(—20—p)(do+p)d+eb=0,
G(p—4w)E—4(p—4w)(Bw—p)ete=0,
where
G(p) =1+ ipwp ~ p°. (5.9)

The ratios of amplitudes A:a:B:b:--- in Eq. (5.7) are determined by Eq. (5.8),
provided the natural frequency p is given. Neglecting terms smaller than ¢, we
have the relations

b=d(—-pP)2w+p)B/G2w+p),
(5.10)

c=4(p— 20) (4w ~-éi))C/(;?(ALw“p),
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from the 4th and 6th equations in Eq. (5.8). Inserting Eq. (5.10) into the 3rd
and 5th equations in Eq. (5.8) and eliminating » and ¢, we have the 1st, 2nd,
3rd and 5th equations of Eq. (5.8) containing only A, ¢, B and C. Using these
four equations of 4, ¢, B and C, the frequency equation

O(w, ) = fifofs+ 9+ -+ - =0, (5.11)

is given, where --- represents small terms of higher powers than &%, and

H=FfP)=CP)G2u—p) — 4P 2w —p),
fo=F(=P)=G(=pPGQRu+p) — £ (2w+p)?

= (= D) =G(p—20)G(4o—p)—£(p—2w) (4o —p)?,
0= —{G(PGUAw—p)fi+G2o—PG(2a+p) fi).

The equation fi=0 is the frequency equation when ¢=0?", and the roots of /i=0
are p=p., p., 71 and P.. At the major critical speed wc, the root p: becomes equal
to 71 and a zone of instability appears?®®. For the present, neglecting the terms
smaller than ¢ in Eq. (5.11), we have

fifefa=0. (5.11a)

By observing Eq. (5.12) and Eq. (5.9), it can be seen that there are 12 roots of
Eq. (5.11a), that is, we obtain roots p=pi, D1, p. and P from f1=0, and p=—p,
—%1, —p» and —P. from f2=0, and “hi=pi+20, —pri=p—20w=4w—p1, ps+20 and
4w—p, from f3=0. When there are equal roots among the above 12 roots, the
system becomes unstable, and new zones of instability take place in addition to
that near the major critical speed w.. For instance, at the rotating speed o
where the relation

pl""Pz =20 (P1>]>2) (5.13)

is satisfied, the roots p=pi, 7. of fi=0 become equal to the roots p=p.+20,
4o—pr of fi=0 respectively. Further the roots p=p,, 1 of fi=0 are equal to
p=pi—2w, —p» of fo=0 respectively. Consequently unstable vibrations of fre-
quencies p1, P, 71 and P. grow up steadily.

The range of unstable zone is deter-
mined by the following procedures. Let
P, P and o which satisfy fif2f:=0 and
Eq. (5.13) simultaneously be pi, p0 and s

b
8-0

F
o Pocurveof fi=a ,

wo. In p—ow diagram of Fig. 5.1, the curve Al e

aa is a p; curve given by ;fi=0, and the 2-0 ‘*g’--«A/’G \
curve bb is a p.+2w curve furnished by ” i
f:=0. As shown in Fig. 5.1, the curves

aa and bb cross each other at the point | / /Emsgabze, ¢
A (wo, pro) because of pr=p+2w. At the ,,/ region

point (w=wo+£&, p=pw-+m) near the point %f.w} 7 7

A, the frequency equation @(w, p)=0 of Jearve of S0 81T 1672

Eq. (5.11) can be represented by “ w

F1G. 5.1. p-—-w curves
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O (wo~+ £, pro+71) = O(wo, pro) + <8p 7’1+am ) 4o
—ﬁ(af‘ af‘s)@’; af‘* )+ ¢, pro) + - -+ =0. (5.14)
Neglecting small terms, we have
f{gjggﬁ ,+ (g%lg% ‘ g];g’;jgﬂ g{;gf?sz} + Ea‘f(wo,pm) = 0. (5. 15)

Let the inclination angles of curves e and bb at the point A be « and 8 respec-
tively, as shown in Fig. 5.1, and we have

tane = -g_{‘) (%‘) tan B = —%g/(g%). (5.152)

Then we obtain

[(tana: +tanB)e & /(tana tan B2 — 4¢ w(wo,pm)/ g{;‘g{;ﬂ’ fz], (5.16)

from Egs. (5.15) and (5.152). At the points D and G on the curve #=0 in Fig.
5.1, equation #=0 has equal roots, that is, terms within v  in Eq. (5.16) vanish

and #: becomes an equal root. By putting v =0, we have & as the values £ at
D and G.
&= _tze\/(ﬂ(mo, pm)/ (gg‘g;“‘)fg/ |[tana — tanpl. (5.17)

Eq. (5.14) has equal roots provided #-2°0/0p* = ¢(wa, p1o) (ZJ;‘ gf*>]‘z> 0 at the point

Alwo, pro). When 0.2°0/3p*<0, however, curves of #=0 take the shape of dotted
lines in Fig. 5.1, and equal roots do not appear near the point A. Inserting Eq.
(5.17) into Eq. (5.16), we get

o= %—( (tana +tanp)é £ v (tana — tan B)%(£2 — £1) }. (5.162)
Accordingly, for |[£]|<]& ], the natural frequency p: is given by
pri=pu+m=Pixim (i=V=1), (5.18)
where

P =pp+ é—(tancx +tanp)E,

| — (5.19)
m = 5V(tana — tanB)*(&; — £,
Mmax = € /(70(0709 Pw)/ 2,212];3 . (5.19 a’)

The range |&|>£&> —|%]| represents clearly a zone of instability in which vib-
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rations are expressed in the forms of ¢”cos Pit and ¢™sinPit and build up expo-
nentially. From Egs. (5.17) and (5.192a) & and #m.. are seen to be in proportion
to ed, because both fi=0 and fz=0 hold at the point A and ¢=—4%*(20—p)%:
xG(dw—p)/G(20—p) using Eq. (5.12). In Fig. 5.1, vertical lines at w=wo—|%| and
w=wo+|&] intersect the curves fi=0 and fz=0 at €, F and H, F respectively.
Let the middle points of CE and HF be D and G respectively, and we get

CD DE FG GH”‘s /w(OO, Pm)/ %% _]“2 Mmax- (5~ZO)
Real part of p: in Eq. (5.18), i.e, the frequency
P, in the zone of instability is indicated by — :?d--§-—~ 18] —
the line DAG in Fig. 5.1. Imaginary part m
m
of p1 vanishes at w=wo+|&| and takes a maxi-

mum value at o, the middle of the zone of
instability. Magnitude of value m in the un-

stable zone is shown in Fig. 5.2. Discussion of B ,B
stability of free vibration with frequency p. is | 28 |
similar to that of frequency p: just mentioned. n
The curve a'a’ of p. given by fi=0 and the |
curve b'b' of (p1—2w) furnished by fo=0 inter-  ; = L !

sect each other at w=wo Let p» at w=wo be
P, and calculating the value of @ at the point

F1G. 5.2. Negative damping
(o0+£, pro+72), and we get

coefficient m

f,o—*«[(tanau—tanﬂﬂ = /(tana’-—tanﬁ') 2% — 4870 (wo, Pao) g];g'; f] (5.16b)

in which «’ and B’ are the inclination angles of the curves 4’¢’ and b0’ at the
point (ws, pw) respectively. We can prove (9/1/00) pa= (9f:/00) p10 and (2f2/0p) sz
= (9/1/3p) p1o by calculation, and ¢ (wo, 1) /fo=¢ (w0, p=)/fs because of puw—pon=2w,
and further we see clearly tana—tanpB=tanp'—tan«’. Thus the magnitudes of %
and m given by Egs. (5.17) and (5.19) are common to both vibrations of fre-
quencies p: and p.. Consequently, range 2% | of zons of instability of vibration
p1 is the same as that of vibration p., and the coefficient of negative damping m
for vibration p: is equal to that of vibration p.. This fact and the relations

Ox ASOP+imi+ BES (P—im)t =5 <A+B>(e“"”: 8% py

i ot mnSIN o, COS |, oy ,,;cos RS
- 2(B A(e™™ e”)COSPt”-ale msin (Pt—p)+ (Pz,‘—r; )i

result in the general solution within unstable range

z}; ‘mt{AICOS(Pxf"Bx)—}'az (Pit—+ 3+ -

JrAzg?s( - 8) +azC°S(Pzz+ea)+ 1
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+e™{ Ax S (Pt +8) + s e (Pt = 80) + -

+ As S (Put ) + s (Pt = )+ -+ - |. (5.21)

Values of amplitudes A4:, 4. and phase angles Bi, 8. are given by the initial con-
ditions and the amplitudes ¢ and g, are determined by the magnitudes of A,
and A..

For example, we calculate values & and m for the system of [1:[:[p=5:3:
2, e, ip=1/2, 4=1/4. For this vibratory system, we have wi=1.026, p1o=1.248,
D10=0.804, po=—0.804, P2=2.856, |&|=0.0216¢, and #mm..=0.1835e. Incidentally,
the zone of instability at the major critical speed we iS we11=1.155~ wez =2.000.

5.3. Effects of the damping jorce

Now we consider the damping force and deal with the equation of motion
having damping terms c.f, and ¢, in the 1st and 2nd equations of Eq. (5.1b)
respectively. For this damped system, a free vibration takes the form

Ccos Ccos

b a O pt+ SR (20— p)t+ B, 520+ p)t—a')

b, ( pt+a’)~Lb

+CEN(p—20) 1+ a e (o= p = all) + - - ] (5.7a)

in which the phase angles «' and «' are as small as ¢ and ¢.. Inserting Eq.
(5.7a) into the equations of motion with damping terms and rejecting the higher
powers than ¢, we get

{GP)+n"—nesy A— dpQ2w—p)+n"ta+eB=0,
{(GRw—p)+ 1wt —nesta— 4{pRuw—p)+#"}A+C=0,
G(=p)B=A(—p)2w+p)b+eA=0,
GQRw+p)b—A4(—p)(2u+p)+B=0,
(5.8a)
Gp—2w)C—A4(p—2w)do—p)ctea=0,
Gldo—p)c—4p—20) (4o —p)C=0,
G(=20=p)'D—=d(=2w—p)dw+p)d+eb=0,
Glp—4w)E—4(p—40)(6w—p)e+ec=0.
(2np— cop — ipwn) A+ 2nd(w—p)a=0,
202w —p) — (20— p) —ipunta —2nd{w~p)+A =0,
[2n(—p) —c( —p) —ipon} —G( ~p) /1B
+42n{w+ PV F (=P 2u+p a'tb=0,
[2n2w+p) —e(2u+p) —ipont + G2u+p)a'ld
— A2n(o+p) + (= p) (204 p)ra’} B=0, (5.22)
[2n(p—20) —c(p—2w) —ipon} —G(p—2w) *a'1C
+42nBu—-p)+ (p—2w) (4o —p)a’tc=0,
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H2nldo—p) = cldo —p) —dson} + Gldo—p)a"Ic
— 4213w -+ (p—20) (4w —p)ra}C = 0.

Damping coefficient 7 is determined by the 1st and 2nd equations of Eq. (5.22)
as follows:

_ A2p(2w— p)-z;;w}+x/{2pa)—~4dp(2w PIHw—p)? ~
e (2p—1p0){2(20—p) —ipw) +4 42 (0 —D)* ’ (5.29)

Phase angle a' is calculated by the 3rd and 4th equations of Eq. (5.22) and a
is given by the 5th and 6th equations of Eq. (5.22). From Eq. (5.8a), we obtain
the frequency equation

D, p) = fifefs T+« =0, (5.11b)
in which
fi=fi+ (" = ne)Clo, p), Clo, p) =G(P) +G(2w—p). (5.12a)

Developing @' at the point A (wo, pw), we obtain

@’(wo+§, plo T /}1\) —leap /1 afl A‘L (722 - ?'ZCQ‘){C((DU, pm)

gg gg }J (%{7/1 i f2§>+52¢(0)o,P;o)+ s =0, (5.14a)

Neglecting small terms, Eq. (5.14a) reduces to Eq. (5.15). Consequently, when
small damping coefficient » has the same order as ¢, we also obtain the results of
Eq. (5.16) to Eq. (5.19a) from @'(w, p)=0. For the damped system, the solution
in the unstable range is

ﬁxM — (i f COS,; _ . COS | 55 R
5= ¢ (Aig (Pt = 8) + a0 (Pt +B0) 4 - - - )

Cos

HETN AP+ + S (P =g+ L (521w

As shown in Fig. 5.2, the range of an unstable

zone AA=2|%&]for an undamped system reduces /
to BB=2|&| when the damping forces exist.
Clearly, the zone of instabﬂity vanishes when
n>Mmex. The range 2|%;] decreases as the damp- 64
ing coefficient » increases as shown in Fig. 5.3 154
where the curve is a quarter of a circle.

5.4. Coupled system of four degrees of freedom

(r=0)
. . 0 .
When the spring constant v does not vanish, Y M e !
and the system is represented by Eq. (5.1a), ex- FIG. 5.3. Width of uustable

panding the following determinant (5.24) region 2/éy’| and damping =
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H, 0 € 0 7 0 ergr 0
0 H, 0 e 0 7 0 Tk
e 0 H, 0 erk: 0 T 0
sop=| O 0 B0 e T G
' T 0 ek 0O Gi — 4y bk 0O
0 T 0 erke — 4 Gy 0 e0Ka2
vk O T 0 Ok 0O B 0
0 ek O 7 0 edrn 0 Bs

gives the frequency equation which still takes the same form of Eq. (5.11), pro-
vied

fi = (H:G; — ) (H:iGi — 7°) — 4 H, 1T, (i=1,2,3),

0= — fo( HsGs — HG, - 7){GiB: + (27" + G Hy -+ Hi By )7k
+ HiHio% — 279Gy + Bk + 28 7°koe — 207" (H1 + Hs ) kioran}
+ H £ = By— 7" Haela +27°k12) ] ' (5.25)
— Gy — PILUHG = 1){GiB+ (27" + G Hy + HiB,) vl
o+ HH3 e — 279Gy + By ks + 20760 — 2877 (H,y + Hy) kinkas)
I (= By — P Horhy -+ 27%k10) ],

in which

Hi=1—p" Hi=1—=(20—p)% Gi=d+ipop—p°, Gi=08+ip020—p) = (20— p),
Hy=1—(—p)° Hi=1— Qo +p)’, Ge=08+iro(—p) =9’

Go=0+ip02u+p) — 2o+ Hi=1—(p—20) =Hy, H3=1~ (4o —p)?,
Ga=0d0+ipw(p—2w) — (p—20)% Ga= 08+ ipw(do—p) — (do—p),

4i=pQRu—pd, do=(—p)20+p)4,

dy=(p—20) 4o — P4, Boy=Gas— Hesdss/ (HssGos— 7°).

(5.26)

In Fig. 5.4, p1,0.5.4—w curves and Pios,4—w curves, ie, curves fi=0 of the vib-
ratory system governed by Eq. (5.1a) are shown by thick full lines, and curves
£=0 and f2=0 are represented by dotted lines and fine lines respectively. Fre-
quency equation fifof;=0 has equal roots at w=w1, o2, ..., ws where curves f,=0
and f3=0 cross curves f1=0.

5.5. Experimental results

Experiments were performed with vertical four shafts (¢:56=3:7, 1:3, 1:4,
and 1:5 in Table 1.1) mounting an unsymmetrical rotor having [,=2.390 kg cm
s?, ;=159 kg cm s% and ,=0.815 kg cm s> In order to give a small difference
in flexibility ¢, a somewhat flexible pedestal A is used in place of lower rigid
pedestal as shown in Fig. 4.7. Measuring the deflection at the top of the pedestal,
we find ky.=1.15x10% kg/cm?.
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When No. 2 shaft (a:b=1:4) and a lower flexible pedestal A were used, kyr
=1.05x10" kg/cm, kya=1.15x10° kg/cm, kep=k.s=c0, and mean values of spring
constants are a=4.54 x10* kg/cm, 7= —4.33 x 10° kg/rad, and §=5.72 x10* kg cm/rad
(1p=1.987, 4=0.322, 7= —0.860, 6=1.040, £¢=0.199, &12=0.211, £22=0.157, £1o=1.061, and
k22=0.791). Using these spring constants, natural frequency curves of the experi-
mental apparatus are given by thick full lines, i.e, pi,2,54 and 71,54 curves in
Fig. 5.4, where » and p are represented by dimensionless quantities, and multi-
plying Vag/W = 2040 rpm, we have values of » and p in rpm. As shown in Fig.
5.4, in this vibratory system, p. is equal to 7. at we:=0.685 and we=0.780, thus
the zone of instability near the major critical speed w. takes place in the range
of w=0.685~0.780 (1397~1591 rpm). Further unstable zones can appear at w=u1,
we, ..., ws, where fifzfs=0 has equal roots. In Fig. 5.5, experimental results in
the zone of instability near w=w:=0.98 (1999 rpm) are shown. In this unstable
zone, the aa curve of p. and the bb curve of ps;+2w cross each other at the point
A as shown in Fig. 5.4, and unstable vibrations with frequencies ps, D1, D2 and Py
appear. By calculation of amplitude ratio, however, we see that amplitudes of
vibrations 7, and 7: are so small in this zone that only vibrations of P2 and py
take place apparently as shown in Fig. 5.8. Further by calculation, we obtain
$2=0.79 (1612 rpm), ps=-—117 (—2386 rpm) for the values at the point A and
tana=0.179 (incline of p. curve), tanf=2.14 (incline of 2w-+p, curve), negative
damping coefficient #max=0.0131, and £ ==+0.0134 (+26.7 rpm). Both calculated
and experimental results are given in Fig. 5.6 where the calculated frequency
P: in the unstable zone changes along the curve ¢c and the calculated unstable
range is BB, while the unstable range obtained by experiment is B'B'. Though
there is a small difference between the curve cc and the experimental results ¢/c’/
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because of effects of accuracy of spring constants and neglect of shaft mass, we
can see that the frequency P; obtained by experiment does not change its magni-
tude along the p» curve (curve aa) but along the values P, (curve cc) given by
Eq. (5.19). Since the damping coefficient » in the experimental apparatus is
about 0.005, there is sufficient possibility of an unstable vibration occurring at
the negative damping coefficient #ma.x=0.0131.

72&)",‘:’4 04
rem ¢ g
g
7650 —
N
=
=02 ”'M'
~ R A Sl it
P & ‘
N
1600 9 1g00 7200 2000 2100
& rpm
FiG. 5.7. Rosponse curve (a:b=1:4, ¢=0)
1550
7950 B 2000 B 2050 ~ .
@ rom « FIG. 5.6. Py, p2—o diagram (a:b=1:4, ¢=0)
Fig. 5.4 shows that zones of instability can take place at o, ws, ..., but

ws. Rotating speed ;=0.020 (40 rpm), however, is too low for experiment and
ws=0.658 (1342 rpm), w:=0.681 (1389 rpm) are too near the unstable range of we
to perform the experiment, and at ws=0.338 (689 rpm) and ws=0.439 (896 rpm)
the negative damping m is too small to overcome the damping coefficient #n.
Further at w.=0.137 (2795 rpm) and ws=0.513 (1046 rpm), the sign of ¢(w, p)
differs from that of (3£1/9p)(3/:/dp)f: and a zone of instability cannot appear as
mentioned in section 5.2. Consequently, unstable vibrations can occur only at
ws=0.98 (1999 rpm). .

When rigid bearing pedestals are used both in the upper and lower pedestal,
unstable vibrations do not take place even at ws because of ¢=0, as shown in
Fig. 5.7.

In the procedure of analytical treatment in section 5.2, we can see that an
external force, i.e., unbalance of rotor has no effect on the unstable vibrations.
Existence of an external force only results in superposition of harmonic vibrations
on the unstable vibrations.

Vibratory waves of unstable vibrations appearing near ws are given in Fig.
5.8 where vertical white lines are rotating marks recorded at each revolution.
The lower bearing pedestal deflects in y-direction, and its rigidity is almost infinite
in x-direction perpendicular to y-direction. In Fig. 5.8, the upper photograph
shows waves in x-direction, and the lower does waves in y-direction. In Fig. 5.8,
vibratory waves change periodically between the marks AA. At intervals of
marks AA, the shaft rotates 16 times and vibration of P, (>0) and P: (<0)
oscillate 13 times and 19 times respectively. So we can see that P Piio=13:
—19:16 and P.—P:=2w. As a vibration of P, is a forward precession and one
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time™

FIG. 5.8. Vibratory waves (a:b=1:4, :=0, P,: Py:w0=13: -19:16)

of Ps a backward precession, the loop of beat in x-direction and the node of beat
in y-direction occur at the same time.

When the position mounting the rotor comes nearer to the middle of the
shaft, small differences in flexihility e, &2, and e due to the same flexible pedestal
A, become smaller. Therefore, a zone of instability at w=ws where the relation
be—~ps=2w is satisfied is used to occur for the two shafts (¢:b=1:4 and ¢:b=1
:5), but can not appear for the shafts (¢:6=3:7 and a:b=1:3).

5.6. Conclusions

(1) Coexistence of p;, p; due to an inertia asymmetry of rotor and of p;, —p;
due to small differences in spring constants between x- and y-directions result
in new zones of instability. These zones appear at the rotating speed » where
the relation p;=~pj;, or pi=—p;=2w-+p; is satisfied.

(2) In the unstable zones, the system is dynamically unstable and amplitudes
of the vibrations with frequencies P;, P;, P;, P,; grow up exponentially.

(3) The approximately calculated values of width of unstable zone 2|%| and
frequencies of vibrations P;, P; coincide well with experimental results.

(4) When there is damping, the width of unstable zone 2|2, decreases with
the increase of damping coefficient #, and unstable vibrations can not occur if #
is larger than #yas.

(5) 2]%| and mm. are in proportion to the product of dissimilarity in flexi-
bility ¢ and inertia asymmetry of rotor 4.

(6) Whether @.2°0/9p* is positive or negative at the point A (wo, po) where
fi=0 curve meets with f;=0 curve, determines occurence or no occurence of un-
stable zones.

Chapter 6. Unstable Vibrations near Rotating Speed wq™%

6.1. Introduction

Although some studies have been made on the problems of unstable vibrations
of a shaft system carrying an unsymmetrical rotor®~ it seems that the un-
stable vibration problems we discuss in this chapter have not been treated by
other researchers. The rotating shaft becomes unstable near its major critical
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speeds wc where the relation p;=7%; holds and unstable vibrations of frequency
build up®®. In this chapter it is shown that in the neighborhood of the rotating
speed wq, where the relation p;=3p; (ixj), ie, pi+pi=20 is satisfied, there is
always another unstable region in which two unstable lateral vibrations with fre-
quencies P; and P; take place simultaneously and grow up exponentially, and
the sum of these P;+P; is always equal to 2w. Also the nature of unstable vib-
rations is treated theoretically and the results are verified through experiments.

6.2. Frequency equation and existence of unstable vibrations

Here we treat the vibratory system which consists of a light shaft supported
by rigid bearing pedestals and of an unsymmetrical rotor without any static and
dynamic unbalances.

Inserting Eq. (2.13) of free vibrations into Eq. (2.12) we get the following
frequency equation:

O, p)=ff+4£¢ =0 (6.1)

In this equation

F==p)O+ipop =) =7, F= A=V G+ipep=5) —1 |
[

s (6.2)
o= —(1-p)1~ PP

Also when the rotor is a symmetrical rotor f=0 as the frequency equation. Then,
if we insert

p=w+p, p=2v—p=w—p, (6.3)
Eq. (6.1) can be rewritten as follows:
Ksp™ — Kep" + Kyp'' — Kop" + Ko = 0. (6.4)
In this equation

Ky=1— 4,
Ko= {20+ (i3 —2ip+2—24M"} +2(1— £)(1+ 0",
Ki={0+ (p—1— DKo+ (ip— 1+ D)

2014+ )26+ (= 2ip+2 =280 + (1 — £)(1—o”)— 27, (6.5)
K=20+a)0+ Gp—1— Do H{o+ (ip— 1+ No®}

(1= o280+ =20+ 2—28) ") — 2711 +0—3(2 —ip) 0’}
Ko=[(1—= Ao+ Gp—1~ Doy~ 71 L= {o+ Gp— 1+ Do} — 71

When all the roots of the biquadratic equation (6.4) in p'? are positive the system
is stable. When K, in Eq. (6.4) is negative, Eq. (6.4) has at least one negative
root pi*= —m® (m>0) which results in pf= =im, pi=w+im, pi=w—im and un-
stable vibrations of Eq. (3.9)%7%9,
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If Eq. (6.4) with real coefficients has a pair of conjugate complex roots
Pr=A+iB, p?=A—iB it foggws that P'= = £ (P'+im) and p' == (P'—im) respec-

tively. By inserting P'=v(VA™B*+ A)/2>0 and m= (VAL B — A)/2>0 it
results in p=w+P +im and P=w—P +im. Inserting the foregoing results into
Eq. (2.13) we obtain unstable vibrations, eg.,

x= Aie™ cos (Pit+ ;) + ¢ ™ cos (Pit — f;) }
+ Aj{e™ cos (Pjt+ B;) + ¢ ™ cos (Pjt — 8;) }. (6.6)

In Eq. (6.6)
Pi=w+ P, Pi=o—P, and P;+ P;=2w. (6.7)

At the boundaries of unstable ranges negative damping m in Eq. (6.6) vanishes
and the imaginary part B is equal to zero. Then }q. (6.4) has a double root
p"*=A. This then results in p=P;=P; and p=P,=P; in Eq. (6.1).

6.3. Unstable region

When the asymmetry 4 falls to zero the unstable region is reduced to zero,
That is, its boundary shrinks to a point at a certain rotating speed wa, while
the frequency equation (6.1) is reduced to J7=0. Since this point is still said to
be the boundary, the frequency equation J7=0 has two double roots: p=pi=7p;
and p=p;=pi.. As was mentioned before, in p—o diagram of ff=0 (Fig. 6.1),
curves p; and p; as well as curves p; and B, cross at w=wy. At this intersecting
point, the unstable region widens its range
as 4 increases. To determine whether the 5
unstable regions exist and, if they do, how
many and where they appear, we start
with the geometrical discussion about this 4
intersecting point which gives wqs. For
comprehensive discussion of the vibratory
system geometrical treatment in p—w dia- 3
gram is simpler than an analytical dis-
cussion of the equation f7=0 of the 8th
order in p.

Fig. 6.1 is p~w diagram for 4=0,
ip=1, 0=1.060 and 72=0.731. In this dia-
gram roots p; and pi=20w—pi (1=1,2,3,4)
of the frequency equation f7 =0 are shown
by full and dotted lines respectively. Re-
gardless of the dimensions of the shaft
and the rotor it can be always concluded
that (a) the relation pi>1>p>0>p>—1
>p4 holds and (b) pl, pz, ﬁg, and pq re- ; | <
spectively approach the value ipw, 1, 0, ’\E‘f 1 )
and —1 as o tends to . It follows from { { {
both (a) and (b) that (1) when i,<I, -2

— —_ ) Wal | Wa ;5 5 2
curves p; and P, curves p. and . cross ROTATING SPEED @
at the major ciritical speeds wp, we Te- FIG. 6.1. p-~w diagram when 4=0,
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spectively, and when i,=1 only curves p. and P: cross at we (C: in Fig. 6.1);
(2) curves p: and P. as well as curves p. and 7. intersect at we (Di, D, in Fig.
6.1); (3) curves p and Ps and also curves ps and Py cross at we (A:, As in Fig.
6.1); and (4) curves p. and P4, curves p» and Ps, curves p; and 7., and curves
p. and Py intersect at =0 (Pw, P, Ps, Ps in Fig. 6.1). These are the only
possible intersecting points which exist.

3.0
ip=1 D
& = 1060 A Pe
2= 0731 '
Q
2.5 - B
3 5
p3
A=0 //W A=0
05 R [AINNN
04 02\ D) °
e ol & 05
a - F /\ =
3 L 05
5 A v 04
z ; - 03
1.5
g - < ) 5
lé:J 10 N pz 00
. pa
2 AT B,
o Q
£ 5 ol |
= 02
z 03
04 o
5
T, N P2
] 2 2
)
0.5
P20 ?/ 5
? |
o Wa
o 05 ez f 1.0 @d 1.5 g 20

ROTATING SPEED W

FIG. 6.2. p—wo diagram for 4=0, 0.1, 0.2, 0.3, 0.4, 0.5.

The p—w plane in Fig. 6.1 is divided into many regions by straight lines of
=+1, p=20, p=20+1 and curves pi, Di, and some of them are shaded. The
frequency equation (6.1) is satisfied only when fFe<0 because of 4°>0. Since
ffe is positive in the shaded regions and negative in the unshaded regions all
p—w curves lie only in unshaded regions as shown in Fig. 6.2 where curves for
4=0, 0.1, 0.2, 0.3, 0.4, and 0.5 are represented. All p—o curves pass through
points shown by mark @ in Figs. 6.1 and 6.2 where f/ =0 and ¢=0 hold simul-
taneously. Observing Fig. 6.2 we see that around intersecting points, C. cited
in (1) as well as D; and D: in (2), there are some ranges of o where curves pi,
ps, D1, and P. are lacking if 4x=0. These ranges are the unstable regions where
p; cannot be shown by curves because it becomes a complex number. Near the
intersecting points Ai, As, Pw, Px, P, and Py cited in (3) and (4) p—o curves
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exist and unstable regions do not appear. Referring to Eq. (6.1), it has double
roots near the points D: and D. cited in (2) because of ©.2°0/op*>0. In this
situation unstable regions can appear. However, near the intersecting points
cited in (3) and (4) @-2*0/2p*<0 results in no double root and therefore no un-
stable region.

In summary, we can conclude that in the vibratory shaft system carrying an
unsymmetrical rotor, there is always only one unstable region in which two un-
stable vibrations of frequencies P; and P.=2»—P; build up steadily as shown in
Eq. (6.6) and Fig. 6.11. Of course we except here the unstable regions near the
major critical speeds where unstable vibration with frequency o takes place.

The value of the rotating speed s at which point the unstable region
spreads as 4 increases is given analytically by solving the frequency equation
FfFf=0 with reference to p1=7:

oy e F A2 =) (148 = (4~ ip)ip+8(2—1ip) (6 — 1)
d -

o FEETAL . (6.8)
The natural frequencies p; and p. at w=ws are given as piua, Ped:

Pua_ (Bl Day+ (2425 —1p)

FREZERY ey . (6.8 a)

The value of ws increases with the polar moment of inertia 7, and becomes infi-
nite when i, takes its upper limit value 2. The rotating speed wq is plotted
against i, in Fig. 6.3 where §=1.060 and 7*=0.731 as in Figs. 6.1 and 6.2. Curves
of the major critical speeds we and we and curves of the rotating speeds wy and
wg at the intersecting points F and G in Figs. 6.1 and 6.2, where curve p
crosses the straight lines p=2w and p=2¢—1, respectively, as shown in Figs.
6.1 and 6.2, are added in Fig. 6.3. Since wa>wi>we always holds, curve wa
lies between curves we and ez as shown in Fig. 6.3. Regardless of the magni-
tude of 4, curve p; always passes through the points F and G as mentioned.
Also the unstable region cannot spread beyond the rotating speed wy and wg of
the points F* and G, and the unstable region always lies, regardless of the value
of the asymmetry 4, within the shaded space in Fig. 6.3, bounded by the curves
wy and wg.
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F1G. 6.3. ip—wq diagram (6= 1.060, 1?=0.731)

6.4. Range of unstable region and value of negative damping coefficient
As previously stated, the biquadratic equation (6.4) in p'? has a double root
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on the boundary of the unstable region and therefore the discriminant D of Eq.
(6.4) is equal to zero, i.e,

27 KiD = 4(12 KoK — 3L Ks + K2)?
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The solutions of Eq. (6.9) of the 24th order in
o give the rotating speeds wa: and wq: at the
boundaries of the unstable region. By numeri-
cally solving Eq. (6.9) for the case §=1.060
and 7°=0.731 the boundaries for ip=1 and for
the various magnitudes of i, shown in Figs.
6.4 and 6.5, respectively, are obtained. In Fig.
6.4, wq: and wq: are the lower and upper limits
of the unstable region and the line w=w: is a
vertical chain line. The boundary widens its
range as the asymmetry 4 or i, increases. At
a rather large polar moment of inertia i,, the
unstable region appears at a higher rotating
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speed. For rather large 75 was: decreases steadily as 4 increases. However wq:
has its maximum at a certain value of 4 as shown in Fig. 6.5. At this time the
unstable regions bends to the left. Curves connecting the foregoing maximum
points of wg: are shown by the chain line in Fig. 6.5. The equation of this
curve is given by inserting the values of w and p at the point G in Figs. 6.1 and
6.2 into 20/2p=0, i, 2= =7 (Gw—2p) (1—p2)2—272p} /2 (1~ )%

The negative damping m is given by solving Eq. (6.4) and is shown in Fig.
6.6 where i,=1, §=1.060, and 1*=0.731 as were the cases in Figs. 6.1, 6.2, and
6.4. The value of m increases with 4 and takes its maximum value #y.x near
the center of the unstable region as shown in Fig. 6.6 where the chain line is
the line for w=wq. Value of 7. is plotted against 4 in Fig. 6.7 where it in-
creases with 4.

6.5. Approximation methods

When the asymmetry 4 is small, boundaries w4 and wq:, the negative damp-
ing m and Mmm.: and the frequencies P and P, of the unstable vibrations can be
obtained through the following means based on the expansion of Eq. (6.1) at
the point (o=wa+&, p=pa-+m). Assuming £, 7 and 4 to be small, we have:

w(wd+:,]ﬁzd+m)'—(a'£m fe)(gg *»@f ¢+ se=0. (6.10)

If the inclination angles of the tangents of curves p; and 7. at the point Di(wda, p1a)
be « and 8 respectively we have:

af of
o/ op,

The value of » is given by Eq. (6.10) while py=pia+m=Pi+im. Then, referring
to Eq. (6.11), we have:

tanf = _affer (6.1D

tanag = — 50l 3p .

=171d+ 1/2- (tana + tanB)é, (6.12)
2\ 4A @ gﬁ a{; (tana —tan )%, (6.13)

here P, is the frequency of the unstable vibration. When £=0, i.e, at v =wq, m
takes its maximum value:

_ 4| ]af of
Mmax = A/\,/ @ <ap 8p> (6. 14)

If £ be & when m=0, i.c, at the boundary, we get:
2, = :':241 / Of af /]tana-tanﬁl. (6.15)

The upper and the lower limits of the unstable region ws. and wa: are clearly
represented by ws-+|% | and ws—|%& | and the width of the unstable region waz— wa;
is equal to 2/&]. If we apply the same procedure to the point Ds(wa, f:q) in Figs.
6.1 and 6.2 we will get the same value of m as in Eq. (6,13) and the following
relation:
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Py =pra+2£—1/2¢ (tana +tanp)s. (6.12a)

Here poa=2wa—pia, and P, is the frequency of another unstable vibration. From
Egs. (6.12) and (6.12a) we see that the relation Pi+P:=2(ws+&) =2 is valid.
In Eqgs. (6.10) through (6.15) we must use the values given at point Dy, ie.,
w=wd, p=pid.
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The unstable regions and mm.x approximately given in Eq. (6. 15) and Eq. (6. 14)
are shown by dotted lines in Figs. 6.4, 6.5, and 6.7 respectively. Approximate
values of |&1/4 and mwmas/4 are plotted against the polar moment of inertia iy
by dotted lines in Fig. 6.8. Exact values for 4=0.2 through Eqgs. (6.1) and (6.9)
are additionally shown by marks O and & which almost agree with the approxi-
mate values. Furthermore, Fig. 6.8 shows that the width of the unstable region
increases with ip, while #max/4 is largest at i,=1.08 and decreases to zero as i
tends to its maximum value 2. Consequently, even though the wide unstable
region appears when i, is large, it can be made to disappear easily by little
damping because of the small m.

When there is damping, the boundary of unstable region near ws is obtained
numerically by letting Hurwitz’s determinant H: of Eq. (3.8) equal to zero®™.
When both damping coefficients ¢; and ¢, are equal to 0.1, the boundary is shown
in Fig. 6.4 and there is no unstable region for 4<0.176.

6.6. Experimental results

Experimental apparatus is shown in Fig. 6.9. The vertical shaft S of dia.,
d=1155¢, length, /=401.9 mm is supported at its upper end by two self-aligning
double-row ball bearings B with 10¢ bore placed at a distance /,=36.00 mm as
shown in Fig. 6.9. At the point M, the unsymmetrical rotor R is mounted. By
exchanging two attached weights » of the rotor, we can vary the value of asym-
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FIG. 6.10. Response curves and negative damping
coefficient (experiment I, II)

FIG. 6.11. Vibratory waves (experiment I)
metry 4. When disk D, with a dia. of 280¢ and a thikness of 3 mm, is put on

the rotor, motions at the edge of the disk are recorded optically in both x- and
y-directions. By this method the whirl of the rotor can be measured. Guard
rings G, G. are arranged to check the increase of shaft deflection. Using various
kinds of oil in vessel D, in which the lower end of the shaft is merged various
damping coefficients are obtained.

Dimensions of our experimental apparatus are as follows:
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I, =10.4300 kg cm s°, I;=0.5090 kg cm s° I =0.3816 kg cm s,

W =11.637 kg, « =3.120x 10 kg/cm, r = — 6.450 x 10* kg/rad, (6.16)
6 =1.777 x 10" kg cm/rad, vag/W =489.5 rpm, vIg/W =6.124 cm,
ip=0.9659, 4 =0.1431, 8 = 15.191, + =11.400. - (6.17)

Unstable vibrations appearing near wq=1450 rpm are shown in Fig. 6.10.
Steady harmonic oscillations in x- and y-directions (cf. Fig. 6.9) are represented
by marks O and @ respectively. Unstable vibrations steadily growing up in
their amplitude are shown by arrows, the length of which is proportional to the
magnitude of negative damping m given by vibratory waves as shown in Fig.
6.11. Results of experiment I without damping action by oil in vessel D, in Fig.
6.9 are given in Fig. 6.10 (a) where the unstable region appears between 1416
and 1480 rpm. Values s in Fig. 6.10 (a) is larger than those in Fig. 6.10 (b)
where the results of experiment II with damping by spindle oil in vessel D, are
represented. The unstable vibrations do not occur in experiment IV where oil
with high viscosity is used. To estimate damping actions®® in experiments I, II
and IV logarithmic decrements g, in free vibrations of frequencies pw, Puw, pu
and 7w, when o=0, are experimentally measured and shown in Table 6. 1.

TABLE 6.1. Logarithmic Decrement d;

Experiment I | 11 l v
p1=1727 cpm 0.0091 | 0.070 0.31
Bi=199 cpm 0.0087 | 0.077 0.37
pu= 2385 cpm 0.047 | 0.065 0.35
Pu= 243.0 cpm 0.026 | 0.073 0.33

Two examples of vibratory waves of unstable vibrations obtained in experi-
ment I are given in Fig. 6.11 where vertical white lines represent rotating marks
furnished by P. Negative damping m in Fig. 6.11 (a) is larger than that in Fig.
6.11 (b) and amplitudes in the former build up more rapidly than in the latter.
In one interval of marks AA in Fig. 6.11 (a) the shaft makes 16 rotations and
vibrations of frequency P; oscillates 29 times while the slower vibration of P.
vibrates 3 times. Therfore we have: w: P : P,=16:29:3 and P+ P.=2w. Obser-
ving the vibrations between marks AA in Fig. 6.11 (b) we have: w: P : P.=37:
67 :7 and also Pi+P:=2w.

Negative damping m obtained by experiments I and II are shown by marks
O and @, respectively, in Fig. 6.12. In experiment I, ws=3.1549 (1544 rpm) and
[&0]/4=0.3295, Mmax/4=0.2193 in accordance with Egs. (6.8), (6.14), and (6.15).
The actual range of the unstable region furnished by experiment I comes slightly
lower than that induced by the foregoing values calculated under the assumption
of the massless shaft. Shifting the relation between m and w calculated by Eq.
(6.4) to the lower speed side by 97 rpm and representing this by dotted lines in
Fig. 6.12, we find that it agrees with the experimental results given by marks
O, as shown in Fig. 6.12.

Frequencies P, and P. of unstable vibrations in experiments I and II are
shown in Fig. 6.13.
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The amplitude ratio F': E between two unstable vibrations of frequencies P
and P. furnished by experiment I and II is shown by marks O and @, respectively,
in Fig. 6.14. The ratio is almost constant during vibrations growing up steadily
in their amplitudes, and the ratio of experiment I is larger than that of experi-
ment II. The calculated ratios*® are added in Fig. 6.14 by broken lines.

6.7. Conclusions :
(1) In the vibratory shaft system mounted by an unsymmetrical rotor, one

unstable region always appears about ws where the relation pi=9;=2w—7p; (i>j)
holds between the roots of the equation f7 =0.

(2) The rotating speed wq always locates between the major critical speeds
[OF] and we2.

(3) In the unstable region two unstable vibrations with frequencies P, and
P, grow up steadily, and the sum of these P+ P, is equal to 2w.

(4) The width of the unstable region increases with the asymmetry 4 of the
rotor. As the value of the polar moment of inertia i, increases, the rotating
speeds of the unstable region become higher and its range grows wider. For
rather large i, the unstable region shifts to the lower speed side as 4 increases.
The unstable region always lies between the rotating speeds ws and w; where
the relations pi=2» and pi=2w~-1 hold, respectively.
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(5) Negative damping m is common to two unstable vibrations of frequencies
P, and P,. Near the center of the unstable region m takes its maximum value
Mimax. values of m and mu.. increase with the asymmetry 4, and are largest for
a certain intermadiate value of i, and decrease to zero as i, tends to its maximum
value 2.

(6) The amplitude ratio of two unstable vibrations is held almost constant
during the vibrations.

(7) When damping force exists, the unstable region appears only for 4 larger
than a certain value. Damping action makes the negative damping m small.
Large damping removes the unstable region.

Chapter 7. Effects of a Distributed Mass of Shaft, and
of Non-linear Characteristics of Shaft Stiffness
on Unstable Vibrations®

7.1. Introduction

When a rather long shaft /=100 cm is used in experiments, another peculiar
unstable vibration appears near the rotating speed ws higher than major critical
speed w; as shown in Figs. 7.3 and 7.8. At first we thought that a different
flexibility of bearing pedestals in x-, y-directions (treated in Chapter 5) results in
new zones of instability near the rotating
speeds w=1.730 (2056 rpm) in Figs. 7.3,
7.4 and w=1971 (1677 rpm) in Fig. 7.11 B D B
where the relation p,=—7, e, pi—p=20 ¢
is satisfied, respectively.

Next we changed the flexibility of the
lower bearing pedestal A by using the
following three pedestals: -

Pedestal No. 1 made of cast iron

(nearly rigid, k,.=1.05x10* kg/cm)

Pedestal No. 2 made of steel (some- M M

what flexible, %kys=1.43 x10° kg/cm) z — e W
Pedestal No. 3 made of steel (flexible,
ky4=2.65x10% kg/cm) A Dg—
In the experiments using the bearing
pedestals No. 1, 2, and 3, the width and (a) (b)
location of unstable region, natural fre-
quency P. of unstable vibration, and nega-
tive damping coefficient m are little affected
by changing the flexibility in y-direction. Moreover the shaft itself vibrates
violently at the rotating speed w=2.65~2.70 (3150~3200 rpm), and is nearly
impossible to pass through the speed, while the rotor seems to be almost at
standstill. When a shaft with length 6=83.40 cm, diameter d=1.199 cm is sup-
ported freely to incline at one end B and assumed to be fixed at the other end
M in Fig. 7.1, natural frequency of first mode of vibration is found to be ps=
273 (3249 cpm). This fact indicates that the foregoing shaft vibration is the
major critical speed of shaft itself and a distributed mass of shaft must be some-
times counted in, though fully neglected through Chapter 1~6.

Ws

<=a

DI A

FI1G. 7.1. Schematic diagram of shaft
system when a mass of shaft is considered
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7.2. Equations of motion and frequency equation

Though a shaft MB with length » in Fig. 7.1(a) has infinite number of
natural frequency, only the fundamental (first) mode of vibration is considered
here. The first natural frequency of MB with an equally distributed shaft weight
wb is given:

pE=(15.42)2 ELg/(wh®), (7.1)

where the shaft end B is simply supported, and the other end J/ is assumed to
be fixed to the ground.

Let us try to define an equivalent system of six degrees of freedom with a
concentrated weight W; locating on the shaft as shown in Fig. 7.1(b). If an
equivalent shaft weight Ws is located on the shaft at a distance ¢ from shaft
end B, a lateral deflection # of shaft MB at a distance z from B due to the
centrifugal force Wusw?/g is given:

_ Wirso® (b — 0)*{3b%z — (2b+ ¢)2°}

12 EL.gb? (7.2)

7

Because an inclination angle of the shaft §=dr/dz at the position z=¢ may be
assumed zero, distance ¢ is determined from Eq. (7.2),

c={W2 —1)b. (7.3)
Natural frequency p; of shaft MB in Fig. 7.1 (b) is given:

pz _ 12E]ng3
5T Wt (b—c)¥(3b+c).

(7.4)

Putting ps of Eq. (7.1) equal to ps of Eq. (7.4) and using Eq. (7.3), we can
determine W according to the following equation,

Ws = 0.4286 wb. (7.5)

Let us define the following quantities:

xs, ys=lateral displacements of the shaft at z=c¢ in x-, y-directions respectively,
P., Py=forces acting on the center M of rotor in x-, y-directions,

M;yx, Miy=moments acting around the MX-, MY-axes,

Ps:, Psy=forces acting on the equivalent weight Ws in x-, y-directions.

Influence number «;; and spring constant «;; are defined as follows:

X,y an Qi Qi P, Py
Ox, Oy | =1 an @2 @ {| Mi, —Mix (7.6)
Xs, Vs s asx  dsp Pse, Psy /]’

aij = Aij/det (aij), (7.8)

where A;; is the cofactor of element a;ij, det(a:;) is the determinant consisting
of ai;, and the reciprocal relations a;;=aji, aij=aj always hold.

Inertia forces Py, Py, Psy, Psy and inertia moments M., M, are given by
Newton’s second law and Euler’s equation of motion:
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P _(WYE Pu_ _ (W)

P-V B (J—. jj ) PS)’ g _‘)’5 ) (7 8)
My iz, Uy .d (; cos, , . sin .
V= TR+ Al e 20t = 03 2 t).

Now we introduce the dimensionless quantities,

1)\/W7(6{E :-p', I’Vs/ W= Ms, crdW/(l{?)/an = “;2: Cns/du = d{s, (79)
dzzW/(ang) = am, a‘za\/W/([g)/,afn = fréa. asa/a'n = océz.
Using Eq. (7.9) and i, 4. %', ' in Eq. (2.11), and omitting primes on them

for convenience, we get the dimensionless equations of motion through Egs. (7.6),
(7.7), and (7.8),

B4 vt qpl+ apxs =0,

Y4y + aply + aiys =0,

e+ ipooliy + X+ oz + aasxs — 4+ %((ixcosh;t-% iysin2ot) =0,

J (7.10)
Uy — ipoll s+ oy - awly + asys — 4+ A (f¢sin2 wt — fycos2at) =0,
msic'g -+ m:sx+ C(-_':;ox + AagXe = 0,
MsVs T+ aiay -+ @2aly T azays = 0.
Free vibrations of xs, y: are represented by
Xs _ ., COS —= €OS 2 -
ys—EsSinptﬁ-Lssin L. (7.11)

Inserting Egs. (2.13) and (7.11) into Eq. (7.10) we get the frequency equation:

j H 0 &g 0 X3 0
0 H 0 an 0 @
oo p) = " ’ R £ (7.12)
0 ay —4dpp G 0 Az
3 0 Aoy 0 Hs 0
0 &3 0 Q23 0 H;

where H=1-p% H=1-7 G=antipop—1, G=an+ipop—7" Hs=as—msp?, He=
((33-'1%,-51.

Expansion of Eq. (7.12) gives the same form of frequency equation as Eq.
(6.1). In this equation,

H @l Ay H &z &z — )
] — — Pa— H Ain | H a1
f= arw G an  [=ar G an ¢=-pp ' 7o
! - awn  Hs ap  Hs
L ass Hs U ay  am  Hs W

(7.13)
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If we put ms=0, Eq. (7.12) reduces to Eq. (6.1) of four degrees of freedom
system where a distributed mass of shaft is neglected.
_ To each solution of Eq. (7.12) belongs a set of values E, E, F, F, Es, and
FE;. The ratio of the amplitudgs is gqual to the ratio of the cofactor A4;; of Eq.
(7.12) (j=1,2, ...,6), ie., EIEIF:F:E;ZE==A113A12ZA13!AmiAxsiA]s, and
Au = (GH; - (lgg)f—' Azpzf)z(ﬁljs - agg)Hs‘,
Are = 4pP(aiHs = arza) (anks = apas),
Ap= — (aszs - dmagz),f_,
A= — APIJ(H'Hs = ai) (apHs — apaz),

A= — (anG —~ apaw) [+ apd'p’D’

(7.14)

PPHHs — aty),
Az = dpPlassH — aypay) (anHs — aisass).

Between roots p; (i=1~6) derived from f=0 of symmetrical rotor, the following
relation is held provided a;.=0:

T DT D2 PP ps > 0 P> — P> Ps > = pai > Ps, (7.15)
where pgi, pa» are roots of HHs — ais =0, i.e.,

Din _ et ms = N (am = ms)* + dmsatls, (7.16)
D 2ms

7.8. Unstable vibrations (experiment I)
7.3.1. Linear vibratory system (when self-aligning double-row ball bearings 1200
are used)
Dimensions of the experimental apparatus used in experiment I are as
follows:

Ip=2.179 kg cm §°, I, =1.426 kg cm s*, L.=0.761 kg cm s*,

W=10.433 kg, We=0.317 kg, 1=99.90 cm, a:b=1:5, a=16.50 cm,
b=83.40 cm, ¢=34.54 c¢m, d=1.199 cm,

an=1.577x10° kg/cm, a= —1.960 x 10° kg/rad, aa= —2.213 x 10 kg/cm,
@z =5.456 x 10* kg cm/rad, awm= —5.405x 10° kg/rad, as =3.778 x 10 kg/cm,
Vang/ W =1189 rpm, VIg/W =10.37 cm ;

a=1434%10" kg/cm, v = —2.257 x 10’ kg/rad, § = 4.640:< 10* kg cm/rad,
Yag/W =1134 rpm.

(7.17)
Dimensionless quantities are obtained by Eq. (7.9):
ip=1.993, 4=0.304, ms=0.0319, air= —1.1989, a3 = — 0.1403,
an = 3.2185, @z = —0.3306, az =0.2396. (7.18)

Another dimensionless quantities used in Chapter 2~6 are got from Eq. (2.11),
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ip=1.993, 4=0.304, v = —1.517, § = 3.010. (7.19)

Natural frequencies p; and %; (i=1~6) derived from f=0 and F=0 of Eq.
(7.13) are shown by full and broken line curves respectively in Fig. 7.2 (a). Since
fFo is positive in the shaded regions and negative in the unshaded regions, all
real p—w curves lie only in unshaded regions because real roots p; make f7¢=0.
In Fig. 7.2 (b) roots p; and P; of Eq. (7.12) when ms=0.0319 are shown by full
line curves. Figs. 7.2 show two unstable regions near major critical speeds C:
(ps=Ps=wes) and C; (p2=P:=we:), and one new unstable region near S; (p2=p:=
2w—ps), Ss (hs=P.=2w—p2) to occur-in this shaft system. Width of unstable
region 2|& |, maximum value of negative damping coefficient #max, and natural
frequency P., Ps; of unstable vibrations are approximately derived through Egs.
(6.15), (6.14), and (6.12a, b). In Fig. 7.2 (b) chain line curves are roots of Eq.
(7.12) when ms is put zero, and they show that there exists only one unstable
region near Ci(wes) if a distributed mass of shaft is ignored.

5 7 @ 5 7
- _ ?_ Bs Ps
Ps Ps Pz /Q/ VAN
a a / Pa/ D3
v / 5
/ s / ] / $ / / Son
. o/ S ri; Pyl /R . 7/
< 5 Col “p, Pa o |/ - ({ e
: AN sV T S
2 L4 ! I
PSR T o .
2 A e 2
L‘D-’ / | | —$=0 =S
g ! v ! O = ya
s . ST |
s j _:
cEé 0 ; ! I R % o - 7 Ps
& .
= [ A I
e
= > By —/'/".—'45/
= il T =T
= ~
! Dsl 2 = | Ps
! - _
- o % | | o] - ExPERENTAL RESULTS
| | — Ms=003I9
| E 3 —~-Ms=0 Pe
= : T ™ -3 i
O Wes | Ws 2 Wea 3 4 o] | 2 3 4
ROTATING SPEED W ROTATING SPEED W)
(a) 4=0, ms=0.0319 (b) 4=0.304

FI1G. 7.2. Natural frequency p, p (Experiment I)

By some calculation using Eq. (7.17), (7.18), we can have the abscissa and
the ordinates of the cross points Sz, Ss, i.e, ws=1.670 (1986 rpm), pos=2.655 (3156
rpm), ps=0.685 (815 rpm), and approximate solutions 2{%|=64 rpm, #Mmax=244
rad/s. The m~—w curve and P, Ps—o curves are respectively shown in Fig. 7.3
where calculated values are shifted by 45 rpm to the lower speed side and experi-
mental results are given by marks @ and . Amplitude ratios |E/E|, |F/F|,
and |Es/Es|—w curves are calculated through Eq. (7.14), and given in Fig. 7.4
Experimental results of | Es/Es| for ps got from shaft vibrations xs, ys are given
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FIG. 7.5. Vibratory waves (Ball bearing #1200 used, w=1925 rpm, w: Ps: P2=50:81:19)

by marks (. One example of vibratory waves is shown in Fig. 7.5 in which
amplitudes of vibrations x, y, %;, and ys are seen to build up exponentially.

7.3.2. Non-linear vibratory system (when single-row radial ball bearings are
used)

When both ends of the shaft used in experiment 1 are supported by single-

row radial ball bearings (#6200 with 10¢ bore) which usually have small “angular

clearances” of 0.3°~0.6°, the stiffness of the shaft has non-symmetrical and non-
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linear spring characteristics®. In experiments using such a shaft system, there
exist several critical speeds (i), (ii), (iii), (iv) of rather large amplitudes, all
response curves of which are seen of hard spring type.

(i) major critical speed [w] where two curves p=w and p=p; cross each
other in Fig. 7.2 (b).

(i} sub-harmonic oscillation of order 1/2 [1/2.w] where two curves p=w/2
and p=p: meet.

(iii) “summed and differential harmonic oscillation” [ ps—p:] where the relation
pa—pi=w holds.

(iv) unstable vibrations near ws where the relation p,+p:;=2w is satisfied.

Let us show here some experimental results of (iv). As the rotating speed
of shaft » increases in Fig. 7.6, amplitude of harmonic oscillation moves along
AB and reach B (1976 rpm) where steady beats of two vibrations with frequen-
cies P., P; take place. Amplitude of steady beats gradually enlarges along BC
when o successively increases. When o is retarded, amplitude of harmonic cscil-
lation moves along FE and jumping phenomenon takes place at £ (2064 rpm).

20, T T
° X}STEADY BEATS [
oy) OF P2 AND P3

o HARMONICS OF w

E / m
/ oo QrodA
w
o ST ) ~-— 05
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FIG. 7.6. E, m—o diagram (I- #6200) 53250
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F1G. 7.9. Vibratory waves (Ball bearing #6200 used, w=2033 rpm, w: P:: P,=47:75:19)

When o is kept constant, negative damping coefficient m varies according to the
amplitude of beats as shown in Fig. 7.7. Because it is impcssible for both bearing
pedestals to be in exact alignment and a small misalignment increases the shaft
stiffness, unstable region BE occurs at the higher speed side by 75 rpm than the
linear vibratory system shown in Fig. 7.3. When amplitude of beats is nearly
zero, estimated negative damping coefficient m is given in Fig. 7.8. The maxi-
mum value ,.: of Fig. 7.8 is seen to coincide with mm.x of Fig. 7.3. Frequen-
cies P, P; of stable beats along BC are also given by marks O in Fig. 7.8
Marks @ indicate frequency ps; of a small free vibration in the stable region AB
and EF. Fig. 7.9 is an example of vibratory waves in which small amplitudes
of x, v, ys are seen to build up rapidly, and then finally attain to certain ampli-
tudes of stable beats BC shown in Fig. 7.6.

7.4. Unstable vibrations (experiment II)
Dimensions of the experiment II are as follows:

I,=0.4300 kg cm %, J; = 0.5090 kg cm s* . =0.3816 kg cm s°,

W=11.637 kg, W;=0.304 kg, /=100.21 cm, a:b=1:4,

a=20.04 cm, 6=280.17 cm, ¢=33.21 cm, d =1.1956 cm,

an = 9.420x 10 kg/cm, ap= —1.142x 10° kg/rad, ay= —2.444 x 10 kg/cm,
an = 4.738 10" kg cm/rad, an= —5.741 x 10* kg/rad, as;=4.174x 10 kg/cm,
Vang/ W =850.7 rpm, VIg/ W = 6.124 cm;

a =7.989x10 kg/cm, = — 1.478 x 10° kg/rad, 5= 3.949x 10" kg cm/rad,
Vag/ W = 17834 rpm,

(7.20)

in which both ends of a shaft are assumed to be simply supported, but single-row
radial ball bearings are actually used in experiment II. Dimensionless quantities
derived from Egs. (2.11) and (7.9) are as follows:

ip = 0.9659, 4 =0.1431, ms= 0.0261, ap= — 1.9790, a;a= — 0.2595,

(7.21)
ame=13.412, a= —0.9951, a=0.4431; = —3.021, ¢ = 13.180. }

Natural frequencies p; and p; (i=1~6) derived from f=0, =0 with use of
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the values of Eq. (7.21) are shown by full and broken lines severally in Fig.
7.10. ¢=0 is also shown by straight fine lines. The sign of ffe is positive in
the shaded region. In the neighborhood of the cross points Cs; (wes), C: (we2),
Ss, Ss (ws), Di. Ds (wa) shown by marks @ where two curves f=0 and /=0 cross
each other, unstable regions are likely to occur when ms=<0.

When a distributed mass of shaft is neglected, i.e., ms=0, f=0, f=0 curves
are shown by chain lines in Fig. 7. 10 (cf. Figs. 6.1 and 6.2), and unstable regions
are seen to occur only near the cross points Ci, Du, D (wa0). Near the rotating
speed ws=2.06 (1752 rpm) where the relationship p.+ps=2 is held, two unstable
vibrations with frequencies P., P; are seen to build up as shown in Fig. 7.1L
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The response curve of steady beats of two vib- 4700
rations with frequencies P., P; can be obtained
because of non-linearity in shaft stiffness. /

No matter whether m; is assumed to be g 6%
zero or not, another unstable region still re- ) /
mains®. When a concentrated mass #2s=0.0261 ® o "/
is counted in, there exists the unstable region )
near Di, D; (wa), where ws=3.18 (2706 rpm)
and the relation pi+ps=20 is satisfied. If ms 4530 Ay P = 5005
is assumed zero, the unstable region appears a%"’,)' P =
near D, Ds (wa0) where wao=2.77 (2357 rpm). 4500__”ﬁ 450’5?
Experimental results of negative damping co- 15
efficient s and frequencies Py, P; are shown in o
Fig. 7.12. o 16 A

B8 . %

7.5, Conclusions i \\

(1) When a rather long shaft is used in € o5 f A
experiment, and then a natural frequency of .
first mode of shaft itself is comparatively not
so high, there appear new unstable regions. O %% 2t0o

(2) When a shaft is supported by single- ROTATING SPEED w  rpm
row radial ball bearings which usually have FiG. 7.12. P;, P, m—o diagram
small clearances in inclination angle, the stiff- near w, (11-76200)

ness of the shaft has non-symmetrical and non-

linear spring characteristics. The unstable region bends to the higher or lower
speed side with increase of the amplitude of steady beats. The response curve
and jumping phenomenon are seen because of non-linearity in shaft stiffness.

Chapter 8. Unstable Vibrations of a Shaft with
Unsymmetrical Stiffness?

8.1. Introduction

Now we proceed to treat the system with variable elasticity corresponding
to the system with variable moment of inertia treated so far. There have been
many studies®®? of the system with a flat shaft. In the present chapter, how-
ever, the general system with gyroscopic terms and with a rotor not mounted at
mid-point of the unsymmetrical shaft is discussed.

8.2. Egquations of motion and forced vibrations

We now denote the spring constants in MX,-direction a+ da, T+ 4dr, 6+ 46,
and in MY.-direction a—d«, 7—47, 6—46 in Fig. 1.3. Let the displacement of
the geometrical center of rotor A be x', y', the inclination angle of A Z;-axis be
0%, 0y in MX,-, MY,-directions respectively.

The potential energy of the shaft 7’ should be represented by the following
form,
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1
V' = (et de)x™+ (o4 A0 5 (3 + 40)05
1 ) y'? at 1. SV
+—2-'(0(—Ad y +(T-—AT)y0y+-2"(,o_AO)0y. (8.1)

There are the relationships (8.2) between stationary coordinates x, y, 0, 0, and
rotating coordinates x/, 3!, 0%, 6% :

x_x Voo Yo ¥ gV .
0;—8xcos(-)+0ysm@. L= axsm@ + g),COS@- (8.2)

Inserting Eq. (8.2) into Eq. (8.1) and using V defined by Eq. (1.9), V' is re-
presented as follows:

Vie V- —%—Aoc((ye — %) c08260 — 2xysin20)
— 4r{(y8y — x0,) cos26 — (x, + y6.) sin20}

—%A&{(ﬂ}—0§)c0526—20,0_vsin2@}. (8.3)

The kinetic energy of a symmetrical rotor 7" is derived from Eq. (1.8a) where
4I is put zero. Substituting 77, V', and F defined by Eq. (1.10) into Lagrange's
equation (1.13) and using dimensionless quantities (2.11), (3.1), and (8.4):

/Jc}‘/a=du, AT/T‘—‘A]Q, AB/6=A“, (8'1)

we have the dimensionless equations of motion of the shaft with unsymmetrical
stiffness and viscous damping:
%+ e+ x+ 7l — diy(xcos2mt + ysin2 wt)
— 74p(0:cos2 wt + Oysin2wt) = ew® cos (af + £),
$+ ey +y+ rly — du(xsin2 ot — ycos2 wt)
— +dp(0xsin2 wt — fycos2wt) = ew’sin (wf + £), S,
e+ ipoliy + Clix + 7x + 805 — rdn(xcos2 wt + ysin2 wt) '
— 34ss(0,c082 wt + Oysin2wt) = (ip — 1) ra’cos (wf + 1),

”y - lp(l)ﬂ.x + ngy =+ Ty + 60y - TA[';(x Sin2 wl —yCOSZwl)

— 34n(0,sin2 wt — Bycos2wt) = (ip — 17w’ sin (of + 7).

If we substitute particular solutions of forced vibrations (3.3) into Eq. (8.5) we
have simultaneous equations of amplitudes 4, B, C, and D. Inserting solutions
of free vibrations (2.13) into Eq. (8.5) and letting e=7=0, and ¢;=¢.=0, we have
the frequency equation:

1-p° — 4y T — 74 _
— 4 1-7 — vdee 7
O p)= ' =0. (8.6)
s — rdi G = 04

- T4x2 T = 04 G
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8.3. Unstable vibrations near o and wa
Expansion of Eq. (8.6) gives the following form:
—_ ff — ) — ) B b - ,A__l L ___,_];A~ | A T
(o, p) =f—(1=p°)(1 p)All—pz)(l—ﬁz) i {(1—1)2) T (1~‘2)1412+0-’122J
F (84 dee — 7 41)° = 0. (8.7)

2 .
7 dn 2

When the asymmetries of stiffness 4u, 412, and 4. are enough small, and the
smaller term (§4,4ss — 72 45,)* in Eq. (8.7) can be neglected, approximation methods
used in Section 6.5 may be fully applied to the unstable vibrations of an un-

Tzﬁll 2 1
a=m = "ot
Eq. (8.7) in place of [4pp]* of Eq. (6.1).

The second term in Eq. (8.7) has the same sign as that in Eq. (6.1), the
derived conclusions in Section 6.3 is fully true to this case. Width of unstable
region 2|%| and maximum value of negative damping coefficient #2... are derived

ngu _ 2 1
(I=-p(1=-79) " WI=p)
-+ (-1—_%5)}4112 + 5dzzi instead of A\/’{p. Only the existence of the positive term

. 2
symmetrical shaft by putting [ (T:Ifz) }Am‘i" 6422] of

from Egs. (6.15), (6.14) by replacing \/f(f:ﬁ’ﬁlf?ﬂ

(04ude — 7°4%)* in Eq. (8.7) makes the unstable region of w. a little narrow, and
makes the unstable region of ws slightly wide.

Dimensions of the experimental apparatus with unsymmetrical over-hung
shaft are as follows:

I,=0.1893 kg cm §*, I =0.3461 kg cm s°, W =10.670 kg,
a = da = 26.586 + 2.744 kg/cm, 7 = 4y = — 545.55F48.00 kg/rad, (8.8)
§ = 45 = 14993 = 1169 kg cm/rad, Yag/ W =471.9 rpm, VIg/W =5.64 cm.

Dimensionless quantities got by Egs. (2.11) and (8.4) are:

ip=0.5470, vy = — 3.639, 6 = 17.74, 41; =0.1032, 42 = 0.0880, 4 =0.0780. (8.9)
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The response curve near w. is shown in Fig. 8.1, where the shaft becomes
unstable at the rotating speed w=220~250 rpm. The calculated values are w.=
235.3 rpm, 2|&(|=27.5 rpm which coincide well with the experimental results
we=235 rpm, 2|%|=30 rpm.

The shaft again becomes dynamically unstable at w=1314~1327 rpm, where
beats of two vibrations with frequency Py, P; occur. Calculated negative damping
coefficient . is given by full line curve in Fig, 8.2 and is compared with experi-
mental results with marks (0. Because of an inevitable damping action existing
in the shaft system the experimental value #m.:=0.32 rad/s is fairly smaller than
Muax=0.82 rad/s derived from calculation, but the experimental results of natural
frequency P, P. are almost lying on the calculated full lines as shown in Fig.
8. 3.

8.4. Conclnsions

(1) The frequency equation similar to Eq. (6.1) is obtained and the same
kinds of unstable vibrations as the unsymmetrical rotor always take place.

(2) Useful approximation methods are also applicable to the shaft with un-
symmetrical stiffness.
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