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1. Introduction

When two principal moments of inertia I, [. about the axes perpendicular to
the rotating axis of a rotor are unequal, ie. ;I the rotor is called an “un-
symmetrical rotor”. It has been reported by the authors that in a rotating shaft
system carrying an unsymmetrical rotor, there are two kinds of unstable regions
in the neighborhood of both the major critical speed w."? and the rotating speed
wa at which the sum of two natural frequencies pi+p. is equal to twice rotating
speed of the shaft 2 wg®. In 1961, S. H. Crandall and P. J. Brosens discussed the
interaction through gyroscopic coupling between the inertia and stiffness in-
equalities for unstable vibrations referring to the inclination angles ., 6, of the
rotor, which occur in the neighborhood of the major critical speed wc".

In the present paper, a vibratory system of four-degree-of-freedom consisting
of a rotating shaft with an unsymmetrical flexibility and an unsymmetrical rotor
is treated, in which the deflections x, y and the inclination angles 6., 0, of the
rotor couple each other through gyroscopic terms; and a quantitative analysis for
the unstable vibrations in the neighborhood of both w. and wa is derived, and the
simultaneous effects of the diametral inertia inequality of the rotor and the un-
symmetrical stiffness of the shaft on the unstable vibrations are explicitly ap-
preciated.

2. Hquations of Motion

Let the polar moment of inertia about the rotating axis of the rotor be I;
other two principal moments of inertia be I, I (Ii>I); the deflection of the
center M of the rotor be x, y; the inclination angles of the rotor be ., 0,: the
damping coefficient for %, 7 and 6., 0, be ¢: and c. respectively; the mass of the
rotor W/¢, the rotating speed of the shaft o, the spring constants of the shaft
having unequal stiffness be a=da, r+47 and 6+ 48 which are measured in the
direction of the principal axes of shaft cross section; the angle between the
principal axis of stiffness MY; which coincides with the direction of a—4a etc.
and the principal axis of moment of inertia MY, (ie the direction of i) be ¢;
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the direction 4775 of the eccentricity ¢ measured from the axis MY. be £; the

direction A/¥; of the dynamic unbalance r measured from MY: be 7 (see Fig. 1).
Introducing the mean value of diametral moment of inertia 7= (I,+1-)/2, the inertia
asymmetry 47/=([,—1>)/2 and the dimensionless quantities

L/I =iy, 41/1= 4, sINIFW =", yNIF]W =y, eNIFTW = ¢,
Nad W=t o/Nad/W =0, WW/(I%)/a=7 W/ (al?) =08, (1)
Cl/\”W? = Cl,: Cz\/'I}V_/‘(E'“?')/]= C;, dalo = dy, dyly= dig, 46/6= dun

and further omitting primes on the dimensionless quantities for brevity, the follow-

ing equations of motion for the unsymmetrical rotor carried by the rotating shaft
with unequal stiffness are derived:

Edod+ x4 70— dulrcos(2wt +28) 4 ysin{2wt +28)} — rdn{lcos(2wt +2¢)
+ 0ysin(2wt+28)} = ew’ cos(wt + &)

Pty +y+rdy— dnxsin(2ot +2¢) —ycos(2wt +28)} — ydp{f.sin(2 ot +2¢)
~0ycos(2wt+22)} = ew®sin(wt + £)

x+ ipolly + collx + 12+ 00 — 4 --(—l,d# 0xcos 2wt + fiysin2 wt) — rdpl{xcos (2wt +2¢)
+ysin(2wt+24) ) — §4ni{fccos(2wt +28) + 8y sin(2 wt+ 28}
=t {(ip— 1) cos(wt +7) — dcoslwt — )}

Uy = ipwlz+ c2liy+ 1y + 00y — 4 --‘%(ﬁxsinz ot — Uy cos 2wt) — 74i:{xsin(2 ot +2¢)

~yCosi2mt +28)} — 6dnlf.sin(2wt +28) — f,co8(2wt +22))
=r0*{ (i — Dsin(wt + %) — dsin(wt —5)}

(2)

Equations of motion for a symmetrical rotor mounted by a shaft with unequal
stiffness”® and an unsymmetrical rotor carried by a circular shaft"® are obtained
by putting 4=0, £=0° and 4;;=0 in Eq. (2) respectively.
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3. Forced Vibrations

3.1. Solutions of forced vibrations
Forced vibrations induced by ¢ and r are represented by

': = EX% (ot + 8) = Aot Bimot,

3)
0t = Pt + &) = Cihot = Dot

where 8., 3. are phase differences between vibrations and the axis MY. It is
readily seen from Eq. (3), (4) that if the cofactor of the determinant

laij| =
1—0°— 441c0828 —dusin2é—cow  7(1 - dpcos2¢) — rdpsin2¢ |
—dysin2¢+cw 11—+ 4nc082¢ —rdnsin2g 7(14 dpcos2¢)
- i
(1= dncos28)  —rdgsinge 01T AnCOSZA) 54 Gingc—cw

+(lp—1—Do*

6(1+ dncos2¢) :
+(ip—1+Do”

(4)

— 7dpsin2¢ 7(1+4 dincos2¢) — 045 8in2 ¢+

is denoted by A;;, the amplitudes of forced vibrations A, B, C, D are given by
the following equation:

A ew’ cos 2
B ew’sin £

lai; ! = (Aj) . (5)
C tw'(ip—1— 4)cosy

D '’ (ip — 1+ Nsiny

3. 2. Unstable regions of forced vibrations

In this section a simple case of 4n=4n=4x=4s, ie. the case of a “flat shaft”
is considered, which occurs if the shaft with unequal stiffness has an uniform
cross section. _

When the orientation ¢ is equal to 0° or 90° and c¢1=c.=0, the vanishing de-
nominators in the equations of the amplitudes A, C and B, D results in the
following major critical speeds wez, wen and wez, wer separately: For the case
of ¢=90°

v _ (14 4){lip =1 = 4=8) = V(ip=1-4+0)" = d(ip=1=DT*}

O)i:x] 2-(-1:1) - 1 - A ) (6)
v _ (1= 4N Uip =1+ 4= 8) =V (ip=1+4+8) "= 4(ip— 1+ 4)7"}
T 2(ip—144)

For case of ¢=0°, the sign of 4s; in Eq. (6) must be changed. It suggests that
the magnitudes of the major critical speeds vary according to the value of the
orientation ¢.
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In the range of [ai;|<0 the forced vibrations become statically unstable®?,
and the boundary rotating speeds furnished by |ai;|=0 coincide with the major
critical speeds of Eq. (6). Accordingly there are two static unstable regions, ‘..
the lower region wca~weze and the higher region wen~ wen?.

Simultaneous effects of the asymmetry 4 of the rotor and the unsymmetrical
shaft stiffness 4; will be discussed. The unstable regions are changed with the
value of ¢ as shown in Figs. 2 (a), (b), (c). Fig. 2 shows that elimination of the
unstable region can be realized by means of an appropriate combination of 4 and
ds.  The couple of curves when (=90° in Fig. 2 (a) cross each other in the
neighborhood of 4=0.25. It shows that the unstable region vanishes even when
a=c:=0. The following condition for elimination of the unstable region is derived
by putting weei =weze O wenn=wecz in Eq. (6):

Lbds oy = lip=1= Dip=14+4—0) &V (ip—1+4+8)*—4(ip,—1+4) 77}

+ 4 _ - 7)
1— 4 Gp— 1+ DUy 1= d=8) =V (po = AL —h(iyoT— )78 |

Eq. (7) for 45=0.1 and the upper sign results in 4=0.2487 which agrees with the
result shown in Fig. 2 (a). For comparison the major critical speeds of the cir-
cular shaft system (i.e. 4s=0) with 4=0.322 are indicated by the symbol O in
Fig. 2 (a). As is seen in Fig. 2, the unstable region become smaller with in-
creasing of the damping, and finally they vanish for somewhat small asymmetry
4 as shown in Fig. 2 (¢).

3.3. The response curves in the neighborhood of the major critical speed

Since there is no unstable region when 4=0.322, 4,=0.1, ci=c;=0.1 as shown in
Fig. 2 (c), the steady forced vibrations induced by ¢ and = occur in the neighbor-
hood of the major critical speed w,. The amplitudes E of deflection indced by e
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and = are shown by Figs. 3 (a) and (b) severally. Similar response curves are
obtained for the amplitudes F of inclination. The maximum values of amplitude
E are plotted against the orientation ¢ for case of £,7%=0°, 45°, 90°, —45° in Figs.
4 (a), (b). For comparison, the maximum amplitudes E for the system with 4=
0 and 4,=0 are indicated by the broken line curves in Fig. 4.
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4. Free Vibration
4.1. Frequency equation and the unstable region

Since the asymmetry 4 of the rotor and the unsymmetrical shaft stiffness 4s
result in coexistence of two free vibrations with frequencies p and $=2w—p for
each degree of freedom, the free vibrations should be represented by

= AEptT Bpt+ AR T H B,
6 (8)
g, = Cinpt T Diipt + TPt =Dt it

Substituting Eq. (8) into Eq. (2) and putting e=+=0, ¢;=¢, =0, the following equ-
ation #=0 is obtained:
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9)

Some calculation shows that Eq. (9) can be represented by the form #=9"=0
with
' =.ﬁ7 +[ - 43166 - Tzdﬁz(H_G_-"*'ﬁG) - azA;:)HF-l- 2‘1‘3411412 (G + C)
+ 207 dvedn(H+H) = 2(04udn+ P4 — A’pzf’Hﬁ+ 24pp
{ = P4+ 740 (H+H) — 8 4o HH bc0s2¢]

99

A {(0didss — 742+ LLP D+ 2 44, p (3 ds1des — 7o 412) 0828 =0 (10)

in which H=1-p*, H=1-7, G=d+ipwp—p>, G=6+ip0d—P, y=HG—7* and f=
HG -7 When 4=0 and 4;;=0, Eq. (10) reduces to #'=f7=0. The unstable
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vibrations take place in the neighborhood of the intersecting points of the curves
f=0 and f=0 provided that 4 and 4;; are somewhat small"??. Accordingly the
nature of Eq. (10) in the neighborhood of these intersecting points will be dis-
cussed. Since f=0 and f=0 are simultaneously held in this intersecting point,
ie, HG=HG=72, 0 in Eq. (10) reduces to

Y = ff = O (HH) +¢,=0 in

where

0= Q + R+ 2QRcos2¢=(|Q| - |RD*=0 1

el 2 9 1 (12'3.)
G=5+T " +28Tcos2¢= (US| —|TDH*=0 !
Q=7"dun — *4u(H + H) + 84 HH, R= 4ppHH, .
S = §di1dey — T?d?z, T= Adl,pﬁ. / ’
6 Py Ps Pe P
\ S
5 N\ \ /\&
@% A;@ b
X% & _
e 5 ! by
i /@ §; J 9 Q
- 7 3 | < & {
& 3 y iq" ¥ A 0. : : Y X
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F1G. 5. The relation between the roots of f=0, f:O and the rotating speed w.
(Experiment IV, ¢,=0.7536, §=14.1786, 7= —3.2525, ~/a%/W=441.9 rpm)
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It should be noted from Eq. (12-a) that ¢, and ¢, take always the positive values
or zero. Under the assumption that the fourth power term of 4, 4:; in Eq. (11),
ie. ¢1, can be neglected, it is concluded that the real roots of Eq. (11) exist only
in the ranges where the sign of f7 is same as that of HH because of ¢:=0.

The natural frequency—the rotating speed diagram of the apparatus of the
experiment IV for 4=4,;;=0 is illustrated in Fig. 5 where the curves f=0 and
F =0 are shown by full and broken line curves respectively. Further the lines
H=0 (p==+1) and H=0 (P=2w=1) are added by thin lines in Fig. 5. In Fig. 5
the real roots of Eq. (11) can exist only in blank regions and not in hatched re-
gions where the signs of f7 and HA are different each other. In the neighbor-
hood of the cross point of f=0 and f=0 shown by the symbol O, there is an
unstable region because the curves @'=0 becomes as shown in Fig. 5 (a), (b),
and near the intersecting points shown by the symbol @ in Fig. 5 (c¢) there is
no unstable region®. The rotating speeds of o of the intersecting points Ci(we),
Ca{wez), Di1,2(wa), and Ai s{we) are as follows®:

2
Wer

b = (ip=1=08) £V (Gp—1+0) —4(ip—1)7T2}/20ip — 1) (13)

2 -
‘a‘;‘: =54+ 4(2—ip) (14 0) = (4= ipVip+8(2 — i) (0 — 7°) }/8(2 —ip)* (14)

In the dynamic unstable region appearing in the neighborhood of wgs, two un-
stable vibrations with frequencies p, and p. build up simultaneously and the am-
plitudes increase exponentialy as ¢”™. The negative damping coefficient m takes
its maximum value mmax at the center of unstable region w=ws. The value of
mmax and the width of unstable region 2|%| are approximately given by
when there is no damping®

mmm—\/ “icg/(g]p[g];HH) v (\15“3)
2isoi=4v/j —-% %+%§/2~£§ (16-a)

when there is damping®

Mimas = o/ v + <’i‘.«;v”_2) - (@%ﬁ) (15-b)
212 =2 /‘”“‘”2) (V*- n,ng}/[ gﬁ/g’; —g-g/—’-;i (16-b) -
where
ny= 4+ 0" popr, ma= 0+ 0" p-p,
0= r'e _ Y/ E— (17)
2+ - (2-%2) g (2-12)

Putting p=p=wc, m=n= ' +n')o. in Eqs. (15), (16), (17), #Mmax and 2]&! of the
static unstable vibrations appearing near the major critical speed w. are obtained.
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4. 2. Static unstable vibrations

The static unstable vibrations take place in the neighborhood of the inter-
secting points Ci(p=71) and C.(p.=p:), because HH = (1 — w2)*>0 and hence the
curves @' =0 take the form of Fig. 5 (a). Eqs. (12-a), (15) and (16) show that
m and 2|%| are functions of the orientation ¢ and ¢=90° and ¢=0° furnish their
minimum and maximum values when QR>0; vice versa when QR<0.

Since QR = ddswill — w2) 7wt + (5 — ) (1 — wi)?} is always positive for the flat
shaft with uniform cross section (4i;=4s), the following condition of removement
of unstable region can be derived from =0, i.e. Q=R(£=90°):

well — we)d
ol + (- ) (1 - w)? (18)
For the apparatus of Fig. 2 (a) Eq. (18) furnishes 4s=0.1, 4=0.2493 which agree
with the result of Eq. (7). In order to obtain condition for removal of unstable
region, Eq. (18) may be more convenient than Eq. (7). Incidentally, if the spring
constant 7 vanishes, i.e. ¥=0, the motions of x, y and 6., 0, do not couple each
other, for such a system QR is always positive in the neighborhood of the higher
major critical speed, ie. the point C; because QR = §ddnwi(l— wi)'>0. For the
apparatus of Fig. 2 with QR>0 the width of the unstable region 2|%|=wez— we
are plotted against the orientation ¢ in Fig. 6 where the damping coefficient ¢;=
¢» is adapted as a parameter. In Fig. 6, the results of approximate calculation
through Eq. (16) are shown by full line curves and the exact values obtained
from |ai;|=0 of Eq. (4) are illustrated by the symbol O; both results agree each
other as is seen in Fig. 6. The existence of the fourth power term ¢4 in Eq.
(11) which is assumed to be negligible gives plus effect on removal of the un-
stable region because ¢;=0 and —¢,/HH=0 in the neighborhood of the major
critical speed.

4

02 ! ip=1.987
o exact solution S
—— opproximate solution 8 =1.0860
¥y =-0.855

Q\\ A=0.322
As=0.1

width of unstable region 2|&,|

N

o° 30° 60° 20°
orientation {

F1G. 6. 2|&|—{ diagram at we.
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4.3. Dynamic unstable region

At the points Di(pr=%.) and D:(p.=P), HH = (1 —p}) (1 —p3) takes a negative
value, and hence there is an unstable region near D, and D, because the form of
the curves @'=0 becomes of Fig. 5 (b). The fourth power term ¢:(=0) gives
minus effect in this case because —¢./HH =0. The negative damping coefficient
m—the rotating speed » diagrams with a parameter ¢ for the system having i,
=1, §=1.060, 7= —0.855, 4=0.3, 4s=0.1 and c1=c.=0 are shown in Fig.7 (a). The
relation between the maximum value of m, i.e., #mum.x and the orientation ¢ is given
in Fig. 7 (b) where the symbol O is the exact results of Fig. 7 (a), the full line
curve is of the approximate expression (15-a); the former is somewhat larger
than the latter®. Since QR<0 in this case the value of ... takes its maximum
and minimum value at ¢=90° and ¢=0° separately, the relation of which is
contrary to that of the static unstable vibration. For comparison the approxi-
mate value #mm.x=0.1169 and the exact value #m.x=0.1214 of the system with 4=
0.3 and 4s=0 are illustrated by horizontal full and broken lines respectively in
Fig. 7 (b). Incidentally the approximate value of #m.« when 4=0, 4s=1 is 0.0195,
the result of which is not shown in the figure.

In general, the value of the orientation ¢ has a remarkable effect on unstable
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vibrations appearing near both w: and wa, and #m.. and the width 2{%]| which

and minimum values at ¢=0° and £=90° when QR>0, vice versa when QR<O0.

5. Conclusions

Obtained conclusions may be summed up as follows:

(1) In damped systems as well as in systems without damping, the approxi-
mate analytical values of the width of unstable region 2|4/, the negative damp-
ing coefficient m of the unstable vibrations agree well with their exact values.

(2) The values of 2|%| and mm.x of unstable vibrations appearing at both wc
and o, are proportional to the magnitude of \/2;2 =V@Q*+R*+2QRcos2¢ and the
value of QR becomes positive or negative according to dimensions of apparatus
and whether w=wc or wq. If QR>0, ¢, takes its maximum and minimum values
at ¢=0° and ¢=90° respectively, vice versa if QR<0. Incidentally for case of
7=0 or case of the flat shaft having 4i;=4;, QR at o. is always positive.

(3) By means of an appropriate combination of 4 and 4;; so that |Q|=]R]
and cos2¢=—QR/|QR|, ¢: becomes equal to zero, and hence the unstable vib-
rations at w, are removed perfectly and they at wgs can almost vanish even though
there is the term of ¢..

(4) Even when the static unstable region at w. vanishes by large enough
damping and the steady forced vibrations take place, the orientation ¢ has large
effect on the response curves of the forced vibrations. This effect is similar to
that on unstable region when ¢1=¢=0.
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