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In the theory of information, or in the statistical theory of communication,
Shannon’s sampling theorem plays an important réle in case of treating the con-
tinuous channel of information systems. In the present paper the authors give a
generalized sampling theorem, which includes Shannon’s theorem as a special
case. Being based on the generalized theorem presented here, five new formulae
are given as special examples. The theorem is also conveniently applied to the
physical analysis.

Let f(#) belong to L,, and let the following reciprocity relations hold:

Fls) = L f= SKts,t)f(t)dz‘, (1)
and

ft)= L F= \’fm,s)F(s)ds. 2)

Further we assume that
F(s) =0, for s<a and 8<s (3)
and that 7(s) can be expanded in a complete orthogonal system of functions:
<¢n(3) ; K¢m(3>¢ﬂ(3) ds=1m*dmn (M, 1= integerS) 1 (4)
in the interval a<s<§, ie.
F(3) =21 anpn(s). for a<s<f (5)
The expression (5), being multiplied by ¢m»(s) and integrated over s, gives:
8 3
Y F(S)éb?;z(S)ds = Zan'g ¢771(S)¢71(5)d5 = 2 Un * TonOm, n = T Qonte (6)
From (2), (3), (4), (5) and (6), we obtain
f(t) :%{“F‘——Zanm%[]'w =
=331 f F9)6n(9)ds) - [ £t 9051 . (7)
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If the functions f(s), {¢n(s)}, and the integral kernels K(s,#) and K(t,s), are
given, then we can construct an expansion in series of f(#) by means of (7).
If we can take

$u(s) =K (An,s), for a<s<p (8)
with constants A, ie. if the kernel K (2., s) can be put equal to ¢.(s), then the
expression (7) is simplified into:

f() = };, (%;-XZF(S)ET(A"., s)ds) . Siff(t,s)ff(x,,, s)ds

-3k (RGOR G, s ©

n

by means of (2). The expression (9) gives a generalized sampling theorem. The
points at the variable ¢:

t=2,  (#=integers) (10)

are called sampling points, and the function of ¢:
B B -
L= g K (£,8)¢n(s)ds = S K(t, K (An,s)ds, (n = integers) (11)

is the sampling function.

The idea of the generalized sampling theorem was suggested by one of the
present authors, Takizawa®. The importance of the expression (7) and (9) in
the physical analysis is made clear in the following examples.

Example 1
We shall take the Fourier transform for (1) and (2). Let f(#) €L, and let

+ oo DO sl
F(s)=Lsf= S_ K(s, ) f(t)dt = 727—1;3 ) explist]- Fit)dt, (12)
-s»co~ +oo
Ft) = i F= j_ K(t,s) F(s)ds = j‘_ expl — its]* F(s)ds, (13)
{6n(s)} = {expl —idusl; An=nn/B, n= integers!, (14)
and
o= —§, (15)

then we obtain, from (13),
) = Sj expl — its]+ F(s)ds = S:%exp [ —its]e F(s)ds. (16)
We expand F(s) in {¢x(s)} in the interval [—8,B], ie

F(s) = § Anpn(s) = i an 'exp[ - i%zS], (17)

HE—m n= -
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with
=28, (n=integers) (18)

and
B . ©oam
an _‘ZAﬁj >5F(s) exp[r +ig sts. (19)
In this case, the expression (7) becomes to:

f) = A F= ~-2lg = (fif(g) cexp| + z'ffgsjds) 5 expl —its]- exp| ~ z’%"s]ds

:i f( _@B@\“sin(ﬁt+ng}

/ Bt+nm

= —ct

_ N0 o mmy, sin( Bt — um)
-5 ) g

which is nothing but Shannon’s sampling theorem”»®. The expression (20) gives
f(#) in terms of the sampling function sin(pB¢t—nx)/(Bt—nz), with values of fnr/B)
at sampling points /=nz/8 (n=integers).

Example 2
We shall take the Fourier cosine transforms for (1) and (2), i.e.

o) = L f= | Ko, n0dr= 2] “cos s (21)

and

+

A = 7P = [ R, F(s)ds = jo " cos (1) F(s)ds. (22)

The function F(s) is assumed to be expanded in an orthogonal cosine series
in the interval 0<s<p, ie.

F(s) = 23anpn(s) = 2l ancos(1ss), for 0<s<p (23)
with
3
L{pn(s)} = {cos(Aus); Socos (Zm$) COS(AnS) dS = 7y * Om,n (n=integers)},  (24)

and

sin(Zln@}

B
e E e W

(25)

where 1, are the roots (arranged in ascending order of magnitude) of the equation:

)\n tan(&nﬁ) = A, (26)

with a constant 4



156 Research Reports

Then the expression (9) takes form:

_esvo 1
fit) = 32/7‘1 sLn(iZix,,ﬂBﬁ)(S F(s)cos(bg)ds) Scos(ts)cosu,,s)ds
2B
_ 2 < cos(2.8)  ttan(Bt) — A N
i >T,f(x,,)] CsmeLp) -7 cos (A1), (27

with sampling points #=2, (n=integers), and the sampling function:

! ta‘;(fg_” A cos(gh). (28)

Example 3
We shall take the Fourier sine transforms for (1) and (2), ie.

F(s) = o= |K(s, 0 pwat = %S:wsin(st\f(t)dt, (29)
and

v + oo
A8 = 7 F = Rt 9 F(s)ds = SO sin(#s) F(s)ds. (30)

The function F(s) is assumed to be expanded in an orthogonal sine series in
the interval 0<s<p, ‘e

F(s) =S anpn(s) = 2l a,sin{dns), for 0<s<p (31)
with
{pals)} = {sin(xns) ; ‘;cos(zms)cos(xns)ds =7m* Om n (n=integers) } (32)
and
_ B, _sin(2 8\ :
=T Tong ) (33)

where 1, are the roots (arranged in ascending order of magnitude) of the equation:
Ancot(2aB) = B, (34)

with a constant B.
Then the expression (9) becomes to:

f) = 2 S - (S F(s) sm(/l,,s)ds) ysin(ts)sin(aﬂs)ds

g% - sin(2 2x8)
2 48 |
o S;?éf;‘?m £ Cozfg(ﬁt;f Bsinige), (35)

1===758
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with sampling points #=4, (n=integers), and the sampling function:

feot(pt) — ).
2o s n{pt (36)

The formulae (27) and (35) were obtained by Kroll® in connection with an
integral equation.

Example 4
Let us take the Hankel transforms of order » (»=~-1/2) for (1) and (2), with

+ @
fo Vi ADdE< + o,
absolutely convergent, ie.
Fio = K, zf)f(f)a’z‘:S: . sHfD L, (37)
0
and
+oo~ +oe
A ={ R, Fo)ds= fﬁ /i) F(5)ds. (38)
. )

The function F(s) is expanded in the Fourier-Bessel series” in the interval 0<s<B3:

F(s) =§an¢>n(s) “Za»]» (728), for 0<s<@ (39
with
{gn(s)} = {]»(]‘ns') ; vg:s]‘,(jmsvy(jﬂs)ds =T Om, n}, (40)
and
n = ‘%?'fzn(]‘nﬁ), (41)

where j.8 (2=1,2,3, ...) are the positive zeros of /,(z), being arranged in ascend-
ing order of magnitude, i.e.

The expression (9) takes form:
2 .
=23 ]M(]nﬁ) AV s n G ds) gs]»(z‘s)]‘,(Jns)ds
= = 2 T8 (43)

n=1 ]ml(]nﬁ) tZ—‘j’[

with sampling points 7=j, (n=integers), and the sampling function:
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JuB0) (44)

The formula (43) was previously given by the present authors¥.

Example 5

We shall take the Hankel transforms (37) and (38). The function F(s) is
assumed to be expanded in the Deni expansion® in the interval 0<s<p, ‘e

+
F(s) = S anpn(s) = D anfu(1s),  for 0<s<p (45)
with
. 0
{pals)} = {Luns) ; Sosfv(lms)f»uns)ds =Tm® amn"}’ (46)
and
n= ﬁa{ X+ 1) 8 = T4, 47
where 1, (=1, 2,3, ...) are the positive roots (arranged in ascending order of

magnitude) of the following equation:
ln]’,(xnﬁ) ‘f‘h]v(XnB) = O, (48)

with a constant /.
Then the expression (9) becomes to:

+ o xfz 3 o3 .
= PR 5 o EEY ) v n ° v Y n
£ 2“2:1 (G IF = T ) (SosF(s Ju(A s)ds) sz (£8)],(Ans)ds

= An t],(88) + 1], (Bt)

= - 2 n) 5 £y s 2 2 )
B ) (e 8~ 1T ) T (49)

with sampling points =2, (n=integers), and the sampling function:

(LB + RTBE) (50)

-2

The formula (49) was also obtained by Kroll®.
Letting % tend to infinity in the expressions (48) and (49), we see that they
reduce to the following expressions, respectively:

To0aB) =0, (51)
and
2 i3 An J.(Bt)
Y=~ An) B e .
fi B Eﬂ )f>+1(1n3) 2= A o)

The expressions (51) and (52) are nothing but the expressions (42) and (43),
respectively. Accordingly, the expression (43) is a limiting case of (49).
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Example 6
We shall take the other Hankel transforms? for (1) and (2), namely

Fio) = (K ppwar= | 1w st s, (53)

and
By(ta) * ft) = Sf?(t, S)F(s)ds= S:mST‘.(z‘a,z‘s)F(s)ds, for »=—1/2 (54)

with
Tz, 2) = Yo u(2) = J(x) Yul2), (55)

and
B,(2) = [3(2) + Yi(2), (56)

under the condition that the integral
o
{ Trar< + =,

-

is absolutely convergent.
We expand the function F(s) in the orthogonal series {7\ (A.«,2ss)} in the
interval 0<a<s<p, i.e.

4o

Fs) = ganqb"(s) = nﬂanil‘»(/lnoz, ns), for 0<a<s<p (57)
and
{pn(s)) = {T,,u,,a, Ins) s Sz ST i, AmS) To(Ant, AnS)dS = 7y * 8, ‘ (58)
with

2

2
Tn = % TEH(/{?:Q’, Ilnﬁ) - '% T~f+; ()mll, Xna)

v o
where 1, are the positive roots of the equation:
T\ (Anee, Anf3) = 0, (60)
ie.
Yol na) o 22B) = Jo () Yol Anf3). (61)

Accordingly, we obtain, from (9), the following expression:
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=1 n

+ % & o3
Bu(ta) « fit) = (- sToCh, 29V P()ds )+ | ST\ (b, 1) T hner, ds s

&7 JH2aB8) d T, (at, BE)
= St ln, * By dna) fAn) * Bo=To(Ana, Anf) s 2220 PE
2 T ) — Sy BrlAne ) ) = BT (e, 1n) e =272

__ & 1B (na) [ (na) Ju () , Tolat, ft)
= -7 ) , : . Rl (62)
:Eka ]\f(lna)—j\i(lnﬁ) t2_‘233
with sampling points =1, (2=1,2,3,...), and the sampling function:
T;iffz}éi@- (63)

The expressions (27), (35), (43), (49), and (62), are examples of the new
sampling formulae derived from our generalized sampling theorem (9).
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