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1. Introduction

There are in general three principal moments of inertia 7,  and [, about
the three principal axes of inertia passing through the center of rotor. A prin-
cipal moment of inertia I, about the rotating axis of the rotor and the principal
moments of inertia [;, I. about the axes perpendicular to the rotating axis are
called the polar moment of inertia and the diametral moment of inertia respec-
tively. A rotor with unequal diametral moments of inertia [;, [ is named the
unsymmetrical rotor. It has been studied that, in the lateral vibrations of the
shaft carrying such an unsymmetrical rotor there are twice as many natural
frequencies as the number of degrees of freedom, since two free vibrations of
natural frequencies p; and ;=20 —p; {(i=1, 2,..., k; k=number of degrees of
freedom; w=rotating speed of the shaft) take place for each degree of freedom,
and that the rotating shaft becomes dynamically unstable and the unstable whirls
build up in the neighborhood of the major critical speeds w. where the relationship
pi= i = w, holds"® and in the neighborhood of the rotating speed ws where the
condition pi=p; (i=]), i.e. pi+p;=2wa is satisfied®. In the present paper, the
effect of damping forces on the unstable vibrations appearing in the shaft system
with the unsymmetrical rotor are discussed both analytically and experimentally
and it is cleared that the damping forces have a remarkable effect on the char-
acteristics of these unstable vibrations, and the width of the unstable regions,
being against expectation, can become wider under the influence of damping.

2. Characteristic eguation of the vibratory shaft system
carrying an unsymmetrical rotor

The motion of the unsymmetrical rotor without any static and dynamic un-
balances is governed by the following differential equation referring to the co-
ordinates fixed in space:

W/g-%+cid+ax+y0,=0,
W/gey+eay+ay+riy=0,

I s+ Tywly + Coblx+ 7+ 80 — AI%(HQ cos2wt + fysin2wt) =0, (D

Iiiy — Iyl + colly + 7y + 805 — AT d (O.sin2wt — fycos2wt) =0,

dt

1) Professor.
2 Assistant professor.
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in which x, y are the deflections of the rotor in x, y-directions; 4., 6, are com-
ponents of the inclination ¢ of the rotor; W/¢ the mass of the rotor; I, the polar
moment of inertia of the rotor; I,L(Ii>1;) the diametral moments of inertia;
I=(L+1,)/2 the mean value of the diametral moments of inertia [, and I[y;
Al=(L—1)/2 the unsymmetry of the rotor, w the rotating speed of the shaft;
«, 7, 0 the spring constants of the shaft; ¢i, ¢» the viscous damping coefficients
of the motions with respect to x», vy and 0., 6, severally. For convenience, the
following dimension-less quantities are introduced:

Ip/I=1ip, 4I/I =4, x/NIg/W =%, y/NIg|W =y', Jag/W «t=1¢,
w/Nag] W =o', pINag]W =p', vlaNW]Ig) =7, W/ (agl) = ¢, (2)
a/NWalg =cl, a/INW/(ag) = ci.
Upon using Eq. (2) and omitting the primes on the dimension-less quantities,
Fq. (1) can be written in the form
E4+oi+x+70.=0,
y+ay+y+q0,=0,

¢+ iporliy 4 ol 5+ 72+ 60, — A~ (fxcos2 wt+lysin 2 wt) =0, (3)

iy — dpwlly + cally + 7y + 60y

_/fwgt—(dxsinz wt — 0,08 2 wt) = 0.

Considering the rotating coordinates x', y', 0%,
that the x, y axes coincide with the x/, y' axes separately when @=

equal to zero, they are represented by

* cos® +y sin G,

Substitution of Eq. (4) into Eaq.

fy with the shaft and assuming
wt—r/2 becomes

x! Yy X . oa Y "
9.= 0, o ﬁxs1n()+6ycos@. } (4)

(3) yields the following equations referring to

the rotating coordinate axes with w:
o'+ (1 —-0)x— 0@y +cy)+70:=0,
V+eay+1=0y + 0@ +ax') +70,=0,

.. . N . (5)
Q=D +elfs+ {8+ (Gp—1 - D}~ w(2 —ip) 0y — coby + 7' =0,
L+ DI+ by +{6+ (ip— 1+ D10y + 0(2 — i) 5+ ol + 79" = 0. |
Inserting the assumed solutions for free vibrations with the form
v = Ac®, 3= B¢, 6.=Ce", 0,=De" (6)
into Eq. (5), the following characteristic equation is derived:
S4es+(1-0?) —20s—cw e 0
2ws + ¢cio S4es+(1—a” 0 7
0= (1= +eas+ o . o =0.
7 0 {6+ iy —1— Do) (2 —ip)ws — o ‘,
. 1+ Ds*+ s
0 r @=iplos+ o +<a+(z,b—1~b4)w2> (7)
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The above equation (7) obviously coincides with the characteristic equation ob-
tained through the equations of motion for small deviations from steady forced
vibrations of the rotorV®. Putting

©n=cC, A:CQ/C}, 09232+(1 “(1)2), Z)¢=2ws, d0=82+{5+(2'p“1)u)2}, l (8)
[

&y = (2 — 2._[;)(1)3

where the quantity 2 is called the damping ratio being important in the later
discussion. Upon use of Eq. (8), Eq. (7) can be written in the form
D= fot upi+ 1200) (Fot ppn + 150s) + A(@s + 1+ 18¢5)
= (fofo+ 400 + u(fifo+ @ifo+ 400 + 2 (Lo fo+ dofo+ Oy + £¢2)
+ (i + Pugp2) + el
= Oy + iy + @’y + 1505 + 40 =0 (9

in which

o = (ayF ibo\) (doTiey) — ’1‘2,

Jo

gi = (dyTie) (sTFiw) + 2 @Tib) (sFiw),

fii'i’“m’w)? (10)
Gp= = {*+2(1+ )"+ (1 = (" + "),

0= —2s(s* + 1+ &) (s + 0”)F,

O = — (S+ 0D (i=y—=1)

Denoting the natural frequencies referring to the coordinate axes fixed in space
and the rotating coordinate axes with » as p and p’ severally, we have the rela-
tions p=w+p', p=w—p', and hence f;. /o and @, in Eq. (10) are rewritten as
follows:

Fo(8) = f(ip") = fulilp— )} = (1 =) (6 + ipwp — p*) — 17,
5o =f(=8)=fli(P— )} = (1= (8 +ipwd — D) -7 (11)
(po(s) = %(zjb’) :ﬁ)_]-;o‘i‘ Ag‘jo(), o= — (1 _172)(1 '—:52)1)2_52:

because of s=ip'. In Eq. (11), f4=0 and 9,=0 are the frequency equations for the
symmetrical rotor without damping, i.e. in case of =0, 4=0, and for the unsym-
metrical rotor without damping, i.e. in case of x=0, 4=0, respectively.
In the first place, the damping effects on unstable vibrations appearing in
the neighborhood of the rotating speed w; where the relationships p; = %, and
, = 71 hold will be treated by using the characteristic equation (7). In Figs. 1
(a), (b), the p'—w curves and p—w curves near wg are shown where those for
case of u=0 and 4=0, i.e. curves of f4=0 and f,=0, are indicated by chain line
curves. There is the unstable region in which the two vibrations with frequencies
P: (=p) and P (=p:) build up exponentially?, the center of which is at wqs where
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FI1G. 1. p'—w and p—w curves in the neighborhood of wa= (p1-+p2)/2.

the pl.—w as well as p1,—w curves cross each other as shown in Fig. 1. The
p'—w, p—w curves for the unsymmetrical rotor without damping, i.e. curves of
@,=0, are represented by full line curves in Fig. 1. Developing Eq. (7), the fol-
lowing 8th order equation of s is obtained:

KIS+ Ks+ K+ K+ Kis*+ Kis®+ Kos" + Kis+ Ky = 0. (7a)

For stability it is required that all K} (i=0,1,2,. .., 7) must be positive since
Ki=1—-4>0 (" 2=ip=2 4) and that all Hurwitz determinants H;(i=3, 5, 7) with
the odd number orders must be positive. The determinant H; with the highest
order is obviously given by

! K Ki 0 0
i Ki Ky K; 0
7 5 s K0
i Ky Ki K K
0 Ki Ki Ki K
0 i Ki Ki Ky K
0 0 7 Ki Ky Ki

(7+b)

DO OO

[ww] o O

and H., H; are the principal minors with order 3 and 5 separately. Upon use
of Eq. (7), the boundaries of the unstable regions near wg obtained exactly by
means of digital computer are illustrated for various values of the damping coef-
ficients ¢i, ¢ in Fig. 2 where for comparison the boundaries when no damping
are shown by the full line curves A, and Fig. 2 (a) and (b) correspond to cases where
ip=1 and i,=1.75 severally. In Fig. 2, the full, broken and chain line curves are
adopted for cases of the damping ratio 1=c/a=1 (i.e. c1=¢2), A=00 (i.e. c1=0, ¢2%0)
and 1=0 (i.e. c1=0, ¢:=0) respectively. For all curves in Fig. 2 (a) and for full
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F1G. 2. Unstable regions near wg when there is damping or not.

line curves in Fig. 2 (b) the upper ranges closed by these curves furnish the
unstable regions, and for cases of the broken and the chain line curves in Fig. 2
(b) the higher rotating speed side, i.e. the right hand side, means the unstable
region. It is seen from Fig. 2 that the values of ¢1, » and 2 considerably influence
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on the location and the width of the unstable regions and that when the unsym-
metry 4 becomes somewhat larger the unstable regions for all cases can become
wider than those in case of no damping, except for cases of =1 (ci=¢;) in Fig. 2
(a), and further that the unstable regions spread over the all higher rotating
speed ranges for case of A= or 0 (¢;=0 or ¢:=0) in Fig. 2 (b).

The points at which the boundaries of the unstable regions when 1=0, i=1
and A= cross the curves A when no damping are shown by symbols @, O and
© separately in Fig. 2. Denoting the magnitude of 4 corresponding to these
points as 4., if the unsymmetry 4 of the rotor becomes larger than this critical
value 4¢- the width of the unstable region when there are damping forces be-
comes larger than that when no damping. For example, in Fig. 2 (a) the curve
D with ¢,=0.2 and ¢:=0 shows that the upper limit of the unstable region becomes
larger than that of the curve A, provided that 4> 4c-=0.091.

For the unstable region appearing in the neighborhood of the major critical
speeds w., however, the width of the unstable region are always more narrow"?
than that when no damping, the reason of which will be explained later.

The symbols @ in Fig. 2 indicate the quantity Amin. If 4<4wmin, the unstable
vibrations, and hence the unstable region cannot take place even if 4%0. For
instance, in case of the curve B with ¢;=¢=0.1 in Fig. 2 (a), (b), enough magni-
tude of 4 to induce the unstable vibration is larger than Asin=0.176 when 7,=1
and 4min=0.308 when i,=1.75.

Incidentally, the curves K,=0 in Fig. 2 illustrates the lower limit of the un-
stable region appearing in the neighborhood of the higher major critical speed
we where » becomes equal to pi.

It should be noted that in the present section that quantities ¢, ¢, # and 4
are considered as those with zero order and not small quantities.

3. Damping coefficients of the system with the symmetrical rotor

The damping coefficients in free vibrations of the symmetrical rotor will be
simply discussed in this section, since they are necessary for the later discussion
of the unstable vibrations of the unsymmetrical rotor.

The characteristic equation for the damped system of the symmetrical rotor

fotngi+ =0 (9+a)

is obtained from Eq. (9). Assuming that x is a small quantity, and hence that
the root s of Eqg. (9.a) can be represented by s=ip'+% where » is the small de-
viation from the characteristic root 7p’ in case of ci=c:=0, referring the relation-
ships of Eq. (10) and further rejecting all higher order terms of small quantities,
we obtain

_ ohN . . p{(dy+iey) + 2(ao + ibo) }
7= /1¢1/<'»a§~> =T lzp((du"i“ieo)‘l‘(ao+ibo)}—ip w(a+1ibo)
= —n=—('+n"), (12)

e 't nl = Co .
2P (1=p)(2—i CME T :
7 (1= 2= ip0/P) g+ @=bo/p)

n' =
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F1G. 3. Effects of w and p; (i=1~4) on the magnitudes of damping
coefficients #', n”. (ip=1, §=1.060, 72=0.731, 4=0)

It can be verified through general discussions of the nature for the vibratory
shaft system with a symmetrical rotor that %, —#n, —#' and —#»'" take always
the negative values for any value of the rotating speed «, and this fact is a
natural consequence, since the vibratory shaft system carrying a symmetrical
rotor haves no unstable region and then becomes a damped system if external
damping forces exist. In Eq. (12), #’ and »” mean the damping coefficients in-
duced by ¢ and ¢; respectively. Inserting, for example, any rotating speed « and
p=p; in Eq. (12), the damping coeflicient for the free vibration with the frequency
pi is derived. The influences of the kinds of the natural frequencies pi.3: and
the magnitude of w on the values of #/, #” are shown in Fig. 3, for case of i,=1,
0=1.060, 72=0.731 and 4=0. Fig. 3 shows that there is somewhat large difference
in the damping coefficients #’, n'/.

Denoting the damping coefficient # for the free vibration of p; or p; as n;,
we have from Eq. (10)

¢ b1
(s =l )
/ / \
Ny = /zl\~a7~%é/—l-a-s—)p;= 4 a](‘f;as )b,

Ny = [
(12-a)

and it is also observed that the damping coefficient for p; coincides with that for
Pi (cf. Fig. 1 (a)).
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4. Approximate calculation of the unstable vibrations (when both

the damping coefficient # and the unsymmetry 4 are small)

As already stated, when u=4=0 there are the intersecting points Ci.
(0=we,,), Az (0=0a), Dis (w=0s) and P (0=0) where the p—w curves of fo=0
cross those of fo=0. Although the approximate calculations stated in the present
section can be applied to any intersecting points above mentioned, the discussion
to follows is carried out mainly with respect to the intersecting points Di,. where
w=ws=(p1+p)/2. Since f,=0 and fo=0 hold simultaneously at the point
D! (v=wa4,s=14py) in Fig. 1, it is seen from Eq. (9) that the magnitude of @ is
as small as x* provided that 4 has the same order as the small quantity x. Ac-
cordingly, the roots » and s of the characteristic equation #=0 can be written
as follows:

w=wdt+& s=ipyty (13)

which are slightly different from ws and ip; at the point D;. Developing ¢ =0
at the point Di, we get

Doa+8, ipg+n) = 2o 2o 2+{( oh o/ , o Of )¢

os  os ! s ow os  ow
fo - afo ofo o e ofo - . 9fv ,\»
+( ! >f+8a) 8w’+(8¢+8w )3
+ i L+ - =0, (14)

The inclination angles a', B' (cf. Fig. 1 (a)) of the curves fo=0, fo=0 at the
point Di are obviously given by

tan o' =i - /%%)n; tan =i/ ), (15)

7

Solving for 5 the quadratic furnished by neglecting the higher order terms smaller
than the third order in Eq. (14), we have

p=1/2{ = (m+n) +ila+a)} £1/2« J{(mi—n)—ila—a) ) +4p? (16)
upon using Egs. (12+a) and (15). In Eq. (16),
a=¢ tan o', @a= ¢ tan f#'
L L
and afo ?JJL ,=< ofs _@Z&) (16-a)
Jos Os /Db op op /o

The quantity p is always real and coincides with the maximum value of the
negative damping coefficient for case of no damping®, i.e. #m.x. Putting

B=2n—m)a—a),
Al =V(VAIFB* + A)/2,
|Bol = V(AT F B — 4)/2,

A=472+U’Z1"7’l2)2— (d—a)z,l

(15+a)
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we have as the real part of 5

=120 {=(m+m) = |Ad) =1/2{ = m+m) £V (VA B + A)/2), (1T)
in which the upper and lower signs of =+ correspond to m and —n, separately
and —mn, takes always a negative value. If m in Eq. (17) is positive the vibratory
system becomes unstable. Such a m with a positive value is called “the negative
damping coefficient”. The quantity m takes its maximum value #u.: at w=w4
and changes its magnitude according to o symmetrically with respect to the line
w=uwgq, Since it is a function of £*=(w—was)>

Upon transforming back to the original notations, the condition that the real
part m of % is positive, i.e. the unstable condition |A4¢> (mi+n.) is written in
the form

(18)

(tan ' —tan f)%&* }

2 § )
14 >n1nz}1+ IR

If the detuning £=(w—wa) from the center of the unstable region wqs is not so
large that the unstable condition (18) is satisfied, the system is set in the unstable
region. The unstable condition when no damping, 7.e. A>0 is rewritten as fol-
lows:

V*>1/4«(tan a' — tan B')%* (18+a)
If the relationship
V = nine (19)

is satisfied, the maximum value of m, i.e. m at w=wgs vanishes. Then it follows
that the unstable region does not appear if p (ie. #msx when no damping) is
smaller than Vzm.. Obviously the inequalities (18), (18-a) change into the equa-
tions on the boundaries of the unstable region and these equations yield

P (721 + m)* — 4o / r— '
&y = I«/ P { T nm_} |tan «' —tan B'], (20)
os s

@

= (-
o=+ 2% 2h  o/a /ftan a' —tan f'| = :2.4\( 9 of ltan a; —tan Bi
“os as op op

(20-a)

in which &, furnishes the upper and lower boundaries of the unstable region, and
Eq. (20.a) furnishing the boundaries when no damping has already been obtained
in the previous paper®. For damped system there is a quantity 4w as shown
in Fig. 2 and the unstable vibrations can not take place if 4<dwi. This quantity
dmin is obtained by putting £=0 in Eq. (18) as follows:

e | O e 19-2)
dmm / aS 83 n‘xn2/(;00 ( , 4
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The above relationship can also be introduced from Eq. (19).
Equating & in Eq. (20) to that in Eq. (20-a), we have the relation between

der and dmin as follows:

der = Aumin Ml (21)

N1—172

As already explained in Section 2, the unstable region of the damped system can
be wider than that of the no damping system if 4> 4.,.
The frequency P’ of the unstable vibrations will be obtained, which is obvi-

ously the sum of p; and the imaginary part of % in Eq. (16), it follows that
P=py+1/2«(tana’ +tan pNEx£1/2¢ \/(\/Z?ﬁf— A)/2 (22)

The above discussion in this matter can be made at the intersecting point
Di(wa, —ipy) as well as the point D(wy, ip}y).

If only the natural frequency p: is once determined through Eq. (11), »; and
«!, ' are given by Egs. (12) and (15) respectively, and upon using these values
m, £, dmin, der and P' of the unstable vibrations of the unsymmetrical rotor with
damping can approximately be given by Egs. (17), (20), (19-a), (21) and (22)
severally, provided that the damping coefficients and the unsymmetry are small;
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of unstable region near ws due to damping.
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according to whether 4= dmm Or A<4dmim, the unstable vibrations take place or
not. It can also be observed in Fig. 4 that the approximate values 0f dmin Of
Eq. (19-a) shown by the straight lines agree with its exact values illustrated by
the circular symbols. The approximate and exact values of 4., are shown by
the straight lines and circular symbols severally in Fig. 5 in which the approxi-
mate values of 4 given by Eq. (21) differ from the exact values when ¢, c: are
somewhat large, since the difference of the rotating speed v at 4c, from ws in-
creases.

A new quantity 4: may be introduced: the unstable vibrations occur or not
at the rotating speed w where the detuning is £, i.e at w=was+& according to
whether 4=>4: or 4<4s. Such a critical value 4: is obviously obtained by replac-
ing an unequal sign by an equal sign in Eq. (18), as follows:

L= L+ g DL %"—/( — ¢0)|(tan a! — tan g% (18'b)

where

71172

g(1) =

It should be noted that 4: is not only the
function of the damping coefficients ¢, ¢ a5
but also of the damping ratio A(=c/a), y.
since g(2) is the function of 1. According- O //
ly, the value 4: for the case ¢i—0, ¢—0 N 4
in Eq. (18:b) does not coincide with that 04 ~
of the unstable vibrations without damp- /
ing induced by Eq. (18.a), with one ex- P
ception: both values of 4:agree each other / N
for the case m=n. with g(1)=1/4. In Fig.
6, 4: for £=0.2 are indicated and the symbol
O in the figure gives the value 4: for the
no damping system which is obtained from
Eq. (18-a). In Fig. 6, only the curve for
=1 approximately joints in the circular e -]
symbol O at ¢,;=0, since in this system

the relation n:=n, is satisfied when 1=0.84

which is nearly equal to A=1. Remarkable 07
effects of the magnitude of 1 on the values

of Admin, dcr, 4- are illustrated in Fig. 7

where 1/(1+2) is adopted as the abscissa,

by means of which all ranges from 1=0 0 |
to A=co are covered. o1 02 43 04 05

By putting fi= /o, o=wc=p, and py =0, . o
all analytical results obtained through the I;zsh 6. ?fhmmum value of unsymmetry
above discussion of the unstable vibrations 45 . ds unstable v‘?ratwmf at the
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F1G. 7. The relations between dmin, 4der, 4z and 2/(1--2).
(ip=1, 6=1.060, 72=0.731, 2=c2/c1, c1-+c2=0.2, £§=0.2)

the major critical speed w.. For example, since the results of p;=w:=0.736,
£o=+0.1484 and mma.«=0.10564 are obtained with respect to the neighborhood of
the point C, for the no damping system with 7,=1.987, 6=1.060, 7*=0.731, and
hence 7,=0.50012 ¢;+-0.14272 ¢, is derived from Eq. (12), and further as the criti-
cal viscous damping coefficients ¢, =0.1644 (when 2=1), ¢,=0.2114 (when A=0),
€c,=0.7404 (when A=) are given by Eq. (19). These values agree with the
results in Fig. 3 of the previous paper® provided 4 is not so large.

5. Graphical discussion of the unstable regions (when the damping
coefficient ¢ is small, while the unsymmetry 4 is not small)

Although the systems in which both x and 4 can be considered as small are
treated in the preceding section, the unstable regions of the system with the
large 4 under the influences of the small damping forces will be discussed in this
section by means of graphical treatments. It is seen from Eq. (8) that, if the
characteristic root is a pure imaginary, ie. s=ip', all £, fo, ¢2, @2, @, @2, Oy,
@:, 04 and all ¢, F1, @1, O1, O in Egs. (9), (10) become real and imaginary
severally. The rotating speed » making the root of #=0 in Eq. (9) to be pure
imaginary is obviously the boundary between the stable and unstable regions.
The location of this pure imaginary (w, i) or (w, p) in the p'—w or p—w plane
is determined by obtaining the intersecting points of the curve of the real part
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(a) Unstable regions near we, (¥%9<0, @10, (b) Unstable regions near wa (%o>>0, ©o>>0,
®2>>0 in the vicinity of the point C; where ®2<0 in the vicinity of the point D] where
the relation p2=§2=mc2 is satisfied). the relation p1-+p:=2 wq is satisfied).

FIG. 8. Graphical discussions of unstable regions in the neighborhood of - and wa.

of @, i.e. Gy+p20y+'0,=0 and the curve of the imaginary part i+, '0:=0, which
is shown by the symbol @ in Fig. 8. From Egs. (9), (10), we have

@o, 2,4( —8)= %, 2,4(3), ¢1,3( - S) = - @1,3(3), (013(0) = (. (g'b)

1t follows that the root of B+ 20+ ;=0 or O+pP:=0 must take the form
s=-+4p’, and hence p and p’ becomes a pair of roots since +p" and —p/ furnish
p and P respectively. Furthermore it is also seen that one of the roots of &+
#'0;=0 is a vanishing root, i.e. p'=0 (p=w). Since the distances between the
curves of @y=0 and @+ p0,+ 4*0,=0 and the curves of ¢, =0 and 0,+y'P:=0 are
as small as »* as is seen in Fig. 8, the intersecting point of the curves M,=0 and
®,=0 can nearly furnish the boundary of the unstable region. From Egs. (9),
(10), @ is written in the form

— iy = p{A(1 = 1) + (3 +ipwp — P o — DAL~ D) + (6 +p0D— D°)}fo
- 4P p— P+ pp). (9-¢)

In the first place, the unstable region in the neighborhood of the major critical
speed . is treated. The p'—w curves in the neighborhood of p,= P = we, are
shown in Fig. 8 (a) where the curves fi=0, fu=0 are given by chain line curves
and the curves G,=0 and B+ 0+ 4*0;=0 are represented by full and broken line
curves respectively. Near the intersecting point C;, ¢. takes the negative value,
and hence the real root of @,=0 does not exist in the range of fofe<0. Since @,
on the line p'=0 is written as follows:

0:(0) = — 2 20°fol@) + 0 [2(1 = 0*) + {6 + (ip— D"} - £2°, (9-d)

it can be positive near the point C; when 4 is small, it follows that the curves
of B+ -+ p*0,=0 locate inside the curves of @=0 as shown in Fig. 8 (a). Thus
it is concluded that the width of the unstable region of the system with damping



210 Toshio Yamamoto and Hiroshi Ota

near the major critical speed is always smaller than that of the undamped system.
Since the first term of @, in Eq. (9.d) takes the positive value at the right hand
side range of the point C;, and hence it makes @.(>0) larger and vice versa at
the left hand side range. Consequently, the curve through the points at which
dmin exist goes to the left hand side, i.e. to the lower rotating speed side as u
increases”. While near the point C; of the higher major critical speed we,( = py
= py), the circumstance is in contrast with the above?l.

In the next place the unstable region near the rotating speed ws(= (pi+p2)/2)
is discussed. The p'—w diagram in the neighborhood of ws is shown in Fig. 8

3 1
e | B=0(A=0)
F=0(L=1)
_______ %= 0(A=1000
25
E-0(A+0)

natural frequency p’

rotating speed o

FIG. 9. (a) ip=1, =1,060, 72=0,731 (0c=0.5571, w,=0.6636, wq=1.3674),
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ip=1.75, §=1.060, 1?=0.731 (wc=0.6980, wa=1.2511, wa=4.3503).

F1G. 9. Curves of @=0 and @:1=0, and their intersecting points.
(Intersecting points are indicated by marks @(2=0), O(2=1), ©(2=1000)).

(b). The curves of @+ 0.+ p'0,=0 also locate inside the curves-@,=0 in Fig. 8
(b). Although the curve ¢,=0 for the case 4=0 passes through the point Di as
shown in Fig. 8 (b), it dose not always pass near the throat of the pair of the
curves @, =0 if 4%=0, and further the @ =0 cannot cross the curve ;=0 for some
For the same system as shown in Fig. 2, the real roots of @,=0
and #;=0 obtained by Egs. (11), (9.c) are represented in Fig. 9,» where the curves
0,=0 are represented by thick full lines and the curves @, =0 for cases 2=0, i=1
and 2=1000 and their intersecting points are illustrated by thin chain, full and

values of 2.

broken lines and by the symbols @, O and © respectively.

Some unstable

regions furnished by these intersecting points considerably differ from those for
no damping system which are determined by the points where the tangents on
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the curve p' of the roots of @,=0 become vertical. Especially when ¢ or ¢
vanishes, such a difference is remarkable. In Eq. (9.c) 2=1000 is considerably
larger than 4%, it follows that the broken line curves of ;=0 in Fig. 9 are com-
mon for various values of 4. In Fig. 9 (a), the curves with A=0 do not cross the
curves @, =0 with 4=0.3~0.5 in the higher rotaing speed side of D;, and in Fig.
9 (b) the curves with 2=0 and 1=1000 also have no intersecting point in the
higher rotating speed side. This fact corresponds obviously to Fig. 2 in which
all higher rotating speed ranges become unstable for 1=0 and «. The rotating
speeds of the intersecting points in the lower side are w=1.68 (when 1=0), w=1.67
(when 2=1) and w=1.35 (when 1=1000) for 4=0.875; these values coincide with
the lower limits we, of the unstable region for 4=0.875 in Fig. 2 (b).

6. The amplitude ratio and the initial conditions in
the free vibrations

The characteristic equation derived by the equations of motion which are
induced by adopting the coordinates z=x'-+1iy', Z=x'—1y', 0,=0%+ 0, and 0. = 0
— 46!, in place of &/, ', 0y and 6y in Eq. (5) has always the roots of conjugate
complex s, 5, since it has real coefficients. The amplitude ratios among z, Z, 0,
and @, are furnished by the ratios among the cofactors A:; (j=1, 2, 3, 4) of this

characteristic determinant. These cofactors are given as follows:
Au=M + iM, = {ao — by + p(s — Zu))}{(do + ZuS)Z + (e + Z;w))z - AZ(S2 + 0)2)2}

— {ds + ieo + 2uls +iw)},

Ap =N+ iNs = 745"+ o*), s (23)
A13 = T3 - T{dg hd Zbo+ /1(8 —iw W{do - i@o + X/J(S - Z'u)‘)},

A= —rdlay— iy + pls — iw) } (5" + 0*).

Assuming that the characteristic roots of conjugate complex in the stable region
are represented by

s=—n+ip, 5= —n—1p (24)

and referring the relations of Eq. (24) and Eq. (4) in which «', y' are both real, the
free vibrations for each degree of freedom can be written in the form

%X _ -nt{ xCOS =C08 —, 1
P BN pt @) + By Bt . ]
(25)
O —nt| COS =COS, =, S
o= P bt + PGt — 1 |
where R

E = 4V (L:N1— L:N:)*+ (L:Ni+ LiN:)* = :L‘ZHV{E— Al E

= 1V1 2LV2 21V1 14V2 Mf—f—Mzz = TAa

(25+a)
<if LN+ LN

I 1f LelVy 14Vs

@' = tan™( LiNi— LN,

) =q-targ Ap —arg Au.



Damping Effect on Unstable Whirlings of Unsymmetrical Rotor 213

In the above equations, Li, L. are arbitrary constants determined Dby initial con-
ditions, M, M., Ni, N, are real, |A:n| and arg A, are the absolute value and
the argment of the complex number A: separately. When there is no damping,
we have p=0, n=0, and hence the root s becomes a pure imaginary number, it
follows that all cofactors in Eq. (23) are real and E/E=N:/M;, a'=«. A similar
statement can obviously be made for the vibrations of 0., 0,.

In the unstable region near the point D; (wa, ipy) the characteristic root s
is already furnished: sis given by Eq. (13), t.e. s=ipy + v and the small deviation
9 is determined by Eq. (16), which is rewritten in the form

2=1/2{ = (m+n) +ilat+a)) =1/2« (Av+iBy). (16+b)

The deviation ' in the neighborhood of the point Dj(was, —ipy) is also derived
as follows by a similar procedure:

B =1/2{ = (m+m) —ila+a)} £1/2 (Ao~ iBy). (16+c)

Since the real and imaginary parts in Egs. (16.b), (16-c) correspond to Eq. (17)
and Eq. (22) separately, the roots s and s’ near Dj and D; can be represented

si=m+i/2:42ph+a+a@) + By), si= —no+i/2°{2py+ (a+ @) — Bot, 1 26)
ss=m—1i/2:{2py+(a+a@) + B}, si=—m—1i/2+{2p;+ (a+a)— B}, /

which lead to the following free vibrations:

;‘ " { COStRHa}+EC°S&P2t—a’)}+e‘”“{E'COS<P¢+B)+E'C°S -}
0= U ES P+ 1) + F o (Pt = 1) | + &7 PO (Pit +0) + Pl (Pit = ) |.

27
where

Z;‘, =w+py+1/2-{(tana’ +tanp )+ By}, ?ﬁ =w—py—1/2+ {(tana’ +tan@ )<+ B},
2

P] Pz——2a) Pz, P] Pl 2(0 Pz
(27-a)

All quantities in Eq. (27) are clearly real. The amplitude ratios E: E:F:F can
be determined by using s, s. in place of s, § in Egs. (23), (25.a); the ratios
E':E’:F':F' can also be furnished upon using si, s. In Eq. (27) the amplitudes
E, E', F and F' are in proportion to the unsymmetry 4, and the small p results
in asa’=r=s7, f=ER'=056 and a=a’'=7=7, f=p'=0=4§" if u vanishes. It is
also seen that both unstable vibrations of P, and P, have the common negative
damping coefficient m and the vibrations of P] and P; have a common damping
coefficient —n,. The terms in { } of ¢™ are determined by two initial conditions
and other two initial conditions decide those in { } of ¢~™f, thus the solution of
Eq. (27) are completely settled.
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7. Experimental results

The analytical results obtained in the above discussions are verified by the
experiments. The dimensions of the experimental apparatus are as follows®:

I; =0.4300 kg cm §°, I =0.5090 kg cm s%,

L =0.3816 kg cm §°, W=11.637 kg,

a =3120x 10 kg/cm, v = — 6.450 x 10* kg/ rad, \ (28)
0 =1.777 x 10* kg cm/ rad, Vay/W = 51.26 rad/s = 489.5 r.p.m,

VIjJW = 6.124 cm.

ip=0.96593, 4=0.14308, § =15.191, 7*= 11.400, wa = 3.1549. (28-a)
Substitution these values into Egs. (7-a), (16-a), (20-a), we have

wq, = 3.1089, waq, = 3.2030, #max = 0.219324, &= =+ 0.329524. (28+h)

The analytical results of the amplitude
ratios E/E, F/F obtained by Egs. (7-a),
(23), (25), (27) are shown in Fig. 10. In
the unstable region the values of E/E,
F/F hold nearly constant values, and hence
they can be represented approximately by
those at w=wa, and reciprocal relations
(FIE s, (E/R) =1, (F[F)p,(F/F)p, =1
hold. In the stable region the magnitudes
of the amplitude ratios rapidly increase
near the boundaries of the unstable region,
which are usually the same order as 4.
The ratio (E/E),, between the amplitudes

of deflections with frequencies 7. and p,
takes a quite small value 0.03667, while
the ratio (F/E);, between the inclination
of 7. and the deflection of p, is 0.3484 -
VW), ie. (F|E)p, = (F/F)p,«(F/E), =
0.3259 °/mm, which can be experimentally
observed and approximately coincides with
0.411 °/mm of the results® in Experiment
I of the approximately nc damping sys-
tem in Table 1.

In the experimental apparatus the
vertical rotating shaft is supported only
at the upper shaft end and the shaft with
the length 31 cm is attached at the lower
side of the unsymmetical rotor, the lower
end of which is submerged in damping oil
by 13 cm, and hence the damping force is
induced to the system. Occurrence or no
occurrence of the unstable vibrations in
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F1G. 10. Relations between ampli-
tude ratios and rotating speed when
there is no damping.

(1p=0.96593, §=15.191, 72=11.400,

4=0.14308, ci=c2=0, wa,=3.1089,

wq=3.1549, wa,=3.2030)
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FIG. 11. Relations between natural frequency pi, and logarithmic
decrement d;, when o is zero. (Marks © indicate critical values of
experiment IIT)

the neighborhood of ws is assured for various viscosities of damping oil, and
further the logarithmic decrement §;, as well as the natural frequencies pu, pu
(Pao» Pa0) when w=0 is measured through the free vibrations in the direction of
the principal moment of inertia I; (I;). The relation between p;, and d;, is shown
in Fig. 11 where 6;, increases with the viscosity of oil and p;, slightly decreases.
In order to determine the damping coefficients #:, #. of the symmetrical rotor
we adopt the mean values of the experimentally obtained values pw and py of
the unsymmetrical rotor as pi, which is shown in Table 1. In Table 1, the
damping oil is not used in Experiment I, and its viscosity increases as in order
of Experiments II, Il and IV. As shown in Table 1, #mm.. decreases as the vis-
cosity increases and the unstable vibrations can not take place in Experiment IV
in which the damping oil with the highest viscosity is used. The boundary of
occurrence or no occurrence of the unstable vibration seems to happen in Ex-
periment III, p;, 0;, of which are indicated by the symbol © in Fig. 11.

The relationships between the damping coefficients ni, 7. of the symmetrical
rotor and ¢, ¢ are derived from Egs. (12), (28.a) as follows:
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TABLE 1. Comparisons of Calculated Values and Experimental Values
for Unstable Vibrations in the Neighborhood of wq

| calculation | ekpef{méﬁt §yrex'p'érrriment | experiment } experiment
_ of no damping I ! 11 | I ! v
Py TPM | 2176 (1792) | (1775) | (17es) ‘ (1705)
Ppo rpm f' 265 (20 | (239 | (288 | (233
S 6w rad 0 | 001y | (007) | (0097) (034)
3 [ 1 i
o 6w rad 0 C0024) | (0.069) 1 0115) | (0.34)
I ' : ‘ ;
R ‘ 0 J' 000325 | 000677 | 0.0128 00341
e | 0 00133 | o088l | 0116 03%
| 2=aja , / 41 1 i 9.1 115
i radls | 0 022 0.93 139 | 432
@ | 7= S rad/s 1.61 139 : 0.68 022 | —am
l:: occurrence | / ! !
i or no yes 5 (yes) (ves) (critical) | (no)
§ occurrence i : | |
N 161% ] 1.34 | 0.46 ‘ 0.14 =575
3 | 7max rad/s t L6I | (154) | (0.73) | 0y
-~ —_ H { q N
g | (E/E)s, } 0.03667 003307 | 001766 001530 0.00774
= = : ; i ; -
S| (FIF)p, | 1.7055 | 18307 | 07922 | 06685 i 0.3620
il " | ]
= | (F/E, | 02043 02042 i 0.2038 j 02037 | 0.2032
= ; C02024 | 0511 | .
(F/Bn ofmm 03230 | GHY 030 ] 01274 | 0.0688
¥ approximate solution, ** exact solution, ( ): experimental values.
when w=0
710 = 0.02425 ¢, -+ 0.47575 ¢,
(12+b)
M20 = 0.47575 ¢ + 0.02425 ¢z,
when o = wq
1y = 0.00743 ¢, + 0.67012 c2,
} (12+¢)

75 = 0.53860 ¢ + 0.02235 cs.

Substituting the values of ¢i, ¢; obtained by Eq. (12+b) and 1o = pio d10V W/ (ag)/(27)
= 0.0557, #20=0.00890 given by Experiment III, 7.e. the critical case of occurrence
or not, into Eq. (12.¢), we have vy, = 0.0271 (i.e. 1.39 rad/s). This value well
agrees with p=1.61rad/s (the maximum value of the negative damping coefficient
when there is no damping) as well as the experimental results #im..=1.54rad/s
of Experiment I, and hence it approximately satisfy the critical condition (19).
As is shown in Table 1, the unstable vibrations take place in Experiments I and

II since 7 >+mn, and not in Experiment IV® because of F <vunms; Experiment
1II corresponds to the case 7 = vz, as above mentioned. In Table 1, the ampli-
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tude ratios and mm.x analytically obtained are shown and those of experimental
results are furnished in ( ), from which the effects of damping forces are clearly
observed. For Experiment II, Eq. (7-b) furnishes the exact values wq,=3.0885
and wq,=3.2249 and hence wd,—wq,=0.1364 which is larger than we,—wa,=3.2030
—3.1089=0.0941 obtained by Eq. (28-a) and this fact agrees with the experimental
results that the existence of damping makes the unstable region wider.*

Speaking strictly, the equations of motion for the experimental apparatus can
be governed by Eq. (1) under the following five assumptions: [1] The distributed
mass of the shaft is negligible, [2] the higher powers of x, y, #x, 0, than the
third order are also considered as negligible small, [3] the angular acceleration
@ are as small as the second order of x, y, 6., 0, and hence it can be considered
as zero, [4] only the viscous damping forces in proportion to velocity #, 3, 4, and
f, exist in the system, [5] The viscous damping coefficients ¢, and ¢, are inde-
pendent of the rotating speed », and hence their values when w=0 can always
be used.

As is seen from the above discussions the analytical and experimental results
agree with each other under these assumption.

8. Conclusions

(1) The external viscous damping forces act always as the resistance to the
whirling motions of the symmetrical rotor.

(2) When both the damping forces and the unsymmetry are small, the ap-
proximate analytical results of the unstable vibrations agree with both the exact
analytical results and the experimental results.

(3) The negative damping coefficient m is always made smaller by the damp-
ing forces.

(4) The width of the unstable region in the neighborhood of the major critical
speed w. is always made narrow by the damping forces, while the unstable region
near the rotating speed ws, contrary to expectation, can become wider by the
damping actions, and for some cases all the higher rotating speed regions become
unstable by the damping. The width of the unstable region near wa is consider-
ably influenced by the value of the damping ratio 2.

(5) Through the graphical discussion of the intersecting points of the real
part %,=0 and the imaginary part ¢:=0 in the frequency equation, the conclusion
stated in (4) can be made more clear.
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