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In a vibratory system having multiple degree-of-freedom and under parametric
excitation of frequency w, oscillations of ‘‘summed and differential types” with
frequencies wi(=p:), wj(=p;) take place, when o becomes nearly equal to sum
of and difference in two natural frequencies pi, pj, i.e., w=pi=p;=p;;, in which
pi; is the resonant frequency.

In the present paper, the characteristics of these oscillations are studied
theoretically and experimentally, and it is seen that solutions of first approxima-
tion obtained through rather simple analysis grasp sufficiently these oscillatory
phenomena. Futhermore, it is cleared up that unstable oscillations can occur
only in summed type and not in differential type.

1. Introduction

In a vibratory system having multiple degree-of-freedom and under parametric
excitation, oscillations of the so-called ‘‘Summed and Differential Types” occur
with ordinary unstable oscillations appearing at w=2 p,. These oscillations consist
of two oscillations having frequencies w; and w; which satisfy the following rela-
tions:

witwi=w, wi=pi, wi=pj, (1

where o is the frequency of parametric excitation and p;, p; (is5; pi>pj; b, j=
1,2, .. ., k; k=number of degrees of freedom) are two natural frequencies of the
system. Since Eq. (1) results in a relation w=p;+p;, it is seen that the oscilla-
tions of summed and differential types take place when a frequency o of parametric
excitation becomes nearly equal to the resonant frequency

Dij=piLp;. (2)

Some studies only on the possibility of occurrence of these kinds of unstable
vibrations have been made?, and it seems that both detailed proposition of solu-
tions and discussions of characteristics of these kinds of oscillations have not
been carried out. In the present paper, the properties of oscillations, i.e., the
frequencies, the phase angles, the amplitude ratios between two oscillations, the
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negative damping coeflicients, the location and width of unstable region in which
two unstable oscillations of frequencies w; and w; build up, and the relation be-
tween initial conditions and solutions of the oscillations are studied in detail.
Results obtained by a first approximate analysis are compared with experimental
results of double pendulums and of analog computer.

2. Equation of motion and preliminary analysis

In the present paper, the vibratory system without damping is treated, and
the theoretical analysis of the first approximation in which higher powers of
small quantities are neglected, is carried out.

The vibratory system of & degree-of-freedom without damping and under
parametric excitation of frequency o is governed by the following equation of
motions:

k
S arsks + arsxs) = ehxr oS wt. (3)
s=1

(r=1,2, ...,k

In a dynamic system, the left side of Eq. (3) are terms of inertia and spring
force, respectively, and the right side represents parametric excitation. In Eq.
(3) magnitude of parametric excitation e is assumed as small quantity. The
frequency equation of the system is

A:“Q'rs“drspz)IZO, (4)

where p is the natural frequency. Let cofactor of 4 when p= pm be Am, .5, and
putting

d,.s = AS' s > (5)

k

2 Qim As,1s As, ms

Lm

transformation from generalized coordinate x; into normal coordinate X is per-
formed by

k
= 2DdsXs,  (r=1,2, ..., k. (6)
s=1

Substitution of Eq. (6) into Eq. (3) attains the following equation of motion ex-
pressed by normal coordinate:

k
Xr '"}'pin: zsrsXs coS wf, 7
a=1
where
‘k
ers = 2, diy disel = zsp. (8)
=1

The ¢ th and j th equations of Eq. (7) can be rewritten as
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k
¥itolXi= (o} = pH Xi + Des Xscos of = f;,
s=1
(9)
I
X+ 0k X;= (0} — P X+ Dejs Xscos ot = fj.
=1

When the frequencies w;, w; satisfy the relations of Eq. (1), all terms in the
right side of Eq. (9), i.e., f; and f; become small quantities, and hence appro-
ximate analysis can be carried out. In this paper, a first approximate analysis
through the similar procedure to Kryloff and Bogoliuboff's method?® is employed.
Accordingly the first step consists in taking for X; ; and X 7 in the following
form respectively:

Xij=ai;sin (ot + ¢i,7),  Xij=ai;ji,; o8 (wjjt+ ¢ij), (10)

and it is assumed to consider amplitudes a;,; and phase angles ¢;, ; in the above
equations as functions of time ¢ Differentiation of the first equation of Eq. (10)
results in

Xij=di;sin (it + i) + ai,j(wi,j+ @i, ) cos (wi jt+ @i i),
and substitution of X;; in Eq. (10) into the above equation leads to
Gi.; sin (wi it -+ @ij) + a;, ;9i.; cos (wi, it + ¢i,;) = 0. D

Differentiating the second equation of Eq. (10) and inserting it into Eq. (9), we
get

i jwi,; cos (w; ;1 + < §) = Cli,j‘wi,jgbi,j sin (v jt+ €i ;) = fi.j- (12)
Through Egs. (11), (12), the following differential equations are derived

fu i

ai, jwi, j

@i 5= — sin (w; jt+ @i j). (13)

ai,j =

Applying an approximate procedure of ‘‘average method” to Eg. (13), that is,
substituting Egs. (9), (10) into fi,; of the right side of Eq. (13) and eliminating
all terms except for constant terms, Eq. (13) is rewritten as follows:

. €ij @
i = Ll gin (@), % ¢ ),
60;( 7 ) (14)
) PRI i
i = Gi— DL 1 Y cos (@5 1k @i ).

2wi,j 4 wi,jai

Since a reciplocal relation e;;=¢;; holds as shown in Eq. (8), a common coeflicient
ei; is used for both equations with suffixes ¢ and j in Eq. (14). Assuming that
solutions of oscillations are normal solutions, we should put

@i=¢; =0, (15)

Consequently Eq. (14) is reduced to

d{ = + &ijdj a;i sin @i, d]: 4(0 Sln‘P;], (16)
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a; a -
24,= :hsijzj_—COS(f'ij, 24;= :s{jE;—COS @i, (17
r
in which
2 2
Gij = ¢; & @j, 4ij = wj; — pij. (18)

In Egs. (1), (2), (14), (16), (17) and (18), the upper and lower signs of + are
adopted for oscillations in summed and differential types severally. It is seemed
that only a sum of or difference in two phase angles ©i, ¢j, i.e., only o;; may
have physical meaning. In Eq. (17), the detuning 4;, ; are small quantities because
of Eq. (1).

3. Oscillations of summed type

Referring the following relations given from Eq. (17):

cost ¢y = A4id; (19)
&ij
52'_1' e"j ezj—4d~d' 2
] in® ©:; = - 2. = —-——————i £ =) = q
16 o] sin® ¢;; 16 wro; 11— cos® ¢;;) 16 oo, " (203
and adopting the upper sign of + in Eq. (16), we have
i = /zza,', aj = #2aj, (21)
which leads to
a; = A je". (22)

Inserting Eq. 122) into Eq. (16), amplitude ratio for two oscillations of frequencies
w; and w; is given as follows:

aifaj = Aif Aj = Ywjlo; . (23)

Although we have ai/a; = Ai/Aj= +Vwj/wi, the upper sign + is employed here
as shown in the above equation, because difference between both signs can be
canceled by difference of +x in ¢;;. Substituting Eq. (23) into Eq. (17) in which
the upper sign of + is adopted, we have

. ?_ g2 .
di _ oi=pi _ o (24)

4 wi—p;
and from Eq. (24) and the relation of w=w;+wj; a cubic equation determining
frequencies w; and w; is given as follows:
2w} — 3w+ (0 = pi— pD) wij+ pijw=0. (25)

So far as a first approximation, through Egs. (1), (18), (24) we obtain the fol-
lowing approximate equations by which w; and w; can be determined more easily
than by Eq. (25)
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Vi

5 (26)

wj,j =i+

in which
Vii= o = (pi+ pj) = o~ pij. (27)

Similar process with the above yields approximate values of the detunings 4, ;.
the phase angle ¢;; and the negative damping coefficient z, as follows:

4,5 = pi.iVij, (28)
cos ¢jj = ‘1?::1, (29)
n= —%' VEL = 7%, (30)
where
Eij= &j | (31)
7 2\/?;17; o4/

3. 1 Oscillations of summed type within unstable region

When the frequency o of parametric excitation comes near to the resonant
frequency p;; where w;=p;, w;=pj, and detunings 4;, ; and Vi become so small
that the relation

24 4;4;20, e, EL=Vy (32)

holds, conditions of cos? ¢;;=1, 1=sin® ¢;;=0 and x*=0 are satisfied as seen from
Eqgs. (19), (20) or Egs. (29), (30) and both ¢;; and p become real numbers.
Denoting ¢;; with a value between 0 and = as ¢;;, we have from Eq. 129)

Vij

€08 9= TEy T

(33)
and it follows that when E;;j>0, +¢:; and —¢;; are used for +pf and —ut in
Eq. (22) separately and vice versa when E;;j<0. Through Egs. (10), (18), (22),
(23) and (33), solutions for X;, X; are given as follows:

Xi = Ae* sin (wit + ¢ + Be™ sin (wit + ¢)),

[ 34)
X;= \/ —2)7;— {Ae* sin (w/t & ¢ij — ¢;) + Be ™ sin (it = ¢ij — ¢1) ), (3

in which the upper and lower signs correspond to conditions E;;>0 and E;;<0,
respectively, and A, B, ¢;, ¢; are all arbitrary constants determined by initial
conditions. Once w or Vi is given, frequencies w; and w;, negative damping
coefficient 2 and phase angle ¢;; are determined by Eq. i26), Eq. (30) and Eq.
(33) severally, thus the solutions are settled. It should be noticed that both
unstable oscillations of frequencies w; and w; have a common negative damping
coefficient p.

By adoption of equal sign in Eq. (32) or putting =0 in Eq. (30), critical
frequencies we;, wee or critical detunings Vei, V.. which decide boundaries between
stable and unstable regions are derived as follows:
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wer=Dij + | Eijl, wco=pij— | Eij| © Ver=|Eij|, Ve = — | E;l, (35)

in which we; and V., give an upper boundary and ., and V., a lower boundary.
As seen in Eq. (33), when E;;>0 phase angle ¢;; takes values =, /2 and 0 at
® = wes, pij, wey respectively, and when E;;<0, 0, z/2, #, it follows that by means
of the Routh’s method, the stability of the oscillations on these boundaries can
be ensured.

It is shown from the above discussion that when the frequency o of parametric
excitation comes near the resonant frequency p;j(=p;-+-p;) and takes any value
between critical frequencies we; and wes, two oscillations of frequencies w; (= p;)
and wj(=p;) build up simultaneously and thus the unstable oscillations of summed
type take place. In the system with % degree-of-freedom, there are k(k—1)/2
unstable regions of unstable oscillations of summed type.

Incidentally, analysis for ordinary unstable oscillations appearing in the
neighborhood of w=2p, (r=1,2, . ., k) is discussed here. Through a similar
procedure with above mentioned, we obtain the following equations of motion in
place of Egs. (16), (17):

Ery Ay

&r = WSinZ@;, w‘z—4p;=2€rr COSZ¢1‘. (36)

From the above equations, the solution X, negative damping coefficient »,, phase
angle ¢, and critical frequencies wc1, we: Of these kinds of unstable oscillations
are given respectively as follows:

X, = Ae" sin (%wt + ¢’r) + Be " sin (‘% ot = gb,) ,
(the upper and lower signs of = correspond to

e»>0 and .,<0 separately.)

! / ?'——’ (37)
r =5 AR r (Vr=(l)"“2p ), r
s 2 4P£ V r
cos2g, = ZVe, (% 2y o).
- Led —op, - lerl
we1=2p, + 2p, wez =2 py 2p

Results of Eq. (37) coincide with those of one degree-of-freedom system.

Furthermore, it can be concluded that unstable oscillations of summed type
of higher order in the neighborhood of o={pi+p;s)/s (s: positive integer) as
well as ordinary unstable oscillations of higher order do not appear, in so far
as a first approximation.

3. 2. Oscillations in stable vegion
When o goes far off from p;; and passes wer, wc2, i.e., the relations

<4 did; : EL <V (32a)

are to be held, ¢;; and 2 can now be not real because of cos? ¢ij>1, sin® ¢;;<0
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and 2?<0, as is seen through Egs. (19), (20). By putting

A 2,
B (20a)

y= TV—VFEE,-' (30a)
Eq. (22) is reduced to
ai; =A™, Gi=v=1) (22a)
and from Egs. (16), (22a) the phase angle ¢i; is shown in the form

17 i

where the upper and lower signs correspond to those in Eq. (22a). Referring
Eqgs. (34), (222a) and (38), and rewriting to equations expressed by real numbers,
we attain the following equations for solutions X;, Xj in stable region:

X;= Asin (wi+»)t+ Bcos (w;+p)t+Csin (w; = ) E+ Dcos (w;—v)i, ]

X;= A'sin (wj —p)t + B' cos (0= p)t+ C'sin (w;+ )t + D' cos (w;+ vt

= ‘lgg/‘fl[(v;;+ 2 p){ A sin (wj — »)t = Bcos (w; — v) &} (342)
7

+ (Vi — 2 p¥{Csiniwj + v}t — Dcos (w;+2)E}],

where A, B, C and D are all arbitrary constants decided by initial conditions.
As represented in Eq. (34 a), in the stable region (o = we:. = we2) free oscillations
with frequencies w;, j+» take place and there is no unstable oscillation. Observing
Eq. (34a), it is seen that two oscillations of frequencies wi+» and wj—p as well
as w;—» and w;+» make a pair, and regardless of » a sum of frequencies in pair
is still equal to w=w;+w;. Further it is noticeable that amplitude ratios between
two oscillations making a pair are fixed independently of arbitrary constants, i.e.,
initial conditions, as shown in Eq. (34a) or the following equations:

JATET _ Al _ 1Bl Bl
yAr+ B A |B"| YoiJw;i | Vi +2v] (39)
yc'+D* _ |C| _ ID] | Ei

Ve D7 = 1CT T DT T Narfas 195 - 2]
Through the similar analysis with the above, we find the solutions for the
ordinary stable oscillations in the neighborhood of w=2 p, as follows:

X,=A4A Sin(%c«) + r/,»»)t+ B cos (»%—w—l' Vr)t

+Asin(-;-w—u,->t—Bcos (;nu— p,)t, (37 a)

S
— 1 &rr .
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4. Oscillations of differential type
Adopting the lower sign in Egs. (16), (17), we have

Gij= - 1 ai;, (21b)
aij= Ai e (22b)

By a similar procedure to summed type, we get the following relations:

aija;j= Ai] A; = ivoiloi, (23Db)
dif d; = (@} — P (0} = p3) = — wil wj, (241)
20!~ 30w} + (0 = pi— p}) wi + piw =0,

3 ou2 ()2 p2 p,? @ p;a 1 (25b)
2 wi+ 3ww;+ (0" —p; — pj)wj — pjo=0, I
v:’j:w_(pi_pj) = w — Dij, 271
Ai:pivijy A,: —pjvﬂ: (28b)
n= 5 VEG+ Vi (30b)

which correspond to Egs. (23), (24), (25), (26), (27), (28), (30) of summed type,
respectively. Reffering that z is always a real number as shown in Eq. (30 b)
and that ¢;; is not real as being of the form

cos ¢ij = iVij/ Eij, (29 1)
the solutions of differential type are written as follows:

X;= Asin (wi+ )t + Bcos (wi+ 0+ Csin (w; — p)t+ Dcos lw; — pi,

Xj= Asin (w; + p)t + B cos (e0; + 1)t + C'sin (wj — p)t + D' cos (w) — it
wilo; g (3¢ B

= - i%;/f)i[( Vi + 2 {Asin (0j+ )t + Bcos (wj+ Al

+ (Vi — 2 {Csin (w; — )t + Dcos (wj — ) t}1].

Eq. (34b) being similar to Eq. (34a) of the stable oscillations of summed type
represents free oscillations with frequencies w;, j=p, so that there is no unstable
oscillation of differential type. In the oscillations of differential type, two oscil-
lations of frequencies wi-~x and w;+p as well as w;—x and w;—p make a pair,
and a difference of frequencies in pair is still equal to w=w;— w;, and the amplitude
ratios are found as follows:

VA+B: 1Al _ Bl |Esl

VA" + BT T A |B'| Yoi/wi | Vij =2 ¢l l .
I ) , (39Db)
VCTFD _Icl _ 1Dl _ oy _ i

vCrx D~ IC T D'l Nwilw; | Vi + 2l

Tt is concluded that, in so far as a first approximation, no unstable oscillation
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of differential type of higher order in the neighborhood of o = ( pi—piV/s (s:
positive integer) can appear.

5. Verification of analytical results through experiments
and analog computer

In this section, experiments and calculations by analog computer are performed
for the oscillations of summed and differential type which take place in an os-
cillatory system of double pendulums
with two degree-of-freedom as shown

Fig. 1, where the first and second pendu- A ’_; il e excitation
Vi ¢ . metric e
lums of, lengthes /, 7, and mass m, ., 2 gffiﬂ & coset para
are supported at the points 4., 4.; N1, I Ai R \ A1, Az2; supporting point
- . i\
are moments of inertia about the sup- i ;31" G1. Gz; gravitational center
porting points A:, A. and b, b are i\i‘\ P mi, m2; Mass
distances between A; and gravitational X } 14 P
L Iy, l2; length of pendulum

center G; and between A, and G, ki /\A m

. . . . 7 a1y s di between
respectively; there are springs having ,j-vw\,\) B bz e e noiot and

spring constants %; and %, at the ends gravitational center

of both pendulums. When supporting
point A4; oscillates vertically with ampli-
tude e and frequency w, the parametric
excitation of frequency o is induced and
the system shown in Fig. 1 is governed
by Eq. (3). If only number of degrees FIG. 1. Vibratory system of double
of freedom £k, the suffixes i and j are  pendulums.

replaced by 2, 1 and 2 separately, all

results obtained up to now can be applied for this system. Various coefficients
in Eq. (3) for this system are given as follows:

K1, k2; spring constant

X1, %2; inclination angle of
pendulum

an= I+ my 1}, A= Aoy = M2l be, o = 1o,
Qg = (k1+kz)lf+(m1b1+m21,)g, ap=aon=kelils, (40)

o= kalt + Mabs g, e = e’ (b + maly), eb = ew’nbs,

where g is gravitational acceleration.

5. 1. Experimental apparatus and block diagram of analog computer

Experiments are carried out by the experimental apparatus shown in Fig. 2.
Through two stepless transmissions @, @, rubbercoupling @, pulleies @), @ and
shaft @, rotation of motor (@ is transmitted to rotor (® which consists of eccentric
shaft @®. Eccentricity e of the shaft ® can be changed by screw %. Rotation
of eccentric shaft ® is transformed to vertical rectilinear oscillation e cos wt of
the supporting point A; of the first pendulum @) through bearing (%), joint (i) and
guide ®. Further, on the both pendulum ends with mass @1, @, coil springs @,
@) are attached, in order to adjust magnitude of the natural frequencies of the
system, and horizontal motions of steel edges @2, @ at the ends of the first and
second pendulums are recorded optically on oscillograph paper, thus oscillations
referring to generalized coordinates x;, x, are obtained experimentally. In this
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F1G. 2. Experimeatal apparatus. FI1G. 3. Block diagram of the analog computer.
(SC=sign changer)

experimental apparatus, various dimensions are as follows:

mg=1.910 kg, mg=1.730 kg, [;=0.963 kg cm ¢!, ,=0.786 kg cm %,
L=1,=30.0 cm, b;=18.85 c¢cm, b,=17.35 cm, k1=k.=6.4 kg/cm,

and hence the natural frequencies of the apparatus are
$1=13.86 c/s, $2=9.85 ¢/s.

Block diagram of analog computer used to obtain calculations for oscillations
referring to normal coordinates X; and X, is shown in Fig. 3, where sinusoidal
function generator to yield excitation e cos wt is shown in the lower figure and
it is inserted into the place shown the mark 3% of the upper figure.

5. 2. Comparisons of analytical conclusions with results of experiments and analog
computer

The p;—w diagram for ¢=0.152 cm (E:.=0.955 rad/s) is shown in Fig. 4, where
not only magnitude of negative damping coefficient » but width of unstable region
of the unstable oscillations of summed type are furnished and u of the ordinary
unstable oscillations appearing in the neighborhood of w=2p.. are additionally
illustrated for comparison. In Fig. 4, the resonant frequencies w=pi+pr=p and
w=2 ., are indicated by vertical chain lines. Curves of chain line in Fig. 4 are
negative damping coefficients 2 obtained from Egs. (30), (37), and symboles &,
@ show results of experiments and analog computer separately, which are given
by the following equation

7= lr’—(-‘;—’/ﬁ)— rad/s, (41)



112 Research Reports

0.8 @ by analog computer
A by experiment
0.7 e
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0.5 + ~ { s ,.:i.AAL,‘AW
/- % /{B}, P 7. : ;A \ :
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@ /s

19.

F1G. 4. p—o diagram for unstable oscillations of
summed and ordinary types. (z#=negative damping coef-
ficient; w=1frequency of parametric excitation; e, Enn=
magnitude of parametric excitation; £1=13.86 c/s, p2=
9.85 c/s, pr+p2=23.71 c/s)

0.5

qa\ @ @ by analog computer
/ \ AP by experiment
0.4 ’/ s by analysis
\ @A e=0.152cm
\ €12=140.2 (rad/s)?

) = S ! E12=0.955rad/s
/ SN i |

/ \:OV e=0.093cm
0.2 f

£12=85.8 (rad/s)?

/L % \‘\{\‘ : | E12=0.584rad/s
4 N\ |

v "'\w! e | p1=13.86¢/s |

u rad/s

0.3

negative damping coefficient

0.1 ‘ //l S I

‘V\ T |

! A/! / \ \? p2= 9.85¢/s ‘

/f \ \ ! pi2=23.71¢/s |

0.0 y P12 1 |
’ 23.6 23.7 23.8 23.9

[z} C/S
FI1G. 5. Negative damping coefficient for unstable
oscillations of summed type. (g=negative damping
coefficient; w=frequency of parametric excitation; e, e,
Ep=magnitude of parametric excitation; pu=pi--p;=
23.71 ¢/s)

where ¢ is time, and a, a; are amplitudes of the oscillatory waves obtained by
experiments and analog computer when =0 and #=t severally. In Fig. 4, results
of analysis entirely agree with results of analog computer, while experimental
results give rather smaller values of u because of inevitable damping in the



Research Reports 113

apparatus.
Negative damping coefficients z of unstable oscillations of summed type for
e=0.152 cm (FE;;=0.955 rad/s) and ¢=0.093 cm (E»=0.584 rad/s) given by Eq. (30)
are shown in Fig. 5, where the larger ¢, i.e., Ei: results in the larger 4 and the
wider unstable region. ‘
Boundaries we: and we: of unstable
region given by Eq. (35) (broken line), 0, Qe i e

experiments (symbols A, 7; V: lower limit | © by analoe computer - }1-2

of unstable region) and analog computer § _A_z Ey :::le Zzem /“_i 0%«_:

(symbol () are indicated in Fig. 6, o.xs\»t yM,y.w_Ap/m ’

where difference in experimental results A ur‘is’table - lo.8

from those of analysis and analog com- N\ :

puter are also caused by existence of o 0101 _ — o S

inevitable damping in experimental ap- w:z >4§ e

paratus. \ 1 0.4
Frequencies w:,,+» and wi, , of stable 0.05— = —

and unstable oscillations obtained by : \\\m, i 40.2

Egs. (26), (30a) (curves of broken and Stiable A\ ,/ § { stable

chain line), experiments (symbols 2, 23: 5 23$_74 g 5.9

A) and analog computer (symbols O, ’ © s

®) are shown in Fig. 7, where the
curves I indicate frequencies ws,2%p of
stable oscillations and its upper and
lower branches correspond to wi,»+» critical frequencies giving the boundaries;
and ws,.—v respectively, and curves I ¢ Ey;=magnitude of parametric excitation:
represent frequencies w1 and w: 0f  pu=pi+p=23.71 c/s)

F1G. 6. Boundaries of unstable region
for oscillations of summed type. (o=
frequency of parametric excitation; we;, we,=

g /
)/"{ I
AN Aé\ /
s 18.9— wi=p1 11 . 8 St
H N a T
3 : ]
- O&..Q/\Q\ /)y N\ A by experiment
3 A , O @ Dby analog computer
13.8—1 1% —==— by analysis
/ A (O stable oscillation
A ® unstable oscillation
e=0.152¢cm ./
o o| E12=0.955ra/s Pz |, N I
a ' & \\OLL__O
_H K
E] o X
N VAR / i1 @2 =pp
3 9.8 G o
T T a
/
23.5 23.6 23.7 23.8 23.9 24.0
LW c/s

FIG. 7. Frequencies of stable and unstable oscillations of
summed type. (w=frequency of parametric excitation; ¢, En=
magnitude of parametric excitation; wi,2=frequencies cf unstable
oscillations; w1, :t-v=1requencies of stable oscillations; p1=13.86
c/s, p2=9.85 c/s, pru=p1+p2=23.71 c/s)
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unstable oscillations. In the stable region, only the frequencies wi,.—» on the
higher frequency side (the left side) and the frequencies w:,.+» on the lower side
(the right side) which are nearer to the natural frequencies p, . between two
frequencies making a pair are obtained by experiments and analog computer,
because the amplitudes with these frequencies are larger than another, as shown
in Fig. 8 and Eq. (39). In Fig. 7, the results of analog computer also agree
with curves of broken and chain lines given by analysis, and the experimental
results differ from them slightly.
 Amplitude ratios of stable and unstable oscillations of summed type are given
in Fig. 8, where curve I induced by Eq. (23) and symbols &, @ give amplitude
ratios of unstable oscillations and curves II through Eq. (39) and symbol O are
amplitude ratios between two stable oscillations having frequencies wi+» and
w—v, and curves II' from Eq. (39) and symbol & express ratios of wi—p to wi+w.
Inevitable damping in experimental apparatus results in some differences between
symbols & and curve L
An example of no occurrence of unstable oscillations of differential type is
illustrated experimentally in Fig. 9. Although there is a resonant point pn=
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FIG. 8. Amplitude ratio of stable and unstable oscillations
of summed type. (w=frequency of parametric excitation;
e, F12=magnitude of parametric excitation; pu=p1-+p2=23.71 ¢/s)
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p1—p=16.27 c/s in the experimental apparatus of Fig. 9, only random free oscil-
lations having small amplitudes due to disturbance take place and no unstable
oscillation appears in the neighborhood of the resonant point p» as shown in
Fig. 9.

The some results are also obtained by analog computer, and there is nothing
but free oscillations furnished by initial conditicns. Frequencies and amplitude
ratios of these stable free oscillations of differential type are shown in Fig. 10, 11,
severally, where symbols O indicate results of analog computer and broken line
curves represent analytical results through Egs. (26 by, (30 b( (in Fig. 10) and
Eq. (39b) (in Fig. 11). It is seen in Fig. 10 that the relation w=w—w) are
always satisfied between two frequencies m,»*v making a pair.

Oscillatory waves of unstable oscillations of summed type appeared on the
experimental apparatus of double pendulums are illustrated in Fig. 12 where the
upper and lower photographs give oscillatory waves of the first and second
pendulums respectively and frequency w of parametric excitation is known by
vertical black lines. Observing oscillatory waves, it is found that the relation
@ o =41 : 24 : 17, and hence o=wi+w: holds.

Oscillatory waves of analog computer are shown in Fig. 13, in which the
oscillations of frequencies w; and «. appear separately bacause of normal coordinate.

n
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< o/j ——— by analysis
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F1G. 11. Amplitude ratio of stable
oscillations of differential type. (o=
frequency of parametric excitation; e=

F1G. 10. Frequencies of stable oscil-
lations of differential type. (w={requen-
cy of parametric excitation; e, 2, En=
magnitude of parametric excitation; magnitude of parametric excitation;

w12+ p = frequencies of stable oscilla- pr=p1—p1=156.0 c/s)
tions; p1=25.0 c/s, p2=100 c/s, pu=
p;——p2=15.0 c/s)
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{sec

9’ time «——

FIG. 12. Oscillatory waves of unstable oscillations of summed type by experiment of
double pendulums. (¢=0.152 cm, w=23.67 c/s, p=0.19rad/s, v : w1 : w2=41:24:17, p1=13.86
c/s, p2=9.85 ¢/s, puu=p1+p=23.71 c/s)

——time ‘<A1sec~.1

vibration of xz

parametric excitatio

F1G. 13. Oscillatory waves of unstable oscillations of summed
type by analog computer. (e=0.152 cm, w=23.64 c/s, p=0.41
rad/s, w: wi: we=41:24:17, p1=13.86 c/s, p2=9.85 c¢/s, prz=p1+
p2=23.71 c/s)

8. Conclusions

Obtained results may be summarized as follows:

1) In oscillatory system with multiple degree-of-freedom and under parametric
excitation, two unstable oscillations with frequencies w;(=p;) and w;(=p;) can
simultaneously take place in the neighborhood of the resonant point pi;j=p:+p;,
that is, unstable oscillations of summed type can occur.

2) Sum of frequencies w; and w; of unstable oscillations is equal to frequency
o of parametric excitation, s.e., wi+wj=o.

3) Solutions of this kind of unstable oscillations are obtained through Eq. (34)
and amplitude ratio, frequencies, negative damping coefficient, phase angle and



Research Reports 117

unstable region are given by Egs. (23), (26), (30), (33) and (35), separately.

4) In stable region of summed type, two free oscillations with frequencies
wi, ;v appear, and those solutions are found by Eq. (34 a) and frequencies by
Eags. (26), (30a) and amplitude ratio by Eq. (39).

5) Oscillations on the boundaries between stable and unstable regions are
always stable.

6) Oscillations of differential type consist of two free oscillations with
frequencies w;, j=-u as shown by Eq. (34 b), and frequencies are obtained by Egs.
(26 b), (30 b) and amplitude ratio by Eg. (39b).

7) So far as magnitude of parametric excitation is somewhat small as in this
paper, solutions of the first approximation are enough to grasp exactly the oscil-
latory phenomena due to parametric excitation and they show good agreement
with the results of experiment and analog computer.

8) Analytic caluculation is rather simple by virtue of the approximation.

9) There is no unstable oscillation of summed and differential type of higher
order in so far as the first approximation, and it can not appear experimentally
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