EDITING MODEL BASED ON THE
OBJECT-ORIENTED APPROACH

Toyohide Watanabe
Yuuji Yoshida
Teruo Fukumura

Reprinted from PROCEEDINGS OF THE TWELFTH ANNUAL
INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS
CONFERENGE, Chicago, IL, October 5-7, 1988

/'Q\'\,
\\,5:/ THE INSTITUTE OF ELEC

Editing model based on the object-oriented approach

Toyohide WATANABE,

Department of Information Engineering
Faculty of Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464, JAPAN

sk abstract seeioee

The editing facility is one of the most basic software
products and constitutes direct user interfaces in program-
ming environments, Although various types of editing
facilities have been developed or improved until today, they
do not always provide the powerful abilities to. manipulate
different kinds of data uniformly, to share them effectually
with the other processing facilities and to construct the
functions adaptable to their characteristics. This is
partly because the data structures managed by the editing
facilities depend on the particular editing data, and partly
because the editing facilities are specified on the basis of
their application-specific requirements.

Our approach proposes a fundamental framework for the
editing facility suitable to the uniform manipulation for
various kinds of data, the data sharing among different
facilities and the functionality for application-specific
processing. The basic principle is to separate the object
schema and the data instance from the editing data extrac-
tively. This separation method makes it possible to
specify various kinds of data under the explicitly struc-
tured forms and then manipulate them with the wniform access
paths. In this paper, we address mainly our design
concept of the editing mechanism.

skeck keywords seickick
editing facility, editing object,
schema, data instance, user interface, multi-media/form,
integration, functionality, data definition language,
relational data model; object-oriented approach

editing model, object

1. INTRODUCTION
The effective management for various kinds of data is
regarded as one of a number of very important issues, now
that computers are necessarily adaptable to a wide range of
applications. Especially, as the basic facility of the
computer usage in the office working, the successful func-
tions for multi-media/form data have been strongly required
under the subject of the office automation.® For example,
in the office environment document preparation is one of the
fundamental tasks. This task must be not only effective
to input, edit and output the original data, but also
" successful to compose various kinds of documents. The
computer-aided tools used to support such a task must
provide end-users with excellent man-machine interfaces for
effectual office environments,®
Various types of editing facilities have been developed
today, corresponding to application-specific requirements
~under individual computer systems. However, they provide
" almost similar functions for string manipulation though

CH2611-2/88/0000/0067$01.00 © 1988 IEEE

Yuuji YOSHIDA

67

Teruo FUKUMURA
and
Chukyo University
101 Tokotate, Kaizu-cho,
Toyota-shi 470-03, JAPAN

their comand syntaxes, their user interactive interfaces
and their application-specific features' are more or less
different. The difference is mainly derived from the fact
that the system configurations for the editing mechanism
depend too strongly on individual applications because many
editing facilities have been designed with the application-
specific requirements. If the system architecture of the
editing mechanism could be designed uniformly so as to be
independent of individual application-specific editing
structures, we can develop a generic system with the editing
mechanism adaptable to various kinds of editing data, Such
an editing mechanism may be implemented systematically if
the editing mechanism could be managed so not as to include
individual application-specific data forms internally.

In this paper, we investigate an architectural framework
for the editing mechanism, and as a result propose an
experimental editing model. Our editing model has' an
object-oriented feature on the basis of the framework of the
relational data model,® The description form is based on
the data definition language and extended with the
procedure-specification abilities with respect to their
peculiar functions attended to individual editing objects.

2. EDITING MECHANISM AND EDITING OBJECT

A number of editors, which are available today in a wide
range, have their own application-specific features. The
editing objects which the editing facility must desirably
manipulate as a composite module in the information system
are classified from simple data sequences such as numerical
data, to complex structures such as documents, or to syntac-
tic constructions such as sentences and programs.
Unfortunately, our current environment does not allow us to
manipulate these different editing objects uniformly by
using the same facility, but forces us to select appropriate
tools owing to their editing characteristics.

For the purpose of making the computer utilization
environment functional, the editing facility must to be
matchable to many user requirements: these requirements may
be satisfied, in many cases, by the concepts of multi-media/
form data manipulation, cooperative integration and adapt-
able functionality, in addition to effectual operativeness
which has been commonly discussed as the most important
concept for the user interface.®® Much recent research
pays attention mainly to the design or control of the opera-
tional windows from a viewpoint of the subject of the man-
machine interface: the typical functions are the multi-

USER

(EDITING FACILITY) | USER INTERFACE l

OPERATIVENESS

<proc,edI I

dure <data_type/fom
specification> specification>
- object -

editi

L——m<data transfer specification>
R

(OTHER PROCESSING FACILITIES in information system)

Fig,1 Editing environment

window control interface, and the icon picking-up or mouse
pointing operation.” However, an approach based on the
operativeness can not always build cooperative man-machine
interfaces. The excellent man-machine interface will be
constructed on the basis of the design method combined with
the multi-media/form, the integration and the functionality.
These concepts and the compositive design have been
disregarded in the traditional approach because the editing
facility does not have its own system architecture, but has
been implemented as an application-specific system or
preprocessing tool for some application system.

Concerning the issue of multi-media/form manipulation,
it is required that the editing facility can accept every
editing object without being dependent on individual data of
sorts. For the purpose of the realization of this concept.
the editing mechanism necessarily controls conceptual
editing objects by excluding application-specific structures
attended inherently to individual editing data. For the
issue of cooperative integration, it is required that the
editing objects are shared among the processing facilities
in the information sysiem. This requirement - is to make
the efficiency for application processing high and make the
procedural operation simple. Finally, as for the issue of
adaptable functionality, the editing facility is desirable
to perform data-specific functions owing to the characteris-
tics of individual editing objects: that is, the sorting
function for some ordered data or the syntax checker for
some programs. This ability must be specified by the pro-
perties of each editing object under the uniform framework.

This conceptual view in the editing facility is shown in
Fig.1. It is not so difficult to introduce these concepts
into the architectural design. This mechanism will be
solved by looking on the characteristics of editing objects
such as data structures, media types and syntactic forms, as
the logical specification schema: generally we can consider
that the object characteristics are the object schemata.

3. EDITING MODEL
From an architectural point of view,
the editing facility

our framework of
is based on the object-oriented

68

iting operation
logical operation)

data definition

language, TRANSFORMATION
(spgcx%lcatxon of OBJECT SCHEMA HECHANISH
logical structure 5
item attribute,
at%ched procedure,: "
etc CONTROL, OF stem operation,

E%g,lr“I‘NG hysical operation)

DATA INSTANCE

Fig.2 Data manipulation through object schema

approach as the basic control mechanism of editing objects,
and is also derived from the data definition feature in the
relational data model as the specification method. s the
class-instance relationship in the object-oriented model, ¥
editing objects are composed of the object schemata, which
specify the logical structure class of editing objects, and
the data instances, which are unstructured real data to be
adapted to each logical structure class. In comparison
with the object-oriented programming paradigm, our editing
objects are characterized by more static properties because
they mainly consist of data fractions manipulated by editing
operations. Namely, editing objects in themselves are not
so autonomous as the objects in the object-oriented program-
ming in point that each object does not exchange messages.
0f course, it is not necessary for editing objectsto do so.
At least, the traditional editors manipulate only the data
fractions, and the peculiar properties attended to the edit-
ing data are performed directly by the editing operations.

hile, concerning the description of the object schema,
our data definition language is similar to that in the rela-
tional data model. Each data item is specified by the
column descriptors with some attribute parameters. In
addition, our definition language can accompany some func-
tions as the attached procedure-like forms. The descrip-
tion for such an object schema corresponds to the table
description in the relational data model. Our editing
mechanism based on both the relational database framework
and the object-oriented approach is called the editing model,
here. - This editing model is shown in Fig.2. The object-
oriented feature is mainly useful to data composition and
editing processes, and the relational database framework is
fundamentally adaptable to data access and editing processes.

Individual editing objects are not only controlled
independently or flexibly, but also can construct the other
editing objects as composite elements. The independence
among editing objects is naturally derived from the
characteristics of the relational data model, on which our
editing model is based: a database may be composed of one or
more tables. . The flexibility for editing objects depends
on the fact that the descriptive schemata for “the logical
structures are operational objects by themselves.

As for the flexibility, several data views for one edit-
ing object can be supported as well as the schema-subschema

logical operation

TRANSFOR-
MATION

physical :
operation |

| physical operation

EDITING T00L 0.1 .
OO EDITING T00L N0, 2

(a) single data instance under many object schemata

logical operation

physical

! TRANSFOR-
operation 1

MATION

physical
tion

(b) many data instances under single object schema
Fie.3 Flexibility in editing model

relationship in the relational data model. Of course, our
framework is more powerful than the schema-subschema rela-
tionship. Such relationships are illustrated in Fig.3:
one is to manipulate a data instance through many suitable
object schemata; and another is tfo manipulate many data
instances through only one object schema. This mechanism
makes it possible to look upon one editing structure as
another structure if another object schema which is
different from the original schema could apply suitably to a
data instance, In the schema-subschema relationship, every
subschema must be always derived from the underlying schema,
while in our framework such a constraint is never imposed.
This flexibility is a solution for the issue of multi-media/
form data manipulation.

On .the other hand, with respect to the independence our
framework can provide a very successful solution- for the

EDITOR

text’

text

| editing data F—{ editing data

issue of cooperative integration. It is better to exclude

- the physical information for the control or management of

the data organizations from the editing structures of
individual applications when various kinds of data must be
shared among several processing facilities cooperatively.
The data sharing method, which utilizes only the logical
information: object schema, is suitable to many different
applications uniformly. In our model, the data sharing
mechanism can be implemented easily by means of assigning an
appropriate mapping function to the mutual application
facilities. For example, we can consider a relationship
between the document preparation facility and the editing
facility. Fig.4 shows 2 types of relationships: the type
(@) is a traditional approach constructed between the editor
and the formatter; and the type (b) is our approach based on
the correspondence of individual object schemata. In the
editor and-formatter, the formatter makes up documents with
text’, generated from the editor. The formatter depends
on the editor because the formatter can interpret only the
data manipulated by the editor: the source data must always
contain the form control information. On the other hand,
in our approach the relationship between the editing
facility and the document preparation facility is mutually
equivalent. The correspondence of their logical informa-
tion(e.g. names in our approach) is completely assured.

4. DESCRIPTION OF EDITING OBJECT

Our editing objects are structure-independent, composite
and operational entities, Every editing object does not
associate with its own.particular structure, but is change-
able to arbitrarily structured data. Namely, editing
objects without any particular forms can be composed as
structured data specified by the data definition language.

In our framework, a . uniform manipulation of editing
objects is an important issue even if the individual editing
components could associate with different types of
attributes. Our editing components are divided into a
text object and an image object with respect to the
attribute class. Furthermore, the text objects of byte-

FORMATTER
document

form control
information

(@) traditional approach

EDITING FACILITY

text

- %editing data

DOCUMENT PREPARATION FACILITY

document

editing data
| CONTROL -

cbject schema g
for editing data

(b} our approach

>]| editing data ;

i CONTROL |+

object schema for document [

: L

Fig.4 Relationships between’editing facility and document preparation facility

69

AUTHOR .Amin .C.Tayler
AFFILE

‘?.Hl)een R.R.Am

ATION: PREGI Project, Department of Computing Science,

TITLE: Data Integration in giﬁtributed Databases

University of Aberdeen

ARSTRACT: Data integration in a distributed database refers to the production of uni-

AR’HCLEDSTATENENT: 1. Introduction

ata integration refers to the creation of an integrated view over apparently

(a) article data

fpoc. 0. 12936)]
|'§{%th lG agnégal language interfaces to computer system: an experimental
ALTHOR b Buldnico di Milano, Istituto di Elettrotecnica ed Elettronica
TAKEN-RROM Alta Frea. (Italy)
lCODE.‘{ Alfra
jo) é&ﬂ No.9

PUB. DATE ot. 1978

PUBLISHED BY Springer-Verla

| PR > 1o s

|

(b) catalog data
INTEGER FUNCTION VALUEQD
0
0 IF (0.E0.0) GOTO 20
! %:&?.‘ZK)DG'D.Z)*L

IF (0. NE.
T e
RETURN

(c) program data

NO | NAYE | AMOUNT ADDRESS

CITY COUNTRY
S1 | Smith 20 | London UK.
§2 | Jones 10 | Paris France

(@ table data

Fig.5 Examples of individual editing objects

oriented data consist of several sub-objects: an article
object, a catalog object and a program object. While, the
image objects of bit-oriented data contain sub-objects such
as a table object, a simple-graph object, a complex-graph
object and a pixel object, according to the functions
associated to the object generation process.

Such a classfication is introduced in order to make the
manipulation of each entity easy. For example, in the
image objects their own functions become available in the

object generation and so on by means of the class attributes:

image-readers are usable to pixel objects; and business
graphes such as circles, histograms, etc, must be created
easily for the simple-graph objects. Moreover, the syntax-
checker as an attached procedure, which we will mention
later, must operate meaningful programs. Of course, this
descrimination is not necessarily essential for our proces-

sing if the advanced techniques were developed in the future.

Today, in the case of performing our data manipulation
effectually, such a classification is successful.

4.1 EDITING OBJECT
Now, we specify the object schemata for individual edit-

ing objects concretely by using the data definition language.

The descriptions for image objects, except for the table

object, are only to declare the size, and the functions such
as the graph depiction, the image input, the tabular
arrangement, etc, may be specified as optional procedures of
types. The descriptions for a simple-graph ohject, a
complex-graph object and a pixel object are as follows:

ex.D
structure IMAGEL: simple; .
term IMA: bit(1000,1000);

end;
or
structure IMAGE2: complex;
term IMA: bit(1000,500);
end;
or

structure TMAGE3: pixel;
term IMA: bit(256,512);
end;.
These descriptions are distinguished by the optional indica-
tors “simple”, “complex” and “pixel”, and these indicators
make it possible to manipulate different objects functional-
ly in the generation process.
Next, we explain the descriptions for an article object,
a catalog object, a program object and a table object.
The typical examples for these objects are shown in Fig.5.
(a) article object: This object consists of several data

70

items: for example, a paper is composed of a title,
authors, an affiliation, an abstract, keywords and an
article statement, as illustrated in Fig.5(@@). The des-
cription is as follows:
ex.2)
structure ARTICLE: article; -
term T1: char(50) ’TITLE:’;
term AU: char (100) - ’AUTHOR:’;
term AF: char(200) 'AFFILIATION:’;
term AB: char(1000) - ABSIRACT:’;
term KW: char(®0) *KEYWORDS:’;
term AS: char(50000) ’ARTICLE STATEMENT:’;
end;,
The indicator “article” may be abbreviated as the default
value of the description.

(b) catalog object: This object is similar to the article
object, except for the manipulation of multiple records.
The catalog object shown in Fig.5(b) is specified by the
next description:

ex.3)
structure CATALOG: catalog(100);

term DN : integer °‘DOC.NO.";

term TI @ char50) °TITLE’;

term AU(S) : char (20) ’AUTHOR';

term AF : char (100) *AUTHOR AT’;

term TF 1 char(100) ’TAKEN-FROM' ;

term CB : char(20) ’CODEN’;

term VO : char(20) °’VOL.NO.’;

term PG : char(5) ’NO.OF PAGE’;

term PA : char(10) °'PAGE’;

term PR : char(20) - *PUBLISHED BY’;

term PD : char(15) °’PUB.DATE';

end;.
In comparison with the article object, we can not observe
the difference besides the indicators “article” and
“catalog (100)”. The parameter “100" in “catalog”
represents that the maximum number of entries is 100.
If this parameter is abbreviated, infinite entries are
assumed. Moreover, “catalog(1)” is equal to “article”
in point of the number of entries.

‘c) program object: This consists of only one data item in

many cases. For example, the descripfion for the
FORTRAN program shown in Fig.b{c) is as follows:
ex. b

structure PROGRAM: program;
term PB(100) : char(80);
end;
or
structure PROGRAM: program;
term PB: char (8000) ;
end;.
Moreover, we can assign to this description more informa-
tion in order to manage the program object effectively.
The next description is a typical example:

(ex.5)
structure PROGRAM: program(FORTRAN) ;
procedure syntax-check;
term 'FORTRAN PROGRAN ;
tgrm PBC100) : char(80);
end;.

In this example, 3 descriptive points are newly introduced:

the parameter “FORIRAN” in the indicator “program”, the
descriptor “procedure syntax-check;” and the descriptor

71

“term 'FORTRAN PROGRAM';”. “FORTRAN” indicates that
this description is adaptable to the FORTRAN program.
“procedure syntax-check;” declares that the procedure
“syntax-check” must be used to handle strings in the data
item PB. Therefore, the attached procedure “syntax-
check” is successful for this FORTRAN program. “term
'FORTRAN PROGRAM';” points out that this term displays
the message “FORTRAN PROGRAM". The syntax of “term”
must be interpreted so that the general form is
(ex.6)
term <data item name> : <data type/length> <message>;.
The first and second parameters <data item name> and <data
type/length> are abbreviated. Namely, the syntax is
ex.D
term <message>;.

(d) table object: This is basically similar to the catalog
object in point of the definition. The basic form in
the table shown in Fig.5{d) is defined as follows:

ex.8) .
structure TABLE: table(5);

term NO: char(® 'NO';

term NA: char (20) ’NAME';

term AT: integer 'AMOUNT';

term AD: record ’ADDRESS';
term CT: char(20) 'CITY’;
term CN: char(10) 'COUNTRY’;
end;

end;.

In this description, lines around each value are not

explicitly defined. Usually, lines are automatically

specified by the indicator “table” in making up the table

form practically. Moreover, we can observe that a

hierarchical structure is defined between the data items

AD and CT/CN. In composing tables, various arithmetic

processing is often required: percentage of some columns,

total amounts, etc. Such requirements are satisfied with
the next modified description:

ex.9)
structure TABLE: table(5);
term NO : char(@ 'NO’;
term NA : char(20) 'NAME’;
term AT : integer 'AMOUNT® -SUM;
term ATR: def AT -VALUE (AT/SUM(AT) %100 ;
term AD : record ’ADDRESS’;
term CT: char (20) 'CITY’;
term CN: char (10) *COUNTRY’;
end;
end;. .
In the data item AT, "-SUM” indicates that the total value
in this column is calculated and inserted into the last
added entry. While, the data item ATR is introduced in
order to store the percentage value of AT: calculating the
percentage values is defined; and storing the values into

AT is specified by “def AT".

4.2 EDITING OBJECT FOR MULTI-MEDIA/FORM

The main descriptors to define the object schemata for
various kinds of editing objects were outlined. Of course,
many supplementary descriptors are assumed, furthermore.
Our editing mode! has a fundamental framework based on the
relational data model. Therefore, various types of data

1 sguctﬁ% PAPE
=3 term
HOR ;
-2 term AFFILIA ONé (20) (100)
= term
i+ term KEYWORD
- term smmcxg sehar 5
end;
tructure FIG v
*term FlG:bit 6,100
end;)
tructure FIGUREZ; ’
sten% ﬁg bIt ,256) 5
end;
structure TAB
term TAB:bit);
CORRBSPONDENCE | | ends i
% t TAB
s ;‘° R 5, 2560 :

Fig.6 Relationships between object schemata and editing components

< hyte-oriented data

t bit-oriented data ————>

TRANSFER

TR{\NSLATION

TRANSFER

TRANSFER

CONVERSION
TRANSFER

NTERPRE-

TRANSLATION

CONVERSION

H v
O, '

INTERP)
R ion :

CONVERSION

Fig.7 Attribute transition among editing objects

such as the image, the character and so on can be represent-
ed as the column attributes in the composite elements.
The data attributes attended to column properties specify
various types of data. While, various kinds of editing
structures can also be comstructed easily by the data
definition language. We consider a paper-article as an
example, This editing object consists of several editing
components of different data attributes. The description
is illustrated in Fig.6. Our data definition language does
not only specify the data structure like the traditional
data definition language(e.g. in databases), as we have
already understood in the above example, but also provides
the ability to define particular functions attended to each
editing object. Thus, we can consider that our editing
model is based on the object-oriented approach. However,
in our model the object schema is not always constrained so
as to attend inherently with the particular editing object,
but the editing object can be conveniently applied by some
object schema. If necessary and possible, different data

72

instances can be composed by applying another object schema.
This feature makes it possible to manipulate various kinds
of data forms, or different types of data attributes.

Next, we investigate the attribute transition among
editing objects. Fig.T shows the transition graph of
object attributes. 3 types of the attribute transitions
are really meaningful: “transfer”; “conversion”; and “inter-
pretation”. The transfer is the attribute transition in
the same class of editing objects: the text object and the
image object. The conversion and interpretation are the
attribute transitions from the text object to the image
object. In the conversion, the tramsition is performed
simply without helps of any procedures. While, in the
interpretation for the program object, the transition must
be performed interpretively under the control of the suit-
able translators(or interpreters). The transition from
the catalog object to the table object is a class exchange,
and makes up a tabular form with the addition of lines.
Additionally, the closed transition(” translation” in Fig.7)

within the article objects or the program objects does not

change the object types, but are the exchanges of the values.

These processes will be executed by more advanced processing
abilities(e.g. machine translation, program conversion).

5. MANIPULATION OF EDITING OBJECT

Our approach based on the object schema and the data
instance is very applicable to the issue of integration and
functionality. Namely, the editing objects in our frame-
work are not controlled by application-specific constraints,
and are also independent of application-specific editing
structures. Therefore, different facilities in the
information sysiem can share their processing data mutually
if the processing protocol for their object schemata were
systematically established, because the object schemata do
do not contain the physically controlled information.

5.1 INTERFACE OF EDITING FACILITY

To make the issue of integration and functionality clear
we will research firstly the practical characteristics of
the facility-facility interfaces, derived from the current
systems. As for cooperative relationships(integration)
between the editing facility and the other facilities:

(1) program interpretation: interpreter, compiler;
(2) machine translation : machine translation system;
(3) document preparation : formatter.

As for functional relationships(functionality)
associated together with the editing facility:

(4) program-syntax generation : syntax-oriented
editor, LISP structured editor;

(5) KANA-KANJI/ROMAN-KANJT conversion:
Processor.

Furthermore, application-specific editing functions,
whose abilities compose an application system as one of the
functions, are observed .in many cases. Many application
systems adopt the calling means to attach to the existing
editing tools on the basis of the linkage protocol. e
can classify relationships between the editing facility and
the other facilities into 4 types, as illustrated in Fig.8.

The type (a) corresponds to the above (1) and (2), the
type (b) does to (3) and the type (c) does to (4 and (3,
respectively. The type (d) is observed in many applica-
tion systems, In (@, 2 facilities keep an equivalent
relationship mutually, concerning their program construc-
tions though the calling sequence is controlled under a
master-slave relationship with respect to their actual
execution. Therefore, (d) can be in advance transformed

Japanese word

into (a) from a viewpoint of the facility-facility interface.

In (©), the actual relationship is successful only in very
constrained areas: data input process. For example, the
KANA-KANJI conversion function is useful for only an input
operation with the exclusion of the other operations. This
is a very powerful ability in Japanese processing, in which
it is difficult to put in KANJI characters directly from
keyboards. Moreover, we can find out the data entry system
as a construction of (c). This cooperative relationship
has already been designed in our framework: for example, see
(ex.T. At least, {c) provides critical basements so that

73

}6——?‘ another processing facility I

(a) independent-equivalence siructure

another processing facility l

(b) dependent-equivalence structure

L———-——l———] another processing facility

(c) calling- type mas ter—slave structure

r another processing facility

(d) called-type master-slave structure
Fig.8 Types of cooperative relationships

the editing facility is adaptable to various kinds of data,
or various types of applications. Mhile, in (b) another
processing facility can accept only the editing data, which
the particular editing facility generates, though they are
designed so as to provide individual functions. Namely,
they always keep a master-slave relationship in spite -of
being their own independent and characteristic functions.
Such a tightly-coupled organization is neither effective nor
flexible with respect to cooperative: relationships among
various types of facilities.

5.2 INTEGRATION AND FUNCTIONALITY

From the previous discussion, we must have an adaptable
solution to construct 2 different types of relationships
uniformly:

(1) independent-equivalence structure;

(2) calling- type master-slave structure,
1t is better that 2 types of relationships are approached as
different issues. The former is an issue about an
external interface and is related to the integration concept.
While, the latter is an issue about an internal organization
and is related to the functionality concept. If the
editing facility did not introduce its own particular data
structure, it is not difficult to facilitate our issues.
Qur framework satisfies at least such a regquirement.
(1) INTEGRATION INTERPFACE:

The former issue can be solved with respect to the data
compatibility among several facilities. For example, the
cooperative relationships among the processing facilities
such as database managements, document editings, document
preparations and so on({ as typical facilities in the
information system) can be established if the correspond-
ence of the individual object schemata, associated to the
corresponding facilities, is kept consistently.™?® Fig.9
shows relationships about their object schemata. Al though
the facilities for document preparation, database management,
window management and so on are not yet discussed in this
paper, it is so clear that they can associate their own
object schemata. 0f course, it is necessary to match for
their basic atiributes in each column specification in order
to make the mapping functions successful. In the database
management, the framework is almost similar to the mechanism
in our editing model, and it is easy for us to understand

(DATABASE MANAGEMENT)

(DOCUMENT PREPARATION)

(WINDOW MANAGEMENT)

‘ databases !

ACCESS

l documents

I windows l

OUTPUT DISPLAY

object schemata
for databases

object schemata
for documents

object schemata
or windows

AN

RECONSTRUCTION
tribute informati

HAPPING MECHANISH

L/

L

object schemata
for editing objects

ACCESS

data instances
for editing data

(EDITING)

Fig.9 Mapping mechanism among object schemata

object schema: the object schema is the database schema in
itself though it must include the characteristic information
for the database organization, in addition to the object
schema of the editing object.
for documents and windows contain the layout or positioning
information for the data indicated by the corresponding
names in order to design the physical configurations.

(2) FUNCTIONALITY INTERFACE:

The latter issue is not always a difficult problem to be
solved in our framework. In this case, the attached proce-
dure mechanism is successful though a special case has been
already shown in (ex.T). When some attached procedure is
available to perform particular processing at once, besides
the ordinary editing, it is possible to assign the procedure
to one or more data items as the parameters. The procedure
to be attached is the built-in system routine or the user-
defined procedure, which must be written by a tiny system-
provided programming tool, and then be registered into the
editing facility in advance. :

6. CONCLUSION

1t is desirable for the editing facility to manipulate
various kinds of data uniformly and share the editing data
cooperatively among the processing facilities.'™® In
current information system environments, the issues about
mul ti-media/form data manipulation, cooperative integration
and adaptable functionality are important in addition to the
concept of easy operativeness. We think that the advanced
user interface in the information processing environment
will be systematically developed by means of effective
mechanisms, ¥ based on these concepts.

Our approach is one of architectural frameworks for such
candidate information systems, and assesses the most
fundamental issue from a viewpoint of the design principle.
Our framework of the editing facility, discussed in this
paper, may not always provide users with easy operations
directly, but can address the effectiveness and powerfulness

While, the object schemata .

74

for user interfaces.. The description for the object schema
may be not easy for end-users, but the improvement of menu-
window mechanism or the addition of parameterized-
interaction function makes the operation simple because the
mappig mechanism into the interactive display window from
the object schema is conceptually refined(e.g. through the
window management in Fig.9). The successful mechanism for
multi-media/form, integration and functionality is the
fundamental requirement for the advanced man-machine
interface, and the sufficient method for operativeness will
be designed with respect to these 3 concepts.

Acknowledgements --- We are grateful to Prof.Y.INAGAKI and
Prof. J. TORIWAKT, Nagoya Univ., Prof .M.NAGAO, Prof.H.HAGIWARA
and Prof.S.HOSHINO, Kyoto Univ., for their = respective
remarks, and wish to thank Mr.T.0GASAWARA for his eager-
cooperation. Also, we would like to thank the referees for
their constructive review, - . R

References

DT.WATANABE & I.OKETANI:“Functional Design of Cooperatively
Integrated Information System”, P.36, Technical Report of
Data Processing Center in Kyoto Univ., A-16(1986).

9)T.WATANABE: “Archi tecture of Integrated Office Information
System: a cooperative integration method for various data
processing facilities”, Proc.of the 6th PCCC, pp.320-327

198n.

3)L.BOLC & M.JARKE(ed.) :“Cooperative Interfaces to Informa-
tion Systems”, on Topics in Information Systems, P.328,
Springer-Verlag(1986). _

4)P.DEGANO & E.SANDEWALL(ed.): “Integrated Interactive
Computing Systems”, P.374, North-Holland, Amsterdam(1983).

5)D.TSICHRITZIS(ed.) : “Office Automation”, on Topics in
Information Systems, P.441, Springer-Verlag(1985). -

6)M.M.ZLOOF: “Office-By-Example: A Business Language that
Unifies Data and Word Processing and Electronic Mail”,
IBM system journal, Vol.2l, No.3, pp.272-304(1982).

TYW.TEITELMAN: “A Tour through Ceder”, IEEE trans,on Soft-
ware Engineering, Vol.SE-11, No.3, pp.285-302(1985).

2)S.W.DRAPER & D.A.NORMAN: “Software Engineering for User
Interfaces”, IEEE trans.on Software Bngineering, Vol.SE-11,
No.3, pp.252-258(1985).

9)B.J.COX:“Object-Oriented Programming”, Addison-Wesley(1986).

