MULTIPOINT SYSTEM FOR VIDEO AND SOUND

100 Cemras and Microphones System

Mehrdad Panahpour Tehrani¹, Yasushi Hirano¹, Shoji Kajita¹, Toshiaki Fujii², Kazuya Takeda³, and Kenji Mase¹

E-mail: 1. {mehrdad, hirano}@itc.nagoya-u.ac.jp {kajita, mase}@nagoya-u.ac.jp

2. fujii@nuee.nagoya-u.ac.jp 3.kazuya.takeda@nagoya-u.ac.jp

Sever: Xeon 3.60GHz Dual (OS: Windows) Node: Celeron 2GHz, 256 RAM (OS:Linux) Camera: PULNIX TMC-1400CL 1392x1040x1(BayerMatrix), 29.411lpg

Microphones: Sony ECM-77B 16 Bits 96~8 KS/sec

Network: 1GB BASET Configurations: Arc, Line, 2D(20x5)

Task: Intergration of 3D Audio & Video for Free Listening-point & Viewpoint Generation

Introduction

This research is aim to represent 3D sound and Image without localization and propose to use ray-space represetation of light rays for sound wave, which is independent of object's specifications, for arbitrary listetening-point generation in 3D space.

Background

Free viewpoint generation methods in different camera density

Image Ray-Space

Ray-space representation of light rays:

Sound wave can be processed as Image if it represents in Image format (Sound Image)

Sound Image (SImage)

SImage Capturing: Scanning the viewing range of a camera with its corresponding Microphone Array (MA)

SImage Ray-Space

Capturing SImage Data using Array of Microphone Array and Generating SImage Ray-Space

Arbitrary SImage Generation

- 1. Generating a Dense Ray based SImage data
- 2. Cut the Ray-space data to generate the virtual SImage

The corresponded sound of an SImage is generated by averaging the sound pixel or block in the SImage.

SImage Interpolation Method

Experiment

Summary

- 1. Capturing SImage
- Generating SImage ray-space
 a. Using SImage Disparity

 - b. Using corresponded Image Disparity (Future work)
 - c. Combination of (a) and (b)
- 3. Synthensizing arbitrary Listening-point (Future work)
- 4. Sampling Rate of SImage (Future work)

Conclusion

This research proposed a method to represent the 3D sound field using ray-space method.

The proposed theory can solve the problem of 3D media inte-

This research is partially supported by SCOPE program.