弥生・古墳時代の土器に付着した炭化物の AMS14C 年代測定
——愛知・石川県の遺跡から出土した土器について——

木野瀬正典 1)、小田寛貴 2)、赤塚次郎 3)、山本直人 4)、中村俊夫 2)

1) 名古屋大学大学院環境学研究科
 Tel: 052-789-3082, Fax: 052-789-3092
 e-mail: kinose@endai.Nagoya-u.ac.jp
2) 名古屋大学年代測定総合研究センター
3) 愛知県埋蔵文化財センター
4) 名古屋大学大学院文学研究科

＜はじめに＞

土器の内面または外面口縁部に付着している炭化物は、主として食物の残渣や煮炊きの際に吹きこぼれたオイルと考えられる。一方、土器外面の胴部下半から底部にかけて付着している炭化物は、主に煮炊きの際に燃料としてもいれた漆器の漆と考えられる。つまり、土器付着炭化物は、土器の使用との関連性が明確な炭素資料である。

そこで本研究においては、弥生時代中期から古墳時代前期を中心に、愛知・石川県から出土した土器の付着炭化物について、加速器質量分析法（AMS: Accelerator Mass Spectrometry）による14C 年代測定を行った。考古年代と AMS14C 年代から、この地域における弥生・古墳時代の年代観を検討することが本研究の目的であるが、本稿では今年度までに得られている14C 年代測定の結果を報告したいと思う。

＜資料＞

測定を行った資料は、表 1 に示したとおり、愛知県の 4 遺跡（月織手、朝日、門間沼、八王子）から出土した土器の付着炭化物 13 点と、石川県の 8 遺跡（藤江 B、八日市地方、下安原、東의場タケノナナ、猫橋、大友西、大長野、千代・能美）から出土した土器の付着炭化物 43 点の合計 56 点である。

このうち、大友西遺跡の月影-I 式の資料（No.37）は、井戸枠の中から出土した土器であり、その井戸枠の縁板に用いられていた樹木の年輪年代が AD169 年と推定されている（光谷，2000）。また、宇田-I 式（資料 No.56）の時期は、岩見瀬町佐記遺跡の暗灰色粘質土層出土の木製品について推定されている AD412 年という年輪年代（光谷，2000）から判断すると、5 世紀初頭に始まった可能性が高いと考えられる（赤塚，2003)。
表1. 測定資料

<table>
<thead>
<tr>
<th>資料No.</th>
<th>水銀名</th>
<th>順名</th>
<th>付帯部位</th>
<th>考古学的年代</th>
<th>時期</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>月輪子銀珠</td>
<td>優</td>
<td>画面部</td>
<td>造史後</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>2</td>
<td>為音波谷</td>
<td>石川</td>
<td>内部口部</td>
<td>中期</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>3</td>
<td>月輪子銀珠</td>
<td>石川</td>
<td>内部口部</td>
<td>中期</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>4</td>
<td>鳳凰波谷</td>
<td>石川</td>
<td>内部口部</td>
<td>中期</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>5</td>
<td>下安楽谷</td>
<td>石川</td>
<td>画面部</td>
<td>中期</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>6</td>
<td>朝日波谷</td>
<td>石川</td>
<td>画面部</td>
<td>内部</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>7</td>
<td>月輪子銀珠</td>
<td>石川</td>
<td>内部口部</td>
<td>中期</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>8</td>
<td>朝日波谷</td>
<td>石川</td>
<td>画面部</td>
<td>内部</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>9</td>
<td>月輪子銀珠</td>
<td>石川</td>
<td>内部口部</td>
<td>中期</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>10</td>
<td>月輪子銀珠</td>
<td>石川</td>
<td>内部口部</td>
<td>中期</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>11</td>
<td>月輪子銀珠</td>
<td>石川</td>
<td>内部口部</td>
<td>中期</td>
<td>優生時代前期</td>
</tr>
<tr>
<td>12</td>
<td>朝日波谷</td>
<td>石川</td>
<td>内部口部</td>
<td>中期</td>
<td>優生時代前期</td>
</tr>
</tbody>
</table>

＜実験＞

図1に試料調製の手順を示した。土器に付着した炭化物をステンレス製のスパーサーを用いて削り取り、アルミホイル上に集めた。採取した資料の重量を測った後、埋蔵中の汚染を除去するために酸とアルカリを用いた化学処理を行った。まず、ホットプレート上（約60〜70℃）において1.2M HClで炭酸滓の除去を行った。次にフミン酸等のアルカリ可溶成分を除去するために、0.1〜1.2MのNaOHを用いて同様の処理を行った。その後、再び1.2M HClでの処理を行った。
蒸留水で洗浄した試料を、真空デシケーター中で乾燥させ、その重量を測定した。9mm φのVycor管に、約2〜8mgの試料と600〜700mgのCuOとを入れて管内を真空にした後、ガスバーナーで封じきり、850℃で加熱してCO₂を発生させた。発生させた気体中にはCO₂以外に、H₂O、SO₂などの気体が含まれているので、Vycor管を真空ラインに接続し、液体窒素、エタノール、n-ペンタンの冷媒を用いてCO₂の精製を行った。精製したCO₂をH₂（CO₂の2倍相当）と触媒である鉄粉（約1.5mg〜2.0mg）と共に別の9mm φのVycor管に封入した。鉄粉の入っている管の下端部を650℃で6時間以上加熱することでグラファイトを合成し、得られたグラファイトをアルミニウム製のホルダー内に充填し測定用試料とした。試料調製の収率を表2に示した。

名古屋大学年代測定総合研究センターのタンデトロン加速器質量分析計2号機（High Voltage Engineering Europe社製、オランダ）によって、試料の¹⁴C/¹²C、¹³C/¹²C比を測定し、¹⁴C年代を算出した。本研究では、INTCAL98（図2）を用いて¹⁴C年代を乾燥暦年代に換算した（Stuiver et al., 1998）。

図1. 試料調製
表2．試料調製の収率

<table>
<thead>
<tr>
<th>資料No.</th>
<th>化学処理</th>
<th>化学処理収率(%)</th>
<th>精製</th>
<th>精製後の炭素吸収量(mg)</th>
<th>資料中の炭素吸収率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50.4</td>
<td>54.1</td>
<td>67.3</td>
<td>7.5</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>55.1</td>
<td>19.4</td>
<td>22.8</td>
<td>7.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>92.0</td>
<td>22.9</td>
<td>24.9</td>
<td>7.6</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>102.4</td>
<td>46.1</td>
<td>45.0</td>
<td>7.2</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>53.9</td>
<td>5.3</td>
<td>9.9</td>
<td>5.3</td>
<td>2.9</td>
</tr>
<tr>
<td>6</td>
<td>51.4</td>
<td>36.0</td>
<td>70.0</td>
<td>7.7</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>94.6</td>
<td>9.1</td>
<td>9.8</td>
<td>6.1</td>
<td>3.0</td>
</tr>
<tr>
<td>8</td>
<td>76.3</td>
<td>47.7</td>
<td>62.5</td>
<td>7.3</td>
<td>3.4</td>
</tr>
<tr>
<td>9</td>
<td>89.5</td>
<td>9.3</td>
<td>10.4</td>
<td>7.3</td>
<td>3.9</td>
</tr>
<tr>
<td>10</td>
<td>97.9</td>
<td>56.1</td>
<td>57.3</td>
<td>7.3</td>
<td>3.9</td>
</tr>
<tr>
<td>11</td>
<td>68.9</td>
<td>22.5</td>
<td>32.7</td>
<td>6.9</td>
<td>3.7</td>
</tr>
<tr>
<td>12</td>
<td>94.5</td>
<td>35.3</td>
<td>37.4</td>
<td>7.3</td>
<td>3.9</td>
</tr>
<tr>
<td>13</td>
<td>82.9</td>
<td>14.5</td>
<td>17.5</td>
<td>7.6</td>
<td>4.8</td>
</tr>
<tr>
<td>14</td>
<td>73.3</td>
<td>26.5</td>
<td>36.1</td>
<td>5.1</td>
<td>2.6</td>
</tr>
<tr>
<td>15</td>
<td>85.5</td>
<td>47.2</td>
<td>55.2</td>
<td>7.4</td>
<td>4.1</td>
</tr>
<tr>
<td>16</td>
<td>80.2</td>
<td>9.0</td>
<td>11.2</td>
<td>5.5</td>
<td>2.6</td>
</tr>
<tr>
<td>17</td>
<td>74.5</td>
<td>39.4</td>
<td>52.9</td>
<td>7.1</td>
<td>3.8</td>
</tr>
<tr>
<td>18</td>
<td>76.8</td>
<td>32.1</td>
<td>41.0</td>
<td>5.4</td>
<td>2.0</td>
</tr>
<tr>
<td>19</td>
<td>81.4</td>
<td>15.0</td>
<td>18.5</td>
<td>6.3</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>100.2</td>
<td>29.6</td>
<td>29.6</td>
<td>7.5</td>
<td>4.0</td>
</tr>
<tr>
<td>21</td>
<td>97.9</td>
<td>8.0</td>
<td>8.2</td>
<td>5.0</td>
<td>1.1</td>
</tr>
<tr>
<td>22</td>
<td>81.8</td>
<td>29.7</td>
<td>36.3</td>
<td>7.4</td>
<td>4.7</td>
</tr>
<tr>
<td>23</td>
<td>65.9</td>
<td>24.8</td>
<td>37.6</td>
<td>5.9</td>
<td>3.1</td>
</tr>
<tr>
<td>24</td>
<td>13.0</td>
<td>6.3</td>
<td>48.5</td>
<td>4.7</td>
<td>2.6</td>
</tr>
<tr>
<td>25</td>
<td>68.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>26</td>
<td>80.5</td>
<td>9.6</td>
<td>12.0</td>
<td>7.2</td>
<td>3.4</td>
</tr>
<tr>
<td>27</td>
<td>71.7</td>
<td>15.2</td>
<td>21.2</td>
<td>7.0</td>
<td>3.3</td>
</tr>
<tr>
<td>28</td>
<td>102.2</td>
<td>63.3</td>
<td>61.9</td>
<td>6.6</td>
<td>4.0</td>
</tr>
<tr>
<td>29</td>
<td>86.6</td>
<td>13.1</td>
<td>13.1</td>
<td>6.8</td>
<td>3.1</td>
</tr>
<tr>
<td>30</td>
<td>70.8</td>
<td>25.0</td>
<td>35.4</td>
<td>5.5</td>
<td>2.6</td>
</tr>
<tr>
<td>31</td>
<td>97.7</td>
<td>5.5</td>
<td>5.6</td>
<td>5.5</td>
<td>1.3</td>
</tr>
<tr>
<td>32</td>
<td>68.0</td>
<td>32.1</td>
<td>47.2</td>
<td>6.3</td>
<td>3.5</td>
</tr>
<tr>
<td>33</td>
<td>75.5</td>
<td>13.6</td>
<td>18.0</td>
<td>5.3</td>
<td>2.6</td>
</tr>
<tr>
<td>34</td>
<td>31.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>35</td>
<td>49.8</td>
<td>32.1</td>
<td>64.4</td>
<td>7.5</td>
<td>4.6</td>
</tr>
<tr>
<td>36</td>
<td>70.5</td>
<td>20.1</td>
<td>28.5</td>
<td>7.8</td>
<td>3.5</td>
</tr>
<tr>
<td>37</td>
<td>70.5</td>
<td>47.4</td>
<td>67.2</td>
<td>5.8</td>
<td>3.6</td>
</tr>
<tr>
<td>38</td>
<td>77.1</td>
<td>2.7</td>
<td>3.5</td>
<td>2.7</td>
<td>1.5</td>
</tr>
<tr>
<td>39</td>
<td>70.1</td>
<td>51.4</td>
<td>73.4</td>
<td>6.8</td>
<td>3.8</td>
</tr>
<tr>
<td>40</td>
<td>80.1</td>
<td>2.4</td>
<td>4.0</td>
<td>2.4</td>
<td>1.3</td>
</tr>
<tr>
<td>41</td>
<td>73.5</td>
<td>5.2</td>
<td>7.1</td>
<td>5.2</td>
<td>2.2</td>
</tr>
<tr>
<td>42</td>
<td>83.4</td>
<td>32.1</td>
<td>38.5</td>
<td>5.7</td>
<td>2.6</td>
</tr>
<tr>
<td>43</td>
<td>63.2</td>
<td>34.2</td>
<td>54.0</td>
<td>6.4</td>
<td>3.1</td>
</tr>
<tr>
<td>44</td>
<td>97.5</td>
<td>26.5</td>
<td>27.1</td>
<td>7.3</td>
<td>4.5</td>
</tr>
<tr>
<td>45</td>
<td>82.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
</tr>
<tr>
<td>46</td>
<td>83.4</td>
<td>18.0</td>
<td>21.6</td>
<td>6.5</td>
<td>3.0</td>
</tr>
<tr>
<td>47</td>
<td>30.3</td>
<td>8.8</td>
<td>28.7</td>
<td>5.1</td>
<td>2.3</td>
</tr>
<tr>
<td>48</td>
<td>33.1</td>
<td>21.5</td>
<td>64.8</td>
<td>6.8</td>
<td>3.6</td>
</tr>
<tr>
<td>49</td>
<td>48.0</td>
<td>32.8</td>
<td>68.5</td>
<td>6.1</td>
<td>4.1</td>
</tr>
<tr>
<td>50</td>
<td>98.5</td>
<td>48.8</td>
<td>56.5</td>
<td>6.9</td>
<td>3.6</td>
</tr>
<tr>
<td>51</td>
<td>71.9</td>
<td>11.2</td>
<td>15.6</td>
<td>8.0</td>
<td>2.5</td>
</tr>
<tr>
<td>52</td>
<td>54.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>53</td>
<td>98.0</td>
<td>76.2</td>
<td>77.8</td>
<td>7.8</td>
<td>4.6</td>
</tr>
<tr>
<td>54</td>
<td>55.2</td>
<td>24.1</td>
<td>43.6</td>
<td>7.6</td>
<td>4.8</td>
</tr>
<tr>
<td>55</td>
<td>107.9</td>
<td>27.3</td>
<td>25.3</td>
<td>5.9</td>
<td>2.9</td>
</tr>
<tr>
<td>56</td>
<td>101.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
</tr>
</tbody>
</table>
図2. 較正曲線(INTCAL98)
＜結果および考察＞

¹⁴C 年代測定の結果を、表 3 および図 3 に示した（¹⁴C 年代の誤差は 1σ である）。全体としては、土器の相対年代が新しくなるにつれて、較正年中頭も新しくなる傾向がみられる。但し、資料 No. 34, 45 の二点は、他の同時期の資料に比べて古い較正年中頭を示している。これらは、土器の胎土を多く含む資料であり、その炭素含有率は約 4%～5%であった。それゆえ、この古い年代値の一因は、土器の胎土中に含まれている古い年代をもった炭素の影響にあると考えられる。

弥生時代前期の遠賀川式（資料 No.1）の土器について得られた較正年中頭は、較正曲線が横ばいになる時期にあたるため、前 8 世紀中頭から前 5 世紀末頭にわたる大きな誤差が示されている。

弥生時代中期に相当する資料（資料 No. 2-23）については、前4世紀から前3世紀に測定値が集中している。特に、II 期の資料では、前 4 世紀前半に較正年中頭の確率の高いものが現われ、愛知・石川県における弥生時代中期の始まりがこの時期に求められる可能性が高いといえる。一方、中期の終わりについては、資料 No. 23（中期 IV）が前 1 世紀後半から後1世紀半ばという結果を示しているが、現在は一例のみであるため、測定例を蓄積した上での議論が今後必要となるであろう。

弥生時代後期および後期後半の資料（No.24-44）について、その較正年中頭は前1世紀中頭から3世紀前半におよぶ結果が得られている。特に、月影 I 式（資料 No. 37）の較正年中頭は、1σ で 83～132 [cal AD]、2σ で 72～220 [cal AD] と得られ、AD169年という年輪年代とは 2σ の範囲で一致する結果であった。しかしながら、2 世紀頃の欧米産樹木と日本産樹木の¹⁴C 年代には系統誤差がある可能性も示唆されており（Sakamoto et al., 2003）、厳密な議論をするためには、日本の較正曲線を作成した上での年頭較正が必要であると考えている。

弥生時代後期後半と古墳時代前期との境界期の資料（資料 No.45-50）では、較正年中頭が多く、3 世紀半ばから 4 世紀初頭頃の値を示している。また、古墳時代前期の資料（資料 No.51-55）では、2 世紀中頭から 4 世紀前半にわたる較正年中頭が得られている。

古墳時代中期宇田- I 式の資料（資料 No. 56）については、408～429 [cal AD] （1σ）という較正年中頭が得られており、年輪年代から判断される5世紀初頭頃という年代とも矛盾しない結果であった。
<table>
<thead>
<tr>
<th>資料No.</th>
<th>古生物学年代</th>
<th>^{14}C年代測定の結果</th>
<th>標準値年代</th>
<th>検定code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>未定義</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注: NUTASは、国際原子力機関の測定基準値である。
図 3. 考古学的年代と較正暦年代
＜謝辞＞
愛知県埋蔵文化財センターの皆様、ならびに、石川県埋蔵文化財センターの皆様からは、貴重な資料を多く提供して頂くとともに、資料を採取する際にお世話になりました。記して深く感謝いたします。

＜参考文献＞
赤塚次郎（2003）中部・近畿地方の弥生・古墳時代編年の現状と課題。「第5回考古科学シンポジウム発表要旨」，79-84。

Sakamoto, M., Imamura, M., van der Plicht, J., Mitsutani, T. and Sahara, M.

Stuiver, M., Reimer, P. J., Bard, E., Back, J. W., Burr, G. S., Hughen, K. A., Kromer, B.,

光谷拓実（2000）埋蔵文化財ニュース。「年輪年代法の最新情報—弥生時代～飛鳥時代—」，38p.
AMS 14C dating and chronological investigation of pottery in the Yayoi and Kofun periods excavated from Aichi and Ishikawa Prefectures

Masanori KINOSE1, Hirotaka ODA2, Jiro AKATSUKA3, Naoto YAMAMOTO4, Toshio NAKAMURA2

1) Graduate School of Environmental Studies, Nagoya University
2) Center for Chronological Research, Nagoya University
3) Aichi Prefecture Archaeological Research Center
4) Graduate School of Letters, Nagoya University

Abstract

Archeological age of pottery is a relative age based on the typological and stratigraphic analyses. Accelerator mass spectrometry (AMS) is a useful method for radiocarbon dating of charred-carbonaceous material on the potsherd. The carbonaceous material attached on inside or outside surface of the sherd is residues of food or soot from fuels used at the time of cooking. Therefore, the calibrated 14C age should be the age of pottery usage. The purpose of this study is to provide AMS 14C ages for the pottery samples of the Yayoi and Kofun periods in Aichi and Ishikawa Prefectures. The samples had been excavated from Tukinawate, Asahi, Kadomanuma and Hachioji sites in Aichi Prefecture as well as Fujie-B, Yokaichi-jikata, Shimoyasuhara, Higashi-matoba-takenohana, Nekohashi, Ohtomo-nishi, Ohnagano and Sendai-nomi sites in Ishikawa Prefecture, central Japan.

14C/12C and 13C/12C ratios of 56 pottery samples were measured with AMS. The AMS 14C ages were calibrated to calendar dates by using the INTCAL98 data.

The calibrated ages of pottery samples were compared with their archeological ages. The starting age of the middle Yayoi period in Aichi and Ishikawa Prefectures was assigned to around BC 4th century. The starting age of the early Kofun period in Aichi and Ishikawa Prefectures was assigned to around AD 3rd century. Samples (Nos.37 and 56) have known ages determined with dendrochronological method. The calibrated 14C ages of No.37 and No.56 samples coincided with the dendrochronological ages.