§ 8 導体が存在する場合の電場と静電ポテンシャル

導体が電荷と共存する系の静電場では、電荷分布はあらかじめ固定されたものではなく、電荷がつくる外部電場により、導体表面には誘起電荷が生ずる。これは導体特有の性質による。このような導体の性質について考える。導体と電荷からなる簡単な系では、導体が満足すべき境界条件を、仮想的な電荷を置くことで実現し、導体を仮想的点電荷で置き換えることが出来る。結果として、ポアッソン、ラプラスの方程式を解くことなしに、電場を求めることが出来る。鏡像法と呼ばれる。この方法により、導体表面に誘起される電荷の問題、実現する電場の問題などを考える。

1）導体の性質と静電誘導

様々な固体物質を、電気伝導性によって大別すれば、金属 Cu 線に代表されるような電気良導体と、ガラスや SiO₂などの電気不良導体（絶縁体）の二種類になる。その中間の特性を持つ物質は半導体であるが、条件によって電気伝導性が大きく変化し、良導体にもなるし不良導体にもなるものが利用価値が大きい半導体である。金属の特徴は、原子に束縛されることなく自由に移動できる伝導電子（自由電子）が高密度で存在していることである。金属の高い電気伝導性は、これらの伝導電子が担っている。

電気伝導性の高い金属を理想的に考えたものが、電磁気学で言う導体である。導体の性質は以下のように規定することができる。

（1）導体の内部でポテンシャルは常に一定。導体を接地（アース）して、

導体電位を 0 とすることも出来るし、電源に接続して電位を与えることも出来る。しかし、φ は一定であるから、E = −gradφ より、内部での電場は常に 0 である。

（2）導体の内部に電荷は存在せず、表面のみに現れる、

（3）孤立した導体の表面に誘起される電荷の総和は 0 である。

（4）導体表面の電場は導体表面に垂直で、その大きさは、σ を導体表面での電荷面密度とすると、(E)ₘ = σ/ε₀ である。
静電場の中に導体が置かれると、導体内の電荷は導体内部を自由に移動できるので、電場の方向に移動し、孤立した導体では、その境界面で止まる。従って、その反対側の表面には負電荷が現れ、導体表面に正負の電荷が誘起される。このように誘起された表面電荷による電場は、導体内部では、電場のポテンシャル一定。電場ベクトルが外部電場を打ち消すように作用し、導体内の電荷は両電場が導体内で打ち消されるまで移動する。このように、外部電場によって導体表面の電荷分布が変化する。これは静電誘導と呼ばれる（図 8-1）。

金属で考えると、自由に移動できる電荷は伝導電子であるので、負電荷

の電子が外部の正電荷に引き寄せられる為、相対的に負電荷の電子が過剰となる部分ができる。その為、その反対側には正電荷が過剰となる部分が現れると思えば良い。

2）導体表面の電場

導体表面の電場に関する（4）の性質は、次の様にして得られる。（1）の性質より、導体表面は等電位面であるから、導体表面の電場はこれに垂直である。図 8-2 に示すように導体表面 S に平行な面 S₁, S₂ を外部と内部に考える。この二つの面は S を平行に挟み、両者は十分に最近しているものとする。上面を S₁, 底面を S₂, 側面を S₃ とする円筒状の体積 V を考えて、これに電荷定理を使う。
\[\int_\Omega \rho(x) d^3x = \int_S \mathbf{E}(x) \cdot \mathbf{n} dS \]

左辺の体積分は(体積内部の電荷/\(\varepsilon_0\))である。電荷は表面のみに存在するから、上面の面積を \(S_1=S\) として、電荷の面密度を \(\sigma\) とすると、 \((\alpha S)/\varepsilon_0\) となる。右辺の面積分は、上下の面 \(S_1\) と \(S_2\)、側面の \(S_3\) の面積分の和になる。

\[
\int_S \mathbf{E}(x) \cdot \mathbf{n} dS = \int_{S_1} \mathbf{E} \cdot \mathbf{n} dS + \int_{S_2} \mathbf{E} \cdot \mathbf{n} dS + \int_{S_3} \mathbf{E} \cdot \mathbf{n} dS
\]

上下の面 \(S_1\) と \(S_2\) を接近させれば、側面 \(S_3\) に関する積分は、\(dS_3 \to 0\) で \(\mathbf{E} \cdot \mathbf{n} dS\) を

図 8-2. 導体表面に考える扁平な円筒体積。

考えることになるので無視できる。下面 \(S_2\) は導体内部にあるので \(\mathbf{E}(x) = 0\) であり、この面積分も 0 である。残るのは、上面 \(S_1\) に関する面積分だけである。\(\mathbf{E}(x)\) は表面に垂直で、\(S_1\) と \(S\) は平行で、限りなく接近しているから、面 \(S_1 \to S\) では \(\mathbf{E}(x) \cdot \mathbf{n} = (E)_n\) であり、

\[
\int_{S_1} \mathbf{E} \cdot \mathbf{n} dS = (E)_n S
\]

となる。故に、\(\alpha S/\varepsilon_0 = (E)_n S\) である。従って、導体表面の電場は、

\[
|\mathbf{E}| = (E)_n = \frac{\sigma}{\varepsilon_0}
\]

となる。図 8-2 の導体表面は、拡大して考えれば、平面と見なすことが出来る。
§ 3-30 で計算したように、電荷が x, y 平面上に一样な密度 σ で分布している場合、
面外の電場は、この xy 面に垂直な z 成分のみを持ち、その大きさは一定で、

$$(E)_z = \frac{\sigma}{2\varepsilon_0} \frac{z}{|z|} \quad (§ 3-30)$$

であった。ただし、z が正の領域では、正の値、z が負の領域では負の値となる。
これらの絶対値は (8-1) の半度半分の値である。

導体内部の電場 = 0 の条件（1）が重要である。図 8-3 に示すように、

![図 8-3](image-url)

導体内部では、$E=0$ であるから、表面電荷による電場とその他の電荷による電場は相互に打ち消し合う。導体の外部表面では、
両者は同じ方向をもつので、加算され (σ/ε_0) となる。

導体表面の表面電荷密度が σ であるなら、(§ 3-30)から、この表面電荷による
導体内部の電場は $-\sigma/(2\varepsilon_0)$ である。この電場は、他の電荷がつくる外部電場と導
体内部では打ち消し合う必要がある。故に、外部電場は $\sigma/(2\varepsilon_0)$ でなければなら
ないことになる。これは導体の性質（1）に基づいている。即ち、導体内部
では、表面電荷による電場 $-\sigma/(2\varepsilon_0)$ と他の電荷による外部電場 $+\sigma/(2\varepsilon_0)$ が打ち消し
合って 0 である。しかし、導体の外部表面では、表面電荷による電場 $+\sigma/(2\varepsilon_0)$ と
他の電荷による電場 $+\sigma/(2\varepsilon_0)$ の和となり、(8-1) の 電場の値 (σ/ε_0) となる。

3）金属内部の電位、仕事関数、フェルミ順位

導体表面の電荷は、その表面電荷自体からは力を受けないが、それら以外の
電荷分布による外部電場、$E' = \sigma/(2\varepsilon_0)$、からは力を受ける。この力は外向きの
力である。単位面積当たりの力の大きさは,

\[f = \sigma E = \frac{1}{2} \frac{\sigma^2}{\varepsilon_0} = \frac{1}{2} \varepsilon_0 |E|^2 \] \hspace{1cm} (8-2)

となる。最後の等式は、導体の外部表面の電場 (8-1), \(|E| = \langle E \rangle = \frac{\sigma}{\varepsilon_0}\) を用いた表現である。導体は金属の性質を理想的に考えたものであるので、(8-1)と(8-2)は、金属内部、金属表面の電位や金属の仕事関数に関する議論に関連する。

(8-2)からすると、金属表面の”正電荷”は表面から外向きの力を受ける。しかし、金属の内部や表面を自由に移動する”電荷”とは、負の電荷 (−e) を持つ電子である。従って、現実の電荷である電子は、金属内部に向けた力を受け、通常の状態では、金属表面から電子が外に飛び出して来ることはない。しかし、金属を加熱したり、紫外線などの光を金属表面に照射すると、電子は金属表面から外に飛び出してくることが知られている。それぞれ、熱電子の放出、光電効果による電子の放出の現象である。金属内部の電子は、外部に電子が置かれた状態に比べて、安定化しており、その安定化エネルギーを解消する熱エネルギーや光エネルギーを外部から受け取る。そこで、金属内部の電子が外部に放出されると考えねばならない。金属内電子のこの安定化エネルギー（正の値として）は金属の仕事関数と呼ばれ、それぞれの金属は固有の仕事関数の値を持つが、2~5 eV 程度の値である。

電子は負の電荷を持っているので、電子のポテンシャルエネルギーは、単位正電荷のポテンシャルエネルギーで定義した電位と逆符号の関係（図 8-4）にある。電位が高い状態は、電子のポテンシャルエネルギーが低く、電子にとってはより安定な状態である。「電流は正の電荷の流れ」として定義するので、電流は高い電位の場所から電位の低い場所に流れると考えられる。しかし、「電流は負電荷の電子の流れ」と理解すると、電位の低い場所から電位の高い場所に電子は流れることになる。しかし、これは電子のポテンシャルエネルギーからすると、高い場所から低い場所への流れなので、電子にとっては、自然な変化、自発的に起こる変化、となっている。
図 8-4. 一次元で考えた金属内部の電位（φ）、電子のポテンシャルエネルギー（-e）φ、仕事関数（w）、フェルミ準位。

外部電場が無い場合を考える。金属内部では自由に移動できる伝導電子が、外部に飛び出してこない事実からも、金属内部で伝導電子は外部よりも安定な状態にあることが判る。これは電子のポテンシャルエネルギー（-e）φ が、図 8-4-B のような状況にあることを意味する。電子は金属というポテンシャルの井戸の中にあり、余分なエネルギーをもたらない限り外部で出ることは無い。この井戸の深さ w が仕事関数である。しかし、この同じ状況を、電位（-e）φ（＝単位正電荷のポテンシャルエネルギー）で考えると、図 8-4-A となる。電位（-e）φ は、符号が逆だからである。現実金属では移動できる電荷は伝導電子だから、図 8-4-A の電位（-e）φそのものを描いてもあまり意味がない。その為、φの正を下向き、-φを上向きとして取って、（-e）φの代わりに使うこともある。

金属と外部との境界（x＝a, b）での状況を考える場合には、電子を無限遠から金属表面に接近させるに必要な準静的仕事として、電子のポテンシャルエネルギーを求めねばならない。電荷としての電子を金属導体に接近させると誘導電荷が
生じるので、図 8-4-A、B の境界部のポテンシャルの形状は、ステップ関数で描いてあるが、もう少し複雑な形となる。これについては後の § 8-5 で再度議論する。

光電効果では、飛び出てくる電子の運動エネルギー $E_d(e^-)$、金属表面に照射した光の振動数 ν、プランク定数 h、仕事関数 W、とすると,

$$E_d(e^-) = \hbar \nu - W \tag{8-3}$$

が成立する。図 8-4-B に描いた井戸の底の電子のポテンシャルエネルギーの値は、フェルミ準位と呼ばれる。また、これより仕事関数 W だけ高い準位は、真空準位と呼ばれ、電位で言えば $\phi = 0$ に相当し、電子のポテンシャルエネルギー $(-e)\phi = 0$ の準位である。図 8-4-B では金属表面における電子のポテンシャルエネルギー $(-e)\phi$ を 0 にして考えていることになる。ただし、エネルギーより 0 の基準は何処に取って良いので、どの都度便利のように指定することも多い。

ところで、現実金属の電子のポテンシャルエネルギーは量子化されており、エネルギーの低い準位から順番に電子が詰まっている。電子には二つのスピン状態があり得るので、電子の総数の 2 倍のエネルギー準位（軌道）が考えられるが、スピン状態も指定した一つの準位（軌道）を複数の電子が占める場合は許されず、一つの準位（軌道）は一つの電子のみが占有できる（パウリの排他原理）。

そのため、電子は低いエネルギー準位（軌道）から順番に準位（軌道）を占めてゆく。準位（軌道）の数は電子の数より大きいから、電子はある準位まで占めるが、それ以上の準位には存在しない。

このようにして、フェルミ準位の $(-e)\phi$ のエネルギーレベルまでは、電子が詰まっており、残りの高いエネルギー準位には電子が存在しない状況が出来上がる。フェルミ準位は、金属電子ポテンシャルエネルギーの最高値である。金属内部を自由に移動できる伝導電子とはフェルミ準位のエネルギーを持つ電子のことである。ただし、このような状態は絶対 0 K に近い状態の金属を考えた場合で、温度が高ければ、電子はフェルミ準位より高いエネルギー準位を取ることも出来る。熱的に励起された電子が、ポテンシャル井戸の外に出て来ることもあり得る。熱電子の放出はこのような状況に当たる。
4）導体表面と点電荷の系：鏡像法の例

図 8-5-a は、接地された半無限の導体と一つの電荷からなる単純な系である。この導体が満足すべき境界条件（\(\phi = 0 \)）は、図 8-5-b のように、仮想的な電荷を置き、導体と置き換えることで実現できる。ポアッソソ、ラプラスの方程式を

図 8-5-a. 導体が \(x < 0 \) の領域を占め、正の点電荷 \(Q \) が点 \((a, 0, 0)\) に置かれた系。導体は接地されており、導体の電位は 0 とする

図 8-5-b. 正の点電荷 \(Q \) が \((a, 0, 0)\) にあるので、仮想的な反対の電荷 \(-Q\) を \((-a, 0, 0)\) に置き、導体を取り扱う。\(x = 0 \) の \(yz \) 面の電位は 0 となり、図 8-5-a での導体の境界条件となる。
解くこと無しに、誘導電荷の影響も含めた電場を求めることができることが出来る。このように導体を仮想的点電荷で置換し、導体の境界条件を満足させる考え方は鏡像法（method of images）と呼ばれる。

導体は \(x \leq 0 \) の領域を占め、正の点電荷 \(Q \) が点 \((a, 0, 0)\) に置かれている。導体は接地されており、導体の電位は 0 であるから、導体表面（yz 面）の電位は 0 でなければならない（図 8-5-a）。この境界条件は、仮想的な点電荷-\(Q \) を点 \((-a, 0, 0)\) に置き、導体を取り除けば実現できる（図 8-5-b）。導体は \(x \leq 0 \) の領域を占めており、ここでは電位は 0 としているのだから、導体内部の電位や電場を考える必要は無い。従って、図 8-5-b で、\(x \geq 0 \) の領域の電位と電場だけを考える。電位は、次の和で与えられる。

\[
\phi = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{\sqrt{(x-a)^2 + y^2 + z^2}} - \frac{1}{\sqrt{(x+a)^2 + y^2 + z^2}} \right]
\]

(8-4)

yz 面上の任意の点 \((0, y, z)\) で \(\phi = 0 \) である。

電場は、\(E(x) = -\text{grad} \phi(x) \) で与えられるから、電場の各成分は、以下のようになる。

\[
E_x(x) = -\frac{\partial \phi(x)}{\partial x} = \frac{Q}{4\pi\varepsilon_0} \left(\frac{x-a}{[(x-a)^2 + y^2 + z^2]^{3/2}} - \frac{x+a}{[(x+a)^2 + y^2 + z^2]^{3/2}} \right)
\]

(8-5-1)

\[
E_y(x) = -\frac{\partial \phi(x)}{\partial y} = \frac{Q}{4\pi\varepsilon_0} y \left(\frac{1}{r_1^3} - \frac{1}{r_2^3} \right)
\]

(8-5-2)

\[
E_z(x) = -\frac{\partial \phi(x)}{\partial z} = \frac{Q}{4\pi\varepsilon_0} z \left(\frac{1}{r_1^3} - \frac{1}{r_2^3} \right)
\]

(8-5-3)

これより、yz 面上の任意の点 \((0, y, z)\) での電場は、その \(y, z \) 成分は 0 となるが、\(x \) 成分は 0 ではない。

\[
E_x(x=0) = \frac{Q}{4\pi\varepsilon_0} \left(\frac{-a}{r_1^3} - \frac{a}{r_2^3} \right) = -\frac{Q}{2\pi\varepsilon_0} \left[\frac{a}{(a^2 + y^2 + z^2)^{3/2}} \right]
\]

(8-6)

yz 面上の任意の点電場は \(x \) 成分のみが 0 ではないので、導体表面の電場は表面に垂直である。導体表面に誘導された電荷の面密度 \(\sigma \) は、(8-1)から、

\[
|E| = (\mathbf{E})_n = \sigma / \varepsilon_0
\]

(8-1)
であるから，

\[
\sigma = \varepsilon_0 (E)_n = -\frac{Q}{2\pi} \left[\frac{a}{(a^2 + y^2 + z^2)^{3/2}} \right] \tag{8-7}
\]
となる．\(\sqrt{(a^2 + y^2 + z^2)} \)は，導体表面の点と \((a,0,0)\)に置いた電荷 \(Q\)との距離であるから，導体表面に誘導された電荷の面密度\(\sigma\)は，この距離の3乗に反比例する．そして，座標原点 \((0, 0, 0)\)に対応する導体表面で面密度\(\sigma\)は\(Q/(2\pi a^2)\)の最大値となり，原点から離れるにしたがって，（距離）\(^3\)で急速に0に近づく．

誘導表面電荷の総量は，(8-7)の面密度\(\sigma\)を，\(yz\)面全体で積分すれば求められる．

図 8-6. \(yz\)面に分布する誘導電荷を求める為の面積分要素は\(\sigma(r) \text{ } r \text{ } d \text{ } r \text{ } d \theta\)である．

\(yz\)面上の点\((0, y, z)\)を二次元の極座標\((\mathbf{r}, \theta)\)で表現すると，面密度は

\[
\sigma = \varepsilon_0 (E)_n = -\frac{Q}{2\pi} \left[\frac{a}{(a^2 + y^2 + z^2)^{3/2}} \right] = -\frac{Q}{2\pi} \left[\frac{a}{(a^2 + r^2)^{3/2}} \right]
\]
となり，\(r\)のみの関数である．従って，\(yz\)面上の全電荷は，図 8-6 に示すように，\(\sigma(r) \text{ } r \text{ } d \text{ } r \text{ } d \theta\)を\(r=0\)→\(\infty\)，\(\theta=0\)→\(2\pi\)で積分する．

\[
\int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \sigma(r) \text{ } r \text{ } d \text{ } r \text{ } d \theta = \int_{r=0}^{\infty} \sigma(r) \text{ } r \text{ } dr \int_{\theta=0}^{\pi} \text{ } d \theta = 2\pi \int_{r=0}^{\infty} \sigma(r) \text{ } r \text{ } dr
\]

106
\[
2\pi \int_{r=0}^{\infty} \left\{ -\frac{Q}{2\pi} \left(\frac{a}{a^2 + r^2} \right) \right\} dr = -aQ \int_{r=0}^{\infty} \left(1/(a^2 + r^2) \right)^{1/2} dr
\]

（1/(a^2 + r^2)^{1/2}）=-r/(a^2 + r^2)^{3/2} であるから

\[
aQ \int_{r=0}^{\infty} \left(1/(a^2 + r^2) \right)^{1/2} dr = aQ(-1/a) = -Q
\]

図 8-5-a で(a, 0, 0)の点に置いた電荷 Q の反対符号の電荷 (-Q) が境界面に誘導されていることがわかる。

5）冷陰極放電とトンネル効果

金属内部で電子が安定化していることは、§ 8-3 で、仕事関数、フェルミ準位、真空準位に関連させて述べた。光電効果や加熱によって、金属内部の電子は外部に放出されるが、ここでは、金属に電場を作用させた場合にも電子が放出される現象を考える。これは冷陰極放電と呼ばれる。金属の外側が正電位で金属は相対的に負電位側にあることが陰極と呼ばれる理由である。従って、外部電場は電極外部から電極内部を向く。冷陰極との言葉は加熱する訳ではないとの意味である。放電は電子が飛び出していくことで電流が流れることを言う。この現象は、後に述べるように、江崎ダイオードや固体表面の原子レベルでの凹凸を直接観察する走査型トンネル電子顕微鏡の作動原理につながる。

図 8-5-a では金属の外部に電荷 Q をおいて金属導体の表面電場を考えた。ここでは、金属表面には外部電場 E_{ex} が作用しているものとする。この条件で無限遠方から電荷 (+e) を持つ電子をこの金属表面に準静的には接触させる。これに必要な外力のなす仕事、即ち、電子のポテンシャルエネルギー (-e)\phi を考える。

負電荷 (+e) を持つ電子を外部から接近させるのだから、図 8-5-a の鏡像電荷を (+e) として考えれば良い。鏡像電荷による電場を E_{im} とすると、電子が感じる電場 E は、外部電場 E_{ex} とこの E_{im} の和である。もちろん電子自身の電荷による電場は感じない。E_{im} の向きは x の正方向で、その大きさは

\[
E_{im} = \frac{1}{4\pi\varepsilon_0} \frac{(+e)}{(2x)^2}
\]

である。+e は鏡像電荷で、x を金属表面と電子の距離とすると、2x が鏡像電
荷と電子の距離になるので, この電場の大きさは(8-9)となる. 表面の誘導電荷は正であるから, 電子には x の負方向の力が作用する. これは外部にて来た電子を減速して元に戻すように作用する.

一方, 外部電場 E_{ex} は, 外に出して来た電子を減速して元に戻してしまうのであれば, 今の状況では意味が無いので, 外部にさらに移動させるように電子を加速する状況を考える. 従って, 外部電場 E_{ex} から電子が受ける力, (-e)E_{ex} は x 軸の正方向でなければならない. だから, 外部電場 E_{ex} の向きは x 軸の負方向である. もし, 外部電場の向きが, x 軸の正方向なら, 外部にて来た電子の速度を減速し, 元に戻してしまう効果しか持たない. また, 外部電場 E_{ex} がゼロならば, それは § 8-3 で議論した状況で, 出て来た電子は電場で加速されることも減速されることもない. この三つの条件は図 8-8 でも説明している.

したがって, 電子が外部電場と鏡像電場から受ける力 (f_e) は,

\[f_e = (-e)E = (-e)(-E_{ex}) + \frac{1}{4\pi\varepsilon_0} \frac{(-e)(+e)}{(2x)^2} = eE_{ex} - \frac{1}{4\pi\varepsilon_0} \frac{e^2}{(2x)^2} \]

(8-10)

である.

この電子に働く力 f_e = (-e)E に反対符号を付けて, 無限遠から x まで積分すれば, それは外力が電子を行った準静的な仕事, 即ち, 電子のポテンシャルエネルギー (e\phi)である.

\[\int f_e \, dx = \int eE \, dx = \int [-eE_{ex} + \frac{1}{4\pi\varepsilon_0} \frac{e^2}{(2x)^2}] \, dx \]

外部電場は境界の近くの x から少し離れた d までは一定で, これより遠いと 0 と考える. だから,

\[\int (-eE_{ex}) \, dx = \int_{x}^{d} (-eE_{ex}) \, dx + \int_{d}^{x} (-eE_{ex}) \, dx = -eE_{ex}(x - d) = -eE_{ex}x + C \]

である. C は定数である. 一方, 鏡像電荷による部分は,

\[\frac{e^2}{16\pi\varepsilon_0} \int_{x}^{y} \frac{1}{x^2} \, dx = \frac{e^2}{16\pi\varepsilon_0} \left[\frac{1}{x} \right]_{x}^{y} = \frac{-e^2}{16\pi\varepsilon_0} x \]

となる. 故に, 電子のポテンシャルエネルギー (e\phi) は,
\[-e\phi = \int_{x}^{x} (-f_e)dx = -eE_{ex}x + C - \frac{e^2}{16\pi\varepsilon_0 x} \]

となる。電子のポテンシャルエネルギーが 0 である基準として、この場合は、
フェルミ準位を採用すると、

\[-e\phi = w - eE_{ex}x - \frac{e^2}{16\pi\varepsilon_0 x} \quad (8-11)\]

と表現できる。これは鏡像電荷の寄与を無視した時、境界である \(x = 0 \) での電子
のポテンシャルエネルギー \(-e\phi\) が、フェルミ準位より仕事関数 \(w \) だけ高い
真空準位であると仮定したことを意味する。鏡像電荷の寄与は、\(x \) が 0 に近づ
くにつれて大きくなるが、表面でのポテンシャルの細かな状況は無視した仮定
である。その結果を図 8-8 に模式的に示す。

図 8-8. 正の外部電場のもとで無限遠から金属表面に電子が接近する際の電子のポテンシャルエネルギー。外部電場無い場合に比べてポテンシャル障壁が低くなる。

(8-11)によれば、電子のポテンシャルエネルギー \(-e\phi\) は表面近傍で極大値を持ち
ることになる。 (8-11)の両辺を \(x \) で微分して、極大値の位置を求めると、即ち、

\[\frac{d(-e\phi)}{dx} = -eE_{ex} + \frac{e^2}{16\pi\varepsilon_0 x^2} = 0 \rightarrow x = \frac{1}{4\sqrt{\frac{e}{\pi\varepsilon_0 E_{ex}}}} \quad (8-12)\]
となる。この \(x \) の値を(8-11)に代入すれば、(-e)\(\psi \) の極大値が得られる。

\[
[(e)\psi]_{\text{max}} = w - \frac{1}{4} \sqrt{\frac{e^3 E_{\text{ex}}}{\pi \epsilon_0}} - \frac{1}{4} \sqrt{\frac{e^3 E_{\text{ex}}}{\pi \epsilon_0}} = w - \frac{e^3 E_{\text{ex}}}{4 \pi \epsilon_0}
\]

故に,

\[
w - [(e)\psi]_{\text{max}} = \sqrt{\frac{e^3 E_{\text{ex}}}{4 \pi \epsilon_0}}
\]

(8-13)

図 8-8 にも示したように、\(E_{\text{ex}} = 0 \) の真空準位の場合に比べて、(8-13)の分だけ、飛び出す電子に取っての障壁は低くなっている。これは外部電場によってポテンシャル障壁が低下し、電子は飛び出し易くなることを意味する。ショットキー効果と呼ばれる。

\(E_{\text{ex}} = 0 \) の場合も含めて、鏡像電荷による(-e)\(\psi \)への寄与は、(8-11)の第２項の

\(-e^3/(16 \pi \epsilon_0 x)\)

として常に存在するので、ステップ関数や折れ線で模式的に描いたポテンシャル障壁は、現実にはやや緩やかな勾配を持ち、角は丸くなっていると考えるべきである。

冷陰極放電に関する(8-11~13)は、古典論的な結果である。しかし、現実の冷陰極に関する実験データは、(8-11~13)からは全てが上手く説明できないことが判っている。外部電場を大きくしていった時、放電電流は、(8-11~13)から予想されるよりも遥かに大きな値となるからである。この矛盾は、量子力学のトンネル効果によって説明される。トンネル効果による電子の障壁透過率は、障壁の厚さに大きく支配される。詳しい議論は量子力学のテキストにゆずり、ごく定性的な説明を図 8-9 に示す。

外部電場を 0 から \(E_{\text{ex1}} = 0 < E_{\text{ex2}} < E_{\text{ex3}} \) と順次増大させてゆく時、一定の(-e)\(\psi \)の値でのポテンシャル障壁の幅は、\(d_1 (= \infty) > d_2 > d_3 \) と減少する。この順に外部に透過してくる電子は多くなる。障壁の高さだけではなく、障壁の幅を小さくすることに外部電場が貢献している。低温でも外部電場を大きくすれば、このトンネル効果で電子が飛び出してしまう。二つの導体または半導体の間に薄い絶縁体を挟み外部電圧をかければ、絶縁体の薄膜障壁をくぐり抜ける電子が生じる。江崎玲於奈が発見したトンネルダイオードの原理である。また、数ポルトの
図 8-9. 異なる外部電場(E_{ex1}, E_{ex2}, E_{ex3})のもとでの電子のポテンシャルエネルギーベールの”厚さ(d_1, d_2, d_3)”の変化。鏡像電荷による効果は外部電場 E_{ex3} の場合は省略している。

電位差でも、尖った針状の電極を表面に接近させば、大きな電場が得られるので、電子は移動し、トンネル効果で電流が流れる。このような電流が一定になるように針状の電極(探針、probe と呼ばれる)の高さを制御し、その値を記録しながら、固体表面を走査すれば、表面の原子レベルの凹凸を記録したことになる。走査型トンネル電子顕微鏡(STM; Scanning tunneling electron microscope)の作動原理である。

α-変換やβ変換によって、荷電粒子が原子核内部から外部に一定の確率で放出される。このような現象も、古典論的には説明が出来ない。量子力学のトンネル効果によって説明が可能になる。金属内部の伝導電子が外部に放出される冷陰極放電の現象も、このトンネル効果が関与している。電子は本来は量子論的な実在物だからである。
6) 異種金属の接触電位

異種の金属、例えば Cu と Zn、を接触させると、電位差が生じる。これは接触電位差と呼ばれる。18 世紀末のボルダ(Volda, A.)の時代から知られている現象である。この電位差は、金属の仕事関数が各金属によって異なり、それぞれの金属が固有の値を持つことによる。この状況を図 8-10-a, b に模式的に

図 8-10. 異なる金属の接触電位差。a: 金属 A と B は d は大きく離れており、その表面はどれも真空準位にあるとする。しかし、b: 両者を接触させると (d は十分小さい)、(−e)φ の大きな A の電子の一部はトンネル効果で B に移動出来るようになる。この電子の移動は、その結果、A 表面は正に帯電し、B 表面は負に帯電し、仕事関数の差に相当する電気電位差が生じる。
示す。図 8-10-a, b は、前節の図 8-7-9 で考えた一つの金属 A の表面に、もう一つの金属 B の表面を反対向きにして、接近させ接触させる前後の状況を示している。

A と B の表面が十分離れている場合（図 8-10-a）では、A と B の表面は共に真空準位にあるとする。この準位は、電荷をもつの物質から十分な遠方にある 0 K の希薄な電子ガスが持つポテンシャルエネルギー(-e)φ に相当する。0 K は運動エネルギーを持たないとの意味で、希薄な電子ガスとは、隣の電子とも十分に離れておりその相互作用は無視できるとの意味である。そのような状況では、φ=0 であるとして良い。ポテンシャル障壁の形は、前節で議論した電子が接近することによる鏡像電荷の効果を無視して、ステップ関数のように簡略化して描いている。（図 8-10-a）の両金属が十分に接近すると、両者の境界は、金属電子にとって非常に薄いポテンシャル障壁となる。接触状態で界面間隔 d が原子間距離程度に薄くなれば、電子はトンネル効果でその障壁を透過できるようになる（図 8-10-b）。

図 8-10-a で、金属の表面の電位を真空電位にそろえた時、両金属の仕事関数が異なり、フェルミ準位が異なる為、金属内部の電子のポテンシャルエネルギー(-e)φ は金属 A の方が高い。しかし、障壁が厚い場合（図 8-10-a）は透過できないから、低いポテンシャルエネルギーの金属 B に移ることは出来ない。しかしながら、接触して障壁が薄くなった場合（図 8-10-b）、A の電子は B に移ることが出来る。両者の電子のポテンシャルエネルギー差が、電子移動の駆動力である。一方、電子が A から B に移動することで金属 A 界面は正に帯電し、B の表面は負に帯電する。接触面には電気二重層が成長し、電位は不連続となる。この電気二重層による電位の不連続は、電子の A から B への移動を抑制する。即ち、A が B に対して高電位であることは、(-e)(φA-φB)<0 であり、A の電子にとっては、A にとどまった方が安定である。だから、図 8-10-a で金属 A のフェルミ準位が高く、接触させれば（図 8-10-b）確かに、金属 A の電子は B に移動するが、同時に、この移動自体がこれを抑制する電気二重層を成長させる。電子の移動は、両方の効果が均衡する状態（平衡状態）が現実するまで持続す
る。平衡状態（図 8-10-b）での両金属の電位差は、最終的に実現した電気二重層の電位の不連続である。電子のポテンシャルエネルギーの差は仕事関数の差になるから。

\[(-e)\phi_B - (-e)\phi_A = w_B - w_A \]

である。このエネルギー差は上向きが正で、仕事関数と同じ \(eV \) を単位に持つ。 \(V \) 単位での電位差(\(\Delta V \))に直す為には両辺を \(e \)（電気素量）で割って、

\[\Delta V_{AB} = \phi_A - \phi_B = (w_B - w_A)/e \quad (8-14) \]

となる。この電位の不連続が異種金属の間の接触電位差である。図 8-10-a,b で電位は下向きが正であるから、(8-14)の値は下向きを正にして考える。仕事関数がより小さな金属 A の表面電位が B の表面電位より高い。