Lesson 3
Linear and Quadratic Inequalities

3A
• Inequalities of numbers
• Linear inequalities
Inequality signs

\[
\begin{align*}
 a < b & \quad \text{is less than } b \\
 a \leq b & \quad \text{is less than or equal to } b \\
 a > b & \quad \text{is greater than } b \\
 a \geq b & \quad \text{is greater than or equal to } b
\end{align*}
\]

Intervals

A (real) interval is a set of real number that lies between two numbers.

Closed interval \([a, b]\) \(\{x \in \mathbb{R} : a \leq x \leq b\}\)

Open interval \((a, b)\) \(\{x \in \mathbb{R} : a < x < b\}\)

Half-open interval \([a, b)\) \(\{x \in \mathbb{R} : a \leq x < b\}\)

Half-open interval \((a, b]\) \(\{x \in \mathbb{R} : a < x \leq b\}\)
Some Properties of Inequalities

1. Transitivity
 If \(a > b\) and \(b > c\), then \(a > c\).

2. Addition
 If \(a > b\), then \(a + c > b + c\).

3. Subtraction
 If \(a > b\), then \(a - c > b - c\).

4. Multiplication and Division
 If \(a > b\) and \(c > 0\), then \(ac > bc\) and \(\frac{a}{c} > \frac{b}{c}\).

 If \(a > b\) and \(c < 0\), then \(ac < bc\) and \(\frac{a}{c} < \frac{b}{c}\).

From the third property, we can derive the following by putting \(b = c\).

If \(a > c\), then \(a - c > 0\).
Example 1. Prove the following inequality \(\frac{a + b}{2} \geq \sqrt{ab} \quad (a \geq 0, \ b \geq 0) \)

Ans. \[
\frac{a + b}{2} - \sqrt{ab} = \frac{a + b - 2\sqrt{ab}}{2} = \frac{\sqrt{a^2 + b^2 - 2ab}}{2} = \frac{(\sqrt{a} - \sqrt{b})^2}{2} \geq 0
\]

Therefore \(\frac{a + b}{2} \geq \sqrt{ab} \)

Equality holds when \(a = b \).

[Note]
\(\frac{a + b}{2} \): Arithmetic mean
\(\sqrt{ab} \): Geometric mean

Example
\[
\frac{12 + 3}{2} = 7.5 \quad \sqrt{12 \times 3} = 6
\]
\[
\frac{8 + 7}{2} = 7.5 \quad \sqrt{8 \times 7} = 7.48
\]
\[
\frac{7.5 + 7.5}{2} = 7.5 \quad \sqrt{7.5 \times 7.5} = 7.5
\]
Linear Inequality

One balance weight has 100g. Let the weight of the apple be x. Then we have

$$x + 100 > 3 \times 100 \quad \therefore x > 200$$

Linear inequality \[ax + b > cx + d \]

\rightarrow \[ax - cx > d - b \]

\rightarrow Divide by $(a - c)$ but be careful of its sign.

Example 1. Solve the following inequality $4x - 2 > 10$

Ans. $4x - 2 > 10$

$\therefore 4x > 12$ \quad \leftarrow$ add 2 to both sides

$\therefore x > 3$ \quad \leftarrow$ divide by 4
The inequality in Example 1

\[4x - 12 > 0 \]

Corresponding to this, we consider

\[y = 4x - 12 \]

and illustrate this in the \(x-y \) plane.

The \(x \)-intercept is \(x = 3 \).

The domain corresponding to \(y > 0 \) is \(x > 3 \).

Therefore,

the solution. \(x > 3 \)
Exercise 1 Solve the following double inequality:

\[
\begin{align*}
7x - 1 & \geq 4x - 7 \\
x + 5 & > 3(1 + x)
\end{align*}
\]

Ans.

Pause the video and solve the problem.
Exercise 1 Solve the following double inequality

\[7x - 1 \geq 4x - 7 \]
\[x + 5 > 3(1 + x) \]

Ans. The first inequality

\[7x - 1 \geq 4x - 7 \quad \therefore \quad 3x \geq -6 \quad \therefore \quad x \geq -2 \quad (1) \]

The second equation

\[x + 5 > 3(1 + x) \quad \therefore \quad -2x > -2 \quad \therefore \quad x < 1 \quad (2) \]

The intersection of the two solutions

\[-2 \leq x < 1 \]
Lesson 3
Linear and Quadratic Inequalities

3B
• Quadratic Functions and Roots
• Quadratic Inequalities
Equations and Graphs of Functions

Quadratic Inequality

After rearrangement, quadratic inequality has the following standard form

$$ax^2 + bx + c > 0$$

[Review] Quadratic Functions and Roots

$$D = b^2 - 4ac$$

- Two real roots \(D = b^2 - 4ac > 0 \)
- Double root \(D = b^2 - 4ac = 0 \)
- No real root \(D = b^2 - 4ac < 0 \)

Case of \(a > 0 \)

Case of \(a < 0 \)
Steps to Solve Quadratic Inequalities

Step 1. Rearrange the inequality to the standard form

\[ax^2 + bx + c > 0 \]

Step 2. Illustrate the corresponding quadratic function

\[y = ax^2 + bx + c = a(x - p)^2 + q \]

Step 3. Solve the quadratic equation \(ax^2 + bx + c = 0 \) and find its roots \(\alpha \) and \(\beta \).

Step 4. Find the sign of \(y \) in each interval divided by \(\alpha \) and \(\beta \), and select the intervals which satisfy the inequality \(ax^2 + bx + c > 0 \).
Case of \(a > 0 \) and \(D = b^2 - 4ac > 0 \)

Example 2 Solve the inequality \(x^2 - 4x + 3 > 0 \)

Ans.
The standard form \(y = (x - 2)^2 - 1 \)

By factoring, we have \(y = (x - 1)(x - 3) \)

therefore, the roots are \(x = 1, \ x = 3 \)

The inequality is satisfied in the shaded domain.

The solution is \(x < 1, \ x > 3 \)
Example 3 Solve the inequality \[x^2 - 4x + 4 > 0 \]

Ans.
The standard form \[y = (x - 2)^2 \]

The graph has one contact point at \(x = 2 \).

Therefore, the answer is all real numbers except \(x = 2 \).
Case of \(a > 0 \) and \(D = b^2 - 4ac < 0 \)

Example 4 Solve the inequality \(x^2 - 4x + 5 > 0 \)

Ans.

The standard form \(y = (x - 2)^2 + 1 \)

The graph has no contact point

The solution of this inequality is all real numbers.
Exercise 2. Solve the following inequalities.

(1) \(-x^2 - 2x + 2 < 0\) \hspace{1cm} (2) \(x^2 + x + 2 < 0\)

Pause the video and solve the problem.
Exercise 2. Solve the following inequalities.

(1) \(-x^2 - 2x + 2 < 0\) (2) \(x^2 + x + 2 < 0\)

Ans. (1) The corresponding quadratic equation:

\(-x^2 - 2x + 2 = 0\)

The roots:

\[x = \frac{2 \pm \sqrt{(-2)^2 - 4(-1)(2)}}{2(-1)} = -1 \pm \sqrt{3}\]

From the figure:

\[x < -1 - \sqrt{3}, \quad x > -1 + \sqrt{3}\]

(2) \(D = 1^2 - 4 \times 1 \times 2 = -7 < 0\)

The graph \(y = x^2 + x + 2\) does not cross with the \(x\)-axis.

A parabola opening upward.

Therefore, there is no solution.
Exercise 3. Solve the following simultaneous inequalities.

\[x^2 + 4x + 3 > 0 \]
\[2x^2 + x - 6 \leq x^2 + 2x \]

Pause the video and solve the problem.
Exercise 3. Solve the following simultaneous inequalities.

\[
x^2 + 4x + 3 > 0
\]
\[
2x^2 + x - 6 \leq x^2 + 2x
\]

Ans. The first equation is

\[
x^2 + 4x + 3 = (x + 3)(x + 1) > 0
\]

The solutions are \(x < -3, \quad x > -1 \)

The second equation is

\[
(2x^2 + x - 6) - (x^2 + 2x) = x^2 - x - 6 = (x + 2)(x - 3) \leq 0
\]

Whose solution lies in the interval \(-2 \leq x \leq 3 \)

From the figure, we have

\[
-1 < x \leq 3
\]