Course III: Linear Algebra
Lesson 01	Basic Rules of Vectors
Lesson 02	Inner Product
Lesson 03	Vector Equations
Lesson 04	Basic Rules of Matrices
Lesson 05	Multiplication of Matrices
Lesson 06	Inverse Matrix and Simultaneous Equations
Lesson 07	Linear Transformation
Lesson 01
Basic Rules of Vectors

1A
- Definitions of vectors
- Basic rules
- Components of vectors
Scalars and Vectors

Scalar
• A scalar: a quantity described by a magnitude.
• Notation: normal italic type alphabet, Greek letters, etc.
 [Ex.] area A, temperature t, speed v, angle θ

Vector
• A vector: a quantity described by magnitude and direction.
 [Ex.] force, velocity
• A vector is commonly illustrated by “an arrow”.
• Typical notation: \mathbf{a}, \vec{a}, \overrightarrow{OP}
• The magnitude of a vector is denoted by $|\mathbf{a}|$ or a.
1. Equality \(\vec{a} = \vec{b} \)

Same magnitude and direction → they are equal.

2. Scalar Multiplication \(k\vec{a} \)

\(k \): a scalar

\(k > 0 \)

\(k < 0 \)
3. Addition

Sum = the diagonal of the parallelogram

\[
\vec{b} + \vec{a} = \vec{a} + \vec{b}
\]

Sum = the closing third side.

\[
\vec{a} + \vec{b}
\]

4. Subtraction

\[
\vec{b} + \overrightarrow{BA} = \vec{a}
\]

Therefore

\[
\overrightarrow{BA} = \vec{a} - \vec{b}
\]
Basic Laws of Vectors

1. Commutative law
 \[\vec{a} + \vec{b} = \vec{b} + \vec{a}\]

2. Associative law
 \[(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})\]

3. Distributive law
 \[k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}\]
[Examples 1-1] Let $\vec{p} = 3\vec{a} + 2\vec{b}$ and $\vec{q} = -2\vec{a} + \vec{b}$. Answer the following questions. (1) Find \vec{x} which satisfies the equation. $3(\vec{x} - \vec{q}) = 2\vec{p} + \vec{x}$

(2) Find \vec{x} and \vec{y} which satisfy

$$
\begin{aligned}
2\vec{x} - 3\vec{y} &= \vec{p} \quad \text{(i)} \\
\vec{x} + \vec{y} &= \vec{q} \quad \text{(ii)}
\end{aligned}
$$

Ans.

(1) Substituting \vec{p} and \vec{q}, we have

$$
3\vec{x} - 3(-2\vec{a} + \vec{b}) = 2(3\vec{a} + 2\vec{b}) + \vec{x}
\quad \therefore \quad \vec{x} = \frac{7}{2} \vec{b}
$$

(2) From (i) $-$ (ii)$\times 2$, we have

$$
-5\vec{y} = \vec{p} - 2\vec{q}
\quad \therefore \quad \vec{y} = -\frac{1}{5} \vec{p} + \frac{2}{5} \vec{q} = -\frac{1}{5} (3\vec{a} + 2\vec{b}) + \frac{2}{5} (-2\vec{a} + \vec{b}) = -\frac{7}{5} \vec{a}
$$

From (ii), we have

$$
\vec{x} = \vec{q} - \vec{y} = (-2\vec{a} + \vec{b}) - (-\frac{7}{5} \vec{a}) = -\frac{3}{5} \vec{a} + \vec{b}
$$
[Ex.1-1] Find \(\vec{x} \) and \(\vec{y} \) which satisfy the following equation

\[
\begin{align*}
3\vec{x} + 2\vec{y} &= \vec{a} \quad (i) \\
4\vec{x} - 3\vec{y} &= \vec{b} \quad (ii)
\end{align*}
\]

Ans.

Pause the video and solve the problem by yourself.
[Ex.1-1] Find \vec{x} and \vec{y} which satisfy the following equation

\[
\begin{aligned}
3\vec{x} + 2\vec{y} &= \vec{a} \\
4\vec{x} - 3\vec{y} &= \vec{b}
\end{aligned}
\]

Ans.

From Eq.(i) $\times 3$, we have $9\vec{x} + 6\vec{y} = 3\vec{a}$

From Eq.(ii) $\times 2$, we have $8\vec{x} - 6\vec{y} = 2\vec{b}$

Adding, we have $17\vec{x} = 3\vec{a} + 2\vec{b}$

$\therefore \vec{x} = \frac{3}{17}\vec{a} + \frac{2}{17}\vec{b}$

$\therefore \vec{y} = -\frac{3}{2}\vec{x} + \frac{1}{2}\vec{a} = -\frac{3}{2}\left(\frac{3}{17}\vec{a} + \frac{2}{17}\vec{b}\right) + \frac{1}{2}\vec{a} = \frac{4}{17}\vec{a} - \frac{3}{17}\vec{b}$
Lesson 01
Basic Rules of Vectors

1B
• Components of Vectors
Components of a Vector

Unit Vector

Vector whose length is 1

$$\vec{e} = \frac{\vec{a}}{|\vec{a}|} \quad |\vec{e}| = 1$$

Basic Unit Vector

$$\vec{i} = (1, 0) \quad \text{and} \quad \vec{j} = (0, 1)$$

Components of Vector

$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} = (a_1, a_2)$$

Component
Vector Connecting Two Points

Vector Connecting A and B

\[\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} \]

\[= (x_2, y_2) - (x_1, y_1) \]

\[= (x_2 - x_1, y_2 - y_1) \]

Length AB

\[|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
Position Vector

If we select the initial point of the vector at the origin, a point is designated by a vector.

Vector Connecting A and B

$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$
Example

[Examples 1-2] Find the position vector of point C which divide the line connecting $A(\vec{a})$ and $B(\vec{b})$ internally in the ratio $m : n$.

Ans.

\vec{AC} and \vec{CB} have the same direction.

Magnitudes $|\vec{AC}| : |\vec{CB}| = m : n$

Therefore

$n(\vec{x} - \vec{a}) = m(\vec{b} - \vec{x})$

∴ $\vec{x} = \frac{n\vec{a} + m\vec{b}}{(m + n)}$
Exercise

[Ex1-2] Find the position vector \vec{g} of the center of gravity of the Δ ABC. The position vectors of A, B, and C are \vec{a}, \vec{b} and \vec{c}.

[Note] The center of gravity is given by the point which divide the line AM by the ratio 2:1 where M is the center of side BC.

Ans.

Pause the video and solve the problem by yourself.
[Ex1-2] Find the position vector \mathbf{g} of the center of gravity of the ΔABC. The position vectors of A, B, and C are \mathbf{a}, \mathbf{b} and \mathbf{c}.

Ans.

The center of side BC is $\mathbf{m} = \frac{\mathbf{b} + \mathbf{c}}{2}$

Since the center of gravity G divides the line AM internally in the ratio 2:1, we have

$$\mathbf{x} = \frac{\mathbf{a} + 2\mathbf{m}}{2 + 1} = \frac{\mathbf{a} + 2\left(\frac{\mathbf{b} + \mathbf{c}}{2}\right)}{3} = \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3}$$