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The electric field E� along the magnetic field B in nonlinear magnetosonic waves in a
three-component plasma is studied with theory based on a three-fluid model and with fully kinetic,
electromagnetic, particle simulations. The theory for small-amplitude ���1� pulses shows that the
integral of E� along B, F=−�E�ds, is proportional to ��pe0− pp0� in warm plasmas, where pe0 and pp0

are, respectively, the electron and positron pressures, and proportional to �2mivA
2 / �1+vA

2 /c2�3 in cold
plasmas, where vA is the Alfvén speed. These predictions are verified with simulations. Furthermore,
for shock waves with ��O�1�, simulation values are consistent with the phenomenological relation
ne0eF����vA

2 +�epe0��ni0 /ne0�, where � is the mass density and �e is the specific heat ratio. These
results indicate that E� can be strong in strong magnetic fields. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2972159�

I. INTRODUCTION

In the ideal magnetohydrodynamics, the electric field
parallel to the magnetic field, E�, is exactly zero,1–3 and it has
been generally thought that E� is quite weak and thus its
integral along the magnetic field, F=−�E�ds, is small in low-
frequency phenomena in high-temperature plasmas; since E�

contains both longitudinal and transverse components, the
quantity F will be referred to as the parallel pseudopotential
in this paper. In some particle simulations on electron accel-
eration in magnetosonic shock waves, however, the observed
values of F were quite large.4 Recently, therefore, the paral-
lel electric field in nonlinear magnetosonic waves has been
quantitatively analyzed with theory and electromagnetic par-
ticle simulations.5 The theory and simulations show that F
can be large �E� can be intense�, especially when the external
magnetic field B0 is strong. The parallel pseudopotential F is
given as eF���eTe in small-amplitude pulses in a warm
plasma with electron temperature Te, where � is the wave
amplitude, and �e is the specific heat ratio of electrons. In a
cold plasma such that �2mivA

2 ���eTe, where vA is the Alfvén
speed, however, it is given as eF��2mivA

2 . Furthermore, it
was found that the simulation results for large-amplitude
shock waves with ��O�1� fit fairly well to the phenomeno-
logical relation eF���mivA

2 +�eTe�.
The parallel electric field also plays a crucial role in the

positron acceleration6 in oblique shock waves in an electron-
positron-ion �e - p - i� plasma �for e - p - i plasmas, see, for in-
stance, Refs. 7–16, and references therein�. Indeed, the time
rate of change of the Lorentz factor � of a positron acceler-
ated with this mechanism is proportional to E�, i.e.,
�p

−1d� /dt= �c /vsh��E ·B� / �B ·B0�, where �p is the positron
gyrofrequency, vsh is the shock propagation speed, and B is
the total magnetic field at the position of the positron. The
Lorentz factors reached �2000 by the end of the simulation
run, �pet=5000. Furthermore, the simulations revealed an

important feature that the positron acceleration becomes
weak as the positron density np0 increases. This would also
be explained if expressions for E� and F are known.

It is thus desirable to obtain the parallel electric field in
e - p - i plasmas. A theory for nonlinear magnetosonic waves
in e - p - i plasmas was developed in Ref. 17, which was, how-
ever, based on the cold plasma model �T=0� and gave E�

=0; the theory therefore cannot be used for the positron ac-
celeration mentioned above. In this paper, extending the
work of Ref. 5 to three-component plasmas, we study the
parallel electric field E� and parallel pseudopotential F in
nonlinear magnetosonic waves in an e - p - i plasma with
theory and simulations.

In Sec. II, we derive the linear dispersion relation of
magnetosonic waves propagating obliquely to an external
magnetic field in an e - p - i plasma with finite temperatures.
The dispersion relation depends on the propagation angle 	
as well as the densities and magnetic-field strength, and the
dispersion vanishes in the long-wavelength region �the fre-
quency � is proportional to the wavenumber k� at a critical
angle 	c. This angle decreases from 	c�88° to zero as the
positron-to-electron density ratio rises from zero to unity. In
Sec. III, we develop a nonlinear theory for small-amplitude
waves and obtain E� and F. It is found that the parallel
pseudopotential is proportional to ���epe0−�ppp0� in a warm
plasma, where pe0 and pp0 are, respectively, the electron and
positron pressures. For the cold plasma with zero tempera-
tures, we carry out higher order calculations and find that F
is proportional to �2mivA

2 / �1+vA
2 /c2�3. In both cases, F de-

creases with increasing positron density, which accounts for
the simulation result6 that the positron acceleration becomes
weak as np0 increases. In a more detailed discussion, we also
show the effect of the critical angle 	c. In Sec. IV, we exam-
ine E� and F by means of one-dimensional, fully kinetic,
electromagnetic, particle simulations. First, we test the
small-amplitude theory described in Sec. III and find that the
simulation results are explained by the theory. Next, we ob-
serve F in large-amplitude shock waves with ��O�1� anda�Electronic mail: ohsawa@nagoya-u.jp.
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find that the observed F’s are consistent with the phenom-
enological expression ne0eF����vA

2 +�epe0��ni0 /ne0�, where
� is the mass density. In Sec. V, we summarize our work. It
is mentioned that E� can be quite strong in high magnetic
fields such as those around pulsars.

II. LOW-FREQUENCY, LINEAR MAGNETOSONIC
WAVE IN THREE-COMPONENT PLASMA
WITH FINITE TEMPERATURES

We obtain here the linear dispersion relation for magne-
tosonic waves in a three-component plasma consisting of
electrons, positrons, and ions with finite temperatures. The
set of fluid equations may read as

�nj

�t
+ � · �njv j� = 0, �1�

njmj	 �

�t
+ �v j · ��
v j = njqjE +

njqj

c
v j 
 B − �pj , �2�

	 �

�t
+ �v j · ��
pj = − � jpj � · v j , �3�

where the subscript j refers to the electrons �j=e�, positrons
�j= p�, or ions �j= i�, and � j denotes the specific heat ratio.

These equations are coupled with Maxwell equations. Since
the phase velocity of the magnetosonic wave in an e - p - i
plasma can be fast, comparable to the speed of light c, the
displacement current is included.

By using the mass density,

� = �
j

nj0mj , �4�

where the subscript 0 refers to equilibrium quantities, we
define the Alfvén speed vA as

vA = B0/�4���1/2 �5�

and ṽA as

ṽA
2 =

vA
2

1 + vA
2 /c2 . �6�

Furthermore, we introduce the speeds related to the thermal
speeds vTj = �Tj /mj�1/2,

cj
2 = � jvTj

2 = � j
pj0

nj0mj
. �7�

From the above set of equations, we derive the linear
dispersion relation of magnetosonic waves propagating in the
x direction in an external magnetic field B0

=B0�cos 	 ,0 , sin 	�. In the limit of �→0, we obtain

c2

ṽA
2 −

c2

vmp0
2 −

sin2 	

vmp0
2 �

j

�pj
2 cj

2/� j
2

1 − cj
2 cos2 	/vmp0

2 + tan2 	��
j

�pj
2 /� j

2

1 − cj
2 cos2 	/vmp0

2 
2���
j

�pj
2

1 − cj
2 cos2 	/vmp0

2 
 = 0, �8�

where �pj is the plasma frequency, � j is the gyrofrequency,
and vmp0 is the phase velocity � /k in the low frequency limit
�for the details of the calculations, see Appendix A�. Assum-
ing that the temperatures are low,

cj
2

vmp0
2 � 1, �9�

we ignore higher order terms of cj
2 /vmp0

2 . We then have

vmp0
2 =

vA
2 + cs

2 sin2 	

1 + vA
2 /c2 , �10�

where cs is the sound speed,

cs = �ni0�iTi0 + np0�pTp0 + ne0�eTe0

ni0mi + np0mp + ne0me

1/2

. �11�

If we calculate the phase velocity up to the terms of
order k2 �see Appendix B�,

�

k
= vmp0�1 + �k2� , �12�

we find the dispersion coefficient � as

� = −
vmp0

2 ṽA
2

2c2 	��
j

�pj
2

� j
4 
 −

ṽA
2

c2 sin2 	
��

j

�pj
2

� j
3 
2


+
ṽA

2

c2 sin2 		��
j

�pj
2

� j
4 cj

2
 −
ṽA

2

c2 sin2 	
��

j

�pj
2

� j
3 



��
j

�pj
2

� j
3 cj

2

 +
ṽA

2

c2�p
2 cos2 	��

j

�pj
2

� j
3 



��
j

�pj
2

� j
cj

2
 −
ṽA

6cs
2

2c4vA
2 tan2 	

��
j

�pj
2

� j
3 
2

. �13�

The sign of � is important in nonlinear waves. The solitary
wave of the magnetosonic wave becomes compressive or
rarefactive, according to �
0 or ��0.18–20 In the limit of
Tj =0, Eq. �13� reduces to

� = −
ṽA

4

2c2	��
j

�pj
2

� j
4 
 −

ṽA
2

c2 sin2 	
��

j

�pj
2

� j
3 
2
 . �14�

The critical angle 	c, at which � becomes zero, is given as
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sin 	c =
�ṽA/c��� j�pj

2 /� j
3�

�� j�pj
2 /� j

4�1/2 �15�

for Tj =0; we see that ��0 for 0
	
	c, and �
0 for 	c


	
� /2. Figure 1 shows the dependence of the critical
angle 	c given by Eq. �15� on the positron-to-electron density
ratio for the case with mi /me=1836, −qe=qp=qi=e, and
��e� /�pe=1. As np0 /ne0 increases from zero to unity, 	c goes
down from 88.1° to 0°. The decrease is particularly rapid for
np0 /ne0�0.8. If the propagation angle is 	=89°, for in-
stance, it is greater than 	c at all values of np0 /ne0. If 	
=85°, however, it becomes equal to 	c at np0 /ne0=0.8007.

Outside the vicinities of np0 /ne0=1 and the critical den-
sity ratio at which � becomes zero, ��� increases with in-
creasing np0 /ne0. For vA

2 /c2�1, one finds that

�pj
2

� j
4 =

4�c4

e2B0
4 nj0mj

3, �16�

vA
2

c2 sin2 	
��pj

2

� j
3 
2

=
4�c4

e2B0
4 sin2 	

nj0
2 mj

4

�
. �17�

These relations indicate that the ion terms are dominant in
Eq. �14�. Moreover their difference,

�pi
2

�i
4 −

vA
2

c2 sin2 	

�pi
4

�i
6 �

�pi
2

�i
4	�ne0 + np0

ni0

me

mi
−

cos2 	

sin2 	

 ,

�18�

is also greater than both the electron and positron terms, i.e.,

��pi
2

�i
4 −

vA
2

c2 sin2 	

�pi
4

�i
6 � �

�pi
2

�i
4

me

mi
�

�pe
2

�e
4 , �19�

except for the vicinities of �ne0+np0� /ni0

= �mi /me�cos2 	 /sin2 	 and np0 /ne0=1. We thus have

� � −
vA

2

2�i
2

ni0mi

�
	�ne0 + np0

ni0

me

mi
−

cos2 	

sin2 	

 , �20�

which gives

� � −
vA

2

2�i
2

�ne0 + np0�me

�
�21�

for 	�	c and

� �
vA

2

2�i
2

�ne0 − np0�mi

�

cos2 	

sin2 	
�22�

for 	
	c. Equations �21� and �22� both clearly show that ���
increases with increasing np0 /ne0.

III. NONLINEAR MAGNETOSONIC WAVES

Next, we obtain the parallel electric field, E� = �E ·B� /B,
and parallel pseudopotential, F=−�E�ds, in nonlinear mag-
netosonic waves. We discuss the finite-temperature case in
Sec. III A and zero-temperature case in Sec. III B. In both
cases, using the smallness parameter � ��1�, we introduce
stretched coordinates,21,22

� = �1/2�x − vmp0t� , �23�

� = �3/2t , �24�

and expand the plasma variables as18–20

nj = nj0 + �nj1 + �2nj2 + ¯ , �25�

pj = pj0 + �pj1 + �2pj2 + ¯ , �26�

v jx = �v jx1 + �2v jx2 + ¯ , �27�

v jz = �v jz1 + �2v jz2 + ¯ , �28�

Ey = �Ey1 + �2Ey2 + ¯ , �29�

Bz = B0 sin 	 + �Bz1 + �2Bz2 + ¯ , �30�

v jy = �3/2v jy1 + �5/2v jy2 + ¯ , �31�

Ex = �3/2Ex1 + �5/2Ex2 + ¯ , �32�

Ez = �3/2Ez1 + �5/2Ez2 + ¯ , �33�

By = �3/2By1 + �5/2By2 + ¯ . �34�

A. Warm plasma

Applying the above expansion to the three-fluid model
and retaining the first order of cj

2 /vmp0
2 , we obtain the follow-

ing Korteweg–de Vries �KdV� equation �for the details, see
Appendix C�:

�Bz1

��
+

1

2
�vmp0

Bz1

B0

�Bz1

��
− �vmp0

�3Bz1

��3 = 0, �35�

where � is the nondimensional quantity defined as

75

80

85

90

0 0.2 0.4 0.6 0.8 1

θ c

np0/ne0

|Ωe|/ωpe = 1

θ = 89o

θ = 85o

FIG. 1. Critical angle 	c as a function of np0 /ne0. If the angle 	 is 89°, it is
always greater than 	c. If the angle is 85°, it is smaller than 	c for np0 /ne0


0.8007.
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� =
ṽA

2

vA
2 sin 		3 +

cs
2

ṽA
2 �− 5 sin2 	 + 3�

+
vA

2 sin2 	

ṽA
2c2 ��

j

�pj
2

� j
2 cj

2� j

 . �36�

In this perturbation scheme, the lowest-order, parallel
electric field is given as

E� = �3/2�Ex1 cos 	 + Ez1 sin 	� . �37�

Substituting Eq. �C28� in Eq. �37� yields

E� = �3/2− 4�e�ne0ce
2 − np0cp

2 − ni0Zci
2�

�p
2 sin 	 cos 	

�

��
�Bz1

B0

 ,

�38�

where Z is the ionic charge state, qi=Ze, and �p
2 is defined as

�p
2 = �

j

�pj
2 . �39�

From Eq. �38�, we find the parallel pseudopotential as

eFT = ���pe
2

�p
2 �eTe −

�pp
2

�p
2 �pTp −

�pi
2

�p
2

�iTi

Z

sin 	

Bz1

B0
. �40�

Here, we have used the subscript T to emphasize that F is a
function of the temperatures in this case. Since me=mp�mi,
the contribution of Ti is small; FT is determined primarily by
the difference of the electron and positron pressures. It is
noted that as np0 /ne0 increases, FT decreases. A comparison
of Ex1 �Eq. �C30��, Ez1 �Eq. �C31��, and E� �Eq. �38�� shows
that the terms mainly due to magnetic pressure disappear in
E�, i.e., Eq. �C30� and the first term in Eq. �C31� cancel in
the sum Ex1 cos 	+Ez1 sin 	.

If np0 /ne0=1 and Tp=Te, the longitudinal electric field
Ex vanishes, i.e., there appears no charge separation.8 More-
over, as Eqs. �38� and �40� show, E� and F become zero,
although E� contains the transverse component. In addition,
Eqs. �C30�, �C31�, and �C37� indicate that Ex1=Ez1=By1=0.

B. Cold plasma

In the limit of Tj =0, the parallel electric field Eq. �38�
and pseudopotential Eq. �40� vanishes. We now discuss E�

and F in this limit by taking into account higher order terms
�for the details of calculation, see Appendix D�. We may
write the parallel electric field up to the second order terms
as

E� =
E · B

B
=

E1 · B0

B0
�1 −

B1 · B0

B0
2 
 +

E1 · B1

B0
+

E2 · B0

B0
.

�41�

If Tj =0, the lowest order term becomes zero,

E1 · B0

B0
= �3/2�Ex1 cos 	 + Ez1 sin 	� = 0. �42�

Furthermore, we see from Eqs. �C7� and �C8� that the term
E1 ·B1 is zero even when Tj�0,

E1 · B1 = �5/2�Ey1By1 + Ez1Bz1� = 0. �43�

We thus have E� =E2 ·B0 /B0. By virtue of Eqs. �D2�, �D7�,
and �D8�, we find the parallel electric field in the three-fluid
model in the zero temperature limit as

E� = �5/2�Ex2 cos 	 + Ez2 sin 	�

= �5/2 4�ṽA
4

B0
2 tan 	

��
j

nj0mj
2

qj

� c

�p

2 �3

��3�Bz1

B0

 , �44�

from which we obtain the parallel pseudopotential as

FB = − �2 4�ṽA
4

B0
2 sin 	

��
j

nj0mj
2

qj

� c

�p

2 �2

��2�Bz1

B0

 , �45�

for which the magnetic pressure is important; the subscript B
is used to show this. In the cold plasma approximation, the
parallel pseudopotential is proportional to �2 and, if vA

2 �c2,
proportional to B0

2, which differs from the finite-temperature
case in which F is proportional to � and to temperature. If
ni0� �me /mi�ne0, Eqs. �44� and �45� can be approximated as

eE� = �5/2 miṽA
2

tan 	�1 + vA
2 /c2�

� c

�p

2 �3

��3�Bz1

B0

 , �46�

eFB = − �2 miṽA
2

sin 	�1 + vA
2 /c2�

� c

�p

2 �2

��2�Bz1

B0

 . �47�

In the limit of np0=0 ��p��pe�, Eq. �47� reduces to F in the
two-fluid model in the cold plasma limit.5

At np0 /ne0=1, both E� and F are zero, which we see
from Eqs. �44� and �45�. Thus, the relation E� =0 holds for
both warm and cold plasmas if np0 /ne0=1.

For a stationary solitary pulse with a magnetic-field am-
plitude Bz1=Bz1peak, the peak value of F is given as

eFpeak = −
miṽA

2

4
	 �ne0 − np0�mi

�




� 1

Z2 −
me

2

mi
2
 �c/�p�2

�
� ṽA

vA

4�Bz1 peak

B0
�
2

. �48�

Figures 2 and 3 show the dependence of Fpeak on the positron
density; here, we have normalized F to the value of F at
np0=0. In Fig. 2, the propagation angle is 	=89° and is
greater than 	c for all values of np0 /ne0. The value of Fpeak

monotonically decreases as np0 /ne0 varies from zero to unity.
In Fig. 3, 	 is 85° and becomes equal to 	c at np0 /ne0

=0.8007; Fpeak diverges at this density ratio. Outside this
small region, however, Fpeak decreases with increasing
np0 /ne0. In fact, by substituting � given by Eqs. �21� and
�22� in Eq. �48�, we can express the dependence of F on
np0 /ne0 for the case vA

2 �c2 as

F �
1 − np0/ne0

�1 + np0/ne0��1 + np0/ne0 + �1 − np0/ne0�me/mi�
�49�

for 	�	c and
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F �
1

1 + np0/ne0 + �1 − np0/ne0�me/mi
�50�

for 	
	c. These indicate that except for the vicinity of the
critical density ratio, F decreases with increasing np0 /ne0.

The behavior of the electric potential � is quite different
from that of F. We have an analytic expression for � as

� =
ṽA

4B0

c3 sin 	
�

j

�pj
2

� j
3 �Bz1

B0
�
 , �51�

from which we see its density dependence as

��� � ṽA
4�ne0 − np0� . �52�

As np0 /ne0 rises, ṽA and thus ��� increase. The electric po-
tential does not diverge at any value of np0 /ne0. Figure 4
shows the electric potential � as a function of np0 /ne0; the
parameters are the same as those in Fig. 3. For most of the
region, 0
np0 /ne0�0.998, � increases with np0 /ne0. As
shown in Fig. 5, it rapidly goes down to zero in a very
narrow region, 0.998�np0 /ne0�1.

In the simulations in the next section, F is mainly dis-
cussed, because E� is easily masked by thermal noise and is
more difficult to measure. With the help of the relation
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F
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FIG. 2. Peak value of F of the solitary wave as a function of np0 /ne0. Here,
	 is 89° and is greater than 	c.
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FIG. 3. Peak value of F of the solitary wave. Here, 	 is 85° and is smaller
than 	c for np0 /ne0
0.8007, for which F is negative.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

|φ
/φ

(n
p0

=
0)

|

np0/ne0

|Ωe|/ωpe = 1

FIG. 4. Electric potential � vs np0 /ne0. Although 	 is 85°, there is no
singularity.
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FIG. 5. Electric potential � near np0 /ne0=1.
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F = −� E�ds = −� E�

B

Bx0
dx , �53�

we can make an order estimation of E� by using F,

�E�� �
Bx0

�B�
F

�
, �54�

where � is the width of a shock transition region �or the
width of a soliton� and the brackets indicate the average over
this region. Equation �54� is consistent with the relation be-
tween E� and F in warm plasmas �Eqs. �38� and �40�� and
with that in cold plasmas �Eqs. �44� and �45��. Similarly, we
have �Ex��� /� and find that

�E��
�Ex�

�
Bx0

�B�
F

�
. �55�

IV. SIMULATION OF WAVE EVOLUTION
AND PARTICLE ACCELERATION

We now study the parallel electric field by means of
one-dimensional, fully kinetic, electromagnetic, particle
simulations,23 in which we generate magnetosonic pulses and
observe their propagation. We take the mass ratios to be
mi /me=400 and mp /me=1, with their charges qi=qp=−qe.
The speed of light is c / ��pe�g�=10, where �g is the grid
spacing, and the ion thermal velocity is fixed to be
�Ti /mi�1/2 / ��pe�g�=0.013. We test high �FT�FB� and low
�FB�FT� beta cases �beta is the ratio of thermal to magnetic
pressures�; in the former, the magnetic-field strength and
electron thermal velocity are, respectively, ��e� /�pe=0.5 and
vTe / ��pe�g�=2.0 �Te=60Ti�, and in the latter, ��e� /�pe=1.0
and vTe / ��pe�g�=0.26 �Te=Ti�. In both cases, Tp is equal to
Te.

We discuss small-amplitude pulses and shock waves
separately below. In the former, the system length is L
=2048�g with the total number of electrons Ne�4.9
106,
while in the latter, L=16384�g with Ne�6.1
105. �We use
a greater number of simulation particles for the small-
amplitude case to reduce noise.24�

A. Small-amplitude pulses

First, we examine small-amplitude pulses and compare
them with the nonlinear theory in Sec. III. Figure 6 shows
the magnitude of F in a small-amplitude pulse with 	=88° as
a function of np0 /ne0 for the case FT�FB. Both the theory
�40� �solid line� and simulation results �dots� decrease with
increasing np0 /ne0. Here, since the theory �40� for FT pre-
dicts that F is proportional to the amplitude � �and thus F /�
should be independent of ��, we have plotted the values of
F /�; and they are normalized to the value of F /� at
np0 /ne0=0. The pulse amplitudes used in Fig. 6 were in the
range 0.075
Bz1 /B0
0.085.

The method of measurement of F, which is small and
can be masked by thermal noise, is described in Ref. 5. We
make use of the fact that other quantities such as Bz are much
easier to measure. From the profiles of Bz�x , tj� in a pulse at
consecutive times tj �j=1,2 , . . . ,N�, we obtain the pulse
speed vsh. We then average the profiles of F�x−vshtj , tj� over
time, which smooths out the fluctuations.

Figures 7 and 8 show the dependence of F on the posi-
tron density for the case FB�FT, for which F given by Eq.
�48� is proportional to �2; therefore F /�2 is plotted. In Fig. 7,
the propagation angle �	=88° � is greater than 	c for all val-
ues of np0 /ne0, and thus F monotonically decreases as
np0 /ne0 rises from zero to unity. In Fig. 8, on the other hand,
the propagation angle �	=85° � becomes equal to 	c at
np0 /ne0=0.26, around which F becomes quite large. Outside
the vicinity of this point, F decreases with increasing posi-
tron density. The amplitudes in Fig. 7 were in the range
0.095
Bz1 /B0
0.10, and those in Fig. 8 were in 0.0087

 �Bz1 /B0�
0.099.
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The dependence of the electric potential � on np0 is quite
different from that of F, as shown in Fig. 9, where the dots
and white triangles show, respectively, the simulation values
for 	=88° and 	=85° �other simulation parameters are the
same as those in Figs. 7 and 8�. The value of � increases
with increasing positron density, except near the point
np0 /ne0=1, at which � becomes zero. In Figs. 7–9, the
theory and simulation results are consistent.

B. Shock waves

The theory in Sec. III and simulations in Sec. IV A were
concerned with small-amplitude waves with ��1. Here, we

examine large-amplitude waves �shock waves� with �
�O�1� with simulations. Figures 10 and 11 show F /� in
shock waves with 2���5 and 	=60° as a function of the
positron density. Although the plasma beta value in Fig. 10
and that in Fig. 11 are quite different, the simulation results
fit fairly well to a phenomenological relation �solid line� in
both cases. This relation is

eF � � B0
2

4�ne0
+ �eTe
�1 −

np0

ne0

Bz1

B0
, �56�

for which a rigorous mathematical theory has not been given
yet. These results indicate that in large-amplitude waves, the
term related to B0

2 and that to Te are both proportional to the
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FIG. 8. Dependence of F /�2 on np0 /ne0 for the case FB�FT. Here, the
propagation angle is 85° and becomes equal to 	c at np0 /ne0=0.26.
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amplitude � �=Bz1 /B0�, as in the case of two-component
plasmas.5

We make a short mention of the measurement of F
again. The profiles of Bz and F are not perfectly stationary;
they tend to alternately have steep and diffusive profiles in
the transition region.25 For the data points for 0�np0 /ne0

�0.6, we have plotted the values of F averaged over a pe-
riod �pet�200 for which the Bz profile was steep. At
np0 /ne0=0.8, however, since the nonstationarity of F is more
enhanced, we have taken an average for a much longer time,
�pet�2000. Shock profiles become more unstable as np0 /ne0

increases. �At np0 /ne0=1, however, F is always close to
zero.� The time-dependence of shock profiles in e - p - i plas-
mas will be discussed elsewhere.

We may write Eq. �56� in terms of energy density as

ne0eF � ��vA
2 + �epe0�

ni0

ne0

Bz1

B0
. �57�

We note that the parallel pseudopotential obtained for a
shock wave in a two-component plasma,5

eF � �mivA
2 + �eTe�

Bz1

B0
, �58�

can also be put into this form. That is, if we express F in the
form of Eq. �57�, it is applicable to both two- and three-
component plasmas.

V. SUMMARY

We have studied the parallel electric field in nonlinear
magnetosonic waves in e - p - i plasmas with theory and fully
kinetic, electromagnetic, particle simulations. The theory
based on the three-fluid model predicts that the parallel
pseudopotential F �=−�E�ds� in small-amplitude waves with
��1 is proportional to ���epe0−�ppp0� in warm plasmas and
to �2mivA

2 / �1+vA
2 /c2�3 in cold plasmas. The dispersion coef-

ficient � becomes zero at propagation angle 	c, which varies
with np0 /ne0. The effect of such angle has also been dis-
cussed. The magnitude of F decreases as np0 /ne0 increases,
except for the vicinity of the point at which � becomes zero.
We then examined the parallel electric field with electromag-
netic particle simulations, the result of which was explained
by the present theory. Furthermore, for shock waves with �

�O�1�, the simulation values are found to be consistent with
the phenomenological relation ne0eF����vA

2 +�epe0�

�ni0 /ne0�.

These results indicate that E� can be strong in plasmas in
high magnetic fields. This implies that extremely strong par-
allel electric fields can be generated around pulsars,7 which
rotate rapidly with very strong magnetic fields and can have
e - p - i plasmas around them.

In addition, the expression for F in a shock wave, Eq.
�57�, indicates that some positrons can be reflected by the
shock wave along the magnetic field when the magnetic field
is weak as well as when it is strong. We see this because in
the wave frame the flow speed of upstream positrons is �vA

for a low beta case and is ��Te /mi�1/2 for a high beta case
and therefore the kinetic energy of the positrons entering the
shock wave can be smaller than eF unless ni0 is very close to
zero. Thus, even in high beta �weak magnetic field� cases,
the parallel electric field can greatly affect the motions of
positrons.

In the future, it would be desirable to obtain the phenom-
enological relation �57� with a rigorous theory. Furthermore,
it will be interesting and important to develop a relativistic
theory on the parallel electric field in extremely strong mag-
netic fields.26
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APPENDIX A: LINEAR DISPERSION RELATION

We derive here the linear dispersion relation of the mag-
netosonic wave with a wavenumber k=�k ,0 ,0� in an e - p - i
plasma in an external magnetic field B0=B0�cos 	 ,0 , sin 	�.

We expand the variables as, for instance,

B = B0 + B1 exp�i�kx − �t�� , �A1�

and linearize the set of fluid equations. Then, after some
algebra, we find the following relation:

	1 − �
j

�pj
2

Rj
−

k2

�2�c2 − �
j

�pj
2 cj

2

Rj


 
 �	1 − �

j

�pj
2 ��2 − � j

2�
Rj�
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	1 − �
j

�pj
2

Rj
−

k2

�2�c2 − �
j

�pj
2 cj

2

Rj




+
1

�2��
j

�pj
2 � j

2

Rj

 k2

�2�c2 − �
j

�pj
2 cj

2

Rj

sin2 	� −
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�2 ��
j

�pj
2 � j

Rj
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j

�pj
2

Rj
−

k2

�2�c2 − �
j

�pj
2 cj

2

Rj




−
1

�4��
j

�pj
2 � j

2

Rj

	��

j

�pj
2 � j

Rj

 − ��

j

�pj
2 � jcj

2

Rj

 k2

�2 cos2 	
2

−
cos2 	

�2 �1 − �
j

�pj
2

Rj

	��

j

�pj
2 � j

Rj



− ��
j

�pj
2 � jcj

2

Rj

 k2

�2
2

= 0, �A2�
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where

Rj = �2 − � j
2 − cj

2k2�1 −
� j

2

�2 cos2 	
 . �A3�

Equation �A2� includes dispersion relations of several
different plasma waves. We now consider low-frequency
waves with �2��i

2 and approximate 1 /Rj as

1

Rj
� −

1

� j
2�1 − cj

2k2 cos2 	/�2�
. �A4�

With use of the relations

�
j

�pj
2 /� j

1 − cj
2k2 cos2 	/�2 =

k2

�2 cos2 	�
j

�pj
2 cj

2/� j

1 − cj
2k2 cos2 	/�2 ,

�A5�

�
j

�pj
2 /� j

2

1 − cj
2k2 cos2 	/�2 = �

j

�pj
2

� j
2 +

k2

�2 cos2 	


�
j

�pj
2 cj

2/� j
2

1 − cj
2k2 cos2 	/�2 , �A6�

�
j

�pj
2

� j
2 =

c2

vA
2 , �A7�

1 + �
j

�pj
2

� j
2 =

c2

ṽA
2 , �A8�

Eq. �A2� reduces, in the limit of �→0, to

� 1

ṽA
2 −

cos2 	

vp0
2 
	 c2

ṽA
2 −

c2

vp0
2 −

sin2 	

vp0
2 �

j

�pj
2 cj

2/� j
2

1 − cj
2 cos2 	/vp0

2 + tan2 	��
j

�pj
2 /� j

1 − cj
2 cos2 	/vp0

2 
2���
j

�pj
2

1 − cj
2 cos2 	/vp0

2 

 = 0,

�A9�

where vp0 is the phase velocity � /k in the low frequency
limit. The first parentheses give the shear Alfvén wave,
vAp0= ṽA cos 	, and the square brackets give the magneto-
sonic wave �8�. If the thermal speeds are low, cj

2 /vmp0
2 �1,

using the relation

�
j

�pj
2 cj

2

� j
2 =

c2cs
2

vA
2 �A10�

we obtain Eq. �10� from Eq. �8�.

APPENDIX B: LINEAR DISPERSION RELATION
FOR SMALL BUT FINITE WAVENUMBERS

The magnetosonic wave has weak dispersion of the form
�12�. We here calculate the dispersion coefficient �.

We define the quantities � j and � j as

� j =
1

�1 − cj
2k2 cos2 	/�2�

, �B1�

� j =
�1 − cj

2k2/�2�
�1 − cj

2k2 cos2 	/�2�2 . �B2�

Then, since �2 /�i
2�1, we can write 1 /Rj as

1

Rj
� −

1

� j
2�� j + � j

�2

� j
2
 . �B3�

We substitute Eq. �B3� in Eq. �A2� and retain the terms up to
�2 /� j

2. Then, by virtue of the assumption that vp
2 �cj

2, where
vp=� /k, we find that
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For small but finite wavenumbers, we write the phase
velocity as

vp�k� � vmp0 + �vp�k� , �B5�

where �vp�k� is much smaller than vmp0. We multiply Eq.
�B4� by vp

6ṽA
4 /c4 and substitute Eq. �B5� for vp. Then, calcu-

lating up to the terms of order k2, and using the relation �10�,
we find that �vp�k�=vmp0�k2, where � is the dispersion co-
efficient given by Eq. �13�.

APPENDIX C: DERIVATION OF THE KDV EQUATION

We derive the KdV equation for magnetosonic waves in
an e - p - i plasma with finite temperatures.

1. Perturbations

We apply the stretching and expansion �23�–�34� to the
set of basic fluid equations. Then, for instance, from the con-
tinuity equation, we have

�3/2 �

��
�nj0v jx1 − vmp0nj1� + �5/2	 �nj1

��
− vmp0

�nj2

��

+ nj0
�v jx2

��
+

��nj1v jx1�
��


 + ¯ = 0. �C1�

Similarly, from Eqs. �2� and �3� and Maxwell equations, we
have equations for perturbed quantities. From the lowest or-
der equations, we obtain the following relations among the
lowest order quantities:

nj1 =
nj0

vmp0
v jx1, �C2�

v jy1 = −
cEx1

B0 sin 	
+

vmp0

� j sin 	
�� jpj0

mjnj0

1

vmp0
2 − 1
 �v jx1

��
, �C3�

v jz1 = v jx1 tan 	 −
vmp0Bz1

B0 cos 	
, �C4�

v jy1 =
cEz1

B0 cos 	
+

vmp0

� j cos 	

�v jz1

��
, �C5�

pj1 =
� jpj0

vmp0
v jx1, �C6�

Ez1 = −
vmp0

c
By1, �C7�

Ey1 =
vmp0

c
Bz1, �C8�

�
j

nj0qjv jx1 = 0, �C9�

�
j

nj0qjv jy1 = − �1 −
vmp0

2

c2 
 �Bz1

��
, �C10�

�
j

nj0qjv jz1 = 0. �C11�

2. Higher order quantities

The relations among the second lowest order terms ���2

or �5/2j� may be written as
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��
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vmp0

�v jx1
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� j�� j + 1�pj0

vmp0
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1
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4�

c
�

j

nj0qj�v jx2 +
1

vmp0
v jx1

2 
 −
vmp0

c

�Ex1

��
= 0, �C18�
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+ �vmp0
2
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 �By1

��
= 0. �C20�

Here, by using Eqs. �C3� and �C4�, we have eliminated v jy1

and v jz1.
To derive the KdV equation, we eliminate higher order

quantities, such as, nj2 and v jx2 from Eqs. �C12�–�C20�. We
substitute Eq. �C12� in Eq. �C13� to eliminate pj2. From the
resultant equation and Eqs. �C14� and �C15�, it follows that

v jy2 =
sin 	

� j
	1 +

cj
2

vmp0
2 �1 + cos2 	�
 �v jx1

��
−

cos 	

� j
�1 −

cj
2

vmp0
2 sin2 	
 
 	� �

��
+ v jx1

�

��

�v jx1 tan 	 −

vmp0Bz1

B0 cos 	



− � j� c

B0
Ez2 +

By1

B0
v jxi

 − vmp0

sin 	

� j
�1 −

cj
2

vmp0
2 sin2 	
 �

��
� cEx2

B0 sin 	
−

Bz1

B0 sin 	
v jx1 −

vmp0

� j sin 	

�

��
	 cEx1

B0 sin 	

+
vmp0

� j sin 	
�1 −

cj
2

vmp0
2 
 �v jx1

��

� − �1 +

cj
2

vmp0
2 cos2 	
 cEx2

B0
sin 	 + 	1 +

cj
2

vmp0
2 �� j + cos2 	�
 sin 	

� j
v jx1

�v jx1

��

+ �1 +
cj

2

vmp0
2 cos2 	
By1 sin 	

B0
�v jx1 tan 	 −

vmp0Bz1

B0 cos 	

 , �C21�

�v jz2

��
=

sin 	 cos 	

vmp0
	1 +

cj
2

vmp0
2 �1 + cos2 	�
 �v jx1

��
+

vmp0 cos 	

� j
�1 −

cj
2

vmp0
2 sin2 	
 �2

��2	 cEx1

B0 sin 	
+

vmp0

� j sin 	
�1 −

cj
2

vmp0
2 
 �v jx1

��



−
c cos 	

B0
�1 −

cj
2

vmp0
2 sin2 	
 �Ey2

��
+

Bz1 cos 	

B0
�1 −

cj
2

vmp0
2 sin2 	
 �v jx1

��
+

cos 	

B0
�1 −

cj
2

vmp0
2 sin2 	



�Bz1
�v jx1

��
+ v jx1

�Bz1

��

 −

� jcEx2

B0vmp0
sin 	 cos 	�1 +

cj
2

vmp0
2 cos2 	
 +

� jBz1cEx1

B0
2vmp0

cos 	�1 +
cj

2

vmp0
2 cos2 	


−
� j sin2 	

B0vmp0
�cEz2 +

By1vmp0Bz1

B0 sin 	

�1 +

cj
2

vmp0
2 cos2 	
 + 	� �

��
+ v jx1

�

��

�v jx1 tan 	 −

vmp0Bz1

B0 cos 	


 sin2 	

vmp0


�1 +
cj

2

vmp0
2 cos2 	
 +

sin 	 cos 	

vmp0
	1 +

cj
2

vmp0
2 �� j + cos2 	�
v jx1

�v jx1

��
. �C22�

Here, we have ignored the terms higher than �cj
2 /vmp0

2 .
We substitute Eqs. �C21� and �C22� in Eqs. �C19� and �C20�, respectively, to eliminate v jy2 and v jz2. From these equations

and Eq. �C17�, by eliminating Bz2, we have the two equations, from which we eliminate Ex2 and Ez2 simultaneously to obtain

4�

c
�

j

nj0qj�2� sin 	

� j

cj
2

vmp0
2 
 �v jx1

��
+

vmp0

B0� j
�1 −

cj
2

vmp0
2 sin2 	
 �Bz1

��
+ 	 sin 	

� j
� cj

2

vmp0
2 �1 + � j� +

1

sin2 	
� cj

2

vmp0
2 − 1



−
3 sin 	

A ��
k

nk0qk

ck
2

vmp0
2 

v jx1

�v jx1

��
+

2vmp0

B0� j
�1 −

cj
2

vmp0
2 sin2 	
 �Bz1v jx1

��
+

vmp0
2

� j
2 sin 	

�2

��2	 cEx1

B0
+

vmp0

� j
�1 −

cj
2

vmp0
2 
 �v jx1

��




�1 −
cj

2

vmp0
2 sin2 	
 −

vmp0
2 cos2 	

A� j sin 	
��

k

nk0qk

ck
2

vmp0
2 
 �2

��2� cEx1

B0
+

vmp0

� j

�v jx1

��

 +

Bz1 cos2 	

B0
2 	 cj

2

vmp0
2 −

� j

A ��
k

nk0qk

ck
2

vmp0
2 




�cEx1 − vmp0By1 tan 	�� +
1

vmp0
�vmp0

2

c2 + 1
 �Bz1

��
−

vmp0 cos 	

A ��
k

nk0qk

ck
2

vmp0
2 
�vmp0

2

c2 − 1
 �2By1

��2 = 0, �C23�
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where the subscript k, as well as j, denotes particle species,
and the quantity A is defined as

A =
B0

4�c
�

k

�pk
2 �1 +

ck
2

vmp0
2 cos2 	
 . �C24�

Since we have ignored the terms of order �cj
2 /vmp0

2 �2, the
terms related to Ey2 have vanished.

We have obtained Eq. �C23� by using the y and z com-
ponents of Ampère’s law. Next, we use its x and z compo-
nents to obtain another different equation. We eliminate v jz2

from Eqs. �C20� and �C14�, and then eliminate v jx2 with the
aid of Eq. �C18� to have

4�

c
�

j

nj0qj� vmp0

� j cos 	

�

��
	 cEx1

B0 sin 	
+

vmp0

� j sin 	


�1 −
cj

2

vmp0
2 
 �v jx1

��

� + �vmp0

2

c2 − 1
 �By1

��

+
vmp0

c
tan 	

�Ex1

��
= 0, �C25�

which, by virtue of Eq. �A7�, becomes

vmp0

c
� c2

vA
2 + sin2 	
Ex1 + �vmp0

2

c2 − 1
sin 	 cos 	By1

+
B0vmp0

2

c2 �
j
	�pj

2

� j
3 �1 −

cj
2

vmp0
2 
 �v jx1

��

 = 0. �C26�

3. Lowest order quantities and the KdV
equation

Now we express all the lowest order quantities in terms
of Bz1. From Eqs. �C3�–�C5�, we have

�v jx1

��
= −

c� j

vmp0B0
cos 	�1 +

cj
2

vmp0
2 cos2 	
�Ex1 cos 	

+ Ez1 sin 	� +
vmp0

B0
sin 	�1 +

cj
2

vmp0
2 cos2 	
 �Bz1

��
.

�C27�

By substituting Eq. �C27� in Eq. �C9�, we obtain

Ex1 cos 	 + Ez1 sin 	 �
1

c

� j��pj
2 /� j�cj

2

�p
2 sin 	 cos 	

�Bz1

��
.

�C28�

We substitute Eq. �C27� in Eq. �C26�. Then, with the aid
of Eqs. �A7�, �A10�, and �C7�, it follows that

vmp0

c
	 c2

vA
2 sin2 	�1 +

cs
2

vmp0
2 cos2 	
 + sin2 	
Ex1

+
vmp0

c
	� c2

vmp0
2 − 1
 −

c2

vA
2 �1 −

cs
2

vmp0
2 




sin 	 cos 	Ez1 +
vmp0

3

c2


sin 	�
j
	�pj

2

� j
3 �1 −

cj
2

vmp0
2 

 �Bz1

��
= 0. �C29�

From �C28� and �C29�, we have

Ex1 = − � vA
2

vA
2 + cs

2
 vmp0
4

c3 sin 	
�

j

�pj
2

� j
3 �1 −

cj
2

vmp0
2 sin2 	
 �Bz1

��
,

�C30�

Ez1 = 	� vA
2

vA
2 + cs

2
vmp0
4 cos 	

c3 sin2 	
�

j

�pj
2

� j
3 �1 −

cj
2

vmp0
2 sin2 	


+
1

c

� j��pj
2 /� j�cj

2

�p
2 cos 	
 �Bz1

��
. �C31�

Also, from Eqs. �C27� and �C28�, we find v jx1 as

v jx1 = vmp0	−
� j

vmp0
2

� j��pj
2 /� j�cj

2

�p
2 sin 	 cos2 	

+ sin 	�1 +
cj

2

vmp0
2 cos2 	

Bz1

B0
. �C32�

Substituting Eq. �C32� in Eqs. �C2�, �C4�, and �C6�, we ob-
tain, respectively,

nj1 = nj0	−
� j

vmp0
2

� j��pj
2 /� j�cj

2

�p
2 sin 	 cos2 	

+ sin 	�1 +
cj

2

vmp0
2 cos2 	

Bz1

B0
, �C33�

v jz1 = vmp0	−
� j

vmp0
2

� j��pj
2 /� j�cj

2

�p
2 sin2 	 cos 	

+
sin2 	

cos 	
�1 +

cj
2

vmp0
2 cos2 	
 −

1

cos 	

Bz1

B0
, �C34�

pj1 = � jpj0	−
� j

vmp0
2

� j��pj
2 /� j�cj

2

�p
2 sin 	 cos2 	

+ sin 	�1 +
cj

2

vmp0
2 cos2 	

Bz1

B0
. �C35�

With the help of Eqs. �C30� and �C32�, Eq. �C3� becomes

082309-12 Takahashi, Sato, and Ohsawa Phys. Plasmas 15, 082309 �2008�

Downloaded 03 Aug 2009 to 133.6.32.19. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



v jy1 = �� vA
2

vA
2 + cs

2
 vmp0
4

B0c2 sin2 	
�

j

�pj
2

� j
3 �1 −

cj
2

vmp0
2 sin2 	


+ � cj
2

vmp0
2 − 1
	−

1

B0

� j��pj
2 /� j�cj

2

�p
2 cos2 	

+
vmp0

2

B0� j
�1 +

cj
2

vmp0
2 cos2 	

� �Bz1

��
. �C36�

From Eqs. �C7� and �C31�, we find that

By1 = − 	� vA
2

vA
2 + cs

2
vmp0
3 cos 	

c2 sin2 	
�

j

�pj
2

� j
3 �1 −

cj
2

vmp0
2 sin2 	


+
1

vmp0

� j��pj
2 /� j�cj

2

�p
2 cos 	
 �Bz1

��
. �C37�

If we substitute the lowest order quantities expressed in
terms of Bz1 in Eq. �C23�, then, using Eqs. �10�, �A7�, and
�A10�, we obtain the KdV equation �35�.

APPENDIX D: PARALLEL ELECTRIC FIELD
IN THE COLD PLASMA LIMIT

By calculating up to the second lowest order terms, we
obtain the parallel electric field in a cold plasma.

For Tj =0, with the aid of Eqs. �C28�, �C30�, and �C32�,
we find that

Ex1 cos 	 + Ez1 sin 	 = 0, �D1�

Ex1 = −
ṽA

4

c3 sin 	
�

j

�pj
2

� j
3

�Bz1

��
, �D2�

v jx1 = ṽA
Bz1

B0
sin 	 , �D3�

and with the use of Eqs. �C7� and �D1�, Eq. �C13� reduces to

�v jx1

��
− ṽA

�v jx2

��
+ �v jx1 +

ṽABz1

B0 sin 	

 �v jx1

��

+ � j�By1

B0
v jx1 tan 	 − v jy2 sin 	 −

cEx2

B0

 = 0. �D4�

Since, as Eq. �D3� shows, v jx1 is independent of particle
species, we obtain from Eqs. �C18� and �C20�

�
j

nj0qjv jx2 =
ṽA

4�

�Ex1

��
, �D5�

�
j

nj0qjv jz2 =
ṽA

4� tan 	
� c2

ṽA
2 − 1
 �Ex1

��
, �D6�

where use has been made of the relations �C7� and �D1�.

We multiply Eq. �D4� by nj0qj and sum over particle
species j. Then, substituting Eq. �D5� for v jx2 yields

−
ṽA

2

4�

�2Ex1

��2 + �
j

nj0qj� j


�By1

B0
v jx1 tan 	 − v jy2 sin 	 −

cEx2

B0

 = 0. �D7�

Similarly, from Eqs. �C15� and �D6�, it follows that

ṽA
2

4� tan 	
�1 −

c2

ṽA
2 
 �2Ex1

��2

− �
j

nj0qj� j�By1

B0
v jx1 − v jy2 cos 	 +

cEz2

B0

 = 0.

�D8�

Combining Eqs. �D2�, �D7�, and �D8�, we find the parallel
electric field �44� in the cold plasma limit.
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