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Abstract — Multicore systems-on-chip have become popular in 
the design of embedded systems in order to simultaneously 
achieve high performance and low power consumption. On the 
software side, real-time operating systems are necessary in order 
to handle growing complexity of embedded software. This paper 
describes requirements, design principles and implementation 
techniques for real-time operating systems to be used in 
asymmetric multicore systems. 
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I. INTRODUCTION

Multiprocessor systems-on-chip (MPSoCs) are now 
employed in a variety of embedded systems such as cellular 
phones and multimedia devices. This is mainly because they 
simultaneously offer high performance, low cost and low 
power consumption. 

MPSoCs are broadly classified into three types. The first 
type is symmetric shared-memory MPSoCs, where the 
processors are homogeneous, and all the resources including 
main memory and peripherals are shared by the processors. In 
many cases, symmetric MPSoCs have coherent caches, and an 
operating system (OS) dynamically allocates tasks (or threads) 
onto the processors at runtime in order to balance the loads 
over the processors. Therefore, software programming for 
symmetric MPSoCs are relatively easy. Symmetric 
multiprocessors are preferable in high-performance computers 
where average performance (or throughput) is more important 
than guaranteed response times. However, bounding worst-case 
performance is very difficult since more shared resources 
generally lead to higher possibility of resource conflicts. 
Therefore, symmetric multiprocessors are rarely used in hard 
real-time systems. The second type is asymmetric MPSoCs. 
Processors may be homogeneous or heterogeneous. Each 
processor has local memory, which can be accessed by the 
other processors at the cost of longer access time. Recently, 
asymmetric heterogeneous MPSoCs are widely used in 
embedded systems where a set of application tasks are fixed at 
a design time. The tasks are statically allocated onto the 
processors, and the processors and their peripherals are 
optimized for the allocated tasks. The static task allocation 
policy together with dedicated peripherals and limited resource 
sharing makes it easier to bound worst-case performance 
compared with symmetric MPSoCs, and also improve, and 
power and performance scalability can be improved. On the 

negative side, software programming is more difficult. The last 
type is message-passing MPSoCs, where the processors do not 
share main memory. Each processor has private memory which 
cannot be accessed by the other processors. In order for tasks 
running on different processors to communicate with each 
other, message packets are transmitted over the interconnection 
network. The message-passing MPSoCs are often called 
network-on-chips (NoCs). On the software side, tasks are 
statically allocated onto the processors. An OS runs on each 
processor, and inter-processor communication is managed at 
the middleware or application level. Message-passing MPSoCs 
represent good performance scalability for applications with 
few communications, but not for applications which frequently 
interact with each other due to the large communication 
overhead. 

There exist a number of commercial and research-purpose 
RTOSs for symmetric MPSoCs (hereinafter, referred to as 
SMP-RTOSs). For message-passing MPSoCs, OSs for 
uniprocessor systems can be used. On the other hand, RTOS 
technology for asymmetric MPSoCs has not been established 
well. Traditionally, RTOSs for uniprocessor systems were used 
for asymmetric MPSoCs. In this case, inter-processor 
communications are realized at a middleware level or an 
application level. In the former case, communication overhead 
is not trivial. In the latter case, programming application tasks 
are not easy, and rewriting is necessary every time we want to 
explore different task allocations at the design time. Another 
traditional way is to use SMP-RTOSs for asymmetric MPSoCs. 
Many of SMP-RTOSs offer the functionality to allocate 
specific tasks onto specific processors. Using this functionality, 
the SMP-RTOSs can be used for asymmetric MPSoCs. 
However, due to the internal data structure of SMP-RTOSs, 
inter-processor conflicts may often happen within the SMP-
RTOSs 1 , which results in degradation of the worst-case 
performance. Thus, neither uniprocessor RTOSs nor SMP-
RTOSs are appropriate for asymmetric MPSoCs to be used in 
real-time embedded systems. 

We have developed an RTOS, named TOPPERS/FDMP 
Kernel, for asymmetric MPSoCs. The FDMP kernel is based 

                                                          
1  For example, if tasks are maintained with a single ready 
queue within the SMP-RTOS, the ready queue should be 
accessed exclusively. Then, when multiple processors need to 
access the ready queue at the same time, a conflict occurs. 
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on the ITRON specification2. ITRON is one of the most 
popular RTOSs in many Asia and Pacific countries, 
specifically in Japan, because of its quick response time and 
small code size. However, ITRON does not explicitly support 
multiprocessor systems, so the FDMP kernel slightly extends 
the ITRON specification towards asymmetric MPSoCs. 
Based on the FDMP kernel, we have also developed another 
RTOS, named TOPPERS/FMP Kernel, which explicitly 
supports dynamic task migration across processors. 

This paper describes TOPPERS/FDMP Kernel and 
TOPPERS/FMP Kernel. In Section II, we discuss requirements 
and principles in the design of RTOSs for asymmetric MPSoCs. 
Section III presents several techniques to implement the FDMP 
kernel. Section IV shows performance evaluation of the FDMP 
kernel. Then, in Section V, the FMP kernel is outlined. 

II. REQUIREMENTS AND PRINCIPLES

This section discusses requirements and principles for 
extending the ITRON specification towards asymmetric 
MPSoCs. 

A. Target System Architecture 
In this paper, we assume asymmetric shared-memory 

MPSoCs to be used in small- to mid-scale real-time systems. In 
such systems, memory capacity is small, and virtual memory 
mechanism is not employed in order to achieve quick 
responses. Figure 1 shows the target system architecture. Each 
processor has local memory and external I/O interface such as 
UART, which are connected by a local bus. The local memory 
can be accessed by the other processors through a global bus. A 
processor can send interrupts to any of the other processors. 
There exists a hardware support (such as hardware semaphores 
and test&set instruction) to realize mutual exclusion among the 
processors. 

Tasks and interrupt handlers are statically allocated to 
processors at the design time in order to minimize inter-

                                                          
2 To be more precise, ITRON is not a name of specific RTOS 
product, but is a name of standardized specification of RTOS. 
Therefore, there exist a number of ITRON-compliant RTOSs 
in the world. 

processor communication and maximize the independence of 
the individual processors.  

B. Requirements for RTOSs 
RTOSs for asymmetric MPSoCs should satisfy the 

following requirements. 

1. System calls for inter-processor communication 
should be compatible to ones for intra-processor 
communication. This is a very important requirement 
when we want to reuse application tasks which were 
written for necessary systems. Also, this requirement 
is desirable when we want to explore different task 
allocation alternatives. Unless this requirement is met, 
the application tasks need to be modified every time 
tasks are reallocated. 

2. Tasks and interrupt handlers must not be interfered by 
those running on different processors as long as they 
do not execute inter-processor communication system 
calls. Also, worst-case execution time of the tasks and 
worst-case response time of the interrupt handlers 
must be bounded independent of the number of 
processors. This requirement assures the scalability 
against the number of processors. Most SMP-RTOSs 
do not satisfy this requirement since inter-processor 
conflicts may occur within the RTOSs even if no 
inter-processor communication system call is executed. 

3. Worst-case response time for inter-task 
communication system calls must be bounded 
although the worst-case response time inevitably 
depends on, i.e., at least proportional to, the number of 
processors. 

C. Overview o f ITRON 4.0 and its Extension for 
Asymmetric MPSoCs 
Before we discuss how to extend the ITRON specification 

towards asymmetric MPSoCs, we briefly describe the ITRON 
specification which was designed for uniprocessor systems. 

ITRON is a standardized specification of RTOS APIs for 
small- to mid-scale real-time systems with typical code size of 
about 20K bytes. Typical application domains include 
consumer electronic products, mobile devices, and automotive 
electronic control systems. ITRON has been developed and 

Figure 1. Target system architecture 
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refined over more than two decades, and is the most popular 
RTOS specification in Japan with the market share of 
approximately 50%. The latest release at present is ITRON 
4.0. ITRON defines several profiles, and the most 
fundamental one is called Standard Profile.

ITRON employs a priority-based preemptive scheduling 
policy, and the priority of tasks can be changed at runtime. 

ITRON 4.0 Standard Profile states that the number of priority 
levels must be at least 16. ITRON supports several basic 
synchronization and communication mechanisms, such as 
semaphores, events, data queues, and mailboxes. Dynamic 
memory allocation using so-called memory pools is supported 
in ITRON. Since ITRON is designed for small embedded 
systems, virtual memory, dynamic module loading or memory 
protection mechanism is not supported. All the tasks are linked 
together with the RTOS kernel code to generate a single object 
module. Kernel objects such as tasks and semaphores are 
statically instantiated by means of static APIs in a 
confugulation file. The configuration file is fed by so-called 
configurator to generate C files where the objects are 
instantiated and initialized. The C files are compiled and linked 
with application tasks as well as the RTOS kernel code.  

Interrupt handling is one of important mechanisms in 
RTOSs. ITRON provides a number of API functions for 
defining interrupt handlers, allowing and prohibiting interrupts, 
changing interrupt masks, and so on. The number of interrupt 
levels is not determined by ITRON but implementation-
dependent. ITRON has three types of time event handlers, 
i.e., cyclic handlers, alarm handlers, and overrun handlers. 
Cyclic handlers are invoked periodically, alarm handlers are 
invoked at a specified time, and overrun handlers are invoked 
when the execution time of a task exceeds a specified time. 

In addition, ITRON provides a number of services which 
are necessary for industrial use. More detailed documents on 

ITRON are found in [1]. 

We have extended the ITRON specification towards 
asymmetric MPSoCs. Specifically, the followings are modified. 

• Classification of objects 

• Identification of objects 

• System states 

• Static APIs 

D. Classification of Objects 
Each kernel object (such as task and semaphore) belongs to 

one of the processors. A set of kernel objects which belong to 
the same processor is called a class. Allocation of the kernel 
objects to processors is statically defined in the configuration 
file. Identification (ID) numbers are given to the classes. 

The following objects can be executed only on the 
processor to which the objects belong. 

• Application tasks 

• Task exception handling routines 

• Cyclic handlers 

• Interrupt handlers 

• CPU exception handlers 

Due to this, the RTOS can perform task scheduling 
independently of the other processors. 

E. Identification of Objects 
According to the ITRON specification, unique ID 

numbers are given to kernel objects, and system calls which 
manipulate an object have its ID number as an argument. In the 
extended ITRON, an object has a unique ID number of 32 bits, 
and the ID number consists of two parts. The upper 16 bits are 
used to specify a class ID number, and the lower 16 bits are 
used to specify an ID number in the class. A class ID of zero 
means that the object belongs to the same processor on which 
the system call is issued. In this way, ITRON system calls can 
be used without changing their APIs. 

F. System States 
ITRON 4.0 defines system states for exclusively 

executing a specific task. System states include locked CPU 
state where no interrupt or task switch is permitted and 
suppressed dispatch state where no task switch is permitted. 
These states are often used for mutual exclusion. 

In the extended ITRON, the system state is controlled 
processor-by-processor independently. For example, if one of 
the processors is in the locked CPU state, interrupts and task 
switches can be allowed on other processors. Therefore, mutual 
exclusion across processors cannot be realized by using these 
system states. With the extended ITRON, mutual exclusion 
should be implemented explicitly using synchronization objects 
(such as semaphores). If we want to reuse software with the 
state-based mutual exclusion mechanism, the software needs to 
be rewritten. 

The reason why the system state is defined for each 
processor instead of for the entire system is to satisfy the 
second requirement shown in Section II.B. 

G. Static APIs 
As mentioned in Section II C, kernel objects are statically 

instantiated and dynamic instantiation of kernel objects at 
runtime is not supported. Kernel objects are defined by means 
of static API in a configuration file, which is then fed by a 
configurator to generate C files. 

Figure 2. Fragments of a configuration file for a dual-
processor system 

local class CPU1 {
CRE TSK(TASK1, {TA HLNG, …}); 
CRE TSK(TASK2, {TA HLNG, …}); 
CRE CYC(CYCHDR1, {TA HLNG, …}); 

}
local class CPU2 {

CRE TSK(TASK3, {TA HLNG, …}); 
CRE TSK(TASK4, {TA HLNG, …}); 
CRE CYC(CYCHDR2, {TA HLNG, …}); 

}
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In the extended ITRON, syntax of the configuration file 
has been extended in order to specify allocation of kernel 
objects to specific processors. Figure 2 shows a fragment of a 
configuration file for a system with two processors CPU1 and 
CPU2. For each processor, two tasks and one cyclic hander are 
instantiated. As shown in Figure 2, changing allocation of tasks 
and other objects is very easy. For example, if we want to 
reallocate TASK3 from CPU2 to CPU1, the only thing to do is 
to move the corresponding line from CPU2 to CPU1 in the 
configuration file. 

III. IMPLEMENTATION TECHNIQUES

This section describes several techniques to develop 
TOPPERS/FDMP Kernel which implements the extended 

ITRON specification presented in the previous section. 

A. Independent Control Blocks 
Data structures for controlling kernel objects are called 

control blocks. In the FDMP kernel, kernel objects are 
statically allocated to specific processors, and therefore, control 
blocks are also statically allocated to the processors. In other 
words, a processor has its own control block for the kernel 
objects allocated to the processor. The kernel objects and the 
control block are placed on the local memory of the processor. 
Thus, as long as inter-processor communication is not called, 
tasks are not interfered by other processors (i.e., the second 
requirement in Section II.B).  

B. Inter-Processor System Calls 
There exist broadly two methods to realization of inter-

processor system calls. One method is direct manipulation,
where the processor directly accesses the control block of the 
remote processor3. The other method is based on remote call,
where a processor sends a request to the remote processor. The 
remote call method is applicable not only to asymmetric 
multiprocessors but also to message-passing multiprocessors 
without shared memory. 

The FDMP kernel employs the direct manipulation method 
due to its low overhead of performance. 

C. Lock Units 
The FDMP kernel realizes inter-processor system calls by 

directly manipulating the control block of the remote processor. 
This manipulation requires mutual exclusion among the 
processors. The FDMP kernel employs spinlocks for the 
mutual exclusion. 

A lock unit denotes a set of resources which are controlled 
by a lock for mutual exclusion. The size of lock units 
significantly affects the scalability and the response time of 
system calls. Larger lock units lead to more inter-processor 
conflicts. For example, if all the resources in the system are 
controlled by a single lock, called a giant lock, conflicts occur 
even when no inter-processor system call is executed. On the 
other hand, if the lock unit is too fine-grained, multiple locks 

                                                          
3 As mentioned in Section II.A, a processor can access the 
memory of other processors. 

need to be acquired in order to execute a system call, which 
results in degradation of response time or unexpected deadlock. 

We have carefully analyzed the internal structure of system 
calls, and then we have decided the lock units as follows. For 
each processor, two locks are defined. One is called a task lock,
while the other is an object lock. The task lock is used for 
mutual exclusion of data structures related to task control. Such 
data structures include task control blocks (TCBs). On the 
other hand, the object lock is used for mutual exclusion of data 
structures related to communication and synchronization. Such 
data structures include semaphores, event flags and data queues. 
In order to avoid deadlock within the RTOS, we have defined 
the order of lock acquisition as the object lock first and then the 
task lock. 

D. DeadLock Avoidance 
If all of system calls follow the order of lock acquisition, no 

deadlock occurs. However, some system calls cannot follow 
this by their nature. For example, it is not determined which 
object control block should be accessed before accessing the 
task control block. In such system calls, a task lock needs to be 
acquired first and then an object lock. 

In the FDMP kernel, such system calls are implemented as 
follows. First, the task lock is acquired, and the object control 
block to be accessed is identified. At this point, the task lock is 
released. Then, the object lock is acquired, and finally the task 
lock is acquired. 

However, at the time the task lock is released, other task 
may modify the task control block. One way to avoid such 
inconsistency is to release both object lock and task lock, and 
then acquire the object lock and task lock in this order. This 
simple retrial-based solution does not bound the worst-case 
response time and does not satisfy the second and third 
requirements in Section II.B. 

In order to avoid unbounded retrial, the FDMP kernel is 
implemented as follows. Before releasing the task lock, a flag 
is set which denote that the task control block needs to be 
modified soon. At this point, a different new task acquires the 
task lock. The new task finds the flag, and then, on behalf of 
the previous task, the new task performs the operation which 
needs to be done by the previous task, and then clears the flag. 
When the previous task gets the task lock again, it finds the 
flag cleared and know that the operation was already done by 
other task. In this way, the FDMP kernel avoids the deadlock 
without unbounded retrial. 

E. Inter- and Intra-Processor Mutual Exclusion 
For execution of some system calls, both inter-processor 

mutual exclusion and intra-processor one are necessary. The 
FDMP kernel realizes inter-processor mutual exclusion using 
spinlock and realizes intra-processor one by disabling 
interrupts. These two are related with each other, and special 
care is needed in order to guarantee the worst-case response. 

For example, if we acquire the inter-processor lock first and 
then disable interrupts, we may accept an interrupt request 
which arrives between acquiring the inter-processor lock and 
disabling interrupts. During the interrupt handling, other 
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processors remain waiting, which is a waste of time. On the 
contrary, if we disable interrupts first and then acquire the 
inter-processor lock, interrupts remain disabled for a long time, 
which degrade the interrupt response time. 

It is ideal that the processors offer a hardware mechanism 
which performs both inter-processor and intra-processor 
mutual exclusion in an atomic manner, but unfortunately, no 
such processor exist at present.  

Based on the work in [2], the FDMP kernel solves this 
problem as shown in Figure 3. First, interrupts are disabled for 
intra-processor mutual exclusion, and then the test&set lock is 
acquired for inter-processor mutual exclusion. While waiting 
for the test&lock to be acquired, we check if an interrupt 
request arrives. If arrived, it is accepted. 

When the object lock is already acquired and the task lock 
needs to be acquired, the FDMP kernel works as follows. If an 
interrupt request arrives while waiting for the task lock, the 
object lock which was already acquired is released, and then 
the interrupt is accepted. After the interrupt handling, the 
FDMP kernel retries from the beginning, i.e., acquiring the 
object lock. 

In this way, the FDMP kernel realizes inter- and intra-
processor mutual exclusion. However, with the test&set 
method, the worst-case waiting time is not bounded inevitably. 
Bounding the response time is one of our future work. 

IV. EVALUATION

We have conducted a set of experiments to evaluate the 
usefulness of TOPPERS/FDMP Kernel. Altera NiosII/s, which 

is a soft-core processor for FPGA, is used as a target processor. 
We have developed a multiprocessor platform with four 
NiosII/s processors. Each processor has a local memory. The 
Avalon bus, which is a standard bus for NiosII systems, is 
based on a star-type network, so no contention happens as long 
as the processors access their local memories. All the 
components (i.e., processors, memories, bus, etc.) operate at 
50MHz. 

A. Code Size 
Code size of the FDMP kernel is compared with 

TOPPERS/JSP Kernel which is a ITRON-compliant RTOS 
for uniprocessor systems developed by us. The result is 
summarized in Table 1. The size of the text section for the 
FDMP kernel is about 60% larger than that for the JSP kernel. 
One of the reasons for the increased code size is that, for each 
system call, a routine for acquiring and releasing a lock is 
inserted. Also, a new routine for avoiding deadlocks is added. 
On the other hand, an increase in the data and bss secsions is 
trivial. An increase in data size is also small. A new data block, 
named CCB (Class Control Block), of 128 bytes is added for 
each processor. In addition, TCB (Task Control Block) is 
extended by 6 bytes. 

TABLE I. COMPARISON OF CODE SIZE (BYTES)

text Data bss 
JSP 26,671 5 68 

FDMP 42,707 6 76 

B. Performance 
First, we have measured execution times of two frequently 

used system calls. One is wup_tak, which wakes up a task in 
the wait state. We executed wup_tsk in two conditions. One 
condition is that the system call invokes task dispatch, and the 
other is that it does not. The other system call is sig_sem. 
Similar to wup_tsk, sig_sem was executed in the two 
conditions as described above. The key difference between 
wup_tsk and sig_sem is that wup_tsk aquires a task lock only, 
while sig_sem acquires both a task lock and an object lock. 

Tables I and II show the results. The row labeled “JSP” 
presents execution times of the system calls using 
TOPPERS/JSP Kernel. The next row “FDMP (Intra-
processor)” presents execution times in case the system calls 
are issued towards a task/object in the same processor using 
TOPPERS/FDMP Kernel. The last row “FDMP (Inter-
processor)” shows the case the system calls are issued towards 
a task/object in a different processor. Compared with the JSP 
kernel, the execution times becomes longer even in case of 
inter-processor system calls. This is because of the additional 
routine for mutual exclusion and data structures being more 
complicated. In case of system calls with dispatch, the 
execution times of the FDMP (inter-processor) are longer than 
those of the FDMP (intra-processor). This is because of the 
increased overhead for dispatching a task on a different 
processor. 

Figure 3. Intra- and inter-process mutual exclusion using 
test&set lock 

retry: 

// acquire object lock 
disable_interrupt(); 
while (test_and_set(obj_lock) == LOCKED) { 
 if (interrupt_request() == TRUE) { 
  enable_interrupt(); 
  goto retry; 

}
}

// Since the code here may be executed more than once,  
// it must not modify the data inside the kernel. 

// acquire task lock 
while (test_and_set(tsk_lock) == LOCKED) { 
 if (interrupt_request() == TRUE) { 
  release_lock(obj_lock); 
  enable_interrupt(); 
  goto retry; 

}
}

// Critical section 
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TABLE II. EXECUTION TIME OF SYSTEM CALLS WITHOUT DISPATCH 

 wup_tsk sig_sem 
JSP 5 s 5 s

FDMP (intra-processor) 9 s 10 s
FDMP (inter-processor) 10 s 10 s

TABLE III. EXECUTION TIME OF SYSTEM CALLS WITH DISPATCH

 wup_tsk sig_sem 
JSP 7 s 6 s

FDMP (intra-processor) 11 s 13 s

FDMP (inter-processor) 17 s 18 s

Next, we have compared execution times of system calls 
which implements deadlock avoidance mechanism. The results 
are shown in Table IV. Compared with Table II where the 
system calls do not implement deadlock avoidance, the 
increase in execution times are large. System calls sig_sem 
without dispatch in Table II and rel_wai in Table IV have the 
similar functionality, and therefore, the performance overhead 
for deadlock avoidance is approximately 5 s. 

Finally, we have measured the worst-case interrupt 
response times. Figure 4 shows the comparison results. Method 
1 is a straightforward method where interrupts are disabled first 
and then the lock is acquired. Method 2 is the technique used in 
the FDMP kernel as explained in Section III.E. We see that the 
interrupt response times with method 1 become long as the 
number of processors increases. On the other hand, our method 
is efficient enough to satisfy the second requirement in Section 
II.B. 

TABLE IV. EXECUTION TIME OF SYSTEM CALLS WITH DEADLOCK 
AVOIDANCE

 ter_tsk rel_wai chg_pri 
JSP 4 s 5 s 3 s

FDMP (intra-processor) 11 s 14 s 10 s

FDMP (inter-processor) 11 s 15 s 10 s

More detailed experiments can be found in [3]. 

V. SUPPORTING TASK MIGRATION

In TOPPERS/FDMP Kernel, tasks are statically allocated 
to processors. Dynamic task migration is not supported. On one 
side, dynamic task migration is very effective in order to 
balance the loads among processors and improve average-case 
performance. On the other side, however, automatic task 
migration makes it very difficult to analyze and bound worst-
case performance. 

Based on TOPPERS/FDMP Kernel, we have developed 
another RTOS, named TOPPERS/FMP Kernel, which support 
dynamic task migration. In order not to degrade worst-case 
response, the FMP kernel does not automatically migrate tasks 
across processors. Instead, the FMP kernel provides system 
calls for task migration. Therefore, it is programmer’s 
responsibility to decide when and which task is migrated to 
where. 

VI. CONCLUSIONS

This paper discusses requirements, principles and 
implementation techniques for real-time operating systems to 
be used in real-time asymmetric multiprocessor systems-on-
chip. Specifically, we present TOPPERS/FDMP Kernel and 
TOPPERS/FMP Kernel. The FDMP kernel is now released as 
open-source software from the website of TOPPERS Project 
[4]. The FMP kernel is at present released to members of 
TOPPERS Project and will be open to public in near future. 
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Figure 4. Worst-case interrupt response time 
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