
Real-Time Operating Systems for Multicore
Embedded Systems

Hiroyuki Tomiyama Shinya Honda Hiroaki Takada
Graduate School of Information Science

Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract — Multicore systems-on-chip have become popular in
the design of embedded systems in order to simultaneously
achieve high performance and low power consumption. On the
software side, real-time operating systems are necessary in order
to handle growing complexity of embedded software. This paper
describes requirements, design principles and implementation
techniques for real-time operating systems to be used in
asymmetric multicore systems.

Keywords – real-time operating systems; asymmetric
multprocessors; embedded systems

I. INTRODUCTION

Multiprocessor systems-on-chip (MPSoCs) are now
employed in a variety of embedded systems such as cellular
phones and multimedia devices. This is mainly because they
simultaneously offer high performance, low cost and low
power consumption.

MPSoCs are broadly classified into three types. The first
type is symmetric shared-memory MPSoCs, where the
processors are homogeneous, and all the resources including
main memory and peripherals are shared by the processors. In
many cases, symmetric MPSoCs have coherent caches, and an
operating system (OS) dynamically allocates tasks (or threads)
onto the processors at runtime in order to balance the loads
over the processors. Therefore, software programming for
symmetric MPSoCs are relatively easy. Symmetric
multiprocessors are preferable in high-performance computers
where average performance (or throughput) is more important
than guaranteed response times. However, bounding worst-case
performance is very difficult since more shared resources
generally lead to higher possibility of resource conflicts.
Therefore, symmetric multiprocessors are rarely used in hard
real-time systems. The second type is asymmetric MPSoCs.
Processors may be homogeneous or heterogeneous. Each
processor has local memory, which can be accessed by the
other processors at the cost of longer access time. Recently,
asymmetric heterogeneous MPSoCs are widely used in
embedded systems where a set of application tasks are fixed at
a design time. The tasks are statically allocated onto the
processors, and the processors and their peripherals are
optimized for the allocated tasks. The static task allocation
policy together with dedicated peripherals and limited resource
sharing makes it easier to bound worst-case performance
compared with symmetric MPSoCs, and also improve, and
power and performance scalability can be improved. On the

negative side, software programming is more difficult. The last
type is message-passing MPSoCs, where the processors do not
share main memory. Each processor has private memory which
cannot be accessed by the other processors. In order for tasks
running on different processors to communicate with each
other, message packets are transmitted over the interconnection
network. The message-passing MPSoCs are often called
network-on-chips (NoCs). On the software side, tasks are
statically allocated onto the processors. An OS runs on each
processor, and inter-processor communication is managed at
the middleware or application level. Message-passing MPSoCs
represent good performance scalability for applications with
few communications, but not for applications which frequently
interact with each other due to the large communication
overhead.

There exist a number of commercial and research-purpose
RTOSs for symmetric MPSoCs (hereinafter, referred to as
SMP-RTOSs). For message-passing MPSoCs, OSs for
uniprocessor systems can be used. On the other hand, RTOS
technology for asymmetric MPSoCs has not been established
well. Traditionally, RTOSs for uniprocessor systems were used
for asymmetric MPSoCs. In this case, inter-processor
communications are realized at a middleware level or an
application level. In the former case, communication overhead
is not trivial. In the latter case, programming application tasks
are not easy, and rewriting is necessary every time we want to
explore different task allocations at the design time. Another
traditional way is to use SMP-RTOSs for asymmetric MPSoCs.
Many of SMP-RTOSs offer the functionality to allocate
specific tasks onto specific processors. Using this functionality,
the SMP-RTOSs can be used for asymmetric MPSoCs.
However, due to the internal data structure of SMP-RTOSs,
inter-processor conflicts may often happen within the SMP-
RTOSs 1 , which results in degradation of the worst-case
performance. Thus, neither uniprocessor RTOSs nor SMP-
RTOSs are appropriate for asymmetric MPSoCs to be used in
real-time embedded systems.

We have developed an RTOS, named TOPPERS/FDMP
Kernel, for asymmetric MPSoCs. The FDMP kernel is based

1 For example, if tasks are maintained with a single ready
queue within the SMP-RTOS, the ready queue should be
accessed exclusively. Then, when multiple processors need to
access the ready queue at the same time, a conflict occurs.

- 62 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

지선
텍스트 상자
978-1-4244-2599-0/08/$25.00 ⓒ2008 IEEE

on the ITRON specification2. ITRON is one of the most
popular RTOSs in many Asia and Pacific countries,
specifically in Japan, because of its quick response time and
small code size. However, ITRON does not explicitly support
multiprocessor systems, so the FDMP kernel slightly extends
the ITRON specification towards asymmetric MPSoCs.
Based on the FDMP kernel, we have also developed another
RTOS, named TOPPERS/FMP Kernel, which explicitly
supports dynamic task migration across processors.

This paper describes TOPPERS/FDMP Kernel and
TOPPERS/FMP Kernel. In Section II, we discuss requirements
and principles in the design of RTOSs for asymmetric MPSoCs.
Section III presents several techniques to implement the FDMP
kernel. Section IV shows performance evaluation of the FDMP
kernel. Then, in Section V, the FMP kernel is outlined.

II. REQUIREMENTS AND PRINCIPLES

This section discusses requirements and principles for
extending the ITRON specification towards asymmetric
MPSoCs.

A. Target System Architecture
In this paper, we assume asymmetric shared-memory

MPSoCs to be used in small- to mid-scale real-time systems. In
such systems, memory capacity is small, and virtual memory
mechanism is not employed in order to achieve quick
responses. Figure 1 shows the target system architecture. Each
processor has local memory and external I/O interface such as
UART, which are connected by a local bus. The local memory
can be accessed by the other processors through a global bus. A
processor can send interrupts to any of the other processors.
There exists a hardware support (such as hardware semaphores
and test&set instruction) to realize mutual exclusion among the
processors.

Tasks and interrupt handlers are statically allocated to
processors at the design time in order to minimize inter-

2 To be more precise, ITRON is not a name of specific RTOS
product, but is a name of standardized specification of RTOS.
Therefore, there exist a number of ITRON-compliant RTOSs
in the world.

processor communication and maximize the independence of
the individual processors.

B. Requirements for RTOSs
RTOSs for asymmetric MPSoCs should satisfy the

following requirements.

1. System calls for inter-processor communication
should be compatible to ones for intra-processor
communication. This is a very important requirement
when we want to reuse application tasks which were
written for necessary systems. Also, this requirement
is desirable when we want to explore different task
allocation alternatives. Unless this requirement is met,
the application tasks need to be modified every time
tasks are reallocated.

2. Tasks and interrupt handlers must not be interfered by
those running on different processors as long as they
do not execute inter-processor communication system
calls. Also, worst-case execution time of the tasks and
worst-case response time of the interrupt handlers
must be bounded independent of the number of
processors. This requirement assures the scalability
against the number of processors. Most SMP-RTOSs
do not satisfy this requirement since inter-processor
conflicts may occur within the RTOSs even if no
inter-processor communication system call is executed.

3. Worst-case response time for inter-task
communication system calls must be bounded
although the worst-case response time inevitably
depends on, i.e., at least proportional to, the number of
processors.

C. Overview o f ITRON 4.0 and its Extension for
Asymmetric MPSoCs
Before we discuss how to extend the ITRON specification

towards asymmetric MPSoCs, we briefly describe the ITRON
specification which was designed for uniprocessor systems.

ITRON is a standardized specification of RTOS APIs for
small- to mid-scale real-time systems with typical code size of
about 20K bytes. Typical application domains include
consumer electronic products, mobile devices, and automotive
electronic control systems. ITRON has been developed and

Figure 1. Target system architecture

Global bus

Local bus

Local
memory

Processor

TaskTaskTaskTaskTaskTaskTaskTaskTask

RTOS kernel I/O

Local bus

Local
memory

Processor

TaskTaskTaskTaskTaskTaskTaskTaskTask

RTOS kernel I/O

- 63 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

refined over more than two decades, and is the most popular
RTOS specification in Japan with the market share of
approximately 50%. The latest release at present is ITRON
4.0. ITRON defines several profiles, and the most
fundamental one is called Standard Profile.

ITRON employs a priority-based preemptive scheduling
policy, and the priority of tasks can be changed at runtime.

ITRON 4.0 Standard Profile states that the number of priority
levels must be at least 16. ITRON supports several basic
synchronization and communication mechanisms, such as
semaphores, events, data queues, and mailboxes. Dynamic
memory allocation using so-called memory pools is supported
in ITRON. Since ITRON is designed for small embedded
systems, virtual memory, dynamic module loading or memory
protection mechanism is not supported. All the tasks are linked
together with the RTOS kernel code to generate a single object
module. Kernel objects such as tasks and semaphores are
statically instantiated by means of static APIs in a
confugulation file. The configuration file is fed by so-called
configurator to generate C files where the objects are
instantiated and initialized. The C files are compiled and linked
with application tasks as well as the RTOS kernel code.

Interrupt handling is one of important mechanisms in
RTOSs. ITRON provides a number of API functions for
defining interrupt handlers, allowing and prohibiting interrupts,
changing interrupt masks, and so on. The number of interrupt
levels is not determined by ITRON but implementation-
dependent. ITRON has three types of time event handlers,
i.e., cyclic handlers, alarm handlers, and overrun handlers.
Cyclic handlers are invoked periodically, alarm handlers are
invoked at a specified time, and overrun handlers are invoked
when the execution time of a task exceeds a specified time.

In addition, ITRON provides a number of services which
are necessary for industrial use. More detailed documents on

ITRON are found in [1].

We have extended the ITRON specification towards
asymmetric MPSoCs. Specifically, the followings are modified.

• Classification of objects

• Identification of objects

• System states

• Static APIs

D. Classification of Objects
Each kernel object (such as task and semaphore) belongs to

one of the processors. A set of kernel objects which belong to
the same processor is called a class. Allocation of the kernel
objects to processors is statically defined in the configuration
file. Identification (ID) numbers are given to the classes.

The following objects can be executed only on the
processor to which the objects belong.

• Application tasks

• Task exception handling routines

• Cyclic handlers

• Interrupt handlers

• CPU exception handlers

Due to this, the RTOS can perform task scheduling
independently of the other processors.

E. Identification of Objects
According to the ITRON specification, unique ID

numbers are given to kernel objects, and system calls which
manipulate an object have its ID number as an argument. In the
extended ITRON, an object has a unique ID number of 32 bits,
and the ID number consists of two parts. The upper 16 bits are
used to specify a class ID number, and the lower 16 bits are
used to specify an ID number in the class. A class ID of zero
means that the object belongs to the same processor on which
the system call is issued. In this way, ITRON system calls can
be used without changing their APIs.

F. System States
ITRON 4.0 defines system states for exclusively

executing a specific task. System states include locked CPU
state where no interrupt or task switch is permitted and
suppressed dispatch state where no task switch is permitted.
These states are often used for mutual exclusion.

In the extended ITRON, the system state is controlled
processor-by-processor independently. For example, if one of
the processors is in the locked CPU state, interrupts and task
switches can be allowed on other processors. Therefore, mutual
exclusion across processors cannot be realized by using these
system states. With the extended ITRON, mutual exclusion
should be implemented explicitly using synchronization objects
(such as semaphores). If we want to reuse software with the
state-based mutual exclusion mechanism, the software needs to
be rewritten.

The reason why the system state is defined for each
processor instead of for the entire system is to satisfy the
second requirement shown in Section II.B.

G. Static APIs
As mentioned in Section II C, kernel objects are statically

instantiated and dynamic instantiation of kernel objects at
runtime is not supported. Kernel objects are defined by means
of static API in a configuration file, which is then fed by a
configurator to generate C files.

Figure 2. Fragments of a configuration file for a dual-
processor system

local class CPU1 {
CRE TSK(TASK1, {TA HLNG, …});
CRE TSK(TASK2, {TA HLNG, …});
CRE CYC(CYCHDR1, {TA HLNG, …});

}
local class CPU2 {

CRE TSK(TASK3, {TA HLNG, …});
CRE TSK(TASK4, {TA HLNG, …});
CRE CYC(CYCHDR2, {TA HLNG, …});

}

- 64 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

In the extended ITRON, syntax of the configuration file
has been extended in order to specify allocation of kernel
objects to specific processors. Figure 2 shows a fragment of a
configuration file for a system with two processors CPU1 and
CPU2. For each processor, two tasks and one cyclic hander are
instantiated. As shown in Figure 2, changing allocation of tasks
and other objects is very easy. For example, if we want to
reallocate TASK3 from CPU2 to CPU1, the only thing to do is
to move the corresponding line from CPU2 to CPU1 in the
configuration file.

III. IMPLEMENTATION TECHNIQUES

This section describes several techniques to develop
TOPPERS/FDMP Kernel which implements the extended

ITRON specification presented in the previous section.

A. Independent Control Blocks
Data structures for controlling kernel objects are called

control blocks. In the FDMP kernel, kernel objects are
statically allocated to specific processors, and therefore, control
blocks are also statically allocated to the processors. In other
words, a processor has its own control block for the kernel
objects allocated to the processor. The kernel objects and the
control block are placed on the local memory of the processor.
Thus, as long as inter-processor communication is not called,
tasks are not interfered by other processors (i.e., the second
requirement in Section II.B).

B. Inter-Processor System Calls
There exist broadly two methods to realization of inter-

processor system calls. One method is direct manipulation,
where the processor directly accesses the control block of the
remote processor3. The other method is based on remote call,
where a processor sends a request to the remote processor. The
remote call method is applicable not only to asymmetric
multiprocessors but also to message-passing multiprocessors
without shared memory.

The FDMP kernel employs the direct manipulation method
due to its low overhead of performance.

C. Lock Units
The FDMP kernel realizes inter-processor system calls by

directly manipulating the control block of the remote processor.
This manipulation requires mutual exclusion among the
processors. The FDMP kernel employs spinlocks for the
mutual exclusion.

A lock unit denotes a set of resources which are controlled
by a lock for mutual exclusion. The size of lock units
significantly affects the scalability and the response time of
system calls. Larger lock units lead to more inter-processor
conflicts. For example, if all the resources in the system are
controlled by a single lock, called a giant lock, conflicts occur
even when no inter-processor system call is executed. On the
other hand, if the lock unit is too fine-grained, multiple locks

3 As mentioned in Section II.A, a processor can access the
memory of other processors.

need to be acquired in order to execute a system call, which
results in degradation of response time or unexpected deadlock.

We have carefully analyzed the internal structure of system
calls, and then we have decided the lock units as follows. For
each processor, two locks are defined. One is called a task lock,
while the other is an object lock. The task lock is used for
mutual exclusion of data structures related to task control. Such
data structures include task control blocks (TCBs). On the
other hand, the object lock is used for mutual exclusion of data
structures related to communication and synchronization. Such
data structures include semaphores, event flags and data queues.
In order to avoid deadlock within the RTOS, we have defined
the order of lock acquisition as the object lock first and then the
task lock.

D. DeadLock Avoidance
If all of system calls follow the order of lock acquisition, no

deadlock occurs. However, some system calls cannot follow
this by their nature. For example, it is not determined which
object control block should be accessed before accessing the
task control block. In such system calls, a task lock needs to be
acquired first and then an object lock.

In the FDMP kernel, such system calls are implemented as
follows. First, the task lock is acquired, and the object control
block to be accessed is identified. At this point, the task lock is
released. Then, the object lock is acquired, and finally the task
lock is acquired.

However, at the time the task lock is released, other task
may modify the task control block. One way to avoid such
inconsistency is to release both object lock and task lock, and
then acquire the object lock and task lock in this order. This
simple retrial-based solution does not bound the worst-case
response time and does not satisfy the second and third
requirements in Section II.B.

In order to avoid unbounded retrial, the FDMP kernel is
implemented as follows. Before releasing the task lock, a flag
is set which denote that the task control block needs to be
modified soon. At this point, a different new task acquires the
task lock. The new task finds the flag, and then, on behalf of
the previous task, the new task performs the operation which
needs to be done by the previous task, and then clears the flag.
When the previous task gets the task lock again, it finds the
flag cleared and know that the operation was already done by
other task. In this way, the FDMP kernel avoids the deadlock
without unbounded retrial.

E. Inter- and Intra-Processor Mutual Exclusion
For execution of some system calls, both inter-processor

mutual exclusion and intra-processor one are necessary. The
FDMP kernel realizes inter-processor mutual exclusion using
spinlock and realizes intra-processor one by disabling
interrupts. These two are related with each other, and special
care is needed in order to guarantee the worst-case response.

For example, if we acquire the inter-processor lock first and
then disable interrupts, we may accept an interrupt request
which arrives between acquiring the inter-processor lock and
disabling interrupts. During the interrupt handling, other

- 65 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

processors remain waiting, which is a waste of time. On the
contrary, if we disable interrupts first and then acquire the
inter-processor lock, interrupts remain disabled for a long time,
which degrade the interrupt response time.

It is ideal that the processors offer a hardware mechanism
which performs both inter-processor and intra-processor
mutual exclusion in an atomic manner, but unfortunately, no
such processor exist at present.

Based on the work in [2], the FDMP kernel solves this
problem as shown in Figure 3. First, interrupts are disabled for
intra-processor mutual exclusion, and then the test&set lock is
acquired for inter-processor mutual exclusion. While waiting
for the test&lock to be acquired, we check if an interrupt
request arrives. If arrived, it is accepted.

When the object lock is already acquired and the task lock
needs to be acquired, the FDMP kernel works as follows. If an
interrupt request arrives while waiting for the task lock, the
object lock which was already acquired is released, and then
the interrupt is accepted. After the interrupt handling, the
FDMP kernel retries from the beginning, i.e., acquiring the
object lock.

In this way, the FDMP kernel realizes inter- and intra-
processor mutual exclusion. However, with the test&set
method, the worst-case waiting time is not bounded inevitably.
Bounding the response time is one of our future work.

IV. EVALUATION

We have conducted a set of experiments to evaluate the
usefulness of TOPPERS/FDMP Kernel. Altera NiosII/s, which

is a soft-core processor for FPGA, is used as a target processor.
We have developed a multiprocessor platform with four
NiosII/s processors. Each processor has a local memory. The
Avalon bus, which is a standard bus for NiosII systems, is
based on a star-type network, so no contention happens as long
as the processors access their local memories. All the
components (i.e., processors, memories, bus, etc.) operate at
50MHz.

A. Code Size
Code size of the FDMP kernel is compared with

TOPPERS/JSP Kernel which is a ITRON-compliant RTOS
for uniprocessor systems developed by us. The result is
summarized in Table 1. The size of the text section for the
FDMP kernel is about 60% larger than that for the JSP kernel.
One of the reasons for the increased code size is that, for each
system call, a routine for acquiring and releasing a lock is
inserted. Also, a new routine for avoiding deadlocks is added.
On the other hand, an increase in the data and bss secsions is
trivial. An increase in data size is also small. A new data block,
named CCB (Class Control Block), of 128 bytes is added for
each processor. In addition, TCB (Task Control Block) is
extended by 6 bytes.

TABLE I. COMPARISON OF CODE SIZE (BYTES)

text Data bss
JSP 26,671 5 68

FDMP 42,707 6 76

B. Performance
First, we have measured execution times of two frequently

used system calls. One is wup_tak, which wakes up a task in
the wait state. We executed wup_tsk in two conditions. One
condition is that the system call invokes task dispatch, and the
other is that it does not. The other system call is sig_sem.
Similar to wup_tsk, sig_sem was executed in the two
conditions as described above. The key difference between
wup_tsk and sig_sem is that wup_tsk aquires a task lock only,
while sig_sem acquires both a task lock and an object lock.

Tables I and II show the results. The row labeled “JSP”
presents execution times of the system calls using
TOPPERS/JSP Kernel. The next row “FDMP (Intra-
processor)” presents execution times in case the system calls
are issued towards a task/object in the same processor using
TOPPERS/FDMP Kernel. The last row “FDMP (Inter-
processor)” shows the case the system calls are issued towards
a task/object in a different processor. Compared with the JSP
kernel, the execution times becomes longer even in case of
inter-processor system calls. This is because of the additional
routine for mutual exclusion and data structures being more
complicated. In case of system calls with dispatch, the
execution times of the FDMP (inter-processor) are longer than
those of the FDMP (intra-processor). This is because of the
increased overhead for dispatching a task on a different
processor.

Figure 3. Intra- and inter-process mutual exclusion using
test&set lock

retry:

// acquire object lock
disable_interrupt();
while (test_and_set(obj_lock) == LOCKED) {
 if (interrupt_request() == TRUE) {
 enable_interrupt();
 goto retry;

}
}

// Since the code here may be executed more than once,
// it must not modify the data inside the kernel.

// acquire task lock
while (test_and_set(tsk_lock) == LOCKED) {
 if (interrupt_request() == TRUE) {
 release_lock(obj_lock);
 enable_interrupt();
 goto retry;

}
}

// Critical section

- 66 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

TABLE II. EXECUTION TIME OF SYSTEM CALLS WITHOUT DISPATCH

 wup_tsk sig_sem
JSP 5 s 5 s

FDMP (intra-processor) 9 s 10 s
FDMP (inter-processor) 10 s 10 s

TABLE III. EXECUTION TIME OF SYSTEM CALLS WITH DISPATCH

 wup_tsk sig_sem
JSP 7 s 6 s

FDMP (intra-processor) 11 s 13 s

FDMP (inter-processor) 17 s 18 s

Next, we have compared execution times of system calls
which implements deadlock avoidance mechanism. The results
are shown in Table IV. Compared with Table II where the
system calls do not implement deadlock avoidance, the
increase in execution times are large. System calls sig_sem
without dispatch in Table II and rel_wai in Table IV have the
similar functionality, and therefore, the performance overhead
for deadlock avoidance is approximately 5 s.

Finally, we have measured the worst-case interrupt
response times. Figure 4 shows the comparison results. Method
1 is a straightforward method where interrupts are disabled first
and then the lock is acquired. Method 2 is the technique used in
the FDMP kernel as explained in Section III.E. We see that the
interrupt response times with method 1 become long as the
number of processors increases. On the other hand, our method
is efficient enough to satisfy the second requirement in Section
II.B.

TABLE IV. EXECUTION TIME OF SYSTEM CALLS WITH DEADLOCK
AVOIDANCE

 ter_tsk rel_wai chg_pri
JSP 4 s 5 s 3 s

FDMP (intra-processor) 11 s 14 s 10 s

FDMP (inter-processor) 11 s 15 s 10 s

More detailed experiments can be found in [3].

V. SUPPORTING TASK MIGRATION

In TOPPERS/FDMP Kernel, tasks are statically allocated
to processors. Dynamic task migration is not supported. On one
side, dynamic task migration is very effective in order to
balance the loads among processors and improve average-case
performance. On the other side, however, automatic task
migration makes it very difficult to analyze and bound worst-
case performance.

Based on TOPPERS/FDMP Kernel, we have developed
another RTOS, named TOPPERS/FMP Kernel, which support
dynamic task migration. In order not to degrade worst-case
response, the FMP kernel does not automatically migrate tasks
across processors. Instead, the FMP kernel provides system
calls for task migration. Therefore, it is programmer’s
responsibility to decide when and which task is migrated to
where.

VI. CONCLUSIONS

This paper discusses requirements, principles and
implementation techniques for real-time operating systems to
be used in real-time asymmetric multiprocessor systems-on-
chip. Specifically, we present TOPPERS/FDMP Kernel and
TOPPERS/FMP Kernel. The FDMP kernel is now released as
open-source software from the website of TOPPERS Project
[4]. The FMP kernel is at present released to members of
TOPPERS Project and will be open to public in near future.

ACKNOWLEDGMENT

Implementation of TOPPERS/FDMP Kernel was in part
supported by IPA.

REFERENCES

[1] TRON Association, http://www.tron.org/.
[2] H. Takada and K. Sakamura, “Inter- and intra-processor

synchronizations in multiprocessor real-time kernel,” International
Workshop on Parallel and Distributed Real-Time Systems, 1996.

[3] S. Honda and H. Takada, “Extension of ITRON specification OS for
function-distributed multiprocessors,” IEICE Trans. Information and
Systems, vol. J91-D, no. 4, pp. 934-944, Apr. 2008 (in Japanese).

[4] TOPPERS Project, http://www.toppers.jp/.

Figure 4. Worst-case interrupt response time

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4
The number of processors

W
or

st
-c

as
e

re
sp

on
se

 ti
m

e
(u

s)

Method 1

Method 2 (FDMP)

- 67 - 2008 International SoC Design Conference2008 International SoC Design Conference CDC2008 ISoCC2008 ISOCC

