A Generalized Framework for Energy Savings in Real-Time
Multiprocessor Systems

Gang Zeng, Tetsuo Yokoyama, Hiroyuki Tomiyama, Hiroaki Takada,
Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
{sogo, yokoyama, tomiyama, hiro} @ertl.jp

Tohru Ishihara
System LSI Research Center, Kyushu University
3-8-33, Momochihama, Sawara-ku, Fukuoka 814-0001, Japan
ishihara@slrc.kyushu-u.ac.jp

Abstract— A generalized dynamic energy performance scal-
ing (DEPS) framework is proposed for exploring application-
specific energy-saving potential in multiprocessor systems. This
software-centric framework takes advantage of possible power
control mechanisms to trade off performance for energy savings.
Three existing technologies, i.e., dynamic hardware resource con-
figuration (DHRC), dynamic voltage frequency scaling (DVES),
and dynamic power management (DPM), have been employed in
this framework to achieve the maximal energy savings. The prob-
lem of determining the optimal task allocation and DEPS config-
urations is formulated as an integer linear programming (ILP)
problem. Several practical issues such as how to reduce measure-
ment and computation time and how to reduce the configuration
overhead are also addressed. The effectiveness of DEPS is vali-
dated through a case study.

Keywords: embedded real-time systems, energy-aware multipro-
cessor scheduling, dynamic hardware resource configuration, dy-
namic voltage frequency scaling, dynamic power management.

I. INTRODUCTION

Power and energy consumption has become one of the major
concerns in today’s embedded system design. Reducing power
or energy consumption can extend battery lifetime of portable
systems, decrease chip cooling costs, as well as increase sys-
tem reliability. In contrast to the conventional hardware-centric
low power designs, the software-centric energy performance
tradeoff approach has attracted much attention recently due to
its flexibility and easy implementation. This approach is based
upon two observations. First, application needs for particu-
lar hardware resources such as caches, issue queues, and in-
struction fetch logic within an embedded processor can vary
significantly from application to application [1]. Furthermore,
program behaviors with respect to access of 1/0 devices (e.g.
external memory) are also application-dependent. This fact
manifests the application-specific energy saving potential via
dynamically turning off the unnecessary hardware resource ac-
cording to the actual requirements of different applications.

978-1-4244-2599-0/08/$25.00 (©2008 IEEE

Second, in real-time systems the utilization of processor is gen-
erally less than 100% even if all tasks run at the worst case ex-
ecution time (WCET). The fact of existing slack in real-time
system reveals the chance for trading off performance for en-
ergy savings since the highest performance is not always re-
quired if the deadline can be met.

There are three kinds of commonly used power control tech-
nologies for energy performance tradeoff. One is dynamic
hardware resource configuration (DHRC), such as adaptive
branch predictor, selective cache way etc.. This technology
tries to improve processor energy efficiency by dynamically
tuning major processor resources in accordance with varied
needs of applications [1]. However, its effectiveness for en-
ergy savings is application-dependent, i.e., a specific DHRC
technique may be effective for some applications, but may
be ineffective for other ones [2]. The second technology is
dynamic voltage frequency scaling (DVFS). Because the dy-
namic power consumption of CMOS circuits is proportional to
its clock frequency and its voltage square, DVFS can save en-
ergy effectively through lowering both frequency and voltage
of processor. Unlike DHRC, DVFS generally has similar effec-
tiveness on different applications. That is, lowering frequency
and voltage in a range always leads to longer execution time
and less energy consumption. Moreover, the variation of exe-
cution time and energy consumption after DVFS can be esti-
mated by simple calculations. The third one is dynamic power
management (DPM) which is generally employed to reduce
the energy consumption of processor or device in idle state by
transferring them to a low power mode.

It is desirable to save more energy by combining the above
technologies. Unfortunately, it is not a trivial problem, espe-
cially for the hard real-time systems. The reasons are as fol-
lows. (1) While the energy consumption and execution time
can be estimated by calculation after DVFS, they cannot be
done so after reconfiguration of hardware. Thus to guarantee
deadline for DHRC application, the only way to obtain the en-
ergy time relation under a hardware configuration is actual or
simulation measurement (measurement for short, hereinafter).

2008 ISOCC

지선
텍스트 상자
978-1-4244-2599-0/08/$25.00 ⓒ2008 IEEE

Trace Mining,
Energy Profiling and

&\ Power Measuring Tools
Tools >

(Power analysis)

A

pp.2° App. n
P2;D2; WCET2 ,,,

Pn; Dn; WCETn
QEPS cfg.n: power

P1; D1; WCET1
QEPS cfg. 1: powerl

RTOS

Software DEPS Engine

(Power aware)

Perf. Counter&Sensor Hard. Config.

[v

Power Controllable
Processor and External Devices

Hardware
(Power controllable)

Fig. 1. DEPS framework.

(2) Combining them may result in so many possible configura-
tions that the total measurement and computation time is unaf-
fordable. (3) Consider the fact that the efficiency of DHRC is
application-dependent, thus a framework should have the capa-
bility to accommodate different hardware configuration mech-
anisms for various applications.

In this work, we propose a generalized framework, called
dynamic energy performance scaling (DEPS), to achieve the
maximal energy savings in real-time multiprocessor systems
by combining three existing power control technologies. The
rest of the paper is organized as follows. Sec. 2 presents the
proposed DEPS framework. Sec. 3 gives a case study and sim-
ulation results. Sec. 4 discuses the reduction of configuration
overhead. Finally, Sec. 5 summarizes the paper.

I1. DEPS FRAMEWORK

Our DEPS framework includes three layers, i.e., power con-
trollable hardware, power aware software, and power analysis
tools. Figure 1 shows the framework and interactions between
the three layers. As a software-centric approach, the DEPS en-
gine is implemented in the scheduler of OS. The power anal-
ysis tools are employed for analysis and extraction of power
relative information. The power measurement tool is utilized
to obtain the energy time relations under selected configura-
tion.

A. System Model

Consider a homogeneous multiprocessor com-
posed of s identical cores denoted by the set
® = {corey,...,coreg,...,cores}. Each core is equipped

with the DVFS and DHRC capabilities, and the multiprocessor
is equipped with DPM-enabled external device.

We consider hard real-time applications including a set of
independent n periodic real-time tasks, represented as I' =
{T1,..-,Tiy...,Tn}. Each task 7; has a period P; and rela-
tive deadline D; that is equal to P;. A task 7; has m; effective
DEPS configurations ¥; = {Ci, ..., Cij, - .., Cip, } consist-

ing of DHRC configuration, DVFES parameters, and DPM poli-
cies. Each DEPS configuration C;; is associated with a spe-
cific energy time relation, which can be represented by a pair
of values (T};, E;;) where T;; is the worst-case execution time
under the C;; configuration, and F;; is the energy consump-
tion of processors and external devices during T7;.

There are two main approaches to schedule real-time tasks
on the multiprocessor: global scheduling and partitioned
scheduling. The global scheme uses a global scheduler to as-
sign tasks to the processors online, whereas the partitioned
scheme uses a dedicated scheduler for each processor, and
tasks are assigned to particular processors offline without run-
time migration. In this work, we focus on the partitioned
scheme due to its simplicity and ease of implementation.

B. Problem Formulation

We assume that the overhead for task switching and DEPS
reconfiguration is negligible for simplicity, and the energy time
relations of each effective DEPS configuration have been ob-
tained in advance. hyperperiod denotes the least common
multiple of all task periods. Then, the energy optimization
problem is to determine the optimal allocation and DEPS con-
figuration for each task such that the total energy consumption
over the hyperperiod is minimized and all deadline constraints
are met.

Minimize energy:

n m; s

hyperperiod
Z Z Z %(E” — TiWidie) ik 1
i=1 j=1 k=1 !
subject to
n m; T” R
Z Z B, Lijk <n(2= — 1), Yeorer, € ®; (2)
i=1j=1 '
n m; T”
ZZ Fx”k <1, Ycorer € ®; (3)
i=1j=1 " °
szﬁk =1, V7 € F; “)
j=1k=1
zik = {0,1},V1; € T,VCy; € U;, Veorey, € ®. %)

In the above equation (1), the Wiqie denotes the idle power
of processors and devices. The equations (2) and (3) represent
utilization-based schedulability test for rate monotonic (RM)
and EDF scheduling, respectively. Equation (4) indicates that
for each task, only one DEPS configuration can be selected
on all cores where x;;; = 1 denotes that task 7; is allocated
to corey, with configuration Cjj;, otherwise x;;, = 0. Note
that the above formulation can be extended to heterogeneous
multiprocessor if replacing the above T;;, E;; with Ty, Fjjp,
respectively, which means that the energy time relations of a
configuration are different from core types in heterogeneous
case.

It is known that the above ILP problem is an NP-hard prob-
lem. While there is no polynomial-time exact method for this

- 45 -

2008 ISOCC

Energy

Execution time

Fig. 2. An example to illustrate the effective configurations.

problem, we can use common methods for solving any reason-
able size by off-line computation. In the following case study,
we use LPSolve tool [7], a free mixed integer linear program-
ming solver, to solve this energy optimization problem.

C. Selection of Effective DEPS Configurations

Consider a DEPS framework with L voltage levels, () DPM
policies, as well as K kinds of DHRC (each DHRC has
F; (1 < j < K) configurations), it thus needs to perform
L x Q@ x Fy x F5 X --- X Fg times measurements to ob-
tain all possible energy time relations for one task. Further-
more, the same number of variables is required for one task in
the optimization computation. Obviously, this problem makes
the framework unsuitable for practice. Fortunately, we can re-
duce both measurement and computation time without waste
of energy by only selecting some energy efficient configura-
tions. Figure 2 gives an example to show the different energy
efficiency of each DEPS configuration where measured execu-
tion time and energy consumptions associated with 8 possible
DEPS configurations for task 7; are presented. It is clear that
only 4 out of 8 configurations are effective for energy and per-
formance tradeoft which are connected by the dotted line in
the figure. If all DEPS configurations are considered as a par-
tially ordered set, then the effective configurations are a set of
minimal elements.

Instead of exhaustively exploring all possible configura-
tions, we can predict the effective configurations by searching
the effective parameters in each power control method sepa-
rately. First, as discussed in Sec. 1, since DVFS is effective for
any applications, we consider all DVFS parameters effective.
Then, to find the effective parameters in one kind of DHRC,
we assume that different DVFS parameters or DPM policies do
not affect the selection of effective DHRC parameters, which
has been confirmed in our case study and also was suggested in
[2]. For example, the cache miss rate will not change even the
processor is set with different voltage and frequency. There-
fore, the search can be performed separately, each time for
one kind of DHRC or DPM policy and with specified volt-
age/frequency. As a result, only Q + Fy + F» + --- + Fg
times measurements are needed to find all effective config-
urations and policy in DHRC and DPM. After that, if each
DHRC has H; (1 < j < K) effective configurations where
H; < F}, and only one DPM policy is effective, then total
L x (Hy + Hy + - -+ + Hg) times measurement are required

under different DVFS parameters for each task in the optimiza-
tion computation.

In the above procedure, we use the following algorithm to
find the effective DHRC parameter in one kind of DHRC. First,
we conduct F; measurements to obtain all possible energy time
relations in one kind of DHRC. Second, sort the configurations
in increasing execution time order. Third, configurations with
increased execution time and decreased energy consumption
are selected as the effective configurations. The above algo-
rithm can also be used for the selection of effective DPM poli-
cies. Note that we can further reduce measurement and com-
putation time at the cost of more energy consumption over the
optimal one by only selecting the most effective DEPS con-
figurations and ignoring other ones. For example, the C3, and
(4 are more effective than Cj¢ in Fig. 2 through the evaluation
of energy efficiency which is defined as reduced energy / in-
creased execution time when comparing with the configuration
with the shortest execution time, i.e., the C; in this example.

D. Implementation of DEPS

The implementation of DEPS may be static or dynamic
which depends on actual workload characteristics. In general,
while the static one is for stable workload and maintains the
optimal DEPS configuration for entire execution, the dynamic
one is for unstable workload and may change the DEPS con-
figuration online based on actually measured slack time. A
key difference between the dynamic DEPS and dynamic DVFS
is that the assumption for most existing dynamic DVFS algo-
rithms that the total number of cycles of task is constant even if
voltage and frequency are changed during the execution of task
is no longer held for dynamic DEPS. It is evident that when
DEPS configuration is changed such as cache size, branch pre-
diction etc., the number of cycles required for task execution is
also changed. As a result, the left execution time of task will
become unpredictable if its DEPS configuration is changed
during execution, and ignoring this fact may lead to miss of
deadline. For this reason, DEPS configurations are merely al-
lowed to change at the beginning of execution in the dynamic
scheme. More detailed information about the dynamic DEPS
schemes can be found in [4].

The implementation procedure of static DEPS mainly in-
cludes the following steps:

1. Select effective DEPS configurations for each task as the
algorithm given in Sec. 2.3.

. Obtain energy time relations associated with each effec-
tive DEPS configurations by measurement.

. Solve the energy optimization problem using the formula-
tion described in Sec. 2.2 to obtain the optimal allocation
and DEPS configuration for each task.

. Store the optimal DEPS configurations and the associated

configuration parameters into a static configuration table
for each processor core.

- 46 -

2008 ISOCC

TABLEI
SIMPLESCALAR/ARM CONFIGURATION.

Fetch queue 2

Branch predictor

Fetch, decode width 1

Configurable

Issue width 1 (in-order)

Functional units 1 int ALU, I int multiplier

1 FP ALU, 1 FP multiplier

Instruction L1 cache Selective cache way (SCW)

Data L1 cache Size 8KB; sets 64
block size 32bytes; 4ways
L2 cache None
Memory bus width 4bytes

TABLE I
BRANCH PREDICTION CONFIGURATION.

Enable Branch Prediction (EBP)
Disable Branch Prediction (DBP)

Bimodal 2K entries; 3 cycle penalty

Not-taken; 3 cycle penalty

5. For each context switch or dispatch of task, the OS sched-
uler of each core sets the optimal DEPS configuration for
the next task to run according to the static configuration
table when the current DEPS configuration is not the ex-
pected one.

III. A CASE STUDY

We use a case study to demonstrate the effectiveness of
DEPS because the achievable energy savings of DEPS are
highly dependent on the employed technologies. In this case
study, a four-core ARM-based homogeneous multiprocessor
is assumed. Each core is equipped with independent DVFS
and DHRC capabilities. The DVFS has 4-level selectable volt-
age/frequency, and the DHRC consists of the selective cache
way (SCW) [3] and configurable branch predictor (CBP). Ad-
ditionally, the multiprocessor is supposed to equip with two
256MB mobile DDR SDRAM chips with 32-bit width. The
reason for selecting SCW and CBP is their easy implemen-
tation and low configuration overhead. Note that our DEPS
framework is general and independent of the employed DHRC
and DVFS technologies. We simply choose the above tech-
nologies as an example of DEPS.

A. Simulation Environment Setup

A SimpleScalat/ARM [5] based power simulator, Sim-
Panalyzer [6], is employed to measure energy and time in our
experiments. Default configuration is used for Sim-Panalyzer.
The configuration of SimpleScalar/ARM is listed in Table I.
The configurations of CBP, SCW, and DVFS are given in Ta-
ble I, Table III, and Table IV, respectively. The SCW is imple-
mented only on instruction cache to avoid large configuration
overhead for keeping data coherence.

TABLE III
SCW CONFIGURATIONS FOR L1 ICACHE.

Parameters ‘ cfg.1 | cfg.2 ‘ cfg.3 |

Cache size (KB) 8 4 2

Num. of sets 64 64 64

Block size 32 32 32

Associativity 4 2 1

Replacement policy LRU LRU LRU
TABLE IV
DVFS PARAMETERS.

Processor frequency (MHz) | 280 | 220 160 100
Processor voltage (V) 2.0 1.8 1.6 1.4

The employed SDRAM chip is supposed to be able to pro-
vide multiple low power modes for different power-saving lev-
els. An access count based energy model is employed to cal-
culate the energy consumption of external memory which is
composed of standby energy and access energy. To save the
standby energy, we propose two DPM policies using different
low power modes. Both DPM policies can be implemented
by the SDRAM controller. Table VI summarizes the energy
model, DPM policies, and associated parameters used in the
simulation. This energy model including DPM capability has
been integrated into the original Sim-Panalyzer to calculate the
runtime energy consumption of external memory in cycle ac-
curacy.

For simplicity, the power consumption of processor and
memory is assumed to be zero during idle state of OS. Some
benchmark programs from MiBench, MediaBench and Power-
stone are selected for the evaluation. A synthetic task set con-
sisting of these benchmark programs is assumed to run on the
ARM-based multiprocessor with different average utilizations
as shown in Table V.

B. Simulation Results

According to the above Table II, III, IV and VI, there are
6 configurations for DHRC, 4 configurations for DVFS, and
3 policies for DPM. The DEPS framework can thus provide
total 72 configurations in this case study. The number of se-
lected effective configurations for each benchmark is given in
the last column of Table V. In summary, total 178 instead of
792 measurements are required for 11 tasks in this case study.
Execution time of LPSolve [7] in all experiments is between 1
second and 27 minutes on a computer equipped with a 3.6GHz
Pentium processor and 2GB RAM.

In general, DHRC is effective even for systems with high
CPU utilization, while DVFS is effective for systems with low
CPU utilization. Through the combination of these technolo-
gies, DEPS is more effective than either DHRC or DVFS in
isolation since it can provide more chances for energy and

-47 -

2008 ISOCC

TABLE V
SYNTHETIC TASK SET.

Task WCET | Periodl Period2 Period3 Eff.

name (ms) (ms) (ms) (ms) conf.
sha 63.0 200 300 600 6
v42 35.7 100 200 400 8
engine 8.8 40 50 100 8
g3fax 14.6 40 50 200 8
cjpeg 92.2 200 400 800 8
susan 12.1 40 50 100 8
ispell 93.1 200 400 800 4
dgsm 122.4 300 500 1000 12
mad 164.1 600 700 1200 8
djpeg 40.6 200 300 400 12
adpcm 130.0 300 600 1000 8

TABLE VI

ENERGY MODEL OF EXTERNAL MEMORY.

Energy model

Standby energy exe. time X standby power

Access energy access count X energy per access

(excluding standby power)

DPM policy for standby power reduction
DPMO without using any DPM in standby state
DPM1 transition the memory into standby power
down mode immediately after each access operation
DPM2 transition the memory into self refresh

mode when no access during specified time window

Parameters [8, 9]

Active read energy burst read: 27.15 nJ /access

Active write energy burst write: 20.17 nJ /access
DPMO: 59.1mW; DPM1: 8.9mW; DPM2: 0.65mW

1700 cycles

Standby power

Time window size

performance tradeoff, and overcome the inherent limitation of
each technology. Detailed results for comparison of DEPS
with existing technologies can be found in [4].

Figure 3 shows the normalized energy consumption with re-
spect to the peak power of the multiprocessor at different av-
erage CPU utilizations, in which the scheme of power-off rep-
resents the full speed running for task execution and power off
foridle state. As can be seen, with the reduced CPU utilization,
more energy can be saved. The energy difference between the
two schemes indicates the capability of DEPS to trade off per-
formance for energy savings. However, when CPU utilization
is 30%, this difference becomes small. Actually, we observe
that almost all tasks have selected the configurations with the
minimal energy consumption in this case. In other words, even
if the CPU utilization is further reduced, no more energy can
be saved. We discuss this problem in the following subsection.

1.0

0.95

S o
o o
T

@ Static DEPS
r B Scheme of Power-off

0.7 r

0.72

Se L
FSRVIE-N
T T

e o
o L
T

0.14

Normalized Energy Consumption

0.1

Il
o

Low (30.0%) Medial (59.8%) High (95.1%)

Average CPU Utilization

Fig. 3. Normalized energy consumption at different CPU utilizations.

C. Energy Savings Potential of DEPS

To predict the maximal energy savings potential of DEPS,
it is necessary to evaluate the maximal energy scalability of
DEPS which is defined as the maximal energy / the minimal
energy in all effective DEPS configurations. As an example,
Table VII shows all effective DEPS configurations and asso-
ciated information of adpcm benchmark. These configurations
are sorted as increased execution time order. It is clear from the
table that with delayed execution time the energy consumption
can be reduced. Specifically, prolonging the execution time to
three times, the energy consumption will become one third of
original one. However, it is impossible to achieve more energy
savings than this one even the execution time is prolonged to
more than 3 times. This is because the maximal energy scala-
bility is limited to 3 times in this case study. To give an insight
into the 3 times energy scalability, we evaluate each power con-
trol mechanism alone. The results reveal that DVES, SCW,
and CBP achieve 1.86, 1.29, and 1.09 times energy scalability
alone, respectively. These results suggest that higher energy
scalability is required to obtain more energy savings potential,
which can be achieved either by adding new power control
mechanisms to the DEPS or improving the energy scalabil-
ity of DVFS. For example, an XScale processor may have 5.7
times energy scalability because it has wider voltage and fre-
quency range (0.75V to 1.8V) than the employed one (1.4V to
2.0V). Meanwhile, it is also important to note that the specific
achieved energy savings are dependent on the CPU utilization
and program characteristics besides the given maximal energy
scalability.

IV. MULTI-PERFORMANCE PROCESSOR FOR
CONFIGURATION OVERHEAD REDUCTION

As described in Sec. 2.4, the DEPS requires one configura-
tion for one task. In worst case, each task context switch may
require configuration change. For conventional DVFS proces-
sors which require hundreds of microseconds for voltage and
frequency transition, this configuration overhead is too large
to be ignored. To solve this problem, we proposed a multi-
performance processor (MPP) which can be used as a design
alternative for the conventional DVFS processors in embedded

- 48 -

2008 ISOCC

TABLE VII
MAXIMAL SCALABILITY OF ADPCM.

Effective DEPS config. Energy | Exe. Time | Ave. Power
(ml) (ms) (mW)
8k I cache 280MHz EBP 57.8 130.0 445.1
2k I cache 280MHz EBP 389 130.2 298.5
2k I cache 280MHz DBP 35.7 142.4 251.0
2k I cache 220MHz EBP 31.9 165.6 192.5
2k I cache 220MHz DBP 29.3 181.2 161.8
2k I cache 160MHz EBP 25.8 227.6 113.3
2k I cache 160MHz DBP 23.7 249.0 95.2
2k I cache 100MHz EBP 20.9 364.0 57.3
2k I cache 100MHz DBP 19.2 398.4 48.1
Maximalscalability | 3 [3 9
MPUO MPU1 MPU2
LC: Level Converter Selective-Way " ||[High-end High-end
i Cache :
H[|1.0v 1.0V
g [+~ High-end PE N — 200MH 200MH
a 1.0V/200MHz <:> BKB z z
3 Middle-end PE b‘ Middle-end| ||| Low-end
8 " o[-sPm] 8KB 0.68V 0.52v
5 0.68V/133MHz 67MH
a Low-end PE GKB 133MHz z
e L L - 1 !
O.52V/67MHz Gt |
Global Bus Interface cow:l\er
u AMBA AHB 67MHz ﬂ

Fig. 4. Prototype of multi-performance processor [10].

system design. The processor consists of multiple PE (process-
ing element) cores, and each PE-core has the same instruction
set architecture but differ in their clock speeds and energy con-
sumptions. Only a single PE-core is activated at a time and
the other PE-cores are deactivated using clock gating and sig-
nal gating techniques. To evaluate the effectiveness of DHRC,
we also implemented the SCW instruction cache in this MPP.
Figure 4 shows the prototype of MPP.

The most significant advantage of MPP is a small over-
head for changing its configuration. The gate-level simula-
tion demonstrates that the MPP can change its configuration
including both voltage/frequency transition and cache way se-
lection within 1.5 microsecond and dissipates about 10 nano-
joule while conventional DVFES processors need hundreds of
microseconds and dissipate a few microjoule for the perfor-
mance transition. For more detailed information of the MPP,
refer to [10].

V. CONCLUSION

We proposed a generalized dynamic energy performance
scaling (DEPS) framework for energy savings in real-time
multiprocessor systems. This framework integrates three exist-
ing power control technologies, i.e., DHRC, DVFS, and DPM
to effectively trade off performance for energy savings. Its ef-
fectiveness has been validated through a case study. Several
practical issues such as how to select the effective configura-

tions, as well as how to reduce the configuration overhead have
also been addressed. For future work, we plan to evaluate the
DEPS framework on an in-house developed multiple perfor-
mance processor chip.

ACKNOWLEDGMENTS

This work is supported in part by the CREST ULP program
of JST.

REFERENCES

[1] D. H. Albonesi, R. Balasubramonian, S. Dropsho, et al.,
“Dynamically tuning processor resources with adaptive
processing,” IEEE Computer, vol. 36, no. 12, pp. 49-58,
2003.

[2] M. C. Huang,J. Renau, and J. Torrellas, “Positional adap-
tation of processors: application to energy reduction,” in
Proc. IEEE International Symposium on Computer Ar-

chitecture, 2003, pp. 157-168.
[3]

D. H. Albonesi, “Selective cache ways: on-demand cache
resource allocation,” in Proc. International Symposium

on Microarchitecture, 1999, pp. 248-259.

[4] G. Zeng, H. Tomiyama, H. Takada, and T. Ishihara, “A
generalized framework for system-wide energy savings
in hard real-time embedded systems,” in Proc. IFIP/IEEE
International Conference on Embedded and Ubiquitous

Computing (EUC), 2008. (to appear)
[51

“Simplescalar tools.” [Online]. Available: http://www.
simplescalar.com/

[6

—_

Sim-Panalyzer
http://www.eecs.umich.edu/"panalyzer/

Project,

“Ip_solve.” [Online]. Available:
projects/lpsolve/

http://sourceforge.net/

“Mobile DDR SDRAM MT46H16MI16LF,”
Technology Inc.

Micron

[9

—

“Calculating memory system power for DDR,” Micron
Technology Inc., Technical Note, TN-46-03, 2001.

[10] T. Ishihara, S. Yamaguchi, Y. Ishitobi, T. Matsumura,
Y. Kunitake, Y. Oyama, Y. Kaneda, M. Muroyama and
T. Sato, “AMPLE: An adaptive multi-performance pro-
cessor for low-energy embedded applications,” in Proc.
IEEE Symposium on Applicatioin Specific Processors,

2008, pp. 83-88.

-49 -

2008 ISOCC

