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Abstract— The parametric excitation based gait generation
method proposed by Asano et al. restores mechanical energy
lost by heel-strike collisions. Harata et. al. applied this method
to a kneed biped robot which is proper for the parametric
excitation, and show that sustainable gait has been generated
with only knee torque. A swing-leg of a kneed biped robot has
similar mechanism to an acrobot, and many acrobots bends a
joint in inverse direction like ornithoid walking. This suggests
that inverse bending a knee restores more mechanical energy
than forward bending like human walking, and hence, inverse
bending may be more efficient. In this paper, we propose a
parametric excitation based ornithoid gait generation method
for a kneed biped robot, and show that it can walk sustainably
by numerical simulation. We also show that parametric exci-
tation based inverse bending walking is more efficient than
parametric excitation based forward bending walking with
respect to performance indices in our model.

I. INTRODUCTION

When a biped robot walks, collision occurs at the ground

and hence, mechanical energy is lost. Therefore restoration

of mechanical energy is requisite for sustainable walking of

biped. In passive dynamic walking proposed by McGeer [1],

potential energy is transported to kinetic energy as walking

down a slope. For sustainable walking on a level ground,

several methods for restoration of mechanical energy lost by

the collisions were proposed.

Asano et al. [2] proposed a so-called virtual passive

dynamic walking in which the virtual gravity was adequately

designed by ankle and hip torque so as to restore kinetic

energy lost by collision. Goswami et al. [3] proposed energy

tracking control that the ankle and hip torque were designed

to make energy constant during the sustainable gait and

showed that the energy tracking control made stable limit

cycle.

Another approach to restore mechanical energy is based

on parametric excitation. A children’s swing is an example

of parametric excitation. When playing on the swing, a

person is to bend and stretch to increase amplitude of

vibration. In other words, without applying external force in

direction of movement, up-and-down motion increases total

mechanical energy. Fig. 1 presents the optimal trajectory,

A→B→C→D→E, given by Lavrovskii and Formalskii [4],

along which the increase of total mechanical energy is

maximized, supposed that the length of a pendulum, l,
is changed instantaneously. However, the length can not
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Fig. 1. Optimal trajectory of pendulum for parametric excitation

be actually changed instantaneously, and hence, in most

practical situations a reference trajectory close to the optimal

trajectory is chosen to restore total mechanical energy. Asano

et al. [5] applied parametric excitation principle to a biped

robot with telescopic legs which make the swing-leg mass

up-and-down, and showed that the robot sustainably walked.

Hayashi et. al. [6] applied parametric excitation to a real

machine.

The telescopic leg has another advantage that up-and-down

motion of swing-leg avoids scuffing the ground. Therefore,

this method resolves both the energy restoration and foot

clearance simultaneously. Harata et. al. [7] applied the para-

metric excitation principle to a kneed biped robot. Bending

and stretching a swing-leg knee has the same effect of up-

and-down of the center of mass of swing-leg. Like telescopic

leg, mechanical energy was shown to restore by only bending

and stretching a knee without hip actuation.

Swing-leg with an actuated knee has similar mechanism

to an acrobot [8]. An acrobot can be controlled to swing

up and balance about vertical equilibrium. This swing up

motion needs to increase mechanical energy. The acrobot

bends in inverse direction in a similar fashion of giant swing

on a horizontal bar. This suggests that inverse bending knee

like ornithoid shown in Fig. 2 restores more mechanical

energy than forward bending like human walking. We note

that, regardless of bending direction, the center of mass of

swing-leg move up-and-down and mechanical energy can be

restored.

In this paper, we propose and study parametric excitation

based ornithoid walking. First, we propose parametric exci-

tation based gait generation method for ornithoid walking

and show that the robot can walk sustainably. Then, we

compare inverse bending with forward bending for our biped

model, and show that inverse bending parametric excited

walking is more efficient than forward bending with respect
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Fig. 2. Ornithoid walking
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Fig. 3. Model of planar kneed biped robot with semi-circular feet

to performance indices such as walking speed and specific

resistance.

This paper is organized as follows: Section II explains the

biped robot with semicircular feet. Section III is the main

part of this paper, in which we propose a sustainable gait

generation method for ornithoid walking (Section III-B). We

also compare parametric excitation based inverse bending

walking to forward bending walking with our biped model

(Section IV). Finally in Section V, we conclude this paper.

II. MODEL OF PLANAR KNEED BIPED ROBOT

WITH SEMICIRCULAR FEET

Fig. 3 illustrates a biped robot discussed in this paper. The

robot has four point mass and three degrees of freedom, and

has semicircular feet whose centers are on each leg. Since

there are two mass on the leg, the support-leg has inertia

moment. The dynamic equation during single support phase

takes the form

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = SuK − JTλ, (1)

where θ = [ θ1 θ2 θ3 ]T is the generalized coordinate

vector, M is the inertia matrix, C is the Coriolis force
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Fig. 4. Geometric relation at the heel-strike instant

and the centrifugal force, and g is the gravity vector. The

matrix J =
[

0 1 −1
]

is a Jacobian derived from a

knee constraint, θ2 = θ3, and λ ∈ R is knee binding force.

The control input vector, SuK , is described in detail later

(Section III). In this robot, collisions occur at a knee and

ground. The robot gait consists of the following three phases.

• The first phase (Single support phase I): The support-leg

rotates around the contact point between a semicircular

foot and ground, and the knee of swing-leg is not fixed,

that is, knee binding force λ equals to zero, and hence,

the knee of swing-leg can be bent by input torque.

• The second phase (Single support phase II): The

support-leg rotates around the contact point and the

knee of swing-leg is locked in a straight posture by

knee binding force. When the first phase changes to

the second phase, a completely inelastic collision is

assumed to occur at a knee.

• The third phase (Double support phase): This phase oc-

curs instantaneously, and the support-leg and the swing-

leg are exchanged after the collision at the ground.

We first explain the impact equation at a knee of swing-leg.

Let the coordinates θ̇− and θ̇+ correspond to before and

after knee collision, respectively. Then these are related by

the equation

Mθ̇+ = Mθ̇− + JTλK , (2)

where λK is constraint force making Jθ̇+ = 0. This force

is given by

λK = −(JM−1JT)−1Jθ̇− (3)

From Eqs. (2) and (3), angular velocities after knee collision

are given by

θ̇+ = (I − M−1JT(JM−1JT)−1J)θ̇−. (4)

We also assume that, once after knee collision, a knee-joint

is fixed by the force JTλ until collision at the ground.

Next, we explain the impact equation at the ground. We

assume also that a collision at the ground is completely in-

elastic. Generalized coordinate legs i, (i = 1, 2) for separated
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model shown by Fig. 4 is given by

q =

[

q1

q2

]

, (5)

where qi =
[

xi zi θi1 θi2

]T
. Let “−” and “+” be

superscripts corresponding to before and after impact at the

ground, respectively. Then, we have q+ = q−, because the

positions do not change before and after the impact. The

impact equation of generalized coordinates takes the form

M̄(q)q̇+ = M̄(q)q̇− − JI(q)TλI , (6)

where λI ∈ R
6 is undetermined multiplier vector corre-

sponding to impulse force and JI ∈ R
6×8 is the Jacobian

such that

JI(q)q̇+ = 06×1. (7)

There are some constraints among the coordinates. From

geometric conditions, we have

z2 = R,

x1 + (a3 − R) sin θ11 + a2 sin θ12

= x2 + (a3 − R) sin θ21 + a2 sin θ22,

z1 + (a1 − R) cos θ11 + a2 cos θ12

= z2 + (a1 − R) cos θ21 + a2 cos θ22.

(8)

These equations mean that the height of the center of foot

of support-leg is constant (equal to foot radius) and that hip

position (vertical and horizontal) from (x1, z1) equals to hip

position from (x2, z2). In addition, the rate constraint that a

foot of support-leg rolls on the ground is given by

ẋ+
2 = Rθ̇+

21. (9)

The rate constraints that knees are fixed in a straight posture

are given by

θ̇+
11 = θ̇+

12,

θ̇+
21 = θ̇+

22.
(10)

The Jacobian JI is derived by differentiating Eq. (8) and by

incorporating Eqs. (9) and (10).

The multiplier vector λI is given by

λI = X−1

I JI q̇
−, (11)

where matrix XI is

XI = JIM̄
−1JT

I . (12)

Therefore the velocity of generalized coordinate after

collision becomes

q̇+ = (I8 − M̄−1JT
I X−1

I JI)q̇
−. (13)

The semicircular feet have been shown to have same

effects of equivalent ankle torque and to decrease energy

dissipation of the collision at the ground [9]. Note again that

only knees are actuated in our model.

(a) Forward bending

(b) Inverse bending

Fig. 5. Forward bending and inverse bending

III. ORNITHOID GAIT GENERATION

When parametric excitation principle applied to a kneed

biped robot, the center of mass of swing-leg moves up-and-

down by bending and stretching a knee. We remark that this

motion occurs regardless of bending direction, i.e., inverse

bending like ornithoid has the same effect of moving the

center of mass as forward bending like human walking. Thus

it is expected that a sustainable gait based on parametric

excitation also can be invoked by inverse bending a knee.

In the rest of paper, we call a knee bending like Fig. 5(a)

forward bending and that like Fig. 5(b) inverse bending.

When the acrobot is control to swing up, energy restora-

tion is necessary. The many acrobots are bent in inverse

direction when swinging up. This suggests that the inverse

bending a knee can increase more mechanical energy than

the forward bending.

A. Control input design

In this section, we explain control design for a kneed biped

robot shown by Fig. 3.

We first explain a reference trajectory. We give the refer-
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Fig. 6. Reference trajectory

ence trajectory for the relative knee-joint angle as

(θ2 − θ3)d = f(t)

=

{

αAm sin3
(

π
Tset−δ

(t − δ)
)

(δ ≤ t ≤ Tset)

0 (otherwise),

(14)

where δ > 0 is bending delay Am, is desired amplitude of

vibration and Tset is the desired settling-time which is the

period during bending and stretching a knee. The parameter

α = ±1 is used to indicate bending direction, that is, α = 1
indicates inverse bending and α = −1 indicates forward

bending. Here, we choose the instance just after the third

phase as the initial time of cycle, t = 0. The reason why

introducing bending delay δ is illustrated by Fig. 6. In Fig. 6,

a (red) dashed-dotted line is optimal trajectory for parametric

excitation shown in Fig. 1, a (green) dot-line is the case of

δ = 0 [s] and a (blue) solid line is the case of δ = 0.2
[s]. It is shown in Fig. 6 by introducing bending delay δ
that the reference trajectory ((blue) solid line) approaches

the optimal trajectory, and hence, it is expected to restore

more mechanical energy than those without delay.

In the following, we design control input to track the

reference trajectory given by Eq. (14). Let define x =
[

θ1 θ2 θ2 − θ3 − f
]T

, and let θ be rewritten by

θ =





1 0 0
0 1 0
0 1 −1



x +





0
0
−f



 =: Lx + N . (15)

Then θ̇ and θ̈ are

θ̇ = Lẋ + Ṅ , (16)

θ̈ = Lẍ + N̈ . (17)

The dynamic equation (1) in the first phase is redefined as

MLẍ + MN̈ + CLẋ + CṄ + g = SuK . (18)

Since the proposed robot has only knee actuation (Fig. 3),

the control input vector is given by

S =





0
−1
1



 . (19)

TABLE I

PHYSICAL PARAMETERS OF THE KNEED BIPED ROBOT

r1 0.40 m R 0.575 m
r2 0.20 m m1 5.0 kg
r3 0.30 m m2 1.0 kg
a2 0.40 m m3 4.0 kg
a3 0.60 m mH 5.5 kg

l 1.0 m I 2.0 kgm2

Let define K as

K =
[

0 0 1
]

L−1
[

M−1S
]

, (20)

and select the knee torque uK as

uK = K−1Z, (21)

where Z is defined by

Z =
[

0 0 1
]

L−1M−1(MN̈ + CLẋ + CṄ + g).
(22)

Using Eqs. (19)–(22), the dynamic equation (18) reduces to

θ̈2 − θ̈3 = f̈ . (23)

By integrating this equation twice, we obtain

(θ2(t) − θ3(t)) − (θ2(0) − θ3(0)) − (θ̇2(0) − θ̇3(0))t

= f(t) − f(0) − ḟ(0)t.
(24)

If initial states are set to equal initial states of the reference

trajectory, i.e. θ̇2(0) − θ̇3(0) = ḟ(0) and θ2(0) − θ3(0) =
f(0), then Eq. (24) can be rewritten as

θ2(t) − θ3(t) = f(t). (25)

Therefore, the input uK given by Eq. (21) is shown to track

the reference trajectory θ2 − θ3.

B. Numerical simulation

We show simulation results of parametric excitation based

ornithoid gait generation applied for a biped model (Fig. 3),

whose parameters are shown by Table I. We note that in this

model the shin mass is much larger (4 times) than the thigh

mass unlike both human and bird. This is because energy

restoration based on the parametric excitation principle needs

up-and-down motion of the center of mass of swing-leg, i.e.,

if shin mass is small, knee bending make little up-and-down

motion effect of the center of mass of swing-leg and hence,

mechanical energy does not sufficiently restored.

In our simulation, the control input uK defined by Eq.

(21) is determined for the reference trajectory Eq. (14) with

an amplitude Am = 0.8 [rad], settling time Tset = 0.8 [s]

and bending delay δ = 0.2 [s]. For these parameters, the

robot succeeds in walking sustainably.

Fig. 7 illustrates simulation results between 105 [s] and

108 [s] after the start of simulation in which the initial condi-

tions are [θ θ̇] = [−0.21, 0.21, 0.21, 1.0, 0.90615, 0.90615].
Fig. 7(a) shows angular positions, (b) shows angular veloci-

ties, (c) shows the total mechanical energy, (d) shows knee

torque, uK and (e) shows foot clearance. Foot clearance is
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Fig. 7. Simulation results

the height of the bottom of swing-leg from the ground level.

From Fig. 7(a), θ2 − θ3 is found to be always larger than or

equal to 0, that is, knee is bent in inverse direction. From

Fig. 7(c), energy dissipation of the collision at the knee is

hardly observed, while energy dissipation of the collision

at the ground is relatively large. Almost negligible energy

is lost at the knee collision because the relative knee-joint

angular velocity is very close to zero just before knee impact,

according to the reference trajectory defined in Eq. (14). Fig.

7(e) shows that foot clearance is positive except for the third

phase (double support phase), and hence, the biped avoids

scuffing the ground. In summary, the figures show that the

robot walks stably and sustainably with inverse bending. Fig.

8 shows stick diagram of one step for stable gait and this

figure shows that a biped robot walks like ornithoid walking.

IV. COMPARISON BETWEEN INVERSE BENDING

AND FORWARD BENDING FOR PARAMETRIC

EXCITATION

We compare inverse bending walking to forward bending

with respect to performance indices such as walking speed

Fig. 8. Stick diagram of simulation results

and specific resistance. Specific resistance is defined by

µ =

∫ T−

0+ |uK(θ̇2 − θ̇3)|dt/T

MggV /T
, (26)

and represents energy efficiency. The smaller a specific

resistance value is, the more efficient a walking is. In Eq.

(26), 0+ and T− represent the time just after and before

collision at the ground, respectively, Mg is the total mass of

a biped robot and V is the average walking speed.

Comparison is performed by numerical simulation. In this

simulation, a biped model and its physical parameters are the

same as in the previous section. We research the influence

of change of amplitude Am on walking performance. We

remark that an optimal bending delay δ is different between

inverse bending and forward bending from the energy ef-

ficient view point. Therefore, we search optimal bending

delays which minimize specific resistance of stable walking.

In the simulation, we fix Tset = 0.8 [s] and the amplitude

is changed from 0.6 [rad] to 1.3 [rad] by 0.02 [rad], and

for each amplitude, we compare specific resistance for each

delays from 0.1 [s] to 0.5 [s] by 0.02 [s]. With these optimal

bending delays, we compare inverse bending walking with

forward bending with respect to walking performance.

The results are shown in Fig. 9. (Blue) circles illustrate the

results of inverse bending and (green) squares illustrate those

of forward bending. Fig. 9 shows the simulation result; (a)

optimal bending delay, (b) walking speed and (c) the specific

resistance. We plot the value for which a biped robot can

walk sustainably. Therefore, in the forward bending the re-

sults are plotted only larger than or equal to Am = 0.78 [rad],

while in the inverse bending the whole results are plotted. It

is observed in Fig. 9(a) that the optimal bending delays of

inverse bending are smaller than those of forward bending

and the larger amplitude is, the smaller optimal bending

delay is. It is observed in Fig. 9(b) that walking speed of
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inverse bending is larger than those of forward bending,

and the larger amplitude is, the larger the walking speed is.

Fig. 9(c) shows that specific resistance of inverse bending

is smaller than that of forward bending. We can observe

from Fig. 9 that bifurcation occurs in inverse bending, when

amplitude becomes larger than about 0.9 [rad]. From Fig.

9(a), an optimal bending delay obtained by our simulation

is stepwise. This suggests that true optimal delay have not

been obtained, because of coarse search step size. This may

be a reason of bifurcations.

V. CONCLUSION

We have proposed an ornithoid gait generation method

based on the parametric excitation for a biped robot, and

showed by numerical simulation that the robot could walk

sustainably. Numerical simulation also showed that the para-

metric excitation based inverse bending walking was more

efficient than parametric excitation based forward bending

walking with respect to the performance indices in our

model. In the future work, we research the analytical optimal

trajectory, for example, optimal bending delay.
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