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Abstract

In this paper, we analyze the network structure of two
SNSs, Academic Community System (ACS) and Amippy.
From the viewpoint of network topology, the major char-
acteristics of these data sets can be summarized as fol-
lows: low average shortest-path length, high clustering co-
efficient, presence of a power law degree distribution and
negative assortativity. Based on our analysis, we propose
a growth model of SNS networks. We conducted numeri-
cal simulations to compare actual data sets with networks
generated by the proposed model. Results of simulations
indicated that the processes of the CNN model and Fitness
model are needed to reproduce the networks of SNSs.

1. Introduction

As part of the steady growth of new network commu-
nication tools, the expansion of Social Network Services
(SNSs) such as MySpace, orcut, Cyworld, and mixi, is be-
coming a social phenomenon impacting societies all over
the world. With expansion of these services, many kinds
of SNSs can also be found, such as campus, company, and
local area SNSs. SNSs provide individuals with an online
space for communication on the Internet. SNSs help people
to find others with common interests, exchange opinions,
establish a forum for communication, and so on.

Studies of social networks are fundamental in the min-
ing and analysis of social phenomena. A number of studies
have focused on the structure of social networks. In tradi-
tional studies, since it is difficult to obtain large data sets,
the focus has been on small-size networks. In the 21st cen-
tury, on the other hand, networks of thousands or millions of
vertices are not unusual and we can obtain data sets through
online communication tools, such as SNSs and blogs.

There are some studies about social networks on the In-
ternet as communication tools. Adamic et al. researched
the university SNS called Nexus. They analyzed the struc-
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ture of the network, along with attributes and personalities
of the users [4]. Yuta et al. [16] investigated the network
structure of the SNS, mixi. They found the existence of a
gap in the distribution of community size, which was not
present in real-world social networks. In addition, they pre-
sented a simple model, accounting for this feature. Yong-
Yeol Ahn et al. [S] compared the structures of three online
SNSs: Cyworld, MySpace, and orcut, each with more than
10 million users, respectively. Moreover, they analyzed the
historical evolution of the topological characteristics of Cy-
world. Backstorm et al. [8] investigated group formation
in an SNS, LiveJournal, and co-authorship and conference
publications in DBLP. They studied how the evolution of
these communities relates to properties such as the struc-
ture of the underlying social networks.

In this paper, we analyze the data sets of the two SNSs,
ACS [1] and Amippy [2]. In each SNS, users can make
a link of friendship and establish their friendship network.
Our concerns here are statistics and dynamics of this net-
work. Through the analysis, we investigate features of
SNSs and propose a the growth model of SNS networks.
This model is based on simple stochastic processes and does
not attempt to capture the microscopic details. However, a
number of intuitively reasonable results emerge from this
model.

This paper is organized as follows. In section 2, we de-
scribe details of two SNSs. In section 3, we analyze the
structure of these SNS networks. In section 4, we propose a
growth model of SNSs. In section 5, by conducting numeri-
cal simulations, we demonstrate the validity of the proposed
model, and consider the characteristics of the model in de-
tail. In section 6, we conclude this paper.

2. Description of data sets
2.1. Academic Community System (ACS)

ACS is a social network service at Nagoya University
that is designed for communities consisting of various hu-
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man relationships. This service helps users establish and
maintain an online network with other users. ACS accounts
are given to anyone who belongs to Nagoya University.

ACS began its service in January 2006. We received
the data set of the user friendship network in May 2008,
in which the number of users and links of friendship are
709 and 2,222, respectively. The network is separated into
some connected components: the biggest connected com-
ponent consists of 307 users. In this paper, we investigate
this biggest component, which includes 307 users and 1,892
links.

2.2. Amippy

Amippy is a social network service managed by TRY-
WAREP [3], an incorporated nonprofit organization in West
Chiba city in Japan. People living in West Chiba or who
are related to the city participate in this SNS. One purpose
of Amippy is to revitalize local communities through online
communications. In order to build an SNS network with a
sense of security and healthiness, Amippy employs a closed
invitation policy. That is, Amippy’s accounts are given only
to people invited by an existing user, which is different from
ACS.

Amippy began its service in January 2006, just about
the same time that ACS began its operation. From “TRY-
WARP,”, the provider of the Amippy service, we received
an anonymized data set of the user friendship network in
May 2008. The data set contains 2,610 users and 22,434
links of friendship. The biggest connected component con-
sists of 2,459 users and 21,258 links. We investigate this
component in this paper.

3. Analysis of Social Network Services

In this section, we analyze the network topology of two
SNSs (ACS and Amippy) from their average shortest-path
length, clustering coefficient, degree distribution, and assor-
tativity.

3.1. Average Shortest-path Length

Shortest-path length is defined as the shortest distance
between node pairs in a network [6]. Therefore, average
shortest-path length is defined as the following equation:

L= 1N(N—1 Zl” M

where N is the number of nodes, and /;; is the shortest-path
length between node ¢ and j.
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3.2. Clustering Coefficient

The clustering coefficient is the average probability that
two neighbors of a node ¢ are connected [6]. For a node ¢,
the clustering coefficient C; is given by the ratio of existing
links between its neighbors to the possible number of such
connections. Thus, the clustering coefficient C; is defined
as the following equation:

2F;

Q:m%_m

2
where E; is the number of links between node 7’s neighbors,
and k; is the degree of node i, meaning the number of links
connected to node .

Averaging C; over all nodes of a network yields the clus-

tering coefficient of the network C. It provides a measure of
how well the neighbors of a node are locally interconnected.

3.3. Assortativity

Assortativity r is the standard Pearson correlation coef-
ficient of the degrees at either ends of a link, and lies in the
range —1 < r < 1. It shows whether or not the nodes in the
network that have many connections tend to be connected to
other nodes with many connections [13, 14]. Assortativity
is defined as follows:

. MUY ik = MY, 50 + k)] 3)

M35 57 + k) — M1, 50 + Ka)]?
where M is the number of links, and j;,k; are the degrees
of the nodes at the ends of the ith link, with¢ =1, ..., M.

When r > 0, there is a preference for high-degree nodes
to attach to other high-degree nodes. The network is said to
show assortative mixing. On the other hand, r < 0, there is
a preference for high-degree nodes to attach to low-degree
ones. The network is said to show disassortative mixing.
It is said that the positive value of the assortativity is con-
sidered as a unique property of real-world social networks,
while technological and biological networks have the nega-
tive value.

3.4. Degree Distribution

The degree distribution is defined by p(k), the fraction
of nodes in the network that have degree k. In other words,
p(k) is the probability that a node chosen at random has
degree k.

Figure 1 shows the probability p(k) obtained from two
data sets, indicating that the degree distribution follows a
power law p(k) o< k7.

In ACS the maximum degree user has k4, = 93, which
means that the user is connected with roughly 35% of all



users. In contrast, 31.6% of all users have only one link. In
Amippy, maximum degree user has k,,,, = 628, it corre-
sponds to 25.5% of all users, and 38.4% of all users have
only one link.
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Figure 1. Degree distribution of two SNSs

3.5. Summary of Analysis

Table 1 shows the summary of the network topology
analysis. The major characteristics of two data sets can be
summarized as follows:

e Low average shortest-path length and high clustering
coefficient (Small world network),

e Presence of a power law degree distribution (Scale free
network),

o Negative assortativity.

Table 1. Properties of two SNSs

ACS  Amippy
Users N 307 2459
Links M 1892 21258
Average shortest-path length L | 3.28 3.10
Clustering coefficient C' 0.479 0.395
Scaling exponent y 1.134 1.169
Maximum degree ky,qq 108 628
Mean degree (k) 6.16 8.64
Assortativity r -0.152  -0.255

4. Modeling of Social Network Services

4.1. Characteristics of Social Network Ser-
vice

Let us begin modeling by considering the following char-
acteristics of SNSs. In general, it is said that SNSs can be
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characterized by the following features:

e Preferential Attachment,
e Friends of one’s friends,

e Influence of Special Interest Group.

4.1.1 Preferential Attachment

The degree distribution of many real-world social networks
does not follow a power-law distribution, while the de-
gree distribution of the Web does. Instead, the distribu-
tion appears to be strongly peaked around a certain mean
degree [7], meaning that many people have approximately
the same degree as the mean degree. The typical expla-
nation for this distribution is that there is recurring cost in
terms of time and effort to maintain a friendship. In cases
of SNS networks, however, there is only a one-time cost to
increasing one’s degree, and there is less cost to maintain
a friendship than in a real-world social network. Thus, as
with the Web, it is reasonable to consider the degree dis-
tribution of SNS networks follow a power-law distribution.
The Barabasi-Albert model [9] is a network growth model
that leads to a network with a power-law degree distribu-
tion. In the Barabasi-Albert model, both links and nodes are
added, and one end of each link is added with linear pref-
erential attachment, meaning that links are more likely to
connect to nodes of high degree than to ones of low degree.
Starting with a small number of nodes, at every timestep a
new node ¢ is added with m links (that will be connected to
the nodes already present in the network). When choosing
the nodes to which the new node connects, the probability
II; is defined as a new node that will be connected to node
1 depending on the degree of that node, such that

ks
Zj kj

where k; is the degree of the node ¢. This equation incor-
porates the fact that new nodes link preferentially to nodes
with a higher degree.

It is likely that the rate at which nodes in a network in-
crease their connectivity depends on their ability to compete
for links. For example, in social networks some individuals
acquire more social links than others, or on the WWW some
web pages attract considerably more links than others. That
is to say that nodes in networks have various capabilities,
such as the social skills of an individual and the content
of a web page. Also in SNSs, it is reasonable to suppose
that users have various abilities to make links of friendship.
For example, gregarious users and users who have high mo-
tivation for using SNSs are supposed to acquire more links
than others. The Fitness model is the network growth model
that accounts for such difference in the ability of nodes to
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compete for links [11, 10]. This model is a simple exten-
sion model of the BA model. In this model, each node has
a parameter called fitness, describing its ability to compete
for links. A node will increase its degree at the rate that
is proportional to its degree and fitness. Starting with a
small number of nodes, at every timestep a new node ¢ is
added with fitness 7;, where 7); is chosen from the distribu-
tion p(n). Each new node ¢ has m links that are connected to
the nodes already present in the network. It is assumed that
the probability II; that a new node will connect to a node
¢ already present in the network depends on the degree and
on the fitness of that node, such that

nik;
I, =
> mik;

where k; is the degree of the node ¢, and 7); is the fitness of
the node . This equation incorporates the fact that fitness
and the number of links jointly determine the attractiveness
and evolution of a node.

&)

4.1.2 Friends of One’s Friends

In a real-world social network, it is more probable that two
people with a common friend get to know each other than
two people without a common friend. In almost all SNSs,
one’s friends are listed on one’s top page. Through this
list, people can easily see the “friends of their friends in
the SNS.” It helps users to make a link of friendship with
friends of their friends. Thus, as well as in a real-world
social network, a relation of “friends of friends” plays an
important role in an SNS.

The connecting nearest-neighbor (CNN) model [15] is a
network growth model that incorporates a process of con-
necting nearest neighbors [12]. The basic assumption of
this model is that the evolution of connections is mainly de-
termined by the creation of new relations between pairs of
individuals with a common friend. This model proposed the
concept of a potential link, in which a pair of nodes is con-
nected by a potential link if (1) they are not connected by a
link and (2) they have at least one common neighbor. This
model, starting with a single node and an empty set of links,
iteratively performs the following rules.

1. With probability 1 —u, add a new node in the network,
and create a real link from the new node to a randomly
selected node 7. At the same time, create potential
links from the new node to all the neighbors of node .

2. With probability u, convert one potential link selected
at random into a real link.

In this process, a new node participates in the network at
the probability 1 — u, and a new link is either generated by
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converting a potential link or created by random linkage at
the rate u. Therefore, the rate u is determined by the number
of nodes and links.

4.1.3 Influence of Special Interest Group

In many networks including SNSs, individuals are related
not only with links, but also with characteristics attributed to
them. Examples include participation in particular groups
with specific interests, living in the same region, and re-
lations of families. In some SNSs, users can participate
in special interest groups called Community. Through this
Community, users can communicate with other users who
have similar interests, and may have a chance to get ac-
quainted with other people, even if they are at a great dis-
tance on a network. It means that people can build their
friendship network beyond the range of each neighborhood.
We can consider this process to be a random linkage that
does not depend on the current structure of the network.

4.2. Generalized Growth Model of Social
Network Service

4.2.1 Overview

Taking into account our consideration in the previous sec-
tion, we propose a model based on a combination scheme of
the Fitness model [11], the CNN model [16] and the process
of random linkage. Here, we deal with six models, which
are the Fitness model, the CNN model, and four combina-
tion models. Combination models are defined as follows:
(1) CNN and random linkage model (CR model [16]), (2)
Fitness, CNN and random linkage model (FCR model), (3)
Fitness and CNN model (FC model), (4) Fitness and ran-
dom linkage model (FR model).

Each model’s properties and corresponding name are
summarized in Table 2. The CR model was originally pro-
posed as the CNNR model [16]. In this section, however,
we call this model the CR model for abbreviation.

4.2.2 Description of the Model

By introducing the parameters u, py, and p,, we describe
these models as a single procedure. The model, starting
with a single node and an empty set of links, iteratively per-
forms the following rules.

1. With probability 1 — u, one of the following two pro-
cesses is performed.

(a) With probability ps, add a new node in the net-
work, and create a real link from the new node
to a node ¢, which is selected by the probability
II;.



nik;
M, = i
Zj n;k;

where 7); is the fitness of the node 4, and k; is
the degree of the node i. At the same time, cre-
ate potential links from the new node to all the
neighbors of node .

(6)

(b) With probability 1 — ps, add a new node in the
network, and create a link from the new node to
a randomly selected node i. At the same time,
create potential links from the new node to all
the neighbors of node 3.

2. With probability u, one of the following two processes
is performed.

(a) With probability p,, connect one pair of nodes
selected randomly with a real link.

(b) With probability 1 — p,., convert one potential
link selected randomly into a real link.

In this process, a new node participates in the network at
the probability 1 — u, and a new link is either generated by
converting a potential link or created by random linkage at
the rate u. Therefore, the rate w is determined by the num-
ber of nodes and links. The rate p; is the relative frequency
of selection by the probability II; with that of random selec-
tion. The rate p,. is the relative frequency of random linkage
compared with that of converting a potential link. The value
of node’s fitness 7 is chosen from uniform distribution in
the range 0 < 7 < 1, and it is unchanged in iteration of the
rules.

5. Numerical Simulation
5.1. Condition

In order to verify the validity of the proposed model, we
compare networks generated by the Fitness model, CNN
model, CR model, FR model, FC model, and FCR model
with the two data sets.

By adjusting parameter u, the numbers of nodes and
links in these simulations are precisely equal to the num-
bers of the ACS or Amippy. In the Fitness model, the pa-
rameter v = 1. In other models, based on the mean degree
of the ACS and Amippy, set the parameter v = 0.66 and
u = 0.77, respectively. As for py, set the parameter py = 1
in the Fitness model, FCR model, FC model, and FR model.
In other models, we set the parameter p; = 0. As for p,,
in CR and FCR, we follow a study by Yuta et al. [16] and
assume p, = 0.04. In the FR model, the process of connect-
ing nearest neighbors is not performed at all, thus we set the
parameter p, = 1. In the CNN model and FC model, the
process of random linkage is not performed at all, thus we
set the parameter p, = 0.

5.2. Results of ACS Simulation

Table 3 demonstrates the results of the numerical simu-
lations. In the Fitness model, both the average shortest-path
length and clustering coefficient are less than the value of
ACS. In the CNN model and CR model, average shortest-
path length is greater than the value of ACS, and assorta-
tivity indicates positive value. In the FR model, the clus-
tering coefficient is much lower than the value of ACS, and
it shows no assortative mixing. In the FC model and FCR
model, the clustering coefficient is slightly lower than the
value of ACS, however, assortativity shows negative value
and the average shortest-path length is similar to that of
ACS. For more detailed investigation, the degree distribu-
tions of ACS and that of one of the networks generated by
the FC model are shown in Fig. 2. We see from Fig. 2
that the degree distribution of these networks seems to be
similar. Indeed, the scaling exponent v of each network’s
degree distributions are «y,.s = 1.184 and vy, = 1.227.

From the viewpoint of these properties, the results of the
simulations show that the FC model and FCR model seem
to be able to reproduce the network structure of ACS. In
particular, the FC model is the most similar to them.

5.3. Results of Amippy Simulation

Table 4 shows the results of the numerical simulations.
We see from Table 4 that the results of the Fitness model,

Table 2. Characteristic feature of each model (“+” means use the property “-” means do not use the

property. )
Fitness CNN CR FR FC FCR
Fitness + - - + + +
Connecting nearest neighbors - + + - + +
Random linkage - - + + - +
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Figure 2. Degree distribution(ACS and FC)

CNN model, CR model and FR model are similar to the re-
sults in section 5.2. That is, the Fitness model and FR model
are different from the actual data set by the clustering coef-
ficient. The CNN model and CR model are different from
the actual data set by its assortativity. On the other hand, the
results of the FC model and FCR model are different from
the results in section 5.2. First of all, the FC model and FCR
model show week negative assortativity (r = —0.079), al-
though the actual data set shows strong negative assortativ-
ity (r = —0.225). Secondly, the scaling exponents -y differ
from one another. In order to explain these differences, we
show the degree distributions of Amippy and one of the net-
works generated by the FC model in Fig. 3. Although, these
degree distributions seem to be similar, the scaling exponent
¥ are Yamippy = 1.169 and . = 1.441. The main reason
for this is the difference of high degree domains: the maxi-
mum degree node has only 245 links in the FC model, while
in Amippy it has 628 links. This means that the FC model
fails to reproduce the presence of a “super-hub” node. Since
the presence of a “super-hub” node leads to a negative value
of assortativity, it is reasonable to suppose that the differ-
ence of high degree domains also causes the divergence of
the value of assortativity.

5.4. Discussion
As noted above, the results of the network generated by

the FC model are the most similar to those of the two SNS
networks. In this section, we discuss why the FC model
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Figure 3. Degree distribution(Amippy and FC)

is able to reproduce networks similar to the two SNS net-
works.

First, from the Tables 3 and 4, it is reasonable to suppose
that the concept of the CNN model leads to a high cluster-
ing coefficient. Since the networks of the two SNSs show a
high clustering coefficient, the concept of the CNN model
is needed to reproduce the networks of the SNSs. Secondly,
as noted in section 3.4, the user of maximum degree in ACS
is connected with roughly 35% of all users, even though
31.6% of all users have only one link. In the same way,
maximum degree user in Amippy has a link of friendship
with 25.5% of all users, although 38.4% of all users have
only one link. As Bianconi et al. demonstrated, the concept
of the Fitness model leads the phenomenon called “fit get
rich(FGR)” in which a single node captures a macroscopic
fraction of links [10]. It is clear that the phenomenon is
conducive to the value of negative assortativity from its def-
inition. Since the networks of the two SNSs show the FGR
feature and the negative value of assortativity, we concluded
that the concept of the Fitness model is necessary to repro-
duce the networks of the SNSs. Lastly, we can see from
Tables 3 and 4, that the process of random linkage doesn’t
have much effect on the results. Since ACS and Amippy
are used in the university and local community respectively,
their range of friendship is limited. It is likely that users in
each SNS seldom make a relationship beyond the range of
each neighborhood. These results suggest that the process
of random linkage is not certainly indispensable for repro-
ducing the networks of the two SNSs. For these reasons,

Table 3. Network topology of ACS network and results of simulations with the models

ACS Fitness CNN CR FR FC FCR
Average shortest-path length L ~ 3.28 2.80 442 419 331 322 3.24
Clustering coefficient C' 0479 0.153 0378 0356 0.047 0375 0354
Assortativity r -0.152 -0.219 0.165 0.170 0.007 -0.115 -0.103
Scaling exponent ~y 1.134  1.387 1302 1334 1389 1.237 1.253
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Table 4. Network topology of Amippy network and results of simulations with the models

Amippy Fitness CNN CR FR FC FCR
Average shortest-path length L 3.10 3.08 528 475 3.5 3.51 3.54
Clustering coefficient C' 0.394 0.068 0.393 0.360 0.010 0.341 0.300
Assortativity r -0.255 -0.132  0.144 0.136 0.201 -0.079 -0.079
Scaling exponent vy 1.169 1.425 1493 1573 1.872 1.441 1.430
it is concluded that the FC model is able to reproduce the References

most similar network to SNSs. On the other hand, from the
results of Amippy simulations, we also found deficiencies
of the proposed model. For example, the model failed to re-
produce the presence of “super-hub” nodes and a network of
strong negative assortativity. This means that the model is
not always able to reproduce all characteristics of SNSs. In
order to reproduce the SNS network with higher accuracy,
it is necessary to incorporate some other characteristics into
our model.

6. Conclusion

In this study, we analyzed the data sets of the ACS and
Amippy. The major characteristics of the two data sets can
be summarized as follows: (1) Low average shortest-path
length, and high clustering coefficient, (2) Presence of a
power law degree distribution, (3) Negative assortativity.
Based on our analysis, we proposed a growth model of SNS
networks. We confirmed the model’s validity by conducting
numerical simulations with the proposed model. Results of
simulations indicated that the processes of the CNN model
and Fitness model are needed to reproduce the networks of
SNSs, and the proposed model is able to reproduce the net-
work structure of SNSs. However, it was found that the
model cannot always reproduce all characteristics of SNSs.

For future work, in order to reproduce the SNS network
with higher accuracy, we need to incorporate other charac-
teristics into our model. To take an examples it may be pre-
sumed that the fitness 7 obey other distributions, although
we chose fitness 7 from uniform distribution for simplic-
ity. In addition, it is an interesting to define the fitness 7 as
a variable parameter, which varies with communication in
SNS:s.
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