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Proposal of New Stability-instability Criterion for Crack Extension

Based on Crack Energy Density and Physical Systematization of Other Criteria*

by Katsuhiko WATANABE** and Hideyuki AZEGAMI***

A new stability-instability criterion (named Tz(T¢) criterion) for crack
growth which is applicable to small scale yielding cracks and also to large
scale yielding cracks is proposed based on crack energy density concept. T
criterion is a criterion in which attention is paid to the rate of variation
of crack energy demsity at a. crack tip point. of everymoment, and T¢ criterion
is another version of 7, criterion and is a criterion in which attentton is
paid to the rate of vatiation of crack energy density at a fixed point which
will be a new crack tip point after extension.

The relations between Te(7g) criterion and other known criteria (crite-

rion based on g-R-a curves; 1), T
it is shown that the physical meanings
all criteria can be systematized based

and Twcriteria) are also discussed and
of other criteria can be made clear and
on the new criterion.

Key Words: Fracture, Stability-instability Criterionm, Tearing Modulus,
Crack Extension, Crack Energy Density

1. Introduction

As for a stable or unstable behavior
of a growing crack, the energy balance
approach by ¢-R-a curves™ has been con-
sidered effective to a crack accompanied
with small scale yielding, but is has not
been applied to a crack accompanied with
large scale yielding successfully and var-
ious criteria based on tearing moduli
( 7/ T¥ T ) have been proposed in-
stead and received attention. However, in
those criteria some problems remain, that
is, as to 7; for instance, its physical
meaning is not clear, it is applicable
only under severely restricted conditions
and, among other things, the relations be-
tween these criteria and the criterion
based on energy balance are not clear.
And it seems that a stability-instability
criterion which permits a unified descrip-
tion of the phenomena from a brittle frac-
ture to a ductile fracture has not been
established yet.

By the way, in the previous papers
one of the authors proposed a concept of
crack energy demsity to take the place of
energy release rate and showed by using
the concept that various known criteria on
the initiation condition of crack growth
can be grasped systematically and their
physical meanings can be made clear ‘&,
As this crack energy density is defined as
a parameter which possesses a meaning
under an arbitrary load history including
crack extension, one can now expect to
give a stability-instability criterion by
crack energy density. From this point of
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view, in this paper the authors propose a
new stability-instability criterion, named
Te{T:) criterion, based on crack energy
density which is consistently applicable
to a growing crack with small scale yield-
ing and also to that with large scale
yielding, and, after making clear its phys-
ical meaning, investigate the relations
between this criterion and other criteria
referred to in the above. It is shown that
the positions and the role of other crite-
ria can be understood systematically in
the light of T¢{T¢) criterion and the pro~
blems pointed out above can be solved.

2. Proposal of a New Stability-
instability Criterion Based
on Crack Energy Density and
Its Way of Thinking

Crack energy density € was defined as
a value at a crack tip of every moment in
the continuum model where the stress and
strain become singular at a crack tip. and
in the model which reflects the disconti-
nuities at a crack tip in an actual mate-
rial (wecall it the actual model hereafter)
in the previous papers ",  In this chap-
ter, considering the work dome per unit
area not only on a crack tip but also on a
plane containing a crack, we define the
distribution of crack energy densities and

~propose a new stability-instability crite-

rion named 7T¢ criterion or another ver-
sion of this T¢ criterionm, i.e., T¢ cri-
terion based on the distribution of crack
energy densities.

2.1 Distribution of crack energy densities

We consider a crack in the actual
model as schematically illustrated in Fig.
1. It is supposed here that a crack of
which the length is @ in the initial state
before loading (time ¢=0) as-shown inFig.
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1(a) blunts and extends under loading and
the length of extension becomes (a—ao) at
time ¢=! as shown in Fig.1(b). In Fig.1
(a),% is the shape of the crack tipin the
initial state and ¢ is the crack length at
t=t (the apparent growth length by blunt~
ing is not added to the crack length and a
smooth crack extension is considered).
Hereafter, a unit thickness is comsidered.
Xi-Xacoordinates are taken as shown in
Fig.1(a) and a plane-like infinitesimal
volume sandwiched between two broken lines
in the figure is regarded as the actual
cracked plane. Then the distribution of
crack energy densities is defined, as the
distribution of energies in the actual
cracked plane, by

e @ xo= ([, av) )

=im[ (L (o we)ax} fax]

l‘(X.l‘WdX: ................................. (1)

where [(X,) is the path of which the shape
is the same as [} at X, in the actual
cracked plane inthe initial state, 4V is
the volume in the actual cracked plane

corresponding to 4X: shown in Fig.1(a) and
W is "the work done at each point in the
initial state per unit volume through an
actual deformation process", that is, the
strain energy density in an extended sense.
£(t,X\) has a meaning of "the energy that
the part of I'(X:) in the initial state has
absorbed actually up to now (time f=¢{ and
crack length is @ ) per unit area in the
actual cracked plame" and it is generally
considered to make a discrete distribution
along X, coordinate, but, in the following
discussion, we regard it as a continuous
distribution obtained by smoothing this
discrete distribution, because such a
smoothing is considered practical. Then
the distribution is schematically repre-
sented by a chain line with a dot in Fig.1
(¢) (a broken line shows ¢(i+4t, Xi) ).
Here, achain line with two dots represents
the crack energy density supplied to the
part which the crack tip has passed before
the crack tip arrives at each point.

While the distribution of crack ener-
gy densities is generally defined as the
above, itmay be easily defined comsidering
a simple model such as Dugdale model as
follows. That is, in this case, the above
actual cracked plane becomes a complete
plane and it is stretched out after load-
ing as shown in Fig.2(a) by the shading
part. And crack extension is realized by
cutting off the plane and removing the

“traction force at the crack tip. There-

fore, the distribution of the energies™

absorbed at the pointX(Zg) in the initial
plane per unit area up to the present time
{ » that is, the distribution of crack en-
ergy densities & (¢, X,) is given, as Fhe
sum of products of adhesive force ¢' acting
in the plane and corresponding increment
of relative displacement d458(¢, X,), by

€(t,X1)=_j:d'da(l,X1) .................. (2)

and it is shown in Fig.2(b). Here a chain
line with two dots in this figure has the
same meaning as in Fig.1(c), and is evalu-

: Lf =v 274
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Fig.1 Crack extension in the actual model
and distribution of crack energy densities

[4

Fig.2 Crack extension in Dugdale model

ated by substituting zero for ¢° in Eq.(2)
after the crack tip has passed the point
X .

2.2 Proposal of T, criterion

We represent the distribution of crack
energy densities at time ¢ of a smoothly
and stably growing crack in an actual mate-
rial by ¢£.(¢, X)) and call the crack energy
density &c(t,a) at the crack tip the criti-
cal crack energy demsity particularly.
Here ¢£.(t, @) has a meaning of '"the energy
actually absorbed at the part of [(¢) in
the actual cracked plane per unit area be-
fore the crack tip arrives at the position
of -Xi=a". On the other hand, we repre-
sent the distribution of crack energy den-

" sities determined by extending a crack

statically under a given mechanical bound-
ary condition (which may change with crack
extension) by &alt, Xi). Then, the condi-
tion of crack extension is given by

€ap(t, @)= €.(t,2) (extension) - (3)

This condition includes the initiation con-
dition and we call the relatiom of Eq.(3)
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€¢ criterion for crack extension. Here-
after, the subscripts ap and ¢ are as-
signed in the same way as used above also

to other parameters, and a parameter with

none of these subscripts is used to repre-
sent both parameters with these subscripts.

Now, when we grasp the phenomenon of
crack extension as described above, the
condition whether a crack that has started
to grow or has grown stably behaves stably
or unstably next moment is given by

d € aplt, ? (¢, :
dealtia) o} 7}.-%"(1—5‘}(‘2—0)=%724 (unstable)

da E
déalt,a) deéltia) (o o
7 da (stable) (4)
or
Te.,2Te. (unstable) » Tew<Ti, (stable)
................... (5)
where
dét,a) _ . E(t+dt atda)=E(t,a) At
da 4alat)-0 At da
—d&(t a) at
e (6)

E is Young's modulus and dr is an appro-
priate flow stress, and it should be noted
that (d&(t,a)l/(da) is the gradient of a
chain line with two dots at X,=a deter—
mined from the right side in Fig.1(c). We
call Eq.(4) or (5) T criterion and newly
propose this as a stability-instability
criterion for crack extension. The appli~
cabilities of £¢ and 7; criteria are proved
by seeing that therelations of &.(¢, ¢)=con—
stant and Te.=0 hold when a crack grows
under a uniform fracture mode.

N

2.3 Proposal of T, criterion

Eq.(6) is transformed as follows;
d¢lta) {5(:+At,a+da)— E(t, at+da) At

da 4a(t)-0 At da
£(t, at+da)—€(¢, a)
* da }
_ E(t+dt, a+da)— E(t, a+da) At
" aatai-o At da
. E(t, atdX)— (¢t a)
+}}f‘£‘l¢ AXI (7)

Therefore, when we represent the £irst
term and the second term in the right side
of Eq.(7) by (8&(4 a)l/da and {5 ¢ (¢, a)}/oX,
respectively and consider that (3 £,,(¢, a)}/
3X:=(9 &(t, a)}/dX, holds at the time when a
crack starts to grow or at the present time
until when a crack has grown stably, the
condition given by Eq.(4) or (5) can be
expressed as

3 Eap(t,a) e LB ENt a)_Epe
L a2 = ETc.’R EP = ETce(unstable)
ar.‘:a:(t,a)<3€c(t,a) (stable) -eeeeees (8)
da da

or
Tewz Ty (unstable), T7.,<TZ. (stable)

In this paper we call the condition repre-
sented by Eq.(8) or (9) T criterion. T¢
and T; criteria are equivalent though the
parameters considered are different, and it
can be said that T, criterion is a crite-
rion in which attention is paid to the
rate of variation of crack energy density
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at the crack tip part of every moment and, -
on the other hand, 7; criteriom is a cri-
terion in which attention is paid to the
rate of variation of crack emergy density
at the fixed part which will be anew crack
tip part after extension. That is, T:
corresponds to the gradient at X,=g be-
tween the chain line with a dot and the
chain line with two dots determined from
the right side. Moreover, when a crack
extends under a uniform fracture mode, T¢.
is presumed to be a constant if the gradi-
ent of the distribution of crack energy
densities at X;=g determined from the
right side does not change with an exten-
sion of crack, while T, is presumed to
be zero. The variation of the gradient
is generally presumed to be small except
in a special case of the ligament part of
a specimen being small, so it is consider-
ed that Tg, becomes constant in many cases
when T;. is zero.

3. Relationship between Proposed
Criterion and Other Criteria

In the past, the criterion based on
g -R-a curves for a crack with small scale
yielding and T;, 7, and Tw criteria for a
crack with large scale yielding have been
accepted as available criteria. 1In this
‘ehapter we consider the relationships be-
tween those criteria and Tz(TZ) criterion
and show that those criteria can be grasp-
ed systematically in the light of TATE)
criterion.

3.1 Criterion based on g-R-a curves

As for a stable or unstable behavior
of a growing ¢rack accompanied with small
scale yielding, the energy balance approach
by &-R-a curves™ has been considered an
effective criterion. That is, it has been
supposed that the behavior of crack exten-
sion is unstable when the released poten-
tial energy for imaginary crack extension
exceeds the required energy to form
new surfaces. However, it is clear that
the quantity which has been considered the
energy release rate of a crack with small
scale yielding is not the energy release
rate but merely the crack energy density ™.
Therefore, the criterion based on g§-R-a
curves should becalled the criterion based
on fa~ £c@ curves and it is nothing but
Ts criterion. It can be said that the
availability of the criterion based ong-R
-a curves has proved that of T¢ criterion.

3.2 T, criterion

As a stability-instability criterion
of a crack with large scale yielding, T
criterion using the gradient of J-integral
resistance curve is proposed by Paris et
al.® and attracts our attention. By con-
sidering the relationship between parame~
ter T, in Ty criterion and parameter T2,
it is shown here that 7, is equivalent to
T¢ under a certain condition and 7T, cri-
terion is positioned as a criterion corre-
sponding to T, criterion at the time when
a crack starts to grow.
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In 7, criterion, the condition of N
crack extension at time ¢ is given, using
Jep determined from mechanical condition
and J. obtained from J-integral resist-
ance curve, by

Jan(t)=7]:(t) (extension) ..ocevenns (10)

and the condition on stability-instability
is given by
T2 Ty, (unstable), Ty.< Ty (stable)

%

a0+Aao(Aa0;_0)

P/B (1/8)

where

TI=£2_4'Z_(.£_2. .................................... (12) 0 7 gn u (8)

da (a)
As evaluation of 7, has been carried out 1.2
based on load-displacement curve or path 1,25 Falks 2 +ha (a.<0)
integral, we discuss on T, evaluated by 2 _ 2 000
each method in the following. g
(1) T, by load-displacement curve Here,
as we take the relationship between T, ob- 84 7
tained from the simplified method by Rice®
and T, weconsider the load P ~displace-
ment % (or bending load M -~angular dis-
placement @ ) curves of two cracked speci-
mens as shown in Fig.3 of which the ini—
tial crack lengths are @ and @ +das res-
pectively. In the figure, the state after 0 1 ogn u (8)
the initiation of crack growth isalso con- (b)
sidered and two cracked specimens are load- Fig.3 Two load-displacement curves of
ed such that their displacements becomes cracked specimens with different initial
equal to each other at every moment from crack lengths

. time {=0to t. Moreover, one~to-one corre-
spondence between time ¢ and u(t) (or 6(t))
is assumed., Cracks are assumed to start
growing at point 1 ( ¢=h ) in case of ini-
tial crack length being 20 and at point 2
(t=t2) in case of initial crack length
being go+4das in Fig.3, and we discuss the
problem using Fig.3(a) when the crack of a
short initial crack length starts to grow
earlier than that of a long initial crack
length and using Fig.3(b) when the sequence
reverses. Besides, asto the cracked spec-
imen with initial crack length 4o , thedis-
placement and the load increase by Adu (or 0 g o
48 ) and 4P  respectively and the crack cx
extends by da 1in the Period of At (= by = l;), Fig.4 Bending moment—angular
and the state after the extension of Jg (¢ displacement curve
=1f) is shown by point le in Fig.3. The .
magnitudes of Jda, J4t, du and 4P are

%

P/B (M/B)

1
ex

M/B

ment M(ao, 6) (or Mg, t)), ligament length

determined dependent on that of J4da,. 1In - .
the following, when the rate of wvariation b and thickness B, that is
with time is discontinuous at the time when M=biBf(§) or
a crack starts to grow, the rates immediate~ oM oM 9
ly before and after are represented by( )= : (“3710—)‘=—< TR )’=-2boBf(H)=—Z—M
and ( )* respectively, and an infinitesi- °
mal of an increment represented by 4 is e (14)
indicated by 4. . holds approximately, its formula is given
Now, the wvalue of J of a cracked by 1 roaf oM
specimen, J{(4) , of initial crack length J(t =—-Ef (———) da
" 7@ at t=f is given generally, with load ) ° \da ’(
Plao, ult))(or P(a,, t))as a function of initial™ - =& _[" =24,(4) .
crack length 4 and displacement u(t) (or Bbuj; Mdo= o (bending)(15)
time /) and area 4A(4) which is area 201 where A,(4) is area 101" in Fig.4. In
in Fig.3, by® case of a center-cracked (or both-edge
J(t.)=—ﬂ£—“l)—=—lf"(£> du -(13) crackg?d) specimen under tensile force, the
das BA \dao/u relationship betweendisplacement “» corre-
where B is the thickness of a specimen. sponding to nonlinear behavior (cf. Fig.5),
The simplified formulas by Rice are given P 5 bo and B, that is
based on the relation of Eq.(13) in par- P Ju
ticular cases of a cracked specimen loaded ""=b°-‘7<TJ§) or <Ef‘)l,
by bending moment or tensile force. In Su P/a ’
3 ] : - — | OUn\ __ Un Un
case of bending, as the relationship be = <6bo )P—T‘,(W)bﬂ— b ceneeea(16)

tween angular displacement 6§, bending mo-
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holds approximately, and the relation of
()= u(a., P(ao, 1))=wu,+ un holds because
displacement u, corresponding to linear
behavior can begiven as a function, ui{ao, P),
of 4% and P . Therefore, the simplified
formula by Rice is given, considering the
relation between ui(ao, P) and stress inten-
sity factor Ki(go, P) and Pdu,= w,dp, by

1= [ (G) w5 (5) e

=5l a5/ (Ge) e

2 L
=%+§1b—-fol (Pdun— undP)
" o
K, 2 (e, 1
=% +B_bo(-/ﬂ- Pdu 3 P(a,, tl)u(h))

) (tension) (17)

= Ki(ao, Pas, 1)) L 2444
E’ ) bo

where A.((4) 1is areal01 in Fig.5, E is E
in case of plame stress and E/(1-1?) in
case of plane strain and v is Poisson's
ratio. As Ty is a nondimensional value of
the variation rate of J with crack exten-
sion (d7)/(da) » We consider here the quan-—
tities given by the following equations as
(d])/ (da) .

dj(tl)z 2 dAb([[)z 21‘/[((10, fx) a0

da b da Bb, da (bending)(18)
d](l:)=~1_(asz(ao, P(a,, tx))) _g_li+ 2 dA.:(lx)
da E’ oP awda by da
=L[< au;(do, P(aa, tl))) _di h
B dae r da
1 du 3P (ao, t1)\~ du
+E{P(aﬂ’ b da —u(h )( ‘““‘—‘au ‘)“7;}]

(tension) (19)
Here, 4A.(4) is area 11”14 lex in Fig.4
which expresses the variation correspond-
ing to da (or 4t, Adu , 4P ) and 4d(1)
is area 107, in Fig.5 which expresses the
variation corresponding to 42 (lex is the
point of {Plas, t)+[(8P(ao, t.)}/du]"du, ult )+ Au)
on the load-displacement curve). The
quantity evaluated by Eq.(18) corresponds
to the gradient determined from the right
side at ¢=¢, on the resistance curve of a
three-point bend specimen in accordance
with the JSME S 001 Ji. evaluation method.
Here, substituting the relations of Eq. (14)
and (16) at ¢=# into Eq.(18) and (19) res-
pectively, we obtain the relations
d](tl) __._;l_<aM(G. tl)) do

da B da, oda
=i( lim M(ao, ll)”‘M(do"'Alll). tl))-d_q_
B \aag~o daa ' da
- dAn) T S
il (bending) (20)
d](h) _L{:( aul(au, P(ao, h))> i{g
da B dae rda
1 aun(au, P(an. L))\
+E{P(do, 21)<——-——-——-—ap )br—

— unlan, Plas, )| ( e )y ]
du(ao, P(ao, t))

= p{( et o),
+( Ounlas, P(ao, h)))PK 9P (a,, tl))‘ du

oas ou as da
=L< 5u(ﬂu.P(ao, !1))) ( dP(a., 11))' _Cl'y_
B o P Ju a0 da
=_L(8P(aa,h))g'1
B oao « da
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P/B
n
H

Vﬁw__? "o g u
U u ex
n L

Fig.5 Tensile load-displacement curve

=__1__( lim P(ﬂo, [x)"P(lIn'f'Adn, f}))_di

d4ag-0 dao da
__d*A) LOM) reerenvervrrerneenns
danda (tension) 2n

where —1/24°A(t,) in Fig.3(a) (or 1/24°A(t)
in Fig.3(b)) corresponds to area 122.
Equation (20) or (21) gives the relation
between {d/(t)/da) evaluated by Eq.(18) or
(19) and the area defined in Fig.3.

On the other hand, a relation between
the additional rate of crack energy den-
sity,{d&(t, ao)}/da, at the time when a crack
starts to-grow ( t=£# ) and the area inFig.
3 where two load-displacement -curves are
considered is given as follows. In Fig.6
(2), we consider that a crack of initial
crack length ao+dai(|datls|da,)) starts to grow
at point 2' (the figure corresponds to Fig.
3(a), but the case corresponding to Fig.3
(b) can be also dealt with in the same way).
As to a cracked specimen of initial crack
length 4, , the displacement increases by
4w’ and the crack extends by 44 between
4t period from the time f to the time
when the crack of initial crack length aot+
das starts to grow, and the state after
extension of 4g is expressed by point 1la
in Fig.3. 44,4t and 4« are determined
corresponding to dai. Here," expressing
the strain energy density W defined in
section 2.1 as a function of initial crack
length @0, time ¢ and place X: (i = 1,2) by
Wlas, t, X\, X:) , we obtain the following
equations of energy balance.

%["*"P(ao, )du

= v/l‘:”“{j:’n-(lVo'-dV‘)(igti,_)au-aw\’fdV}dt

+ jl.n"“t[—/;::::'“{-[‘(x,)(%ptz-)a.-ao.xadXz}Xm]dt @

i+ 4t
%f“ Plao+4dai, t)du

— = “'-*“{j‘;ﬂ_“w'-‘V"(%)““”M'M‘dlf}dt e (23)

Here, the left sides of equations are works
done by external forces and Vo, 4Vs andgy’
are the volumes in the initial state corre—
sponding to the whole specimen, Jda; and
da’ as shown in Fig.6(b). Moreover, we
can obtain the following relation on the
part of Vo —(4Vy—-4V’).

-/t-[“#dl{—[Vu—M Vu'—dV’l(%K.)ﬂa-ﬂoxld V}dt

2-/:‘.“*“ [j;,-uv,,'-avﬁ(%)an-aouau.nd V}dt
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AF7, duir
+[ ¢ f “ Frduie)dS

Here, A4S 1is the surface before deforma-
tion excluding Iv from the surface sur-
rounding the volume 4V, corresponding to
dae (cf. Fig.6(b)), F! is the traction
force acting on the surface of a cracked
specimen of initial crack length as+da,
corresponding to 4S so that the equation
holds, duir is the infinitesimal increment
of displacement corresponding to F?, and
AFi and duir are the increments of traction
force and the displacement in the above
process respectively. On the other hand,
we imagine the traction force 7¢ and the
increment of traction force AT! as working
on 4S5 of a cracked specimen of initial
crack length @ corresponding to the actual
increment of displacement Ju! in the pe-
riod of 4¢ so that the following relation
holds.

LU e B s Ja

= ./‘;( T?+4T',' MT;du:)dS

Now assume da, and Jg which are cor-
related to each other as infinitesimals.
Then, A4Fi,du’'s and AT: become infini-
tesimals of second order under the influ-
ences of both daw and Jda , 77 and du:
become infinitesimal of first order under
the influence of da: and that of da res-
pectively. Consequently, the second term
of the right side of Eq.(24) can be neg-
lected, since this term is a higher order
infinitesimal than the right side of Eq.
(25); and representing area 1lx2 by
—1/24°A(4) in Fig.3(a), weobtain the rela-
tion as

_M__Z_ . { 1 ftnn

dacda B aatai-o dacda Je (Pao, t)

~ Pav+dab, t))du}
_ 2 l' 1 ty+4¢
- da(l}z;l-o[_daoda ,/,“

{-/’aj.':;::'a;(-/l.‘(:h)(iay},—)ao-dw\'ldxa)dx‘}dt]

= Jim [ 22 [ (G, .. ax ]

(1o da ) 3E g
"(1 dan) da (26)
The relation between the area of 42A(¢#)
defined from two load-displacement - curves
of cracked specimens with different ini-
tial crack lengths and the additional rate
of crack energy density  {§¢&(h, a)}/da is
given by Eq'(26). Therefore, the relation
between {d/({,)}/da obtained from a load-dis-—
placement curve and {9 £(¢, ao)}/3a can be ob-
‘tained, based on the relation between
4*A(t,) and 4*A(4L) ,as
a3 €(t|, m;)____cdf(h)
da da

where

o=[i-{(FF 5B}/

{( GP(‘;Z)D, tl))u%}]/(l—:—:o) ....... (28)

Consequently, the relation between T, and
T; , that is

T;=CT;

holds at the time when a crack starts to
grow. Thereupon it is known that 7, can

5 1! 1 £ a
= 7 ex € 0
’
N 2! L= "%
Ay | — ao+Aa0
o 2
Z (a)
0 T u (8)
a, ra’
r 1_Ap? AT
ro {r-AV fAVO AVf.AVo AVO
’:: A Sl S (0)

(b)

(1" )
e
(c)
2')
Aa Aag-Aa
X
g
T
RN (2)
T 12
(1)
T -
0 ao a0+Aa0 a0+Aa0 XJ

Fig.6 Crack extensions in cracked specimens
with different initial crack lengths and
distributions of crack energy densities

be substituted for 7, immediately after
the time of initiation of crack extension
under the condition that the value of C
changes little, that is, C can beregarded
as a constant approximately and 7, has a
meaning of T particularly under the con-
dition of C=1. 1In addition, as we can
observe the tendencies, even if the shapes
of specimens are the same, that the value
of (da)/(da.) becomes smaller than unity and
the degree of discontinuity of load-dis—
placement curve at the point of initiation
of crack extension becomes smaller with an
increase of ductility of material, we can
consider that Cx1 is satisfied on a spe-
cific cracked specimen of ductile material.
(2) T, by path integral As to a growing
crack, good agreement between [ -values
evaluated from the path integral along a
path  far from the crack tip by using a
crack model (root radius @ is zeroc) and by
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using a notch model with a sufficiently
small root radius can be expected and the
possibility that a notch model with an

appropriate root radius can be a continuum .

crack model which makes it possible to
evaluate the crack energy density with its
distribution is pointed out“”. Therefore,
we consider on an extending notch (the ex-
tension of crack is realized by assuming
the rigidity of the volume in front of
crack tip ['(a) as zero) shown in Fig.7
here, The distribution of crack energy
densities & (¢, X:) of this model is evalu-
ated by an integral which is given by

£t X0)= [(Wni— Tiua)ds

J-Tm“ P fft( P
- s — Gisnde
Fu-rXo+ra ado \CHMEEY

—doi, €154 YdA
and is a path-independent without any
restriction on constitutive law as ct, Xy)
=&, X)), Therefore, considering J(t)
=] AWm—Tiuw)ds , the relation between
{de(t, a)}/(a) and (d/(£)}/da is given by

0&(¢t, a)_d &N, a)

da = aa

dj{¢
=]T(al—fr(mdufu.ld)(z

dt . .
+‘E_£(€U.ldu~0'u.| €4)dA

Here, W,

by W=f“ oide; 0u, €y, Ti and w are stress,
strain, traction force and displacement
respectively; m is Xi-direction compo-—
nent of outward normal unit vector; A is
the area surrounded by I+r.-r{xX)+r« ;
and ( ).,=d( )oX: (" )=a( )ét . The in-
tegration from the time 0 to f is carried
out along an actual path of loading. Equa-
tion (31) is a general relation between T;
and T{ which holds always as well as imme—
diately after the initiation of crack ex-
tension and both criteria can be trans—
formed into each other based on this rela-
tion. It goes without saying that T cri~
terion is equivalent to Ty criterion when

¢
%%l) —_/;_mausu..a’X;

+%j“(€u.xdu—du,x &4)dA

although more examination is required about
the condition of Eq.(32).

3.3 T: criterion

Ts criterion is proposed as a crite-
rion which is applicable to a crack accom-
panied with large scale yielding which has
extended large, and it is given, based on
an analytical model, by " —

Tear= T (unStable) » T2ap<Ts (stable)

............ (33)
where T, is defined, representing the crack
opening displacement of the place X\ at
the time ¢ by g§(¢, X\) as shown in Fig.8,
by

= E . 8(e+dt a)=3t, a) At

Ts= P M](g}}«a—‘.—“ht _A_a_ ........ (34)

Heye, we consider 7, as defined above by

using Dugdale model in which its exact for-

mulation 1is possible, In this case the
relation

N .
is strain energy density defined

2879

e ——————
X (le

Fig.8 Increment of crack opening displace-
ment accompanied with crack extension

_E o (8(t+4t, a)—3(¢, a)} 4t
Ti= G}laltl}cx}-n at da
=£ g S8+ at, atda)-5(t, a+da)) 4t
0% sataer-o At da
N Eo&(e, .
=(—7_}._‘(§a_a_)= T e (35)

is obtained when we adopt flow stress dr as
adhesive force ¢*. It is known from the
equation that T, agrees with T¢ numerical-
ly in the model, although there exists a
difference that T, 1is defined for the
changes at the crack tip before extension
of da and, on the other hand, T; 1is de-
fined for the change at the new crack tip
after extension of 44, 1In general, T,
disagrees with 7/ numerically, but it can
be considered that there exists one-to-one
correspondence, between them, combined by
a coefficient determined depending on the
model adopted and how to define § .

3.4 Ty criteriom

Tw criterion is proposed as acrite-
rion which is applicable to a crack accom-
panied with large scale yielding which has
extended large and it is given, paying at-
tention to the increment of plastic work
done in the neighborhood of crack tip
caused by crack extension, by )

Twap= Twe (unstable) ) Twap< Twe (stable)

............ (36)

where 7T, is defined, using plastic strain

__energy Ws(t, X\) at the time f in the region

closed by a circle of which the center is

at the place X: and the radius is R as
shown in Fig.9, by

_E1 Welt+, a)—- Wolt, a) dt

TW——E_EM](IE}-O Adt da S
When we use a Dugdale model as we did on
T: , adopt A4V and 4X, as shown in Fig.2
as the closed region and X and put ¢* as
Jr , we obtain the follwoing relation

im Tw
4Xi~o

ORI N f or(6(e+4t, a)—3(t,a)} 4t
03 ke AX, 4ai-0ax, at - da

dX,
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ar{8(¢+4¢, a+da)—38(¢, a+ da)} At

d};a(u)—-o At da
- Ea¢ ([, a) . e
_?}T— 7SN (38)

It can be considered from the relation of
Eq.(38) that Tw can be positioned as a
parameter which is conceptually the same
as T; , although there is a difference
that Tw is defined in the finite region
surrounding a crack tip whereas T¢ is de-
fined at a crack tip.

4. Conclusion

Concerning a stable or unstable be-
havior of a growing crack, a criterion
named T¢(7g) was newly proposed. Moreover,
the relations between this criterion and
other known criteria were discussed and it
was shown that the unsolved problems on
the stability-instability of a growing
crack can be solved and various other cri-
teria can ben grasped systematically inthe
light of T:(T;) criterion.
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