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1. Introduction

Modal Analysis of natural vibration in linear elastic
continua comes into wide use to investigate causes of vi-
bration troubles in machines. To improve the dynamic
property of the machines, it is effective to control the
modal shapes of natural vibrations by changing geomet-
rical boundary shapes of machine parts.

In the previous works, the authors presented a numeri-
cal solution for boundary shape optimization problems of
linear elastic continua to maximize vibrational eigenval-
ues and to minimize frequency responses such as strain
energy, kinetic energy and absolute mean compliance.
However, control problem of natural vibration mode has
not been presented.

This paper is devoted to presenting a solution to the
boundary shape determination problems of linear elastic
continua with a prescribed natural vibration mode. This
problem can be formulated as minimization problem of
an integral of squared error of natural vibration mode
from prescribed mode on specified subboundary with re-
spect to perturbation of the domain of linear elastic con-
tinuum.

2. Shape optimization problem with
prescribed natural vibration mode

Let a continuum be defined on a domain 2 C R",
n = 2,3, and a boundary I'. The weak form of governing
equation for r-th natural eigenvalue A,, that is the minus
value of squared natural frequency, and natural vibration
mode ur : @ — R" is represented by

a(ur,v) = Arb(ur,v) ur €U YveU (1)

where the bilinear forms a(-, -), b(-, -) and admissible
functional spaces U are defined by

a(u,v) = ‘/"]Cijk;uk,;v‘,,- dzx (2)

b(u,v) = /{; puiv; dz 3)
v={ve & (9))"| v, =0,ToCT}  (4)

The symbols (Cijki)i,jki=1,2,.-,n and p are the Hooke
stiffness and density respectively. In this paper, a par-
tial differential notation with suffix (-),; = 8(-)/0z; and
the summation convention are used. The symbol H™(Q)
denotes Sobolev space of m-times derivative and square
integrable functions defined in €.

Domain perturbation of Q2 can be represented by using
a one-parameter family of one-to-one mappings

T, : Q5X—zeQ, CR" 0<s<e (5)

T, Q32 X €N (6)
where ¢ is a small positive number. The derivative of T}
with respect to s defined by

T,
ads

V(z)= 22(T, (z)) €9, (7)
is called velocity.

Using the definitions above, the shape optimization
problem with prescribed r-th natural vibration mode un-
der domain measure constraint not more than Afo can be
formulated as minimization problem of a squared error
integral E(au, — @r, cur — %) of natural vibration mode
u, from prescribed mode %, on specified subboundary
I'pCTl foralla€eR

min E(au, — Gr,0u, — ;) ur €U Va€R
acrn

such that Eq. (1) and / dz < My (8)
a
where the bilinear form E( -, -) is defined by

E(u,v) = /I:D uiv; do (9)

3. Shape gradient function

Applying the Lagrange multiplier method, or the adjoint
variable method, to the optimization problem by Eq. (8),
the Lagrange functional L(ur,v,A) is defined by

L =E(au, — tr, aur — 4r) — a(tr, v) + Arb(ur,v)
+A(/ dz — Mo) (10)
a

where v € U and A were introduced as the Lagrange mul-

-tiplier function, or the adjoint function, with respect to
the weak form and the Lagrange multiplier with respect
to the domain measure constraint.

For the sake of simplicity, let the coefficient functions
{Cijki}i.jki=1,2,.,n and p be fixed in R™ and the sub-
boundary I'g UT'p is invariable during domain perturba-
tions. Using the formulae of the material derivative, the
shape derivative of the Lagrange functional is obtained
by

L =20E(aur — ir,uy) + 20/ E(quy — ir, ur)

— a(uy,v) — a(ur, v') + Arb(ur., v) + Arb(ur,v')

+ Avb(ur,v) + A (fn dz — Mo) +Gn V) (11)
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where the linear form (Gv, V) with respect to the velocity
V is defined by

(Gu,V) = /F GuiVidl (12)

G = — Cijriurk, 10,5 + pArtrits + A (13)

The notation (- )’ represents the derivative with respect
to domain perturbation of function fixed in the spatial
coordinates. The symbol v denotes the outer normal vec-
tor. )

Considering the stationary conditions for all ur € U,
v' € U, & € R and A € R, the Kuhn-Tucker conditons
with repsect to u,, v, « and A are obtained by

a(ur,v’) = Ab(ur,v') Yo' €U (14)

a(v,up) = Arb(v,u;) + 20E(U, — Gr,u)) Vu, €U
(15)

aE(ur,ur) = E(tir, ur) (16)

A>o0, /dngo, A(/dz—Mo)=o a7
Q : ]

Equation (14) represents the weak form by Eq.(1), so that
Eq.(14) is satisfied by solving u, with regular method.
Equation (15) gives the governing equation of the ad-
joint mode v € U, so it is called the adjoint equation.
Solution to the adjoint equation will be presented in the
next section. Equation (16) determines the modal scal-
ing factor a. Inequality equations in Eq. (17) can be
satisfied by increasing the Lagrange multiplier A when
the problem is well-suited.

When ur, v, « and A are determined as explained
above, the derivative of the Lagrange functional agrees
with that of the objective functional and the linear form
(Gv, V) with respect to V:

L = (Gv,V) (18)
upr,v,o,A

From the fact that the function Gv is a coefficient func-
tion with respect to velocity V that is the derivation of
the design function T,, Gv indicates a sensitivity func-
tion, which we call the shape gradient function, of this
problem. The function G is called the shape gradient
density function. :

4. Solution for adjoint equation

Let us focus on the solution of Eq.(15). To avoid lack
of uniqueness when the adjoint mode v € U includes
the component of u,, the admissible set for v must be
{v € U| b(ur, v) = 0}.9"@ Using the Ritz vector repre-
sentation, v can be approximated by

v= Z up€p (19)
r=1,2,--- N, p#r

Substituting Eq.(19) for Eq.(15), assuming u;. = u, and
considering p-th natural vibration equations, the adjoint
modal variables {£p}p=1,2,-,N, p#r are calculated by
¢, = 20E(aur — Gr,Up)

P (A = Ar)b(up, up)
Therefore, the adjoint mode v is evaluated with natu-
ral eigenvalues {Ar}p=1,2,.. N, pst~ and natural vibration
modes {£p}p=1,2,-- N, p#r by
20E(our — tr, Up)

Uy 21

(Ap - ’\r)b(upa'up) ! @)

(20)

V=
p=1,2,-+,N, p#r
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Fig. 1 Shape optimization with prescribed first natural
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5. Numerical analysis

To confirm the validity of the proposed method, numer-

" ical analysis of beam-like three-dimensional continuum

clamped at one end was conducted using the traction
method and the shape gradient function derived in the
previous section. Figure 1 illustrates the shapes of a
beam of which the first natural vibration mode on the
bottom plane is used as the prescribed mode, initial beam
and optimized beam, The bottom plane was completely
fixed and the side planes were fixed in the normal direc-
tion during domain perturbations. Comparisons of the
first natural vibration modes and the iteration history
were shown in Figs. 2 and 3 respectively. The iteration
history of the objective functional that successfully de-
creased demonstrates the validity of the presented theory.
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