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5.3 Plücker embedding and determinant bundle . . . . . . . . . . . . . . 75

6 Quasiconformal maps 79

6.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Existence of quasiconformal maps . . . . . . . . . . . . . . . . . . . . 83

II LOOP SPACES OF COMPACT LIE GROUPS 89

7 Loop space 91

7.1 Complex homogeneous representation . . . . . . . . . . . . . . . . . . 91

7.2 Symplectic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3 Complex structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 Kähler structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.5 Universal flag manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.6 Loop space ΩT G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Central extensions 105

8.1 Central extensions and S1-bundles . . . . . . . . . . . . . . . . . . . . 105

8.2 Central extensions of loop algebras and groups . . . . . . . . . . . . . 108

8.3 Coadjoint representation of loop groups . . . . . . . . . . . . . . . . . 111

9 Grassmann realizations 113

9.1 Sobolev space of half-differentiable loops . . . . . . . . . . . . . . . . 113

9.2 Grassmann realization . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.3 Proof of the factorization theorem . . . . . . . . . . . . . . . . . . . . 119

III SPACES OF COMPLEX STRUCTURES 121

10 Virasoro group 123

10.1 Virasoro group and Virasoro algebra . . . . . . . . . . . . . . . . . . 123

10.2 Coadjoint action of the Virasoro group . . . . . . . . . . . . . . . . . 125

10.3 Kähler structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11 Universal Techmüller space 137

11.1 Definition of the universal Techmüller space . . . . . . . . . . . . . . 137

11.2 Kähler structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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Foreword

This book deals with infinite-dimensional Kähler manifolds, more precisely, with
three particular examples of such manifolds — loop spaces of compact Lie groups,
Teichmüller spaces of complex structures on loop spaces, and Grassmannians of
Hilbert spaces. There is an opinion that there could not be a comprehensive theory of
Kähler manifolds in the infinite-dimensional setting. Such an opinion is based on the
belief that infinite-dimensional Kähler manifolds are too rich and too different from
each other so that any of them deserves its own theory. It’s hard to say now whether a
general theory of infinite-dimensional Kähler manifolds may or may not exist but it is
certainly true that each of our three examples deserves a separate study. Any of these
manifolds can be considered as a universal object in a certain category, containing
all its finite-dimensional counterparts. In particular, main ingredients of Kähler
geometry of these finite-dimensional spaces may be recovered from the corresponding
ingredients, attached to the universal object, by restriction. Therefore, one can
expect that it may be more natural and sometimes easier to study these ingredients
for the universal object, rather than for its finite-dimensional counterparts. We’ll
give several examples of this sort in our book, and I’m sure that many more are to
be found in future.

The choice of the three infinite-dimensional Kähler spaces for our study is, by no
means, accidental. It is motivated by the relation of these spaces to various problems
in modern mathematical physics. We do not consider these intriguing relations in
our book in order to save its volume with only one exception. Since our first interest
in infinite-dimensional Kähler manifolds emerged from the geometric quantization
of loop spaces (related to string theory), we could not refuse ourselves in supplying
the book with a second part, devoted to this subject (together with a brief survey
of the geometric quantization of finite-dimensional Kähler manifolds).

My interest in the geometric quantization of infinite-dimensional phase manifolds
arose from reading the papers by Bowick–Rajeev [14] and Kirillov–Yuriev [44]. (It
was my colleague A.Popov from Dubna Institute of Nuclear Research, who draw
my attention to these papers.) I began to study the Pressley–Segal treatise on loop
spaces [65], which became my handbook on this subject and infinite-dimensional
Kähler manifolds, in general. The current edition may be considered as an attempt,
inspired by [65], to expose in a concise form geometric ideas, lying behind the loop
space theory. It should be also mentioned here a stimulating paper by Nag–Sullivan
[58], which has revealed the role of the universal Teichmüller space and the Sobolev
space of half-differentiable functions on the circle for the geometric quantization of
loop spaces and string theory.
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Let us present now our main heros in more detail. The first one is the loop space
ΩG of a compact Lie group G. It is a Kähler Frechet manifold, which can be consid-
ered as a universal flag manifold of the group G in the sense that it contains all flag
manifolds of G as complex Kähler submanifolds. There is an essentially unique nat-
ural symplectic form on this manifold. On the other hand, ΩG has a lot of different
complex structures, compatible with this symplectic form. The admissible com-
plex structures on ΩG are parameterized by points of the space Diff+(S1)/Möb(S1)
of orientation-preserving diffeomorphisms of the circle, normalized modulo Möbius
transformations.

The space S = Diff+(S1)/Möb(S1) is our second hero. It is also a Kähler Frechet
manifold, which has a unique natural complex structure and a 1-parameter family of
compatible symplectic forms. These forms coincide with realizations of the canoni-
cal Kirillov form on different coadjoint orbits of the Virasoro group (being a central
extension of Diff+(S1)), identified with S. The space S can be also regarded as a
”smooth” part of the universal Teichmüller space T . This space, introduced and
studied by L.Ahlfors and L.Bers, consists of quasisymmetric homeomorphisms of the
circle (i.e. orientation-preserving homeomorphisms of S1, extending to quasicon-
formal homeomorphisms of the disc), normalized modulo Möbius transformations.
The universal Teichmüller space T is a complex Banach manifold, which can be
provided with a natural Kähler pseudometric (which is only densely defined on T ).
This pseudometric restricts to a Kähler metric on S ⊂ T . As it can be guessed from
its name, the universal Teichmüller space T contains all classical Teichmüller spaces
(of compact Riemann surfaces of finite genus) as complex submanifolds. Moreover,
the Kähler pseudometric of T restrics to the Weil–Petersson Kähler metric on each
of these classical Teichmüller spaces.

The group of quasisymmetric homeomorphisms of the circle acts naturally on
the Sobolev space V of half-differentiable functions on the circle, preserving its nat-
ural symplectic form. This action defines an embedding of the universal Teichmüller
space T into an infinite-dimensional Grassmannian Gr(V ) of V . The constructed
map generates also an embedding of the ”smooth” part S ⊂ T into a ”smooth” part
of Gr(V ), represented by the Hilbert–Schmidt Grassmannian GrHS(V ) ⊂ Gr(V ).
The Hilbert–Schmidt Grassmannian GrHS(V ), which is our third hero, is a Kähler
Hilbert manifold. It can be considered as a universal Grassmann manifold, since
all finite-dimensional Grassmannians are contained in GrHS(V ) as complex subman-
ifolds. Moreover, the loop space ΩG can be also embedded into GrHS(V ), more
precisely, into the Hilbert–Schmidt Siegel disc DHS, identified with the ”lower hemi-
sphere” of GrHS(V ).

These are the three main heros of our book, which may be considered as an acces-
sible introduction to the Kähler geometry of these remarkable spaces and a starting
point to their detailed study. Basic properties of the three spaces are summarized
in the table at the end of the foreword.

Briefly on the content of the book.

Book I: Kähler geometry of loop spaces. To facilitate the reading, we have col-
lected in Part I all necessary background, which may be considered as external with
respect to the main stream of the book.

We start from Chapters 1 and 2, devoted to Frechet manifolds and Frechet Lie
groups. A key reference for these Chapters is a fundamental paper by Hamilton
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[32], which was our main guide to Frechet manifolds.
Chapter 3 contains necessary basic facts on flag manifolds and irreducible rep-

resentations of semisimple Lie groups. This is a standard material, which can be
found in general books on Lie groups, Lie algebras and representation theory.

Chapter 4 is devoted to central extensions of Lie groups and algebras — the
concept, crucial for the representation theory of infinite-dimensional groups and
algebras. A comprehensive presentation of this subject is given in Pressley–Segal
book [65]. This also applies to the next Chapter 5, where we study Grassmannians
of a Hilbert space.

Chapter 6 deals with quasiconformal maps. It is a classical notion, covered in
many books, in particular, in a beautiful (and short) book by Ahlfors [1].

Part II is devoted to the loop spaces ΩG of compact Lie groups G.
In Chapter 7 we describe the Kähler geometry of the loop space ΩG and a

canonical embedding of flag manifolds of a Lie group G into ΩG.
In Chapter 8, devoted to the central extensions of loop groups and algebras, we

follow mostly Pressley–Segal book [65]. The same applies to the next Chapter 9,
where the Grassmann realization of the loop spaces is constructed.

Part III is devoted to various spaces of complex structures on loop spaces ΩG.
We start in Chapter 10 with the description of the coadjoint action of the Virasoro

group and its orbits, due mainly to Kirillov. Among these orbits only two kinds
admit a Kähler structure, namely, the ”smooth” part S = Diff+(S1)/Möb(S1) of
the universal Teichmüller space T and the homogeneous space R = Diff+(S1)/S1.

In Chapter 11 we introduce the universal Teichmüller space T and define a
pseudoKähler structure on it, using its embedding into the complex Banach space
of holomorphic quadratic differentials in the disc. The classical Teichmüller spaces
T (G), where G is a Fuchsian group, are identified with the subspaces of T , consisting
of G-invariant quasisymmetric homeomorphisms of S1. The Kähler pseudometric
on T restricts to a natural Kähler metric on the ”smooth” part S ⊂ T and to the
Weil–Petersson metric on T (G). A Grassmann realization of T was constructed by
Nag–Sullivan in [58]. This realization agrees with a natural Grassmann realization
of the ”smooth” part S.

Book II: Geometric quantization of loop spaces. Part IV is a brief introduction
to the geometric quantization of finite-dimensional Kähler manifolds. More detailed
presentations of this theory may be found in various books on the subject, e.g., in
[29] and [70].

In Chapter 12 we define the Dirac quantization of classical systems. The Kostant–
Souriau prequantization of symplectic manifolds with integral symplectic forms is
constructed in Chapter 13.

Chapter 14 is devoted to the Blattner–Kostant–Sternberg (BKS) quantization.
A more detailed exposition of this subject may be found in [29], [70]. We introduce
Fock spaces of half-forms on a Kähler phase manifold and define a BKS-pairing
between them. Using this pairing, one can construct a quantization of the original
phase manifold in a Fock space of half-forms.

The geometric quantization of loop spaces is considered in Part V. We start in
Chapter 15 with the geometric quantization of the loop space of a d-dimensional
vector space. Its quantization is based on a twistor-like construction of a Fock
bundle of half-forms over the space of complex structures on the Sobolev space V
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of half-differentiable functions on S1. There is a projective action of the Hilbert–
Schmidt symplectic group of V on this bundle, and its infinitesimal version yields a
quantization of the original loop space. At the end of this Chapter we discuss the
geometric quantization of the universal Teichmüller space T . The standard Dirac
quantization does not apply to the whole of T , and it seems more natural in this case
to use an approach, based on the ”quantized calculus” of Connes and Sullivan. (We
are grateful to Alain Connes for drawing our attention to this approach, presented
in [16].)

In Chapter 16 we construct a geometric quantization of the loop space ΩG of a
compact Lie group G. It is based on the Borel–Weil theorem for the loop groups,
given in Pressley–Segal book [65]. We follow the same scheme, as in Chapter 15,
using the projective action of the diffeomorphism group on the Fock bundle, defined
by Goodman–Wallach [26],[27].

Concluding this foreword, I want to thank all my colleagues, who made it possible
this book to appear. Book I of the present edition is an extended version of the
book, published in Russian in 2001 by Moscow Center of Continuous Mathematical
Education. Book II may be considered as an extended version of a joint paper
with Johann Davidov [17], published in Steklov Institute Proceedings in 1999. That
paper was based on my previous collaboration with Alexander Popov.

This book is based on the lecture course on the Kähler geometry of loop spaces
and their geometric quantization, which I gave in Nagoya University in 2003 by the
invitation of Professor Ryoichi Kobayashi. I am deeply grateful to him and Nagoya
University for the invitation to give this lecture course and warm hospitality during
my stay in Nagoya.

Moscow November 28, 2008
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Chapter 1

Frechet manifolds

This Chapter is devoted to the Frechet manifolds, having Frechet vector spaces as
their local models. We start our exposition by recalling basic facts on Frechet spaces
in Sec. 1.1. In Sec. 1.2 we introduce Frechet manifolds and define various geometric
structures on them, including vector bundles and connections, differential forms,
symplectic and complex structures.

1.1 Frechet vector spaces

1.1.1 Basic definitions

In contrast with Banach spaces, whose topology is defined by a norm, the topology
of a Frechet vector space is determined by a system of seminorms. Recall that

Definition 1. A seminorm on a vector space F is a real-valued function p : F → R,
which satisfies the following conditions:

1. p(f) ≥ 0 for any f ∈ F ;

2. p(f + g) ≤ p(f) + p(g) for any f, g ∈ F ;

3. p(cf) = |c|p(f) for any f ∈ F and any element c of the basic number field k
(we restrict to k = R and k = C in the sequel).

As one can see from this definition, the only difference between seminorms and
norms is that a seminorm p is not required to satisfy the property: p(f) = 0 ⇐⇒
f = 0.

A system of seminorms {pn}n∈N determines on the vector space F a unique
topology , for which

fj → f ⇐⇒ pn(fj − f) → 0 for any n ∈ N .

This topology is Hausdorff, if the following condition is fulfilled:

f = 0 ⇐⇒ pn(f) = 0 for all n ∈ N .

A sequence {fj} of elements of F is called a Cauchy sequence with respect to this
topology if pn(fj − fk) → 0 for j, k → ∞ for any n ∈ N. The space F is complete,
if any Cauchy sequence in F has a limit in F .

15



16 CHAPTER 1. FRECHET MANIFOLDS

Definition 2. A Hausdorff topological vector space F with the topology, defined
by a countable system of seminorms, is called a Frechet space iff it is complete.

Example 1. Any Banach space is a Frechet space with a system of seminorms,
represented by a single norm.

Example 2. The vector space C∞[a, b], consisting of C∞-smooth real-valued func-
tions f on an interval [a, b], is a Frechet space with a system of seminorms

pn(f) =
n∑

j=0

sup
[a,b]

∣∣f (j)(x)
∣∣ .

Example 3. The vector space C∞(X), consisting of C∞-smooth real-valued func-
tions f on a compact manifold X, is a Frechet space with a system of seminorms

pn(f) =
n∑

|j|=0

sup
X

∣∣djf(x)
∣∣ .

Example 4. Let V → X be a vector bundle over a compact Riemannian manifold
X, provided with a Riemannian metric and connection. Then the vector space
C∞(X, V ), consisting of C∞-smooth sections f of V → X, is a Frechet space with
a system of seminorms

pn(f) =
n∑

|j|=0

sup
X

∣∣Djf(x)
∣∣ ,

where Djf is the jth covariant derivative of a section f , and the ”length” |h| of a
section h is computed, using the metrics on X and V .

A closed subspace of a Frechet space is also a Frechet space and the same is true
for the quotient of a Frechet space by its closed subspace.

Example 5. The vector space C∞
2π, consisting of C∞-smooth real-valued 2π-periodic

functions on the real line R, may be identified with the closed subspace in the Frechet
space C∞[0, 2π], consisting of functions f ∈ C∞[0, 2π] such that all their derivatives
f (j) match together at the end points: f (j)(0) = f (j)(2π). It implies that C∞

2π is also
a Frechet space.

Many well-known properties of Banach spaces, such as the Hahn-Banach theorem
and the closed graph theorem, are fulfilled in Frechet spaces as well.

However, there is a number of properties of Banach spaces, which do not transfer
to the Frechet case. For example, the theorem of existence and uniqueness of solu-
tions of ordinary differential equations for Banach spaces do not extend to general
Frechet spaces. Another example: the dual of a Frechet space, which is not a Ba-
nach space, cannot be a Frechet space. In particular, the dual of the Frechet space
C∞(X) of C∞-smooth real-valued functions on a compact manifold X, which is the
space D′(X) of distributions on X, is not a Frechet space. Note also that the space
L(F, G) of linear operators, acting from a Frechet space F to another Frechet space
G, is not, generally speaking, a Frechet space.
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1.1.2 Derivative

Definition 3. Let F and G be Frechet spaces and A : F → G be a continuous map.
The derivative of A at a point f ∈ F in a direction h ∈ F is the limit

DfA(h) = lim
t→0

A(f + th)− A(f)

t
∈ G .

The map A is differentiable at f in the direction h, if this limit exists. The map
A is continuously differentiable (or belongs to the class C1(U)) on an open subset
U ⊂ F , if this limit exists for any f ∈ U and all h ∈ F and the map

DA : U × F −→ G

is continuous.

Example 6. Let f : [a, b] → F be a path in a Frechet space F , i.e. a continuous map
from an interval [a, b] to F . Denote by 1 the unit vector in R, then the derivative
f ′(t) (if it exists) coincides with Df(t)(1).

Example 7. A continuous linear map L : F → G of Frechet spaces belongs to the
class C1 and DfL(h) = Lh since

DfL(h) = lim
t→0

L(f + th)− Lf

t
= lim

t→0

tLh

t
= Lh .

Example 8. Let U be a relatively open subset of a band [a, b] × R ⊂ R2
(x,y) and

F = F (x, y) be a smooth function on U . Denote by U an open subset in C∞[a, b],
consisting of functions y = f(x), having their graphs inside U . Consider a map
A : U −→ C∞[a, b], given by the formula

A(f)(x) = F (x, f(x)) .

Then A belongs to the class C1 and

DfA(h)(x) = dyF (x, f(x))h(x) .

Example 9. More generally, let X be a compact manifold and V → X, W → X
be two vector bundles over X. Given an open subset U in V , denote by U the open
subset in C∞(X,V ), consisting of sections f of V → X, having their image in U :
f(X) ⊂ U . Let F : U → W be an arbitrary smooth bundle map, sending any fibre
Vp, p ∈ X, into the fibre Wp over the same point p.

Define a fibrewise operator A : U −→ C∞(X, W ), acting by the formula

A(f) = F ◦ f .

Denote by x a local coordinate on X in a neighborhood of a given point p and by
y and z coordinates in the fibres Vp and Wp respectively. Then the map F is given
locally by a function z = F (x, y). A section f has a local representation y = f(x),
and the bundle operator A is given locally by the formula A(f)(x) = F (x, f(x)).

The derivative of A in the chosen local coordinates has the form

DfA(h)(x) = dyF (x, f(x))h(x) ,

where dyF is the matrix of partial derivatives in y, applied to a vector-valued function
h, representing locally a section h ∈ C∞(X,V ).
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If A is a C1-map F → G, then

DfA(h1 + h2) = DfA(h1) + DfA(h2) .

In other words, a continuously differentiable map A is necessarily linear in h. This
important property shows that the derivative ”behaves” like a differential with re-
spect to the variable h.

Moreover, a map A : U ⊂ F → G is continuously differentiable on a convex open
subset U ⊂ F if and only if there exists a continuous map

L : U × U × F −→ G, L = L(f1, f2)h ,

which is linear in h and for any f1, f2 ∈ U satisfies the relation

A(f1)− A(f2) = L(f1, f2)(f1 − f2) .

In this case DfA(h) = L(f, f)h.
If two maps A : F → G and B : G → H are continuously differentiable, then

their composition B ◦ A : F → H is also continuously differentiable and the chain
rule for the derivatives is fulfilled

Df [B ◦ A](h) = DA(f)B(DfA(h)) .

In particular, if f(t) is a C1-path in F and A : F → G is a C1-map, then A(f(t)) is
a C1-path in G and

A(f(t))′ = Df(t)A(f ′(t)) .

Suppose now that the basic number field k = C and A : U ⊂ F → G is a map
between complex Frechet spaces. We shall call this map holomorphic if it belongs
to the class C1(U) and its derivative DA : F × F → G is complex linear in h ∈ F .

By iterating the definition of the derivative, one can define higher order deriva-
tives of maps between Frechet spaces. In particular, the second derivative of a map
A : F → G is defined by the formula

D2
fA(h, k) = lim

t→0

Df+tkA(h)−DfA(h)

t
.

A map A : U → G belongs to the class C2(U) on an open subset U ⊂ F if DA
belongs to C1(U), which is equivalent to the existence and continuity of the second
derivative as a map D2A : U × F × F → G.

Similarly to the first derivative, the second derivative D2
fA(h, k) is linear sepa-

rately in h and k if A is of class C2. Moreover, in this case it can be given by the
limit of the second finite difference

D2
fA(h, k) = lim

t,s→0

A(f + th + sk)− A(f + th)− A(f + sk) + A(f)

ts

and is symmetric in h, k.
By induction, one can define the nth order derivative Dn

f A(h1, . . . , hn) as the

partial derivative of the (n− 1)th derivative Dn−1
f A(h1, . . . , hn−1) with respect to f

in the direction of hn, more precisely:

Dn
f A(h1, . . . , hn) = lim

t→0

Dn−1
f+thn

A(h1, . . . , hn−1)−Dn−1
f A(h1, . . . , hn−1)

t
.



1.2. FRECHET MANIFOLDS 19

Again, a map A : U → G belongs to the class Cn(U) on an open subset U ⊂ F if
Dn

f A(h1, . . . , hn) exists and is continuous as a map DnA : U × F · · · × F → G. In
this case Dn

f A(h1, . . . , hn) is symmetric and linear in h1, . . . , hn. We say that a map
A : U → G belongs to the class C∞(U) on an open subset U ⊂ F if it belongs to all
classes Cn(U) for n ∈ N.

1.2 Frechet manifolds

1.2.1 Basic definitions

Definition 4. A Frechet manifold is a Hausdorff topological space X , provided with
an atlas , i.e. a covering of X by open subsets (coordinate neighborhoods) {Uα}, and
a collection of charts , i.e. homeomorphisms (coordinate maps)

ϕα : Uα
≈−→ uα ⊂ Fα

onto open subsets uα in model Frechet spaces Fα. The transition functions

ϕβα : ϕα(Uα ∩ Uβ)
ϕ−1

α−−→ Uα ∩ Uβ

ϕβ−→ ϕβ(Uα ∩ Uβ)

are smooth (i.e. of class C∞) maps of Frechet spaces.

If all Frechet spaces Fα in this definition coincide with some Banach spaces Eα,
we call such an X a Banach manifold . Respectively, when all Fα coincide with a
separable Hilbert space H = l2, we call it a Hilbert manifold .

There is one more specification of the above definition in the case when the basic
field k = C.

Definition 5. A complex Frechet manifold is a Frechet manifold X , for which all
model Frechet spaces Fα are complex, and the transition functions ϕβα are holomor-
phic.

We add the definition of a (closed) Frechet submanifold for the future use.

Definition 6. A closed subset Y in a Frechet manifold X is called a submanifold
of X if for any point of Y there exists a coordinate neighborhood U of X with a
coordinate chart, mapping U onto a neighborhood u in the product of Frechet spaces
F ×G, which identifies U ∩ Y with the subset u ∩ F × {0}.
Example 10. Let X be a (finite-dimensional) smooth manifold. Then the set of
all smooth submanifolds in X, denoted by S(X), is a Frechet manifold. Indeed,
consider a submanifold S ∈ S(X), having the normal bundle NS = (TX|S)/TS.

Then there exists a local exponential diffeomorphism

exp : v −→ V ,

mapping a neighborhood v of the zero section in NS onto a tubular neighborhood
V of S in X. This diffeomorphism generates a local coordinate chart ϕ with

ϕ−1 : v −→ V ,

mapping the neighborhood v of zero in the Frechet space C∞(S, NS), consisting of
sections of NS with their image in v, onto the neighborhood V of the submanifold
S in S(X), consisting of submanifolds in X, lying in V .
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Example 11. Let X be a compact smooth manifold and π : E → X is a smooth
bundle, i.e. E is a smooth manifold, π is a smooth map, whose tangent π∗ is
everywhere surjective. Then the space of smooth sections of the bundle E, denoted
by C∞(X,E), is a Frechet manifold.

In order to construct coordinate charts on C∞(X, E), we define for a given section
f a vertical vector bundle T v

f E → X, associated with f , with the fibre at p ∈ X,
equal to the kernel of π∗, restricted to Tf(p)E. Choose a neighborhood u of the zero
section of T v

f E → X together with a fibrewise diffeomorphism of u onto a tubular
neighborhood U of the image f(X) in E. This diffeomorphism generates a local
coordinate chart ϕ with

ϕ−1 : u −→ U ,

mapping the neighborhood u of the zero section in the Frechet space C∞(X,T v
f E),

consisting of sections of T v
f E → X with their image in u, onto the neighborhood

U of f in C∞(X, E), consisting of sections of E → X with their image in U . The
transition functions are given by fibrewise operators, as in Ex. 9 from Sec. 1.1.

Example 12. The manifold C∞(X,Y ) of smooth maps from a smooth compact
manifold X into a smooth manifold Y is a particular case of the above construction,
when the bundle E = X ×Y → X is trivial. The group Diff(X) of diffeomorphisms
of X onto itself is an open subspace in C∞(X,Y ) and so inherits its structure of a
Frechet manifold.

Example 13. The latter example is especially interesting for us when X is a circle,
which we identify with S1 = {|z| = 1 : z ∈ C}. In this case the manifold C∞(S1, Y )
is called the space of (free) loops in the manifold Y .

Consider the simplest example of that sort when Y is also a circle S1. The man-
ifold C∞(S1, S1) consists of a countable number of connected components, denoted
by C∞

k (S1, S1) with k ∈ Z, which are numerated by the index (rotation number) of
a map S1 → S1. By pulling up to the universal coverings, we can associate with
a map f : S1 → S1 the map f̃ : R1 −→ R1, defined up to an additive constant
of the form 2πn, n ∈ Z. In particular, the maps f ∈ C∞

0 (S1, S1) of index 0 have
the pullbacks f̃ , which are smooth 2π-periodic functions, i.e. belong to the Frechet
space C∞

2π (cf. Ex. 5 in Sec. 1.1). So we have a global coordinate chart for the whole
component C∞

0 (S1, S1):

ϕ : C∞
0 (S1, S1)

≈−→ C∞
2π/2πZ , f 7−→ [f̃ ] .

In the same way, the maps f ∈ C∞
k (S1, S1) of index k have the pullbacks f̃ , which

satisfy the relation: f̃(x + 2π) = f̃(x) + 2πk. Translating such a function by kx, i.e.
replacing f̃(x) by f̃1(x) := f̃(x) − kx, we obtain a 2π-periodic function f̃1. Hence,
we have again a global coordinate chart on C∞

k (S1, S1):

ϕ : C∞
k (S1, S1)

≈−→ C∞
2π/2πZ .

For the whole manifold C∞(S1, S1) we get a diffeomorphism

C∞(S1, S1)
≈−→ Z× C∞

2π/2πZ .
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Example 14. Consider an open submanifold Diff(S1) in C∞(S1, S1), consisting of
all diffeomorphisms of the circle S1. It has two connected components: the identity
component Diff+(S1), consisting of diffeomorphisms of S1, preserving its orientation
(this component belongs to the subspace C∞

1 (S1, S1)), and Diff−(S1), consisting
of diffeomorphisms of S1, reversing its orientation (this component belongs to the
subspace C∞

−1(S
1, S1)).

The maps f ∈ Diff+(S1) pull back to functions f̃ , satisfying the relation

f̃(x + 2π) = f̃(x) + 2π .

They have 2π-periodic derivatives f̃ ′(x), which are everywhere positive, since diffeo-
morphisms f preserve the orientation. We also have:

1

2π

∫ 2π

0

f̃ ′(x) dx =
f̃(2π)− f̃(0)

2π
= 1 ,

i.e. the average of f̃ ′(x) over the period is equal to 1. Denote by C the subset
of C∞

2π, consisting of smooth 2π-periodic strictly positive functions on the real line
with the average, equal to 1. It is an open convex subset in an affine subspace of
codimension 1 in C∞

2π, hence a Frechet submanifold. The above argument implies
that our manifold Diff+(S1) is diffeomorphic to S1 × C. Indeed, the function f̃ is
defined by f̃ ′ up to an additive constant f̃(0) ∈ R, but the function f̃ itself is defined
by f : S1 → S1 up to an additive constant 2πn ∈ 2πZ. Hence, f̃ ′ determines f
up to an element of S1 = R/2πZ. Since C is contractible, we see that Diff+(S1) is
homotopy equivalent to S1.

1.2.2 Frechet vector bundles

Let X , V be two Frechet manifolds and π : V → X be a smooth surjection such that
each fibre π−1(x), x ∈ X , of π has the structure of a Frechet vector space.

Definition 7. A Frechet manifold V is called a Frechet vector bundle over X if
the following conditions are satisfied. There exists an atlas {Uα} of coordinate
neighborhoods in X such that for any α the preimage Vα = π−1(Uα) of the coordinate
neighborhood {Uα} belongs to a coordinate neighborhood in V . The corresponding
coordinate charts have the form

ϕα : Uα −→ uα = ϕ(Uα) ⊂ Fα , (1.1)

ψα : Vα −→ vα = ψα(Vα) = uα ×Gα (1.2)

and are compatible in the sense that the following diagram is commutative

Vα = π−1(Uα) −−−→
ψα

vα = uα ×Gα ⊂ Fα ×Gα

π

y
yprojection

Uα
ϕα−−−→ uα ⊂ Fα

The structure of a vector space on π-fibres, induced from the right vertical arrow,
coincides with the original one and the transition functions

ψβα := ψβ ◦ ψ−1
α : ϕα(Uα ∩ Uβ)×Gα −→ ϕβ(Uα ∩ Uβ)×Gβ

are linear in the second variable.
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This definition applies with evident modifications to Banach and Hilbert vec-
tor bundles. If all Frechet spaces in the above definition, as well as π-fibres, are
complex and the transition functions are holomorphic, we obtain the definition of a
holomorphic Frechet vector bundle.

Example 15. The tangent bundle TX of a Frechet manifold X is a Frechet vector
bundle. The fibre of TX at x ∈ X is formed by vectors x′(t)|t=0, where x(t) is a
smooth path in X , emanating from x. The coordinate transition function for TX
are given by the derivatives of coordinate transition functions for X .

Example 16. If, in particular, X = C∞(X,Y ), then a path f : [0, 1] → C∞(X, Y ) is
given by a map f : [0, 1]×X → Y , i.e. by a 1-parameter family of maps ft : X → Y ,
t ∈ [0, 1]. For any x ∈ X the image ft(x) for 0 ≤ t ≤ 1 constitutes a path in Y , whose
tangent vector at ft(x) coincides with the derivative f ′t(x) ∈ Tft(x)Y = f ∗t (TY )x.
Hence, f ′t is a section of the inverse image f ∗t TY → X of the tangent bundle TY
under the map ft and

TfC
∞(X,Y ) = C∞(X, f ∗TY ) .

Example 17. Let X be a (finite-dimensional) smooth manifold and S(X) be the
Frechet manifold of its smooth compact submanifolds (cf. Ex. 10). Then its tangent
bundle TS(X) has the fibre at S ∈ S(X), equal to the Frechet space of sections
C∞(S, NS) of the normal bundle NS.

We shall need later another Frechet vector bundle, related to the Frechet mani-
fold S(X). Namely, denote by C∞(S) the Frechet space of smooth functions on S.
Then the union of the spaces C∞(S) over all S ∈ S(X) is a Frechet vector bundle
C∞S(X) → S(X). Indeed, a coordinate chart ϕ on S(X) in a neighborhood of the
submanifold S ∈ S(X) maps this neighborhood into the Frechet space C∞(S, NS)
of smooth sections of the normal bundle NS. Using this map, we can identify diffeo-
morphically submanifolds S ′, close to S, with the submanifold S, which corresponds
to the zero section of NS. Accordingly, smooth functions on S ′ will be identified
with smooth functions on S, which defines a coordinate chart ψ on C∞S(X) in a
neighborhood of S with values in C∞(S, NS) × C∞(S), compatible with the coor-
dinate chart ϕ on S(X).

Definition 8. A map A : X → Y between Frechet manifolds is called smooth if for
any point x ∈ X we can find coordinate charts ϕ in a neighborhood of this point and
ψ in a neighborhood of its image y = A(x) such that the composition ψ ◦ A ◦ ϕ−1,
called otherwise a local representative of A, is a smooth map of Frechet spaces.

We say that a smooth map A : X → Y is an immersion (resp. submersion) if
for any point x ∈ X we can find coordinate charts near x and its image y = A(x)
so that the local representative of A is an immersion (resp. submersion) of Frechet
spaces, i.e. it is an inclusion of a summand (resp. projection onto a summand) in a
direct sum of Frechet spaces.

Example 18. A smooth map A : X → Y between Frechet manifolds generates a
tangent map T (A) : TX → TY of their tangent bundles. This map sends any fibre
TxX at x ∈ X to the fibre TyY at the image point y = A(x) ∈ Y . In a coordinate
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chart it is given by the derivative of the corresponding local representative. The
linear map DA : TxX → TyY , induced by T (A) on the tangent space TxX , is the
derivative of A at x, which agrees with the definition, given in Subsec. 1.1.2, in the
case when X and Y are Frechet spaces.

Definition 9. A smooth map π : E → X between Frechet manifolds is called a
Frechet fibre bundle, if it is a submersion and for any point x ∈ X we can find an
open neighborhood U of this point such that there exists a Frechet manifold F and
a diffeomorphism ψ : π−1(U) → F such that the following diagram is commutative:

π−1(U) −−−→
ψ

U ×F

π

y
yprojection

U
id−−−→ U

As in the finite-dimensional situation, a smooth map A : E1 → E2 of a fibre bundle
π1 : E1 → X to a fibre bundle π2 : E2 → X is called a fibre bundle map if it sends
fibres to fibres, i.e. for any x ∈ X it sends the fibre π−1

1 (x) to the fibre π−1
2 (x).

Example 19. Let π1 : E1 → X and π2 : E2 → X be two fibre bundles of Frechet
manifolds. Then we can form a new fibre bundle over X , called the fibre product of
these two bundles, which a closed submanifold in E1 × E2. Namely, we set

E1 ×X E2 = {(e1, e2) ∈ E1 × E2 : π1(e1) = π2(e2)} .

It is a closed subset in E1 × E2, since E1 ×X E2 coincides with the preimage of the
diagonal ∆ in E1×E2 under the product map π1×π2 : E1×E2 → X×X . To prove that
it is a fibre bundle over X and a submanifold in E1×E2, take an arbitrary point x ∈ X
and choose an open neighborhood U so that π1 : π−1

1 (U) → U and π2 : π−1
2 (U) → U

are compatible with the projections U × F1 → U and U × F2 → U respectively in
the sense of Def. 9. This generates a diffeomorphism π−1

1 (U) × π−1
2 (U) ⊂ E1 × E2

into U ×F1×U ×F2. Restricting this diffeomorphism to the diagonal ∆ in U ×U ,
we obtain for E1 ×X E2 a local diffeomorphism ψ, required in the Def. 9. The same
argument shows that E1 ×X E2 is a closed submanifold in E1 × E2.

1.2.3 Connections

Let π : V → X be a Frechet vector bundle over a Frechet manifold X . Given a point
v ∈ V denote by Vv = KerDπ the subspace in TvV , formed by vectors, annihilated by
the derivative Dπ : TvV → Tπ(v)X . By mimicking the finite-dimensional definition,
we want to define a connection H on π : V → X as a rule, assigning to any point
v ∈ V a subspace Hv in TvV , complementary to Vv.

The tangent bundle TV can be considered as a Frechet vector bundle πV : TV →
V over V and also as a Frechet vector bundle Tπ : TV → TX over TX . So we have
a natural projection

(πV , Tπ) : TV −→ V ⊕ TX , δv 7−→ (πV(δv), Tπ(δv))

for δv ∈ TV . Note that the composite map π ◦ πV : TV → X provides TV with a
structure of a fibre bundle over X .
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Definition 10. A connection on a Frechet vector bundle π : V → X is a smooth
fibre bundle map

H : V ⊕ TX −→ TV
of fibre bundles over X such that

(πV , Tπ) ◦ H = id on V ⊕ TX
and is bilinear. The latter means that for any x ∈ X the restriction of H to the
fibre over x is a map Hx : Vx ⊕ TxX → TxV , which is linear in both arguments.

To understand what this definition means in local terms, consider a coordinate
neighborhood U in X , over which we have the following identifications

TU ←→ U × F , π−1(U) ←→ U ×G , T (U ×G) ←→ (U ×G)× (F ×G) .

In these terms our connection H has the following representation

H(x, v, ξ) = (x, v, H1(x, v, ξ), H2(x, v, ξ))

where x ∈ U , v ∈ G, ξ ∈ F . Since (πV , Tπ) ◦ H = id on V ⊕ TX , we have
H1(x, v, ξ) = ξ and the bilinearity condition implies that H2(x, v, ξ) is bilinear in
(v, ξ). We shall denote this map, called the Christoffel symbol of the connection H,
by

Γ : U ×G× F −→ G , Γx(v, ξ) := H2(x, v, ξ) .

Denote, as above, by V the subbundle in TV , given by the kernel Ker Tπ of
the tangent map Tπ : TV → TX . We call V the vertical subbundle of TV . The
complementary subbundle H in TV , given by the image ImH of the map H :
V ⊕ TX → TV , is called the horizontal subbundle of TV . Note that, while the
vertical subbundle V is canonically defined by π : V → X , the horizontal subbundle
H is determined by the connection H.

There is another way to view the connection, based on the notion of covariant
derivative. The covariant derivative is defined in terms of connection H as follows.
Consider a path v(t) in V , represented in local coordinates as v(t) = (x(t), g(t)) with
x(t) ∈ U , g(t) ∈ G. Then its covariant derivative ∇v(t) is equal to

∇v(t) = (ξ(t), Ξ(t)) ,

where
ξ(t) = x′(t) , Ξ(t) = g′(t)− Γx(t)(g(t), ξ(t)) .

The path v(t) in V , covering the path x(t) in X , is horizontal iff ∇v(t) = 0.
For Banach manifolds we can always find for a given path x(t) in X with the

initial value x(0) a uniquely determined horizontal lift v(t) in V , covering x(t). On
the contrary, for Frechet manifolds the horizontal lift may not exist and, even if
it exists, it may be not unique. This is due to the absence of the existence and
uniqueness theorem for the ordinary differential equations in Frechet spaces.

By definition, a connection on a Frechet manifold X is a connection on its tangent
bundle TX . If x(t) is a path in X , then its derivative v(t) := x′(t) is a path in TX .
Its covariant derivative∇v(t) is called otherwise the acceleration of x(t). A path x(t)
is a geodesic of X iff its acceleration is zero. We say that a connection H on TX is
symmetric if its local representatives Γx(ξ, η) are symmetric in (ξ, η) ∈ TxX × TxX .
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Definition 11. The curvature R of a connection H on a Frechet vector bundle
π : V → X is a trilinear map

R : V × TX × TX −→ V ,

given in terms of local representatives by the formula

Rx(v, ξ, η) := DΓx(v, ξ, η)−DΓx(v, η, ξ)− Γx(Γx(v, ξ), η) + Γx(Γx(v, η), ξ) ,

where Γx(v, ξ) is a local representative of the connection H. This definition does
not depend upon the choice of a local chart.

Example 20. Consider the Frechet manifold C∞(X, Y ) of smooth maps from a
compact manifold X into a manifold Y . Suppose that Y has a connection, repre-
sented locally by the Christoffel symbol Γy(ξ, η). Then we can define a connection
on C∞(X, Y ) locally by the Christoffel symbol

(
Γf (ξ̃, η̃)

)
(x) = Γf(x)(ξ̃(x), η̃(x)) for x ∈ X ,

where f ∈ C∞(X, Y ), ξ̃, η̃ ∈ TfC
∞(X, Y ) = C∞(X, f ∗TY ) (cf. Ex.16 in Sub-

sec. 1.2.2). Note that ξ̃(x), η̃(x) ∈ Tf(x)Y .
A path f(t) in C∞(X, Y ), evaluated at x ∈ X, yields a path ft(x) in Y . The

path f(t) is a geodesic in C∞(X, Y ) if and only if the path ft(x) is a geodesic in Y
for any x ∈ X. The curvature R of the introduced connection on C∞(X,Y ) is given
in terms of the curvature R of the connection on Y by the formula

Rf (ξ̃, η̃, ζ̃)(x) = Rf(x)(ξ̃(x), η̃(x), ζ̃(x)) ,

i.e. is computed from R pointwise.

Example 21. Consider the Frechet manifold S(X) of smooth compact submani-
folds S in a Riemannian manifold X (cf. Ex. 10 in Subsec. 1.2.1 and Ex. 17 in
Subsec. 1.2.2). For any S ∈ S(X) and f ∈ C∞(S) we can define vector bundles Tf
and Nf over S by setting

Tf := graph of Df = {(v, Dvf) : v ∈ TS} ⊂ TX × R
and Nf = TX × R/Tf .

Then we have the following natural isomorphisms

TSS(X) = C∞(S,NS) , T(S,f)C
∞S(X) = C∞(S,Nf) .

The vector bundle Nf may be included into the following exact sequence of vector
bundle maps over S

0 −→ R −→ Nf −→ NS −→ 0 ,

which induces an exact sequence of maps of Frechet vector spaces

0 −→ C∞(S) −→ C∞(S, Nf) −→ C∞(S, NS) −→ 0 .

By above isomorphisms, it coincides with the exact sequence

0 −→ C∞(S) −→ T(S,f)C
∞S(X) −→ TSS(X) −→ 0 .
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The third arrow in this sequence is the tangent map of the vector bundle projection
C∞S(X) → S(X), while the second arrow realizes C∞(S) as the vertical subspace
of this bundle at f ∈ C∞(S).

To define a complementary subspace, we need a connection on C∞S(X), which is
generated by the Riemannian connection on X. This connectionH may be described
as follows. For S ∈ S(X) we can identify its normal bundle NS with the subbundle
of TX|S, consisting of vectors, orthogonal to TS with respect to the Riemannian
metric of X. Then NS×R would be a complementary subbundle to Tf in TX×R,
so we can identify Nf = TX ×R/Tf with NS ×R. We set Hf = NS × {0} to be
the horizontal subbundle, complementary to the vertical subspace {0} × R. Then
C∞(S, Hf), which is complementary to the vertical subspace C∞(S), will be the
horizontal subspace of our connection H. Note that it projects isomorphically onto
the space C∞(S,NS) = TSS(X), since Hf = NS × {0} ∼ NS.

Let us compute the curvature of this connection. Using the Riemannian con-
nection ∇ on X, we can define covariant derivatives ∇f of f ∈ C∞(S) and ∇ξ of
ξ ∈ C∞(S,NS) and compute their inner product ∇f · ∇ξ in TX|S. The curvature
R of the connection H is a trilinear map

R : C∞S(X)× TC∞S(X)× TC∞S(X) −→ C∞S(X) ,

which can be interpreted at a point S ∈ S(X) as a linear map

RS : C∞(S)× C∞(S,NS)× C∞(S, NS) −→ C∞(S) .

This map is given explicitly by the formula

RS(f, ξ, η) = ∇f · ∇ξ · η −∇f · ∇η · ξ .

1.2.4 Differential forms

Definition 12. A differential form of degree r (or simply an r-form) on a Frechet
manifold X is a smooth map

ω : TX × · · · × TX︸ ︷︷ ︸
r

−→ C

of the rth direct power TX × · · · × TX of the tangent bundle TX such that for any
x ∈ X its restriction

ωx : TxX × · · · × TxX −→ C
to TxX × · · · × TxX is an r-multilinear alternating map. In other words, ωx is an
r-multilinear alternating form on TxX . We denote the space of r-forms on X by
Ωr(X ). We shall consider smooth functions on X as forms of degree 0.

In a coordinate neighborhood U of X we can identify an r-form ω on U with a
smooth map from an open subset of a Frechet space F into the vector space Ωr(F )
of r-multilinear alternating r-forms on F . If ξ1, . . . , ξr are smooth vector fields on
U ⊂ F , we denote by ω(ξ1, . . . , ξr) the map from U to C, whose value at x ∈ U
is equal to ωx(ξ1(x), . . . , ξr(x)), i.e. the value of the r-form ωx ∈ Ωr(F ) on vectors
ξ1(x), . . . , ξr(x) in F .

Differential forms on Frechet manifolds share many properties with differential
forms on finite-dimensional manifolds. In particular, one can define their exterior
derivative and wedge product similar to the finite-dimensional case.
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Definition 13. The exterior derivative dω of an r-form ω on X is an (r+1)-form on
X , which can be defined locally as follows. For any smooth vector fields ξ0, ξ1, . . . , ξr

in a coordinate neighborhood U ⊂ F , the value of dω on ξ0, ξ1, . . . , ξr is equal to

dω(ξ0, ξ1, . . . , ξr) =
r∑

i=0

(−1)iξi

(
ω(ξ0, . . . , ξ̂i, . . . , ξr)

)
+

+
r∑

i,j=0
i<j

(−1)i+jω
(
[ξi, ξj], ξ0, . . . , ξ̂i, . . . , ξ̂j, . . . , ξr

)
.

(1.3)

This definition does not depend on the choice of the local data in the sense that
there is a unique (r + 1)-form on X , which respects the given local representations
(cf. [47], Ch.V, Prop. 3.2).

Example 22. If f is a 0-form on X , i.e. a smooth map f : X → C, then dfx for
any x ∈ X coincides with the tangent map

Txf : TxX −→ Tf(x)C .

Moreover, for any vector field ξ on X we have

df(ξ) = ξf .

If ω is a 1-form on X , then locally

dω(ξ, η) = ξ (ω(η))− η (ω(ξ))− ω ([ξ, η]) .

For a 2-form ω we have locally

dω(ξ, η, ζ) = ξ (ω(η, ζ)) + η (ω(ζ, ξ)) + ζ (ω(ξ, η))−
− ω ([ξ, η], ζ)− ω ([η, ζ], ξ)− ω ([ζ, ξ], η) .

(1.4)

Definition 14. The wedge product of an r-form ω and an s-form ψ on X is an
(r + s)-form ω ∧ ψ on X , which can be defined locally as follows. For any smooth
vector fields ξ1, . . . ξr+s in a coordinate neighborhood U ⊂ F , the value of ω ∧ ψ on
ξ1, . . . ξr+s is equal to

(ω ∧ ψ)(ξ1, . . . ξr+s) =
r+s∑
i=1

(−1)ε(σ)ω(ξσ(1), . . . , ξσ(r))ψ(ξσ(r+1), . . . , ξσ(r+s)) ,

where the sum is taken over all permutations σ of the numbers (1, . . . , r + s) and
ε(σ) is the parity of σ.

Again, this definition does not depend on the choice of the local data in the
sense that there is a unique (r + s)-form ω ∧ψ on X , which respects the given local
representations.

In particular, the wedge product of a function f and a form ω is equal to f ∧ω =
fω. One can easily check that the wedge product of two forms ω and ψ on X is
related to the exterior derivative by the usual formula

d(ω ∧ ψ) = dω ∧ ψ + (−1)deg ω ∧ dψ

and the square of d is equal to zero: ddω = 0.
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1.2.5 Symplectic and complex structures

Definition 15. A symplectic structure on a Frechet manifold X is a 2-form ω on
X , having the following properties:

1. ω is closed, i.e. dω = 0;

2. ω is non-degenerate at any point x ∈ X , i.e. for any ξ ∈ TxX , ξ 6= 0, there
exists an η ∈ TxX such that ωx(ξ, η) 6= 0.

A Frechet manifold X , provided with a symplectic structure ω, is called symplectic.

Remark 1. Note that we have used here the weakest form of the non-degeneracy
condition. For Banach manifolds, modelled locally on a Banach space E, a conven-
tional non-degeneracy condition on ω requires that for any x ∈ X the linear operator
Ax from TxX ∼ E to the dual space T ∗

xX ∼ E ′, defined by ωx(·, η) = Ax(·)(η), is
invertible for any non-zero η ∈ T ∗

xX .

Most of Frechet manifolds, considered in this book, are symplectic in the sense
of the Def.15. Moreover, they usually have, along with their symplectic structure, a
compatible almost complex structure.

Definition 16. An almost complex structure on a Frechet manifold X is a smooth
vector bundle automorphism J of the tangent bundle TX , such that for any x ∈ X
the restriction Jx of J to TxX satisfies the condition

J2
x = −id .

A Frechet manifold X , provided with an almost complex structure, is called almost
complex .

If J is an almost complex structure on a Frechet manifold X , then the iso-
morphism J can be extended complex linearly to the complexified tangent bundle
TCX = TX ⊗ C, so that TCX decomposes into the direct sum of subbundles

TCX = T 1,0X ⊕ T 0,1X ,

where for any x ∈ X the restriction of Jx to T 1,0
x X is given by the multiplication by

i, and the restriction of Jx to T 0,1
x X is given by the multiplication by −i. Sections

of the bundles T 1,0
x X and T 0,1

x X are called otherwise the vector fields of type (1, 0)
and (0, 1) respectively.

We call an almost complex structure J on a Frechet manifold X integrable or
formally integrable complex structure, if the bracket of any two vector fields on X
of type (1, 0) is again a vector field of type (1, 0).

Remark 2. An almost complex structure J provides a complex structure on every
tangent space TxX , determined by the action of Jx. In particular, any complex
Frechet manifold X has a natural almost complex structure, given by the multipli-
cation by i on TxX . Such an almost complex structure is automatically integrable.
For finite-dimensional manifolds the Newlander-Nirenberg theorem asserts that the
converse is also true, namely, any almost complex manifold with an integrable al-
most complex structure is, in fact, complex . It means that one can introduce an
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atlas of local complex charts on this manifold in such a way that the original al-
most complex structure in these coordinates will be given by the multiplication by
i on tangent spaces. For Frechet manifolds this theorem is, in general, not true (cf.
[51]), so in order to show that a given Frechet manifold is complex, it’s necessary to
construct, following Def.5 from Subsec. 1.2.1, an atlas of local complex charts.

The most important class of Frechet manifolds, considered in this book, is that
of Kähler Frechet manifolds, i.e. Frechet manifolds, which are both symplectic
and complex, and these two structures are compatible in the sense of the following
definition.

Definition 17. A complex symplectic Frechet manifold X is called a Kähler Frechet
manifold , if its complex structure J and symplectic structure ω are compatible in
the following sense:

1. ωx(Jxξ, Jxη) = ωx(ξ, η) for any ξ, η ∈ TxX , x ∈ X ;

2. a symmetric form on TxX × TxX , defined by

gx(ξ, η) := ωx(ξ, Jxη) ,

is positively definite for any x ∈ X .

Such a form g is called the Kähler metric on X .

Bibliographic comments

A key reference to Ch.1 is the Hamilton’s paper [32] on the Nash–Moser theorem.
Its first part is an excellent introduction to the theory of Frechet manifolds. In
our exposition (except for Subsecs.1.2.4,1.2.5) we follow closely that paper. The
definition Def.10 of the connection on a Frechet vector bundle is borrowed from [47].
The latter book can be recommended for the readers, interested in the theory of
infinite-dimensional manifolds with a special emphasis on the Banach case.
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Chapter 2

Frechet Lie groups

Definition 18. A Frechet Lie group is a Frechet manifold G, provided with the
group structure, such that the multiplication

G × G −→ G , (g, h) 7−→ g · h ,

and ”taking-the-inverse”
G −→ G , g 7−→ g−1 ,

are smooth maps of Frechet manifolds. The Frechet Lie algebra of a Frechet Lie
group G is the tangent space G = T1G at the unit 1 of the group G.

For g ∈ G denote by

Lg : G → G, Lg(h) = g · h
Rg : G → G, Rg(h) = h · g

respectively the left and right translations on the group G.
Any element ξ of the Lie algebra G generates by left translations a vector field

Xξ on G, invariant under these translations. The correspondence ξ ←→ Xξ allows
us to consider elements of the Lie algebra G as left-invariant vector fields on the
Lie group G. The left-invariant vector fields on G form a Lie algebra with respect
to the bracket of vector fields, which induces a Lie algebra bracket on T1G = G by
the identification ξ ←→ Xξ (this justifies the use of the term ”Lie algebra” with
respect to T1G). We note that there exists a unique connection H on G, called the
Cartan–Maurer connection, such that the left-invariant vector fields are horizontal
with respect to H, its curvature being equal to zero. Of course, the choice of
the left-invariant vector fields and left translations in this argument was absolutely
ambiguous (though traditional), with the same success we could employ here the
right-invariant vector fields and right translations.

If in the definition of a Frechet Lie group the group G is a Banach (resp. Hilbert)
manifold, we say that G is a Banach (resp. Hilbert) Lie group.

Suppose that for any element ξ of the Lie algebra G there exists a unique 1-
parameter subgroup γξ : R→ G of the group G such that γ′ξ(0) = ξ. Then, as in the
finite-dimensional case, we can define the exponential map

exp : G −→ G
31
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by setting exp ξ := γξ(1). In particular, for Banach Lie groups G the above condition
is always satisfied. Indeed, any element ξ ∈ G is identified with the left-invariant
vector field Xξ, which can be integrated to a 1-parameter group of transformations
ϕt

ξ : G → G. In this case γξ(t) := ϕt
ξ(1).

We supplement the definition of Frechet fibre bundles, given in Subsec. 1.2.2 (cf.
Def.9), with the definition of a principal Frechet bundle. We say that a Frechet Lie
group G acts on a Frechet manifold X , if there is a smooth map

G × X −→ X , (g, x) 7−→ g · x ,

such that 1 · x = x and (g1g2) · x = g1 · (g2 · x).

Definition 19. Let G be a Frechet Lie group, acting on a Frechet manifold E . This
manifold is called a principal Frechet G-bundle, if there is a smooth submersion
π : E → X onto another Frechet manifold X , such that for any x ∈ X there exists
an open neighborhood U of x and a diffeomorphism of its preimage π−1(U) in E
onto U × G, satisfying the following conditions:

1. the action of G on E corresponds to the natural action of G on the second
factor of U × G;

2. the following diagram
π−1(U) −−−→ U × G

π

y
yprojection

U
id−−−→ U

is commutative.

We consider next the two most important examples of Frechet Lie groups, playing
a special role in this book.

2.1 Group of currents C∞(X,G)

2.1.1 Basic properties

Let X be a smooth compact manifold and G is a Lie group. The space C∞(X, G)
of all smooth maps from X into G is a Frechet manifold, as we have pointed out in
Subsec.1.2.1 (cf. Ex.12). Let us recall the definition of the structure of a Frechet
manifold on C∞(X,G) for this particular case.

The exponential map exp : g → G determines a local diffeomorphism

exp : u −→ U ,

mapping an open neighborhood u of zero in the Lie algebra g onto an open neighbor-
hood U of the unit e ∈ G. Using this diffeomorphism, we can construct a local chart
in a neighborhood U = C∞(X, U) of the identity 1 := X → e ∈ G in C∞(X,U). It
is given by the homeomorphism

χ : U := C∞(X, u) −→ C∞(X, U) = U ,
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given by the pointwise application of the exponential map exp : u → U . The inverse
map ϕ1 := χ−1 : U → U yields a homeomorphism of the neighborhood U of the
identity 1 ∈ C∞(X, U) onto the open subset U in the Frechet space C∞(X, g).

The manifold C∞(X, G) is a group with respect to the pointwise multiplication.
Using this group structure, we can construct local charts at any point of C∞(X, G).
To define a local chart at an arbitrary point γ ∈ C∞(X, G), denote by Uγ a neigh-
borhood of γ of the form Uγ := γ ·U and define a local chart ϕγ in the neighborhood
Uγ as the composition map

ϕγ := ϕ1 ◦ γ−1 : Uγ → U ,

where the map γ−1 : Uγ → U is given by the multiplication by γ−1 from the left.
The neighborhoods {Uγ} and the maps {ϕγ} with γ ∈ C∞(X,G) form an open atlas
and a system of local charts on C∞(X,G), which defines the structure of a smooth
Frechet manifold on C∞(X, G), modelled on the Frechet space C∞(X, g).

The pointwise multiplication and taking-the-inverse maps in the group C∞(X, G)
are smooth with respect to the introduced structure of a Frechet manifold, hence
C∞(X,G) is a Frechet Lie group, called the group of currents .

The Lie algebra of C∞(X, G) coincides with the Frechet space C∞(X, g), the Lie
bracket in C∞(X, g) being given by the pointwise application of the Lie bracket in
g. The exponential map

exp : C∞(X, g) −→ C∞(X,G) ,

given by the pointwise application of the exponential map exp : g → G, is a local
homeomorphism in a neighborhood of zero.

Consider now the most important example of the group C∞(X,G), corresponding
to the case when X = S1. In this case the group C∞(X, G) is called the loop group
of the Lie group G, and is denoted by

LG := C∞(S1, G) .

The Lie algebra of LG coincides with the loop algebra

Lg := C∞(S1, g) .

Since all operations in the loop group LG are defined pointwise, one can expect
that the properties of LG will be close to the properties of the group G itself. And
this is true in most of the cases, but there are still some differences, demonstrated
by the examples below.

Consider first the homotopy structure of LG. Let us introduce the based loop
space

ΩG := LG/G

of G, where G in the denominator is identified with the group of constant maps
S1 → g0 ∈ G. We can realize ΩG as the closed submanifold of LG, consisting of the
maps γ ∈ LG, which send the identity 1 ∈ LG to the unit e ∈ G: γ(1) = e. Then
the loop group LG will be identified with the direct product ΩG × G. It is well
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known (cf.,e.g., [36]) that the homotopy groups of ΩG coincide with the homotopy
groups of G, shifted by one:

πi(ΩG) ∼= πi+1(G) .

It follows that

πi(LG) ∼= πi(ΩG)⊕ πi(G) ∼= πi+1(G)⊕ πi(G) .

In particular, π0(LG) is equal to π1(G) ⊕ π0(G), i.e. the group LG is connected if
and only if G is connected and simply connected. The fundamental group of LG
coincides with π2(G)⊕ π1(G) ∼= π1(G), since π2(G) = 0 for any connected compact
Lie group G. Hence, LG is connected and simply connected if the Lie group G itself
is connected and simply connected.

2.1.2 Exponential map of the loop algebra

As we have pointed out, the exponential map

exp : Lg −→ LG

of the loop algebra Lg is given by the pointwise application of the exponential map
exp : g → G.

If G is a compact Lie group, then it has the following well-known property.
Denote by G◦ the identity connected component of G. Then the exponential map
exp : g → G◦ is surjective. This property is a corollary of the fact that every element
of G◦ belongs to some 1-parameter subgroup of G. However, for the loop group LG
it is not true, in general.

Consider, for example, the simply connected group G = SU(2). Then the element

LG 3 γ : z −→
(

z 0
0 z−1

)
, z ∈ S1 ,

is not an exponential of any element in the loop algebra Lg.
Indeed, if we suppose that γ = exp ξ for some ξ ∈ C∞(S1, g), then the matrix

γ(z), being a function of ξ(z), should commute with ξ(z) for any z ∈ S1. It’s easy
to see that this condition implies that the matrix ξ(z) should be diagonal for any
z ∈ S1, i.e. (

z 0
0 z−1

)
=

(
eif(z) 0

0 e−if(z)

)

for some smooth real-valued function f on S1. In particular, z = eif(z), which is
impossible, since the logarithm ln(z) does not admit a continuous branch on the
circle.

However, one can prove the following property of the loop group LG, which may
be considered as a substitution of the surjectivity of exp : g → G◦.

Proposition 1. Let G be a connected compact Lie group. Then the exponential map

exp : Lg −→ (LG)◦

has a dense image in the connected component of the identity (LG)◦ of the group
LG.



2.1. GROUP OF CURRENTS 35

Proof. To prove this assertion, we note first that a connected compact Lie group G
is the direct product of a torus and a connected semisimple compact Lie group. Our
assertion for the torus is easily checked directly, so it is sufficient to consider the
case of a semisimple connected compact Lie group G. In this case the group G can
be realized as the connected component of the identity of the automorphism group
Aut g of the Lie algebra g (since an arbitrary semisimple connected compact Lie
group G is a finite covering over (Aut g)◦). If this is the case, then the critical points
of the exponential map exp : g → G lie on a closed hypersurface Γ in g, dividing g

into an interior convex domain D, containing 0, and its complement. The image of
Γ under the exponential map, denoted by exp Γ, is contained in a submanifold of G
of codimension≥ 3.

Consider now an arbitrary loop γ(z) ∈ (LG)◦, passing through e ∈ G: γ(1) = e.
We assert that it can be approximated by smooth loops in (LG)◦, which are the
exponentials in LG (we call a loop δ(z) in LG an exponential, if it can be represented
in the form δ = exp ξ for some ξ ∈ Lg).

By smoothly deforming, if necessary, the loop γ, we can approximate it by a
smooth loop γ̃ ∈ (LG)◦, starting at e, such that γ̃(eit) does not intersect exp Γ for
0 < t < 2π. Since the exponential exp : g → G is locally diffeomorphic along γ̃(eit)
for t < 2π, we can, beginning from e, choose a continuous logarithm branch of the
loop γ̃(eit) for t < 2π. As a result, we obtain a smooth (but, generally speaking, not
closed) path ξ(eit), 0 ≤ t < 2π, in g such that exp ξ = γ̃.

The limit ξ0 of the path ξ(eit) for t → 2π − 0 belongs to D̄. If exp Γ does not
contain e, then ξ0 cannot belong to Γ = ∂D, because exp ξ0 = e. Hence, ξ0 ∈ D,
which forces it to be equal to zero (since, otherwise, exp will be equal to e on the
whole orbit of ξ0 in D \ 0 under the adjoint action Ad, being a smooth submanifold
in g of a positive dimension). So ξ(eit), 0 ≤ t ≤ 2π, is a smooth loop in g such that
exp ξ = γ̃, i.e. we have found a logarithm of γ̃ in g.

If exp Γ contains e, then, in contrast with the considered case, it may happen
that the limit limt→2π−0 ξ(eit) = ξ0 belongs to Γ. But in such a situation the loop γ̃
will not be contractible, i.e. γ̃ /∈ (LG)◦, contrary to our assumption. To prove it,
note that in this case our path ξ(eit) is homotopic to a linear path ξ0(e

it) := t ξ0
2π

,
0 ≤ t ≤ 2π, with the same endpoints 0 and ξ0, as ξ(eit). Accordingly, the loop γ̃ is
homotopic to the loop γ0(e

it) in G, given by

γ0 : S1 3 eit 7−→ exp

(
t
ξ0

2π

)
, 0 ≤ t ≤ 2π .

But it is easy to see that γ0 is not contractible in G. So the loop γ̃ is also not
contractible in G.

2.1.3 Complexification

The loop group LG, similar to compact Lie groups, admits the complexification.
Recall that the complexification of a Lie algebra g coincides with the complex

Lie algebra
gC := g⊗ C = g + ig .

Definition 20. We call by the complexification of a connected Lie group G a con-
nected complex Lie group GC, having the following properties:
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1. the Lie algebra of GC coincides with the complexification gC of the Lie algebra
g;

2. GC contains G as a subgroup, i.e. there exists a monomorphism i : G → GC.

In particular, a group G, which admits the complexification, should have non-
trivial homomorphisms into complex Lie groups (the monomorphism i is one of
them).

The complexification GC, introduced above, exists and is uniquely defined for
any compact connected Lie group G. For example, the complexification of the
group G = S1 coincides with the multiplicative group GC = C∗ = C\{0} of complex
numbers, and the complexification of G = SU(n) coincides with GC = SL(n,C). For
the non-compact group SL(n,R) its complexification also coincides with SL(n,C).

We give an example of a Lie group, which admits no complexification in the
above sense. As we have pointed out, the complexification of the group SL(2,R)
coincides with the group SL(2,C). The group SL(2,C) is simply connected, while
the fundamental group of SL(2,R) is isomorphic to Z. Let G be a universal covering
group of SL(2,R). Then we have a homomorphism π : G → SL(2,R), whose kernel
is equal to Z. Suppose that G has the complexification GC. Then it should be a
covering group of SL(2,C). Indeed, the composition of π with the natural embedding
i : SL(2,R) ↪→ SL(2,C) yields a non-trivial homomorphism of G into the complex
group SL(2,C) with the kernel, equal to Z. This homomorphism extends to a
covering homomorphism GC → SL(2,C) with the same kernel. But such a covering
cannot exist, since SL(2,C) is simply connected. The property of the group G, used
in this argument, can be reformulated as follows: any homomorphism of G into a
connected complex Lie group factors through SL(2,R) or (still another formulation)
the kernel of such a homomorphism should contain Z.

In the case of the loop group LG = C∞(S1, G) of a compact connected Lie
group G its complexification coincides with the loop group LGC = C∞(S1, GC)
of the complexified group GC. The group LGC is a complex Frechet Lie group,
modelled on the Frechet Lie algebra C∞(S1, gC).

2.2 Group of diffeomorphisms Diff(X)

Let X be a smooth compact manifold and Diff(X) is the group of diffeomorphisms
of X. The group Diff(X) is a Frechet manifold, being an open subset in the Frechet
manifold C∞(X,X). It is a Frechet Lie group with respect to this Frechet manifold
structure.

The group Diff(X) is closely related to the group of currents C∞(X, G), con-
sidered in the previous Sec.2.1. Namely, Diff(X) acts smoothly on the manifold
C∞(X, G) by the ”reparametrization” of maps from C∞(X, G).

The Lie algebra of the group Diff(X) coincides with the Frechet Lie algebra

C∞(X,TX) =: Vect(X)

of smooth tangent vector fields on X.
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The exponential map

exp : Vect(X) −→ Diff(X)

can be defined, as in the beginning of this Chapter. Namely, any vector field ξ ∈
Vect(X) generates a 1-parameter subgroup of diffeomorphisms ϕξ

t of X, defined as
follows. The image y(t) := ϕξ

t (x) of an arbitrary point x ∈ X under the action of ϕξ
t

coincides with the value at t of the integral path of the ordinary differential equation
y′ = ξ(y) with the initial condition: y = x for t = 0. We set exp ξ := ϕξ

1.
Restrict now to the case of X = S1, which is the most important for us. As we

have already remarked in Subsec.1.2.1 (Ex. 14), the group Diff(S1) consists of two
connected components, and the connected component of the identity Diff+(S1) is
formed by the maps from Diff(S1), preserving the orientation of S1.

The Lie algebra of the group Diff(S1) coincides with the algebra Vect(S1) of
smooth tangent vector fields on the circle S1. Elements v ∈ Vect(S1) can be written
in the form v = v(θ) d

dθ
, where v(θ) is a smooth 2π-periodic function of θ. The

bracket of two vector fields v1, v2 ∈ Vect(S1) is given by the standard formula
[
v1(θ)

d

dθ
, v2(θ)

d

dθ

]
= {v1(θ)v

′
2(θ)− v′1(θ)v2(θ)} d

dθ
.

Denote by VectC(S1) the complexification of the Lie algebra Vect(S1), identified
with the Frechet vector space TidDiff(S1):

VectC(S1) := Vect(S1)⊗ C .

It is convenient to represent the coefficients v(θ) of vector fields v = v(θ) d
dθ

from

VectC(S1) by their Fourier series

v(θ) =
∞∑

n=−∞
vneinθ , vn ∈ C .

In these terms the real subalgebra Vect(S1) of VectC(S1) is specified by the relations:
v−n = v̄n, n ∈ Z.

The complexified Lie algebra VectC(S1) has a natural vector space basis, given
by the vector fields

en = ieinθ d

dθ
, n = 0,±1,±2, . . . ,

satisfying the commutation relations:

[en, em] = (n−m)en+m , m, n ∈ Z.

2.2.1 Finite-dimensional subalgebras in Vectω(S1)

Consider the subalgebra Vectω(S1) of Vect(S1), consisting of vector fields v(θ) d
dθ

with real analytic coefficients v(θ). Such v(θ) are represented by Fourier series of
the form

v(θ) =
∞∑

n=−∞
vneinθ , v−n = v̄n ,

converging in a neighborhood of S1 in C.
The Lie algebra Vectω(S1) has the following interesting property.
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Proposition 2. There are no finite-dimensional Lie subalgebras in Vectω(S1) of
dimension> 3. Moreover, for any dimension d = 1, 2, 3 there exists only one (up to
an isomorphism) Lie subalgebra of dimension d in Vectω(S1).

Proof. To prove this assertion, we note first that the bracket of two (not identically
zero) vector fields v1, v2 ∈ Vectω(S1) is identically zero if and only if these fields are
linearly dependent, i.e. λ1v1 +λ2v2 ≡ 0 for some constants λ1, λ2. So any non-trivial
commutative subalgebra in Vectω(S1) should be one-dimensional. In particular, the
rank of any non-trivial subalgebra in Vectω(S1) (i.e. the dimension of its Cartan
subalgebra) is equal to 1.

We show that any subalgebra g of the Lie algebra Vectω(S1) of dimension≥ 3
is semisimple, i.e. it contains no non-zero commutative ideals. Suppose, on the
contrary, that g contains such an ideal, which should be, as we have just noted,
one-dimensional. Choose a basis {e1, e2, e3, . . . } in g so that our ideal is generated
by e1 (by assumption, this basis has, at least, three elements). Then

[e1, e2] = λe1 and [e1, e3] = µe1 ,

where λ, µ 6= 0, since e1, e2, e3 are linearly independent. Hence, [e1, µe2 − λe3] = 0,
which implies the linear dependence of e1, e2, e3 in contradiction with our assump-
tion.

Note that the dimension constraint on the Lie algebra g in this assertion is essen-
tial, since we shall see below that the unique two-dimensional subalgebra, contained
in Vectω(S1), is not semisimple.

We show next that any finite-dimensional subalgebra g in the algebra Vectω(S1) of
dimension≥ 3 is simple, i.e. it contains no non-trivial ideals. Indeed, any semisimple
algebra g is decomposed into the direct sum of simple ideals. If g is not simple, then
it contains an ideal I of dimension less than 1

2
dim g. We choose a basis in g of

the form {e1, . . . , em, f1, . . . , fk}, so that the vectors e1, . . . , em form a basis of the
ideal I. It’s clear that m ≥ 2 (otherwise, the ideal I would be commutative). The
brackets

[e1, f1] ∈ I , . . . , [e1, fk] ∈ I , [e1, e2] ∈ I

are non-zero (otherwise, the corresponding vectors would be linearly dependent) and
so form a collection of k + 1 > m non-zero vectors in the m-dimensional subalgebra
I. Hence, they are linearly dependent, which implies, as before, that the vectors
e1, . . . , em, f1, . . . , fk are linearly dependent, contrary to our assumption.

From the list of simple Lie algebras, one can see that only two simple Lie algebras
of dimension 3 can have the properties, described above. Namely, it is the non-
compact Lie algebra sl2(R) and the compact Lie algebra su(2). By comparing the
Lie brackets in the Lie algebras su(2) and Vectω(S1), one shows that the second
possibility is not realized. A standard embedding of sl2(R) into Vectω(S1) realizes
sl2(R) as the Lie subalgebra in Vectω(S1), generated by three vector fields d/dθ,
cos(θ)d/dθ, sin(θ)d/dθ. This subalgebra coincides with the Lie algebra of the Möbius
group PSL2(R) of all fractional linear automorphisms of the unit disc.

Any two-dimensional subalgebra in Vectω(S1) is necessarily non-commutative
since, as we have seen before, the vanishing of the bracket of two vector fields in
Vectω(S1) implies their linear dependence. Since all two-dimensional non-commuta-
tive Lie algebras are isomorphic, there exists only one (up to an isomorphism) two-
dimensional Lie subalgebra in Vectω(S1). One of its realizations inside Vectω(S1)
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is given by the subalgebra, generated by two vector fields v1 = cos(θ)d/dθ, v2 =
d/dθ + sin(θ)d/dθ.

2.2.2 Exponential map of Vect(S1)

We analyze now the exponential map

exp : Vect(S1) −→ Diff+(S1)

in more detail. Recall that this map associates with a tangent vector field v =
v(θ) d

dθ
on the circle S1 the diffeomorphism exp v := ϕv

1, where ϕv
t is the 1-parameter

subgroup of diffeomorphisms in Diff+(S1) with the tangent vector v at the identity
id ∈ Diff+(S1). In other words, yθ(t) := ϕv

t (θ) is a solution of the equation dyθ

dt
=

v(yθ) with the initial condition yθ(0) = θ.

For finite-dimensional Lie groups one proves easily, using the inverse function
theorem, that the map exp (whose derivative at zero is equal to the identity) is
locally invertible. However, as we have already pointed out several times before,
the inverse function theorem is, in general, not true for Frechet manifolds. By this
reason we should not be surprised by the following proposition, proved in [32, 65].

Proposition 3. The exponential map

exp : Vect(S1) → Diff+(S1)

is neither locally injective, nor locally surjective in any neighborhood of zero.

Proof. We prove first that the exponential is not injective in any neighborhood of
zero. Denote by R2π/n the rotation of S1 by the angle 2π

n
and note that this rotation

may be chosen arbitrary close to the identity map id ∈ Diff+(S1) for sufficiently
large n.

Consider 1-parameter subgroups of Diff+(S1) of the form f ◦ S1 ◦ f−1, where
f ∈ Diff+(S1) and S1 is identified with the subgroup of rotations in Diff+(S1).
Denote by Γn the subgroup in Diff+(S1), consisting of diffeomorphisms f , commuting
with the rotation R2π/n:

R−1
2π/n ◦ f ◦R2π/n = f .

In other words, it is the subgroup of (2π/n)-periodic diffeomorphisms in Diff+(S1).
An element f ∈ Γn can be written in the form

f(θ) = θ + h(θ) mod 2π ,

where h is a smooth (2π/n)-periodic function on R and S1 is identified with R/2πZ.
If f ∈ Γn, then the 1-parameter subgroup f ◦ S1 ◦ f−1 contains R2π/n, since

f−1 ◦R2π/n ◦ f = R2π/n ∈ S1 =⇒ R2π/n ∈ f ◦ S1 ◦ f−1 .

Hence, all 1-parameter subgroups Γn of the above form intersect in R2π/n, so the
exponential is not injective near zero.
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To prove that the exponential is not a surjection onto a neighborhood of id in
Diff+(S1), we use the diffeomorphisms from Γn, which are small deformations of the
rotation R2π/n. Such a diffeomorphism f ∈ Γn can be given by the formula

f(θ) = θ +
2π

n
+ ε sin(nθ) mod 2π .

For sufficiently large n and sufficiently small ε > 0 this diffeomorphism may be
made arbitrary close to the identity. The point θ = 0 is a periodic point of this
diffeomorphism of order n, i.e.

fn(0) = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(0) = 0 mod 2π ,

but fn 6= id, since the derivative of fn at zero is equal (by the composition law) to
(1 + εn)n. Moreover, for a sufficiently small ε the diffeomorphism f is close to the
rotation and therefore has no fixed points.

It follows that f cannot be the exponential of any vector field v ∈ Vect(S1).
Indeed, assuming the opposite, let f = exp v for some v ∈ Vect(S1). The vector
field v = v(θ) d

dθ
does not vanish, since f has no fixed points. Hence, the vector

field v(θ) d
dθ

may be transformed into a constant field c d
dθ

with the help of a smooth
change of variable χ = χ(θ) of the form

χ(θ) = c

∫ θ

0

dt

v(t)
, 0 ≤ θ ≤ 2π ,

where the normalizing constant c = 2π
(∫ 2π

0
dt

v(t)

)−1

is chosen from the condition:

χ(2π) = 2π. This argument shows that the 1-parameter subgroup, generated by the
vector v, is conjugate to a rotation R:

f = χ−1 ◦R ◦ χ .

Then fn = χ−1 ◦Rn ◦ χ and, since fn(0) = 0, the rotation Rn has a fixed point, i.e.
Rn = id, which contradicts the relation fn 6= id.

Remark 3. The last Proposition asserts that there exist diffeomorphisms in Diff+(S1),
which cannot be represented as the exponential of a smooth vector field on the
circle. One can ask if there exist diffeomorphisms in Diff+(S1), which cannot be
represented as the nth power (with respect to the composition) of a diffeomorphism
from Diff+(S1)? It’s clear that such diffeomorphisms, if they exist, also cannot be
represented as the exponentials of smooth vector fields. We try to construct these
diffeomorphisms again in the form

f(θ) = θ +
2π

n
+ εh̃(θ) mod 2π , (2.1)

where ε > 0 is sufficiently small (the map f constitutes a diffeomorphism of S1, when
ε is less than 1/ max |h̃′|). The function h̃, 0 ≤ h̃ ≤ 1, is a smooth 2π/n-periodic
function on the real line, whose restriction to the interval [0, 2π/n) is denoted by h.
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Note that the zeros of the function h̃ are n-periodic points of the diffeomorphism f .
Then the following assertion is true.

Suppose that h vanishes on the interval [0, 2π/n) in a finite number of points, and
this number is not divisible by n. Then for a sufficiently small ε the diffeomorphism
f , given by the formula (2.1) above, can not be represented as the nth power of any
diffeomorphism from Diff+(S1).

To prove this assertion, we note that if g is a diffeomorphism from Diff+(S1),
then the number of orbits of n-periodic points of gn is a multiple of n. The latter
statement is a corollary of the following combinatorial fact: the number of orbits
of k-periodic points of gn is a multiple of the largest common divisor of n and k,
denoted by (n, k), which is easy to check by direct calculation.

To deduce our assertion from the statement on the number of n-orbits of gn, it
is sufficient to prove that our diffeomorphism f has no other n-periodic points apart
from those, given by zeros of h̃. Indeed, suppose for a moment that we have proved
already that the set of n-periodic points of f coincides with the set of zeros of h̃.
The number of orbits of n-periodic points is equal to the number of zeros of h on
the interval [0, 2π/n), which is not divisible by n by the assumption. Hence, by the
above statement, f cannot be represented in the form gn for any g ∈ Diff+(S1).

To prove that the diffeomorphism f has no other n-periodic points apart from
the zeros of h̃, suppose, on the contrary, that there exists an n-periodic point θ0, in
which h(θ0) > 0. Consider the orbit {θ0, θ1, . . . , θn−1, θn = θ0} of this point on S1

under f . Then θn may be written in the form

θn = fn(θ0) = θ0 + ε
(
h̃(θ0) + h̃(θ1) + · · ·+ h̃(θn−1)

)
mod 2π .

If fn(θ0) = θ0 mod 2π, then ε (h(θ0) + · · ·+ h(θn−1)) = 0mod 2π. The coefficient of
ε in the latter relation is positive and does not exceed n, since 0 ≤ h ≤ 1. Hence,
for ε < 2π

n
this relation cannot be true, i.e. fn(θ0) cannot be equal to θ0 modulo

2π. This contradiction proves that the only n-periodic points of f are those, given
by zeros of h̃, which implies that f cannot be represented in the form gn for any
g ∈ Diff+(S1).

Using the above assertion, one can easily construct concrete examples of diffeo-
morphisms f ∈ Diff+(S1), which cannot be represented as the nth power (n > 1) of
any diffeomorphism from Diff+(S1). For instance, one can take a diffeomorphism f
of the type (2.1) with

h(θ) = sin2(n
θ

2
) for 0 ≤ θ < 2π/n .

Or, take h(θ) = h0

(
π
n
(θ + 1)

)
, where h0 is a smooth function on [−1, 1) of the form

h0(t) = (t− 1)2(t + 1)2 or h0(t) = e1/(t2−1) for − 1 ≤ t < 1 .

All these diffeomorphisms f cannot be represented as the nth power of any diffeo-
morphism from Diff+(S1).
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2.2.3 Simplicity of Diff+(S1)

One of the remarkable properties of the group Diff+(S1) is its simplicity, which
means that the only normal subgroups in Diff+(S1) are the identity and the group
itself. This fact (which can be anticipated from Prop.2 in Subsec. 2.2.1) was proved
by M.R.Herman in [33, 34]. We shall present in this Subsection an idea how to prove
the following, somewhat weaker, statement, contained in [33].

Proposition 4. Any normal subgroup in Diff+(S1), containing the rotation subgroup
S1, coincides with the whole group Diff+(S1).

The simplicity property of the group Diff+(S1) is closely related to the following
problem, going back to Poincaré and Denjoy: when a diffeomorphism f ∈ Diff+(S1)
is conjugate to a rotation? We have already touched upon this problem in the proof
of Prop.3 in Subsec. 2.2.2. We shall discuss it in more detail after a short digression
on the Poincaré rotation number.

Digression 1 (Poincaré rotation number). Let f be an arbitrary diffeomorphism
from the group Diff+(S1). Denote by f̃ : R→ R its pull-back to R, induced by the
universal covering map

R −→ R/Z ≈ S1 .

Then f̃ is a diffeomorphism of R of the form f̃ = id + h with h being a smooth
periodic function on the real line with period 1. Denote the set of diffeomorphisms
of R of this form by Diff1(R). (Recall that f̃ is determined by f up to an integer
additive constant). Note that any shift R̃λ : x 7→ x + λ of R by the real number
λ projects under the above covering map to the rotation Rα of S1 by the angle
α ≡ λmod1.

H.Poincaré has found that any diffeomorphism f̃ ∈ Diff1(R), being iterated
sufficiently many times, behaves like a translation R̃λ. More precisely, there exists
the uniform limit

f̃k − id

k
−→ λ for k →∞ ,

where λ is a real number, called the rotation number of f̃ and denoted by λ = ρ̃(f̃).
The map ρ̃ : Diff1(R) → R is continuous in the C0-topology. Moreover, for any

shift R̃λ we have the following relations:

ρ̃(R̃λ) = λ and ρ̃(R̃n ◦ f̃) = n + ρ̃(f̃) for any n ∈ Z .

Therefore, pushing down to S1, we obtain a correctly defined, continuous map

ρ : Diff+(S1) −→ R/Z ≈ S1 ,

assigning to a diffeomorphism f ∈ Diff+(S1) its Poincaré number ρ(f) ∈ S1. This
number is invariant under conjugations.

If the rotation number of a diffeomorphism f̃ ∈ Diff1(R) is rational, i.e. ρ̃(f̃) = p
q

for coprime integers p and q, then there is a simple criterion of its conjugacy to a
shift, namely: f̃ is conjugate to the shift R̃p/q if and only if f̃ q = R̃p.

The situation in the case of an irrational Poincaré number is much more delicate
— everything depends on the arithmetic properties of this number. V.I.Arnold (cf.
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[4]) gave an example of a diffeomorphism with an irrational Poincaré number, which
is not conjugate to a shift, and conjectured that there exists a set A ⊂ S1 \ (Q/Z)
of a full Haar measure on S1, such that any diffeomorphism f ∈ Diff+(S1) with the
Poincaré number α ∈ A is conjugate to the shift Rα. This conjecture was proved by
M.R.Herman in [34]. As it was anticipated, the set A in the Herman’s theorem has
a Diofantine nature and may be described in terms of the decomposition of α into
the continuous fraction.

We shall describe here a simpler result by Herman of a similar character, sufficient
for the proof of the above Prop. 4.

Recall that, according to the Dirichlet principle, any irrational number λ may be
approximated by rationals so that the following relation holds

∣∣∣∣λ−
p

q

∣∣∣∣ <
1

q2

where p
q
∈ Q is an irreducible fraction.

We say that a number λ satisfies the Diofantine condition (Bε) with some ε > 0,
if there exists a constant Cε > 0, such that for all rational numbers p/q the following
inequality holds ∣∣∣∣λ−

p

q

∣∣∣∣ ≥
Cε

q2+ε
.

If a number λ satisfies to the Diofantine condition (Bε) for any ε (with a constant Cε,
depending on ε), then λ is called the Roth number , and the corresponding α ∈ S1

form a set of a full Haar measure on the circle. (The numbers, which do not satisfy
the condition (Bε) for any ε > 0, are called the Liouville numbers.)

Lemma 1 (cf. [33]). Suppose that α ∈ S1 \ (Q/Z) satisfies the condition (Bε) for
some ε > 0. Then there exists a neighborhood U of the rotation Rα in Diff+(S1)
such that any diffeomorphism f ∈ U is represented in the form

f = Rβ ◦
(
g ◦Rα ◦ g−1

)

for some g ∈ Diff+(S1) and β ∈ S1.

The proof of this Lemma can be found in [33], we shall only demonstrate how it
implies the Prop. 4.

Proof of Proposition 4. Let H be a normal subgroup in Diff+(S1), containing S1.
Take α ∈ S1 \ (Q/Z), satisfying the Diofantine condition (Bε) for some ε > 0. The
rotation Rα ∈ H (since H ⊃ S1), and Lemma 1 implies that the whole neighborhood
U of Rα belongs to H, due to the normality of H. Hence, the subgroup H is open
and so contains a neighborhood of the identity in the group Diff+(S1). It implies
that H is also closed, hence it should coincide with the whole group Diff+(S1), due
to the connectedness of Diff+(S1). The Proposition is proved.

Remark 4. We have proved in Prop. 3 from Subsec. 2.2.2 that there are diffeomor-
phisms from Diff+(S1), which cannot be represented as the exponentials of smooth
vector fields on the circle. Using Prop. 4, it’s easy to prove that, nevertheless,
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the exponentials of smooth vector fields generate the whole group Diff+(S1). More
precisely, any diffeomorphism f ∈ Diff+(S1) may be written as the composition

f = exp v1 ◦ · · · ◦ exp vk

for some vector fields v1, . . . , vk ∈ Vect(S1).

Another non-trivial corollary of Prop. 4 is that the group Diff+(S1) does not
admit the complexification. In other words, there is no complex Lie group, having
the complexified Lie algebra VectC(S1) as its Lie algebra.

This statement is the corollary of the following Proposition.

Proposition 5. There are no non-trivial homomorphisms from the group Diff+(S1)
into a connected complex Lie group.

Proof. Take the Möbius group PSL(2,R) of fractional linear automorphisms of the
unit disc, which can be considered as a subgroup of Diff+(S1). Denote by Gn :=
PSL(n)(2,R) the n-fold covering group of PSL(2,R). More precisely, denote by λ the
n-fold covering map of S1, given by λ : z 7→ zn. Then, by definition, Gn consists of
the diffeomorphisms of S1, which are the n-fold coverings of diffeomorphisms from
PSL(2,R). It means that for any ϕ ∈ Gn there exists an element ψ ∈ PSL(2,R)
such that

λ ◦ ϕ = ψ ◦ λ .

On the level of Lie algebras, the Lie algebra sl(2,R) is generated by the vector
fields d

dθ
, sin θ d

dθ
, cos θ d

dθ
, and the Lie algebra of the group Gn (isomorphic to sl(2,R))

is generated by the vector fields d
dθ

, sin(nθ) d
dθ

, cos(nθ) d
dθ

.
The center of the group Gn consists of rotations {R2πk/n : k = 0, 1, . . . , n − 1}.

And it can be proved, as in Subsec.2.1.3, that any homomorphism from Gn to a
complex connected Lie group should factor through PSL(2,R). In other words, its
kernel contains all rotations from the centre of Gn. It follows that the kernel of any
homomorphism from Diff+(S1) into a complex connected Lie group should contain
all rotations of the form {R2πk/n : k = 0, 1, . . . , n− 1} for any n, hence, all rotations
from S1. But this kernel is a normal subgroup in Diff+(S1), and any normal subgroup
in Diff+(S1), containing S1, should coincide, according to Prop. 4, with the whole
group Diff+(S1). This proves that there are no non-trivial homomorphisms from
Diff+(S1) into a connected complex Lie group.
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Chapter 3

Flag manifolds and representations

Flag manifolds are finite-dimensional compact Kähler manifolds, homogeneous with
respect to a Lie group action. They can be characterized by the existence of two
kinds of homogeneous space representations, namely, a ”real” one, as a quotient of
a compact Lie group G, and a ”complex” one, as a quotient of the complexified Lie
group GC. The real representation implies that the flag manifold is compact and
homogeneous with respect to the G-action by left shifts, and the complex represen-
tation implies that it is a complex Kähler manifold.

Flag manifolds are closely related to the representation theory of the group G
via the Borel–Weil construction. We present this construction in Subsec. 3.2.2 to-
gether with a necessary background from the representation theory of semisimple
Lie groups, given in Subsec. 3.2.1. In the last Subsec. 3.2.3 we give an outline of
the orbit method, related to the coadjoint representation of G, which stands behind
many constructions in this book.

3.1 Flag manifolds

3.1.1 Geometric definition of flag manifolds

To define flag manifolds in C, we fix a decomposition of n into the sum of natural
numbers

n = k1 + · · ·+ kr

and denote k = (k1, . . . , kr).

Definition 21. A flag manifold of type k in Cn is the space

Flk(Cn) = {collections of flags E = (E1, . . . , Er) : Ei are linear subspaces

in Cn: E1 ⊂ . . . ⊂ Er with dim Ei = k1 + . . . + ki} .

(3.1)

In particular, for k = (k, n− k) we obtain

Fl(k,n−k)(Cn) = {subspaces E ⊂ Cn of dimension k} = Grk(Cn) ,

i.e. the flag manifold in this case is the same as the Grassmann manifold of k-
dimensional subspaces in Cn. For k = 1 it coincides with the (n − 1)-dimensional
complex projective space Fl(1,n−1)(Cn) = CPn−1.

47
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For k = (1, . . . , 1) the manifold Flk(Cn) =: Fl(Cn) is called the full flag manifold

Fl(Cn) = {E1 ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En = Cn : dim Ei = i} .

The unitary group U(n) acts transitively on the flag manifold Flk(Cn), so that
Flk(Cn) coincides with a homogeneous space of this group. In more detail, fix a
basis in Cn and denote by E0 the standard flag in Flk(Cn) with E0 = (E0

1 , . . . , E
0
r ),

where E0
i is the subspace in Cn, generated by the first k1 + · · · + ki vectors of our

basis. The isotropy subgroup of U(n) at the point E0 coincides with the direct
product

Uk(n) = U(k1)× · · · × U(kr) ,

so that the flag manifold Flk(Cn) is a homogeneous space of U(n) of the form

Flk(Cn) = U(n)/ Uk(n) = U(n)/ U(k1)× · · · × U(kr) . (3.2)

On the other hand, the complex general linear group GL(n,C) is also acting
on Flk(Cn) transitively. The isotropy subgroup at the standard flag E0 ∈ Flk(Cn)
coincides in this case with the subgroup Pk of blockwise upper-triangular matrices
of the form




∗ r1 ∗ ∗ . . . ∗
r1

0 ∗ r2 ∗ . . . ∗
r2

...
. . .

...
rn

0 0 0 . . . rn ∗




So, along with the ”real” homogeneous representation (3.2), we obtain for Flk(Cn)
a ”complex” representation as a homogeneous space of the group GL(n,C):

Flk(Cn) = GL(n,C)/ Pk . (3.3)

In the particular cases k = (k, n− k) and k = (1, . . . , 1) we get the well known
homogeneous representations for the Grassmann manifold

Grk(Cn) = U(n)/U(k)× U(n− k) = GL(n,C)/P(k,n−k)

and the full flag manifold

Fl(Cn) = U(n)/T n = GL(n,C)/B+ ,

where T n = U(1) × · · · × U(1) is the n-dimensional torus, and B+ = P(1,...,1) is the
standard Borel subgroup of upper-triangular matrices.

Note that the flag manifold Flk(Cn) can be represented also as a homogeneous
space of a complex semisimple Lie group by replacing the group GL(n,C) with
SL(n,C). The corresponding homogeneous representations will take the form

Flk(Cn) = SU(n)/SUk(n) = SL(n,C)/SPk ,
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where

SUk(n) = S [U(k1)× . . .× U(kn)] = U(k1)× . . .× U(kn) ∩ SL(n,C),

SPk(n) = Pk ∩ SL(n,C) .

3.1.2 Borel and parabolic subalgebras

To give an invariant definition of flag manifolds, we need some basic notions, related
to the Borel and parabolic subalgebras. We recall them here, assuming that a reader
is familiar with the basics of the theory of semisimple Lie algebras and groups,
presented, e.g., in [76, 75, 28, 67].

Let GC be a complex semisimple Lie group with the Lie algebra gC.

Recall that a Cartan subalgebra in gC is a maximal Abelian subalgebra hC in gC,
for which all the operators ad x, x ∈ hC, are diagonal in gC. All Cartan subalgebras
in gC are conjugate to each other with respect to the adjoint action of the group GC
on its Lie algebra gC. A standard example of the Cartan subalgebra in the case of
the general matrix algebra gC = gl(n,C) is the algebra of all diagonal matrices in
gC.

We fix now a Cartan subalgebra hC in a complex semisimple Lie algebra gC and
consider the adjoint action ad of hC on the Lie algebra gC. Note that the operators
adh for different h ∈ hC commute with each other. The eigenspaces of the adjoint
representation, having the form

gα = {ξ ∈ gC : adh(ξ) = α(h)ξ} ,

where α is a linear functional on hC (i.e. an element of the dual space h∗C), are
called the root subspaces . The linear functionals α, entering into this definition,
are called the roots of the algebra gC with respect to the Cartan subalgebra hC,
and the eigenvectors ξ are called the root vectors . In particular, the root subspace
g0, corresponding to the zero functional α = 0 ∈ h∗, coincides with the Cartan
subalgebra hC itself.

The Lie algebra gC decomposes into the direct sum of its root subspaces

gC = hC ⊕
⊕
α∈∆

gα , (3.4)

where ∆ denotes the set of all nonzero roots of the algebra gC with respect to the
Cartan subalgebra hC. This decomposition, called the root decomposition, deter-
mines a filtration in gC, since

[gα, gβ] ⊂ gα+β .

A subset Π ⊂ ∆ is called the set of simple roots , if any root α ∈ ∆ can be
represented as a linear combination of roots from Π with integer coefficients, such
that all of them are either positive, or (all of them are) negative. Such subsets Π,
forming bases in h∗C, always exist. It can be shown that all of them are conjugate to
each other with respect to the coadjoint action of the group GC.



50 CHAPTER 3. FLAG MANIFOLDS AND REPRESENTATIONS

Fix some set Π = {α1, . . . , αl} of simple roots of the algebra gC. The choice of
Π defines on h∗C (hence, on ∆) a partial ordering, namely, for α, β ∈ h∗C the relation
α ≥ β means that

α− β =
l∑

i=1

aiαi with ai ≥ 0 .

In particular, a root α ∈ ∆ is called positive (notation: α ∈ ∆+), if

α =
l∑

i=1

aiαi with ai > 0 .

Using the Killing form (·, ·) on gC, we can identify the dual space h∗C with hC, so
that any root α can be considered also as an element α∗ of hC. We associate with
a root α of the algebra gC with respect to hC the dual root or co-root α∨ by the
formula

α∨ = 2
α∗

(α, α)
.

It is well known that a system of simple roots Π = {α1, . . . , αl} and its Cartan
matrix , defined by:

cij := (αi, α
∨
j ) ,

uniquely determine the Lie algebra gC.

Example 23. Consider as an example the complex semisimple Lie algebra sl(n,C).
Choose in sl(n,C) the standard Cartan subalgebra hC, consisting of diagonal matri-
ces. Denote by Eij the matrix, having 1 at the (i, j)th place, and zeros at all other
places. The matrices Eij are the root vectors of the algebra sl(n,C):

ad(z1, . . . , zn)Eij = (zi − zj)Eij ,

where we denote by (z1, . . . , zn) the diagonal matrix diag(z1, . . . , zn).
Introduce a functional εi ∈ h∗C by the formula

εi(z1, . . . , zn) = zi .

Then the roots of the algebra sl(n,C) with respect to hC will have the form

∆ = {εi − εj : i 6= j} .

The roots
Π = {εi − εi+1 : i = 1, . . . , n− 1}

form a system of simple roots, so that the set of positive roots is given by

∆+ = {εi − εj : i < j} .

By analogy with the Borel subalgebra of upper-triangular matrices in gl(n,C),
we can define a standard Borel subalgebra b+ of a complex semisimple Lie algebra
gC as

b+ = hC ⊕ n+ ,
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where n+ is a nilpotent subalgebra of the form

n+ =
⊕

α∈∆+

gα .

In the particular case of the algebra sl(n,C), considered in Ex. 23 above, the subal-
gebra n+ coincides with the subalgebra of above-diagonal matrices, while b+ is the
subalgebra of upper-triangular matrices.

Definition 22. A Borel subalgebra is a subalgebra b in gC, conjugate to the standard
Borel subalgebra b+ with respect to the adjoint action of the group GC on gC. (In
a more invariant way, a Borel subalgebra is a maximal solvable subalgebra in gC.)
Any subalgebra p in gC, containing a Borel subalgebra b, is called parabolic.

As in the case of Borel subalgebras, we could define the parabolic subalgebras p

as subalgebras in gC, which are conjugate to one of standard parabolic subalgebras.
These standard subalgebras (their explicit description is given below) are analogous
to the parabolic subalgebras pk of the algebra gl(n,C), being the Lie algebras of the
parabolic subgroups Pk from Sec. 3.1.1.

Now we define the standard parabolic subalgebras in gC explicitly. For that fix
a set Π = {α1, . . . , αl} of simple roots of the algebra gC and an arbitrary ordered
subset π in the set {1, . . . , l}. We associate with π a subset of simple roots Ππ ⊂ Π
with indices from π. To define the corresponding standard parabolic subalgebra
pπ, we denote by ∆π the linear span of simple roots from Ππ in ∆ and introduce a
reductive Levi subalgebra of the form

lC = hC ⊕
⊕
α∈∆π

gα .

We define also a nilpotent subalgebra in gC by setting

u =
⊕

α∈∆+\∆π

gα .

The standard parabolic subalgebra pπ is by definition

pk = lC ⊕ u .

It contains the standard parabolic subalgebra b+ and so is, indeed, parabolic. In the
case of the algebra sl(n,C) the subalgebra lC coincides with the subalgebra of block-
diagonal matrices in sl(n,C), while u is the subalgebra of blockwise above-diagonal
matrices.

3.1.3 Algebraic definition of flag manifolds

After this algebraic digression, we can give an invariant definition of flag manifolds
of a complex semisimple Lie group GC.

Definition 23. Let p be an arbitrary parabolic subalgebra in gC and P is the
corresponding parabolic subgroup in GC, having p as its Lie algebra. (Otherwise,
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P can be defined as the normalizer N(p) of the subalgebra p in GC with respect to
the adjoint representation.) A flag manifold of the group GC, associated with the
parabolic subalgebra p, is a homogeneous space of the form

F = GC/P . (3.5)

Along with the ”complex” representation (3.5), taken as the definition of the
flag manifold F , there exists also a ”real” representation of F as a homogeneous
space of a real Lie group. Namely, suppose that the group GC coincides with the
complexification GC of a compact Lie group G. Then G acts transitively on GC/P
and

F = G/G ∩ P = G/L , (3.6)

where the Levi subgroup L = G∩P in the case of the standard parabolic subalgebra
p has the Lie algebra, given by the real form l of the Levi subalgebra lC = lC,
introduced above in Subsec. 3.1.2. (In a more invariant way, the subgroup L can be
defined as the centralizer of a torus in G.)

Hence, we have obtained for the flag manifold F two kinds of representations as
a homogeneous space

F = G/L = GC/P .

The complex representation (3.5) implies that F is a complex manifold, provided
with a G-invariant complex structure. The space of tangent vectors of type (1, 0) at
the origin with respect to this structure can be identified with the subalgebra u in
the decomposition

gC = lC ⊕ u⊕ u , p = lC ⊕ u ,

where the complex conjugation in gC has the property that g = g.

The real representation (3.6) implies that F is compact and Kähler. We note also
that F is simply connected, if the group G is simply connected. It can be shown
that flag manifolds F exhaust all simply connected compact Kähler G-manifolds
with the transitive action of a compact semisimple Lie group G (cf. [10, 77]).

Remark 5. The real representation (3.6) implies that that the Lie algebra p of the
parabolic group P has the form

p = lC ⊕ u

where lC is the Levi subalgebra and u is the nilpotent subalgebra of p, described
in Subsec. 3.1.2 for the case of the standard parabolic subalgebras. The parabolic
subalgebras can be defined also in terms of the so called canonical element.

Namely, for any parabolic subalgebra p there exists a unique element ξ (belong-
ing to the center of the Levi subalgebra lC), for which the operator ad ξ has only
imaginary integer eigenvalues, belonging to

√−1Z. Such an element ξ is called the
canonical element of the parabolic subalgebra p. (This fact is proved, e.g., in [15],
Theor. 4.4.)

We use this equivalent definition of parabolic subalgebras for the construction of
a certain canonical bundle, associated with a flag manifold. The importance of the
canonical bundle will become clear in Sec. 7.5, where we show that the loop space
ΩG can be considered as a universal flag manifold of the group G.
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Denote by gj the eigenspace of the operator ad ξ with the eigenvalue
√−1j. In

terms of gj the parabolic subalgebra p and nilpotent subalgebra u can be described
as

p =
⊕
i≥0

gi , u =
⊕
i≥1

gi .

We define now a symmetric space N = N(F ), canonically associated with the
flag manifold F , by setting

N = G/K ,

where K is a subgroup of G with the Lie algebra

k = g ∩
[⊕

i

g2i

]
.

Since the Lie algebra l of the Levi group L is contained in g0, there exists a homo-
geneous bundle

F = G/L −→ G/K = N

of the flag manifold F over the associated symmetric space N . So we have con-
structed for our flag manifold F the associated symmetric G-space N = N(F )
and canonical homogeneous bundle F → N . Note that the symmetric space N is
uniquely determined by F , while the canonical bundle F → N is not uniquely de-
fined, due to the fact that different points of N may have the same stabilizer K.
The number of such points is finite, so there exist only a finite number of canonical
bundles of the above type.

The importance of flag manifolds is due, in particular, to the fact that all ir-
reducible representations of the group G can be realized in spaces of holomorphic
sections of complex line bundles over the flag manifolds of G. This is the Borel–Weil
construction, given in Subsec. 3.2.2. To explain this construction, we need some ba-
sic facts from the representation theory of complex semisimple Lie groups, collected
in the next Subsec. 3.2.1 (cf. for a more detailed exposition [75, 76, 28, 39, 67]).

3.2 Irreducible representations

3.2.1 Irreducible representations of complex semisimple Lie
groups

Let hC be a Cartan subalgebra of a complex semisimple Lie algebra gC and ρ : gC →
End V is a representation of the algebra gC in a complex vector space V .

A weight of the representation ρ is a linear functional λ ∈ h∗C, for which there
exists a vector v ∈ V \ {0}, called the weight vector , such that

ρ(h)v = λ(h)v for any h ∈ hC .

The linear subspace Vλ, consisting of the vectors v ∈ V , satisfying the relation
ρ(h)v = λ(h)v for any h ∈ hC, is called the weight subspace of weight λ.
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Denote by ∆ρ(V ) ⊂ h∗C the set of weights of the representation ρ. There is a
weight decomposition of ρ, analogous to the root decomposition (3.4) for the adjoint
representation ρ = ad from Subsec. 3.1.2. It has the form

V =
⊕

λ∈∆ρ(V )

Vλ ,

where Vλ is the weight subspace of weight λ.
Fix a system Π = {α1, . . . , αl} of simple roots of the algebra gC with respect to

hC. Among the weights of a representation the special role is played by the highest
weights , which are the maximal elements in the set of weights of a representation
with respect to the partial ordering on h∗C, introduced in Subsec. 3.1.2. A highest
weight Λ of a representation ρ is characterized by the property that its weight vector
v is annihilated by the nilpotent subalgebra n+, i.e.

ρ(ξ)v = 0 for any ξ ∈ n+ .

We associate with a system Π = {α1, . . . , αl} of simple roots of the algebra gC
the dual system of weights {ω1, . . . , ωl}, defined by the relation

(ωi, α
∨
j ) = δij ,

where α∨j is the co-root, associated with αj (cf. Subsec. 3.1.2). The elements
ω1, . . . , ωl ∈ h∗C are called the fundamental weights and form a basis in the space of
weights, so that any weight λ ∈ h∗C can be written in the form

λ =
∑

j

(λ, α∨j )ωj

and is uniquely determined by the coefficients (λ, α∨j ). A weight λ is called dominant ,
if all the coefficients (λ, α∨j ) are non-negative integers.

The highest weights characterize uniquely an irreducible representation of a com-
plex semisimple Lie algebra. More precisely, we have the following

Theorem 1. Let ρ be an irreducible representation of a complex semisimple Lie
algebra gC. Then it has a unique highest weight Λ. This weight is dominant and
any other weight λ ∈ ∆ρ(V ) can be written in the form

λ = Λ− αi1 − · · · − αik , where αij ∈ Π .

An irreducible representation is uniquely determined (up to equivalence) by its high-
est weight.

We add a comment on the last statement of the Theorem. An irreducible repre-
sentation can be reconstructed from its highest weight Λ in the following way. Let
vΛ be the weight vector, corresponding to the weight Λ. Then by definition

ρ(ξ)vΛ = 0 for any ξ ∈ n+ , (3.7)

ρ(h)vΛ = Λ(h)vΛ for any h ∈ hC . (3.8)
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Consider the vectors, which can be obtained by the action of elements of the nilpo-
tent subalgebra n− =

⊕
α∈∆+ g−α on the highest vector vΛ. More precisely, denote

vi1...ik = ρ(ξ−ik) · · · · · ρ(ξ−i1)vΛ ,

where ξ−i ∈ g−αi
. Then the vectors {vΛ, vi1...ik} generate a subspace V̂ with a natural

action of the representation ρ. The required representation space V is obtained
from V̂ by taking the quotient with respect to the maximal invariant subspace in V̂
(different from V̂ ) and providing it with the induced action of the representation ρ.

In the representation theory of loop groups LG it is customary to use, instead
of the highest and dominant weights, the lowest and antidominant weights , dual
to the introduced highest and dominant weights. The main reason for that is that
the Borel–Weil construction of irreducible representations of complex semisimple Lie
groups, presented in the next Subsec. 3.2.2, is naturally formulated in terms of the
lowest and antidominant weights. In order to switch to the lowest and antidominant
weights in the above definitions, it’s sufficient to replace the nilpotent subalgebra
n+ with its counter-part n−, defined by

n− =
⊕

α∈∆+

g−α .

It follows, in particular, that a weight λ is antidominant if and only if the weight
−λ is dominant. If V is a representation of an algebra gC with a highest weight
Λ, then the representation of gC with the lowest weight −Λ is realized in the dual
vector space V ∗. The above Theorem 1 admits an evident reformulation in terms of
antidominant lowest weights.

3.2.2 Borel–Weil construction

The Borel–Weil construction, presented in this Subsection, realizes the irreducible
representation of a complex semisimple Lie group, associated with a given lowest
weight (or a character of the Cartan subgroup), in a space of holomorphic sections
of a complex line bundle over the full flag manifold.

Suppose that a Lie group GC is the complexification of a compact Lie group G
and H is its Cartan subgroup. A character of H is a homomorphism λ : H → C∗
into the multiplicative group of nonzero complex numbers C∗. The group X(H) of
all characters of H is a free Abelian group of rank, equal to dim H. If λ ∈ X(H) is a
character of H, then the map λ∗, tangent to λ, is linear, hence, belongs to the dual
space h∗. This defines a monomorphism of the group X(H) into h∗, which allows to
identify a character λ with the corresponding linear functional λ∗.

Suppose now that the subgroup H is a maximal torus (i.e. H is a maximal
subgroup in GC, isomorphic to the product of several copies of the group C∗). Let
R : GC → GL(V ) be a linear representation of the group GC. If λ ∈ X(H) is a
character of H, then, by analogy with Subsec. 3.2.1, it is called the weight of the
representation R, if there exists a vector v ∈ V \ {0}, called the weight vector , such
that

R(h)v = λ(h)v for any h ∈ H . (3.9)

The vectors v ∈ V , satisfying the relation (3.9), form the weight subspace Vλ, asso-
ciated with weight λ.
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Any representation R : GC → GL(V ) of the group GC admits a weight decompo-
sition

V =
⊕

weights λ of R

Vλ ,

where the summation is taken over the weights λ ∈ X(H) of the representation R.
This decomposition is analogous to the weight decomposition from Subsec. 3.2.1 in
the case of Lie algebras. Moreover, the weights of the representation R of the group
GC may be identified with the corresponding weights of the associated representation
R∗ : gC → EndV of the Lie algebra gC, and the associated weight subspaces coincide.

Assume now that the maximal complex torus H is the complexification of some
maximal torus T in G. By analogy with Subsec. 3.1.1, we define the full flag manifold
F , associated with T , as

F = G/T = GC/B+ , (3.10)

where B+ is the standard Borel subgroup in GC, having the standard Borel sub-
algebra b+ from Subsec. 3.1.2 as its Lie algebra. On the Lie algebra level the
homogeneous representations (3.10) correspond to the decompositions

gC = tC ⊕ n+ ⊕ n− = b+ ⊕ n− . (3.11)

Let λ ∈ X(H) be a character of H, associated with a lowest weight vector of the
algebra gC. It can be extended to a holomorphic homomorphism λ : B+ → C∗ of
the Borel subgroup B+, by setting it equal to 1 on the Lie subgroup N+, having the
nilpotent subalgebra n+ as its Lie algebra. We define a complex homogeneous line
bundle Lλ over the flag manifold F = GC/B+, associated with the character λ:

Lλ = GC ×B+ Cy
F = GC/B+ ,

where GC ×B+ C is identified with the quotient GC × C modulo the equivalence
relation: (gb, c) ∼ (g, λ(b)c) for any g ∈ GC, b ∈ B+ and c ∈ C. A section of the
line bundle Lλ is identified with a function f : GC → C, subject to the relation

f(gb) = λ(b−1)f(g) for all g ∈ GC, b ∈ B+ . (3.12)

Denote by Γλ the space of holomorphic sections of the bundle Lλ or, in other
words, the space of holomorphic functions on GC, satisfying the condition (3.12).
The group GC acts from the left on Lλ, hence, on the space Γλ.

Theorem 2 (Borel–Weil theorem). If the weight λ is antidominant, then the rep-
resentation of the group G in the space of holomorphic sections Γλ, constructed
above, is the irreducible representation with the lowest weight λ and all irreducible
representations of the group G can be realized in this way.

3.2.3 Orbit method and coadjoint representation

In this Subsection we outline briefly another method of constructing irreducible
representations of Lie groups, using the orbits of the coadjoint representation of the
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group on the dual space of its Lie algebra (the details may be found in Kirillov’s book
[39]). Though we do not use this method for the construction of representations, we
found it useful to explain its idea to motivate the study of coadjoint representations
of various infinite-dimensional groups in this book.

We recall first some basic facts on the characters of irreducible representations.
Let T : G → GL(V ) be a finite-dimensional representation of a Lie group G. We
define its character as a function χT : G → C∗, given by the formula

χT (g) := TrT (g) , g ∈ G .

This function is constant on conjugacy classes and depends only on the equivalence
class of the representation T . Moreover, it is a homomorphism with respect to the
tensor product of representations, i.e. χT1⊗T2 = χT1χT2 . A character of an irreducible
representation determines it uniquely up to equivalence.

Let G be a compact Lie group and L2(G, dg) denotes the space of all square
integrable functions on G with respect to the Haar measure dg. Then the characters
of all its irreducible unitary representations form an orthonormal basis in a subspace
of L2(G, dg), consisting of functions, constant on conjugacy classes.

The definition of the character χT , given above, is valid, evidently, only for
finite-dimensional representations T . However, for an infinite-dimensional represen-
tation it’s often possible to define its character as a distribution on the group G.
Namely, denote by D(G) the space of C∞-smooth functions on G and suppose that
all operators of the form

T (f) :=

∫

G

f(g)T (g) dg , f ∈ D(G) ,

are of trace class (the definition of the trace class is given in Sec. 5.3 below). Then we
can define a character of the representation T as a distribution on the space D(G) of
test functions, or, in other words, as a continuous linear functional on D(G), acting
by the formula

χT (f) := TrT (f) , f ∈ D(G) .

If, in particular, the group G is semisimple, then the character χT can be given by
the formula

χT (f) =

∫

G

χT (g)f(g) dg ,

where χT is some measurable locally integrable function on G. As in the case of
finite-dimensional representations, the character χT (f) is constant on conjugacy
classes, i.e.

χT (f) = TrT (f) = Tr[T (g)T (f)T (g−1)]

for any f ∈ D(G), g ∈ G. Again, an irreducible representation is uniquely deter-
mined (up to equivalence) by its character.

We turn now to the coadjoint representation of the group G. Let g the Lie
algebra of G and g∗ is its dual space. The adjoint action Ad of the group G on its
Lie algebra g induces by duality the coadjoint action Ad∗ of the group G on the
space g∗.

Consider an orbit F = G·ϕ of an arbitrary point ϕ ∈ g∗ in g∗ under the coadjoint
action and denote by Gϕ the isotropy subgroup at ϕ. Let gϕ be the Lie algebra of
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the group Gϕ. Then the tangent space to the orbit F at ϕ may be identified with
the quotient g/gϕ.

The orbits F of the coadjoint representation turn out to be symplectic manifolds,
provided with a canonical Kirillov symplectic form ωF . This form is generated by a
Gϕ-invariant 2-form ωϕ on g, given by the formula

ωϕ(ξ, η) := ϕ([ξ, η]) , ξ, η ∈ g .

The kernel of ωϕ on g coincides with gϕ, so the form ωϕ can be pushed down to a
form on g/gϕ (denoted by the same letter), which is a non-degenerate Gϕ-invariant
2-form on g/gϕ. So it can be extended to a non-degenerate G-invariant 2-form ωF

on F , which does not depend on the choice of the point ϕ on the orbit F . Moreover,
the form ωϕ satisfies the Jacobi identity, hence, it is a cocycle on g. This implies
that the induced G-invariant 2-form ωF is closed on F , and so defines a symplectic
structure on F .

It may be proved that any G-homogeneous (with respect to the action of a
connected Lie group G by symplectic transformations) symplectic manifold M is

locally isomorphic to an orbit of the group G or its central extension G̃ in the
coadjoint representation (cf. [46]).

We explain now the idea of the orbit method . We want to construct an irreducible
unitary representation T from an orbit of the coadjoint representation in g∗.

Let F = G ·ϕ be such an orbit. We construct from it a one-dimensional unitary
representation of the group Gϕ. In a neighborhood of the identity of Gϕ we define
it by the formula

χ(exp ξ) = e2πiϕ(ξ) ,

where exp : gϕ → Gϕ is the exponential map. It extends to a representation of
the isotropy group Gϕ and induces an irreducible unitary representation TF of the
whole group G, if the orbit F is integral , i.e. the canonical symplectic form ωF

is an integral form on F (the precise definition of an integral form is given in the
beginning of Sec. 8.1).

The character of the irreducible unitary representation TF is given by the formula

χF (exp ξ) =
1

pF (exp ξ)

∫

F

e2πiϕ(ξ)βF (ϕ) , ξ ∈ g , (3.13)

where βF is the Liouville volume form on F , generated by the symplectic form ωF ,
and pF is some smooth invariant (with respect to conjugations) function on G, equal
to 1 at e ∈ G. The formula (3.13) should be understood in the distributional sense,
i.e. for any test function f ∈ D(G) the integral

χF (f) = TrTF (f) =

∫

F

{∫

g

f(exp ξ)

pF (exp ξ)
e2πiϕ(ξ) dξ

}
βF (ϕ) ,

converges (here dξ is the Lebesgue measure on g).

In particular, for compact groups G we have dim TF := χF (e) = Vol F < ∞, and
the integral orbits in this case correspond to flag manifolds. In this case the orbit
method is equivalent to the Borel–Weil method from the previous Subsec. 3.2.2.
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Chapter 4

Central extensions and
cohomologies of Lie algebras and
groups

In the first Section of this Chapter (Sec. 4.1) we recall the definition and basic
properties of central extensions of Lie algebras and groups. In particular, we point
out a relation between central extensions of Lie groups and their projective repre-
sentations. In Sec. 4.2 we introduce the Lie algebra cohomologies and give several
important examples of this notion (including the cohomological interpretation of
central extensions). The last Sec. 4.3 is devoted to the Lie group cohomologies and
their relation to projective representations.

4.1 Central extensions of Lie groups and

projective representations

Definition 24. A central extension of a Lie algebra G (over the field R) is a Lie
algebra G̃, which can be included into the exact sequence of Lie algebra homomor-
phisms

0 −→ R −→ G̃ −→ G −→ 0 , (4.1)

where R is considered as an Abelian Lie algebra and the image of the monomorphism
R→ G̃ is contained in the center of the algebra G̃. Two central extensions G̃1 and
G̃2 of the same Lie algebra G are said to be equivalent, if there exist a commutative
diagram of Lie algebra homomorphisms

0 −−−→ R −−−→ G̃1 −−−→ G −−−→ 0

id

y
y

yid

0 −−−→ R −−−→ G̃2 −−−→ G −−−→ 0 .

The exact sequence (4.1) implies that the Lie algebra G̃, as a vector space, is
isomorphic to G̃ = G ⊕ R and the Lie bracket in G̃, due to the centrality of the
image of R→ G̃, has the form

[(ξ, s), (η, t)] = [(ξ, 0), (η, 0)] = ([ξ, η], ω(ξ, η)) ,

61
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where ω is a skew-symmetric bilinear form on G, called the cocycle of the central
extension.

By analogy with Def. 24, we can define central extensions of Lie groups.

Definition 25. A central extension of a Lie group G is a Lie group G̃, which can
be included into the exact sequence of Lie group homomorphisms

1 −→ S1 −→ G̃ −→ G → 1 ,

where the image of the circle group under the monomorphism S1 → G̃ is contained
in the center of the group G̃.

Topologically, the map G̃ → G is a principal S1-bundle. Consider the case, when
this S1-bundle is trivial, i.e. G̃ → G admits a global section σ : G → G̃. With the
help of this section, we can identify G̃ with the group G × S1, provided with the
multiplication

(g, λ) · (h, µ) = (gh, λµc(g, h)) ,

where c(g, h) = σ(g)σ(h)σ(gh)−1 is called the cocycle of the central extension G̃.
Central extensions of Lie groups are closely related to their projective represen-

tations.

Definition 26. A projective (unitary) representation of a Lie group G is a map

ρ : G → U(H)

of the group G into the group of unitary operators, acting in a complex Hilbert space
H, satisfying the relation

ρ(g1)ρ(g2) = c(g1, g2)ρ(g1g2) for all g1, g2 ∈ G ,

where c(g1, g2) is a complex number with modulus 1, which is called the cocycle of
the projective representation.

Another projective representation ρ′ : G → U(H) of the same group G is equiva-
lent to ρ, if

ρ′(g) = λ(g)ρ(g) , g ∈ G ,

for some λ : G → S1.

Any projective representation ρ of a Lie group G determines a true unitary repre-
sentation ρ̃ of some central extension G̃ of the group G, which is a topologically trivial
S1-bundle with the cocycle, equal to the cocycle of the projective representation.
Namely, we define

ρ̃(g, λ) := λρ(g) for all g ∈ G, λ ∈ S1 .

Then we’ll have

ρ̃ ((g1, λ1) · (g2, λ2)) = λ1λ2c(g1, g2)ρ(g1g2) = λ1λ2ρ(g1)ρ(g2) = ρ̃(g1, λ1)ρ̃(g2, λ2)

for any g1, g2 ∈ G, λ1, λ2 ∈ S1.
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Conversely, any unitary representation ρ̃ of a topologically trivial central exten-
sion G̃, such that ρ̃(λ) = λ · id for any λ ∈ S1, determines a projective representation
ρ of the group G, which is defined in the following way. The cocycle c of the central
extension G̃ is given in terms of the trivializing section σ : G → G̃ by the formula

c(g1, g2) = σ(g1)σ(g2)σ(g1g2)
−1 , g1, g2 ∈ G .

Then the map ρ, defined by ρ(g) := ρ̃ (σ(g)), determines a projective representation
ρ : G → U(H), since

ρ(g1g2) = ρ̃ (σ(g1g2)) = ρ̃
(
c(g1, g2)

−1σ(g1)σ(g2)
)

= c(g1, g2)
−1ρ(g1)ρ(g2)

for any g1, g2 ∈ G.

4.2 Cohomologies of Lie algebras

Let G be a Lie algebra and ρ : G → EndV is a representation of G in a vector space
V . In other words, V is a G-module.

Definition 27. A q-cochain of the algebra G with coefficients in V is a skew-
symmetric continuous q-linear functional on G with values in V , i.e. a continuous
map

α : G× · · · ×G︸ ︷︷ ︸
q

−→ V ,

which is skew-symmetric and q-linear. The set of all such cochains is denoted by
Cq(G, V ).

We define the differential (coboundary map)

δq : Cq(G, V ) −→ Cq+1(G, V )

by the formula

δqα(ξ1, . . . , ξq+1) =
∑

1≤i≤q+1

(−1)iξiα(ξ1, . . . , ξ̂i, . . . , ξq+1)+

+
∑

1≤i<j≤q+1

(−1)i+j−1α([ξi, ξj], ξ1, . . . , ξ̂i, . . . , ξ̂j, . . . , ξq+1)

(4.2)

for α ∈ Cq(G, V ), ξ1, . . . , ξq+1 ∈ G.
It’s easy to check that the coboundary maps have the property δq ◦ δq−1 = 0, so

we obtain a complex

. . . −→ Cq−1(G, V )
δq−1−→ Cq(G, V )

δq−→ Cq+1(G, V ) −→ . . . .

The cohomologies of this complex are called the cohomologies of the Lie algebra G

with coefficients in the G-module V and denoted by

Hq(G, V ) := Ker δq/ Im δq−1 =

=
{ξ ∈ Cq(G, V ) : δq ξ = 0}

{ξ ∈ Cq(G, V ) : ξ = δq−1 η for some η ∈ Cq−1(G, V )} . (4.3)

In the particular case, when V is the basic number field k = R,C, considered as the
trivial G-module, the cohomologies Hq(G, k) are denoted by Hq(G).
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The above expression for the coboundary map looks like exterior derivative of a
differential form. This is because differential forms on a smooth manifold X may be
considered as cochains of the Lie algebra Vect(X) with coefficients in the module
C∞(X) of smooth functions on X, considered as a Vect(X)-module.

Here are several particular examples of Lie algebra cohomologies.

Example 24 (cohomology H0(G, V )). Setting C−1(G, V ) = 0, we get

H0(G, V ) = Ker
{
δ0 : C0(G, V ) = V −→ C1(G, V )

}

= {v ∈ V : ξv = 0 for any ξ ∈ G} . (4.4)

In other words, the cohomology H0(G, V ) coincides with the set of invariants of
G-module V .

Example 25 (cohomology H1(G)). In this case the differential δ0 : C0(G) → C1(G)
is trivial, since the action of G on k is trivial. So

H1(G) = Ker
[
δ1 : C1(G) = G∗ −→ C2(G)

]

= {β ∈ G∗ : β([ξ, η]) = 0 for all ξ, η ∈ G} = (G/ [G,G])∗ . (4.5)

Otherwise speaking, the cohomology H1(G) consists of continuous linear functionals
on G/ [G,G].

Example 26 (cohomology H1(G; G)). Consider a Lie algebra G as a G-module with
respect to the adjoint action ad of G on itself. The cohomology H1(G,G) is inter-
preted as the set of outer derivations of the algebra G. Recall that a homomorphism
φ : G → G is called the derivation of G, if

φ([ξ, η]) = [φ(ξ), η] + [ξ, φ(η)] .

The inner derivations , defined by

ξ 7−→ [ξ, ξ0] = adξ0(ξ) ,

where ξ0 is a fixed element of G, may serve as an example.
The set of outer derivations coincides, by definition, with the quotient of the set

of all derivations of the algebra G modulo inner derivations.
Let us show that the cohomology H1(G,G) coincides with the set of outer deriva-

tions of the algebra G.
Indeed, cochains from C1(G,G) are given by linear maps φ : G → G. The

condition δ1φ = 0 means that φ is a derivation, since

δ1φ(ξ, η) = φ([ξ, η])− ξφ(η) + ηφ(ξ) = φ([ξ, η])− [ξ, φ(η)]− [φ(ξ), η] .

The cochains from C1(G,G), belonging to the image of the map δ0 : C0(G,G) →
C1(G,G), are inner derivations of the algebra G, since

ξ ∈ G = C0(G,G) =⇒ δ0ξ(η) = −ξ · η = [−ξ, η] .
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Example 27 (cohomology H2(G)). The cohomology H2(G) may be identified with
set of equivalence classes of central extensions of the Lie algebra G, considered in
the previous Sec. 4.1.

Indeed, associate with a cocycle ω ∈ C2(G) the central extension

0 −→ k −→ k ⊕G −→ G −→ 0 ,

where the map k → k ⊕ G is an embedding s 7→ (s, 0), and the map k ⊕ G → G

coincides with the projection (s, ξ) 7→ ξ. The bracket in the algebra G̃ = k ⊕ G is
given by the formula

[(s, ξ), (t, η)] = (ω(ξ, η), [ξ, η]) .

The Jacoby identity in the algebra G̃ is equivalent to the cocyclicity of ω. Moreover,
cohomologous cocycles correspond to equivalent central extensions, and the zero in
H2(G) corresponds to the trivial central extension G̃ = k ⊕G.

Example 28 (cohomology H3(G)). The cohomology H3(G) of a semisimple Lie
algebra G is interpreted as the set of invariant symmetric bilinear forms on G.

Indeed, with any such form 〈·, ·〉 we can associate an element of H3(G), given by
the 3-cocycle of the form

G×G×G 3 (ξ, η, ζ) 7−→ 〈ξ, [η, ζ]〉 .

Apart from the above examples, demonstrating the importance of the coho-
mologies of Lie algebras, there is one more motivation to introduce such an object.
Namely, the cohomologies of a Lie algebra G are closely related to the cohomologies
of the corresponding Lie group G, considered as a smooth manifold. Let us denote
the latter cohomology groups by Hq

top(G, k). A relation between Hq
top(G, k) and the

cohomologies of the Lie algebra G is established in the following way.

Construct first a map of the cochain complex C•(G) into the de Rham complex
Ω•(G) of the group G. Denote by Ωq

inv(G) the subspace of differential forms of
degree q in Ωq(G), invariant under the right translations on G. A form in Ωq

inv(G) is
uniquely determined by its restriction to the tangent space TeG = G, i.e. there is
an isomorphism

Ωq
inv(G)

≈←→ Λq(G) = Cq(G) .

Moreover, the differential δq : Cq(G) → Cq+1(G) coincides with the restriction of
the exterior differential dq : Ωq(G) → Ωq+1(G) to Ωq

inv(G). So there is a canonical
map

Hq(G) −→ Hq
top(G, k) . (4.6)

This homomorphism is an isomorphism, when k = R and G is a compact Lie group
(in this case one can associate with any form on G a right-invariant form by averaging
the original form over G). In the complex case k = C the above homomorphism
is an isomorphism, if G is a complex semisimple Lie group. The isomorphism (4.6)
extends also to some infinite-dimensional Lie groups, in particular, to the loop group
LG = C∞(S1, G) of a compact Lie group G (k = R in this case).
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4.3 Cohomologies of Lie groups

Let G be a Lie group and V is a G-module, i.e. we have a representation ρ : G →
GL(V ) of the group G in the vector space V . There are two natural definitions of
the cochain complex with values in the G-module V . In the first definition cochains
are given by equivariant functions on G with values in V .

Definition 28. A q-cochain of the group G with values in V is a function

ϕ : G × · · · × G︸ ︷︷ ︸
q+1

−→ V ,

which has the following equivariance property

ϕ(gg0, . . . , ggq) = g · ϕ(g0, . . . , gq) ,

where ”·” in the right hand side denotes the action of the group G on V , given by
the representation ρ. The space of all q-cochains is denoted by Cq(G, V ) and the
differential

δq : Cq(G, V ) → Cq+1(G, V )

is given by the formula

δqϕ(g0, . . . , gq+1) =

q+1∑
i=0

(−1)iϕ(g0, . . . , ĝi, . . . , gq+1) .

In the second definition cochains are given by arbitrary functions on G with
values in V .

Definition 29. A q-cochain on the group G with values in V is a function

ψ : G × · · · × G︸ ︷︷ ︸
q+1

−→ V .

The space of all q-cochains on G with values in V is denoted again by Cq(G, V ), but
the differential

δq : Cq(G, V ) → Cq+1(G, V )

is given in this case by the formula

δqψ(g1, . . . , gq+1) = g1 · ψ(g2, . . . , gq+1)+

+

q∑
i=1

(−1)iψ(g1, . . . , gigi+1, . . . , gq+1) + (−1)q+1ψ(g1, . . . , gq) .

(4.7)

A relation ϕ ↔ ψ between these two definitions of cochains is established via
the formulas

ϕ(g0, . . . , gq) = g0 · ψ(g−1
0 g1, g

−1
1 g2, . . . , g

−1
q−1gq) , (4.8)

ψ(g1, . . . , gq) = ϕ(1, g1, g1g2, . . . , g1g2 · . . . · gq) . (4.9)
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The cohomologies of the group G with values in the G-module V in both cases
are defined as the cohomologies of the complex {Cq(G, V ), δq}, i.e.

Hq(G, V ) =
Ker [δq : Cq(G, V ) → Cq+1(G, V )]

Im [δq−1 : Cq−1(G, V ) → Cq(G, V )]
.

We consider now a relation between 2-dimensional cohomologies of the group G
with its projective representations and central extensions (cf. Sec. 4.1).

Let ρ : G → U(V ) be a projective representation of the Lie group G, satisfying
the relation

ρ(g1)ρ(g2) = c(g1, g2)ρ(g1g2) for any g1, g2 ∈ G ,

where c(g1, g2) is the cocycle of the representation ρ. The associativity of the multi-
plication in G and U(V ) implies that c is a 2-cocycle of the group G with values in the
multiplicative group S1 with the trivial action of the group G, given by ρ : G → 1.
In other words, for any three elements g1, g2, g3 of the group G we have the relation

c(g2, g3)c(g1g2, g3)
−1c(g1, g2g3)c(g1, g2)

−1 = 1 ,

which means that δ2c = 1 (we use here the multiplicative analog of δ2 from Def. 29).
On the other hand, an equivalent projective representation of the form

ρ′(g) = λ(g)ρ(g)

with λ : G → S1, corresponds to the cocycle

c′(g1, g2) = c(g1, g2)λ(g1g2)λ(g1)
−1λ(g2)

−1 ,

i.e. to the cocycle c′ ∈ C2(G, S1), cohomologous to the cocycle c ∈ C2(G, S1). So
the class [c] of the cocycle c in the cohomologies H2(G, S1) depends only on the
equivalence class of the projective representation ρ. Hence, the equivalence classes
of projective representations of the Lie group G in a Hilbert space V can be identified
with the cohomologies H2(G, S1).

On the other hand, in Sec. 4.1 we have assigned to any topologically trivial central
extension G̃ → G of the group G its cocycle c, which is the same as a 2-cocycle of
the group G with values in the trivial G-module S1. Moreover, equivalent central
extensions of the group G correspond to cohomologous cocycles in H2(G, S1). So,
the class [c] of the cocycle c in H2(G, S1) depends only on the equivalence class of the
central extension G̃ and we can identify the set of equivalence classes of (topologically
trivial) central extensions of the Lie group G with the cohomology H2(G, S1).

Bibliographic comments

The content of this Chapter is also of reference character and may be found in [31, 21,
22]. Central extensions and projective representations, together with cohomologies
of Lie algebras and groups, will play an important role in the study of loop groups
and diffeomorphism groups in Parts II and III.



68 CHAPTER 4. CENTRAL EXTENSIONS AND COHOMOLOGIES



Chapter 5

Grassmannians of a Hilbert space

In this Chapter we introduce infinite-dimensional Grassmann manifolds of closed
subspaces in a Hilbert space H. We assume that H is polarized, i.e. decomposed into
the direct sum of closed (infinite-dimensional) subspaces H = H+⊕H−, and consider
Grassmannians, consisting of subspaces, ”close” to H+ in different senses. The
most important case is the so called Hilbert–Schmidt Grassmannian, introduced in
Sec. 5.2. It is a Hilbert Kähler manifold, which has many features of standard finite-
dimensional Grassmannians. In particular, it is the homogeneous space of a Hilbert
Lie group and can be provided with a natural determinant bundle, constructed in
Sec. 5.3.

5.1 Grassmannian Grb(H)

Let H be a complex (separable) Hilbert space. Suppose that H is polarized , i.e. it
is provided with a decomposition into the direct orthogonal sum

H = H+ ⊕H− (5.1)

of closed infinite-dimensional subspaces. Denote by pr+ (resp. pr−) the orthogonal
projection pr+ : H → H+ (resp. pr− : H → H−).

We usually have in mind a standard example of such a polarized Hilbert space H,
given by the Hilbert space L2

0(S
1,C) of L2-functions on the unit circle S1 with zero

average value. Functions f ∈ L2
0(S

1,C) have Fourier decompositions, converging in
L2-sense, of the form

f(z) =
+∞∑

k=−∞
fkz

k , f0 = 0 ,

where z = eiθ. For this particular realization of H we take for H+ (resp. H−) the
subspace, consisting of the functions f ∈ L2

0(S
1,C), which have vanishing Fourier

coefficients with negative (resp. positive) indices:

H+ = {f ∈ H : f(z) =
∞∑

k=1

fkz
k } , H− = {f ∈ H : f(z) =

−1∑

k=−∞
fkz

k } .

Definition 30. The Grassmannian Grb(H) consists of all closed subspaces W ⊂ H,
such that the orthogonal projection pr+ : W → H+ is a Fredholm operator.

69
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Recall that a linear operator T : H1 → H2, mapping a Hilbert space H1 into a
Hilbert space H2, is called Fredholm, if it has finite-dimensional kernel and cokernel.
For such an operator one can define its Fredholm index by the formula

indT := dim(KerT )− dim(CokerT ) .

The Fredholm index of T is a topological invariant of T , i.e. it does not change
under bounded continuous deformations of T . An equivalent definition: an operator
T is Fredholm, if it is invertible modulo compact operators, i.e. if there exists an
operator S : H2 → H1 such that the operators idH1−ST and idH2−TS are compact.

We can reformulate Def. 30 in an equivalent way as follows: a subspace W ∈
Grb(H) iff it coincides with the image of a bounded linear operator

w : H+ −→ H ,

such that the operator w+ := pr+ ◦ w is Fredholm.
With respect to the polarization H = H+ ⊕H− any linear operator w ∈ EndH

can be written in the block form

w =

(
a b
c d

)
=

(
a : H+ → H+ , b : H− → H+

c : H+ → H− , d : H− → H−

)
.

In these terms the subspace W ∈ Grb(H) iff a is Fredholm.
For any W ∈ Grb(H) denote by

UW = {W ′ ∈ Grb(H) : the orthogonal projection W ′ → W is an isomorphism} .

We want to define the structure of a complex Banach manifold on Grb(H), for
which the sets UW will play the role of coordinate neighborhoods. More precisely,
we have the following

Proposition 6. Grb(H) is a complex Banach manifold, having for its local model
the Banach space B(H+, H−) of bounded linear operators w : H+ → H−. The
coordinate neighborhoods

UW = {W ′ ∈ Grb(H) : the orthogonal projection W ′ → W is an isomorphism} ,

introduced above, form an atlas of Grb(H) and coordinate charts are given by the
maps

UW 3 W ′ 7−→ w′ ∈ B(W,W⊥) .

Proof. In order to show that the atlas {UW} with given charts does define on Grb(H)
the structure of a complex Banach manifold, consider the intersection UW1∩UW2 6= ∅
of two coordinate neighborhoods. The coordinate change in H, transforming the
decomposition H = W1 ⊕W⊥

1 into the decomposition H = W2 ⊕W⊥
2 , is given by

the matrix

A =

(
a b
c d

)
: W1 ⊕W⊥

1 → W2 ⊕W⊥
2 ,

in which the operators a and d are Fredholm, while b and c are bounded. If a
subspace W ∈ UW1∩UW2 , then it can be represented, on one hand, as the graph of a
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bounded operator w1 : W1 → W⊥
1 , and, on the other hand, as the graph of a bounded

operator w2 : W2 → W⊥
2 . The orthogonal projection of W onto the subspaces W1

and W2 is an isomorphism, which defines an isomorphism v : W1 → W2, so that W
is the graph of the operator w2 ◦ v : W1 → W⊥

2 . It implies that

(
a b
c d

)(
1

w1

)
=

(
v

w2 ◦ v

)

as operators from W1 to W2 ⊕W⊥
2 . In other words, the coordinate change

B(W1,W
⊥
1 ) −→ B(W2,W

⊥
2 ) , w1 7−→ w2 ,

which is given by the formula

w2 = (c + dw1)(a + bw1)
−1 ,

determines a holomorphic map, defined on the open subset UW1 ∩ UW2 , identified
with the subset {w1 ∈ B(W1,W

⊥
1 ) : a + bw1 is invertible}.

Note that the manifold Grb(H) has a countable number of connected components,
numerated by the index of the Fredholm operator w+ for a subspace W ∈ Grb(H),
coinciding with the image of a linear operator w : H+ → H. We say that the
subspace W has the virtual dimension d, if the index of w+ is equal to d.

5.2 Hilbert–Schmidt Grassmannian GrHS(H)

Recall that a linear operator T : H1 → H2, acting from a complex Hilbert space H1

into another complex Hilbert space H2, is called a Hilbert–Schmidt operator , if for
some orthonormal basis {ei} in H1 the series

∑
i

‖Tei‖ < ∞

is converging. Note that this condition is satisfied for any orthonormal basis in H1, if
it is satisfied for some orthonormal basis {ei} in H1. We define the Hilbert–Schmidt
norm of the operator T by the formula

‖T‖2 =

( ∞∑
i=1

‖Tei‖2

)1/2

.

The Hilbert–Schmidt operators T : H1 → H2 form a complex Hilbert space HS(H1, H2)
with respect to the introduced norm. Moreover, the space HS(H,H) of Hilbert–
Schmidt operators, acting in a Hilbert space H, is a two-sided ideal in the algebra
B(H) of all bounded linear operators in H.

Denote by GL(H) the group of all linear bounded operators in H, having a
bounded inverse.
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Definition 31. The general linear Hilbert–Schmidt group GLHS(H) consists of linear
operators A ∈ GL(H), such that in their block representation (with respect to
polarization H = H+ ⊕H−)

A =

(
a b
c d

)

the ”off-diagonal” terms b and c are Hilbert–Schmidt operators (for brevity: HS-
operators). We denote by UHS(H) the intersection of the group GLHS(H) with the
group U(H) of all unitary operators in H.

In other words, the group GLHS(H) consists of operators A ∈ GL(H), for which
the ”off-diagonal” terms b and c are ”small” with respect to the ”diagonal” terms a
and d.

We introduce now the structure of a Banach Lie group on GLHS(H). Namely,
consider a subalgebra BHS(H) of the algebra B(H), consisting of operators of the
form

A =

(
a b
c d

)
∈ B(H) ,

for which the operators b and c are Hilbert–Schmidt. The algebra BHS(H) is a
Banach algebra with the norm, given by the formula

|||A||| := ‖A‖+ ‖b‖2 + ‖c‖2 .

The group GLHS(H) coincides with the group of invertible elements of the algebra
BHS(H) and is a complex Banach Lie group. Accordingly, UHS(H) is a real Banach
Lie group, whose complexification coincides with GLHS(H).

There is a Grassmann manifold GrHS(H), associated with the group GLHS(H).

Definition 32. The Hilbert–Schmidt Grassmannian GrHS(H) is the set of all closed
subspaces W ⊂ H, such that the orthogonal projection pr+ : W → H+ is a Fred-
holm operator, and the orthogonal projection pr− : W → H− is a Hilbert–Schmidt
operator.

In other words, GrHS(H) consists of the subspaces W ⊂ H, which differ ”little”
from the subspace H+ in the sense that pr+ : W → H+ is an ”almost isomor-
phism” (recall that Fredholm operators are invertible modulo compact operators,
cf. Sec. 5.1), and pr− : W → H− is ”small”.

Equivalently, a subspace W ∈ GrHS(H) iff it coincides with the image of a linear
operator

w : H+ −→ H ,

such that the operator w+ := pr+ ◦ w is Fredholm, and w− := pr− ◦ w is Hilbert–
Schmidt.

It’s easy to see that if W ∈ GrHS(H), then the graph of any HS-operator w′ :
W → W⊥ also belongs to GrHS(H). We denote the set of all such subspaces by UW :

UW = {W ′ ∈ GrHS(H) : W ′ is the graph of an HS-operator w′ : W → W⊥} .

As in Sec. 5.1, this definition can be rewritten in the form

UW = {W ′ ∈ GrHS(H) : the orthogonal projection W ′ → W is an isomorphism} .
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The group GLHS(H), introduced above, acts in a natural way on GrHS(H). Con-
sider, in particular, the action of its unitary subgroup UHS(H) on GrHS(H) and
show that it is transitive. It will allow us to obtain a realization of GrHS(H) as a
homogeneous space of the group UHS(H), analogous to the realization of the finite-
dimensional Grassmannian as a homogeneous space of the unitary group.

To prove that the action of UHS(H) on GrHS(H) is transitive, we should construct
for a given subspace W ∈ GrHS(H) an operator A ∈ UHS(H) such that A(H+) = W .
Consider an isometric operator w : H+ → H, which has the image, equal to W , and
denote by w⊥ : H− → H an isometric operator with the image W⊥. Then the
operator

A = w ⊕ w⊥ : H = H+ ⊕H− → H = W ⊕W⊥

defines an isometry of H onto itself and so is unitary. Moreover, it maps H+ onto
W and has the block representation of the form

A =

(
w+ w⊥

+

w− w⊥
−

)
.

Here, the operator w+ is Fredholm, and w− is Hilbert–Schmidt, because W ∈
GrHS(H). Since A is also unitary, it follows that A ∈ UHS(H).

The isotropy subgroup of UHS(H) at H+ ∈ GrHS(H) coincides with U(H+) ×
U(H−), hence we have the following

Proposition 7. The Grassmannian GrHS(H) is a homogeneous space of the group
UHS(H) of the form

GrHS(H) = UHS(H)/U(H+)× U(H−) .

The Hilbert–Schmidt Grassmannian GrHS(H) has the structure of a complex
Hilbert manifold, defined in the following way.

Proposition 8. The Grassmannian GrHS(H) is a complex Hilbert manifold, having
for its local model the Hilbert space of Hilbert Schmidt operators HS(H+, H−). The
coordinate neighborhoods

UW = {W ′ ∈ GrHS(H) : W ′ is the graph of an HS-operator w′ : W → W⊥}
form an atlas for GrHS(H), and the coordinate charts are given by the maps

UW 3 W ′ 7−→ w′ ∈ HS(W,W⊥) .

This Proposition is proved in the same way, as Prop. 6 from Sec. 5.1.
There is another atlas on GrHS(H), which is more natural in some sense. To

construct it, we identify H with the Hilbert space L2(S1,C). This space has a
canonical basis, given by {zk}, k ∈ Z. The subspace H+ is generated by the elements
{zk}, k ∈ Z+, and H− by the elements {zk}, k ∈ Z−, where we denote by Z+ the
subset of nonnegative integers in Z, and by Z− its complement in Z.

We take for ”coordinate” subspaces in H the closed linear subspaces HS ⊂ H,
generated by vectors {zs}, s ∈ S, which are numerated by the subsets S ⊂ Z,
comparable with Z+. We say that a subset S ⊂ Z is comparable with Z+, if the sets
S − Z+ and Z+ − S consist of finite number of points. The ensemble of all such
subsets S ⊂ Z is denoted by S, and the number |S − Z+| − |Z+ − S| is called the
virtual cardinality of S. Note that the virtual dimension of the subspace HS is equal
precisely to the virtual cardinality of S.
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Lemma 2. For any W ∈ GrHS(H) there exists a subset S ∈ S, such that the
orthogonal projection

prS : W −→ HS

is an isomorphism.

Proof. Indeed, if W ∈ GrHS(H), then the orthogonal projection pr+ : W → H+ has
finite-dimensional kernel and cokernel, so there exists a subset S0 ∈ S, containing
Z+, for which the orthogonal projection

pr : W −→ HS0

is injective. If it’s not surjective, then one can find an s ∈ S0, such that zs does not
belong to pr(W ). In this case we replace S0 with S1 := S0 \ {s}. The projection
pr : W → HS1 still remains injective. If it’s not surjective, we repeat the described
procedure. Since the complement of pr+(W ) in H+ is finite-dimensional, after a finite
number of steps we shall arrive to a subset S, for which the projection prS : W → HS

is an isomorphism.

Based on the above Lemma, we can define an atlas on GrHS(H), formed by the
open sets {US}S∈S , where the coordinate neighborhood US = UHS

consists of the
subspaces, which are the graphs of Hilbert–Schmidt operators HS → H⊥

S = HS⊥

with S⊥ = Z− S.

Since UHS(H) acts transitively on the Grassmannian GrHS(H), one can construct
an UHS(H)-invariant Kähler metric on GrHS(H) from an inner product on the tan-
gent space TH+GrHS(H) at the origin H+ ∈ GrHS(H), invariant under the action of
the isotropy subgroup U(H+)× U(H−).

The tangent space TH+GrHS(H) coincides with the Hilbert space of Hilbert–
Schmidt operators HS(H+, H−), and an invariant inner product on it can be given
by the formula

(A,B) 7−→ Re {tr(AB∗)} , A,B ∈ HS(H+, H−) .

The imaginary part of the complex inner product tr(AB∗):

ω(A,B) := Im {tr(AB∗)}

defines a non-degenerate invariant 2-form on TH+GrHS(H), which extends to an
UHS(H)-invariant symplectic form on GrHS(H).

This defines on GrHS(H) a Kähler structure, making GrHS(H) into a Kähler
Hilbert manifold.

We shall use in Ch. 9 the ”smooth” part Gr∞(H) of the Grassmannian GrHS(H),
which can be defined in terms of the open covering {US}S∈S in the following way.

Definition 33. The Grassmannian Gr∞(H) consists of the graphs of all bounded
linear operators w : HS → H⊥

S , S ∈ S, whose matrix components wpq with p ∈ Z−S,
q ∈ S are rapidly decreasing, i.e. the quantities |p− q|rwpq are bounded for each r.
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5.3 Plücker embedding and determinant bundle

As in the finite-dimensional case, the Hilbert–Schmidt Grassmannian GrHS(H) may
be realized, with the help of the Plücker embedding, as a submanifold in a projective
Hilbert space.

In order to define this Plücker embedding, we introduce a notion of an admissible
basis for a subspace W ∈ GrHS(H). Suppose that W ∈ GrHS(H) has the virtual
dimension d. A model example for such a subspace in the case of H = L2

0(S
1,C) is

the subspace W = z−dH+.

Definition 34. A basis in W , consisting of elements {wk}k≥−d, is called admissible
if:

1. the linear map

w : z−dH+ −→ W ,

defined on the basis elements {zk}k≥−d by the formula zk 7→ wk, is a continuous
isomorphism;

2. the composition of w with the orthogonal projection onto the subspace z−dH+:

pr ◦ w : z−dH+ −→ z−dH+

is an operator with determinant.

We recall the definitions of the class Tr of operators with trace and related class
Det = 1+Tr of operators with determinant. A linear operator T : H1 → H2, acting
from a Hilbert space H1 into a Hilbert space H2, is called an operator with trace or
an operator of trace class , if for some orthonormal bases {ei} in the space H1 and
{fi} in the space H2 the series ∑

i

(Tei, fi)

converges. If this condition is satisfied for some orthonormal bases in H1 and H2,
then it is fulfilled also for any orthonormal bases {ei} in H1 and {fi} in H2 and the
sum ∑

i

(Tei, fi)

does not depend on the choice of bases. It is called the trace of the operator T and
denoted by TrT . Operators T : H → H of trace class, acting in a Hilbert space H,
form a two-sided ideal Tr(H, H) in the algebra B(H) of all bounded linear operators
in H, which contains the ideal HS(H,H) of Hilbert–Schmidt operators. Moreover,
it’s easy to see that the product of two operators from Tr(H, H) is a Hilbert–Schmidt
operator, i.e. belongs to HS(H, H). The trace of an operator T ∈ Tr(H, H) coincides
with the sum of its eigenvalues

trT =
∑

i

λi(T ) .

and behaves like the matrix trace.
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If T : H → H is an operator of the trace class, then one can define for the
operator I − T , where I is the identity operator, its determinant by

det(I − T ) :=
∏

i

(1− λi(T )) .

The product in the right hand side is converging, since for an operator T : H → H of
the trace class the sum

∑
i |λi(T )| is always finite. Operators of the form A = I−T ,

where T ∈ Tr(H, H), are called the operators with determinant or operators of
determinant class , and the set of such operators is denoted by Det(H, H). It’s clear
that the class Det(H, H) is closed under the product of operators.

Coming back to the Def. 34, note that the second condition in this definition
means that the isomorphism w is ”sufficiently close” to the identity. Moreover, it
implies that the orthogonal projection prS ◦w : z−dH+ → HS onto any subspace HS

of virtual dimension d has a determinant, and any two admissible bases in a subspace
W ∈ GrHS(H) are related by the change of variables, which has a determinant.

Using the notion of the admissible basis, we can define the Plücker coordinate
of a subspace W ∈ GrHS(H).

Definition 35. Let W be a subspace of virtual dimension d, having an admissible
basis w. The Plücker coordinate of W is a function of S ∈ S of the following form

πS(w) =

{
det(prS ◦ w) for S ∈ S of virtual cardinality d ,

0 for S ∈ S of any virtual cardinality, other than d .

If w′ is another admissible basis in W , then

πS(w′) = ∆ww′πS(w) ,

where ∆ww′ is the determinant of the change of variables, relating w with w′. Hence,
the projective class [πS(w)] does not depend on the choice of an admissible basis w
in the subspace W and is uniquely determined by the subspace itself.

In terms of the Plücker coordinate the neighborhoods US may be redefined as
follows:

W ∈ US ⇐⇒ πS(w) 6= 0 for any admissible basis w in W .

Proposition 9. The Plücker map

π : GrHS(H) −→ P (H) , W 7−→ [πS(w)]S∈S ,

determines a holomorphic embedding of the Grassmannian GrHS(H) into the pro-
jectivization of the Hilbert space H = l2(S).

We omit the proof of this assertion (it may be found in [65], Prop. 7.5.2), and
only note that it is based on the relation

∑
S∈S

|πS(w)|2 = det(w∗w) < ∞ , (5.2)

satisfied for any admissible basis w in W ∈ GrHS(H).
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We shall construct now a holomorphic line bundle over GrHS(H), being an ana-
logue of the determinant bundle over the finite-dimensional Grassmannian.

Let a subspace W ∈ GrHS(H) has the virtual dimension d. Consider the linear
space, consisting of formal semi-infinite forms of the type

[λ,w] := λw−d ∧ w−d+1 ∧ . . . ,

where λ ∈ C, w = {wk}k≥−d is an admissible basis in W . If w′ is another admissible
basis in W , then we shall identify the pair [λ′, w′] with the pair [λ,w], if λ′ = λ∆ww′ ,
where ∆ww′ is the determinant of the change of variables, relating w with w′.

The linear space Det W , obtained by taking the quotient of the space of semi-
infinite forms of the type [λ,w] with respect to the above equivalence relation, is a
complex line.

We denote by Det the union of spaces Det W over all W ∈ GrHS(H).

Proposition 10. The natural projection

Det −→ GrHS(H)

is a holomorphic line bundle.

This Proposition follows from the fact that the restriction of Det to any coor-
dinate neighborhood US is trivial and the transition function for US1 ∩ US2 6= ∅ is
given (in the notation of Sec. 5.1) by the formula

[λ1, w1] 7−→ [λ2, w2] ,

where
w2 = (c + dw1)(a + bw1)

−1, λ2 = λ det(a + bw1) .

This defines the structure of a holomorphic line bundle on Det.
We add several comments on the Plücker embedding and determinant bundle.

Remark 6. The bundle Det can be provided with a natural Hermitian metric, given
by

‖[λ, w]‖2 := |λ|2 det(w∗w)2 .

Remark 7. The Plücker embedding π : GrHS(H) → P (H) may be pulled up to a
holomorphic map

π̃ : Det → H ,

which is linear on the fibres, so that the bundle Det will coincide with the inverse
image of the tautological line bundle over P (H) with respect to the embedding π.
Moreover, the pulled back map π̃ : Det → H will preserve the norms (it follows
from the relation (5.2) above).

Remark 8. The holomorphic line bundle Det has no non-trivial (global) sections,
on the contrary, the dual bundle Det∗ has many such sections. For example, all
Plücker coordinates πS determine holomorphic sections of Det∗. Indeed, the formula
[λ,w] 7→ λπS(w) defines a holomorphic function Det → C, which is linear on fibres,
and induces a global holomorphic section of Det∗.

Note also that the symplectic form of the manifold GrHS(H), constructed in
Sec. 5.2, represents the Chern class of the complex line bundle Det → GrHS(H). Oth-
erwise speaking, it is induced by the Fubini-Study form on P (H) under the Plücker
embedding π : GrHS(H) → P (H).
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Chapter 6

Quasiconformal maps

In this Chapter we introduce quasiconformal maps and prove main existence and
uniqueness theorems for such maps. The quasiconformal maps will play a crucial
role in Ch. 11, where we study the universal Teichmüller space. For a detailed
exposition of the theory of quasiconformal maps cf. [1, 49].

6.1 Definition and basic properties

Let w : D → w(D) be a homeomorphism, mapping a domain D in the Riemann
sphere C onto another domain w(D) in C.

Definition 36. Suppose that w : D → w(D) is a homeomorphism and w has
locally L1-integrable derivatives (in the generalized sense) in D. Then w is called
quasiconformal , if there exists a measurable complex-valued function µ ∈ L∞(D)
with

‖µ‖∞ := ess supz∈D|µ(z)| =: k < 1 , (6.1)

such that the following Beltrami equation

wz̄ = µwz (6.2)

holds for almost all z ∈ D.
The function µ = µw is called the Beltrami differential or the complex dilatation

of w, and the constant k is often indicated in the name of the k-quasiconformal
maps.

In particular, for k = 0 the homeomorphism w determines a conformal map
from D onto w(D). For diffeomorphisms w the quasiconformality of w means that
infinitesimally it transforms small circles into ellipses, whose eccentricities (the ratio
of the large axis to the small one) are bounded by a common constant K < ∞,
related to the above constant k = ‖µ‖∞ by the formula

K =
1 + k

1− k
.

The least possible constant K is called the maximal dilatation of w and is often
included in the name of the K-quasiconformal maps.

79
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The term ”Beltrami differential” for the complex dilatation µ is motivated by
the behavior of µ under conformal changes of variables. Namely, it follows from
(6.2) that for a conformal change of variables f we should have

µ(f(z)) = µ(z)
fz(z)

fz(z)

for almost all z ∈ D. In general, we call a functional ϕw, defined on complex-valued
functions w, a differential of type (m,n) with m,n ∈ Z, if the quantity ϕw(z)dzmdz̄n

remains invariant under conformal changes of variables. In the sense of this definition
the complex dilatation µw is a differential of type (−1, 1).

The inverse of a K-quasiconformal map f is again K-quasiconformal. The com-
position of a K1-quasiconformal map f with a K2-quasiconformal map g is a (K1K2)-
quasiconformal map. This composition property may be deduced from the chain rule
for Beltrami differentials. Namely, if f and g are two quasiconformal maps of a do-
main D with Beltrami differentials µf and µg respectively, then the following chain
rule holds

µf◦g−1(g(z)) =
µf (z)− µg(z)

1− µf (z)µg(z)
· gz(z)

gz(z)
, (6.3)

for almost all z ∈ D. In particular,

µg−1(g(z)) = −µg(z) · gz(z)

gz(z)
,

so |µg−1(g(z))| = |µg(z)| for almost all z ∈ D.

From the chain rule (6.3) we can deduce the following transformation property
of Beltrami differentials µw with respect to compositions of w with conformal maps
f . If f is a conformal map (i.e. µf ≡ 0), then

µf◦w(z) ≡ µw(z) , µw◦f = (µw ◦ f)
fz

fz

.

These transformation rules for Beltrami differentials imply the following unique-
ness property of solutions of the equation (6.2).

Proposition 11. Suppose that two quasiconformal homeomorphisms w1 and w2 in
a domain D satisfy the same Beltrami equation

wz̄ = µwz

for almost all z ∈ D, where µ is a Beltrami differential in D, satisfying the condition
(6.1). Then w1◦w−1

2 and w2◦w−1
1 are conformal. Conversely, the composition f ◦w1

with any conformal map f , defined on w1(D), satisfies the same Beltrami equation,
as w1.

Quasiconformal homeomorphisms have a good behavior at the boundary, accord-
ing to the following
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Theorem 3 (Mori (cf. [1])). Let w : ∆ → ∆ be a K-quasiconformal homeomor-
phism of the unit disc onto itself, normalized by the condition: w(0) = 0. Then the
following sharp estimate

|w(z1)− w(z2)| < 16|z1 − z2|1/K

holds for any z1 6= z2 ∈ ∆. In other words, the homeomorphism w satisfies the
Hölder condition of order 1/K in the disc ∆.

Mori’s theorem implies, in particular, that w extends to a homeomorphism of the
closed unit disc ∆. Another corollary of Mori’s theorem is that K-quasiconformal
homeomorphisms w of the unit disc ∆ onto itself, normalized by the condition
w(0) = 0, form a compact family with respect to the topology of normal convergence
(i.e. uniform convergence on compact subsets). This result easily extends to general
domains D ⊂ C.

Proposition 12. Consider the family of all K-quasiconformal maps in D, nor-
malized by the condition that any map in the family sends two fixed distinct points
z1, z2 ∈ D to another two fixed distinct points ζ1, ζ2. Then this family is compact
with respect to the topology of normal convergence and any map w in this family
satisfies the Hölder condition

|w(z1)− w(z2)| < A|z1 − z2|1/K

on any compact subset in D, where the constant A depends only on K and the
compact subset.

In particular, any quasiconformal homeomorphism w : D1 → D2 extends to a
homeomorphism w : D̄1 → D̄2 of the closures and so defines a homeomorphism of
the boundaries.

We can ask the converse question: when a given homeomorphism w : ∂D1 → ∂D2

extends to a quasiconformal homeomorphism D1 → D2. It’s convenient to study
this problem first in the partial case, when both domains coincide with the upper
half-plane: D1 = D2 = H.

Suppose that f : R → R is a monotone-increasing homeomorphism of the ex-
tended real line R ⊂ C, satisfying the normalization condition: f(∞) = ∞. We
call it quasisymmetric, if there exists a constant A > 0, such that the following
finite-difference condition

1

A
≤ f(x + t)− f(x)

f(x)− f(x− t)
≤ A (6.4)

is satisfied for all x ∈ R and all t > 0.
This condition can be considered as a variant of the cross ratio condition for

quadruples of points. Recall that the cross ratio of four different points z1, z2, z3, z4

on the complex plane is given by the quantity

ρ = ρ(z1, z2, z3, z4) :=
z4 − z1

z4 − z2

:
z3 − z1

z3 − z2

.

The equality of two cross ratios ρ(z1, z2, z3, z4) = ρ(ζ1, ζ2, ζ3, ζ4) is a necessary and
sufficient condition for the existence of a fractional-linear map of the complex plane,
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transforming the quadruple z1, z2, z3, z4 into the quadruple ζ1, ζ2, ζ3, ζ4. In the case
of quasiconformal maps the cross ratios of quadruples may change but in a controlled
way. The quasisymmetricity condition (6.4) expresses this control in a convenient
form. Namely, we choose for a given homeomorphism f : R → R a quadruple of
points on R in the form ~x := (x− t, x, x + t,∞) with the cross ratio ρ(~x) =: ρ and
associate with it the quantity

M(ρ(~x)) = M(ρ) :=
ρ

1− ρ
.

If, in particular, ρ = 1/2, then M(ρ) = 1. In this case the condition (6.4) means that
the corresponding cross ratio of the quadruple f(~x) := (f(x− t), f(x), f(x + t),∞)
satisfies the inequality

1

A
≤ M(ρ(f(~x)) ≤ A .

The same condition in terms of ρ(f(~x)) can be rewritten as

1

A + 1
≤ ρ(f(~x)) ≤ A

A + 1

or as
1

2
− ε ≤ ρ(f(~x)) ≤ 1

2
+ ε ,

where ε = ε(A) := 1
2
− 1

A+1
.

Theorem 4 (Beurling–Ahlfors (cf. [1, 49])). Suppose that f : R→ R is a monotone-
increasing homeomorphism of the extended real line R onto itself, satisfying the
normalization condition: f(∞) = ∞. Then it can be extended to a quasiconformal
homeomorphism w : H → H if and only if f is quasisymmetric, i.e. if there exists
a constant A > 0, such that

1

A
≤ f(x + t)− f(x)

f(x)− f(x− t)
≤ A

for all x ∈ R, t > 0.

We have already explained above, where the necessity of the condition (6.4)
comes from. The sufficiency of this condition is based on the following remarkable
Beurling–Ahlfors formula, which gives a quasiconformal extension w to H of the
quasisymmetric homeomorphism f :

w(x + iy) =
1

2

∫ 1

0

(f(x + ty) + f(x− ty)) dt + i

∫ 1

0

(f(x + ty)− f(x− ty)) dt

for x + it ∈ H.
We formulate also an analogue of the above Theorem for the case of the cir-

cle S1. We say that an orientation-preserving homeomorphism f : S1 → S1 is
quasisymmetric, if it satisfies for some 0 < ε < 1 the inequality

1

2
(1− ε) ≤ ρ(f(z1), f(z2), f(z3), f(z4)) ≤ 1

2
(1 + ε) (6.5)



6.2. EXISTENCE OF QUASICONFORMAL MAPS 83

for any quadruple z1, z2, z3, z4 ∈ S1 with cross ratio ρ(z1, z2, z3, z4) = 1
2
.

An analogue of the Beurling–Ahlfors theorem for S1 asserts that an orientation-
preserving homeomorphism f : S1 → S1 can be extended to a quasiconformal home-
omorphism w : ∆ → ∆ if and only if it is quasisymmetric. Douady and Earle (cf.
[19]) have found an explicit extension operator E, which assigns to a quasisymmetric
homeomorphism f its extension to a quasiconformal homeomorphism w of ∆ and is
conformally invariant in the sense that E(w ◦f) = w ◦E(f) for any fractional-linear
automorphism of ∆.

The image C of the circle S1 under a quasiconformal homeomorphism of C is
called a quasicircle and the domains D1, D2, complementary to C in C, are called
quasidiscs . All quasicircles have zero area and their Hausdorff dimension is always
less than 2. However, it can be equal to any λ with 1 ≤ λ < 2 (cf. [24]).

Remark 9. There is a natural description of quasicircles in terms of quasiconformal
reflections. Recall that a reflection across a Jordan curve C on C, dividing C \ C
into two domains D1, D2, is an orientation-preserving involutive homeomorphism ϕ
of C, which maps D1 onto D2 (and vice versa) and fixes every point of C. The
quasicircles are characterized by the following

Proposition 13. A Jordan curve C on C is a quasicircle if and only if it admits a
quasiconformal reflection across it.

We omit the proof of this Proposition, referring to the book [49], Theor. 6.1.
There is a simple geometric criterion for the quasicircles, passing through∞ ∈ C.

Namely, a Jordan curve C, passing through ∞, is a quasicircle if and only if there
exists a constant c > 0, for which the following condition is satisfied: for any three
finite points z1, z2, z3 on C, such that z2 lies between z1 and z3, we have an inequality

|z1 − z2|+ |z2 − z3| < c|z1 − z3|

(cf. [1, 49]).

6.2 Existence of quasiconformal maps

A key role in the theory of quasiconformal maps is played by the following existence
theorem for solutions of the Beltrami equation (6.2).

Theorem 5 (Existence theorem). For any measurable function µ in a domain D ⊂
C, such that ‖µ‖∞ = k < 1, there exists a quasiconformal map on D, whose complex
dilatation agrees with µ almost everywhere on D. In other words, there exists a
solution w of the Beltrami equation

wz̄ = µwz ,

satisfied for almost all z ∈ D.

As we have already pointed out earlier (cf. Prop. 11 in Sec. 6.1), any other
solution w̃ of the above Beltrami equation has the form

w̃ = w ◦ f ,
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where f is a conformal map.
The existence theorem implies the following generalization of the Riemann map-

ping theorem: Let D1 and D2 be two domains in C, whose boundaries consist of
more than one point. If µ is a measurable function on D1 with ‖µ‖∞ < 1, then there
exists a quasiconformal map of D1 onto D2, whose complex dilatation agrees with µ
almost everywhere.

Proof. A detailed proof of Theorem 5 is given in [1], here we only point out its main
points. First of all, it’s sufficient to prove the existence theorem for the whole plane,
since any µ ∈ L∞(D) with ‖µ‖∞ < 1 can be extended (by setting it equal to zero
outside D) to the whole plane, preserving the estimate ‖µ‖∞ < 1.

Starting the proof of the existence theorem for the complex plane, we restrict
first to the case, when the complex dilatation µ has a compact support.

We show under this hypothesis that there exists a unique solution of the Beltrami
equation (6.2):

wz̄ = µwz ,

satisfying the conditions:

w(0) = 0 and wz − 1 ∈ Lp ,

where p > 2 is a number, sufficiently close to 2, which will be chosen later.
Introduce the Cauchy–Green operator

Ph(ζ) := − 1

π

∫
h(z)

(
1

z − ζ
− 1

z

)
dx dy ,

where the integral is taken over the complex plane. This operator is correctly defined
for functions h ∈ Lp with p > 2 and determines a continuous function (the function
Ph(ζ) is even Hölder-continuous in ζ with Hölder exponent 1− 2

p
).

The partial derivatives of Ph (in the generalized sense) satisfy the equations

(Ph)z̄ = h , (Ph)z = Th ,

where T is the Calderon–Zygmund integral operator , defined by

Th(ζ) := − 1

π
P.V.

∫
h(z)

1

(z − ζ)2
dx dy .

Here the integral is taken in the principal value sense, i.e.

Th(ζ) := − 1

π
lim
ε→0

∫

|z−ζ|>ε

h(z)
1

(z − ζ)2
dx dy .

The operator Th is correctly defined on functions h of class C2
0 (i.e. C2-smooth with

compact supports). For such h, the function Th(ζ) is C1-smooth. The operator T
is also isometric in L2-sense, i.e.

‖Th‖2 = ‖h‖2 .
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It follows that it can be extended to a bounded linear operator on L2. Moreover,
it can be proved, using the Calderon–Zygmund inequality, that T is bounded on
functions h ∈ Lp with p > 1:

‖Th‖p ≤ Cp‖h‖p ,

and Cp → 1 for p → 2. We choose now p > 2 in such a way that the inequality
‖µ‖∞Cp < 1 is satisfied.

We return to the construction of a solution w of the Beltrami equation (6.2),
satisfying the conditions: w(0) = 0 and wz − 1 ∈ Lp.

We show first that there could be only one such solution. Suppose that w is such
a solution and consider the function

W := w − P (wz̄) .

Then its partial derivative with respect to z̄ is equal to zero, hence W is an entire
function. On the other hand, the condition wz − 1 ∈ Lp implies that the derivative
of W , equal to W ′ = wz−T (wz̄), satisfies the condition W ′−1 ∈ Lp, since wz̄ = µwz

belongs to Lp. This is possible only if W ′ ≡ 1, i.e. W (z) ≡ z + const. The constant
is equal to zero because of the normalization, so W (z) ≡ z and

w = P (wz̄) + z .

By differentiating this equality in z, we get for wz an integral equation

wz = T (wz̄) + 1 = T (µwz) + 1 ,

in which the operator h 7→ T (µh) is contractible, since

‖T ◦ µ‖p ≤ ‖µ‖∞Cp < 1 .

Suppose now that w̃ is another solution of (6.2), satisfying the conditions w(0) = 0
and wz − 1 ∈ Lp. Then w̃ − w satisfies the equation

w̃z − wz = T (µ(w̃z − wz))

which implies, because of the uniqueness of its solution, that w̃z = wz almost every-
where. It follows from the Beltrami equation that also w̃z̄ = wz̄ almost everywhere.
Hence, w̃ − w is a constant, which is equal to zero, due to the normalization.

To prove the existence of a solution w of (6.2), satisfying the conditions w(0) = 0
and wz − 1 ∈ Lp, we use the integral equation

h = T (µh) + Tµ .

Its unique Lp-solution yields a desired solution of the Beltrami equation (6.2), given
by the formula

w = P (µ(h + 1)) + z . (6.6)

Indeed, since µ(h + 1) ∈ Lp (recall that µ has a compact support), the function
P (µ(h + 1)) is correctly defined and continuous. The derivatives of w (in the gener-
alized sense) are equal to

wz̄ = µ(h + 1) , wz = T (µ(h + 1)) + 1 = h + 1
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and wz − 1 = h ∈ Lp. Hence, w, given by (6.6), satisfies the equation (6.2) and
additional conditions w(0) = 0 and wz − 1 ∈ Lp. According to the uniqueness
assertion in Prop. 11, the constructed solution w of (6.2) will be uniquely defined, if
we suppose additionally that it fixes not only the origin 0, but also two other points,
say, z = 1 and z = ∞. We denote such a normalized solution by w[µ].

To end the proof, we should get rid of the compactness of the support of the
complex dilatation µ. This can be done, using the following trick from [1], Sec. VB.

Note that the case, when µ ≡ 0 in a neighborhood of 0, which is opposite to
the case, when µ has a compact support, can be settled down by the reflection with
respect to the unit circle S1. More precisely, given a µ, vanishing in a neighborhood
of 0, we set

µ̃(z) := µ(
1

z
) · z2

z̄2
.

Then µ̃ has a compact support, so we can find a normalized solution w̃ = w[µ̃]
of the Beltrami equation with the complex dilatation µ̃, satisfying the additional
conditions, indicated in the proof above. Then the ”reflected” function

w(z) :=
1

w̃(1
z
)

will coincide with the normalized solution w[µ] of the Beltrami equation (6.2).

In the general case we decompose a given complex dilatation µ into the sum
µ = µ∞ + µ0 of complex dilatations µ∞, having a compact support, and µ0, equal
to zero in a neighborhood of 0. We would like to write w[µ] as the composition
w[µ∞] ◦w[µ0] of the corresponding normalized solutions w[µ∞] and w[µ0]. But this
is not possible, unfortunately, due to the composition formula (6.3) for complex
dilatations. However, taking into account the formula (6.3), we can write w[µ] as
the composition

w[µ] = w[λ] ◦ w[µ0] ,

where the complex dilatation

λ :=

[(
µ− µ0

1− µµ̄0

)(
w[µ0]z
w̄[µ0]z̄

)]
◦ (w[µ0])

−1

still has a compact support. This concludes the proof of the existence theorem.

Due to the uniqueness theorem (Prop. 11 in Sec. 6.1), we have the following

Corollary 1. For any measurable function µ in a domain D with ‖µ‖∞ < 1, there
exists a unique normalized quasiconformal map on D, fixing the points 0, 1,∞, whose
complex dilatation agrees with µ almost everywhere on D.

Using the existence Theor. 5, it’s easy to construct a solution of the Beltrami
equation (6.2) in the upper half-plane H = H+. For that it’s sufficient to extend
the dilatation µ to the lower half-plane H∗ = H− by symmetry, setting

µ̂(z) := µ(z̄) for z ∈ H− . (6.7)
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Then, applying the existence theorem to the Beltrami equation with the dilatation
µ̂, we obtain a unique solution wµ of this equation, fixing the points 0, 1,∞. It
follows from the uniqueness of the solution that wµ satisfies the relation

wµ(z̄) = wµ(z) .

So wµ maps the real axis onto itself and, consequently, preserves the upper half-plane
H+.

Another natural method to solve the Beltrami equation in the upper half-plane
is to extend the given potential µ to the whole plane C by setting

µ̌(z) = 0 for z ∈ H− .

Applying the existence theorem to the Beltrami equation with the dilatation µ̌, we
obtain a solution wµ, which is conformal in the lower half-plane H− and fixes the
points 0, 1,∞.

The first method of constructing the solution wµ of the Beltrami equation in
H+ is called real-analytic, since in this case wµ depends real-analytically on µ.
Respectively, the second method is called complex-analytic, since wµ depends on
µ holomorphically (cf. [56], Ch. 1.2, for a rigorous proof of these assertions).

Both methods are naturally transferred to the Beltrami equation in the unit disc
∆. For that in the first method one should substitute the symmetry transformation
(6.7) by the reflection with respect to the unit circle S1 := ∂∆. In other words, the
dilatation µ, defined in the unit disc ∆ = ∆+, is extended to its exterior ∆− by the
formula

µ̂(
1

z̄
) := µ(z) · z2

z̄2
for z ∈ ∆ .

The existence theorem for the extended dilatation µ̂ yields a quasiconformal home-
omorphism wµ : C → C, which preserves ∆+ and ∆− and fixes the points ±1,−i.
The second method provides a quasiconformal homeomorphism wµ : C→ C, which
is conformal on ∆− and fixes the points ±1,−i.

Remark 10. There is an interesting assertion, due to Mañé, Sad and Sullivan, charac-
terizing quasiconformal homeomorphisms as holomorphic perturbations of the iden-
tity. More precisely, we say that a homeomorphism f : C → C is a holomorphic
perturbation of the identity, if it can be included into a family of homeomorphisms
fλ : C→ C, depending on a parameter λ ∈ ∆, such that for every fixed z0 ∈ C the
function fλ(z0) is holomorphic in λ ∈ ∆, and

f0 = id , fλ0 = f for some λ0 ∈ ∆ .

It is proved in [52] that any member fλ of such a family necessarily extends to
a quasiconformal homeomorphism f̃λ of the extended complex plane C with the
complex dilatation, not exceeding (1 + |λ|)/(1− |λ|).

Conversely, any quasiconformal homeomorphism f of the extended complex
plane C is a holomorphic perturbation of the identity. Indeed, if f = wµ for some
Beltrami differential µ with ‖µ‖∞ = k < 1, then we can include f into a holomorphic
family of quasiconformal homeomorphisms, defined by

fλ := wλµ/k .
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Chapter 7

Loop space ΩG

Let G be a compact Lie group. Its loop space or based loop space is a homogeneous
space of (right conjugacy classes) of the loop group LG = C∞(S1, G) of the form

ΩG = LG/G , (7.1)

where LG = C∞(S1, G) is the group of smooth maps of the circle S1 = {|z| = 1} ⊂ C
into the group G, and G in the denominator is identified with the group of constant
maps S1 → g0 ∈ G.

The loop space ΩG is a homogeneous space of the Frechet Lie group LG with a
natural action of LG on it by left translations. The origin (neutral element) in ΩG
is given by the class o := [1] = [G] of constant maps.

The space ΩG may be identified (as a homogeneous space) with the subgroup
L1G of maps γ ∈ LG such that

γ : 1 ∈ S1 −→ γ(1) = e ∈ G ,

by associating with a class [γ] of a loop γ ∈ LG the map γ(1)−1γ ∈ L1G. Under this
identification ΩG is realized as a closed submanifold (of codimension 1) of the Frechet
manifold LG and so is itself a Frechet manifold. We note that this identification of
ΩG with L1G is not canonical, since G is not a normal subgroup in LG.

7.1 Complex homogeneous representation

One of the main features of the loop space ΩG, which plays a key role in the study of
its Kähler geometry, is the existence of two kinds of its homogeneous representations.
Namely, together with the ”real” representation (7.1) of ΩG as a homogeneous space
of the real Frechet Lie group LG, there exists also a ”complex” representation of
ΩG as a homogeneous space of the complex Frechet Lie group LGC = C∞(S1, GC),
where GC is the complexification of the Lie group G. More precisely, we have the
following representation

ΩG = LGC/L+GC , (7.2)

where L+GC = Hol(∆, GC) is the subgroup of maps from LGC, which extend
smoothly to holomorphic (and smooth up to the boundary) maps of the unit disc
∆ ⊂ C into the group GC.

91
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Let us explain the meaning of the representation (7.2) in the case of the unitary
group G = U(n). In this case GC = GL(n,C), and the equality (7.2) means that
any complex non-degenerate (i.e. taking values in GL(n,C)) matrix function T (z)
on the circle S1 can be represented in the form

T (z) = U(z) ·H+(z) , z = eiθ , (7.3)

where U(z) is a smooth unitary (i.e. with values in U(n)) matrix function, and H+(z)
smoothly extends to a holomorphic non-degenerate matrix function in the disc ∆.
It is a parametric analog of the standard representation of a matrix T ∈ GL(n,C)
as the product of a unitary and upper-triangular matrices. The representation (7.3)
would be unique, if one requires that U ∈ L1U(n). Moreover, the product map
(U,H+) 7→ U ·H+ defines a diffeomorphism ΩU(n)× L+GL(n,C) → LGL(n,C).

In the same sense we shall understand the equality (7.2) in the case of an arbitrary
compact Lie group G. Namely, we have the following

Theorem 6 (Pressley–Segal). The product map

ΩG× L+GC −→ LGC

is a diffeomorphism of Frechet manifolds.

The proof of this Theorem, given in [65], uses the Grassmann realization of the
loop space ΩG and will be given later in Ch. 9, after we introduce the Grassmann
model of ΩG.

Remark 11. There is another approach to the proof of this Theorem, based on the
Beurling–Helson theorem, describing the shift-invariant subspaces in L2-spaces on
the circle (this approach to the proof of Theorem 6 was proposed to us by A.Fedotov).
We explain how to apply this theorem to the proof of Theor. 6 in the scalar case,
i.e. for G = S1.

Denote by H2 the Hardy subspace in L2 = L2(S1), consisting of functions f ,
which extend holomorphically into the unit disc and have boundary values in the
sense of L2 on the circle S1. In terms of Fourier decompositions f ∈ H2 if and only
if

f(z) =
∞∑

n=0

cnzn ,

∞∑
0

|cn|2 := ‖f‖2
H2 < ∞ , z ∈ ∆ .

Consider the shift operator S in L2, which is defined by the formula

S : f(z) 7−→ zf(z)

and maps H2 into itself.

Theorem 7 (Beurling–Helson (cf., e.g. [60])). Any subspace E in L2, invariant under
the shift operator S, has the following form:

1. If SE = E, then there exists a measurable subset d in S1 such that

E = χdL
2 ,

where χd is the characteristic function of the set d.
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2. If SE ⊂ E, but SE 6= E, then there exists a function θ ∈ L2 such that |θ| = 1
almost everywhere on S1 and

E = θH2 .

We return to the relation (7.2). Consider for a function f ∈ LC∗ (here C∗ = (S1)C

denotes the multiplicative group of non-zero complex numbers) the subspace E in
L2 of the form

E = fH2 .

It is invariant under the shift operator S and SE 6= E, if f /∈ L+C∗. So by Beurling–
Helson theorem

fH2 = θH2

for some function θ ∈ L2, such that |θ| = 1 almost everywhere on S1. It implies
that

f = f · 1 = θ · h
for some h ∈ H2, which is already the relation, we are looking for. It only remains
to show that the functions θ and h may be chosen smooth (and smoothly depending
on f), so that θ ∈ ΩS1 and h ∈ L+C∗. It may be done as in [65], Ch. 8 (we also
discuss this point in Ch. 9).

7.2 Symplectic structure

Since ΩG is a homogeneous space of the loop group LG, it’s natural to use geometric
structures, invariant under the action of LG, for the study of its Kähler geometry.
Such structures are uniquely determined by their values at the origin o ∈ ΩG. By
this reason we start from the description of the tangent space To(ΩG).

The tangent space To(ΩG) coincides with the quotient of the tangent space
T1(LG) = Lg = C∞(S1, g) modulo constant maps, i.e.

To(ΩG) = Lg/g =: Ωg .

It is convenient to represent vectors from the complexified tangent space

TCo (ΩG) = LgC/gC =: ΩgC

by their Fourier decompositions

ΩgC 3 ξ(z) =
∑

k 6=0

ξkz
k , z = eiθ ,

where ξk ∈ gC (the term, corresponding to k = 0, is eliminated by the factorization
modulo gC in ΩgC). A vector ξ ∈ TCo (ΩG) belongs to the real tangent space To(ΩG)
if and only if

ξ−k = ξ̄k ,

where the ”bar” means the complex conjugation in gC, for which g = g.
We construct now an invariant (with respect to LG-action) symplectic structure

on ΩG. Define first its value at the origin or, in other words, the restriction of the
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symplectic form to the tangent space To(ΩG) = Ωg, and then transport it to other
points of ΩG with the help of left translations by LG.

To define a symplectic form at the origin, we should fix an invariant inner product
< ·, · > on the Lie algebra g of the group G. Let us recall basic definitions, related
to this notion.

Digression 2 (Invariant inner product). The inner product on the Lie algebra g of
the Lie group G is a positively definite symmetric bilinear form on g. We say that
it is invariant , if it is invariant under the adjoint action Ad of the group G on its
Lie algebra g, defined in the following way. The group G acts on itself by inner
automorphisms of the form

G 3 g : G 3 h −→ ghg−1 ∈ G .

This action fixes the identity e ∈ G and generates an action of the group G on
TeG = g, called the adjoint action and denoted by Ad g : g −→ g. Its differential is
called the adjoint representation of the Lie algebra g and has the form

ad ξ : g −→ g, ad ξ : η 7−→ [ξ, η] .

An inner product < ·, · > on the Lie algebra g is invariant iff

< (Ad g)η, (Ad g)ζ >=< η, ζ > for any η, ζ ∈ g . (7.4)

If the group G is connected, this condition is equivalent to a relation on the Lie
algebra level, obtained from (7.4) by differentiation:

< (ad ξ)η, ζ > + < η, (ad ξ)ζ >= 0

or, equivalently,
< [ξ, η], ζ > + < η, [ξ, ζ] >= 0 .

On any Lie algebra g there exists an invariant symmetric bilinear form, called
the Killing form, defined by

< ξ, η >:= tr(ad ξ ad η) , ξ, η ∈ g .

In particular, for G = GL(n,C) we have g = gl(n,C) and < ξ, η >:= tr(ξ η). The
Killing form is non-degenerate, if the group G is semisimple (e.g. for G = SL(n,C)).
If, moreover, G is compact, then the Killing form is negatively definite. Hence, the
negation of this form defines an invariant inner product on the Lie algebra g of a
compact semisimple Lie group G.

We return to the construction of an LG-invariant symplectic form ω on ΩG. Let
us fix an invariant inner product < ·, · > on the Lie algebra g of the group G and
define the restriction of the form ω to To(ΩG) = Ωg = Lg/g.

Using the inner product < ·, · >, we introduce, first of all, a 2-form ω0 on the
loop algebra Lg, by setting it equal to

ω0(ξ, η) =
1

2π

∫ 2π

0

< ξ(eiθ),
dη(eiθ)

dθ
> dθ (7.5)
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on vectors ξ = ξ(eiθ), η = η(eiθ) from the loop algebra Lg = C∞(S1, g).
This is a skew-symmetric bilinear form on Lg, which is, due to the invariance

of < ·, · >, invariant under the adjoint action of the group G of constant loops on
Lg. It’s evident that ω0(ξ, η) is equal to zero, if at least one of the maps ξ, η is
constant. So the form ω0 can be pushed down to Ωg, and the pushed-down form
is already non-degenerate (to show that it is non-degenerate, consider its value on

ξ(eiθ) = η′(eiθ) := dη(eiθ)
dθ

). Hence, we have constructed a skew-symmetric bilinear
form ω0 on Ωg, which is invariant under the adjoint action of the group G on Ωg.
This form can be extended (with the help of left translations) to an LG-invariant
non-degenerate 2-form ω on ΩG.

It remains to check that the obtained form ω is closed on ΩG. The closedness
condition (cf. Subsec. 1.2.4), due to the invariance of ω, takes on the form

ω([ξ, η], ζ) + ω([η, ζ], ξ) + ω([ζ, ξ], η) = 0 . (7.6)

It is sufficient to check it on vectors ξ, η, ζ ∈ Lg. In this case the equality (7.6)
means that

2π∫

0

{< [ξ, η], ζ ′ > + < [η, ζ], ξ′ > + < [ζ, ξ], η′ >} dθ = 0 . (7.7)

Integrating the first integral by parts, we obtain

2π∫

0

< [ξ, η], ζ ′ > dθ = −
2π∫

0

< [ξ′, η], ζ > dθ −
2π∫

0

< [ξ, η′], ζ > dθ . (7.8)

Due to the invariance of the inner product < ·, · > on g

< [ξ′, η], ζ >=< ξ′, [η, ζ] >=< [η, ζ], ξ′ > ,

and the first term in the right hand side of (7.8) sum to zero together with the
second integral in the formula (7.7). By the same reason

< [ξ, η′], ζ >=< η′, [ζ, ξ] >=< [ζ, ξ], η′ >

and the second term in the right hand side of (7.8) sum to zero together with the
third integral in the formula (7.7). It proves the validity of the equality (7.6), which
implies that dω(ξ, η, ζ) = 0 for all ξ, η, ζ ∈ Lg.

The choice of the formula (7.5) for the form ω0 on Lg looks somewhat ambiguous,
but it may be shown that this form is uniquely determined by the invariant inner
product < ·, · > on g in the case of a semisimple Lie group G. More precisely, we
have the following

Proposition 14 (Pressley–Segal ([65])). If the Lie group G is semisimple, then any
2-form ω0 on Lg, which satisfies the relation (7.6) and is invariant under the adjoint
action of the group G on Lg, is given by the formula (7.5) for some symmetric
invariant bilinear form < ·, · > on g.
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Proof. We note, first of all, that bilinear invariant forms on complex semisimple Lie
algebras are necessarily symmetric. More precisely, the following assertion is true.

Lemma 3. If G is a semisimple Lie group with the Lie algebra g, then any complex-
bilinear G-invariant form on the complexified Lie algebra gC is necessarily symmet-
ric.

In the case of a simple Lie group G the assertion of Lemma follows from the fact
that there exists a unique (up to the proportionality) complex-bilinear G-invariant
form on G (the Schur’s lemma), namely, the Killing form. The case of a semisimple
Lie group G is reduced to the considered case (cf. for details [65]).

We turn now to the proof of the Proposition. The form ω0 on Lg may be
extended to a complex-bilinear form ω0 : LgC × LgC → C. Since any element
ξ ∈ LgC is represented by the Fourier series

ξ =
∑

ξpz
p ,

the form ω0 is uniquely determined by its values on monomials of the type ξpz
p, i.e.

by the forms
ωp,q(ξ, η) := ω0(ξz

p, ηzq) ,

defined for p, q ∈ Z and (ξ, η) ∈ gC × gC. The forms ωp,q are G-invariant and so,
by Lemma, they are symmetric. Moreover, the skew-symmetricity of ω0 implies
that ωp,q = −ωq,p. The condition of closedness of ω0 on Lg, when applied to the
monomials ξ̃ = ξzp, η̃ = ηzq, ζ̃ = ζzr, has the form

ω0([ξ̃, η̃], ζ̃) + ω0([η̃, ζ̃], ξ̃) + ω0([ζ̃ , ξ̃], η̃) = 0 .

This equality transforms into the following relation for the forms ωp,q:

ωp+q,r([ξ, η], ζ) + ωq+r,p([η, ζ], ξ) + ωr+p,q([ζ, ξ], η) = 0 . (7.9)

From the symmetricity and G-invariance of the forms ωp,q we obtain

ωq+r,p([η, ζ], ξ) = ωq+r,p(ξ, [η, ζ]) = ωq+r,p([ξ, η], ζ)

and, analogously,

ωr+p,q([ζ, ξ], η) = ωr+p,q(η, [ζ, ξ]) = ωr+p,q([ξ, η], ζ) .

Hence, the equality (7.9) may be rewritten in the form

ωp+q,r([ξ, η], ζ) + ωq+r,p([ξ, η], ζ) + ωr+p,q([ξ, η], ζ) = 0,

equivalent in the case of a semisimple Lie algebra to the relation

ωp+q,r + ωq+r,p + ωr+p,q = 0 . (7.10)

This relation for q = r = 0 implies that ωp,0 = 0 for all p. Setting r = −p − q in
(7.10), we get

ωp+q,−p−q = ωp,−p + ωq,−q ,
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whence ωp,−p = pω1,−1. Setting r = n− p− q in (7.10), we obtain

ωn−p−q,p+q = ωn−p,p + ωn−q,q ,

implying ωn−p,p = pωn−1,1. Hence,

ωn−1,1 =
ω0,n

n
= 0

and so ωp,q = 0, if p + q 6= 0. Thus, the form ω0 on vectors ξ =
∑

ξpz
p, η =

∑
ηqz

q

takes the value

ω0(ξ, η) =
∑

ωp,q(ξp, ηq) =
∑

p

ωp,−p(ξp, η−p) =
∑

p

pω1,−1(ξp, η−p) .

On the other hand

i

2π

2π∫

0

ω1,−1(ξ(θ), η
′(θ)) dθ = −

∑
p,q

1

2π

2π∫

0

ω1,−1(ξpe
ipθ, qηqe

iqθ) dθ =

=
∑

p

1

2π

2π∫

0

pω1,−1(ξp, η−p) dθ =
∑

p

pω1,−1(ξp, η−p) . (7.11)

So

ω0(ξ, η) =
1

2π

2π∫

0

〈ξ(θ), η′(θ)〉 dθ

with the invariant inner product on the Lie algebra g, given by the formula

< ξ, η >:= ω1,−1(ξ, η) , (7.12)

which concludes the proof of the Proposition.

Remark 12. There is also a physical motivation behind the formula (7.5) for the
symplectic form ω. It comes from the relation with the bosonic open string theory
in the flat background space-time (cf. [14]). Mathematically, we consider the space
ΩRd of based loops S1 → Rd, taking values in the (non-compact) group Rd of
translations of the d-dimensional Euclidean vector space. The loop space ΩRd may
be interpreted as the phase space of the bosonic open string theory. More precisely,
the configuration space of this theory consists of the smooth maps q : [0, π] → Rd

with all derivatives, vanishing at boundary points. The corresponding phase space
consists then of pairs of maps (p, q) of the same type. The symplectic form on this
phase space is given by the string analogue of the standard formula

ω(δp, δq) =
2

π

∫ π

0

δp(σ) ∧ δq(σ)dσ , (7.13)

where δp, δq are smooth maps [0, π] → Rd of the same type, as before, interpreted
as tangent vectors to the phase space. A natural map, associating with a pair (p, q)
the map x : [−π, π] → Rd, given by the formula

x(σ) =

{
p(σ) + q′(σ) , for 0 ≤ σ ≤ π ;

p(−σ) + q′(−σ) , for −π ≤ σ ≤ 0 ,
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identifies the introduced phase space with the space ΩRd. It also converts the stan-
dard symplectic form (7.13) on the phase space of string theory into the symplectic
form on ΩRd, given by the formula, analogous to (7.5) (cf. [14]).

We have assigned to any invariant inner product on the Lie algebra g an invariant
symplectic structure ω on the loop space ΩG, determined by the formula (7.5). On
the other hand, any invariant symplectic structure on the loop space ΩG uniquely
determines an invariant inner product on g, given by the formula (7.12). As we have
pointed out in Sec. 4.2, invariant bilinear forms on g are parameterized by elements
of the cohomology H3(g).

Remark 13. We note in passing that the condition of invariance of the form ω with
respect to the adjoint action of the group G on the loop algebra Lg is not essential
and plays the role of normalization. Indeed, if ω0 is an arbitrary 2-form on Lg,
satisfying the condition (7.6), then the form

g · ω0(ξ, η) := ω0((Ad g)ξ, (Ad g)η) for g ∈ G

belongs to the same cohomology class, as ω0 (it follows from the cocycle identity
(7.6)). So the form ∫

G

g · ω0 dg ,

obtained from ω0 by averaging over the group G, belongs to the same cohomology
class, as ω0, but is already invariant under the adjoint action of constant loops.

7.3 Complex structure

A complex structure on the loop space ΩG is induced from the complex representa-
tion

ΩG = LGC/L+GC , (7.14)

in which LGC is a complex Lie Frechet group, and L+GC is its closed complex
subgroup.

This complex structure, denoted by J0 in the sequel, is LG-invariant, and its
restriction to the tangent space TCo (ΩG) = ΩgC at the origin may be given by an
explicit formula. Namely, if ξ =

∑
k 6=0

ξkz
k ∈ ΩgC, then

J0ξ = −i
∑

k>0

ξkz
k + i

∑

k<0

ξkz
k . (7.15)

The corresponding tangent space T 1,0
o (ΩG) of (1, 0)-vectors consists of vectors of the

form
∑

k<0 ξkz
k, while the space T 0,1

o (ΩG) of (0, 1)-vectors contains vectors of the
form

∑
k>0 ξkz

k.
It’s clear from the description of (1, 0)-vectors on ΩG that the complex struc-

ture J0 is formally integrable in the sense of Subsec. 1.2.4, i.e. the bracket of any
two (1, 0)-vector fields on ΩG is again a (1, 0)-vector field. But we have already
pointed out in Subsec. 1.2.4 that the formal integrability of a complex structure in
the infinite-dimensional case does not imply the existence of an atlas of coordinate
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neighborhoods and local complex coordinates on a given manifold. In order to con-
struct local complex coordinates on ΩG, one should use the complex representation
(7.14) and the Birkhoff factorization theorem. We formulate next a particular case
of this theorem, sufficient for our applications.

Denote by L−GC a closed subgroup of LGC, consisting of maps γ ∈ LGC, which
extend to holomorphic and smooth up to the circle S1 maps of the disc ∆− (equal
to the complement of the closed unit disc ∆ on the Riemann sphere C). We also
consider a closed subgroup L−1 GC of L−GC, consisting of maps γ ∈ L−GC, taking
the value e ∈ GC at infinity ∞ ∈ ∆−.

Theorem 8 (Birkhoff theorem ([8, 9], cf. also [65], Ch.8)). The product map

L+GC × L−1 GC −→ LGC (7.16)

is a diffeomorphism onto a dense open subset in the identity component of LGC.

The Birkhoff theorem implies that for all γ ∈ LGC in a neighborhood of the
identity 1 ∈ LGC we have a representation

γ = γ+ · γ− ,

where γ+ ∈ L+GC, γ− ∈ L−1 GC. The factors γ± are uniquely defined by γ and their
product yields a local diffeomorphism (7.16). In particular, it implies that the loop
space ΩG is locally diffeomorphic to the complex Lie Frechet group L−1 GC.

7.4 Kähler structure

We show now that the loop space ΩG is a Kähler Frechet manifold. For that,
according to Def. 17 from Subsec. 1.2.5, we need to demonstrate that the introduced
complex and symplectic structures on ΩG are compatible.

Since both structures are LG-invariant, it’s sufficient to check their compati-
bility only at the origin o ∈ ΩG. Consider vectors ξ, η ∈ To(ΩG) with Fourier
decompositions

ξ =
∑

k 6=0

ξkz
k, η =

∑

l 6=0

ηlz
l .

Then

ωo(ξ, η) =
1

2π

2π∫

0

〈
ξ(eiθ), η′(eiθ)

〉
dθ = − i

2π

2π∫

0

∑

k,l 6=0

〈
ξke

ikθ, lηle
ilθ

〉
dθ =

= − i

2π

∑

k 6=0

2π∫

0

〈ξk, kη−k〉 dθ = −i
∑

k 6=0

k 〈ξk, η−k〉 , (7.17)

where the inner product 〈·, ·〉 is extended to a complex-bilinear positive definite form
on gC. (Recall that the form 〈·, ·〉 on gC is positive definite, if

〈
ξ, ξ̄

〉
> 0 for any

ξ ∈ gC\{0}). The above relation implies the first property in Def. 17. To prove the
second property in this definition, consider the form

g0
o(ξ, η) := ω0(ξ, J

0η)
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on Ωg and show that it is positively definite. Note that for η = ξ this form can be
given by the formula

g0
o(ξ, ξ) = −i

∑

k>0

k 〈ξk, iξ−k〉 − i
∑

k<0

k 〈ξk,−iξ−k〉 = 2
∑

k>0

k 〈ξk, ξ−k〉 .

Since ξ−k = ξk and the inner product 〈·, ·〉 is positively definite on gC, the form
g0

o(ξ, ξ) is also positively definite. Extending it to a LG-invariant positively definite
form on ΩG, we get an invariant Kähler metric g0 on ΩG. So, we have proved that
the loop space ΩG is a Kähler Frechet manifold with the symplectic structure ω and
complex structure J0.

7.5 Loop space ΩG as a universal flag manifold of

a group G

We have pointed out in the beginning of Sec. 7.1 that one of the characteristic
properties of the Kähler Frechet manifold ΩG is the existence of two different rep-
resentations of ΩG:

ΩG = LG/G = LGC/L+GC

as a homogeneous space of the real Lie Frechet group LG and its complexification
LGC.

We have seen in Ch. 3 that finite-dimensional Kähler manifolds, having a similar
property, i.e. being homogeneous spaces of real compact and complex Lie groups
simultaneously, are called the flag manifolds. So ΩG may be considered as an
infinite-dimensional analogue of flag manifolds. Moreover, we show in this Section
that in some sense it may be considered as a universal flag manifold of the group
G, since all flag manifolds of G are canonically embedded into ΩG as complex
submanifolds.

The real homogeneous representation of a flag manifold

F = G/L

of the group G may be interpreted otherwise as a representation of F as an orbit
of the adjoint action Ad of G on its Lie algebra g (or as an orbit of the coadjoint
action Ad∗ of G on the dual space g∗). Namely, the orbit of an element ξ ∈ g with
respect to the adjoint action has the form

G/G(ξ) ,

where the isotropy subgroup G(ξ) at ξ coincides with the centralizer of ξ, i.e. with

G(ξ) = {g ∈ G : Ad g(ξ) = ξ} .

All such orbits are flag manifolds and, conversely, any flag manifold of a compact
semisimple Lie group may be represented in this form.

Consider now a natural action of S1 on the loop space ΩG, identified with the
subgroup L1G in LG, given by the rotation of loops

λ · γ(z) = γ(λ)−1γ(λz) , λ ∈ S1 ,
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where γ ∈ ΩG. A loop γ is a fixed point of this S1-action if and only if

γ(λz) = γ(λ)γ(z) for allλ, z ∈ S1 .

In other words, γ should be a group homomorphism S1 → G. But if γ : S1 → G
is a homomorphism, so are all the loops, conjugate to γ, i.e. the loops of the form
γg = gγg−1 for g ∈ G. The set of all such loops (the conjugacy class of the loop γ)
is parameterized by points of the homogeneous space

Fγ = G/G(γ) ,

where G(γ) is the centralizer of the one-parameter subgroup γ(S1) in G. The ho-
mogeneous space Fγ can be identified, as we have pointed out above, with a flag
manifold of the group G.

So, the set of fixed points of the S1-action on ΩG is the disjoint union

Fix(S1) =
⋃
γ

Fγ

of flag manifolds Fγ, where γ runs over the set of conjugacy classes of homomor-
phisms S1 → G. The flag manifolds Fγ are immersed into ΩG as finite-dimensional
Kähler submanifolds.

Remark 14. We can say much more about the constructed embedding of flag mani-
folds of the group G into the loop space ΩG. Namely, denote by

π : ΩG −→ G , γ 7−→ γ(−1) ,

the map, associating with a loop γ its value at the point −1 ∈ S1. This map is an
analogue of the canonical bundle π : F → N , considered in Sec. 3.1, Rem. 5.

According to Uhlenbeck [73], the embedding of flag manifolds F of the group
G into ΩG respects canonical bundles. In other words, not only the loop space
ΩG may be considered as a universal flag manifold of the group G, but also the
above canonical bundle π : ΩG → G may be considered as a universal canonical flag
bundle.

More precisely, there exists the following commutative diagram

F
Γ−−−→ ΩG

π

y
yπ

N(F )
γ−−−→ G

where π : F → N(F ) is the canonical bundle over the symmetric space N(F ), con-
structed in Sec. 3.1, and the map Γ is the embedding of a flag manifold into ΩG,
constructed above.

The horizontal maps in the this diagram admit a simple description in terms of
the canonical element, introduced in Sec. 3.1, Rem. 5. Namely, suppose that the
group G has a trivial center, and consider the flag manifold F = G/L = GC/P with
the canonical element ξ. The triviality of the center of G implies that exp(2πξ) = e ∈
G. So we can define a map Γ: F → ΩG by setting it equal to Γ(o) := a map {eit 7→
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exp(tξ)} at the neutral element o ∈ F , and transporting it to other points of G/L
with the help of left translations by G. On the other hand, there is a natural map
γ : N(F ) → G, assigning to a point x of the inner symmetric space N(F ), associated
with F , the element γ(x) of the group G, generating the involution at the point x.
Both maps Γ and γ are totally geodesic immersions.

Remark 15. The fixed points of the S1-action on ΩG can be also interpreted as
critical points of some Morse function on ΩG (cf. [65]). Namely, define the energy
E : ΩG → R+ of a loop γ by the formula

E(γ) =
1

4π

∫ 2π

0

< γ(eiθ)−1γ′(eiθ), γ(eiθ)−1γ′(eiθ) > dθ .

It may be shown that the Hamiltonian vector field on ΩG, corresponding to the
function E, generates the above S1-action on ΩG by rotation of loops. So the
critical points of E correspond to the fixed points of the S1-action on ΩG, i.e. to
the homomorphisms γ : S1 → G.

7.6 Loop space ΩTG

According to the Borel–Weil theorem (cf. Sec. 3.3), the full flag manifold F = G/T
of the group G, where T is a maximal torus in G, plays a special role in the theory
of irreducible representations of G. A natural analogue of the full flag manifold in
the case of the loop group LG is given by the homogeneous space

ΩT G = LG/T .

We list some of the properties of this Kähler Frechet manifold.
In order to define a symplectic structure on ΩT G, we note, first of all, that

the loop group LG is diffeomorphic (as a Frechet manifold) to the direct product
G×ΩG. If we identify ΩG with the subgroup L1G in LG, then this diffeomorphism
will assign to a loop γ ∈ LG the element (γ(1), γ(1)−1γ) ∈ G × ΩG. From the
group-theoretical point of view, the loop group LG is the semidirect product of G
and L1G. It follows that, as a Frechet manifold, ΩT G is diffeomorphic to

ΩT G = LG/T = G/T × ΩG .

A symplectic structure on ΩT G is generated by the symplectic structure on ΩG,
introduced in Sec. 7.2, and a canonical symplectic structure on the full flag manifold
G/T . Recall that, as we have remarked in the previous Sec. 7.5, the flag manifolds
of the group G may be considered as orbits of the coadjoint representation of G
on the dual space g∗ to the Lie algebra g. Such orbits have a canonical symplectic
structure, given by the Kirillov form (cf. Subsec. 3.2.3).

A complex structure on ΩT G is induced, as in the case of the loop space ΩG, from
the ”complex” representation of ΩT G as a homogeneous space of the complexified
loop group LGC, which has the form

ΩT G = LGC/ B+GC , (7.18)
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where B+GC is a subgroup in L+GC = Hol(∆, GC), consisting of the maps γ ∈
Map(S1, GC), which extend to holomorphic and smooth up to the circle S1 maps
γ : ∆ → GC of the unit disc, and satisfy the additional condition: γ(0) ∈ B+, where
B+ is the standard Borel subgroup in G. The proof of this assertion is similar to
the proof of the complex representation for the loop space ΩG (cf. [65], Ch.8).

The introduced complex structure on ΩT G is compatible with the symplectic
structure and so defines on ΩT G the structure of a Kähler Frechet manifold.

Bibliographic comments

A key reference for this Chapter is the Pressley–Segal book [65]. In particular,
the proof of the factorization theorem 6 is given in Ch.8 of [65]. Another method
of proving this theorem, based on the Beurling–Helson characterization of shift-
invariant subspaces in L2, is due to A.Fedotov (unpublished). We present its idea in
the scalar case, though the proof is valid for general matrix functions on the circle.
The results in Secs. 7.2,7.3,7.4,7.6 may be found in [65]. An interpretation of the
loop space ΩG as a universal flag manifold may be found in [5].
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Chapter 8

Central extensions of loop
algebras and loop groups

We start this Chapter by recalling a general method of constructing central exten-
sions of Lie groups, acting on a smooth manifold. We then apply this method for
the construction of central extensions of loop groups. In the last Section of this
Chapter we describe the coadjoint action of the loop groups.

8.1 Central extensions and S1-bundles

Suppose that a Lie group G acts by smooth transformations on a smooth simply
connected manifold X. We assume that there exists a closed 2-form ω on X, which is
invariant under the action of G, such that ω/2π is an integral form. In other words,
the cohomology class of ω/2π in H2(X,R) is integral, i.e. contained in H2(X,Z)
(in other words, the integral of ω/2π over any 2-dimensional homology cycle is an
integer). We shall construct a natural S1-bundle over X, associated with these data.

Proposition 15. Suppose that a Lie group G acts by smooth transformations on a
smooth simply connected manifold X. Assume that ω is a closed G-invariant 2-form
on X, such that ω/2π is an integral form. Then there exists a principal S1-bundle
L → X with a connection ∇, having the curvature, equal to ω.

The S1-bundle, which existence is asserted in the Proposition, is used extensively
in algebraic geometry and geometric quantization. In geometric quantization the line
bundle, associated with the S1-bundle L → X, is called the prequantization bundle.

Proof. In terms of Čech cohomology, any cohomology class in H2(X,Z) is given by
an integer-valued 2-cocycle {νabc} with respect to an acyclic open covering {Ua} of
X:

Uabc = Ua ∩ Ub ∩ Uc 7−→ νabc ∈ Z .

(We shall assume from now on that all open sets Ua in this covering are contractible
and their intersections are connected to guarantee the acyclicity of the covering
{Ua}. This can be always achieved by the refinement of the covering.)

In terms of de Rham cohomology, the integrality condition of the form ω/2π
means that there exists an integral closed 2-form ν on X such that

ω = 2πν + dβ ,

105
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where β is an arbitrary 1-form on X. The integral form ν in terms of Čech coho-
mology is given by an integer-valued cocycle {νabc}. Given such a cocycle, one can
recover the form ν by choosing a smooth partition of unity {λa}, subordinate to the
covering {Ua}, and setting

ν :=
∑

a,b,c

νabcλa dλb ∧ dλc .

We define the required S1-bundle L → X by explicit transition functions

ϕab = exp{2πi
∑

c

νabcλc}

with respect to the covering {Ua}. It’s easy to check that {ϕab} is a cocycle, i.e. the
following relation is satisfied on every triple intersection Uabc: ϕabϕbcϕca = 1 .

Consider a connection on L, given by the collection of local 1-forms

αa := 2π
∑

b,c

νabcλb dλc ,

satisfying on double intersections Uab the relation

αb = αa + iϕ−1
ab dϕab .

The curvature of this connection is equal to
∑

a

λa dαa = 2πν .

So, by adding β to all forms αa, we obtain a connection ∇ on L, given by the local
1-forms αa + dβ and having the curvature, equal to 2πν + dβ = ω.

Remark 16. In terms of the sheaf cohomology, the above proof can be rephrased
as follows. Denote by E the sheaf of C∞-smooth functions on X, and by E∗ the
(multiplicative) sheaf of non-vanishing functions in E . We have the following exact
sequence of sheafs over X

0 −−−→ Z −−−→ E exp−−−→ E∗ −−−→ 0 ,

where exp is the map f 7−→ e2πif . The corresponding long exact sequence of sheaf
cohomology have the form

. . . −−−→ H1(X, E) −−−→ H1(X, E∗) c1−−−→ H2(X,Z) −−−→ H2(X, E) −−−→ . . . .

The cohomology H1(X, E∗) can be identified with the set of isomorphism classes of
complex line bundles on X, and the map c1 : H1(X, E∗) −→ H2(X,Z) assigns to
a complex line bundle E its 1st Chern class c1(E). Since the sheaf E is fine, the
cohomologies on the extreme left and extreme right in the above long exact sequence
vanish, i.e.

H1(X, E) = H2(X, E) = 0 ,

and it follows that c1 : H1(X, E∗) −→ H2(X,Z) is an isomorphism. Recall that the
cohomology class [ω/2π] is integral, i.e. [ω/2π] ∈ H2(X,Z). Hence, there exists a
complex line bundle L → X with c1(L) = [ω/2π].
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We prove next that the S1-bundle L → X, constructed in the above Proposition,
is almost uniquely defined.

Proposition 16. If L and L′ are two S1-bundles over X with connections ∇ and ∇′,
having the same curvature ω, then there exists a fibrewise isomorphism ψ : L → L′

such that

ψ∗∇′ = ∇ .

Such an isomorphism ψ is determined uniquely up to multiplication by an element
of S1.

Proof. Suppose that the bundle L is given by the transition functions {ϕab} with
respect to the covering {Ua} of the manifold X, and the bundle L′ is given by the
transition functions {ϕ′ab} with respect to the same covering. If ψ : L → L′ is the
required isomorphism, then it should be given locally by functions ψa : Ua → S1,
such that

ψbϕab = ϕ′abψa (8.1)

on double intersections Uab = Ua ∩ Ub. The condition ψ∗∇′ = ∇ in terms of local
representatives ∇a, ∇′

a of connections ∇, ∇′ means that

∇′
a = ∇a + iψ−1

a dψa . (8.2)

We shall construct now the isomorphism ψ, having the required properties. Since
d(∇′

a −∇a) ≡ 0 on Ua, there exist functions φa : Ua → R such that

dφa = ∇′
a −∇a .

The local representatives of connections ∇, ∇′ satisfy on double intersections Uab

the relations

∇b −∇a = iϕ−1
ab dϕab , ∇′

b −∇′
a = iϕ′−1

ab dϕ′ab , (8.3)

which imply that

dϕb − dϕa = id ln ϕ′ab − id ln ϕab ⇐⇒ −id(ϕb − ϕa) = d ln
ϕ′ab

ϕ′ab

.

Hence

d(e−iϕbϕab) = d(ϕ′abe
−iϕa) ,

whence

e−iϕbϕab = ϕ′abe
−iϕaeiµab on Uab ,

where µab is a real number.
The numbers {µab} define a Čech 1-cocycle on X, hence, due to the simply

connectedness of X, we can find real numbers {ma}, such that µab = mb − ma.
Then the functions

ψa = e−i(ϕa+ma)

satisfy the properties (8.1), (8.2), and so determine the required isomorphism ψ :
L → L′.
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We analyze next the uniqueness of the constructed isomorphism. Suppose that
there exists another isomorphism ψ′ of the same type, given by local representatives
{ψ′a} with respect to the covering {Ua}. The relations (8.1) imply that

ψbϕab = ϕ′abψa , ψ′bϕab = ϕ′abψ
′
a ,

whence
ψb(ψ

′
b)
−1 = ψa(ψ

′
a)
−1 =: h

for all a, b, i.e. the local representatives {ψa} and {ψ′a} differ by a global function
h : X → S1. Then the relations (8.2) imply that

dϕa = ∇′
a −∇a = iψ−1

a dψa , (8.4)

dϕa = iψ−1
a h−1 · h dψa + iψ−1

a h−1 dhψa , (8.5)

whence dh = 0, i.e. h = const.

Using these Propositions, we can construct for a group G, acting by smooth
transformations on X, its central extension G̃, acting on the bundle L → X. We
assume again that we are given with a closed G-invariant 2-form ω on X, such that
ω/2π is an integral form. Then, by Prop. 15, we can construct the S1-bundle L → X
with the connection ∇, having the curvature, equal to ω.

Consider for a given g ∈ G the pull-back of L under the action of g and provide
it with the connection ∇g = g∗∇, having the curvature g∗ω = ω (recall that ω is
invariant under G). According to Prop. 16, there exists an isomorphism ψ : L → g∗L
such that

ψ∗∇g = ψ∗g∗∇ = ∇ .

We define G̃ as a group, consisting of all pairs (g, ψ), where g ∈ G and ψ is an
isomorphism L → g∗L, for which ψ∗∇g = ψ∗g∗∇ = ∇. Or, equivalently, we can
define G̃ as a group, consisting of pairs (g, ϕ), where g ∈ G and ϕ : L → L is a
fibrewise isomorphism, covering the action of g on X, and having the property that
ϕ∗∇ = ∇. Note that the fibrewise map ϕ : L → L of the above type, covering the
action of g on X, is uniquely determined by the element g and the image ϕ(λ0) of
an arbitrary fixed point λ0 ∈ Lx0 , x0 ∈ X.

8.2 Central extensions of loop algebras and groups

Consider first central extensions of the loop algebra Lg. As we have pointed out in
Sec. 4.1, any such extension is determined by a cocycle ω ∈ H2(Lg,R), or, in other
words, by a closed bilinear skew-symmetric form ω : Lg×Lg → R. We can assume,
according to Rem. 11 at the end of Sec. 7.2, that the form ω is invariant under the
adjoint action of the group G. Any such form on Lg, according to Prop. 14 from
Sec. 7.2, in the case of a semisimple Lie group G is given by the formula

ω(ξ, η) = ω0(ξ, η) =
1

2π

∫ 2π

0

< ξ(eiθ), η′(eiθ) > dθ , ξ, η ∈ Lg ,

where < ·, · > is an invariant inner product on the Lie algebra g. This yields a
description of all central extensions L̃g (in the case of a semisimple group G) in
terms of the cohomology H3(g,R) (cf. Ex. 28 in Sec. 4.2).
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However, not every central extension of the loop algebra Lg generates a central
extension of the loop group LG, even in the case of a simply connected group G.
For that the form ω should be integral in the sense of the definition, given in the
beginning of Sec. 8.1. More precisely, the following theorem is true.

Theorem 9 (Pressley–Segal [65], Theor. 4.4.1). If the Lie group G is simply con-

nected, then a central extension L̃g of the loop algebra Lg is associated with some
central extension L̃G of the loop group LG if and only if the corresponding form
ω/2π on LG (where ω is the cocycle of the central extension L̃g) is an integral form.

In this case the central extension L̃G is uniquely determined by the cocycle ω.

Proof. The sufficiency of the integrality condition of the form ω/2π follows from the
argument in the previous Section (cf. Prop. 15). Namely, we apply the construction
of Prop. 15 to the case, when the group G is the loop group LG and the manifold
X coincides also with LG. According to Sec. 8.1, we can construct for an integral
form ω/2π a complex line bundle L over LG with a connection ∇, having the

curvature, equal to ω. Then we define the central extension L̃G as the group of
bundle automorphisms of L, covering left translations of LG by elements of LG.

We prove the necessity of the integrality condition in the general setting of
Sec. 8.1. If a central extension

1 → S1 → G̃ → G → 1

of a Lie group G is generated by a cocycle ω on the Lie algebra G, then the form
ω/2π represents the 1st Chern class of a complex line bundle over X, associated
with S1-bundle G̃ → G. Hence, it must be integral.

It remains to prove the uniqueness of the central extension G̃ of G, corresponding
to the cocycle ω. We note first that a central extension G̃ → G is trivial, if the
corresponding cocycle ω is trivial. Indeed, in this case the principal S1-bundle
G̃ → G has a flat connection. So we can define a splitting homomorphism σ : G → G̃
by associating with an element g ∈ G the end-point of a horizontal lift of any path
in G, connecting e ∈ G with g (recall that G is simply connected). To prove the
uniqueness in the general case, suppose that there are two central extensions G̃ and
G̃ ′ of G, corresponding to the same cocycle ω. Then from the two principal S1-
bundles p : G̃ → G and p′ : G̃ ′ → G we can form a ”difference” bundle p′′ : G̃ ′′ → G,
which is a central extension of G, corresponding to the trivial cocycle. To define
G̃ ′′, we first pull back G̃ ′ to G̃ by p to get a subbundle p∗(G̃ ′) of the fibre product
G̃ ×G G̃ ′. The circle S1 is mapped into G̃ ×G G̃ ′ by the homomorphism u 7→ (u, u−1).
We define G̃ ′′ as the quotient of p∗(G̃ ′) by the image of this homomorphism. Now,
as we have proved, the difference extension G̃ ′′ should be trivial, which implies that
both central extensions G̃ and G̃ ′ are equivalent.

Remark 17. Let us discuss in more detail the integrality condition of the form ω/2π,
required in the above Theorem. We have pointed out earlier in Sec. 7.2 that the
form ω is uniquely determined by the choice of an invariant inner product on the
semisimple Lie algebra g. If this algebra g is simple, then all invariant inner products
on it are proportional to each other and among those, satisfying the integrality
condition, there exists a minimal one. It is called the basic inner product and the
corresponding central extension is called the basic central extension of the loop group
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LG. The Killing form on g satisfies the integrality condition and so is an integer
multiple of the basic inner product. (The corresponding integer proportionality
coefficient in the case of a simply laced group G coincides with the Coxeter number
of G.)

The integrality condition can be also formulated in terms of co-roots α∨ of the
algebra g. Namely, the form ω/2π is integral if and only if the inner product (α∨, α∨)
is an even number for all co-roots α∨ of the algebra g (cf. [65], Sec. 4.4).

Remark 18 ([65], Sec. 4.11). At the end of Sec. 4.2 we have remarked that in the
case of the loop algebra Lg there is an isomorphism

Hq(Lg) = Hq(Lg,R) −→ Hq
top(LG,R) .

This isomorphism can be used for the computation of the cohomologies of the
loop algebra Lg. Namely, since LG is diffeomorphic to ΩG × G, the cohomolo-
gies H∗

top(LG,R) coincide with the tensor product of cohomologies H∗
top(ΩG,R) ⊗

H∗
top(G,R).

But in the case of a compact Lie group G, as we have pointed out in Sec. 4.2,
we have

H∗
top(G,R) ∼= H∗(g) .

The cohomologies H∗(g) form an exterior algebra with r generators of odd-dimensio-
nal degrees, where r is the rank of G, and the generators correspond to generators of
the algebra of invariant polynomials on g. By this correspondence we associate with
an invariant polynomial of degree k a symmetric k-linear function P : g×· · ·×g → R,
and use this function to define a skew-symmetric form S of degree 2k − 1, having
the form

S(ξ1, . . . , ξ2k−1) =

=
∑

σ

(−1)sgn(σ)P ([ξσ(1), ξσ(2)], [ξσ(3), ξσ(4)], . . . , [ξσ(2k−3), ξσ(2k−2)], ξσ(2k−1)) , (8.6)

where the summation in the formula (8.6) is taken over all possible permutations
σ of the set {1, 2, . . . , 2k − 1}. If, in particular, G = U(n), then one can choose
for generators of the algebra of invariant polynomials the functions P1, . . . , Pn with
Pj(A) = tr(Aj).

The de Rham cohomologies H∗
top(ΩG,R) (in the case of a simply connected

group G) may be computed in terms of the cohomologies H∗
top(G,R). Namely,

the cohomologies H∗
top(ΩG,R) form an algebra of polynomials of even-dimensional

classes, obtained from generators of the algebra H∗
top(G,R) with the help of the

transgression map. More precisely, consider the evaluation map

S1 × ΩG −→ G , (θ, γ) 7−→ γ(θ) ∈ G .

The differential forms on G, which are the generators of the algebra H∗
top(G,R),

may be first pulled up to S1 × ΩG by the evaluation map, and then integrated
over S1. The obtained even-dimensional classes generate the algebra H∗

top(ΩG,R).
More precisely, the image of the (2k − 1)-from S from the formula (8.6) under the
described transgression map coincides with a (2k − 2)-form Σ on ΩG, which value
at a point γ ∈ ΩG on vectors ξ1, . . . , ξ2k−2 ∈ Ωg is equal to

Σγ(ξ1, . . . , ξ2k−2) =
1

2π

∫ 2π

0

S(ξ1(θ), . . . , ξ2k−2(θ), γ(θ)−1γ′(θ)) dθ .
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8.3 Coadjoint representation of loop groups

To describe the coadjoint representation of the loop group LG of a compact Lie group
G, we fix an invariant inner product < ·, · > on the Lie algebra g. It generates an
inner product on the loop algebra Lg by the formula

< ξ, η >:=
1

2π

∫ 2π

0

< ξ(θ), η(θ) > dθ , ξ, η ∈ Lg .

The adjoint action of the loop algebra Lg on the central extension L̃g of Lg, deter-
mined by a cocycle ω(ξ, η), is given by the formula

η · (ξ, s) := ([η, ξ], ω(η, ξ)) ,

where η ∈ Lg, (ξ, s) ∈ L̃g = Lg ⊕ R. It is generated by the adjoint action of the

group LG on L̃g, defined by the formula

γ · (ξ, s) = (γ · ξ, s− < γ−1γ′, ξ >) ,

where γ ∈ LG, (ξ, s) ∈ L̃g and γ · ξ denotes the (pointwise) adjoint action of the
loop group LG on its Lie algebra Lg.

Consider the coadjoint action of the loop group LG on the dual space (L̃g)∗. We
note, first of all, that the dual space of the Frechet space Lg = C∞(S1, g) coincides
with the space

(Lg)∗ = D′(S1, g∗) = D′(S1)⊗ g∗ ,

i.e. with the space of distributions on S1 with values in g∗. Using the invariant
inner product on the Lie algebra g, we can identify this space with the space of
distributions on S1 with values in the Lie algebra g. Under this identification, the
”smooth” part of (Lg)∗, consisting of regular distributions in (Lg)∗, corresponds to
the space Lg∗ = C∞(S1, g∗) or the space Lg = C∞(S1, g).

We describe first the coadjoint action of the loop group LG on the smooth part
of (L̃g)∗ = (Lg)∗ ⊕ R, which coincides with Lg∗ ⊕ R ∼= Lg ⊕ R. It is given by the
formula

γ · (ϕ, s) = (γ · ϕ + sγ′γ−1, s) ,

where γ ∈ LG, (ϕ, s) ∈ Lg⊕R, and γ ·ϕ denotes, as above, the adjoint action of the
loop group LG on its Lie algebra Lg. It’s easy to see that the map S(γ) := γ′γ−1 ∈
Lg defines a 1-cocycle in the space C1(LG,Lg) of 1-cochains on LG with values in
Lg, i.e. it satisfies the relation

S(γ1γ2) = γ1 · S(γ2) + S(γ1) .

We describe now the orbits of regular elements (ϕ, s) from (Lg)∗ ⊕ R under the
action of the loop group LG. For that note that any element (ϕ, s) ∈ Lg×{s}, s 6= 0,
is uniquely determined by a path ψ : R → G, satisfying the ordinary differential
equation

dψ

dt
ψ−1 = −ϕ

s
⇐⇒ d ln ψ

dt
= −ϕ

s
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with the initial condition ψ(0) = e. It follows from the periodicity of ϕ with respect
to θ that the shifted ψ(θ +2π) is also a solution of this equation together with ψ(θ).
From the uniqueness theorem we obtain that

ψ(θ + 2π) = ψ(θ)Mϕ ,

where the monodromy Mϕ is defined by Mϕ := ψ(2π).
The coadjoint action of γ ∈ LG on a regular element (ϕ, s) ∈ Lg× {s} in terms

of ψ corresponds to

ϕ
γ−−−→ ϕ̃ = γ · ϕ + sγ′γ−1

y
y

ψ
γ−−−→ ψ̃(θ) = γ(θ)ψ(θ)γ(0)−1

y
y

Mϕ −−−→ Meϕ = γ(0)Mϕγ(0)−1

i.e. the coadjoint action of γ on (L̃g)∗ generates (in terms of the monodromy Mϕ)
an inner automorphism of the group G. Hence, we obtain a 1–1 correspondence
between the orbits of regular elements of (Lg)∗ × {s} with respect to the coadjoint
action of the loop group LG and the conjugacy classes of elements Mϕ in the group
G. Under this correspondence the isotropy subgroup of an element (ϕ, s) in the loop
group LG corresponds to the centralizer of the monodromy Mϕ in the group G.

We note that the orbit of an element (ϕ, s) is integral, if s is an integer and the
corresponding conjugacy class of the monodromy M ∈ G has the following property.
The centralizer of M is a maximal torus T in G (with the Lie algebra t), in which
terms M can be written in the form: M = exp ξ

s
for an element ξ ∈ t ⊂ t∗, belonging

to the lattice of characters T̂ (cf. [65], Sec. 4.3, for details).

Bibliographic comments

A key reference for this Chapter is the Pressley–Segal book [65]. In particular, the
Propositions 15 and 16 are proved in Ch.4 (Prop. 4.5.3) of this book. The Theorem
9 on central extensions of loop groups is contained in Theor. 4.4.1 of [65]. The
coadjoint representation of the loop group is described in Sec. 4.3 of [65].



Chapter 9

Grassmann realizations

In this Chapter we introduce the ”widest” space of loops, to which the most part of
the theory applies, namely, the Sobolev space of ”half-differentiable” loops on S1.
This space contains the loop space ΩG, studied in previous sections, as a ”smooth”
part. In Sec. 9.2 we construct the Grassmann realization of this extended loop space
and then apply the same idea to define the Grassmann realization of the ”smooth”
part ΩG. We end up with the postponed proof of the factorization theorem from
Sec. 7.1, using the Grassmann realization of ΩG.

9.1 Sobolev space of half-differentiable loops

We consider first the Sobolev space of real-valued half-differentiable functions on S1.
This is a Hilbert space

V := H
1/2
0 (S1,R) ,

which consists of functions f ∈ L2(S1,R) with zero mean value over the circle,
having the generalized derivative of order 1/2 in L2(S1,R).

It may be shown (cf. [81]) that the Fourier series of a function f ∈ H
1/2
0 (S1,R):

f(z) ≡ f(θ) =
∑

k 6=0

fkz
k , fk = f̄−k , z = eiθ ,

converges outside a set of zero (logarithmic) capacity and has a finite Sobolev norm
of order 1/2

‖f‖2
1/2 =

∑

k 6=0

|k||fk|2 = 2
∑

k>0

k|fk|2 .

Moreover, by associating with a function f ∈ V the sequence {fk} of its Fourier
coefficients, we establish an isometric isomorphism between the Sobolev space V
and the Hilbert space `

1/2
2 of sequences {fk} ∈ `2, satisfying the relations: fk = f̄−k,

f0 = 0, and having a finite Sobolev norm:
∑

k 6=0 |k||fk|2 < ∞.

We can consider V as a natural Hilbert extension of the space Ω0 := C∞
0 (S1,R)

of smooth real-valued functions f on S1, having the zero average over the circle. In
terms of their Fourier series, the coefficients fk of f ∈ Ω0 decrease faster than any
power kn with n ∈ N. In fact, V coincides with the completion of Ω0 with respect
to the Sobolev norm.

113
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The smooth part Ω0 of V is a Kähler Frechet space, for which a complex and
symplectic structures are introduced in the same way, as for the loop space ΩG with
a compact Lie group G.

Namely, a symplectic structure on Ω0 is given by the 2-form ω : Ω0 ×Ω0 → R of
the type

ω(ξ, η) =
1

2π

∫ 2π

0

ξ(θ)dη(θ) .

In terms of Fourier decompositions of ξ, η ∈ Ω0:

ξ(z) ≡ ξ(θ) =
∑

k 6=0

ξkz
k , η(z) ≡ η(θ) =

∑

k 6=0

ηkz
k , z = eiθ ,

this form has the following expression

ω(ξ, η) = −i
∑

k 6=0

kξkη−k = 2Im
∑

k>0

kξkη̄k .

A complex structure operator J0 on Ω0 is given by the Hilbert transform J0 ∈
End(Ω0, Ω0), defined by the formula

(J0ξ)(θ) =
1

2π
P.V.

∫ 2π

0

k(θ, ϕ)ξ(ϕ)dϕ (9.1)

with the kernel

k(θ, ϕ) = cot
1

2
(θ − ϕ)

(the integral is taken in the principal value sense). In terms of Fourier decomposi-
tions the operator J0 is given by the formula

ξ(z) =
∑

k 6=0

ξkz
k 7−→ (J0ξ)(z) = −i

∑

k>0

ξkz
k + i

∑

k<0

ξkz
k .

The introduced complex structure J0 is compatible with the symplectic structure ω
and, in particular, defines a Kähler metric on Ω0 by the formula

g0(ξ, η) := ω(ξ, J0η)

or, in terms of Fourier decompositions,

g0(ξ, η) = 2Re
∑

k>0

kξkη̄k =
∑

k 6=0

|k|ξkη̄k .

So, the space Ω0 = C∞
0 (S1,R) is provided with the structure of a Kähler Frechet

space.
The above definitions of the complex structure J0 and symplectic structure ω on

the space Ω0 extend to its completion V . (For the complex structure operator J0 it’s
evident and for the symplectic structure ω follows immediately from the Cauchy–
Schwarz inequality.) So, V has the structure of a Kähler Hilbert space, provided
with the Kähler metric

g0(ξ, η) = ω(ξ, J0η) = 2Re
∑

k>0

kξkη̄k =
∑

k 6=0

|k|ξkη̄k .
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The complexification
V C = H

1/2
0 (S1,C)

of V is a complex Hilbert space and the Kähler metric g0 on V extends to a Hermitian
inner product on V C, given by the formula

< ξ, η >=
∑

k 6=0

|k|ξkη̄k .

We extend the symplectic form ω and the complex structure operator J0 complex
linearly to V C.

The space V C can be decomposed into the direct sum of subspaces

V C = W+ ⊕W− ,

where W± is the (∓i)-eigenspace of the operator J0 ∈ EndV C. In other words,

W+ = {f ∈ V C : f(z) =
∑

k>0

fkz
k} , W− = W+ = {f ∈ V C : f(z) =

∑

k<0

fkz
k} .

The subspaces W± are isotropic with respect to the symplectic form ω (i.e. ω(ξ, η) =
0, if ξ, η ∈ W+ or ξ, η ∈ W−), and the splitting V C = W+ ⊕W− is an orthogonal
direct sum with respect to the Hermitian inner product < · , · >. The inner product
< · , · > has a simple expression in terms of the decomposition V C = W+ ⊕W−:

< ξ, η >= iω(ξ+, η̄+)− iω(ξ−, η̄−) ,

where ξ± denotes the projection of ξ ∈ V C onto the subspace W±.
The operator J0 in terms of the decomposition V C = W+⊕W− has the following

matrix representation

J0 ←→
(−i 0

0 i

)
.

There is another useful realization of the space V in terms of harmonic functions
(cf. [58]). Namely, the space V can be identified with the space D of (real-valued)
harmonic functions F in the unit disc ∆, such that F (0) = 0, and the Dirichlet
integral

E(F ) :=
1

2π

∫

∆

(∣∣∣∣
∂F

∂x

∣∣∣∣
2

+

∣∣∣∣
∂F

∂y

∣∣∣∣
2
)

dxdy

is finite. In other words, D is the Hilbert space of harmonic functions on ∆, having
their first derivatives in L2(∆) and satisfying the normalization condition F (0) = 0.
The norm of F ∈ D is equal, by definition, to the square root of E(F ). A map
V → D, given by the Poisson integral, establishes an isometric isomorphism of
Hilbert spaces V and D. The inverse map D → V associates with a harmonic
function F ∈ D its boundary values on ∂∆ = S1 in the Sobolev sense.

We define next the Sobolev space H1/2(S1,GL(n,C)) of half-differentiable ma-
trix functions on S1. It consists of measurable matrix-valued functions γ : S1 →
GL(n,C) of the form

γ =
∞∑

k=−∞
γkz

k , z = eiθ ,
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with a finite Sobolev norm of order 1/2:

‖γ‖2
1/2 =

∞∑

k=−∞
|k|‖γk‖2 < ∞ .

Accordingly, the space HGL(n,C) := H
1/2
0 (S1, GL(n,C)) denotes the subspace of

H1/2(S1, GL(n,C)), consisting of functions γ with Fourier decompositions of the
form

γ =
∑

k 6=0

γkz
k .

We define also the group L1/2(GL(n,C)) of half-differentiable matrix functions.
For that we consider the Banach algebra of essentially bounded functions γ ∈
H1/2(S1, GL(n,C)), provided with the norm ‖γ‖∞ + ‖γ‖1/2. The group of invert-
ible elements in this algebra is called the group L1/2(GL(n,C)) of half-differentiable
matrix functions on S1. It is a Banach Lie group.

In the same way one can define the Sobolev space HG of half-differentiable loops
in a compact Lie group G, when G is realized as a matrix group, i.e. a subgroup of
U(n).

9.2 Grassmann realization

Consider first the Grassmann realization of the group L1/2(GL(n,C)) of half-differenti-
able matrix functions on S1.

Take for a complex Hilbert space H the space H(n) := L2(S1,Cn) with a natural
polarization, determined by the subspaces

H
(n)
+ = {f ∈ H : f(z) =

∑

k≥0

fkz
k with fk ∈ Cn, z = eiθ}

and
H

(n)
− = {f ∈ H : f(z) =

∑

k<0

fkz
k with fk ∈ Cn} .

Associate with a loop γ ∈ L1/2GL(n,C) the multiplication operator

Mγ ∈ EndH(n) ,

which acts on a vector f ∈ L2(S1,Cn) by the pointwise application of the matrix
γ(z) ∈ GL(n,C) to the vector f(z) ∈ Cn:

(Mγf)(z) := γ(z)f(z) .

Proposition 17. For any loop γ ∈ L1/2GL(n,C) the multiplication operator Mγ

belongs to GLHS(H
(n)) (cf. Sec. 5.2 for the definition of the Hilbert–Schmidt group

GLHS).

Proof. Let

γ(z) =
∑

k∈Z
γkz

k ,
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where γk ∈ L(n,C). We choose in H(n) the basis, given by the functions of the form
εiz

p, where {εi} is a fixed orthonormal basis in Cn, p ∈ Z. The operator Mγ in this
basis has a matrix representation of the form

Mγ ←→
(
Mp,q

)
p,q∈Z , where Mp,q = γq−p ∈ L(n,C) .

For Mγ ∈ GLHS(H
(n)), it’s necessary and sufficient that its components, given by

the maps

M+−
γ : H

(n)
+ → H

(n)
− and M−+

γ : H
(n)
− → H

(n)
+ ,

are Hilbert–Schmidt operators. In terms of the matrix representation (Mp,q)p,q∈Z it
means that the following inequalities should be satisfied

∑
p≥0,q<0

‖Mp,q‖2 < ∞ and
∑

p<0,q≥0

‖Mp,q‖2 < ∞ .

These relations are equivalent to the inequality

∑

k∈Z
k‖γk‖2 < ∞ ,

which is satisfied if γ ∈ L1/2GL(n,C).

The Grassmann realization of the group L1/2G can be constructed in the same
way, when G is realized as a matrix group, i.e. a subgroup of U(n). For example,
if G is a compact semisimple Lie group with the trivial centre, it can be identified
with the identity component of the automorphism group of its Lie algebra g. In
this case we can choose for H the Hilbert space L2(S1, gC), on which the loop group
L1/2G acts by the adjoint representation. By identifying gC with Cn (where n is
the dimension of the Lie algebra g) and fixing an invariant inner product on g, we
realize L1/2G as a subgroup of the loop group L1/2U(n). Then the above embedding
of L1/2GL(n,C) into GLHS(H

(n)) will map L1/2U(n) into UHS(H
(n)).

We shall describe now the image of the embedding of L1/2U(n) into UHS(H
(n)),

following [65], Sec. 8.3. This embedding defines an action of L1/2U(n) on H(n) and,
hence, on GrHS(H

(n)). In particular, the image of this action contains the subspaces

W ∈ GrHS(H
(n)) of the form Mγ(H

(n)
+ ) := γH

(n)
+ , where γ ∈ L1/2U(n). They have

the property that Mz(W ) := zW ⊂ W , since the action of γ commutes with the
multiplication by z. It turns out that the set of such subsets W ∈ GrHS(H

(n))
coincides with the image of the action of L1/2U(n) on GrHS(H

(n)).
Before we prove this fact, let’s introduce some necessary notations. Denote

Gr+(H(n)) = {W ∈ GrHS(H
(n)) : zW ⊂ W} .

We also denote, as in Secs. 7.1,7.3, by L±1/2GL(n,C) the subgroups of L1/2GL(n,C),
consisting of loops γ, which are the Sobolev boundary values of holomorphic maps
γ : ∆± → GL(n,C).

Proposition 18 ([65]). The group L1/2U(n) acts transitively on Gr+(H(n)) and the

isotropy subgroup of H
(n)
+ coincides with the group U(n) of constant loops.
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Proof. The assertion about the isotropy subgroup follows from a well known fact:
γH

(n)
+ = H

(n)
+ if and only if γ ∈ L+

1/2GL(n,C). The ”if” part is evident. To prove the

”only if” part, we decompose γ into the sum γ = γ++γ− with γ± ∈ L±1/2gl(n,C) (cf.,

e.g., [58], Theor. 2.1). Then the equality γH
(n)
+ = H

(n)
+ will imply that γ−H

(n)
+ ⊂

H
(n)
+ , whence γ− ∈ H

(n)
+ , i.e. γ− = 0. If we know that γ ∈ L1/2U(n) belongs to

L+
1/2GL(n,C), then, by the symmetry principle, γ extends holomorphically to the

whole Riemann sphere, which implies that γ = const.
To prove the transitivity of the action of L1/2U(n) on Gr+(H(n)), we note first

that W ∈ Gr+(H(n)) implies that zW has codimension n in W . Indeed, consider
the commutative diagram

zW −−−→ Wy
y

zH
(n)
+ −−−→ H

(n)
+ ,

where the horizontal arrows are inclusions and the vertical arrows are orthogonal
projections. These projections are Fredholm operators, having their index, equal to
the virtual dimension of W . Since the inclusion zH

(n)
+ ↪→ H

(n)
+ is evidently Fredholm

with the index, equal to −n, the same is true for the inclusion zW ↪→ W .
We choose now an orthonormal basis {w1, . . . , wn} in the orthogonal complement

of zW in W and form an (n × n)-matrix-valued function γ on S1 from the vector
columns w1, . . . , wn . We assert that γ(θ) is unitary for almost all θ ∈ S1. Indeed,
write down wk(θ) in the form

wk(θ) =
∑

p

wkpe
ipθ , wkp ∈ Cn .

Then

< wk(θ), wl(θ) >=
∑
p,q

< wkp, wlq > ei(q−p)θ =
∑

r

< wk, z
rwl >H eirθ = δkl ,

where we have denoted by < · , · >H the inner product in H(n) to distinguish it from
the inner product < · , · > in Cn. This calculation implies that the multiplication
operator Mγ is unitary in H(n) and

Mγ(H
(n)
+ ª zkH

(n)
+ ) = W ª zkW for any k .

It follows also that Mγ(H
(n)
+ ) = W , since

⋂
k zkW = 0 (which can be proved by the

iteration of the codimension assertion).
It remains to check that Mγ ∈ UHS(H

(n)). But the component M+−
γ of this

operator (we are using the same notation, as in the proof of Prop. 17) is factorized

into the composition H
(n)
+ → W → H

(n)
− , where the second map, given by the

orthogonal projection, is a Hilbert–Schmidt operator. The same is true for the
component M−+

γ of Mγ.

This proposition implies that the loop space HU(n) = L1/2U(n)/U(n) can be
identified with the Grassmanian Gr+(H(n)). The same proof realizes the space
ΩU(n) of smooth loops in U(n) as a ”smooth” part Gr∞+ (H(n)) of Gr+(H(n)). Here,

Gr∞+ (H(n)) = Gr∞(H(n)) ∩Gr+(H(n)) ,
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and the ”smooth” part Gr∞(H(n)) was introduced at the end of Sec. 5.2. It can be
also shown that the group LU(n) of smooth loops acts smoothly and transitively on
the Grassmanian Gr∞(H(n)) and the same is true for the action of LGL(n,C) on
Gr∞(H(n)).

An embedding of the loop group LG, where G is a simply connected compact Lie
group, into Gr∞+ (H(n)) can be constructed in a similar way, if one takes for H the
Hilbert space L2(S1, gC), on which the group LG acts by the adjoint representation.
Identifying gC with Cn (where n is the dimension of the Lie algebra g) and fixing
an invariant inner product on g, we can realize LG as a subgroup of LU(n). The
action of LU(n) on Gr∞(H(n)), described above, realizes LU(n) as a subgroup of
UHS(H

(n)). This embedding generates an embedding of the loop space ΩG into the
Grassmann manifold Gr∞(H(n)).

9.3 Proof of the factorization theorem

The Grassmann realization of the loop space ΩU(n), constructed in the previous
Section, allows us to give the postponed proof of the factorization theorem 6 from
Sec. 7.1. We recall its formulation.

Theorem 10 ([65]). The product map

ΩG× L+GC −→ LGC

is a diffeomorphism of Frechet manifolds .

We have pointed out in the proof of Prop. 18 that the complex group L1/2GL(n,C)

acts on the Grassmanian Gr+(H(n)) and has the stabilizer at H
(n)
+ , equal to the

subgroup L+
1/2GL(n,C). Since the loop group L1/2GL(n,C) acts transitively on

Gr+(H(n)), we have proved that the loop group L1/2GL(n,C) coincides with the
product

L1/2GL(n,C) = L1/2U(n) · L+
1/2GL(n,C) .

The same factorization holds for the group LGL(n,C) of smooth loops. We have to
show now that the multiplication map

ΩU(n)× L+GL(n,C) −→ LGL(n,C)

is a diffeomorphism. It is sufficient to prove that the map

u : LGL(n,C) −→ ΩU(n) ,

assigning to a loop γ its unitary component, is smooth. This map is factorized
into the composition of two maps: γ → γ̃ → u(γ). The first of them assigns to
γ a loop γ̃, which is obtained from γ by projecting the columns (γ1, . . . , γn) of
γ ∈ LGL(n,C) onto the orthogonal complement W ªzW of the subspace zW in W ,

where W := γH
(n)
+ . The second map γ̃ → u(γ) consists of the orthonormalization of

the basis {γ̃1, . . . , γ̃n} of the subspace WªzW . The second map is evidently smooth.
The smoothness of the first map follows from the smoothness of the projection map

C∞(S1,Cn)×Gr∞(H(n)) −→ C∞(S1,Cn) ,

assigning to a smooth vector function f on S1 its orthogonal projection prW f to a
given subspace W ∈ Gr∞(H(n)).
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Chapter 10

Virasoro group and its coadjoint
orbits

In this Chapter we introduce the Virasoro group Vir, which is a central extension of
the diffeomorphism group of the circle Diff+(S1), and study its coadjoint represen-
tation. We are especially interested in the coadjoint orbits, which have, along with
the natural symplectic form, also a compatible complex structure. These Kähler
coadjoint orbits of Vir are studied in Sec. 10.3 of this Chapter.

10.1 Virasoro group and Virasoro algebra

The Virasoro group is a central extension of the diffeomorphism group of the circle
Diff+(S1). To describe it explicitly, we find first central extensions of the Lie algebra
Vect(S1) of Diff+(S1), being the algebra of tangent vector fields on S1.

As we have pointed out in Sec. 4.1, any central extension of Vect(S1) is de-
termined by some 2-cocycle w on the algebra Vect(S1). We extend this cocycle
complex-linearly to the complexification VectC(S1) of the algebra Vect(S1). The ex-
tended cocycle, denoted by the same letter w, is uniquely determined by its values
wm,n := w(em, en) on the basis vector fields

em = ieimθ d

dθ
, m = 0,±1,±2, . . . ,

of VectC(S1) (cf. Sec. 2.2). The cocycle condition for w, written for three vector
fields (e0, em, en):

w([e0, em], en) + w(em, [e0, en]) = w(e0, [em, en]) ,

implies that the cohomology class [w] does not change under the action of rotations
(generated by the vector field e0). So the cocycle, obtained from w by averaging
over S1, belongs to the same cohomology class, as w. Therefore we can suppose
from the beginning that the cocycle w is invariant under rotations, i.e.

w([e0, em], en) + w(em, [e0, en]) = 0

on the basis vector fields em, en. Due to the commutation relations for basis vector
fields

[em, en] = (m− n)em+n ,

123
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it means that
mwm,n + nwm,n = 0 . (10.1)

The latter relation implies that wm,n = 0 for m + n 6= 0. So we set wm := wm,−m

and note that w−m = −wm due to the skew-symmetricity of w. It remains to find
out the values of wm for natural m.

The cocycle condition for w on three basis vector fields (em, en, em+n) means that

(m− n)wm+n = (m + 2n)wm − (2m + n)wn , (10.2)

so we get a finite-difference equation of the 2nd order for the computation of values
wm. In order to find a general solution of (10.2), it’s sufficient to find its two
particular solutions. But it’s easy to see that wm = m and wm = m3 are two
independent solutions of (10.2). Hence a general solution of (10.2) has the form

wm = αm3 + βm (10.3)

with arbitrary complex coefficients α, β.
Note that the cocycle w with wm = m is a coboundary, since in this case

w(em, en) = dθ(em, en) = θ([en, em]) ,

where θ is a 1-cochain on VectC(S1), defined by: θ(e0) = −1
2

and θ(em) = 0 for
m 6= 0. So the value of β in the formula (10.3) is not essential. Hence all cocycles w,
defining non-trivial central extensions of the algebra Vect(S1), up to coboundaries,
are proportional to each other. In other words, we have proved the following

Proposition 19. The cohomology group H2(Vect(S1),R) has dimension 1. A gen-
eral central extension of the algebra Vect(S1) is determined by a cocycle w of the
form

w(em, en) =

{
αm(m2 − 1) for m + n = 0, α ∈ R,

0 for m + n 6= 0 .

We have chosen the parameter β = −α in order to annihilate the restriction of the
cocycle w to the subalgebra sl(2,R) in Vect(S1), generated by the vectors e0, e1, e−1

(this subalgebra coincides with the Lie algebra of the Möbius group PSL(2,R) of
diffeomorphisms of the circle S1, extending to the fractional-linear automorphisms
of the unit disc ∆).

We note that the Gelfand–Fuks cocycle

w(ξ, η) =
1

2π

∫ 2π

0

ξ′(θ)dη′(θ) , ξ = ξ(θ)
d

dθ
, η = η(θ)

d

dθ
∈ Vect(S1) ,

found in [25], has the basis values, equal to wm = im3, m ∈ Z.
One can also change the value of α, multiplying the central element by a number.

The usual choice for α (based on physical analogies) is α = 1
12

. The corresponding
central extension of the algebra Vect(S1) is called the Virasoro algebra and denoted
by vir. The Virasoro algebra is generated (as a vector space) by the basis vector fields
{em} of the algebra Vect(S1) and a central element κ, satisfying the commutation
relations of the form

[em, κ] = 0 , [em, en] = (m− n)em+n + δm,−n
m3 −m

12
κ .
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This central extension of the Lie algebra Vect(S1) corresponds to a central ex-
tension of the Lie group Diff+(S1), which we describe next.

Since the Frechet manifold Diff+(S1) is homotopy equivalent to the circle S1 (cf.
Sec. 1.2.1), all S1-bundles over Diff+(S1) are topologically trivial and any central
extension of the group Diff+(S1) is determined by some 2-cocycle c on Diff+(S1) (cf.
Sec. 4.1). In other words, such a central extension consists of elements of the form

(f, λ) , f ∈ Diff+(S1), λ ∈ S1 ,

and the product is given by the formula

(f, λ) · (g, µ) = (f ◦ g, λµeib(f,g)) ,

where c(f, g) = eib(f,g) is the 2-cocycle on Diff+(S1), defining the central extension.
The cocycle condition in terms of b takes the form

b(f, g) + b(f ◦ g, h) = b(f, g ◦ h) + b(g, h) . (10.4)

An explicit solution of this functional equation, found by Bott [11], has the form

b0(f, g) =
1

2π

∫ 2π

0

ln(f ◦ g)′ d ln g′ .

Note that the Bott group cocycle corresponds on the Lie algebra level to the Gelfand–
Fuks cocycle of the Lie algebra Vect(S1).

A general solution of (10.4) coincides with b0 up to a coboundary, more precisely,
it has the form

b(f, g) = αb0(f, g) + a(f ◦ g)− a(f)− a(g) ,

where α = const ∈ R, and a is an arbitrary smooth real functional on Diff+(S1).
The central extension of the group Diff+(S1), determined by the Bott cocycle, is

called the Virasoro group or Virasoro–Bott group and is denoted by Vir.

10.2 Coadjoint action of the Virasoro group

Consider the coadjoint action of the diffeomorphism group of the circle Diff+(S1)
and its central extension, the Virasoro group Vir, on the dual spaces of their Lie
algebras.

We study first the coadjoint action of the diffeomorphism group Diff+(S1) on the
space Vect∗(S1), dual to the Lie algebra Vect(S1) of Diff+(S1). The space Vect∗(S1),
dual to the Frechet space Vect(S1), can be identified with the tensor product

Ω1(S1)⊗D(S1) D′(S1)

over the ring D(S1), consisting of all C∞-smooth (real-valued) functions on S1.
Here, Ω1(S1) is the Frechet space of C∞-smooth 1-forms on S1, and D′(S1) is the
space of distributions on S1, i.e. of linear continuous functionals on D(S1) (note
that D′(S1) is not a Frechet space!). The above tensor product should be taken in
the category of topological vector spaces, we recall its definition for convenience.
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Digression 3 (Tensor product of topological vector spaces). The tensor product
E⊗F of topological vector spaces E and F is provided with the projective topology,
generated by the seminorms p⊗ q, where {p} and {q} are families of seminorms on
E and F respectively. The seminorm p⊗ q is defined as

(p⊗ q)(z) = inf

{ ∑
i

p(xi)q(yi) : z =
∑

xi ⊗ yi

}
,

where the infimum is taken over all possible representations of z ∈ E ⊗ F as finite
sums of the form

∑
xi ⊗ yi with xi ∈ E, yi ∈ F .

The elements of the completion Ẽ ⊗ F of the space E ⊗ F with respect to this
topology in the case of metrizable spaces E and F can be given by series of the form

Ẽ ⊗ F 3 z =
∞∑
i=1

λixi ⊗ yi ,

where
∑∞

i=1 |λi| < ∞ and the sequences {xi}, {yi} tend to zero in E and F respec-
tively.

For the nuclear spaces E and F the topology, introduced on Ẽ ⊗ F , coincides
with the topology of the uniform equicontinuous convergence (i.e. topology of uni-
form convergence on the sets of the form S ⊗ T , where S and T are uniformly
equicontinuous subsets in E ′ and F ′ respectively).

We return to the dual space Vect∗(S1), which is identified with the tensor product
Ω1(S1)⊗D(S1)D′(S1) by the map, associating with an element (α, ϕ) ∈ Ω1(S1)⊗D(S1)

D′(S1) a linear continuous functional on Vect(S1) of the form

T(α,ϕ)(ξ) = ϕ[α(ξ)] , ξ ∈ Vect(S1) .

As in Sec. 8.3, we restrict ourselves to the study of the coadjoint action of the
group Diff+(S1) on the ”smooth” part of the space Vect∗(S1), identified with the
tensor product of Frechet spaces

Ω1(S1)⊗D(S1) Ω1(S1) .

An element (α, β) of this space determines a linear continuous functional on Vect(S1)
by the formula

Vect(S1) 3 ξ 7−→ T(α,β)(ξ) =
1

2π

∫ 2π

0

β(ξ(θ))α(θ) .

In other words, the smooth part of the space Vect∗(S1) may be identified with the
space Q(S1) of quadratic differentials on S1 of the form

q = q(θ)(dθ)2 ,

where q is a smooth 2π-periodic function of θ.
From another point of view, one can consider Q(S1) as a set of pseudometrics

on S1 (the term ”pseudo” indicates that the function q(θ) may have zeros on S1).
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The coadjoint action of the group Diff+(S1) on Q(S1) coincides with the natural
action of the group Diff+(S1) on quadratic differentials

Diff+(S1) 3 f 7−→ K(f)q = q ◦ f−1 := q(g(θ))g′(θ)2dθ2 ,

where g(θ) = f−1(θ).
We consider next the coadjoint action of the group Diff+(S1) on the dual space

vir∗ of the Virasoro algebra vir. Since the Virasoro algebra coincides with vir =
Vect(S1)⊕R (as a vector space), we have vir∗ = Vect∗(S1)⊕R. So the smooth part
of vir∗ may be identified with the space

Q(S1)⊕ R = {(q, s) : q is a quadratic differential, s ∈ R} .

The coadjoint action of the group Diff+(S1) on Q(S1)⊕R associates with an element

f ∈ Diff+(S1) a linear transformation K̃(f) of the space Q(S1) ⊕ R, acting by the
formula

K̃(f)(q, s) = (K(f)q + sS(f) ◦ f−1, s) = ((q + sS(f)) ◦ f−1, s) , (10.5)

where S is a 1-cocycle on the group Diff+(S1), satisfying the relation

S(f ◦ h) = (S(f) ◦ h) + S(h) . (10.6)

A non-trivial particular solution of this equation is given by the Schwarzian

S[f ] =

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
)

dθ2 = d2 ln f ′ − 1

2
(d ln f ′)2 , (10.7)

while a general solution has the form

S[f ] + q ◦ f − q ,

where q ∈ Q(S1) is a quadratic differential.

Digression 4 (Schwarzian). A characteristic property of the Schwarzian is its con-
formal invariance:

S

[
af + b

cf + d

]
= S[f ]

for any fractional-linear transformation z 7→ az+b
cz+d

from the Möbius group Möb(S1) :=
PSL(2,R). This property follows immediately from the transformation rule for the
Schwarzian

S[f ◦ h] = (S[f ] ◦ h) (h′)2 + S[h] , (10.8)

which is just a decoded version of (10.6).
The Schwarzian S[f ] of a diffeomorphism f ∈ Diff+(S1) measures its deviation

from conformal automorphisms of the unit disc in the sense that

S[f ] = 0 ⇐⇒ f is fractional-linear .

Moreover, one can define the Schwarz derivative S[f ] of any conformal map f : ∆ →
C by the same formula (10.7). Then S[f ] measures again the deviation of a conformal
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map f in ∆ from fractional-linear automorphisms of ∆, and the maximal deviation
may be explicitly computed. Introduce a natural norm on Schwarz derivatives S[f ],
coinciding with the hyperbolic norm on quadratic differentials in ∆:

‖S[f ]‖2 := sup
z∈∆

|S[f ](z)|(1− |z|2) .

There is a following remarkable theorem, known as Nehari theorem.

Theorem 11 ((cf. [49], Theor. II.1.3)). For any conformal map f of the unit disc ∆
the following sharp estimate holds

‖S[f ]‖2 ≤ 6 .

The upper bound is attained on the Koebe function z 7→ z/(1 + z).

The infinitesimal variant of the coadjoint representation (10.5) is given by the
representation of the Lie algebra Vect(S1) on the space Q(S1) ⊕ R, defined by the
formula

k̃(ξ)(q, s) = (−Dq,sξ, s) , (10.9)

where ξ = ξ(θ) d
dθ
∈ Vect(S1), q = q(θ)(dθ)2 ∈ Q(S1), and the operator Dq,s has the

form

Dq,s = s
d3

dθ3
+ q

d

dθ
+

d

dθ
q .

What can be said about the orbits of the coadjoint representation of Diff+(S1)?
The orbit of a regular element (q, s) ∈ Q(S1) ⊕ R under the action of the group
Diff+(S1) is completely determined by the isotropy subgroup Gq,s with respect to
the coadjoint action. The Lie algebra gq,s of this subgroup consists of vector fields
ξ = ξ(θ) d

dθ
∈ Vect(S1), satisfying the condition: Dq,sξ = 0. In other words, to

describe the subalgebra gq,s, one should find periodic solutions ξ(θ) of the linear
differential equation

sξ
′′′

+ 2qξ′ + q′u = 0 . (10.10)

Referring for the general solution of this problem to the papers [40, 30], we
consider here only its particular case, when a regular element (q, s) has the form
(q(dθ)2, s) with q ≡ const =: c, s 6= 0. In this case the equation (10.10) takes on the
form

sξ
′′′

+ 2cξ′ = 0 , (10.11)

which, after the change of variable η := ξ′, reduces to the equation

sη
′′

+ 2cη = 0 .

The latter equation has non-trivial periodic solutions only for 2c = n2, where n is
a natural number, and all these solutions are linear combinations of the functions
cos nθ and sin nθ. In other words, the only periodic solutions of the equation (10.11)
for 2c

s
6= n2 are given by constants, while for 2c

s
= n2 they are linear combinations

of the functions 1, 1
n

cos nθ and 1
n

sin nθ.
The isotropy subalgebra gq,s in the first case coincides with R, and in the second

case with the algebra sl(2,R). Respectively, the isotropy subgroup Gq,s in the first
case coincides with the rotation group S1 ⊂ Diff+(S1), and in the second case with
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the group PSL(n)(2,R), which is the n-fold covering of the Möbius group Möb(S1) =
PSL(2,R). We have already encountered this group in Sec. 2.2. Recall that a
diffeomorphism f ∈ Diff+(S1) belongs to the group PSL(n)(2,R) if and only if there
exists a transformation ϕ ∈ PSL(2,R) such that

λn ◦ f = ϕ ◦ λn

where λn : z 7→ zn is the map, defining the n-fold covering of the circle S1.
It follows from the description of isotropy subgroups that the coadjoint or-

bit of a constant element (q, s) = (cdθ2, s) coincides with the homogeneous space
Diff+(S1)/(S1), when 2c/s is not a square of a natural number, and with the homo-
geneous space Diff+(S1)/PSL(n)(2,R), when 2c/s = n2.

As we have explained earlier in Subsec. 3.2.3, all coadjoint orbits have a natural
symplectic structure, given by the Kirillov form. In the case, we are considering,
the value of this form at a point (q, s) ∈ Q(S1) ⊕ R of an orbit O of the group
Diff+(S1) may be computed in the following way. Let δξ and δη be tangent vectors
from Tq,sO, which are the images of tangent vectors ξ, η ∈ Vect(S1) under the map

k̃ from (10.9):

δξ = k̃(ξ)(q, s) , δη = k̃(η)(q, s) .

Then the value of the form ωO on these vectors is equal to

ωO(δξ, δη) = −
∫

S1

(Dq,sξ)(θ)η(θ)dθ .

Thus every coadjoint orbit of Vir has a symplectic structure. But not all of them
can be provided with a compatible complex structure. In fact, among the coadjoint
orbits of the group Vir, described above, only the orbits

Diff+(S1)/(S1) , Diff+(S1)
/

Möb(S1) = Diff+(S1)/PSL(2,R)

are Kähler (cf. [78]). In other words, only these orbits admit Diff+(S1)-invariant
complex structures, compatible with the symplectic structure ωO. We shall concen-
trate our attention on these Kähler orbits.

Example 29. We give now an interesting interpretation of the coadjoint action of
the Virasoro group in terms of Hill operators, due to Lazutkin and Pankratova [48].

Recall that a Hill operator is a differential operator of the 2nd order, having the
form

L =
d2

dθ2
+ u(θ) ,

where u = u(θ) is a potential, given by a C∞-smooth 2π-periodic function on R.
The corresponding ordinary differential equation

y
′′

+ uy = 0

is called the Hill equation. Its solutions form a two-dimensional vector space V ,
provided with a natural symplectic 2-form, given by the Wronskian of two solutions.
The shift of a solution y of the Hill equation Ly = 0 to the period 2π transforms
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it into another solution, obtained from y by the action of an operator M ∈ SL(V ),
called the monodromy matrix of the operator L.

If {y1, y2} is a fundamental system of solutions, i.e. a basis in the space V of
solutions of the Hill equation, then one can reconstruct the potential u from this
system by the Schwarz formula:

u(θ) =

{
1
2
S[y1/y2](θ) , if y2(θ) 6= 0 ,

1
2
S[y2/y1](θ) , if y1(θ) 6= 0 ,

where S[y] is the Schwarzian of y.
The diffeomorphism group Diff+(S1) acts in a natural way on the space of Hill

operators. Namely, we can associate with any diffeomorphism f ∈ Diff+(S1), which
lifts to a diffeomorphism f̃ of the real line R, a transformation, which sends a given
Hill operator L = d2

dθ2 + u(θ) to another Hill operator f ∗L = d2

dθ2 + f ∗u(θ) with

f ∗u(θ) := u(f̃(θ)) · (f̃ ′(θ))2 +
1

2
S[f̃ ](θ) .

Under this transformation a solution y of the Hill equation Ly = 0 is transferred to
a solution z of the Hill equation (f ∗L)z = 0 with

z(θ) := y(f̃(θ)) · (f̃ ′(θ))− 1
2 .

Note that, due to the periodicity of the potential u, the action of f on potentials
does not depend on the choice of the lift f̃ of the diffeomorphism f ∈ Diff+(S1) and
so defines an action of the group Diff+(S1) on Hill operators. This action coincides
with the coadjoint action of the group Diff+(S1) on elements (u, 1

2
) of the space

Q(S1)⊕ R, given by (10.5).
But the action of f on solutions of the Hill equation depends on the choice of the

lift f̃ , because of the monodromy. In accordance with the above formula, solutions
of the Hill equation transform under the action of diffeomorphisms f̃ , as densities
of order −1/2 on the line R.

The constructed action of the group Diff+(S1) on Hill operators was studied
in the Lazutkin–Pankratova’s paper [48]. The authors formulate, in particular, a
conjecture that any Hill operator with the help of the above action can be brought
to the Matieu normal form of the type:

L =
d2

dθ2
+ a cos(2πnθ) + b .

10.3 Kähler structure of the spaces

Diff+(S1)
/
Möb(S1) and Diff+(S1)/(S1)

As we have pointed out in the previous Section, among the coadjoint orbits of the
Virasoro group Vir only two are Kähler, namely:

R := Diff+(S1)/(S1) and S := Diff+(S1)
/

Möb(S1) .

In this Section we study their Kähler structure in detail.
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As coadjoint orbits of the group Vir, these spaces have a natural symplectic
structure ω, given by the Kirillov form.

We introduce now a complex structure J on the space S = Diff+(S1)/Möb(S1),
invariant under the action of the diffeomorphism group Diff+(S1) by left translations.
Due to its invariance, it’s sufficient to define this complex structure only at the origin
o ∈ S.

The tangent space ToS may be identified with the quotient of the Lie algebra
Vect(S1) of tangent vector field on S1 modulo its subalgebra sl(2,R). In terms of
Fourier decompositions vector fields v = v(θ) d

dθ
∈ ToS are given by series of the

form
v(θ) =

∑

n 6=−1,0,1

vne
inθ , vn ∈ C ,

subject to the condition: v−n = v̄n. In these terms the restriction of the Diff+(S1)-
invariant complex structure J to ToS is given by the formula

Jv(θ) = −i
∑
n>1

vne
inθ + i

∑
n<−1

vneinθ

for v = v(θ) d
dθ
∈ ToS. It’s easy to see that the constructed complex structure on S

is formally integrable (i.e. the bracket of two tangent vector fields of type (1, 0) with
respect to this complex structure is again a vector field of type (1, 0)). Moreover, this
complex structure is compatible with the symplectic structure ω on S, mentioned
above.

The symplectic form ω on S together with the complex structure J define a
Kähler metric g on S. In terms of Fourier decompositions this metric can be defined
in the following way. Suppose that tangent vectors u, v ∈ ToS are given by the
Fourier series

u =
∑

n 6=−1,0,1

unen and v =
∑

n 6=−1,0,1

vnen . (10.12)

Then the value of the metric g on these vectors is equal to

g(u, v) = 2 Re

( ∞∑
n=2

unv̄n(n3 − n)

)
. (10.13)

The infinite series in the right hand side of (10.13) is absolutely converging, if the
Fourier series (10.12) correspond to the vector fields u, v of the class C3/2+ε on S1.

We turn now to the orbit R := Diff+(S1)/(S1). It can be identified (as a
homogeneous space) with a subgroup of Diff+(S1), consisting of diffeomorphisms
f ∈ Diff+(S1), fixing the point 1 ∈ S1: f(1) = 1.

The embedding of the rotation group of the circle S1 into the Möbius group
Möb(S1) generates a homogeneous bundle

R = Diff+(S1)/(S1) −→ S ,

having the unit disc ∆ as a fibre.
We describe explicitly the symplectic structure on R, given by the Kirillov form.

This form, being invariant under the left translations of the group Diff+(S1), is
completely determined by its restriction to the tangent space at the origin ToR.
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The tangent space ToR is identified with the space Vect0(S
1), consisting of vector

fields v = v(θ) d
dθ

, whose coefficients v(θ) are 2π-periodic functions with zero average:

1

2π

∫ 2π

0

v(θ)dθ = 0 .

In terms of Fourier decompositions tangent vectors v ∈ ToR are given by the series
of the form v =

∑
n 6=0 vnen, subject to the condition: v−n = v̄n.

An invariant symplectic structure on R is defined by a 2-cocycle w on the Lie
algebra VectC(S1), invariant under rotations. Such a cocycle is determined by its
values w(em, en) on the basis elements {em}. These basis values necessarily have the
form (cf. Prop. 19 in Sec. 10.1):

w(em, en) = (αm3 + βm)δm,−n

for some real α, β. Denote the form, corresponding to the parameters α, β, by wα,β.
It’s easy to see that it is non-degenerate on Vect0(S

1) if and only if

αm3 + βm 6= 0 for all natural m .

The latter condition is satisfied, if either α = 0, β 6= 0, or −β/α is not a square of a
natural number. In the first case the form wα,β is exact (cf. Sec. 10.1), so we choose
the second possibility.

The form wα,β defines a symplectic structure on Vect0(S
1), which can be written

in a more invariant way as

wα,β(u, v) =
1

2π

∫ 2π

0

u(θ) (βv′(θ)− αv′′′(θ)) dθ ,

where u, v ∈ Vect0(S
1). In terms of Fourier decompositions

u =
∑

n6=0

une
inθ , v =

∑

n 6=0

vne
inθ ,

we get

wα,β(u, v) = 2Im
∑
n≥1

(αn3 + βn)ξnη̄n .

The constructed 2-parameter family of symplectic structures on R has a natural
interpretation in terms of the coadjoint action of the group Diff+(S1). Recall that
the orbit of an element (cdθ2, s) coincides with R, if 2c/s is not a square of a
natural number. By identifying the homogeneous space R with the orbit of an
element (cdθ2, s) and providing it with the canonical symplectic structure, given by
the Kirillov form, we shall obtain, for different choices of (c, s) with 2c/s 6= n2, the
two-parameter family of symplectic structures on R, constructed above.

Introduce a Diff+(S1)-invariant complex structure J on the space R. Its re-
striction to ToR = Vect0(S

1) is given by the Hilbert transform, which assigns to a
tangent vector v ∈ Vect0(S

1) the vector

(Jv)(θ) =
1

2π

∫ 2π

0

cot
θ − ψ

2
v(ψ)dψ , 0 ≤ θ ≤ 2π .
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In terms of the Fourier decomposition v =
∑

n 6=0 vnen ∈ Vect0(S
1) we get

Jv = −i
∑
n>0

vnen + i
∑
n<0

vnen .

The complex structure J is formally integrable, i.e. the bracket of two tangent
vector fields of type (1, 0) with respect to this complex structure is again a vector
field of type (1, 0). Moreover, it can be shown that this complex structure is a unique
formally integrable Diff+(S1)-invariant complex structure on R.

The constructed complex structure J is compatible with all symplectic structures
wα,β, so it generates a 2-parameter family of Kähler metrics gα,β(u, v) := wα,β(u, Jv)
on R, given at the origin by the formula:

gα,β(u, v) = 2 Re
∑
n≥1

(αn3 + βn)unv̄n ,

where u =
∑

n6=0 unen, v =
∑

n6=0 vnen ∈ ToR. Hence, R is a Kähler Frechet
manifold with a 2-parameter family of Kähler metrics gα,β.

As we know, the existence of a formally integrable complex structure on an
infinite-dimensional manifold does not guarantee the existence of an atlas of local
complex coordinates on it. We shall introduce local complex coordinates on R,
following an idea, proposed by Kirillov and Yuriev [44]. Namely, we shall realize R
as the space of holomorphic univalent functions in the unit disc ∆.

Denote by A the complex Frechet space of all C∞-smooth complex-valued func-
tions in the closure ∆ of the unit disc ∆, which are holomorphic inside ∆ and vanish
at the origin. Let A0 be a subset of A, consisting of all f ∈ A, which define a C∞-
smooth embedding of the closed disc ∆ into C. It is an open subset in A, which
inherits a complex Frechet manifold structure. Denote by S the set of functions
f ∈ A0, such that f ′(0) = 1, which is a smooth hypersurface in A0. The functions
f ∈ S are holomorphic and univalent in ∆, they define C∞-smooth embeddings
∆ → f(∆) and satisfy the normalizing conditions: f(0) = 0, f ′(0) = 1. They can
be given by power series of the form

f(z) = z + c2z
2 + c3z

3 + . . . ,

whose coefficients satisfy, according to de Branges theorem, the relations: |ck| < k.
The coefficients {ck} may be chosen for local complex coordinates in a neighborhood
of f(z) ≡ z in S.

We construct now a map from S to R. For that we associate with a function
f ∈ S the contour K := f(S1). The function f := fK maps conformally the unit
disc ∆ := ∆+ onto the domain DK , bounded by the contour K. Denote by

gK : ∆− −→ C \DK

the conformal map of the complement ∆− := C \∆+ of the closed unit disc ∆+ on
the Riemann sphere C onto the domain C \DK , normalized by the conditions:

gK(∞) = ∞ , g′K(∞) > 0 .
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The map gK extends to a diffeomorphism of ∂∆− = S1 onto ∂DK . We associate
with f ∈ S the diffeomorphism

γK := f−1
K ◦ gK |S1 .

In order to construct an inverse map from R to S, note that, using an arbitrary
diffeomorphism γ ∈ R, we can construct a new complex structure on the Riemann
sphere C. Indeed, denote by Cγ the smooth manifold, obtained by gluing ∆+ with
∆− with the help of γ. In other words, Cγ is obtained from the disconnected union
∆+ t∆− by the identification of points from S1 = ∂∆+ = ∂∆− via the rule:

z ∈ S1 = ∂∆+ ←→ γ−1(z) ∈ S1 = ∂∆− .

The complex manifold Cγ is diffeomorphic to the Riemann sphere C. But, according
to the theorem of Ahlfors, there exists a unique complex structure on the Riemann
sphere C. So the two manifolds are biholomorphic to each other, i.e. there exists a
biholomorphic map

F : Cγ −→ C ,

which is uniquely defined, being normalized by the following conditions:

F (0) = 0 , F (∞) = ∞ , F ′(0) = 1 .

The biholomorphism F is given by a pair of functions (f, g), where the function
f is holomorphic in ∆+ and C∞-smooth up to S1 = ∂∆+, and the function g is
holomorphic in ∆− and C∞-smooth up to S1 = ∂∆−, while

f = g ◦ γ−1 on S1 .

Setting K := f(S1), we get that γ = γK mod S1 (since the normalization of F does
not fix arg g(∞)).

As it is pointed out by Lempert [50], one can construct the inverse map by
using, instead of the Ahlfors theorem, the factorization theorem of Pflüger [62],
which asserts that any diffeomorphism γ ∈ R may be represented in the form

γ = f−1 ◦ g ,

where f and g have the same properties, as above.
The constructed one-to-one map from S to R is smooth and defines a diffeo-

morphism
κ : R −→ S .

It’s easy to describe its tangent map

d0κ : T0R −→ T1S .

The tangent space T1S is identified with the space Φ, consisting of functions ϕ,
which are holomorphic in ∆, C∞-smooth up to ∂∆ and normalized by the conditions:
ϕ(0) = 0, ϕ′(0) = 0. (Indeed, any such vector ϕ is tangent to the curve ft(z) =
z + tϕ(z), which is contained in S for 0 ≤ t ≤ ε.) The map d0κ associates with a
vector v ∈ T0R a function ϕ ∈ T1S by the formula

2 Reϕ(eiθ) = (Jv)(θ) ,
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where J is the Hilbert transform on T0R. The Hilbert transform J on T0R corre-
sponds to the multiplication by i in the space T1S, hence the map, inverse to d0κ,
is given by the formula: v(θ) = −2 Imϕ(eiθ).

It follows from the definition of complex structures on R and S that the homo-
geneous disc bundle R→ S is, in fact, holomorphic.

We note also that on the Virasoro group Vir itself there exists a complex struc-
ture, induced by the complex structure on R, such that the natural projection

π : Vir −→ R

is a holomorphic C∗-bundle with respect to this complex structure (cf. [50]).
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Chapter 11

Universal Techmüller space

In this Chapter we study the Kähler geometry of the universal Teichmüller space,
which can be defined as the space of normalized homeomorphisms of S1, extending
to quasiconformal maps of the unit disc ∆. It may be also realized as an open subset
in the complex Banach space of holomorphic quadratic differentials in a disc. All
classical Teichmüller spaces T (G), where G is a Fuchsian group, are contained in T
as complex Kähler submanifolds. The homogeneous space S = Diff+(S1)/Möb(S1),
introduced in the previous Chapter 10, may be considered as a ”smooth” part of T .

11.1 Definition of the universal Techmüller space

Definition 37. A homeomorphism f : S1 → S1 is called quasisymmetric, if it can
be extended to a quasiconformal homeomorphism of the unit disc ∆.

This definition agrees with the definition of a quasisymmetric homeomorphism
of S1 as an orientation-preserving homeomorphism of S1, satisfying the Beurling–
Ahlfors condition (6.5), given in Sec. 6.1. The equivalence of two definitions is
established in the Beurling–Ahlfors theorem in Sec. 6.1.

We denote by QS(S1) the set of all orientation-preserving quasisymmetric home-
omorphisms of S1. This is a group with respect to the composition of homeomor-
phisms.

Any diffeomorphism f ∈ Diff+(S1) extends to a diffeomorphism of the closed
unit disc ∆, and so to a quasiconformal homeomorphism f̃ (recall that the Jacobian
of a diffeomorphism f is equal to |fz|2−|fz̄|2). Hence, Diff+(S1) ⊂ QS(S1). Since the
Möbius group Möb(S1) of fractional-linear automorphisms of the disc is contained
in Diff+(S1), we obtain the following chain of embeddings

Möb(S1) ⊂ Diff+(S1) ⊂ QS(S1) ⊂ Homeo(S1) .

Definition 38. The quotient space

T := QS(S1)/Möb(S1)

is called the universal Teichmüller space. It can be identified with the space of
normalized quasisymmetric homeomorphisms of S1, fixing the points ±1 and −i.

137
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The reasons for choosing the name ”universal Teichmüller space” for the intro-
duced object will become clear later.

As we have just pointed out, we have an inclusion

S = Diff+(S1)/Möb(S1) ↪→ T = QS(S1)/Möb(S1) .

Using the existence theorem for quasiconformal maps (Theor. 5 from Sec. 6.2),
we can describe the universal Teichmüller space in terms of Beltrami differentials.
Denote by B(∆) the set of Beltrami differentials in the unit disc ∆. It can be
identified, as we have pointed out in Sec. 6.1, with the unit ball in the complex
Banach space L∞(∆).

Given a Beltrami differential µ ∈ B(∆), we can extend it by symmetry (cf.
Sec. 6.2) to the Beltrami differential µ̂ on the whole plane. Theor. 5 from Sec. 6.2
implies the existence of a unique normalized quasiconformal homeomorphism wµ on
the extended complex plane C with complex dilatation µ̂. Moreover, this homeo-
morphism preserves the unit disc ∆, so we can associate with µ the quasisymmetric
homeomorphism wµ|S1 of the unit circle S1. Introduce an equivalence relation be-
tween Beltrami differentials in ∆: µ ∼ ν if and only if

wµ = wν on S1 .

Then the universal Teichmüller space T will be identified with the quotient of the
space B(∆) of Beltrami differentials modulo this equivalence relation:

T = B(∆)/ ∼ .

Or, to put it in another words, T coincides with the space of normalized quasicon-
formal self-homeomorphisms of the unit disc ∆.

We can give still another definition of the universal Teichmüller space T , using
the extension of a given Beltrami differential µ by zero outside the unit disc ∆ (cf.
Sec. 6.2). In more detail, we denote by µ̌ the Beltrami differential on the complex
plane, obtained by the extension of µ by zero outside ∆. Then by Theor. 5 from
Sec. 6.2 we obtain a normalized quasiconformal homeomorphism wµ of the extended
complex plane C, which is conformal on the exterior ∆− of the closed unit disc
∆ ⊂ C and fixes the points ±1,−i. Recall that the image ∆µ := wµ(∆) of the unit
disc ∆ under the quasiconformal map wµ is called the quasidisc. We associate with
the Beltrami differential µ ∈ B(∆) the normalized quasidisc ∆µ.

Introduce now another equivalence relation between Beltrami differentials in ∆
by saying that two Beltrami differentials µ and ν are equivalent, if wµ|∆− = wν |∆− .
We claim that this new equivalence relation between Beltrami differentials coincides
with the previous one. More precisely, we have the following

Lemma 4. Two Beltrami differentials µ, ν ∈ B(∆) are equivalent if and only if

wµ|S1 = wν |S1 ⇐⇒ wµ|∆− = wν |∆− .

The proof of Lemma will be given below. Note that it implies that the universal
Teichmüller space T can be identified with the space of normalized quasidiscs in C.

This last definition of T allows us to consider the elements of T as univalent
holomorphic functions in ∆− (which extend to quasiconformal homeomorphisms of
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the extended complex plane C and fix the points ±1 and −i). For such functions it is
standard to use an alternative normalization by fixing their Laurent decompositions
at ∞ in the form

f(z) = z +
b1

z
+

b2

z2
+ . . . .

The complex numbers b1, b2, . . . play the role of complex coordinates on T . Accord-
ing to the classical area theorem, they satisfy the inequality

∞∑
n=1

n|bn|2 ≤ 1 .

A relation between two different interpretations of Teichmüller space T , namely,
as the space of normalized quasisymmetric homeomorphisms of S1 and the space of
normalized quasidiscs in C, can be established in the following way.

If f is a given quasisymmetric homeomorphism of S1, then it can be extended to
a quasiconformal homeomorphism of the unit disc ∆, associated with some Beltrami
differential µ. Then the corresponding quasidisc

∆µ = wµ(∆)

will not depend on the choice of the quasiconformal extension of f to ∆.
Conversely, let ∆µ be the quasidisc, corresponding to a quasiconformal map

with the complex dilatation µ. Since both maps wµ : ∆ → ∆µ and wµ : ∆ → ∆ are
quasiconformal and have the same Beltrami potential µ in ∆, the map ρ := wµ◦w−1

µ

defines a conformal transform of the unit disc ∆ onto the quasidisc ∆µ. Denote this
map by ρ+, and by ρ− : ∆− → ∆µ

− a conformal map of ∆− onto the exterior
∆µ
− of the closed quasidisc ∆µ, provided by the Riemann mapping theorem. We

associate with the quasidisc ∆µ the quasisymmetric homeomorphism of S1, given
by the formula

f := ρ−1
+ ◦ ρ− |S1 .

The constructed correspondences preserve the normalizations and so establish a
relation between two different interpretations of the universal Teichmüller space T .

We give now the proof of the Lemma, formulated above.

Proof of Lemma. Suppose first that wµ|∆− = wν |∆− . Then the maps wµ ◦ w−1
µ and

wν ◦w−1
ν are both conformal in ∆+, which they map onto the same quasidisc. Being

normalized, they should agree on S1. But wµ|S1 = wν |S1 , so we should also have
wµ|S1 = wν |S1 .

Conversely, suppose that wµ|S1 = wν |S1 . Consider a map w of the extended
complex plane C, given by

w =

{
wµ ◦ (wν)−1 on wν(∆−) ,

[wµ ◦ (wµ)−1] ◦ [wν ◦ (wν)−1] on wν(∆+) .

It follows from the assumption wµ|S1 = wν |S1 that w is a homeomorphism of C.
Moreover, w is conformal on wν(∆−) by construction and w is conformal on wν(∆+),
since both maps wµ ◦ (wµ)−1 and wν ◦ (wν)−1 are conformal there. It follows from
the quasiconformal extension property (cf. [49], Lemma I.6.1) that w extends to
a conformal map of C, i.e. to a fractional-linear automorphism of C. Since it is
normalized, it should be equal to identity, so wµ|∆− = wν |∆− .
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The universal Teichmüller space T can be provided with a natural metric, called
the Teichmüller distance, which can be defined as follows. Representing the points
of T as normalized quasiconformal self-homeomorphisms of ∆, fixing the points ±1
and −i, we can define the distance between two points [w1], [w2] of T as

τ([w1], [w2]) :=
1

2
inf{log Kw2◦w−1

1
: w1 ∈ [w1], w2 ∈ [w2]} ,

where Kw is the maximal dilatation of a quasiconformal map w (cf. Sec. 6.1). This
metric converts T into a complete metric space (cf. [49], Sec. III.3.2). Moreover, it
can be shown that T is contractible (cf. [49], Theor. III.3.2).

11.2 Kähler structure of the universal Techmüller

space

We shall study the Kähler geometry of the universal Teichmüller space T , using an
embedding of T into the space of quadratic differentials, proposed by L.Bers. This
embedding will allow us to introduce complex coordinates on T . It is convenient
to use for its definition the model of T as the space of normalized quasidiscs ∆µ =
wµ(∆+) or, which is the same, the space of normalized conformal maps wµ of ∆−.
By using a suitable Möbius transform, we can substitute here the disc ∆+ by the
upper halfplane H+ and represent T as the space of normalized quasidiscs wµ(H+),
i.e. the images of the upper halfplane H+ under quasiconformal homeomorphisms
wµ of the extended complex plane C, which are conformal on H− and fix the points
0, 1,∞.

Suppose that [µ] is an arbitrary point of T , represented by a normalized quasidisc
wµ(H+), and define a map

Ψ : [µ] 7−→ ψ[µ] := S[wµ|H− ] , (11.1)

where S denotes the Schwarzian (cf. Sec. 10.2). Due to the invariance of the
Schwarzian under the Möbius transformations, the image of this map ψ[µ] depends
only on the class [µ] of the Beltrami differential µ in T and is a holomorphic function
in H−. The converse is also true: if ψ[µ] = ψ[ν], then [µ] = [ν] in T . Indeed, consider
the conformal map h := wµ ◦ (wν)−1 from wν(H−) to wµ(H−). Then, applying the
transformation rule (10.8) for the Schwarzian on H−, we shall have

S[wµ] = S[h ◦ wν ] = (S[h] ◦ wν) (wν)′2 + S[wν ] .

Since S[wµ] = S[wν ] in H−, it follows that S[h] = 0 in H−. So h is a fractional-linear
transformation (cf. Sec. 10.2), which is normalized (i.e. fixes the points 0, 1,∞).
Hence, h is the identity, which implies that [µ] = [ν] in T .

The transformation rule for the Schwarzian (10.8) suggests that the image ψ[µ]
of a Beltrami differential µ ∈ B(H−) is a holomorphic quadratic differential in H−.
So the map (11.1) defines an embedding of the universal Teichmüller space T into
the space of holomorphic quadratic differentials in H−, called the Bers embedding .

We have already considered in Sec. 10.2 a natural hyperbolic norm on the space
of quadratic differentials. In the case of H− it is equal to

‖ψ‖2 := sup
z∈H−

4y2|ψ(z)|
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for a quadratic differential ψ. It follows from Theor. 11 in Sec. 10.2 that

‖ψ[µ]‖2 ≤ 6

for any Beltrami differential µ ∈ B(H−). Denote by B2(H−) the space of holomor-
phic quadratic differentials in H− with a finite norm:

B2(H−) = {holomorphic quadratic differentials ψ on H− : ‖ψ‖2 < ∞} .

So we have an embedding
Ψ : T −→ B2(H−)

of T into a bounded subset in B2(H−). It can be shown that it is a homeomorphism
(with respect to the topology on T , determined by the Teichmüller distance) onto
the image of Ψ (cf. [49], Theor. III.4.1). The image Ψ(T ) is an open subset in
B2(H−), which contains the ball of radius 1/2 (cf. [1]). Moreover, it is known (cf.
[20]) that it is a connected contractible set.

Using Bers embedding, we can introduce a complex structure and complex coor-
dinates on the universal Teichmüller space T by pulling them back from the complex
Banach space B2(H−). It provides T with the structure of a complex Banach man-
ifold. Consider now the natural projection of the space of Beltrami differentials
to the universal Teichmüller space, defined in the beginning of Sec. 11.1. In our
realization of T this map is given by the projection

Φ : B(H+) −→ T = B(H+)/ ∼ .

Then it is holomorphic with respect to the introduced complex structure on T (cf.
[56], Ch. 3.4). So the composition map

F := Ψ ◦ Φ : B(H+) −→ B2(H−)

is also holomorphic.
We study next the tangent structure of this map, i.e. the differential of F . We

describe the tangent bundle TT , using the definition of T in terms of Beltrami
differentials

T = B(H+)/ ∼ .

Due to the homogeneity of T with respect to the right action of quasisymmetric
homeomorphisms of R, it’s sufficient to determine the tangent space T0T at the
origin, corresponding to the identity homeomorphism, associated with µ = 0.

Let µ ∈ L∞(H+) represents an arbitrary tangent vector from T0B(H+). Then
for the corresponding quasiconformal map wtµ we’ll have an expansion

wtµ(z) = z + tw1(z) + o(t)

for t → 0, where o(t) := tδ(z, t) and δ(z, t) → 0 uniformly in z, when z belongs to a
compact subset in C. The term

w1(z) ≡ ẇ[µ](z)

represents the first variation of the quasiconformal map wtµ with respect to µ. We
substitute wtµ into the Beltrami equation and differentiate it with respect to t at
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t = 0. Since ∂/∂t commutes with ∂/∂z and ∂/∂z̄ for almost all z, being applied to
wtµ(z) (cf. [2]), we obtain that

∂

∂z̄
(ẇ[µ](z)) = µ(z)

for almost all z, i.e. ẇ[µ](z) satisfies the ∂̄-equation. Hence its solution can be given
by the Cauchy-Green formula: if µ has a compact support in C, then any solution
is given by

− 1

π

∫

C

µ(ζ)

ζ − z
dξdη for ζ = ξ + iη

plus an arbitrary entire function, which in our case can be only a linear function of
the form (cf. [1])

A + Bz = (z − 1)

∫

C

µ(ζ)

ζ
dξdη − z

∫

C

µ(ζ)

ζ − 1
dξdη .

Altogether it gives the following formula for ẇ[µ](z)

w1(z) = ẇ[µ](z) = −z(z − 1)

π

∫

C

µ(ζ)

ζ(ζ − 1)(ζ − z)
dξdη , (11.2)

which holds for all µ ∈ L∞(H+) (the restriction on the support of µ being compact
is removed by a standard approximation argument, cf. [1]).

We are now able to prove the following

Proposition 20 ([1, 56]). The differential of the map

F = Ψ ◦ Φ : B(H+) −→ B2(H−)

at zero is given by the formula

d0 (Ψ ◦ Φ) [µ](z) = − 6

π

∫

H+

µ(ζ)

(ζ − z)4
dξdη , z ∈ H− , (11.3)

for µ ∈ B(H+).

Proof. Fix z0 ∈ H−. We want to find the derivative of the function

ϕ(t, z) := S[wtµ](z) = F [tµ](z)

at t = 0. By denoting w := wtµ, the derivative with respect to t by ”dot”, and
derivative with respect to z by ”prime”, we get

ϕ̇ =

(
w
′′′

w′ −
3

2

(
w′′

w′

)2
)·

=
(w′)3ẇ

′′′ − ẇ′(w′)2w
′′′ − 3ẇ′′(w′)2w′′ + 3ẇ′w′(w′′)2

(w′)4
.

For t = 0 we have w(z) ≡ z, so w′ ≡ 1, w′′ = w
′′′ ≡ 0. Hence, the above formula

reduces to
∂ϕ

∂t

∣∣∣∣
t=0

=
(w′)3ẇ

′′′

(w′)4
= ẇ

′′′
.
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But the formula (11.2) implies that

ẇ(z) = −z(z − 1)

π

∫

H+

µ(ζ)

ζ(ζ − 1)(ζ − z)
dξdη

(note that µ ≡ 0 on H−). Differentiating this formula three times over z, we obtain
the desired formula (11.3).

In addition to formula (11.3), it may be proved (cf. [56], Theor. 3.4.5) that the
operator d0F is a bounded linear operator and estimate its norm by an absolute
constant.

We describe the kernel of the differential d0F . We note that there is a natural
pairing between the space A2(H+) of L1-integrable holomorphic quadratic differen-
tials in H+ and the space B(H+) of Beltrami (−1, 1)-differentials in H+, denoted
by

< µ, ψ >:=

∫

H+

µψ . (11.4)

In terms of this pairing, the kernel of d0F can be identified as follows.

Theorem 12 (Teichmüller lemma). The kernel of d0F coincides with the subspace

N ≡ A2(H+)⊥ = {µ ∈ L∞(H+) : < µ, ψ >= 0 for all ψ ∈ A2(H+)} .

The proof of this Lemma may be found in ([1], Sec.IV(D); [56], Sec.3.7).

It will be useful to summarize the previous results also in the case of the unit
disc ∆ = ∆+. The Bers embedding for this case coincides with the map

F : B(∆+) −→ B2(∆−) ,

associating with a Beltrami differential µ ∈ B(∆+) in the unit disc ∆+ the restriction
S[wµ]|∆− of the Schwarzian S[wµ] to the exterior ∆− = {|z| > 1} ∪∞ of the closed
unit disc ∆+ on the Riemann sphere C. The image of this map is contained in the
space of holomorphic quadratic differentials in ∆− with a finite norm

‖ψ‖2 := sup
z∈∆−

(1− |z|2)2|ψ(z)| < ∞ .

The formula for the differential d0F is given by

d0F [µ](z) = − 6

π

∫

∆+

µ(ζ)

(ζ − z)4
dξdη , z ∈ ∆− , (11.5)

for µ ∈ L∞(∆+). The kernel of d0F is equal to

N ≡ A2(∆+)⊥ = {µ ∈ L∞(∆+) : < µ, ψ >= 0 for all ψ ∈ A2(∆+)} .

This definition is equivalent to the following (cf. [56], Sec. 3.7.2)

N = {µ ∈ L∞(∆) :

∫

∆

µ(ζ)

(ζ − z)4
dξdη = 0 for all z ∈ ∆−} .
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The formulas (11.3),(11.5) suggest how a Kähler metric on T can be defined.
Namely, we employ the Ahlfors map (cf. [3]): L∞(∆) −→ B2(∆), given by

L∞(∆) 3 µ 7−→ ϕ[µ](z) =

∫

∆

µ(ζ)

(1− zζ̄)4
dξdη .

It associates with any µ ∈ L∞(∆) a holomorphic quadratic differential ϕ[µ] with a
finite norm ‖ϕ‖2 = supz∈∆(1 − |z|2)2|ϕ(z)| < ∞. The kernel of this map coincides
with N = A2(∆+)⊥. Now we can define formally a Hermitian metric on T by setting
for two tangent vectors µ, ν in T0T = L∞(∆)/N :

(µ, ν) :=< µ, ϕ[ν] >=

∫

∆

∫

∆

µ(z)ν(ζ)

(1− zζ̄)4
dξdη dxdy . (11.6)

However, this metric is only densely defined. More precisely (cf. [59]), for a general
µ ∈ L∞(∆) its image ϕ[µ] in B2(∆) may be not integrable, i.e. it does not belong,
in general, to A2(∆), in which case the integral in (11.6) will diverge. In fact, the
formula (11.6) is correctly defined, if the tangent vectors µ, ν in T0T are sufficiently
smooth. To formulate this smoothness condition more precisely, we realize T as the
space of normalized quasisymmetric homeomorphisms of S1. Then a tangent vector
µ ∈ L∞(∆) = T0B(∆) will correspond under the differential d0Φ to the vector field
v = v(θ)∂/∂θ on S1 of the form

v(θ)
∂

∂θ
= ẇ[µ](z)

∂

∂z
, z = eiθ ,

where ẇ[µ] is the derivative with respect to t of the one-parameter flow wtµ of
quasisymmetric homeomorphisms:

wtµ(z) = z + tẇ[µ](z) + o(t) for t → 0 .

Then it may be proved (cf. [59]) that the integral in (11.6) converges, if the tangent
vectors µ, ν in T0T correspond to C3/2+ε-smooth vector fields on S1. Whenever the
metric (11.6) is well-defined, it determines a Kähler metric, in particular, it defines
a Kähler metric on the ”smooth” part of T .

11.3 Teichmüller spaces T (G) and Diff+(S1)/Möb(S1)

The universal Teichmüller space T contains, as its complex submanifolds, all clas-
sical Teichmüller spaces T (G), where G is a Fuchsian group (cf. [49, 56]). In
particular, it is true for all Teichmüller spaces of compact Riemann surfaces. This
property of T motivates the use of the term ”universal” in the name of T .

With an arbitrary Fuchsian group G we associate the Riemann surface X :=
∆/G, uniformized by the unit disc ∆. By definition, T (G) consists of quasisymmetric
homeomorphisms f ∈ QS(S1), which are G-invariant in the following sense:

f ◦ g ◦ f−1 belongs to Möb(S1) for all g ∈ G ,

modulo fractional-linear automorphisms of the disc ∆. If we denote by QS(S1)G the
subset of G-invariant quasisymmetric homeomorphisms in QS(S1), then

T (G) = QS(S1)G/Möb(S1) .
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The universal Teichmüller space T itself corresponds to the Fuchsian group G = {1}.
The various interpretations of the universal Teichmüller space T , given in Sec. 11.1,

are compatible with the notion of G-invariance. In particular, the Teichmüller spaces
T (G) admit a description in terms of G-invariant Beltrami differentials. More pre-
cisely, denote by B(∆)G the subspace of B(∆), consisting of Beltrami differentials
µ, satisfying the relation

µ(gz)
g′(z)

g′(z)
= µ(z) almost everywhere on ∆ for all g ∈ G .

Then we’ll have, as in Sec. 11.1:

T (G) = B(∆)G/ ∼ ,

where µ ∼ ν iff wµ = wν on S1 or,equivalently, wµ|∆− = wν |∆− .
We can associate with a G-invariant Beltrami differential µ a Fuchsian group

Gµ, conjugate to G:

Gµ := wµGw−1
µ ,

where wµ is the quasiconformal homeomorphism of C, leaving ∆± invariant (cf.
Sec. 11.1).

We have a natural quasiconformal map of the Riemann surface X := ∆/G onto
another Riemann surface Xµ := ∆/Gµ, which is biholomorphic precisely, when
µ ∈ Möb(S1). Hence, one can say that the space T (G) parametrizes, with the help
of the map µ 7→ Gµ, different complex structures on the Riemann surface X := ∆/G,
which can be obtained from the original one by quasiconformal deformations.

On the other hand, we can associate with a G-invariant Beltrami differential
µ ∈ B(∆)G another conjugated group

Gµ := wµG(wµ)−1 ,

operating properly discontinuously on the quasidisc ∆µ := wµ(∆). Here, wµ is the
quasiconformal homeomorphism of C, which is conformal on ∆− (cf. Sec. 11.1). The
group Gµ is a Kleinian group, called otherwise a quasi-Fuchsian group (cf. [49, 56]).
The Riemann surface Xµ is biholomorphic to ∆µ/Gµ (cf. [56], Theor. 1.3.5). We
note also that the Riemann surface ∆µ

−/Gµ is biholomorphic to the Riemann surface
∆−/G, due to the conformality of wµ on ∆−.

The definition and main properties of the Bers embedding, given in Sec. 11.2,
extend to the Teichmüller spaces T (G). For the case of the unit disc ∆ ≡ ∆+ the
Bers embedding is the map

F : B(∆+)G −→ B2(∆−)G ,

associating with a Beltrami differential µ ∈ B(∆+)G the restriction S[wµ]|∆− of the
Schwarzian S[wµ] to ∆−. The image of this map is contained in the space B2(∆−)G

of G-invariant holomorphic quadratic differentials in ∆− with a finite norm

‖ψ‖2 := sup
z∈∆−

(1− |z|2)2|ψ(z)| < ∞ .
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The formula for the differential d0F has the form

d0F [µ](z) = − 6

π

∫

∆+

µ(ζ)

(ζ − z)4
dξdη , z ∈ ∆− ,

for µ ∈ L∞(∆+)G. The kernel of d0F is given by

NG ≡ (A2(∆+)G)⊥ = {µ ∈ L∞(∆+)G : < µ, ψ >= 0 for all ψ ∈ A2(∆+)} .

This definition is equivalent to

NG = {µ ∈ L∞(∆)G :

∫

∆

µ(ζ)

(ζ − z)4
dξdη = 0 for all z ∈ ∆−} .

So the tangent space of T (G) at the origin coincides with the space L∞(∆)G/NG.
As in Sec. 11.2, there is the Ahlfors map L∞(∆)G/NG −→ B2(∆)G, given by

L∞(∆)G 3 µ 7−→ ϕ[µ](z) =

∫

∆

µ(ζ)

(1− zζ̄)4
dξdη .

Using this map, we can define the Weil–Petersson metric on T (G), as in Sec. 11.2,
by setting for two tangent vectors µ, ν in T0T (G) = L∞(∆)G/NG:

gG(µ, ν) :=

∫

∆/G

∫

∆

µ(z)ν(ζ)

(1− zζ̄)4
dξdη dxdy . (11.7)

As was pointed out in Sec. 11.2, the image ϕ[µ] ∈ B2(∆)G of the Ahlfors map
for a general Fuchsian group G may not belong to the space A2(∆)G of integrable
holomorphic quadratic differentials, so the formula (11.7) for the metric gG(µ, ν)
is ill-defined for general Fuchsian groups. But in the case of finite-dimensional
Teichmüller spaces T (G) this difficulty does not show up, since in this situation
B2(∆)G = A2(∆)G (cf. [56]), and the introduced metric coincides with the standard
Weil–Petersson metric on the finite-dimensional Teichmüller spaces T (G). Moreover,
S.Nag has proved (cf. [59]) that the metric gG(µ, ν) on T (G) can be obtained from
the metric (µ, ν) on T by a certain reduction procedure. This procedure involves a
regularization of the integral

(µ, ν) =

∫

∆

∫

∆

µ(z)ν(ζ)

(1− zζ̄)4
dξdη dxdy =

∫

∆

µ · ϕ[ν] . (11.8)

To define the regularization, we rewrite the integral (11.8) in the form

(µ, ν) = lim
r→1−0

gr(µ, ν)

where

gr(µ, ν) =

∫

∆r

µ · ϕ[ν] , (11.9)

and ∆r := {z ∈ ∆ : |z| < r}, 0 < r < 1.
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In the case when µ, ν are G-invariant, i.e. belong to L∞(∆)G/NG, the integral
(11.8) coincides with

n

∫

∆/G

µ · ϕ[ν] = ngG(µ, ν) ,

where n is the number of copies of the fundamental domain ∆/G, contained in ∆.
Hence, this integral must diverge, if the group G has infinitely many elements. The
integral (11.9) by the same argument is proportional to nrgG(µ, ν), where nr is the
number of copies of the fundamental domain ∆/G, contained in ∆r. It follows that
the integral (11.9) may be regularized by dividing it by a quantity, proportional to
nr. More precisely, the following assertion is true .

Proposition 21 ([59]). For any finite-dimensional Teichmüller space T (G) its Weil–
Petersson metric gG(µ, ν) may be computed by the formula

gG(µ, ν)

gG(µ0, µ0)
= lim

r→1−0

gr(µ, ν)

gr(µ0, µ0)
,

where µ, ν ∈ L∞(∆)G, and µ0 ∈ L∞(∆)G/NG is an arbitrary nonzero tangent vector
from T0T (G).

As we have remarked at the beginning of Sec. 11.1, the universal Teichmüller
space T contains the homogeneous space S = Diff+(S1)/Möb(S1) as its ”smooth”
part:

S = Diff+(S1)/Möb(S1) ↪→ T = QS(S1)/Möb(S1) .

In Sec. 10.3 we have defined the structure of a Kähler–Frechet manifold on S.
We recall the definition of the Kähler metric g on this space in terms of Fourier
decompositions. For given tangent vectors u, v ∈ ToS with Fourier decompositions

u =
∑

n 6=−1,0,1

unen and v =
∑

n 6=−1,0,1

vnen ,

the value of g on these vectors is equal to

g(u, v) = 2 Re

( ∞∑
n=2

unv̄n (n3 − n)

)
. (11.10)

As we have noted before, the series on the right hand side is absolutely converging,
if the vector fields u, v are of the class C3/2+ε on S1.

It was pointed out in [59] that the Kähler metric g on S coincides (up to a con-
stant factor) with the Weil–Petersson metric (11.6) on S, induced by the embedding
S ↪→ T . (Note that the metric (11.6) on the smooth part S of T is correctly defined,
as we have remarked in Sec. 11.2.) Using the interpretation of tangent vectors from
T0T , given at the end of Sec. 11.2, we can express the equality of these metrics on S
as follows. Given two tangent vectors u, v ∈ T0S, written in the form u = ẇ[µ]∂/∂z,
v = ẇ[ν]∂/∂z, we have

g(µ, ν) = λ

∫

∆

∫

∆

µ(z)ν(ζ)

(1− zζ̄)4
dξdη dxdy
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for a suitable choice of the constant λ. By introducing this constant into the defini-
tion of the Kähler metric on S, we can make the embedding S ↪→ T an isometry.

It is an interesting question, how the smooth part S is placed inside the universal
Teichmüller space T with respect to the classical Teichmüller spaces T (G). It can
be shown (cf. [12]) that the quasidiscs, corresponding to all points of T (G), except
the origin, have fractal boundaries (i.e. boundaries of Hausdorff dimension> 1) in
contrast with the qiasidiscs, corresponding to points of S, which have C∞-smooth
boundaries.

11.4 Grassmann realization of the universal

Teichmüller space

The Grassmann realization of the universal Teichmüller space T is based on the fact
that the group QS(S1) of quasisymmetric homeomorphisms of the circle acts on the
Sobolev space V of half-differentiable functions on S1 (cf. Sec. 9.2).

Suppose that f : S1 → S1 is a homeomorphism of S1, preserving its orientation.
We define an operator Tf by the formula

Tf (ξ) := ξ ◦ f − 1

2π

∫ 2π

0

ξ (f(θ)) dθ

for ξ ∈ V . This operator has the following remarkable property.

Proposition 22 ([58]). The operator Tf acts on V (i.e. Tf (ξ) belongs to V for any
ξ ∈ V ) if and only if f ∈ QS(S1). Moreover, if f extends to a K-quasiconformal
homeomorphism of the disc ∆, then the operator norm of Tf does not exceed√

K + K−1.

The proof of this assertion, given in [58], uses the interpretation of the space V
in terms of harmonic functions in the disc, given at the end of Sec. 9.1.

Transformations of the form Tf with f ∈ QS(S1) preserve the symplectic form
ω, i.e. they are symplectic transformations of V .

Proposition 23 ([58]). If f ∈ QS(S1), then

ω(f ∗(ξ), f ∗(η)) = ω(ξ, η)

for any ξ, η ∈ V . Moreover, the complex-linear extension of the QS(S1)-action on V
to the complexification V C preserves the ”holomorphic” subspace W+ (cf. Sec. 9.1)
if and only if f is a Möbius transformation, i.e. f ∈ Möb(S1). In the latter case,
Tf acts as a unitary operator on W±.

Proof. For homeomorphisms f of the class C1 the first assertion is a corollary of
the change of variables formula. For a general quasisymmetric homeomorphism
f ∈ QS(S1) the assertion follows from the fact (cf. [49]) that f may be uniformly
approximated by real analytic quasisymmetric homeomorphisms of S1, having the
same quasiconformal constant K as f .

If the action of f on V C preserves W+, then it should extend to a map ∆ → ∆.
This map must be a biholomorphism, since f is a homeomorphism, hence, it is a
Möbius transformation. It is clear from the definition of the inner product on V C

(cf. Sec. 9.1) that such a transformation acts unitarily on W±.
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The symplectic form ω on V is uniquely determined by the invariance property,
stated in the above Proposition. In fact, a much stronger assertion is true.

Proposition 24 ([58]). Suppose that ω1 is a real-valued continuous bilinear form
on V such that

ω1(f
∗(ξ), f ∗(η)) = ω1(ξ, η)

for any f ∈ Möb(S1) and arbitrary ξ, η ∈ V . Then ω1 is a real multiple of ω, in
particular, any form ω1, satisfying the hypothesis of the Proposition, coincides nec-
essarily with a symplectic form, invariant under quasisymmetric homeomorphisms
of S1.

Proof. Note that both forms ω and ω1 define the duality maps

Σ : V −→ V ∗ and Σ1 : V −→ V ∗ ,

given by
Σ(ξ) := ω(·, ξ) , Σ1(ξ) := ω1(·, ξ)

for ξ ∈ V . In the case of ω the duality operator Σ coincides, in fact, with the (minus
of) J0. In particular, Σ is a bounded invertible operator, defining an isomorphism
between V and its dual.

We consider an intertwining operator

M := Σ−1 ◦ Σ1 : V −→ V .

It is a bounded linear operator on V , defined by the equality

ω(ξ, Mη) = ω1(ξ, η) .

Note that M commutes with any invertible bounded linear operator on V , preserving
the forms ω and ω1. Indeed, if T is such an operator, then

ω(Tξ, TMη) = ω(ξ, Mη) = ω1(ξ, η) = ω1(Tξ, Tη) = ω(Tξ,MTη) .

Since T is invertible, it implies that

ω(ξ, TMη) = ω(ξ,MTη)

for any ξ, η ∈ V . Since the duality operator Σ, determined by ω, is an isomorphism,
the last equality implies that TM = MT , as asserted.

We have to show that the intertwining operator M coincides with the scalar
operator const · I. We prove it by considering the complex-linear extension of M to
the complexification V C.

Consider the complexified action f 7→ Tf of the Möbius group Möb(S1) on V C.
Then its restriction to W+ can be identified with the standard unitary representation
of the group SL(2,R) on the space of L2-holomorphic functions in the disc ∆ (cf.
[58], lemma 4.6), hence, it is irreducible. The same is true for the restriction of
f 7→ Tf to W−. Moreover, W± are the only irreducible invariant subspaces of the
representation f 7→ Tf of Möb(S1) on V C.

As we have just proved, the intertwining operator M commutes with all operators
Tf : V C → V C with f ∈ Möb(S1). Since W± are the only invariant subspaces for all
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such Tf , the operator M should map W+ either to W+ or W−. If M maps W+ into
W+, then by Schur’s lemma it should be a scalar, which is real, since the operator
M was real. If the other possibility (when M maps W+ into W−) would realize, we
would substitute M by its complex conjugate, mapping W+ into W+, which should
be again a real scalar. But in this case M cannot map W+ into W−, so the second
possibility does not occur.

The Propositions 22 and 23 imply that the quasisymmetric homeomorphisms
from QS(S1) act on the Hilbert space V by bounded symplectic operators. Hence,
we have a map

T = QS(S1)/Möb(S1) −→ Sp(V )/U(W+) . (11.11)

Here, by Sp(V ) we denote the symplectic group of V , consisting of linear bounded
symplectic operators on V , and by U(W+) its subgroup, consisting of unitary oper-
ators, i.e. operators, whose complex-linear extensions to V C preserve the subspace
W+. We describe these groups in more detail.

Recall that the complexified Hilbert space V C is decomposed into the direct sum

V C = W+ ⊕W−

of subspaces

W+ = {f ∈ V C : f(z) =
∑

k>0

xkz
k} , W− = W+ = {f ∈ V C : f(z) =

∑

k<0

xkz
k} .

In terms of this decomposition any linear operator A : V C → V C can be written in
the block form

A =

(
a b
c d

)
,

where

a : W+ → W+ , b : W− → W+ , c : W− → W− , d : W+ → W− .

In particular, the linear operators on V C, obtained by the complex-linear extensions
of operators A : V → V , have the block form

A =

(
a b
b̄ ā

)
,

where we identify W− with the complex conjugate W+.
An operator A : V → V belongs to the symplectic group Sp(V ), if it preserves

the symplectic form ω. This condition is equivalent to the following relation:

AtJ0A = J0 ,

where

J0 =

(−i 0
0 i

)
.

In other words, the condition A ∈ Sp(V ) can be written in the form:

A =

(
a b
b̄ ā

)
∈ Sp(V ) ⇐⇒ āta− btb̄ = 1 , ātb = btā . (11.12)
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Here at, bt denote the transposed operators

at : W ′
+ → W ′

+ ⇐⇒ at : W− → W− , bt : W ′
+ → W ′

− ⇐⇒ bt : W− → W+ ,

where the space W ′
+, dual to W+, is identified with W− with the help of the inner

product < · , · > (cf. Sec. 9.1).
The unitary group U(W+) is embedded into Sp(V ) as a subgroup, consisting of

block matrices

U(W+) 3 A =

(
a 0
0 ā

)
.

We return to the map (11.11). The space

Sp(V )/U(W+) ,

standing on the right hand side of the formula (11.11), can be considered as an
infinite-dimensional Siegel disc. To justify this assertion, we should study the action
of QS(S1) on compatible complex structures on the space V .

As we have proved above, Möbius transformations f ∈ Möb(S1) define, via the
representation f 7→ Tf , unitary operators in U(W+), in particular such transforma-
tions preserve the complex structure J0 on V . If a quasisymmetric homeomorphism
f does not belong to Möb(S1), it does not preserve the original complex structure
J0, transforming it into another complex structure Jf , which is also compatible with
the symplectic form ω. We explain this assertion in more detail.

Any complex structure J on V , compatible with ω, determines a decomposition

V C = W ⊕W (11.13)

into the direct sum of subspaces, isotropic with respect to ω. This decomposition is
orthogonal with respect to the Kähler metric gJ on V C, determined by J and ω. The
subspaces W and W are identified with, respectively, the (−i)- and (+i)-eigenspaces
of the operator J on V C. Conversely, any decomposition (11.13) of the space V C

into the direct sum of isotropic subspaces determines a complex structure J on V C,
which is equal to −i · I on W and +i · I on W and is compatible with ω.

This argument shows that the symplectic group Sp(V ) acts transitively on the
space J (V ) of complex structures J , compatible with ω. It follows that the space
Sp(V )/U(W+) can be identified with the space J (V ). Otherwise, it may be con-
sidered as the space of the so called positive polarizations of V , i.e. decompositions
(11.13) of V C into the direct sum V C = W ⊕ W of isotropic subspaces of V C,
orthogonal with respect to the Kähler metric gJ on V C.

We are ready to give a Siegel disc interpretation of the space Sp(V )/U(W+). By
definition, the Siegel disc is the set of bounded linear operators Z of the form

D = {Z : W+ → W− is a symmetric bounded linear operator with Z̄Z < I} .

The symmetricity of Z means, as above, that Zt = Z and the condition Z̄Z < I
means that the symmetric operator I − Z̄Z is positive definite. In order to identify
J (V ) with D, consider the action of the group Sp(V ) on D, given by fractional-linear
transformations A : D → D of the form

Z 7−→ (āZ + b̄)(bZ + a)−1 ,
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where A =

(
a b
b̄ ā

)
∈ Sp(V ). The invertibility of the operator bZ + a follows from

the invertibility of the operator a (cf. (11.12)) and the inequality (cf. (11.12))

bZZ̄b̄t < bb̄t < aāt .

It’s evident that A : D → D. The isotropy subgroup of the point Z = 0 consists of
the operators A ∈ Sp(V ), for which b̄a−1 = 0, i.e. b = 0. This subgroup coincides
with U(W+). It remains to check that the action of Sp(V ) on D is transitive, i.e.
to construct for a given Z ∈ D an operator A, sending Z = 0 to this Z. Such an
operator may be given by

A =

(
a b
b̄ ā

)
(11.14)

with b = āZ̄ and

āt(1− Z̄Z)a = 1 ⇒ (āt)−1a−1 = 1− Z̄Z ⇒ a = (1− Z̄Z)−1/2 .

This proves that the space

J (V ) = Sp(V )/U(W+)

may be identified with the Siegel disc D.
In Sec. 5.1 we have introduced the Grassmanian Grb(V

C), consisting of the images
of bounded linear operators W+ → W . It is clear from the given description of D
that it is embedded in Grb(V

C) as a complex submanifold.
Summarizing the argument above, we have the following

Proposition 25 ([58]). The map

T = QS(S1)/Möb(S1) ↪→ Sp(V )/U(W+) = D ↪→ Grb(V
C)

is an equivariant holomorphic embedding of Banach manifolds.

11.5 Grassmann realization of Diff+(S1)/Möb(S1)

and Diff+(S1)/(S1)

We have constructed in the previous Sec. 11.4 the natural embedding

T = QS(S1)/Möb(S1) ↪→ Sp(V )/U(W+) = D ↪→ Grb(V
C) .

Recall now that in Sec. 10.3 we have identified the space S with the ”smooth” part
of the universal Teichmüller space T . Combining the above embedding

T ↪→ Sp(V )/U(W+)

with the embedding
S ↪→ T ,

we obtain an embedding
S ↪→ Sp(V )/U(W+) ,
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giving a realization of S in the Grassmann manifold Grb(V
C).

However, this result may be significantly strengthened by replacing the Grass-
mann manifold Grb(V

C) with its ”regular” part, namely, the Hilbert–Schmidt Grass-
manian GrHS(V ), introduced in Sec. 5.2.

We recall that this Grassmanian GrHS(V ) consists of closed subspaces W ⊂ V
such that the orthogonal projection pr+ : W → W+ is a Fredholm operator, while the
orthogonal projection pr− : W → W− is a Hilbert–Schmidt operator. It was shown
in Sec. 5.2 that GrHS(V ) is a Kähler Hilbert manifold, having as its local model the
Hilbert space HS(W+,W−) of Hilbert–Schmidt operators. Recall (cf. Sec. 5.2) that
GrHS(V ) is a homogeneous space of the Hilbert–Schmidt unitary group UHS(V ),
more precisely

GrHS(V ) = UHS(V )/ U(W+)× U(W−) .

We introduce now, by analogy with the group UHS(V ), the Hilbert–Schmidt sym-
plectic group SpHS(V ). Recall that the symplectic group Sp(V ) consists of bounded
linear operators A : V C → V C, having the block representations of the form

A =

(
a b
b̄ ā

)
,

where
āta− btb̄ = 1 , ātb = btā .

By definition, the group SpHS(V ) ⊂ Sp(V ) consists of transformations A ∈ Sp(V ),
for which the operator b is Hilbert–Schmidt. The unitary group U(W+) is contained
in SpHS(V ) as a subgroup

U(W+) 3 a 7−→ A =

(
a 0
0 ā

)
.

The diffeomorphism group Diff+(S1) acts on the space V by symplectic trans-
formations, given by the same formula, as in Sec. 11.4:

Tf (ξ) := ξ ◦ f − 1

2π

∫ 2π

0

ξ (f(θ)) dθ .

As before, the transformation Tf preserves the subspace W+ ⊂ V if and only if
f ∈ Möb(S1), and in this case Tf ∈ U(W+). The correspondence f 7→ Tf defines an
embedding

S ↪→ SpHS(V )/U(W+) .

Moreover, the following result is true.

Proposition 26 ([57]). The map

S ↪→ SpHS(V )/U(W+) = GrHS(V )

is an equivariant holomorphic embedding.

By analogy with Sec. 11.4, we identify the space SpHS(V )/U(W+) with the space
JHS(V ) of admissible complex structures on V , compatible with the symplectic form
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ω. As in the previous Section, it has a natural realization as a Hilbert–Schmidt Siegel
disc

DHS = {Z : W+ → W− is a symmetric Hilbert–Schmidt operator with Z̄Z < I} .

So, the above Proposition yields a holomorphic embedding

S ↪→ SpHS(V )/U(W+) = DHS .

There is another interpretation of the space S as the space of complex structures,
namely, as the space of admissible complex structures on the loop space ΩG.

There is a natural action of the diffeomorphism group of the circle Diff+(S1) on
the loop group LG by the reparametrization of loops. It is given by the formula

f∗γ(θ) := γ (f(θ))− 1

2π

∫ 2π

0

γ (f(θ)) dθ

for γ ∈ LG, f ∈ Diff+(S1). By identifying ΩG with the subgroup L1(G), it’s evident
that this action can be pushed down to the action of Diff+(S1) on the loop space
ΩG.

From the definition of the symplectic structure ω on ΩG, generated by the form

ω0(ξ, η) =
1

2π

∫ 2π

0

< ξ(eiθ), η′(eiθ) > dθ ,

on Lg, it’s clear (by the change of variables in the integral) that diffeomorphisms
from Diff+(S1) preserve ω, i.e. generate symplectomorphisms of the manifold ΩG.

The complex structure J0 on ΩG is given at the origin o ∈ ΩG by the formula

ξ =
∑

k 6=0

ξkz
k ∈ ΩgC =⇒ J0

o ξ = −i
∑

k>0

ξkz
k + i

∑

k<0

ξkz
k ,

so the tangent subspaces, consisting of vectors of the type (1, 0) and (0, 1), have the
form

T 1,0
o (ΩG) = {ξ =

∑

k<0

ξkz
k ∈ ΩgC}, T 0,1

o (ΩG) = {ξ =
∑

k>0

ξkz
k ∈ ΩgC} .

A diffeomorphism f ∈ Diff+(S1) transforms the complex structure J0 into the com-
plex structure

Jf := f−1
∗ ◦ J0 ◦ f∗ ,

where f∗ is the tangent map to f .

Proposition 27. The complex structure Jf with f ∈ Diff+(S1) coincides with the
original complex structure J0 if and only if f ∈ Möb(S1).

Proof. If the diffeomorphism f ∈ Diff+(S1) does not change the original complex
structure, i.e. defines a biholomorphism of ΩG, provided with the complex structure
J0, it means , in particular, that it preserves the tangent space T 0,1

o (ΩG). Hence,
such a diffeomorphism should preserve the subspace L+GC, implying that it extends
to a biholomorphism of the unit disc ∆. So, f ∈ Möb(S1). The converse assertion
is obvious.
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We shall call the complex structures Jf on ΩG, obtained from J0 by the action
of the diffeomorphism group

J = f−1
∗ ◦ J0 ◦ f∗ ,

the admissible complex structures on ΩG. The Proposition 27 implies that the space
of admissible complex structures on ΩG can be identified with the manifold S.

Recall that the complex structure J0 on ΩG is invariant under the left LG-
translations on the space ΩG and compatible with the symplectic structure ω (in
the sense of Def. 17 from Sec. 1.2.5). Due to the invariance of ω with respect to the
action of the group Diff+(S1), the complex structures Jf are also invariant under
the left LG-translations and compatible with ω. In particular, any such complex
structure J defines a Kähler metric gf on ΩG by the formula

gf (ξ, η) := ω(ξ, Jfη)

for any ξ, η ∈ Tγ(ΩG), γ ∈ ΩG.

Consider now the space R = Diff+(S1)/(S1). Combining the above embedding

S ↪→ SpHS(V )/U(W+) = DHS

with the holomorphic map

R = Diff+(S1)/(S1) −→ S ,

we obtain the Grassmann realization of the space R = Diff+(S1)/(S1):

R −→ SpHS(V )/U(W+) = DHS .

As in the case of S, the space R can be also considered as a space of complex
structures on the loop space ΩG. Recall that the loop space ΩG, provided with the
complex structure J0, admits the following complex homogeneous representation

ΩG = LGC/L+GC .

According to Birkhoff theorem (cf. Sec. 7.3), we can identify a neighborhood of the
origin in ΩG with a neighborhood of the identity in the loop subgroup L−1 GC. If a
diffeomorphism f ∈ Diff+(S1) fixes the origin in ΩG and generates a biholomorphism
of

(ΩG, J0) = LGC/ L+GC ,

it generates also a biholomorphism of L−1 GC. In this case we shall say that the
complex structure Jf , associated with f ∈ Diff+(S1), is equivalent to the original
complex structure J0.

Proposition 28. The complex structure Jf with f ∈ Diff+(S1) is equivalent to the
original complex structure J0 in the above sense if and only if f is a rotation, i.e.
f ∈ S1.

Proof. If the diffeomorphism f ∈ Diff+(S1) generates a biholomorphism of

(ΩG, J0) = LGC/ L+GC ,

fixing the origin, then it leaves the subspace L+GC invariant and generates a biholo-
morphism of L−1 GC. The first property implies that f extends to a biholomorphism
of the unit disc ∆, while the second one implies that f extends to a biholomorphism
of its exterior ∆−, fixing the infinity. Then, by Liouville theorem, f ∈ S1.
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Bibliographic comments

A key reference for this Chapter is the Nag’s book [56]. Most of the assertions in
Sec. 11.1, 11.2, 11.3 may be found there. Prop. 21 is proved in the paper [59]. The
Grassmann approach to the study of the universal Teichmüller space was initiated
by Nag–Sullivan’s paper [58]. All assertions from Sec. 11.4 may be found there.
Prop. 26 is proved in [57].
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Chapter 12

Dirac quantization

This Chapter is devoted to the Dirac definition of the geometric quantization of
classical mechanical systems. In Sec. 12.1 we recall the notion of classical systems
from Hamiltonian mechanics. The geometric quantization of such systems is defined
in Sec. 12.2.

12.1 Classical systems

We start from the definition of a classical (mechanical) system — an object to be
quantized. A classical (mechanical) system is given by a pair (M,A), consisting of
the phase space M of the system and the algebra of observables (Hamiltonians) A.

12.1.1 Phase spaces

Mathematically, the phase manifold M is a smooth symplectic manifold of an even
dimension 2n, provided with a symplectic 2-form ω. Locally, it is diffeomorphic
(and, in fact, symplectomorphic) to the standard model M0 := (R2n, ω0), where ω0

is the standard symplectic form on R2n. In the conventional coordinates (pi, qi),
i = 1, . . . , n, on R2n this form is given by the expression

ω0 =
n∑

i=1

dpi ∧ dqi .

The corresponding local coordinates (pi, qi), i = 1, . . . , n, on M , in which the sym-
plectic form ω takes on the above standard form, are called canonical . The coordi-
nates qi are interpreted as physical ”coordinates”, while pi correspond to physical
”momenta”.

The standard examples of phase spaces, apart from the standard model M0 =
(R2n, ω0), are given by the cotangent bundles and coadjoint orbits of Lie groups.

Example 30 (cotangent bundles). Denote by M the cotangent bundle T ∗N of a
smooth n-dimensional manifold N , called the configuration space. Local canonical
coordinates (pi, qi) on M have the following meaning: q := (q1, . . . , qn) are local co-
ordinates on N , and p := (p1, . . . , pn) are coordinates in the fibre TqN . A symplectic
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2-form ω, given in the introduced local coordinates by the standard formula

ω =
n∑

i=1

dpi ∧ dqi ,

is a correctly defined (global) 2-form on M , as well as a 1-form θ, given in local
coordinates by the expression

θ =
n∑

i=1

pidqi .

It follows that ω = dθ, that is ω in this case is exact. To show that θ is a correctly
defined (global) 1-form, we note that it can be also defined in an invariant way.
Namely, for any p ∈ T ∗

q N and any tangent vector ξ ∈ T(p,q)(T
∗N) it can be given by

θ(ξ) = p(π∗ξ) ,

where π∗ : T (T ∗N) → TN is the map, tangent to the projection π : T ∗N → N .

Example 31 (coadjoint orbits). Consider the coadjoint representation of a Lie
group G on the dual space g∗ to the Lie algebra g of G. It is given by the formula

K : G −→ End g∗ , g 7−→ (
Ad g−1

)∗
.

The orbits of this action (when they are smooth) are symplectic manifolds with
the symplectic structure, given by the Kirillov form, defined in the following way.
Denote by ξ∗ the vector field on g∗, generated by ξ ∈ g via the coadjoint action K.
More precisely,

ξ∗(x) = K∗(ξ)x for x ∈ g∗ ,

where K∗ : g → End g∗ denotes the differential of K : G → End g∗. Then the
Kirillov form is defined by the equality

ω(ξ∗(x), η∗(x)) := x
(
[ξ, η]

)
for ξ, η ∈ g, x ∈ g∗ .

The restriction of this 2-form to a smooth K-orbit defines a symplectic structure on
this orbit.

12.1.2 Algebras of observables

An algebra of observables A, mathematically, is an arbitrary Lie subalgebra of the
Poisson Lie algebra C∞(M,R) of smooth real-valued functions on the phase space
M with respect to the Poisson bracket, determined by the symplectic 2-form ω.

Recall the definition of this bracket. Given a smooth function h ∈ C∞(M,R),
denote by Xh the Hamiltonian vector field on M , associated with h. It is determined
by the following relation

dh(ξ) = ω(Xh, ξ) ,

fulfilled for any vector field ξ on M . Then the Poisson bracket {f, g} of two functions
f, g ∈ C∞(M,R) is uniquely defined by the relation

X{f,g} = [Xf , Xg] .
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Example 32 (Heisenberg algebra). In the case of the standard model M0 = (R2n, ω0)
we can take for the algebra of observables A the Heisenberg algebra heis(R2n). It
is the Lie algebra, generated by the coordinate functions pi, qi, i = 1, . . . , n and 1,
satisfying the following commutation relations

{pi, pj} = {qi, qj} = 0 ,

{pi, qj} = δij for i, j = 1, . . . , n .

We consider heis(R2n) as a ”minimal” algebra of observables on M0. The oppo-
site extreme is the Poisson algebra C∞(M0,R). The Hamiltonian vector field Xf ,
corresponding to an observable f ∈ C∞(M0,R), is given in standard coordinates
(pi, qi) on M0 by the formula

Xf =
n∑

i=1

(
∂f

∂pi

∂

∂qi

− ∂f

∂qi

∂

∂pi

)
.

In particular, Xpi
= ∂

∂qi
, Xqi

= − ∂
∂pi

. The Poisson bracket on M0 is given by the
expression

{f, g} =
n∑

i=1

(
∂f

∂pi

∂g

∂qi

− ∂f

∂qi

∂g

∂pi

)

for f, g ∈ C∞(M0,R).

Example 33 (Hamiltonian algebra). Let Γ be a Lie group of symplectomorphisms,
acting on a phase space M , so that its Lie algebra Lie(Γ) can be regarded as a
subalgebra of the Lie algebra of Hamiltonian vector fields on M . If M is simply
connected, then Lie(Γ) may be also considered, in the dual way, as a subalgebra of
the Poisson algebra C∞(M,R). Namely, it can be identified with the algebra Ham(Γ)
of Hamiltonians (smooth real functions) on M , generating symplectomorphisms from
Γ.

If a Lie group Γ acts on M transitively, such a manifold M is called a homogeneous
symplectic Γ-manifold. It is proved in [46] that any homogeneous symplectic Γ-
manifold M is locally equivariantly symplectomorphic to a coadjoint orbit of Γ or
its central extension Γ̃.

12.2 Quantization of classical systems

Definition 39. Let (M,A) be a classical system. The Dirac quantization of (M,A)
is given by an irreducible Lie-algebra representation

r : A −→ End∗H

of the algebra of observables A in the algebra End∗H of linear self-adjoint operators,
acting in a complex (separable) Hilbert space H, called the quantization space. The
algebra End∗H is provided with the Lie bracket, given by the commutator of linear
operators of the form

~
i
[A,B] =

~
i
(AB −BA) .
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In other words, it is required that

r ({f, g}) =
~
i

(r(f)r(g)− r(g)r(f))

for any f, g ∈ A. We also assume the following normalization condition:

r(1) = id .

If a representation r satisfies all these conditions, except for the irreducubulity, it is
called a prequantization of the system (M,A).

We set ~ = 1 in the sequel for the convenience.

Remark 19. Sometimes it is useful to deal with the complexified algebra of observ-
ables AC instead of A. Its Dirac quantization is given by an irreducible Lie-algebra
representation

r : AC −→ EndH ,

satisfying the normalization condition and the conjugation law

r(f̄) = r(f)∗ for any f ∈ A .

In other words, the complex conjugation in AC should correspond to the Hermitian
conjugation in End H.

Remark 20. The quantization operators r(f) in the Dirac definition are usually
unbounded. In that case we require that all operators r(f) for f ∈ A (or f ∈ AC in
the complexified version) are densely defined and, moreover, have a common dense
domain of definition in H.

Bibliographic comments

The Dirac definition of geometric quantization of classical systems is presented (with
minor modifications) in all books on geometric quantization. A reader may look for
a more detailed exposition [29, 37, 42, 70, 79].



Chapter 13

Kostant–Souriau prequantization

It is difficult (and, often, not possible) to construct the Dirac quantization, defined
in the previous Chapter, for realistic classical systems. However, there exists a
quite general prequantization construction, due to Kostant and Souriau, which is
valid for a large class of phase spaces and the ”maximal” algebra of observables
A = C∞(M,R). We describe it in this Chapter, starting from the simple case of the
cotangent bundle.

13.1 Prequantization of the cotangent bundle

Let N be a smooth n-dimensional manifold and M = T ∗N denotes its cotangent
bundle. Recall (cf. Ex. 30) that the symplectic form ω on T ∗N is given by the for-
mula ω = dθ, where θ is a canonically defined 1-form on M with the local expression
θ =

∑n
i=1 pidqi. We take for an algebra of observables A of our system the Poisson

algebra C∞(M,R) and for the Hilbert prequantization space H the space

H = L2(M,ωn)

of square integrable functions on M with respect to the Liouville measure, given by
ωn. A representation of A = C∞(M,R) in H is given by the following formula

r : f 7−→ r(f) = f − iXf − θ(Xf ) , (13.1)

where f − θ(Xf ) is considered as the multiplication operator on H. Note that
this operator, as well as the Hamiltonian vector field Xf , are correctly defined on
the subspace C∞

0 (M,R) of C∞(M,R), consisting of smooth functions with compact
supports on M .

In particular, for the standard model N = Rn, M = T ∗Rn ∼= R2n the represen-
tation (13.1) acts on the coordinate functions in the following way

r(pj) = pj − iXpj
− θ(Xpj

) = pj − i
∂

∂qj

− pj = −i
∂

∂qj

, (13.2)

r(qj) = qj − iXqj
− θ(Xqj

) = qj − i

(
− ∂

∂pj

)
= qj + i

∂

∂pj

, (13.3)

since Xpj
= ∂/∂qj, Xqj

= −∂/∂pj. Note that this representation is reducible,
even if we restrict it to the ”minimal” Heisenberg algebra heis(R2n). Indeed, the
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operators i ∂
∂pj

and pj + i ∂
∂qj

commute with all operators r(pj), r(qj), being non

scalar. However, we can make the representation of heis(R2n), defined by the above
formulas (13.2),(13.3), irreducible by restricting it to the subspace of H, consisting
of functions, depending only on (qj). Then the representation (13.2),(13.3) will
reduce to the well known Heisenberg representation of heis(R2n) in the space H(q) :=
L2(Rn

(q), d
nq), given by

r(pj) = −i
∂

∂qj

, r(qj) = qj .

We can also construct a dual Heisenberg representation of heis(R2n) in the space
H(p) := L2(Rn

(p), d
np), given by

r(pj) = pj , r(qj) = i
∂

∂pj

.

Remark 21. The ”physical” explanation of the reducibility of the representation

r : heis(R2n) −→ End∗H ,

given by (13.1), is that, according to the Heisenberg uncertainty principle, the ”phys-
ical” quantization space cannot contain the functions, depending on some pair of
variables (pj, qj) simultaneously, as it occurs in the space H = L2(M,ωn).

13.2 Kostant–Souriau (KS) prequantization

13.2.1 Prequantization map

Suppose now that M is a general smooth symplectic manifold of dimension 2n
with symplectic form ω. Take the Poisson algebra C∞(M,R) as the algebra of
observables. We are going to quantize the classical system, represented by the pair
(M,C∞(M,R)).

Let us begin with some heuristic considerations. Note that the symplectic 2-form
ω, being closed, is locally exact, so we can find an open covering {Uα} of M , such
that

ω = dθα on Uα

for some smooth 1-forms θα, defined on Uα. Using these local forms θα, we can apply
the idea, described in the previous Section 13.1, to construct local representation
operators rα in the spaces L2(Uα, ωn) by the formula (13.1) with θ = θα. It turns out
that (under some topological restrictions) we can combine these local representation
operators rα into a unique operator r, which acts, however, not on functions, but on
sections of a certain complex line bundle L over M . The structure of this line bundle
L → M is, in fact, prescribed by the local formulas (13.1) with θ = θα. Namely, the
local expressions Xα − iθα(Xα) (with Xα being a vector field on Uα) in the right
hand sides of the local formulas (13.1) look like local expressions for the covariant
derivative of a connection in a line bundle over M . If these expressions do arise
from some connection ∇ on a line bundle L → M (i.e. if they match together on
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intersections Uα∩Uβ up to gauge transformations, given by the transition functions
of L), then the local representation operators rα(f) in the spaces L2(Uα, ωn) will
match into a global representation operator

r : f 7−→ f − i∇Xf
, f ∈ C∞(M,R) ,

acting on sections of L → M . In this case the curvature of such a connection would
be equal to ω. In particular, the 2-form 1

2π
ω, representing the first Chern class c1(L),

should be integral, i.e.

[
1

2π
ω

]
∈ H2(M,Z) ⊂ H2(M,R) .

From Sec. 8.1 we know that the integrality of [ 1
2π

ω] is not only necessary, but also
sufficient for the existence of a line bundle L → M with a connection ∇. Namely,
rephrasing Prop. 15, we have the following

Proposition 29. Suppose that the manifold M satisfies the following quantization
condition: the cohomology class

[
1

2π
ω

]
is integral in H2(M,R) . (13.4)

Then there exists a Hermitian line bundle L → M , called the prequantization bun-
dle, having a Hermitian connection ∇, whose curvature is equal to ω.

Proof. The only new assertion in this Proposition, compared to Prop. 15, is the
Hermiticity of the connection ∇. Recall (cf. Rem. 16) that under the integrality
condition (13.4) there exists a complex line bundle L → M , such that c1(L) =
[ω/2π]. We take now an arbitrary Hermitian metric and a Hermitian connection ∇′

on L. Note that the curvature ω′ of ∇′ also represents the class c1(L). Hence,

ω = 2πω′ + dβ

for some 1-form β ∈ Ω1(M,R). If the connection ∇′ is represented by a 1-form α′,
we introduce a connection ∇ on L, represented by the 1-form

α = 2πα′ − iβ .

This connection is Hermitian and its curvature is equal to ω.

The Prop. 29 allows us to realize the scheme, described in the beginning of
this Section. Namely, suppose that our phase space M satisfies the quantization
condition, so that the assertion of Prop. 29 holds. Then there exists a Hermitian line
bundle L → M together with a Hermitian connection∇, having the curvature, equal
to ω. We take for the algebra of observables the Poisson algebra A = C∞(M,R)
and define the prequantization space as

H = L2(M, L; ωn) ,
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i.e. the Hilbert space of square integrable sections of L → M with respect to the
inner product, given by

(s1, s2)H :=

∫

M

< s1(x), s2(x) > ωn ,

where < s1(x), s2(x) > is the Hermitian product of sections s1, s2 of L at x ∈ M .
Then the Kostant-Souriau (KS) prequantization of the algebra A in H will be given
by the formula

rKS : A 3 f 7−→ r(f) = f − i∇Xf
. (13.5)

It’s easy to check directly (cf. also [29, 37, 42, 70, 72, 79]) that the formula (13.5)
defines a representation of the algebra A = C∞(M,R) in the prequantization space
H.

Remark 22. There is another interpretation of the Kostant–Souriau operator rKS

in terms of the automorphism group G̃ of the prequantization bundle (L,∇). An
automorphism of (L,∇) is a pair (ϕ, g), where ϕ : L → L is a fibrewise isomorphism,
preserving the Hermitian metric on L and the connection ∇ (i.e. ϕ∗∇ = ∇). The
projection of ϕ to M is a symplectomorphism g : M → M , belonging to the group G
of all symplectomorphisms of M . In other words, we have a commutative diagram

L
ϕ−−−→ L

π

y
yπ

M −−−→
g

M .

According to Prop. 16, the automorphism group G̃ of the prequantization bundle
(L,∇) can be identified with a central extension of the symplectomorphism group
G by S1, i.e. there is an exact sequence

1 −−−→ S1 −−−→ G̃ −−−→ G −−−→ 1 .

Note that (assuming that M is simply connected) the Lie algebra LieG of the group
G can be identified with the Lie algebra of Hamiltonian vector fields on M , generated
by Hamiltonians f ∈ C∞(M,R), so that that the Lie algebra Lie G̃ of the group G̃
is a central extension of LieG by R.

The action of the symplectomorphism group G on M generates an action of its
central extension G̃ on L. Namely, if an action g on M is generated by a Hamiltonian
vector field Xf with f ∈ C∞(M,R) = LieG, then the corresponding action ϕ :
C∞(M, L) → C∞(M,L) on the space of sections of L is generated by

X̃f (s) := fs− i∇Xf
s . (13.6)

Remark 23. In conclusion of this Subsection, we give a description of the C∗-bundle
L̇ → M , associated with the prequantization bundle L → M . It is sometimes more
convenient to use for computations this bundle, rather than L → M . Denote by
π : L̇ → M the bundle, obtained from the prequantization bundle π : L → M by
deleting its zero section. It is a principal C∗-bundle, associated with the line bundle
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π : L → M . The space Γ(L) := C∞(M, L) of sections s of L → M can be identified
with the space Γ̇(L) of complex-valued functions ṡ on L̇, subject to the condition

ṡ(zp) =
1

z
ṡ(p)

for any p ∈ L̇ and any z ∈ C∗. The correspondence between sections s of L → M
and functions ṡ on L̇ → M is established via the relation

s(π(p)) = ṡ(p)p for any p ∈ L̇ .

Note that if a section s of L → M is non-vanishing at some point x ∈ M : s(x) 6= 0,
then s(x) ∈ L̇ and, applying the above relation for p = s(x), we obtain that s(x) =
ṡ(s(x))s(x), i.e. ṡ ◦ s = 1 at any point x ∈ M , where s(x) 6= 0.

We can introduce a connection ∇̇ on L̇ → M , associated with the connection ∇
on L → M . In terms of the local representatives θα of the connection ∇, the local
representatives θ̇α of ∇̇ are given by

θ̇α = θα + i
dz

z

on Uα×C∗. It’s easy to check that these local forms define a global 1-form, which is
the connection form of ∇̇. This connection generates the horizontal lifting of vector
fields on M . Let ξ be such a vector field, then its horizontal lift is a vector field ξ̇
on L̇, such that π∗(ξ̇) = ξ and ∇̇(ξ̇) = 0. A correspondence ξ ↔ ξ̇ between vector
fields ξ on M and their horizontal lifts ξ̇ on L̇ has the following properties

(∇ξs)
· = ξ̇ , (fs)· = f ṡ

for any vector field ξ on M , section s of L and function f ∈ C∞(M,R).
We can also give an interpretation of the generator (13.6) in terms of the bundle

L̇ (cf. [72]). Given a Hamiltonian f ∈ C∞(M,R), we define a vector field ηf on L̇
by local representatives

ηf,α := Xf + (θα(Xf )− f)
∂

∂ϑ

on Uα ×C∗. Here the vector field ∂
∂ϑ

is the differentiation with respect to the angle
coordinate ϑ in the polar representation of the coordinate z = reiϑ on C∗. It follows
from this definition that the generator (13.6) can be written in terms of L̇ as

X̃f (s) = −iηf ṡ . (13.7)

Remark 24. Using the vector field ηf , introduced in Rem. 23, one can prove that the
KS-operator rKS(f), given by the formula (13.5), is self-adjoint under the assumption
that the Hamiltonian vector field Xf is complete. (In this case the vector field
ηf is complete too.) Denote by ϕ̇t

f the 1-parameter group of transformations of

L̇, generated by the vector field ηf . Consider the 1-parameter unitary group of
transformations of Γ̇(L) (with respect to the inner product, induced from Γ(L)),
generated by ϕ̇t

f . It acts by the formula: ṡ 7→ ṡ ◦ ϕ̇t
f for ṡ ∈ Γ̇(L). The operator

rKS(f), given by (13.5), coincides with the generator of this unitary group, according
to (13.7). Hence, it is self-adjoint by Stone’s theorem. (This argument is due to
[72].)
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13.2.2 Polarizations

The representation of the algebra A = C∞(M,R) in the prequantization space H,
defined by (13.5), is reducible by the same reasons, as in Sec. 13.1. According to
the Heisenberg uncertainty principle, we can make this representation irreducible
by restricting it to a ”half” of the prequantization space H, i.e. to a subspace of
H, containing the functions from H, which depend, in terms of the local canonical
variables (pi, qi)

n
i=1, only on one variable from each pair (pj, qj). This naive idea may

be formalized, using the notion of the polarization.
Let (M, ω) be a symplectic manifold of dimension 2n. We extend its symplectic

form ω complex linearly to the complexified tangent bundle TCM .

Definition 40. A polarization on M is an integrable involutive Lagrangian distri-
bution P on M . In other words, P is a complex distribution P : x 7→ Px ⊂ TCM of
rank n, satisfying the following conditions: (a) P is involutive, i.e. [P, P ] ⊂ P ; (b)
the restriction of ω to P is identically zero.

For a polarized phase space (M,P ), satisfying the quantization condition (13.4),
it’s natural to choose for the quantization space H the space of polarized sections.
It is defined as

H = L2
P (M,L; ωn) := {s ∈ L2(M,L; ωn) : ∇ξs = 0 for any ξ ∈ P} .

There are two distinguished classes of polarizations.

Example 34. A polarization P on a phase space M is called real , if P = P̄ , where
”bar” denotes the complex conjugation in TCM . A standard example of such a
polarization is the cotangent bundle M = T ∗N of a configuration manifold N with
local canonical coordinates (pi, qi) and polarization P , given by the subbundle of
TM , generated by the vector fields {∂/∂pi}, i = 1, . . . , n. (One can take for P the
subbundle of TM , generated by the vector fields {∂/∂qi}, i = 1, . . . , n, as well.)
The space L2

P (M, L; ωn) of polarized sections in this case consists of sections from
L2(M, L; ωn), which do not depend on momenta {pi}.

A polarization P is called Kähler , if P ∩ P̄ = 0. To give an example of such a
polarization, suppose that our phase space (M,ω) is Kähler, i.e. it is provided with a
complex structure J , compatible with ω. Then we take for P the subbundle T 0,1M
of (0, 1)-vector fields in TCM . In this case the prequantization bundle L can be
made holomorphic with the holomorphic structure, determined by the ∂̄-operator,
given by the (0, 1)-part ∇0,1 of the connection ∇. The space L2

P (M, L; ωn) of polar-
ized sections for P = T 0,1M coincides with the space L2

O(M, L; ωn) of holomorphic
sections of L → M .

Given a polarized phase space (M, P ), satisfying the quantization condition
(13.4), we can hope to obtain an irreducible representation of the algebra of ob-
servables A by restricting the Kostant–Souriau prequantization map to the space
L2

P (M, L; ωn) of polarized sections. Unfortunately, this straightforward idea works
only for very special phase spaces and algebras of observables, since in most of the
cases the space L2

P (M,L; ωn) of polarized sections is not invariant under the action of
the Kostant–Souriau representation. In the next Section we shall demonstrate how
the idea of restriction to the space of polarized sections can be realized for the flat
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space R2n ∼= Cn and the Heisenberg algebra of observables heis(R2n) =: heis(Cn). In
this case the restriction of Kostant–Souriau representation to the space L2

O(Cn; ωn)
of holomorphic sections yields an irreducible Bargmann–Fock representation of the
Heisenberg algebra in L2

O(Cn; ωn).

Bibliographic comments

The prequantization of the cotangent bundle was known long ago to physisists (cf.,
e.g., [35]). Its generalization to general manifolds, satisfying the quantization con-
dition, due to B.Kostant and J.-M.Souriau, is presented in all books on geometric
quantization (cf. [29, 37, 42, 70, 69, 79]). In these books a more detailed discussion
of polarizations may be also found.
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Chapter 14

Blattner–Kostant–Sternberg
quantization

In this Chapter we present the Blattner–Kostant–Sternberg (BKS) quantization
scheme for Kähler manifolds, provided with Kähler polarizations. We start from the
simplest example of such a quantization, namely, the Bargmann–Fock quantization
of the standard model (R2n, ω0), provided with the Heisenberg algebra of observables.
In Secs. 14.2-14.5 we explain how to construct the BKS-quantization of a quantizable
Kähler manifold. In Sec. 14.2 we introduce the Fock spaces of half-forms and in
Sec. 14.4 define the BKS-pairing between them, using the metaplectic structure,
introduced in Sec. 14.3. In Sec. 14.5 we explain how to quantize Kähler phase
manifolds, using the BKS-pairing.

14.1 Bargmann–Fock quantization

Let M0 = (R2n, ω0) be the standard model with standard coordinates (pj, qj), j =
1, . . . , n. In these coordinates

ω0 =
n∑

j=1

dpj ∧ dqj ,

so that ω0 = dθ0 with θ0 =
∑n

j=1 pj dqj. We identify R2n with Cn by introducing
complex coordinates

zj =
pj + iqj√

2
, z̄j =

pj − iqj√
2

, j = 1, . . . , n,

(following [70], we have replaced the usual factor 1/2 in these formulas by 1/
√

2 to
make the expression for KS-representation more symmetric). In these coordinates

ω0 = −i

n∑
j=1

dz̄j ∧ dzj .

The Hamiltonian vector fields, corresponding to coordinates zj, z̄j, have the form

Xzj
= −i

∂

∂z̄j

=
1√
2i

(
∂

∂pj

+ i
∂

∂qj

)
, Xz̄j

= i
∂

∂zj

=
i√
2

(
∂

∂pj

− i
∂

∂qj

)
.

171
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In particular, iω(Xzj
, Xz̄k

) = δjk. Evidently, the vector fields {Xz1 , . . . , Xzn} span
the antiholomorphic tangent space T 0,1(Cn) (which is the Kähler polarization space
in the sense of Ex. 34).

The prequantization bundle L → Cn is the trivial bundle Cn × C→ Cn. We fix
a trivializing section λ0 : Cn → L with < λ0, λ0 > = 1. The connection ∇ on L is
determined by the property

∇λ0 = −i

n∑
j=1

pj dqj ⊗ λ0 .

Following [70], we replace the trivializing section λ0 by another trivializing section
λ1, given by

λ1 := exp

(
−1

4

n∑
j=1

(q2
j + p2

j − 2ipjqj)

)
λ0 .

Then

∇λ1 = θ1 ⊗ λ1 with θ1 = −i

n∑
j=1

z̄jdzj .

In particular, the section λ1 is covariantly constant along the vector fields from
T 0,1(Cn). Hence, any section of L, covariantly constant along T 0,1(Cn), have the
form

ϕ(z)λ1 ,

where ϕ(z) is a holomorphic function of z ∈ Cn. We also have

< λ1, λ1 >= exp

(
−1

2

n∑
j=1

(q2
j + p2

j)

)
= exp

(−|z|2)

with |z|2 =
∑

j z̄jzj. The inner product in the prequantization space H = L2(Cn, L; ωn
0 )

takes on the following form

(ϕλ1, ψλ1) =

∫

Cn

ϕ(z)ψ̄(z)e−|z|
2

ωn
0 .

Following the idea, formulated at the end of Sec. 13.2, we define the quantization
space to be the space of polarized sections L2

O(Cn, L; ωn
0 ). In our case it coincides

with the Bargmann–Fock space

F (Cn) = L2
O(Cn, e−|z|

2/2)

of holomorphic square integrable functions on Cn with the Gaussian weight e−|z|
2/2.

The Kostant–Souriau (KS)-operators, associated with observables from the Heisen-
berg algebra heis(R2n) = heis(Cn) by formula (13.5), leave the Bargmann–Fock space
F (Cn) invariant and so admit a restriction to this space. To see that, we compute
the KS-operators, corresponding to the coordinates zj, z̄j:

rKS(zj)(ϕλ1) = zjϕλ1 , rKS(z̄j)(ϕλ1) =
∂ϕ

∂zj

λ1
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for j = 1, . . . , n. Using the expression for the basis Hamiltonian vector fields, corre-
sponding to coordinates and momenta:

Xpj
=

i√
2

(
∂

∂zj

− ∂

∂z̄j

)
, Xqj

= − 1√
2

(
∂

∂zj

+
∂

∂z̄j

)
,

we get the expression for the KS-operators, corresponding to the generators of the
Heisenberg algebra heis(R2n):

rKS(pj)(ϕλ1) =
1√
2

[(
zj +

∂

∂zj

)
ϕ

]
λ1 , rKS(qj)(ϕλ1) =

1√
2i

[(
zj − ∂

∂zj

)
ϕ

]
λ1 .

It is clear from this expression that these operators leave the Bargmann–Fock space
invariant. So we can restrict our KS-representation to this space, obtaining a repre-
sentation r0 of the Heisenberg algebra heis(R2n) = heis(Cn) in the Bargmann–Fock
space F (Cn) = L2

O(Cn, e−|z|
2/2).

This representation, which is called the Bargmann–Fock representation, is al-
ready irreducible. The easiest way to see that is to use the so called creation and
annihilation operators , given in this case by the formulae

a∗j = rKS(zj) = multiplication by zj , aj = rKS(z̄j) = ∂/∂zj ,

acting in the Bargmann–Fock space F (Cn). Denote by ϕ0 ≡ 1 the so called vacuum
vector in F (Cn). Note that the Bargmann–Fock space F (Cn) = L2

O(Cn, e−|z|
2/2) is

generated by vectors, obtained from ϕ0 by the action of creation operators a∗j , i.e.
by vectors of the form

a∗j1 . . . a∗jk
ϕ0 .

To show that the Bargmann–Fock representation r0 is irreducible, suppose that
we have an operator A in F (Cn), commuting with all creation and annihilation
operators a∗j , aj of our representation. Then Aϕ0 should be equal to cϕ0 for some
constant c, since Aϕ0 is annihilated by all annihilation operators aj = ∂/∂zj. On
the other hand,

A(a∗j1 . . . a∗jk
ϕ0) = a∗j1 . . . a∗jk

(Aϕ0) = c(a∗j1 . . . a∗jk
ϕ0) .

These two properties imply that A = c · id, so, by Schur’s lemma, the Bargmann–
Fock representation r0 is irreducible.

Unfortunately, the described method of quantization of the standard model
M0 = (R2n, ω0) = (Cn, ω0), provided with the Heisenberg algebra heis(R2n) =
heis(Cn), does not apply to other Kähler phase spaces and polarizations, since the
KS-prequantization operators do not preserve, in general, the Fock spaces of holo-
morphic sections. We describe this situation in more detail in the next Sec. 14.2.1.

14.2 Fock spaces of half-forms

14.2.1 KS-action on Fock spaces

Suppose that our phase space (M, ω) is a Kähler manifold, provided with a compat-
ible complex structure J . Assume that (M, ω) satisfies the quantization condition
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(13.4) and L → M is the prequantization bundle, provided with a Hermitian con-
nection ∇. We introduce a holomorphic structure on L, which is determined by the
∂̄-operator, given by the (0, 1)-component ∇0,1 of the connection ∇ with respect to
the complex structure J . The Fock space

F (M, J) := L2
O(M, L; ωn)

is the space of square integrable sections of L → M , holomorphic with respect
to the introduced holomorphic structure on L. Denote by A the Lie algebra of
Hamiltonians, which can be identified (under the assumption that M is simply
connected) with the Lie algebra of Hamiltonian vector fields on M . Any observable
f ∈ A generates a (local) 1-parameter group Γ of symplectomorphisms of M , given
by

ϕt
f := exp(2πitXf ) ,

where Xf is the Hamiltonian vector field, generated by f . As we have pointed
out in Sec. 13.2 (cf. Rem. 22), the action of Γ can be lifted to the action of its
central extension Γ̃ on L, and this lifted action is generated by the KS-operator
r(f) ≡ rKS(f). More precisely, the lifted action is given by

Φt
f := exp (2πitr(f)) : L2(M, L; ωn) −→ L2(M, L; ωn) .

However, these operators do not preserve, in general, the Fock space F (M, J), since
Φt

f maps the Fock space F (M, J) into the Fock space F (M, J t
f ), associated with

the transformed complex structure J t
f := ϕt

f,? ◦ J ◦ ϕ−t
f,? , which, in general, is not

equivalent to J . When this happens, the corresponding KS-operator rKS(f) does
not admit a restriction to F (M, J). If we still want in this case to construct a
quantization of (M,A), using the KS-operators, we need to find a method of canon-
ical identification of Fock spaces F (M, J) with different J . In other words, we are
looking for a canonical unitary pairing between different Fock spaces F (M, J).

A naive idea would be to have some sort of an integral pairing, given by
∫

M

< s1 , s2 > ωn

for s1 ∈ F (M, J1), s2 ∈ F (M,J2). But this idea does not work already for the
Bargmann–Fock quantization. In this case sections s1 and s2 belong to L2

O-spaces
with different weights, more precisely, s1 belongs to F (Cn, J1) = L2

O(Cn, e−K1(z)/2)
and s2 belongs to F (Cn, J1) = L2

O(Cn, e−K2(z)/2), where K1(z) and K2(z) denote
the Kähler potentials of Kähler metrics, determined by J1 and J2. It is clear that
the product of these two factors may be not integrable. A better idea is to replace
square integrable sections s of L → M by square integrable ”half-forms” s ⊗√ωn.
Then the integral of their product will be finite by the Cauchy inequality. In the
next Subsection we realize this approach by formalizing the notion of half-forms.

14.2.2 Half-forms

Bundle of J-frames. Let (M,ω, J) be a Kähler manifold of dimCM = n. Its
complexified tangent bundle TCM splits into the direct sum

TCM = T 1,0
J ⊕ T 0,1

J
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of the subbundles, formed by the (±i)-eigenspaces of the operator J . The bundle of
J-frames

FrJ −→ M

is the bundle of frames in T 0,1
J , i.e. its fibre at x ∈ M consists of all frames in T 0,1

J,x .
The change of frames in the fibre generates a right GL(n,C)-action on FrJ , making
FrJ a principal GL(n,C)-bundle.

We denote by
Frn

J = K−1
J −→ M

the anti-canonical bundle, associated with FrJ , which coincides with the maximal
exterior power of FrJ : Frn

J =
∧n(FrJ). This is a complex line bundle on M , asso-

ciated to FrJ by the homomorphism det : GL(n,C) → C∗. Its sections µ can be
identified with functions µ̇ on FrJ , satisfying the relation

µ̇(X · C) = det(C−1)µ̇(X) (14.1)

for X = (X1, . . . , Xn) ∈ C∞(M, FrJ), C ∈ GL(n,C).
We can define a partial connection, acting on sections of the bundle Frn

J , following
[70, 72]. Suppose that µ is a section of Frn

J , identified with the function µ̇ on FrJ ,
and ξ is a (0, 1)-vector field on M , i.e. a section of T 0,1

J . To define the value of
∇ξµ̇ at a point x0 ∈ M on a frame X0 ∈ FrJ,x0 , we extend X0 to a local J-frame
X = (X1, . . . , Xn) in a neighborhood U of x0, represented by Hamiltonian vector
fields X1, . . . , Xn. Then we set

(∇ξµ̇)(X0) := ξ µ̇(X)|x0 ,

i.e. the value of ∇ξµ̇ on the frame X0 at x0 is equal to the value of the vector field
ξ on the function µ̇(X) at x0. It can be checked that this definition is correct, i.e.
∇ξµ̇ is again a function on FrJ , satisfying (14.1), and does not depend on the choice
of the local extension X of a J-frame X0. So we can define ∇ξµ as the section of
Frn

J , identified with the function ∇ξµ̇ on FrJ .
The introduced derivative ∇ has the properties of a partial connection (cf. [18]).

Namely, for any (0, 1)-vector fields ξ, η, any functions f, g ∈ C∞(M,R) and any
sections µ, ν of Frn

J we have:

1. ∇fξ+gηµ = f∇ξµ + g∇ηµ ;

2. ∇ξ(µ + ν) = ∇ξµ +∇ξν ;

3. ∇ξ(fµ) = f∇ξµ + (ξf)µ .

Moreover, this partial connection satisfies the equality

∇ξ∇ηµ−∇η∇ξµ = ∇[ξ,η]µ ,

which means that it is flat.
Bundle of half-forms. Denote by ML(n,C) the metalinear group, which is a

double covering of GL(n,C):

ρ : ML(n,C)
2:1−→ GL(n,C) .
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Its elements can be identified with the square roots of (n×n)-matrices from GL(n,C)
in the sense that there is a commutative diagram

ML(n,C)
χ //

ρ
&&NNNNNNNNNNN C∗

GL(n,C)

det

::uuuuuuuuuu

,

where χ is a unique complex square root of det, such that χ(I) = 1.
Suppose that the principal GL(n,C)-bundle FrJ → M of J-frames can be ex-

tended to a principal ML(n,C)-bundle over M . Note that such an extension, in
general, may not exist, since there is a topological obstruction for its existence (cf.
[79, 29, 70]). This obstruction is an element of the cohomology group H2(M,Z2),
moreover, the different choices of such metalinear extensions (if there are any) are
parameterized by the elements of H1(M,Z2). So we suppose that this topological
obstruction vanishes for our J-frame bundle FrJ → M and it can be extended to a
principal ML(n,C)-bundle

F̃rJ −→ M .

We call F̃rJ the bundle of metalinear J-frames . It is a principal ML(n,C)-bundle
over M together with a double covering bundle epimorphism τ , such that

F̃rJ
τ //

ML(n,C) ÃÃB
BB

BB
BB

B
FrJ

GL(n,C)~~||
||

||
||

M

.

We denote by

F̃rn
J = K

−1/2
J −→ M

a complex line bundle on M , associated to F̃rJ → M by the homomorphism χ :
ML(n,C) → C∗. Its sections ν can be identified with functions ν̃ on F̃rJ , satisfying
the relation

ν̃(X̃ · C̃) = χ(C̃−1)ν̃(X̃) (14.2)

for X̃ ∈ C∞(M, F̃rJ), C̃ ∈ ML(n,C).

We can define a partial connection, acting on sections of the bundle F̃rn
J , similar

to the case of the bundle Frn
J . Suppose that ν is a section of F̃rn

J , identified with the

function ν̃ on F̃rJ , and ξ is a (0, 1)-vector field on M . To define the value of ∇ξν̃

at a point x0 ∈ M on a metalinear frame X̃0 ∈ F̃rJ,x0 , we extend the corresponding
J-frame X0 = τ(X̃0) to a local J-frame X = (X1, . . . , Xn) in a neighborhood
of x0, represented by Hamiltonian vector fields X1, . . . , Xn. Since τ is a double
covering, there exists a local metalinear J-frame X̃, defined (perhaps, on a smaller)
neighborhood U of x0, extending X̃0 and covering X, i.e. τ(X̃) = X. Then we set

(∇ξν̃)(X̃0) := ξ ν̃(X̃)|x0 ,

i.e. the value of ∇ξν̃ on the metalinear frame X̃0 at x0 is equal to the value of the
vector field ξ on the function ν̃(X̃) at x0. This definition is correct, i.e. ∇ξν̃ is
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again a function on F̃rn
J , satisfying (14.2), and does not depend on the choices of the

extension X and its metalinear lift X̃. So we can define ∇ξν as the section of F̃rn
J ,

identified with the function ∇ξν̃ on F̃rJ . The defined partial connection ∇ on F̃rn
J

is again flat.
Fock space of half-forms. Consider a line bundle L⊗K

−1/2
J → M . It can be

provided with a partial connection ∇, induced by the Hermitian connection on the
prequantization bundle L and the partial connection on the anti-canonical bundle
K
−1/2
J , defined above. More precisely, given a (0, 1)-vector field ξ and a section

σ = λ⊗ ν of L⊗K
−1/2
J we define

∇ξσ = (∇ξλ)⊗ ν + λ⊗ (∇ξν) .

Denote by O1/2(M, J) the space of holomorphic sections σ of L ⊗K
−1/2
J → M .

We want to define an inner product of two sections σ1, σ2 in O1/2(M,J). Locally (in
a neighborhood U of an arbitrary point x ∈ M) these sections may be written as

σ1 = λ1 ⊗ ν1 , σ2 = λ2 ⊗ ν2

for λ1, λ2 ∈ O(U,L), ν1, ν2 ∈ O(U,K
−1/2
J ). We choose a local J-frame X =

(X1, . . . , Xn) on U , so that {X1, . . . , Xn, X̄1, . . . , X̄n} form a basis of TCM |U and

iω(Xj, X̄k) = δjk , ω(Xj, Xk) = ω(X̄j, X̄k) = 0 .

Denote by < σ1, σ2 > a density on U , defined by

< σ1, σ2 >:=< λ1(x), λ2(x) > ν̃1(X̃)ν̃2(X̃)

for x ∈ U and any metalinear lift X̃ of X (such a lift locally always exists). It may
be checked (cf. [70, 72]) that this definition does not depend on the choice of the lift
and correctly defines a density, linear in σ1, anti-linear in σ2 and positive definite in
the sense that 〈σ, σ〉 > 0 for non-vanishing σ.

Introduce a pre-Hilbert space

PF1/2(M,J) := {σ ∈ O1/2(M,J) :

∫

M

< σ, σ >< ∞}

and provide it with the inner product, defined by

(σ1, σ2) :=

∫

M

< σ1, σ2 > .

The Fock space of half-forms F1/2(M,J) is, by definition, the completion of PF1/2(M,J)
with respect to this inner product.

Locally (in a neighborhood U of a point x ∈ M) we can write down the integrand
< σ1, σ2 > explicitly by choosing local trivializing holomorphic sections λ0 of L and
ν0 of K

−1/2
J , subject to the conditions

< λ0, λ0 >≡ 1 , ν̃0(X̃) ≡ 1

in U . In terms of these trivializations, holomorphic sections σ1, σ2 of L⊗K
−1/2
J over

U will be written as

σ1 = f1 · λ0 ⊗ ν̃0 , σ2 = f2 · λ0 ⊗ ν̃0
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for some holomorphic functions f1, f2 on U . Then in terms of J-holomorphic local
coordinates (z1, . . . , zn) in U we’ll have

< σ1, σ2 >=

(
i

2

)n

f1(z)f2(z)dnz ∧ dnz̄ .

14.3 Metaplectic structure

14.3.1 Bundle of metaplectic frames

Metaplectic group. The metaplectic group Mp(2n,R) is a connected double cover-
ing group of the symplectic group Sp(2n,R), i.e. there is a 2:1 group homomorphism

ρ : Mp(2n,R) −→ Sp(2n,R) .

Such a covering exists, because the fundamental group π1 of Sp(2n,R) is equal to
Z. To see that, note that Sp(2n,R) is homeomorphic to

U(n)× Sp(2n,R)

U(n)
∼= S1 × SU(n)× {Siegel disc} ,

and the second and third factors on the right are simply connected.
Metaplectic structure. Let (M, ω) be a symplectic manifold of dimension 2n.

Denote by Frω → M the principal Sp(2n,R)-bundle of symplectic frames on M . A
metaplectic structure on M is an extension of the bundle Frω → M to a principal
Mp(2n,R)-bundle F̃rω → M , called the bundle of metaplectic frames on M . In other

words, we have a double covering bundle epimorphism τ : F̃rω → Frω, which may be
included into the following commutative diagram

F̃rω
τ //

Mp(n,R) ÃÃB
BB

BB
BB

B
Frω

Sp(n,R)~~||
||

||
||

M

.

There is a topological obstruction for the existence of the metaplectic structure
on M , due to Kostant [46]. Namely, denote by J an almost complex structure on
M , compatible with ω, so that c1(M) is the 1st Chern class of TM with respect
to J . Then for the existence of a metaplectic structure on M it is necessary and
sufficient that c1(M) mod 2 ≡ 0 ⇐⇒ c1(M) is even in H2(M,Z). If this condition is
satisfied, then the set of all metaplectic structures on M (up to a natural equivalence)
is parameterized by H1(M,Z2).

14.3.2 Bundle of Kähler frames

It is also convenient to introduce the bundle FrK → M of J-frames for all ω-
compatible almost complex structures J on M . It is a fibre bundle over M with
the fibre at x ∈ M , parameterizing Jx-frames on TxM for all ωx-compatible almost
complex structures Jx on TxM . This fibre can be identified with

Sp(2n,R)

U(n)
×GL(n,C) ∼= {Siegel disc} ×GL(n,C)
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in the following way. Given a symplectic frame (ξ, η) := (ξ1, . . . , ξn; η1, . . . , ηn) at
x ∈ M , we can write down any J-frame X = (X1, . . . , Xn) at x uniquely as (cf. [70])

X = ξU + ηV ,

where U , V are complex n×n-matrices, such that the rank of (2n×n)-matrix t(U, V )
equals n, tUV = tV U , and the matrix i(V †U −U †V ) is positive definite. The set of
such matrices t(U, V ) can be identified with with the set: {Siegel disc} ×GL(n,C),
by associating with a matrix t(U, V ) a pair of matrices

W := (U + iV )(U − iV )−1 , C := U − iV . (14.3)

Then C belongs to GL(n,C) and W belongs to the Siegel disc

D := {W ∈ L(n,C) : tW = W, I −W †W is positive definite} .

The structure group of the bundle FrK → M , acting on the left, coincides with
Sp(2n,R). There is also a natural GL(n,C)-action on FrK → M from the right,
given by the frame change. The bundle FrK → M is associated to the bundle
Frω → M of symplectic frames by a natural Sp(2n,R)-action on the fibre.

In a similar way, we introduce the bundle F̃rK → M of all metalinear J-frames
on M for all ω-compatible J . It is a fibre bundle with the fibre at x ∈ M , given by

Sp(2n,R)

U(n)
×ML(n,C) , (14.4)

and the structure group Mp(2n,R), acting by the homomorphism ρ : Mp(2n,R) →
Sp(2n,R) on the first factor. The bundle F̃rK → M is associated to the bundle

F̃rω → M of metaplectic frames by the Mp(2n,R)-action. There is a commutative
diagram

F̃rK
τ //

!!CC
CC

CC
CC

FrK

}}||
||

||
||

M

,

where τ is a double covering.
Note that for a fixed ω-compatible almost complex structure J on M the bundle

FrJ → M is a subbundle of FrK → M , invariant under the right GL(n,C)-action.

The bundle F̃rJ → M is a ML(n,C)-invariant subbundle of F̃rK → M , which
coincides with the inverse image of FrJ → M under the double covering map τ :
F̃rK → FrK . In other words, we can say that a metaplectic structure on M , given
by the metaplectic frame bundle together with the double covering τ : F̃rω → Frω,
induces metalinear structures on all J-frame bundles simultaneously.

14.4 Blattner–Kostant–Sternberg (BKS) pairing

Lemma 5. Suppose that J1, J2 are two ω-compatible almost complex structures on
a symplectic manifold (M,ω). Then they are transversal in the sense that

T 1,0
J1
⊕ T 0,1

J2
= TCM .



180 CHAPTER 14. BLATTNER–KOSTANT–STERNBERG QUANTIZATION

Proof. Suppose, on the contrary, that there exists a vector ξ 6= 0, such that

ξ ∈ T 1,0
J1,x ⊕ T 0,1

J2,x for some x ∈ M .

Then
0 < ω(ξ, J1ξ) = ω(ξ, iξ) = iω(ξ, ξ) ,

where the inequality on the left is implied by the ω-compatibility of J1 and the first
equality is provided by ξ ∈ T 1,0

J1,x. Similarly,

0 < ω(ξ, J2ξ) = ω(ξ,−iξ) = −iω(ξ, ξ) .

So we have simultaneously the two following relations

iω(ξ, ξ) > 0 and − iω(ξ, ξ) > 0 ,

contradicting each other. Hence, T 1,0
J1,x ∩ T 0,1

J2,x = {0} for any x ∈ M . By dimension
counting we obtain that

T 1,0
J1,x ⊕ T 0,1

J2,x = TCx M for any x ∈ M .

Due to the above Lemma 5, we can always choose locally, in a neighborhood U
of an arbitrary fixed point x ∈ M , a J1-frame X1 and J2-frame X2, so that

iω(Xj
1 , X

k
2 ) = δjk . (14.5)

Given two sections σ1 of L ⊗K
−1/2
J1

and σ2 of L ⊗K
−1/2
J2

on U , we can write them
down in the form

σ1 = λ1 ⊗ ν1 , σ2 = λ2 ⊗ ν2 .

We define a density, similar to that in Subsec. 14.2.2:

< σ1, σ2 >:=< λ1(x), λ2(x) > ν̃1(X̃1)ν̃2(X̃2) (14.6)

where X̃1, X̃2 are metalinear lifts of X1, X2, satisfying a metalinear analogue of
(14.5). We shall describe this analogue (formula (14.9)) in Rem. 25 below. Now
we note only that the definition (14.6) does not depend on the choice of the frames
X1, X2, satisfying the normalization condition (14.5), and their metaplectic lifts
X̃1, X̃2, satisfying the metaplectic normalization condition (14.9) below (this fact is
proved in [70], Sec.5.1; cf. also [29], Ch.V,Sec.5).

We define the BKS-pairing between different Fock spaces of half-forms F1/2(M,J1)
and F1/2(M,J2) by the formula

(σ1, σ2)12 :=

∫

M

< σ1, σ2 > . (14.7)

Suppose now that our almost complex structures J1 and J2 are integrable. Then
locally, in a neighborhood U of a point x ∈ M , we can write down an explicit formula
for the integrand in the above formula. For that we fix a J1-frame X1 and a J2-frame
X2 in U , satisfying the normalization condition (14.5), and their metaplectic lifts



14.4. BLATTNER–KOSTANT–STERNBERG (BKS) PAIRING 181

X̃1, X̃2, satisfying the metaplectic normalization condition (14.9), and choose local

trivializing holomorphic sections λ0 of L, ν1 of K
−1/2
J1

and ν2 of K
−1/2
J2

, subject to
the conditions

< λ0, λ0 >≡ 1 , ν̃1(X̃1) ≡ 1 , ν̃2(X̃2) ≡ 1

in U . Then holomorphic sections σ1 of L⊗K
−1/2
J1

and σ2 of L⊗K
−1/2
J2

over U will
be written as

σ1 = f1 · λ0 ⊗ ν1 , σ2 = f2 · λ0 ⊗ ν2 ,

where f1 is a J1-holomorphic function on U , and f2 is a J2-holomorphic function
on U . Since J1 and J2 are transversal, we can find local J1-holomorphic coor-
dinates (z1, . . . , zn) and J2-holomorphic coordinates (w1, . . . , wn) in U , such that
(∂/∂z1, . . . , ∂/∂zn; ∂/∂w̄1, . . . , ∂/∂w̄n) form a local basis of TCM over M . Then

< σ1, σ2 >=

(
i

2

)n

f1(z)f2(w)dnz ∧ dnw̄ .

Remark 25 ([70]). To describe the metaplectic analogue of (14.5), suppose that
our frames X1 and X2 are written in terms of a single symplectic frame (ξ, η) :=
(ξ1, . . . , ξn; η1, . . . , ηn), as in Subsec. 14.3.1:

X1 = ξU1 + ηV1 , X2 = ξU2 + ηV2 .

Then Eq. (14.5) can be written in the form

V †
2 U1 − U †

2V1 = −iI .

In terms of the matrices

Wj = (Uj + iVj)(Uj − iVj)
−1 , Cj := Uj − iVj , j = 1, 2 ,

this condition means that

I −W †
2W1 = 2(C†

2)
−1C−1

1 . (14.8)

Note that Z := W †
2W1 belongs to the matrix disc

D̃ := {Z ∈ L(n,C) : I − Z†Z is positive definite} .

Consider the map D̃ → GL(n,C), given by Z 7→ I − Z. Since D̃ is contractible

(moreover, convex), this map can be uniquely extended to a map Z 7→ Ĩ − Z,
sending D̃ to ML(n,C) and taking the value Ĩ at Z = 0 (where we denote by Ĩ
the unit element in ML(n,C)). Suppose that the metalinear lifts X̃1, X̃2 of our
frames X1, X2 are described, according to (14.4), by pairs (W1, C̃1), (W2, C̃2), where
Wj ∈ D, C̃j ∈ ML(n,C) for j = 1, 2. Then the metalinear analogue of (14.5) has
the form

˜I −W †
2W1 = 2(C̃†

2)
−1C̃−1

1 . (14.9)
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14.5 Blattner–Kostant–Sternberg (BKS) quanti-

zation

14.5.1 Lifting the ϕt
f-action

Let (M, ω, J) be a Kähler manifold, and f ∈ C∞(M,R) is an observable on M ,
for which the Hamiltonian vector field Xf is complete, i.e. the 1-parameter flow
ϕt

f = exp(2πitXf ), generated by Xf , is defined for all t ∈ R. Hence, {ϕt
f} is a

1-parameter group of symplectomorphisms of M . The flow ϕt
f generates a natural

flow on the space of ω-compatible complex structures on M , given by

J 7−→ J t
f := ϕt

f,? ◦ J ◦ ϕ−t
f,? ,

and a natural flow, denoted by the same letter ϕt
f , on the bundle FrK → M of all

J-frames on M .
By the covering homotopy property, this flow can be lifted to a 1-parameter flow

ϕ̃t
f on the bundle F̃rK → M of all metalinear J-frames on M , yielding a 1-parameter

flow of bundle isomorphisms

ϕ̃t
f : F̃rJ −→ F̃rJt

f
.

We are going to define an extension of the ϕt
f -flow to the Fock spaces of half-

forms, denoted by
Ht ≡ Ht

f := F1/2(M,J t
f ) .

ϕt
f -action on K

−1/2
J . Define first a ϕt

f -action on the bundle K−1/2 over the space

of ω-compatible complex structures on M . Let ν be a section of K
−1/2
J , identified

with the function ν̃ on the bundle F̃rJ . Denote by ϕt
fν a section of K

−1/2
t ≡ K

−1/2

Jt
f

,

identified with the function ϕ̃t
fν, defined by

ϕ̃t
fν(X̃) = ν̃(ϕ̃−t

f X̃)

for any metalinear frame X̃ ∈ F̃rt ≡ F̃rJt
f
.

ϕt
f -action on sections of L. By Rem. 22, the ϕt

f -flow on M can be lifted to a
ϕt

f -flow on sections of L. More precisely, the generator of the ϕt
f -action on L

Pf (λ) := i
d

dt

(
ϕt

fλ
)∣∣

t=0

is equal to
Pf (λ) = rKS(f)(λ) = fλ− i∇Xf

λ .

ϕt
f -action on the Fock space of half-forms. Recall (cf. Subsec. 14.2.2) that

the Fock space of half-forms H is defined as

H = F1/2(M, J) .

Suppose that an element σ of H is written in the form

σ = λ⊗ ν ,
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where λ ∈ O(M,L), ν ∈ O(M,K
−1/2
J ). Then by definition

ϕt
fσ := ϕt

fλ⊗ ϕt
fν .

By linearity and continuity this definition extends to arbitrary sections in H, so we
obtain a Hilbert space isomorphism

ϕt
f : H −→ Ht

with the inverse map, given by ϕ−t
f . It may be shown (cf. [70]) that ϕt

f : H → Ht is
unitary.

14.5.2 Quantization of quantizable observables

Let f be an observable on M with a complete Hamiltonian vector field Xf . Sup-
pose first that f is quantizable, i.e. the associated flow ϕt

f,? preserves the complex
structure J ⇐⇒ ϕt

f is a J-holomorphic map. Otherwise speaking, f is quantizable

iff [Xf , T
0,1
J M ] ⊂ T 0,1

J M . The quantizable observables form a subalgebra of the Lie
algebra A of all observables. If f is quantizable, then the ϕt

f -flow preserves H, i.e.
we have a 1-parameter group of unitary operators ϕt

f : H → H, and we can define
the quantized observable Qf by

Qf (σ) := i
d

dt

(
ϕt

fσ
)∣∣

t=0
(14.10)

for any σ ∈ H.
We can describe the operator Qf in a more explicit way as follows. Suppose

that ξ is any vector field on M , preserving J , i.e. [ξ, T 0,1
J M ] ⊂ T 0,1

J M . Define a
partial Lie derivative Lξ of half-forms with respect to ξ. Namely, for any half-form

ν, identified with the function ν̃ on the bundle F̃rJ , we identify Lξν with the function

L̃ξν, given by the formula

L̃ξν(X̃)|x ≡ (Lξν̃)(X̃)|x =
d

dt
|t=0

(
ν̃(ϕ̃t

fX̃)|ϕt
f x

)

for any metalinear J-frame X̃. In other words, the Lξ-derivative of the function ν̃,
evaluated on a metalinear J-frame X̃ at a point x, is equal to the d

dt
-derivative at

t = 0 of the function ν̃, evaluated on the metalinear J-frame ϕ̃t
fX̃ at the point ϕt

fx.
The derivative Lξ has the properties of the Lie derivative, but it can be taken

only along the vector fields ξ, preserving J . The operator Qf can be written in
terms of partial Lie derivative as

Qf (λ⊗ ν) = (−i∇Xf
λ + fλ)⊗ ν − iλ⊗ LXf

ν .

Locally, we can compute the second term on the right as follows. Denote by X =
(X1, . . . , Xn) a local J-frame on an open set U , consisting of Hamiltonian (0, 1)-
vector fields Xj. Then

[Xf , X
j](x) =

n∑

k=1

aj
k(x)Xk
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for some smooth matrix function A := (aj
k) on U . Denote by X̃ a metalinear lift of X

over U and choose a local section ν̃0 of K
−1/2
J , so that ν̃0(X̃) ≡ 1. Any σ ∈ F1/2(U, J)

can be written in the form
σ = λ⊗ ν̃0

for some holomorphic section λ ∈ O(U,L). Then (cf. [70], Sec.6.2)

LXf
ν̃0 = −1

2
tr A · ν̃0 ,

so that

Qf (λ⊗ ν̃0) =

(
−i∇Xf

λ + fλ− i
1

2
tr A · λ

)
⊗ ν̃0 .

It can be shown (cf. [70, 72]) that the map f 7→ Qf is a Lie-algebra representation

{Lie algebra of quantizable observables} Q−→ End∗H
in the Fock space of half-forms H = F1/2(M, J).

14.5.3 Quantization of general observables

Assume that for an observable f the integrals, defining the BKS-pairingH×Ht → C,
are finite, so we have a unitary operator

Ut : Ht −→ H .

In its terms the BKS-pairing, defined by formula (14.7), may be written as

(σ, σt)0t = (σ, Utσt)

for σ ∈ H ≡ H0, σt ∈ Ht.
Consider a unitary operator

Φt
f := Ut ◦ ϕt

f : H −→ H
and define a self-adjoint quantized observable Qf by

Qf := i
d

dt
Φt

f

∣∣
t=0

: H −→ H .

Then the map f 7→ Qf defines an irreducible Lie-algebra representation

Q : A −→ End∗H
of the algebra of observables A in the Fock space of half-forms H (under the as-
sumption that the BKS-pairing is finite for all observables f ∈ A).

Bibliographic comments

The BKS-quantization is presented in several books on geometric quantization. We
follow mainly the Snyatycki book [70], dealing with different kinds of polarizations.
We also recommend the Guillemin–Sternberg book [29], devoted mostly to real po-
larizations, and Tuynman lecture notes [72]. Our goal here was to present the
BKS-quantization scheme without going too much into details (which may be found
in [70, 29, 72]).
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Chapter 15

Quantization of the loop space of a
vector space

In this Chapter we solve the geometric quantization problem for the classical system
(ΩRd,Ad), where the phase space ΩRd consists of smooth loops in the d-dimensional
vector space Rd, and the algebra of observables Ad is the Lie algebra of the Frechet

Lie group Gd, being the semi-direct product of the loop group L̃Rd and the diffeo-
morphism group Diff+(S1) of the circle.

We start from the quantization of the ”enlarged” system, obtained from (ΩRd,Ad)
by enlarging both the phase space and the algebra of observables. More precisely, we
enlarge the phase space ΩRd to the Sobolev space V d of half-differentiable vector-
functions (a vector analogue of the Sobolev space V , introduced in Sec. 9.1), and
the algebra of observables Ad to the Lie algebra A of the Hilbert Lie group G, be-
ing the semi-direct product of the Heisenberg group Heis(V d) and the symplectic
Hilbert–Schmidt group SpHS(V

d). The group G may be considered as a Hilbert-space
(symplectic) analogue of the standard group of motions of the d-dimensional vector
space Rd. The latter group is the semi-direct product of the group of translations
of Rd and the group of rotations of Rd. In the case of the Hilbert space V the role
of translation group is played by the Heisenberg group, and the group of rotations
is replaced by the symplectic group SpHS(V ).

To simplify the formulas, we set d = 1 in the most part of this Chapter, replacing
it with a general d only in Sec. 15.6, where the quantization of ΩRd is completed.
The last Sec. 15.7 is devoted to the quantization of the universal Teichmüller space.

15.1 Heisenberg representation

15.1.1 Fock space

Consider the Sobolev space

V := H
1/2
0 (S1,R)

of half-differentiable functions on the circle S1 (cf. Sec. 9.1) and its complexification

V C = H
1/2
0 (S1,C) .

187
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A natural complex structure operator J0 on V C, introduced in Sec. 9.1, generates
a decomposition of V C into the direct sum of subspaces

V C = W+ ⊕W− =: W0 ⊕W0 , (15.1)

where W± is the (∓i)-eigenspace of the operator J0 ∈ EndV C. The subspaces W±
are isotropic with respect to the symplectic form ω on V C. Moreover, the splitting
(15.1) is an orthogonal direct sum with respect to the Hermitian inner product on
V C, defined by

< z,w >= iω(z+, w̄+)− iω(z−, w̄−) ,

where z± (resp. w±) denotes the projection of z ∈ V C (resp. w ∈ V C) onto the
subspace W±.

We introduce the Fock space F0 ≡ F (V C, J0) as the completion of the algebra of
symmetric polynomials on W0 with respect to a natural norm.

In more detail, denote by S(W0) the algebra of symmetric polynomials in vari-
ables z ∈ W0 ≡ W+ and introduce an inner product on S(W0), induced by the
Hermitian product < ·, · > on V C. This inner product on monomials is given by the
formula

< z1 · . . . · zn, z′1 · . . . · z′n >=
∑

{i1,...,in}
< z1, z

′
i1

> · . . . · < zn, z
′
in > ,

where the summation is taken over all permutations {i1, . . . , in} of the set {1, . . . , n}
(the inner product of monomials of different degrees is set to 0 by definition). This
inner product is extended by linearity to the whole algebra S(W0). The completion

Ŝ(W0) of S(W0) with respect to the introduced norm is called the Fock space F0 ≡
F (V C, J0) over V C with respect to the complex structure J0

F0 = F (V C, J0) := Ŝ(W ) .

If {wn}, n = 1, 2, . . . , is an orthonormal base of W0, then one can take for an
orthonormal base of F0 the family of polynomials of the form

PK(z) =
1√
K!

< z, w1 >k1 · . . . · < z, wn >kn , z ∈ W0 ,

where K = (k1, . . . , kn), ki ∈ N, and K! = k1! · . . . · kn!.
Recall that, according to Sec. 11.4, any complex structure J on V , compatible

with ω, determines a decomposition

V C = WJ ⊕W J =: W ⊕W (15.2)

into the direct sum of subspaces W and W , isotropic with respect to ω. The sub-
spaces W and W are identified, respectively, with the (−i)- and (+i)-eigenspaces of
the operator J on V C. The complex structure J and the symplectic form ω deter-
mine together a Kähler metric gJ and the associated inner product < · , · >J on V C.
The decomposition (15.2) is orthogonal with respect to the Kähler metric gJ on V C,
determined by J and ω.

Using the decomposition (15.2), we can define the Fock space FJ ≡ F (V C, J) as
the completion of the algebra of symmetric polynomials on W with respect to the
norm, generated by < · , · >J :

FJ = F (V C, J) := completion of S(W ) with respect to < · , · >J .
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15.1.2 Heisenberg algebra and Heisenberg group

The Heisenberg algebra heis(V ) of the Hilbert space V is a central extension of the
Abelian Lie algebra V , generated by the coordinate functions. In other words, it
coincides, as a vector space, with

heis(V ) = V ⊕ R ,

and is provided with the Lie bracket

[(x, s), (y, t)] := (0, ω(x, y)) , x, y ∈ V, s, t,∈ R .

The Heisenberg algebra heis(V ) is the Lie algebra of the Heisenberg group Heis(V ),
which coincides with a central extension of the Abelian group V . In other words,
Heis(V ) is the direct product

Heis(V ) = V × S1 ,

provided with the group operation, given by

(x, λ) · (y, µ) :=
(
x + y, λµeiω(x,y)

)
.

15.1.3 Heisenberg representation

Representation of the Heisenberg algebra. We are going to construct an
irreducible representation of the Heisenberg algebra heis(V ) in the Fock space FJ =
F (V C, J), where V C = W ⊕W and FJ is the completion of the symmetric algebra
S(W ) with respect to the norm, generated by < · , · >J . We can consider elements
of S(W ) as holomorphic functions on W by identifying z ∈ W with a holomorphic
function w̄ 7→< w, z > on W . Accordingly, FJ may be considered as a subspace
of the space O(W ) of functions, holomorphic on W (provided with the topology of
uniform convergence on compact subsets).

With this convention we can define the Heisenberg representation

rJ : heis(V ) −→ EndFJ

of the Heisenberg algebra heis(V ) in the Fock space FJ = F (V C, J) by the formula

v 7−→ rJ(v)f(w̄) := −∂vf(w̄)+ < w, v >J f(w̄) , (15.3)

where ∂v is the derivation operator in the direction of v ∈ V C. Extending rJ to the
complexified algebra heisC(V ) by the same formula (15.3), we’ll have for v = z̄ ∈ W

rJ(z̄)f(w̄) := −∂z̄f(w̄) ,

and for z ∈ W
rJ(z)f(w̄) :=< w, z >J f(w̄) .

For the central element c ∈ heis(V ) we set

c 7−→ rJ(c) := λ · I ,
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where λ is an arbitrary fixed non-zero constant.
Introduce creation and annihilation operators on FJ , defined for v ∈ V C by

a∗J(v) :=
rJ(v)− irJ(Jv)

2
, aJ(v) :=

rJ(v) + irJ(Jv)

2
. (15.4)

In particular, for z ∈ W

a∗J(z)f(w̄) =< w, z >J f(w̄) , (15.5)

and for z̄ ∈ W

aJ(z̄)f(w̄) = −∂z̄f(w̄) . (15.6)

Choosing an orthonormal basis {en} of W , we can introduce the operators

a∗n := a∗(en) , an := a(ēn) , n = 1, 2, . . . ,

and a0 := λ · I.
A vector fJ ∈ FJ \ {0} is called the vacuum, if anfJ = 0 for n = 1, 2, . . . . In

other words, the vacuum is a non-zero vector, annihilated by all operators an. It is
uniquely defined by rJ (up to a multiplicative constant) and in the case of the initial
Fock space F0 = F (V, J0) we take f0 ≡ 1. By acting on the vacuum fJ by creation
operators a∗n, we can define the action of the representation rJ on any polynomial,
which implies the irreducubility of rJ .

Moreover, any irreducible representation r : heisC(V ) → EndF of the algebra
heisC(V ), having a vacuum f , is equivalent to the Heisenberg representation r0. In-
deed, vectors of the form (a∗1)

k1 ·· · ··(a∗n)knf , obtained from the vacuum by the action
of creation operators, are linearly independent and generate the whole representa-
tion space F . Assigning to a polynomial P (z) = P (z1, . . . , zn) in the Fock space F0

the vector of the form P (a∗1, . . . , a
∗
n)f in the space F , we obtain an intertwining map

from F0 into F . This map can be made unitary by introducing a Hermitian inner
product on F , for which the vectors (a∗1)

k1 · · · · · (a∗n)knf form an orthogonal base.
Representation of the Heisenberg group. The Heisenberg representation

rJ of the algebra heisC(V ) may be integrated to an irreducible unitary representa-
tion RJ of the Heisenberg group HeisC(V ) in the Fock space FJ . The integrated
representation is given by the formula

RJ(z̄)f(w̄) = f(w̄ − z̄)

for z̄ ∈ W , and by

RJ(z)f(w̄) = e<w,z>J f(w̄)

for z ∈ W . In particular, the creation operator a∗(z) generates the multiplication
operator f(w̄) 7→ e<w,z>J f(w̄) and the annihilation operator a(z̄) generates the
translation operator f(w̄) 7→ f(w̄ − z̄).

The constructed representation of the group HeisC(V ) in FJ may be conveniently
described in terms of the so called coherent states , given by the functions in FJ of
the form

εz(w̄) := e<z,w>J ,
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parameterized by vectors z ∈ W . The action of the representation of HeisC(V ) on
coherent states is given by the formula

v ∈ V 7−→ RJ(v)εz = e−<w,z>J− 1
2
<w,w>J εz+w

for v = w + w̄. We have
< εz, εz′ >FJ

= e<z,z′>J (15.7)

and
< RJ(v)εz, RJ(v)εz′ >FJ

=< εz, εz′ >FJ
.

The Fock space FJ may be defined in terms of coherent states as the completion of
the complex vector space, generated by vectors {εz}, z ∈ W , with respect to the
norm, given by the inner product (15.7).

Using these properties of coherent states, it may be proved (cf. [65], Sec. 9.5)
that the defined representation of the Heisenberg group in the Fock space FJ is
unitary and irreducible.

15.2 Action of Hilbert–Schmidt symplectic group

on Fock spaces

Recall the definition of the symplectic Hilbert–Schmidt group SpHS(V ) from Sec. 11.5.
In terms of the block representation, generated by the decomposition

V C = W+ ⊕W− = W0 ⊕W0 ,

the elements A of SpHS(V ) are written in the form

A =

(
a b
b̄ ā

)
,

where
āta− btb̄ = 1 , ātb = btā ,

and the operator b is Hilbert–Schmidt. The unitary group U(W+) is embedded into
SpHS(V ) as a subgroup of operators of the form

A =

(
a 0
0 ā

)
.

In Subsec. 15.1.3 we have constructed the Heisenberg representations rJ of the
Heisenberg algebra heisC(V ) in Fock spaces FJ . A general theorem of Shale (cf.
[68]) asserts that the representations r0 in F0 and rJ in FJ are unitary equivalent
if and only if J ∈ SpHS(V ). In other words, for J ∈ SpHS(V ) there exists a unitary
intertwining operator UJ : F0 → FJ such that

rJ = UJ ◦ r0 ◦ U−1
J .

The SpHS(V )-action, defined by

SpHS(V ) 3 A 7−→ UJ : F0 → FJ with J = A · J0 ,
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defines a projective (unitary) action of the group SpHS(V ) on the Fock bundle

F :=
⋃

J∈DHS

FJ −→ DHS =
SpHS(V )

U(W0)
,

covering the SpHS(V )-action on the Siegel disc DHS (cf. Sec. 11.5). An explicit
description of this projective action is given in [66].

15.3 Hilbert–Schmidt symplectic algebra repre-

sentation

The algebra spHS(V ) is the Lie algebra of symplectic Hilbert–Schmidt group SpHS(V ).
It follows from the definition of this group (cf. Sec. 15.2) that spHS(V ) consists of
linear operators A in V C, which have the following block representation (with respect
to the decomposition V C = W0 ⊕W0)

A =

(
α β
β̄ ᾱ

)
,

where α is a bounded skew-Hermitian operator and β is a symmetric Hilbert–
Schmidt operator. The complexified Lie algebra spHS(V )C consists of operators
of the form

A =

(
α β
γ̄ −αt

)
,

where α is a bounded operator, while β and γ̄ are symmetric Hilbert–Schmidt op-
erators.

The infinitesimalization of the projective SpHS(V )-action on the Fock bundle F ,
described in the previous Sec. 15.2, yields a projective representation of spHS(V ) in
the Fock space F0 ≡ FJ0 . Its complexified version is given by the formula (cf. [66])

spHS(V
C) 3 A =

(
α β
γ̄ −αt

)
7−→ ρ(A) = Dα +

1

2
Mβ +

1

2
M∗

γ .

Here, Dα for α : W0 → W0 is the derivation of F0 in the α-direction, defined by

Dαf(w̄) =< αw, ∂w̄ > f(w̄) .

The operator Mβ for β : W0 → W0 is the multiplication operator on F0, defined by

Mβf(w̄) =< β̄w, w̄ > f(w̄) ,

and the operator M∗
γ is the adjoint of Mγ:

M∗
γf(w̄) =< γ∂w, ∂w̄ > f(w̄) .

This is a projective representation with the cocycle

[ρ(A1), ρ(A2)]− ρ([A1, A2]) =
1

2
tr(γ̄2β1 − γ̄1β2) . (15.8)

Note that the constructed Lie-algebra representation of spHS(V ) is intertwined with
the Heisenberg representation r0 of heis(V ) on F0 (cf. [66]).
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15.4 Twistor interpretation

15.4.1 Twistor bundle

Let us call a complex structure J on V admissible, if it can be obtained from a
reference complex structure J0 by the action of the SpHS(V ) group. Such structures
are parameterized by points of the Siegel disc

DHS = SpHS(V )/U(W0) .

The twistor bundle π : Z → V is, by definition, the vector bundle of admissible
complex structures on V . Its fibre Zx

∼= DHS at x ∈ V is formed by the restrictions
Jx of admissible complex structures J to the tangent space TxV ∼= V . The twistor
bundle is a trivial bundle on V , and the admissible complex structures on V may
be considered as its translation-invariant sections. In particular, we have a natural
projection p : Z → DHS, assigning to a point z = (x, Jx) the translation-invariant
complex structure J = Jx on V . The fibre p−1(J) of this projection is identified
with the space (V, J), i.e. with the space V , provided with the complex structure
J . The introduced maps may be united into the following twistor diagram

Z p−−−→ DHS .

π

y
V

The twistor space Z has a natural complex structure. To define it, consider a
decomposition of the tangent bundle TZ into the direct sum

TZ = V ⊕H (15.9)

of the vertical subbundle V , identified with the tangent bundle to the fibres of π,
and the horizontal subbundle H, identified with the tangent bundle to the fibres of
p. The complex structure J on Z is the direct sum

Jz = J v
z ⊕ J h

z

of the natural complex structure J v
z on the vertical space Vz, identified (by p∗)

with the tangent space Tp(z)DHS to the Siegel disc DHS, and the complex structure
J h

z = Jπ(z) on the horizontal space Hz, identified (by π∗) with the tangent space
Tπ(z)V . Note that the map p is holomorphic with respect to the introduced complex
structure (while π is not!).

We note that with respect to the decomposition (15.9) the Heisenberg group
Heis(V ) acts on the twistor space Z horizontally, preserving the fibres of p, and the
symplectic group SpHS(V ) acts on Z vertically (this action is induced by the action
of SpHS(V ) on the Siegel disc DHS).

15.4.2 Fock bundle

The Fock space FJ = F (V, J) can be characterized in terms of the twistor diagram as
the Fock space F (p−1(J)) of holomorphic functions on the fibre p−1(J) (in variables
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w̄ ∈ W J) with respect to the complex structure on Z, introduced above. The Fock
bundle

F =
⋃

J∈DHS

FJ −→ DHS

is a Hermitian holomorphic Hilbert-space bundle over DHS. Since DHS is contractible
(even convex), it is trivial on DHS. Moreover, the holomorphic map UJ : F0 → FJ ,
defined in Sec. 15.2, establishes an explicit holomorphic trivialization of F . Note
that the trivialization map UJ : F0 → FJ is equivariant with respect to the action
of the SpHS(V ) group.

In Sec. 15.3 a projective representation ρ of the Lie algebra spHS(V ) in the
Fock space F0 was constructed. Using this representation, we can define a linear
connection on the Fock bundle F , whose curvature coincides with the cocycle of the
representation ρ.

Using the description of the Lie algebra spHS(V ), given in Sec. 15.3, we can
decompose it into the direct sum

spHS(V ) = u(W0)⊕m . (15.10)

Here, u(W0) is the Lie algebra of the unitary group U(W0), identified with the set
of matrices (

α 0
0 −αt

)
,

where α is a bounded skew-Hermitian operator. The linear subspace m ∼= T0DHS is
identified with the set of matrices

(
0 β
β̄ 0

)
,

where β is a symmetric Hilbert–Schmidt operator. Note that the adjoint action of
U(W0) on spHS(V ) preserves the subspace m.

According to the general theory of invariant connections (cf. [45], Ch. II.11), the
decomposition (15.10) together with the projective representation ρ determine an
SpHS(V )-invariant connection A on the Fock bundle F with the curvature, given by
the cocycle of ρ.

The original quantization problem from Sec. 12.2 can be reformulated in twistor
terms as follows: construct a quantization Hilbert-space bundle H → DHS together
with a flat unitary connection on it. The connection in this definition may be
considered as an infinitesimal analogue of the BKS-operator from Sec. 14.4. In
the next Sec. 15.5 we consider in more detail a relation between the twistor and
Dirac quantizations of the system (V,A), where A is the semi-direct product of the
Heisenberg algebra heis(V ) and the symplectic Hilbert–Schmidt algebra spHS(V ).

15.5 Quantization bundle

In this Section we construct a quantization bundle H → DHS over DHS. From finite-
dimensional considerations in Ch. 14, it is clear that a good candidate for H should
be the Fock bundle of half-forms, which we are going to define next.
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15.5.1 Bundle of half-forms

We define first a bundle of half-forms

K−1/2 −→ DHS

on the Siegel disc DHS.

Namely, consider on the Siegel disc DHS the following analogue of the Poincaré
metric:

gZ(ξ, η) = tr
{
(1− Z̄Z)−2ξη̄

}

for Z ∈ DHS, ξ, η ∈ T 1,0
Z DHS

∼= EHS. It is a correctly defined Kähler metric on DHS

with Kähler potential K(Z, Z̄) := −tr log(1− Z̄Z). Moreover, it is invariant under
the action of the group SpHS(V ) on the Siegel disc (cf. Sec. 11.4).

The canonical bundle K → DHS is the restriction of the determinant bundle
Det → GrHS(V ), defined in Sec. 5.3, to the Siegel disc DHS. The metric g on DHS

induces a Hermitian metric g̃ on K, given by the formula

‖(λ, Z)‖2 = |λ|2 det(1− Z̄Z)2 (15.11)

for λ ∈ C, Z ∈ DHS.

There is a natural action of a central extension ˜SpHS(V ) of symplectic group
SpHS(V ) on the canonical bundle K, covering the action of SpHS(V ) on the Siegel

disc DHS. If Ã ∈ ˜SpHS(V ) projects to

A =

(
a b
b̄ ā

)
∈ SpHS(V ) ,

then Ã acts on K by the formula

Ã · (λ, Z) =
(
λ det(1 + ā−1b̄Z)2, A · Z)

,

where A · Z = (aZ + b)(b̄Z + ā)−1. The canonical connection on K, determined by

the metric (15.11), is invariant under this ˜SpHS(V )-action on K.

The anticanonical bundle K−1 → DHS of DHS coincides with the restriction of
the dual determinant bundle Det∗ → GrHS(V ), defined in Sec. 5.3, to DHS. Since
the Siegel disc DHS is contractible, the anticanonical bundle K−1 has a square root
K−1/2 → DHS. The metric g̃ on K induces a Hermitian metric on K−1/2, given by
the formula

‖(λ, Z)‖2 = |λ|2 det(1− Z̄Z)−1 . (15.12)

The group ˜SpHS(V ) acts on K−1/2 by the formula

Ã · (λ, Z) =
(
λ det(1 + ā−1b̄Z)−1, A · Z)

.

The canonical connection B on K−1/2 → DHS, generated by Hermitian metric

(15.12) is invariant under the action of ˜SpHS(V ) on K−1/2.
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15.5.2 Quantization bundle

By definition, the quantization bundle H coincides with the Fock bundle of half-
forms on DHS, given by the tensor product of the Fock bundle F and the bundle of
half-forms K−1/2:

H := F ⊗K−1/2 −→ DHS .

We provide it with the tensor product connection

C := A⊗ 1 + 1⊗B .

15.6 Twistor quantization of the loop space ΩRd

In this Section we apply the construction of quantization bundle, described in
Sec. 15.5, to the original system (ΩRd,Ad). As in Sec. 9.2, we can embed the phase
space ΩRd into the Sobolev space V d of half-differentiable loops in Rd. The space
V d coincides with the Sobolev space of half-differentiable vector-functions S1 → Rd,
defined in the same way, as its scalar analogue V (cf. also [17], Sec. VI.5.1). The

embedding of ΩRd into V d realizes the loop algebra L̃Rd as a subalgebra of the
Heisenberg algebra heis(V d) and the Lie algebra Vect(S1) as a subalgebra of the
symplectic Lie algebra spHS(V

d). Moreover, under the above embedding the diffeo-
morphism group Diff+(S1) is realized as a subgroup of SpHS(V

d). We have also,
according to Sec. 11.5, a holomorphic embedding

S = Diff+(S1)/Möb(S1) ↪→ SpHS(V
d)/U(W d

+) = DHS .

the space S into the Siegel disc DHS.
Denote by

F −→ S
the Fock bundle over S, obtained from the Fock bundle F → DHS by restricting it
to S. We still have the Heisenberg representations

rJ : L̃Rd −→ End∗FJ

for J ∈ S, defined by the same formulas, as in Sec. 15.1. The projective SpHS(V
d)-

action on the Fock bundle yields a projective Diff+(S1)-action on F → S. This
action of Diff+(S1) on F → S was constructed in [27]. Its infinitesimal version is a
projective representation

ρ : Vect(S1) −→ End∗F0 .

It can be described explicitly in terms of the basis {en} of the complexified algebra
VectC(S1) (cf. Sec. 2.2).

Denote by

Ln := ρ(en)

the operators in F0, corresponding to the basis elements of VectC(S1). They are
called otherwise the Virasoro operators and can be computed explicitly, using the
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formulas, given in Sec. 15.3. The cocycle of representation ρ in the basis {en} is
equal to (cf. [14])

[ρ(em), ρ(en)]− ρ ([em, en]) =
d

12
(m3 −m)δm,−n . (15.13)

This cocycle coincides with the curvature of the connection A on the Fock bundle
F → S, defined in Sec. 15.4.2.

Consider the anticanonical bundle K−1/2 → S, obtained by the restriction of
the bundle K−1/2 → DHS (cf. Sec. 15.5.1) to S. The curvature of the canonical
connection B on K−1/2 → S in the basis {en} was computed in [13]. It is equal to

RB(em, en) = −26

12
(m3 −m)δm,−n . (15.14)

We define the quantization bundle, as in Sec. 15.5.2, to be the Fock bundle of
half-forms

H := F ⊗K−1/2 −→ S

and provide it with the tensor product connection

C := A⊗ 1 + 1⊗B .

The curvature of C is equal to the sum of the curvatures of connections A and B,
i.e.

RC(em, en) =
d− 26

12
(m3 −m)δm,−n . (15.15)

It vanishes precisely, when d = 26. For this dimension our system (ΩRd,Ad), where

the algebra of observables Ad is the semi-direct product of the loop algebra L̃Rd and
Vect(S1), admits the twistor quantization.

To derive from an obtained solution of the twistor quantization problem a so-
lution of the original quantization problem , i.e. a representation of the algebra of
observables Ad in the Fock space of half-forms H0 = F0 ⊗ K

−1/2
0 , identified with

the fibre of the quantization bundle at the origin o ∈ S, we should proceed along
the same lines, as in the BKS-quantization method in Sec. 14.5. Namely, the rep-
resentation of the Heisenberg algebra in the fibres of the Fock bundle F extends to
a representation in the fibres of the quantization bundle H. The group Diff+(S1)
acts projectively on the bundle H and this action intertwines with representations
of the Heisenberg algebra in the fibres. The Kostant–Souriau operators Ln, corre-
sponding to the basis elements of the algebra Vect(S1), do not preserve, in general,
the spaces F0 and H0, since the symplectic diffeomorphisms ϕt, corresponding to
Ln, transform the spaces F0 and H0 into the spaces Ft and Ht, associated with the
complex structure J t = ϕt

∗ ◦ J0 ◦ (ϕt
∗)
−1. However, by integrating the flat Hermitian

connection on the quantization bundle H, one can construct a unitary operator Ut,
identifying Ht with H0. The composition Ut ◦ Ln acts now in H0, and, after the
differentiation, yields the required representation of the algebra Vect(S1) in H0.
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15.7 Quantization of the universal Teichmüller

space

In the previous Section we have defined the Fock bundle

F −→ S
over the smooth part S = Diff+(S1)/Möb(S1) of the universal Teichmüller space
T = QS(S1)/Möb(S1). This bundle is provided with a projective action of the dif-
feomorphism group Diff+(S1), covering the natural action of Diff+(S1) on the base S.
The infinitesimal version of this action yields a projective representation of the Lie
algebra Vect(S1) in the Fock space H0. We can consider this construction as a geo-
metric quantization of the phase space S with the algebra of observables, given by the
Virasoro algebra vir, the quantization being given by the projective representation
of Vect(S1) in H0. Note that it can be obtained by restriction to S of the analogous
construction over the Hilbert–Schmidt Siegel disc DHS = SpHS(V )/U(W+), given in
Subsec. 15.4.2. Recall that we have constructed there the Fock bundle

F −→ DHS

over DHS, provided with the projective action of the symplectic group SpHS(V ),
covering the natural action of SpHS(V ) on DHS. The infinitesimal version of this
action yielded the projective representation of the symplectic algebra spHS(V ) in
the Fock space H0, described in Sec. 15.3. This construction may be considered
as a geometric quantization of the phase space DHS = SpHS(V )/U(W+) with the
algebra of observables, given by a central extension of the Lie algebra spHS(V ), the
quantization being given by the projective representation of spHS(V ) in H0.

Unfortunately, the described quantization procedure does not apply to the whole
universal Teichmüller space T = QS(S1)/Möb(S1). According to Prop. 25 from
Sec. 11.4, we can still embed this space into the infinite-dimensional Siegel disc
D = Sp(V )/U(W+), but we cannot construct a Fock bundle over D = Sp(V )/U(W+)
with a projective action of the whole symplectic group Sp(V ). The reason is that,
according to the theorem of Shale (cf. Sec. 15.2), it is possible only for the Hilbert–
Schmidt symplectic subgroup SpHS(V ) of Sp(V ). So one should look for another
way of quantizing the universal Teichmüller space T = QS(S1)/Möb(S1). It seems
that a natural way to do that is to use the quantized calculus of A.Connes and
D.Sullivan. We now present briefly the idea of this approach in application to our
problem, borrowed from Ch.IV of the Connes’ book [16].

Recall that in Dirac’s approach (cf. Sec. 12.2), we quantize a classical system
(M,A), consisting of the phase space M , which is a symplectic manifold, and the
algebra of observables A, which is a Poisson Lie algebra, consisting of smooth func-
tions on M . The quantization of this system is given by a representation π of A in
a Hilbert space H, sending the Poisson bracket {f, g} of two functions f, g ∈ A into
the commutator [π(f), π(g)] (times 1/i) of the corresponding operators. In Connes’
approach the algebra of observables A is an associative involutive algebra, provided
with an exterior differential d. Its quantization is, by definition, a representation
of A in H, sending the differential df of a function f ∈ A into the commutator
[S, π(f)] of the operator π(f) with a symmetry operator S, which is self-adjoint and
of square 1.
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If the algebra of observablesA consists of smooth functions on the phase manifold
M , this new formulation is essentially equivalent to that of Dirac. Indeed, the
differential df of an observable f ∈ A is symplectically dual to the Hamiltonian
vector field Xf , so we can reproduce the Poisson Lie algebra from the associative
algebra with the exterior differential. On the other hand, a symmetry operator S
on the polarized quantization space H = H+ ⊕H− is given by the rule: S = ±I on
H±. But in the case, when A contains non-smooth functions, the Dirac definition
does not work, while Connes quantization still makes sense, as we shall demonstrate
on examples below.

Before that, we formalize the definition of Connes quantization. Suppose that
our Hilbert space H is provided with a polarization H = H+⊕H−. We can associate
with it a self-adjoint symmetry operator S such that

H± = {x ∈ H : Sx = ±x}

and S2 = I. Suppose that the algebra of observables of our physical system A
is an associative involutive algebra over C (in other words, A is an algebra with
conjugation). A Fredholm module over A is an involutive representation π of A in
the Hilbert space H, such that the commutator [S, π(a)] is a compact operator for
any a ∈ A.

We demonstrate now that the notion of a Fredholm module provides a natu-
ral concept for the quantization of algebras of observables, containing non-smooth
functions. Consider the following example, in which A coincides with the alge-
bra L∞(S1) of bounded functions on the circle S1. Any function f ∈ A defines a
bounded multiplication operator in the Hilbert space H = L2(S1):

Mf : h ∈ H 7−→ fh ∈ H .

The operator S in this case is given by the Hilbert transform S : L2(S1) → L2(S1).
The differential of a general function f ∈ A is not defined in the classical sense, but
we can still define its quantum analogue by setting

dqf := [S, Mf ] .

The correspondence between functions f ∈ A and operators Mf on H has the
following remarkable properties (cf. [64]):

1. The differential dqf is a finite rank operator if and only if f is a rational
function.

2. The differential dqf is a compact operator if and only if the function f has a
vanishing mean oscillation.

3. The differential dqf is a bounded operator if and only if the function f has a
bounded mean oscillation.

This list may be supplemented by further function-theoretic properties of functions
in A, which have nice operator-theoretic characterizations (cf. [16], Ch.IV).

How this idea can be applied to the quantization of the universal Teichmüller
space T = QS(S1)/Möb(S1)? Let us switch for convenience from S1 to the real line
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R, so that T will be identified with the space QS(R)/Möb(R) of normalized qua-
sisymmetric homeomorphisms of R. Our main Sobolev space H1/2(R) := H1/2(R,R)
of half-differentiable functions on the real line R has a simple description in terms
of the quantum differential. Namely, the symmetry operator S is again given by the
Hilbert transform

(Sf)(s) =
1

πi
P.V.

∫
f(t)

s− t
dt , f ∈ L2(R) , (15.16)

where the integral is taken in the principal value sense.
The quantum differential dqf = [S, Mf ] of a function f ∈ L∞(R) is an operator

on L2(R), given by

(dqf)h(s) =
1

πi

∫
k(s, t)h(t) dt

with the kernel, equal to

k(s, t) =
f(s)− f(t)

s− t
, s, t ∈ R .

Note that the quasiclassical limit of this operator, defined by taking the value of
the kernel on the diagonal, i.e. for s → t, coincides with the multiplication operator
h 7→ f ′h, and the quantization means in this case the replacement of the derivative
by its finite-difference analogue.

Then f ∈ H1/2(R) if and only if its quantum differential dqf is a Hilbert–Schmidt
operator on L2(R); moreover, the Hilbert–Schmidt norm of dqf coincides with the
H1/2(R)-norm of f (cf. [58], Prop. 6.1). This result may be considered as a hint
that the Dirac’s quantization method can still be realized in the case of T , when
reformulated in terms of the quantized calculus.

The idea of how to do it, may be grasped from studying the action of the group
QS(R) of quasisymmetric homeomorphisms of R on H1/2(R). Introduce an operator
L, sending 1-forms on R to functions on R, defined by

Lϕ(s) =

∫
log |s− t|ϕ(t) .

The operator L can be considered as a ”generalized inverse” to the exterior derivative
d, since it is related to d by the following identities

d ◦ L = S , L ◦ d = S ,

where the Hilbert transform S acts on 1-forms by the same formula (15.16) as above,
i.e. by the integration with kernel (s − t)−1. To describe the action of QS(R) on
H1/2(R) in terms of the quantized calculus means to study its action on operators
L and S.

A quasisymmetric homeomorphism h ∈ QS(R) transforms the operators L and
S into

Lh := h ◦ L ◦ h−1 , Sh := h ◦ S ◦ h−1 .

In [58] the perturbations Lh−L and Sh−S are explicitly computed. Namely, denote
by Kh(s, t) the kernel, defined by

Kh(s, t) = log
h(s)− h(t)

s− t
.
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Then Lh − L is an integral operator with the kernel Kh(s, t). Note that the quasi-
classical limit of this kernel, i.e. its value on the diagonal {s = t}, coincides with
log h′(s).

The quantized analogue of Lh − L is given by dq(Lh − L), which is an integral
operator with kernel dsK

h(s, t), having the quasiclassical limit, equal to h′′
h′ ds. The

quantized version of Sh−S is given by dq(Sh−S), which is an integral operator with
kernel dtdsK

h(s, t), having the quasiclassical limit, equal to 1
6
Schwarzian(h)ds2.
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Chapter 16

Quantization of the loop space
ΩTG

In this Chapter we solve the geometric quantization problem for the phase space, rep-
resented by the Kähler-Frechet manifold ΩT G. The role of the algebra of observables
A is played by the Lie algebra L̂govir, an extension of the Lie algebra LgoVect(S1).
The latter is the Lie algebra of the Frechet Lie group LGoDiff+(S1), the semi-direct
product of the loop group LG and the diffeomorphism group Diff+(S1) of the circle.

In the most part of this Chapter we assume that G is a simply connected and
simple Lie group.

16.1 Representations of loop algebras

In the loop space case the role of the Heisenberg algebra and its Heisenberg repre-
sentation from Ch. 15 is played by central extensions L̃g of the loop algebras Lg

and its lowest weight representations.

16.1.1 Affine algebras

The S1-action plays a central role in the representation theory of the loop algebras
and groups. To take care of this action, it is convenient to extend the loop algebra
Lg to the extended loop algebra C⊕Lg, the generator of U(1)-action being denoted
by e0 in accordance with Sec. 10.1. In the same way we extend the loop group LG
to the extended loop group U(1)nLG by taking the semi-direct product of LG with
the circle group S1 ≡ U(1).

Suppose that gC is a complex simple Lie algebra and fix a Cartan subalgebra hC
in gC. The corresponding root decomposition of the extended Lie algebra Ce0⊕LgC
with respect to the Cartan subalgebra Ce0 ⊕ hC has the form

Ce0 ⊕ LgC = Ce0 ⊕
[⊕

n∈Z
hCz

n

]
⊕


⊕

(n,α)

gαzn


 , (16.1)

where gα are the root subspaces of the Lie algebra gC. The pairs a = (n, α), where
n ∈ Z and α is a root of gC with respect to hC, are called the roots of the algebra

203
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LgC. They can be considered as linear functionals on the Lie algebra Ce0 ⊕ hC. If,
in particular, we introduce a functional δ ∈ (Ce0 ⊕ hC)

∗ by setting:

δ(e0) = 1 , δ(hC) = 0 ,

then the whole set of roots of Ce0 ⊕LgC with respect to Ce0 ⊕ hC will be described
as

∆̂ = {α + nδ : α ∈ ∆, n ∈ Z} ∪ {nδ : n ∈ Z} ,

where ∆ is the set of roots of gC with respect to hC. Accordingly, the set of positive
roots of Ce0 ⊕ LgC with respect to Ce0 ⊕ hC is identified with

∆̂+ = {α + nδ : α ∈ ∆, n > 0} ∪ {nδ : n > 0} ∪∆+ ,

where ∆+ is the set of positive roots of gC with respect to hC. If {α1, . . . , αl} is a
system of simple roots of gC with respect to hC, and A is the highest root in ∆+,
then any root in ∆̂+ may be written in the form

n0α0 + n1α1 + · · ·+ nlαl

with non-negative integer coefficients n0, n1, . . . , nl, where α0 := δ − A. We call
{α0, α1, . . . , αl} a system of affine simple roots in ∆̂.

We associate with any root a = (n, α) the root subspace g(n,α) in LgC, defined by

g(n,α) = gαzn for α 6= 0 ,

g(n,0) = hCz
n for α = 0 .

The loop analogue of the decomposition of the Lie algebra gC

gC = hC ⊕ n+ ⊕ n− ,

where n± are nilpotent subalgebras of gC of the form

n+ =
⊕

α∈∆+

gα , n− =
⊕

α∈∆−
gα ,

has the form
LgC = hC ⊕N+gC ⊕N−gC ,

where

N+gC = n+ ⊕
[⊕

n>0

gC · zn

]
, N−gC = n− ⊕

[⊕
n<0

gC · zn

]
.

The loop analogues of the Borel subalgebras have the form

B±gC = hC ⊕N±gC .

We introduce now a central extension L̃gC of the loop algebra LgC. Recall (cf.
Sec. 8.2) that such an extension is determined by a 2-cocycle on LgC, given by the
formula

ω(ξ, η) = ω0(ξ, η) =
1

2π

∫ 2π

0

< ξ(eiθ), η′(eiθ) > dθ , ξ, η ∈ LgC ,
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where < ·, · > is an invariant inner product on the Lie algebra gC. As a vector space,

L̃gC = LgC ⊕ C c ,

with commutation relations

[ξ + s c, η + t c] = [ξ, η] + ω(ξ, η) c

for ξ, η ∈ LgC, s, t ∈ C. We denote the corresponding central extension of the loop

group LGC (cf. Sec. 8.2) by L̃GC.
The representations of the loop algebra Lg and the loop group LG, which we

consider here, are projective and intertwine with the S1-action. It means that they
arise, in fact, from representations of the affine algebra

L̂gC = Ce0 ⊕ L̃gC = Ce0 ⊕ LgC ⊕ C c

and the affine group

L̂GC := C∗ n L̃GC .

The root decomposition of the affine algebra L̂gC has the form

L̂gC = ĥC ⊕N+gC ⊕N−gC ,

where
ĥC = Ce0 ⊕ h̃C = Ce0 ⊕ hC ⊕ C c .

Accordingly,

B̂±gC = ĥC ⊕N±gC .

Having a root α ∈ h∗C, we extend it to ĥC
∗

by setting α( c) = α(e0) = 0. We also

extend the functional δ ∈ (Ce0 ⊕ hC)
∗ to ĥC

∗
by setting δ( c) = 0. It’s also useful to

introduce a functional β ∈ ĥC
∗
, defined by

β( c) = 1 , β(e0) = 0 , β(hC) = 0 .

With any system α0, α1, . . . , αl of affine simple roots we can associate a corre-
sponding system of co-roots α∨0 , α∨1 , . . . , α∨l , where α∨j , j = 1, . . . , l, are the co-roots,
associated with simple roots αj of the algebra gC, and

α∨0 = −A∨ +
2 c

< A, A >

is the affine co-root, associated with the highest root A ∈ ∆+.
Denote by {ω1, . . . , ωl} the system of fundamental weights of the algebra gC, dual

to the simple root system α1, . . . , αl. We can introduce the corresponding system
{ω̂0, ω̂1, . . . , ω̂l} of fundamental weights of L̂gC, dual to the system α0, α1, . . . , αl of
affine simple roots, defined by

ω̂i(α
∨
k ) = δik for 0 ≤ i, k ≤ l , ω̂i(e0) = 0 .

Then

ω̂0 =
1

2
< A, A > β , ω̂j = ωj+ < ωj, A > β , 1 ≤ j ≤ l .
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16.1.2 Highest weight representations of affine algebras

Suppose that ρ : L̂gC → V is a representation of the loop algebra L̂gC, i.e. an

L̂gC-module. Consider for any linear form on ĥC, i.e. an element λ ∈
(
ĥC

)∗
, the

subspace
Vλ = {v ∈ V : ρ(h)v = λ(h)v for h ∈ ĥC} .

If Vλ 6= 0, then λ is called the weight of ρ, and the subspace Vλ is the weight subspace
of ρ, corresponding to λ. Any vector v ∈ Vλ \ {0} is called the weight vector of ρ.

A weight λ ∈
(
ĥC

)∗
is dominant integral , if λ(α∨i ) is a non-negative integer for

any affine co-root α∨i , 0 ≤ i ≤ l. Any such weight can be written in the form

λ = n0ω̂0 + . . . + nlω̂l + sδ , (16.2)

where ni = λ(α∨i ), 0 ≤ i ≤ l, and s = λ(e0) ∈ C. Respectively, an anti-dominant

integral weight λ ∈
(
ĥC

)∗
takes non-positive integer values on affine co-roots α∨i ,

0 ≤ i ≤ l, and can be written in the same form (16.2) with non-positive integer
coefficients ni, 0 ≤ i ≤ l.

Given a weight λ ∈
(
ĥC

)∗
, we can extend it to the Borel subalgebra B̂+gC by

setting it equal to zero on N+gC. Consider an L̂gC-module of the form

V̂ ≡ V̂λ = U(L̂gC)⊗U(B̂+gC)
Cλ ,

where the symbol ”U” stands for the universal enveloping algebra, and Cλ denotes

the 1-dimensional B̂+gC-module, i.e. the complex line C, provided with an action

of the Borel subalgebra B̂+gC, given by: z 7−→ λ(b)z for b ∈ B̂+gC, z ∈ C. Since

L̂gC = N−gC ⊕ B̂+gC ,

the Poincaré–Birkhoff–Witt theorem implies that

U(L̂gC) ∼= U(N−gC)⊗ U(B̂+gC) .

So we have a natural isomorphism

V̂λ
∼= U(N−gC)⊗ Cλ .

Denote by V ≡ Vλ the quotient of V̂ modulo the maximal submodule in V̂ ,
strictly contained in V̂ (in other words, the maximal submodule, not containing

1 ⊗ 1). This V , together with the natural action of L̂gC, is called the standard

representation of the Lie algebra L̂gC with the highest weight λ and the weight
vector 1⊗ 1.

More generally, we shall say that a representation ρ : L̂gC → EndVλ of the affine

algebra L̂gC is the highest weight representation with weight λ ∈ ĥC
∗
, if there exists

a highest weight vector vλ ∈ Vλ such that:

1. ρ(h)vλ = λ(h)vλ for any h ∈ ĥC ;
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2. ρ(n)vλ = 0 for any n ∈ N+gC ;

3. Vλ is spanned by vectors ρ(b)vλ with b ∈ B̂−gC .

The highest weight vector vλ plays the role, analogous to that of the vacuum in the
Heisenberg representation.

In analogous way one can define the lowest weight representation of the affine
algebra L̂gC. For that one should replace in the above definition the nilpotent

subalgebra N+gC by the nilpotent subalgebra N−gC and the Borel subalgebra B̂−gC
by the Borel subalgebra B̂+gC.

The standard L̂gC-module Vλ, defined above, is an irreducible highest weight

representation of L̂gC, if λ ∈
(
ĥC

)∗
is an integral dominant weight. Moreover, it was

proved in [23], that if λ(e0) is real, then Vλ admits a positive-definite (contravariant)
Hermitian inner product. We denote by H ≡ Hλ the completion of V ≡ Vλ with
respect to this inner product. The space Hλ will play the role of the Fock space,
associated with the weight λ.

16.2 Representations of loop groups

We present here some general properties of irreducible representations of the affine

group L̂GC and the Borel–Weil construction for L̂GC.

16.2.1 Irreducible representations of affine groups

Consider the affine group

L̂G := U(1)n L̃G

and fix a maximal torus T̂ in L̂G, given by

T̂ := U(1)× T × S

Here, the first factor U(1) = S1 is the group of rotations, the second factor T is a

maximal torus in G, and the third one S = S1 is a central subgroup in L̃G.

Any irreducible representation of the affine group L̂G has a unique highest weight
λ, which is a character of the maximal torus T̂ . This character has the form

λ = (n, λ0, h) ,

where n ∈ Z is an eigenvalue of the S1-rotation operator e0, called the energy of
the representation, λ0 is a character of T , and h ∈ Z is an eigenvalue of the central
subgroup action, called the level of the representation. The highest weights of L̂G
are integral and dominant and the isomorphism classes of irreducible representations
of L̂G are in 1:1 correspondence with the set of integral dominant weights.

There is a similar characterization of irreducible representations of the affine
group L̂G in terms of lowest weights.
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16.2.2 Borel–Weil construction

Consider the full flag loop space (cf. Sec. 7.6)

ΩT G = LG/T = LGC/B+GC .

In terms of central extensions, ΩT G may be written in the form

ΩT G = L̃GC/B̃+GC .

Suppose that λ is a lowest weight of the maximal torus T̃ = T ×S. We extend it to

B̃+GC by setting λ = 1 on the nilpotent subgroup N+GC in

B̃+GC = T̃C ×N+GC .

Define a holomorphic line bundle L = Lλ over ΩT G by

L = L̃GC ×
B̃+GC

C −→ ΩT G = L̃GC/B̃+GC ,

where B̃+GC acts on the complex line C by the character λ

B̃+GC 3 b :7−→ λ(b)z .

Denote by Γ = Γλ the vector space of holomorphic sections of L = Lλ. Sections

s ∈ Γ can be identified with holomorphic functions ṡ : L̃GC → C, satisfying the
condition

ṡ(γb−1) = λ(b)ṡ(γ)

for any b ∈ B̃+GC, γ ∈ L̃GC. The group L̃GC acts in a natural way on L and

on Γ, and this action defines a holomorphic representation of L̃GC on Γ. We note
that Γ is non-trivial (i.e. contains non-zero holomorphic sections of L) if and only
if the weight λ is anti-dominant (cf. [65], Prop. 11.3.1). Under this condition it
may be proved (cf. [65], Prop. 11.1.1) that the corresponding representation of the

loop group L̃G is an irreducible lowest weight representation of L̃G with the lowest
weight λ. Moreover, it can be proved (cf. [65], Prop. 11.2.3) that any irreducible

representation of the group L̃G is essentially equivalent to some Γλ.
Note that Γ contains a 1-dimensional subspace of sections, invariant under the

action of the nilpotent subgroup N−GC. Indeed, it follows from the representation
(7.18) in Sec. 7.6 that ΩT G contains a dense open orbit, containing the origin o ∈
ΩT G, which can be identified with the subgroup N−GC. Hence, any N−GC-invariant
section in Γ is uniquely determined by its value at o. We take for the vacuum the
lowest weight vector v = vλ, which is an N−GC-invariant section in Γ, equal to 1 at
the origin o.

There is a Hermitian inner product, defined on a dense subspace of Γ. Namely,
consider the anti-dual space Γ

∗
and introduce a complex-linear map β : Γ

∗ → Γ,
which value on the element ξ ∈ Γ

∗
is a section β(ξ) ∈ Γ, identified with the function

β̇(ξ) on L̃GC, defined by

β̇(ξ)(γ) := ξ(γ · v) for γ ∈ L̃GC .
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Using this map, we define a Hermitian inner product of two elements ξ, η ∈ Γ
∗

by

< ξ, η >:= η
(
β(ξ)

)
.

The constructed inner product on Γ
∗

is positive definite and we denote by H = Hλ

the completion of Γ
∗

with respect to this inner product, so that Γ
∗ ⊂ H ⊂ Γ. The

space H plays the role of the Fock space, associated with the lowest weight λ.
The elements εγ of Γ

∗
with γ ∈ L̃G, defined by

εγ(s) := ṡ(γ̄−1) , s ∈ Γ ,

play the role of the coherent states. They have the inner product, equal to

< εγ1 , εγ2 >= v(γ2γ̄
−1
1 ) ,

and generate a dense subset in Γ
∗
.

16.3 Twistor quantization of ΩTG

There are two different approaches to the geometric quantization of the loop space
ΩT G. One method is to replace the original classical system (ΩT G, L̂g o vir) by
an enlarged system. One can do it by enlarging first the phase space ΩT G to the
Sobolev space HG of half-differentiable loops in G (cf. Sec. 9.1), and then embedding
HG into the space V G := H1/2(S1, GL (V )), using a faithful representation V of

the group G. Accordingly, the algebra of observables L̂g o vir should be enlarged
to an algebra A, which is an extension of the semi-direct product of the algebra
Hg, embedded into V g := H1/2(S1, End(V )), and the Lie algebra of the symplectic
Hilbert–Schmidt group SpHS(V ), acting on V G and V g by change of variables. We
obtain the quantization of the original system by first quantizing the enlarged system
and then by restricting this quantization to the original system. The described
method was used in Ch. 15 for the quantization of ΩRd. In this Chapter we follow a
more direct approach, based on the Goodman–Wallach construction of a projective
action of the diffeomorphism group Diff+(S1) on representations of the affine algebra

L̂gC and affine group L̂GC.

16.3.1 Projective representation of Vect(S1)

The projective action of Diff+(S1), mentioned in the introduction to this Section,
can be generated by exponentiating a projective representation of the Lie algebra
Vect(S1), constructed in this Subsection.

Choose an orthonormal base {eα}, α = 1, . . . , N , of the Lie algebra g with respect
to an invariant inner product < · , · > on g. Then the elements

eα(n) := eαzn , z = eiθ, α = 1, . . . , N, n ∈ Z ,

form a basis in the vector space LgC.
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Introduce for k ∈ Z the Casimir operators , given by the formal series

∆k :=
1

2

∑

n∈Z

N∑
α=1

: eα(n) eα(k − n)) : ,

where the normally ordered product : · : is defined by the rule

: e(m)e(n) :=

{
e(m)e(n) for m ≤ n

e(n)e(m) for m > n .

The Casimir operators ∆k are correctly defined, when applied to any element v ∈ V ,
since in this case the power series reduces to a finite sum (cf. [23]). In other
words, the Casimir operators determine endomorphisms of V . The operator ∆k is
homogeneous of order k with respect to the action of the operator e0 in the sense
that

e0∆kv = ∆k(e0 + k)v for any v ∈ V .

Moreover, for any ξ ∈ gC and any n ∈ Z the following relation between operators
on V holds

[ξ(n), ∆k] = n

(
c +

1

2

)
ξ(n + m) .

Given a λ ∈ (L̂hC)∗, denote by λ0 its restriction to the Cartan subalgebra h, and
set ρ =

∑l
j=1 ωj. Then we have the following

Proposition 30. ([26]) The operators ∆0 +
(
c + 1

2

)
e0 and

[∆m, ∆n] +

(
c +

1

2

)
(n−m)∆m+n

commute with the action of L̃gC on V . Moreover,

∆0 = −µe0 +

(
1

2
< λ0, λ0 + 2ρ > +µλ(e0)

)
I ,

[∆m, ∆n] = µ(m− n)∆m+n + δm,−nνm(m2 − 1) ,

where µ := λ(c) + 1
2
, ν := dim g

12
λ(c)µ.

Using the introduced Casimir operators, we construct a projective action of
Vect(S1) on V . More precisely, recall (cf. Sec. 10.1) that the Virasoro algebra vir is a
central extension of the Lie algebra Vect(S1). As a vector space, vir = Vect(S1)⊕Rκ,
and the Lie bracket is given by

[ξ + sκ, η + tκ] = [ξ, η] + ω(ξ, η)κ ,

where ξ, η ∈ Vect(S1), s, t ∈ R, and ω is the Gelfand–Fuks cocycle, defined on the
basis elements {en} by

ω(em, en) = δm,−n
n(n2 − 1)

12
.

Then the following Theorem is true.



16.3. TWISTOR QUANTIZATION OF ΩT G 211

Theorem 13. ([26]) Let (V, π) ≡ (Vλ, πλ) be a highest weight representation of L̂gC

with the dominant integral weight λ. Introduce the operators

Dk := − 1

µ
∆k for k ∈ Z .

Then the representation π of L̃gC on V can be extended to a representation π̂ of the

algebra L̃gC o vir on V by setting

π̂(ek) = Dk , π̂(κ) =
dim g

12µ
λ(c)I .

Moreover, V can be provided with a positive definite Hermitian form, contravariant

with respect to L̃gC o vir.

The operator D0 = π̂(e0) from Theor. 13, which is given by the formula

D0 = π(e0)− λ(e0)− < λ0, λ0 + 2ρ >

2λ(c) + 1
,

is diagonalizable on V with eigenvalues

µi = −i− < λ0, λ0 + 2ρ >

2λ(c) + 1
, i = 0, 1, . . . , .

The eigenspaces of D0 are finite-dimensional and mutually orthogonal. Denote by
T the closure of I −D0, then T is a self-adjoint operator, bounded from below by I
and having a compact inverse T−1. So by spectral theorem, all its powers T t with
t ∈ R are correctly defined and we can set

‖v‖t := ‖T tv‖ for any v ∈ V .

Denote by H t ≡ H t
λ the completion of V ≡ Vλ with respect to the norm ‖ · ‖t and

set

H∞ ≡ H∞
λ =

⋂

t∈R
H t

λ , H−∞ ≡ H−∞
λ =

⋃

t∈R
H t

λ .

The inner product on H defines a sesquilinear pairing between H∞ and H−∞, and
the operator T t yields an isomorphism between Hs and H t−s, defining a pairing
between them, given by

(u, v) := (T tu, T−tv) for u ∈ Ht, v ∈ H−t ,

where the inner product on the right is taken in H.

16.3.2 Goodman–Wallach construction

We extend a natural right action of Diff+(S1) on LgC by change of variables to

L̃gC, demanding that Diff+(S1) acts trivially on the central subalgebra in L̃gC. For

f ∈ Diff+(S1) we denote the action of f on L̃gC by: ξ 7→ ξf for ξ ∈ L̃gC.
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Given a highest weight representation (V, π) ≡ (Vλ, πλ) of L̃gC we define an
action of f ∈ Diff+(S1) on (V, π) by setting

f : π 7−→ πf , where πf (ξ)v := π(ξf )v

for ξ ∈ L̃gC, v ∈ V . Note that for v ∈ H∞ the image π(ξf )v is again in H∞.
The main result of [26] asserts that representations π and πf are unitary equivalent.
More precisely, we have the following

Theorem 14. (Goodman–Wallach [26]) There is a unitary projective action σ of
Diff+(S1) on H ≡ Hλ such that the map

Diff+(S1)×Hn −→ Hn , (f, v) 7−→ σ(f)v ,

is continuous for any n ≥ 0, and

σ(f)πf (ξ)v = π(ξ)σ(f)v

for any v ∈ H∞, f ∈ Diff+(S1), ξ ∈ L̃gC.

Moreover, in [26] it is proved that this Diff+(S1)-action on H is uniquely defined
up to projective equivalence. More precisely, suppose that τ is another projective
action of Diff+(S1) on H, such that τfH

∞ ⊂ H∞ for any f ∈ Diff+(S1), which
intertwines π with πf , i.e.

τfπf (ξ) = π(ξ)τf

for any f ∈ Diff+(S1), ξ ∈ L̃gC. Then there exists a continuous map µ : Diff+(S1) →
S1, such that τf = µ(f)σf .

16.3.3 Twistor quantization of ΩTG

In Subsec. 16.2.2 we have constructed for any lowest weight λ of the loop algebra L̃g

a holomorphic line bundle L ≡ Lλ → ΩT G and the space Γ ≡ Γλ of its holomorphic
sections, on which the representation of L̃G with lowest weight λ is realized. We
denoted by H ≡ Hλ the completion of Γ

∗
with respect to the natural norm on Γ

∗
.

This construction depends on the complex structure on ΩT G, which is provided
by the complex representation

ΩT G = LGC/B+GC .

Denote this complex structure by J0 and the corresponding spaces of sections Γλ

and Hλ respectively by Γ0 and H0, so that we have a representation π0 of L̃G in Γ0.
If we change this complex structure to Jf by the action of a diffeomorphism

f ∈ Diff+(S1), then we can again, using the Borel–Weil construction, realize the

lowest weight representation πf of the group L̃G, corresponding to the lowest weight
λ, in the space Γf of sections of L, holomorphic with respect to the complex structure

Jf on ΩT G. Denote the corresponding completion of Γ
∗
f by Hf .

By the Goodman–Wallach construction, there is a projective unitary action

Uf : Γ0 −→ Γf



16.3. TWISTOR QUANTIZATION OF ΩT G 213

of the group Diff+(S1), intertwining the representations π0 and πf :

πfUf (v) = Ufπ0(v) for v ∈ H0 .

It is uniquely defined by the normalization condition on the lowest weight vectors:
Ufv0 = vf , and defines a continuous unitary operator

Uf : H0 −→ Hf .

So we have again, as in Sec. 15.4, a holomorphic Hilbert space bundle

H =
⋃

f∈S
Hf

and a projective unitary action of the group Diff+(S1) on H, given by f 7→ Uf ,
which covers the natural Diff+(S1)-action on S. The infinitesimalization of this
action yields a projective unitary representation ρ of lowest weight λ of the Lie
algebra Vect(S1) in the space H0, constructed in Subsec. 16.3.1.

Having a projective representation ρ of Vect(S1), we can construct a Diff+(S1)-
invariant connection A on the bundle H → S, whose curvature at the origin o ∈ S
coincides with the cocycle of ρ, given in the basis {ek} by (cf. [53, 54])

[ρ(em), ρ(en)]− ρ ([em, en]) =
c(g)

12
(m3 −m)δm,−n ,

where

c(g) =
h dim g

h + κ(g)
,

and κ(g) is the dual Coxeter number of g (cf., e.g., [76]).
The construction of the connection A is similar to that in Subsec. 15.4.2. Namely,

we have again a splitting of the Lie algebra Vect(S1) into the direct sum

Vect(S1) = sl(2,R)⊕m ,

where sl(2,R) is the Lie algebra of Möb(S1) and m ∼= T0S. This splitting is, in
fact, induced by the splitting (15.10) from Subsec. 15.4.2, under the embedding of
Vect(S1) into spHS(H0). The above splitting together with the projective representa-
tion ρ : Vect(S1) → End (H0) determine, as in Subsec. 15.4.2, a Diff+(S1)-invariant
connection A on the bundle H → S, whose curvature at the origin o ∈ S coincides
with the cocycle of ρ.

Consider now, as in Sec. 15.5.2, the quantization bundle

H := H ⊗K−1/2 → S
and provide it with the tensor-product connection C:

C := A⊗ 1 + 1⊗B ,

where B is the connection on K−1/2, defined in Subsec. 15.5.1. The curvature of C
in the basis {ek} is equal to

RC(em, en) =
c(g)− 26

12
(m3 −m)δm,−n ,

which vanishes precisely for c(g) = 26. Under this condition we get a flat unitary
connection on H. By integrating it, we obtain a unitary action of Diff+(S1) on H,
yielding the geometric quantization of the system (ΩT G,A) in H0.
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Bibliographic comments

In Sec. 16.1 we follow mostly the papers [23, 26]. The Borel–Weil construction
of the lowest weight representations of the loop group is explained in Chap. 11
of Pressley–Segal’s book [65]. The projective action of the diffeomorphism group
Diff+(S1) on the lowest weight representations of the loop algebra is studied in de-
tail in Goodman–Wallach’s paper [26]. Its infinitesimal version, i.e. the projective
representation of the Lie algebra Vect(S1), given by the Casimir operators, is well
known and may be found, for example, in the books [38],[65]. The geometric quan-
tization of loop spaces of compact Lie groups was first considered by Mickelsson
[53, 54].
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Poincaré rotation number, 42
polarization of a Hilbert space, 69
polarization of a symplectic manifold,

168
polarized section, 168
positive root, 50
prequantization, 162
prequantization bundle, 105, 165

automorphism of, 166
principal Frechet bundle, 32
projective representation, 62

quadratic differential, 126
quantizable observable, 183
quantization bundle, 196
quantization condition, 165
quantization space, 161
quantized observable, 183, 184
quasi-Fuchsian group, 145
quasicircle, 83
quasiconformal map, 79
quasiconformal reflection, 83
quasidisc, 83
quasisymmetric homeomorphism, 81,

82, 137
G-invariant, 144

real polarization, 168

real-analytic extension wµ of a quasi-
conformal map w, 87

right translation, 31
right-invariant vector field, 31
root decomposition, 49
root decomposition of the loop alge-

bra C⊕ LgC, 203
root of a Lie algebra, 49
root of the loop algebra LgC, 204
root subspace, 49
root subspace in the loop algebra LgC,

204
root vector, 49
rotation number, 42
Roth number, 43

Schwarzian, 127
semi-infinite form, 77
seminorm, 15
Shale theorem, 191
Siegel disc D, 151
simple root, 49
smooth bundle, 20
smooth map, 22

local representative, 22
Sobolev norm of order 1/2, 113
Sobolev space of half-differentiable

functions, 113, 187
Sobolev space of half-differentiable

loops HG, 116
space of holomorphic sections Γλ, 56
standard Borel subalgebra, 50
standard flag, 48
standard parabolic subalgebra, 51
standard representation of an affine

algebra, 206
submersion, 22
symmetric space N(F ), 53
symplectic Frechet manifold, 28
symplectic structure, 28

compatible, 29

tangent bundle, 22
tangent map, 22
Teichmüller distance, 140
Teichmüller lemma, 143
trace class, 75
trace of an operator, 75



226 INDEX

transition function, 19
twistor bundle, 193
twistor diagram, 193
twistor space, 193

universal Teichmüller space, 137

vacuum, 190
vector fields of type

(0, 1), 28
vector fields of type (1, 0), 28
vertical subbundle, 24, 193
Virasoro algebra, 124
Virasoro group, 125
Virasoro operators, 196
Virasoro–Bott group, 125
virtual cardinality, 73
virtual dimension, 71

wedge product, 27
weight decomposition, 54, 56
weight of a representation, 53, 55, 206
weight subspace, 53, 55, 206
weight vector, 53, 55, 206
Weil–Petersson metric, 146


