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Foreword

This book deals with infinite-dimensional Kéahler manifolds, more precisely, with
three particular examples of such manifolds — loop spaces of compact Lie groups,
Teichmiiller spaces of complex structures on loop spaces, and Grassmannians of
Hilbert spaces. There is an opinion that there could not be a comprehensive theory of
Kahler manifolds in the infinite-dimensional setting. Such an opinion is based on the
belief that infinite-dimensional Kéahler manifolds are too rich and too different from
each other so that any of them deserves its own theory. It’s hard to say now whether a
general theory of infinite-dimensional K&hler manifolds may or may not exist but it is
certainly true that each of our three examples deserves a separate study. Any of these
manifolds can be considered as a universal object in a certain category, containing
all its finite-dimensional counterparts. In particular, main ingredients of Kéahler
geometry of these finite-dimensional spaces may be recovered from the corresponding
ingredients, attached to the universal object, by restriction. Therefore, one can
expect that it may be more natural and sometimes easier to study these ingredients
for the universal object, rather than for its finite-dimensional counterparts. We’ll
give several examples of this sort in our book, and I'm sure that many more are to
be found in future.

The choice of the three infinite-dimensional Kahler spaces for our study is, by no
means, accidental. It is motivated by the relation of these spaces to various problems
in modern mathematical physics. We do not consider these intriguing relations in
our book in order to save its volume with only one exception. Since our first interest
in infinite-dimensional Kahler manifolds emerged from the geometric quantization
of loop spaces (related to string theory), we could not refuse ourselves in supplying
the book with a second part, devoted to this subject (together with a brief survey
of the geometric quantization of finite-dimensional Kéahler manifolds).

My interest in the geometric quantization of infinite-dimensional phase manifolds
arose from reading the papers by Bowick-Rajeev [14] and Kirillov—Yuriev [44]. (It
was my colleague A.Popov from Dubna Institute of Nuclear Research, who draw
my attention to these papers.) I began to study the Pressley—Segal treatise on loop
spaces [65], which became my handbook on this subject and infinite-dimensional
Kahler manifolds, in general. The current edition may be considered as an attempt,
inspired by [65], to expose in a concise form geometric ideas, lying behind the loop
space theory. It should be also mentioned here a stimulating paper by Nag—Sullivan
[58], which has revealed the role of the universal Teichmiiller space and the Sobolev
space of half-differentiable functions on the circle for the geometric quantization of
loop spaces and string theory.
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Let us present now our main heros in more detail. The first one is the loop space
QG of a compact Lie group G. It is a Kahler Frechet manifold, which can be consid-
ered as a universal flag manifold of the group G in the sense that it contains all flag
manifolds of G as complex Kahler submanifolds. There is an essentially unique nat-
ural symplectic form on this manifold. On the other hand, (2G has a lot of different
complex structures, compatible with this symplectic form. The admissible com-
plex structures on QG are parameterized by points of the space Diff (S1)/Mob(S?!)
of orientation-preserving diffeomorphisms of the circle, normalized modulo Mébius
transformations.

The space S = Diff (S1)/Mob(S!) is our second hero. It is also a Kéhler Frechet
manifold, which has a unique natural complex structure and a 1-parameter family of
compatible symplectic forms. These forms coincide with realizations of the canoni-
cal Kirillov form on different coadjoint orbits of the Virasoro group (being a central
extension of Diff, (S')), identified with S. The space S can be also regarded as a
”smooth” part of the universal Teichmiiller space 7. This space, introduced and
studied by L.Ahlfors and L.Bers, consists of quasisymmetric homeomorphisms of the
circle (i.e. orientation-preserving homeomorphisms of S!, extending to quasicon-
formal homeomorphisms of the disc), normalized modulo M6bius transformations.
The universal Teichmiiller space 7 is a complex Banach manifold, which can be
provided with a natural Kéhler pseudometric (which is only densely defined on 7).
This pseudometric restricts to a Kahler metric on & C 7. As it can be guessed from
its name, the universal Teichmiiller space 7 contains all classical Teichmiiller spaces
(of compact Riemann surfaces of finite genus) as complex submanifolds. Moreover,
the Kéahler pseudometric of 7 restrics to the Weil-Petersson Kéhler metric on each
of these classical Teichmiiller spaces.

The group of quasisymmetric homeomorphisms of the circle acts naturally on
the Sobolev space V' of half-differentiable functions on the circle, preserving its nat-
ural symplectic form. This action defines an embedding of the universal Teichmiiller
space 7 into an infinite-dimensional Grassmannian Gr(V') of V. The constructed
map generates also an embedding of the ”smooth” part S C 7 into a "smooth” part
of Gr(V'), represented by the Hilbert—Schmidt Grassmannian Grus(V) C Gr(V).
The Hilbert-Schmidt Grassmannian Gryg(V'), which is our third hero, is a Kéahler
Hilbert manifold. It can be considered as a universal Grassmann manifold, since
all finite-dimensional Grassmannians are contained in Grys(1') as complex subman-
ifolds. Moreover, the loop space 2G can be also embedded into Gryg(V'), more
precisely, into the Hilbert—Schmidt Siegel disc Dyg, identified with the ”lower hemi-
sphere” of Gryg(V).

These are the three main heros of our book, which may be considered as an acces-
sible introduction to the Kahler geometry of these remarkable spaces and a starting
point to their detailed study. Basic properties of the three spaces are summarized
in the table at the end of the foreword.

Briefly on the content of the book.

Book I: Kdahler geometry of loop spaces. To facilitate the reading, we have col-
lected in Part I all necessary background, which may be considered as external with
respect to the main stream of the book.

We start from Chapters 1 and 2, devoted to Frechet manifolds and Frechet Lie
groups. A key reference for these Chapters is a fundamental paper by Hamilton
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[32], which was our main guide to Frechet manifolds.

Chapter 3 contains necessary basic facts on flag manifolds and irreducible rep-
resentations of semisimple Lie groups. This is a standard material, which can be
found in general books on Lie groups, Lie algebras and representation theory.

Chapter 4 is devoted to central extensions of Lie groups and algebras — the
concept, crucial for the representation theory of infinite-dimensional groups and
algebras. A comprehensive presentation of this subject is given in Pressley—Segal
book [65]. This also applies to the next Chapter 5, where we study Grassmannians
of a Hilbert space.

Chapter 6 deals with quasiconformal maps. It is a classical notion, covered in
many books, in particular, in a beautiful (and short) book by Ahlfors [1].

Part II is devoted to the loop spaces QG of compact Lie groups G.

In Chapter 7 we describe the Kahler geometry of the loop space QG and a
canonical embedding of flag manifolds of a Lie group G into QG.

In Chapter 8, devoted to the central extensions of loop groups and algebras, we
follow mostly Pressley—Segal book [65]. The same applies to the next Chapter 9,
where the Grassmann realization of the loop spaces is constructed.

Part III is devoted to various spaces of complex structures on loop spaces 2G.

We start in Chapter 10 with the description of the coadjoint action of the Virasoro
group and its orbits, due mainly to Kirillov. Among these orbits only two kinds
admit a Kéhler structure, namely, the "smooth” part S = Diff, (S')/M6b(S!) of
the universal Teichmiiller space 7 and the homogeneous space R = Diff (S*)/S?.

In Chapter 11 we introduce the universal Teichmiiller space 7 and define a
pseudoKahler structure on it, using its embedding into the complex Banach space
of holomorphic quadratic differentials in the disc. The classical Teichmiiller spaces
T(G), where G is a Fuchsian group, are identified with the subspaces of 7', consisting
of G-invariant quasisymmetric homeomorphisms of S*. The Kahler pseudometric
on 7 restricts to a natural Kahler metric on the ”"smooth” part S C 7 and to the
Weil-Petersson metric on 7'(G). A Grassmann realization of 7 was constructed by
Nag—Sullivan in [58]. This realization agrees with a natural Grassmann realization
of the "smooth” part S.

Book II: Geometric quantization of loop spaces. Part IV is a brief introduction
to the geometric quantization of finite-dimensional Kéhler manifolds. More detailed
presentations of this theory may be found in various books on the subject, e.g., in
[29] and [70].

In Chapter 12 we define the Dirac quantization of classical systems. The Kostant—
Souriau prequantization of symplectic manifolds with integral symplectic forms is
constructed in Chapter 13.

Chapter 14 is devoted to the Blattner—Kostant—Sternberg (BKS) quantization.
A more detailed exposition of this subject may be found in [29], [70]. We introduce
Fock spaces of half-forms on a Kéahler phase manifold and define a BKS-pairing
between them. Using this pairing, one can construct a quantization of the original
phase manifold in a Fock space of half-forms.

The geometric quantization of loop spaces is considered in Part V. We start in
Chapter 15 with the geometric quantization of the loop space of a d-dimensional
vector space. Its quantization is based on a twistor-like construction of a Fock
bundle of half-forms over the space of complex structures on the Sobolev space V
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of half-differentiable functions on S*. There is a projective action of the Hilbert—
Schmidt symplectic group of V' on this bundle, and its infinitesimal version yields a
quantization of the original loop space. At the end of this Chapter we discuss the
geometric quantization of the universal Teichmiiller space 7. The standard Dirac
quantization does not apply to the whole of 7', and it seems more natural in this case
to use an approach, based on the ”quantized calculus” of Connes and Sullivan. (We
are grateful to Alain Connes for drawing our attention to this approach, presented
in [16].)

In Chapter 16 we construct a geometric quantization of the loop space QG of a
compact Lie group G. It is based on the Borel-Weil theorem for the loop groups,
given in Pressley—Segal book [65]. We follow the same scheme, as in Chapter 15,
using the projective action of the diffeomorphism group on the Fock bundle, defined
by Goodman-Wallach [26],[27].

Concluding this foreword, I want to thank all my colleagues, who made it possible
this book to appear. Book I of the present edition is an extended version of the
book, published in Russian in 2001 by Moscow Center of Continuous Mathematical
Education. Book II may be considered as an extended version of a joint paper
with Johann Davidov [17], published in Steklov Institute Proceedings in 1999. That
paper was based on my previous collaboration with Alexander Popov.

This book is based on the lecture course on the Kéhler geometry of loop spaces
and their geometric quantization, which I gave in Nagoya University in 2003 by the
invitation of Professor Ryoichi Kobayashi. I am deeply grateful to him and Nagoya
University for the invitation to give this lecture course and warm hospitality during
my stay in Nagoya.

Moscow November 28, 2008
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Chapter 1

Frechet manifolds

This Chapter is devoted to the Frechet manifolds, having Frechet vector spaces as
their local models. We start our exposition by recalling basic facts on Frechet spaces
in Sec. 1.1. In Sec. 1.2 we introduce Frechet manifolds and define various geometric
structures on them, including vector bundles and connections, differential forms,
symplectic and complex structures.

1.1 Frechet vector spaces

1.1.1 Basic definitions

In contrast with Banach spaces, whose topology is defined by a norm, the topology
of a Frechet vector space is determined by a system of seminorms. Recall that

Definition 1. A seminorm on a vector space F is a real-valued functionp : F' — R,
which satisfies the following conditions:

L. p(f) >0 forany f € F;

2. p(f+g) <p(f) +plg) forany f,gec F;

3. plef) =|clp(f) for any f € F and any element ¢ of the basic number field &
(we restrict to k = R and k = C in the sequel).

As one can see from this definition, the only difference between seminorms and
norms is that a seminorm p is not required to satisfy the property: p(f) =0 <=

f=0.
A system of seminorms {p,},en determines on the vector space F' a unique
topology, for which

fi—=f <<= p(fj—f)—0 foranyneN.
This topology is Hausdorff, if the following condition is fulfilled:
f=0<=p,(f)=0 forallneN.

A sequence { f;} of elements of F'is called a Cauchy sequence with respect to this
topology if p,(f; — fr) — 0 for j,k — oo for any n € N. The space F' is complete,
if any Cauchy sequence in F' has a limit in F.

15



16 CHAPTER 1. FRECHET MANIFOLDS

Definition 2. A Hausdorff topological vector space F' with the topology, defined
by a countable system of seminorms, is called a Frechet space iff it is complete.

Example 1. Any Banach space is a Frechet space with a system of seminorms,
represented by a single norm.

Example 2. The vector space C*|a, b, consisting of C*°-smooth real-valued func-
tions f on an interval [a,b], is a Frechet space with a system of seminorms

pa(f) =) sup |f9(x)] .

j=0 [a,b]

Example 3. The vector space C*(X), consisting of C'*°-smooth real-valued func-
tions f on a compact manifold X, is a Frechet space with a system of seminorms

n

pa(f) =) sup & f(z)] -

71=0

Example 4. Let V' — X be a vector bundle over a compact Riemannian manifold
X, provided with a Riemannian metric and connection. Then the vector space
C*>(X,V), consisting of C*°-smooth sections f of V' — X is a Frechet space with
a system of seminorms

n

pa(f) = sup DY f(z)]

l7]=0

where D7 f is the jth covariant derivative of a section f, and the ”length” |h| of a
section h is computed, using the metrics on X and V.

A closed subspace of a Frechet space is also a Frechet space and the same is true
for the quotient of a Frechet space by its closed subspace.

Example 5. The vector space C32, consisting of C*°-smooth real-valued 2m-periodic
functions on the real line R, may be identified with the closed subspace in the Frechet
space C'*|0, 27], consisting of functions f € C'*[0, 27| such that all their derivatives
fU) match together at the end points: fU)(0) = fU)(27). It implies that C5° is also
a Frechet space.

Many well-known properties of Banach spaces, such as the Hahn-Banach theorem
and the closed graph theorem, are fulfilled in Frechet spaces as well.

However, there is a number of properties of Banach spaces, which do not transfer
to the Frechet case. For example, the theorem of existence and uniqueness of solu-
tions of ordinary differential equations for Banach spaces do not extend to general
Frechet spaces. Another example: the dual of a Frechet space, which is not a Ba-
nach space, cannot be a Frechet space. In particular, the dual of the Frechet space
C*(X) of C*°-smooth real-valued functions on a compact manifold X, which is the
space D’'(X) of distributions on X, is not a Frechet space. Note also that the space
L(F,G) of linear operators, acting from a Frechet space F' to another Frechet space
(G, is not, generally speaking, a Frechet space.
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1.1.2 Derivative

Definition 3. Let F' and GG be Frechet spaces and A : FF — G be a continuous map.
The derivative of A at a point f € F in a direction h € F' is the limit

Fem oA g

t—0

The map A is differentiable at f in the direction h, if this limit exists. The map
A is continuously differentiable (or belongs to the class C*(U)) on an open subset
U C F, if this limit exists for any f € U and all h € F' and the map

DA:UxF —{d

1S continuous.

Example 6. Let f : [a,b] — F be a path in a Frechet space F', i.e. a continuous map
from an interval [a,b] to F. Denote by 1 the unit vector in R, then the derivative
f(t) (if it exists) coincides with Dy (1).

Example 7. A continuous linear map L : FF — G of Frechet spaces belongs to the

class C' and D;L(h) = Lh since

L(f +th) - L tLh
DyL(h) — tim B LSy L,

t—0 t t—0 ¢

Example 8. Let U be a relatively open subset of a band [a,b] x R C R?W)

F = F(z,y) be a smooth function on U. Denote by U an open subset in C'*|a, bl
consisting of functions y = f(x), having their graphs inside U. Consider a map
A:U — C*]a,bl], given by the formula

A(f)(x) = F(z, f(2)) -
Then A belongs to the class C! and
DyA(h)(x) = dyF(z, f(z))h(z) .

and

Example 9. More generally, let X be a compact manifold and V' — X, W — X
be two vector bundles over X. Given an open subset U in V', denote by U the open
subset in C*°(X, V), consisting of sections f of V' — X, having their image in U:
f(X)CU. Let F:U — W be an arbitrary smooth bundle map, sending any fibre
Vp, p € X, into the fibre W), over the same point p.

Define a fibrewise operator A :U — C(X, W), acting by the formula

Afy=Fof.

Denote by x a local coordinate on X in a neighborhood of a given point p and by

y and z coordinates in the fibres V,, and W, respectively. Then the map F'is given

locally by a function z = F'(z,y). A section f has a local representation y = f(x),

and the bundle operator A is given locally by the formula A(f)(z) = F(x, f(x)).
The derivative of A in the chosen local coordinates has the form

DyA(h)(z) = dyF(z, f(x))h(z) ,

where d, F' is the matrix of partial derivatives in y, applied to a vector-valued function
h, representing locally a section h € C*°(X, V).
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If Aisa Cl-map F — G, then
D¢A(hy + hy) = DpA(hy) + DpA(hs) .

In other words, a continuously differentiable map A is necessarily linear in h. This
important property shows that the derivative "behaves” like a differential with re-
spect to the variable h.

Moreover, a map A : U C F — G is continuously differentiable on a convex open
subset U C F'if and only if there exists a continuous map

L:UxUxF—G, L=L(f,f)h,
which is linear in h and for any fi, fo € U satisfies the relation

A(fr) — A(f2) = L(f1, f2)(fr = f2) -

In this case DyA(h) = L(f, f)h.

If two maps A : ' — G and B : G — H are continuously differentiable, then
their composition Bo A : F' — H is also continuously differentiable and the chain
rule for the derivatives is fulfilled

Dy[B o A](1) = Dagp B(D;A(R)) .

In particular, if f(¢) is a C'-path in F and A : F — G is a C'-map, then A(f(t)) is
a C'-path in G and
A(f(t)) = Dy A(S'(1)) -
Suppose now that the basic number field k = C and A : U C F — (G is a map

between complex Frechet spaces. We shall call this map holomorphic if it belongs
to the class C1(U) and its derivative DA : F x F — G is complex linear in h € F.

By iterating the definition of the derivative, one can define higher order deriva-

tives of maps between Frechet spaces. In particular, the second derivative of a map
A : F — @ is defined by the formula

t—0 t
A map A : U — G belongs to the class C?(U) on an open subset U C F if DA
belongs to C'(U), which is equivalent to the existence and continuity of the second
derivative as a map D?A:U x F x F — G.
Similarly to the first derivative, the second derivative DJ%A(h7 k) is linear sepa-
rately in h and k if A is of class C%. Moreover, in this case it can be given by the
limit of the second finite difference

D2A(h k) = lim 2 T Tsk) = A+ th) = AT+ sk) + AW)

t,s—0 ts

and is symmetric in h, k.

By induction, one can define the nth order derivative D;}A(hl, ..., h,) as the
partial derivative of the (n — 1)th derivative D}‘_IA(hl, .« hy_1) with respect to f
in the direction of h,,, more precisely:

Dy A(h h,) = lim D}thlh"A(hl’ oo hat) — D?_IA(hh oy hy)
f yee oy Ryp) = .

t—0 t
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Again, a map A : U — G belongs to the class C™(U) on an open subset U C F if
D} A(hy, ..., hy) exists and is continuous as a map D"A : U x F'--- x F' — G. In
this case D?A(hl, ..., hy) is symmetric and linear in A4, ..., h,. We say that a map
A : U — G belongs to the class C*°(U) on an open subset U C F' if it belongs to all
classes C"(U) for n € N,

1.2 Frechet manifolds

1.2.1 Basic definitions

Definition 4. A Frechet manifold is a Hausdorff topological space X', provided with
an atlas, i.e. a covering of X’ by open subsets (coordinate neighborhoods) {U,}, and
a collection of charts, i.e. homeomorphisms (coordinate maps)

goa:UaiwLaCFa

onto open subsets u, in model Frechet spaces F,. The transition functions

-1
Y0 PalUa NU) £ Uy NUs = 05(Us N Up)
are smooth (i.e. of class C°) maps of Frechet spaces.

If all Frechet spaces F), in this definition coincide with some Banach spaces E,,,
we call such an X a Banach manifold. Respectively, when all F,, coincide with a
separable Hilbert space H = Iy, we call it a Hilbert manifold.

There is one more specification of the above definition in the case when the basic
field k = C.

Definition 5. A complex Frechet manifold is a Frechet manifold X, for which all
model Frechet spaces F,, are complex, and the transition functions ¢z, are holomor-
phic.

We add the definition of a (closed) Frechet submanifold for the future use.
Definition 6. A closed subset ) in a Frechet manifold X is called a submanifold
of X if for any point of ) there exists a coordinate neighborhood U of X with a

coordinate chart, mapping U onto a neighborhood u in the product of Frechet spaces
F x G, which identifies U N Y with the subset u N F' x {0}.

Example 10. Let X be a (finite-dimensional) smooth manifold. Then the set of

all smooth submanifolds in X, denoted by S(X), is a Frechet manifold. Indeed,

consider a submanifold S € S(X), having the normal bundle NS = (T'X|S)/TS.
Then there exists a local exponential diffeomorphism

exp:v — V|

mapping a neighborhood v of the zero section in N.S onto a tubular neighborhood
V of S in X. This diffeomorphism generates a local coordinate chart ¢ with
ol — 9,

mapping the neighborhood v of zero in the Frechet space C*°(S, N.S), consisting of
sections of N.S with their image in v, onto the neighborhood U of the submanifold
S in §(X), consisting of submanifolds in X, lying in V.
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Example 11. Let X be a compact smooth manifold and 7 : £ — X is a smooth
bundle, i.e. FE is a smooth manifold, 7 is a smooth map, whose tangent w, is
everywhere surjective. Then the space of smooth sections of the bundle E, denoted
by C*(X, E), is a Frechet manifold.

In order to construct coordinate charts on C* (X, F), we define for a given section
[ a vertical vector bundle TYE — X, associated with f, with the fibre at p € X,
equal to the kernel of m,, restricted to T,y /. Choose a neighborhood u of the zero
section of TYE' — X together with a fibrewise diffeomorphism of u onto a tubular
neighborhood U of the image f(X) in E. This diffeomorphism generates a local
coordinate chart ¢ with

e tiu— 4,

mapping the neighborhood u of the zero section in the Frechet space C*°(X, Ty E),
consisting of sections of T/E — X with their image in u, onto the neighborhood
of fin C®(X, E), consisting of sections of £ — X with their image in U. The
transition functions are given by fibrewise operators, as in Ex. 9 from Sec. 1.1.

Example 12. The manifold C*°(X,Y) of smooth maps from a smooth compact
manifold X into a smooth manifold Y is a particular case of the above construction,
when the bundle £ = X xY — X is trivial. The group Diff(X) of diffeomorphisms
of X onto itself is an open subspace in C*(X,Y’) and so inherits its structure of a
Frechet manifold.

Example 13. The latter example is especially interesting for us when X is a circle,
which we identify with S = {|z| =1 : 2z € C}. In this case the manifold C*°(S*,Y)
is called the space of (free) loops in the manifold Y.

Consider the simplest example of that sort when Y is also a circle S*. The man-
ifold C*>(S', S1) consists of a countable number of connected components, denoted
by C°(St,S') with k € Z, which are numerated by the index (rotation number) of
a map S' — S!. By pulling up to the universal coverings, we can associate with
amap f: S — S! the map f : R — R!, defined up to an additive constant
of the form 27n, n € Z. In particular, the maps f € C°(S?, S!) of index 0 have
the pullbacks f , which are smooth 27-periodic functions, i.e. belong to the Frechet
space C52 (cf. Ex. 5in Sec. 1.1). So we have a global coordinate chart for the whole
component C§°(S?, S1):

p:Co(SY, 8" = Cse/onZ, f—[f].
In the same way, the maps f € C°(S 1.81) of index k have the pullbacks f , which
satisfy the relation: f(x+2m) = f(x) + 27k. Translating such a function by kz, i.e.
replacing f(x) by fi(z) := f(x) — kx, we obtain a 27-periodic function f;. Hence,
we have again a global coordinate chart on Cg°(S?t, S1):
@ C(Sh, SY) =5 O /2n

For the whole manifold C*(S*, S') we get a diffeomorphism

C=(S', 8Y) Z5 7 x C2 /217
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Example 14. Consider an open submanifold Diff(S') in C>°(S*, S'), consisting of
all diffeomorphisms of the circle S*. It has two connected components: the identity
component Diff, (S?), consisting of diffeomorphisms of S*, preserving its orientation
(this component belongs to the subspace Ct°(S?,S')), and Diff_(S!), consisting
of diffeomorphisms of S!, reversing its orientation (this component belongs to the
subspace C> (S, S1)).

The maps f € Diff, (S') pull back to functions f, satisfying the relation

flz+2m) = f(z)+ 27 .
They have 27-periodic derivatives f (), which are everywhere positive, since diffeo-
morphisms f preserve the orientation. We also have:
o - .

R TR A Y

2m J, 2m
i.e. the average of f'(x) over the period is equal to 1. Denote by C' the subset
of C%2, consisting of smooth 27-periodic strictly positive functions on the real line
with the average, equal to 1. It is an open convex subset in an affine subspace of
codimension 1 in C%°, hence a Frechet submanifold. The above argument implies
that our manifold Diff, (S') is diffeomorphic to S' x C. Indeed, the function fis
defined by f" up to an additive constant f (0) € R, but the function f itself is defined
by f: S — S up to an additive constant 27n € 27Z. Hence, f' determines f
up to an element of S' = R/27Z. Since C is contractible, we see that Diff, (S') is
homotopy equivalent to S*.

1.2.2 Frechet vector bundles

Let X, V be two Frechet manifolds and 7 : V — X be a smooth surjection such that
each fibre 771 (x), x € X, of 7 has the structure of a Frechet vector space.

Definition 7. A Frechet manifold V is called a Frechet vector bundle over X if
the following conditions are satisfied. There exists an atlas {U,} of coordinate
neighborhoods in X’ such that for any a the preimage V,, = 7~ (U, ) of the coordinate
neighborhood {U,} belongs to a coordinate neighborhood in V. The corresponding
coordinate charts have the form
Yo : Uy — uq = 0(U,) C F, (1.1)
Vo i Vo — 0o = ¥o(Va) = ug X Gy, (1.2)

and are compatible in the sense that the following diagram is commutative

Va:ﬂ'_l(Ua) 111—) Vg = Ug X Go C Fy x Gy

™ l l projection

U, LN U, C F,

The structure of a vector space on 7-fibres, induced from the right vertical arrow,
coincides with the original one and the transition functions

Vpa = Y5 005" 1 pa(Ua NUp) X Go — 95(Ua NUp) x G

are linear in the second variable.
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This definition applies with evident modifications to Banach and Hilbert vec-
tor bundles. If all Frechet spaces in the above definition, as well as w-fibres, are
complex and the transition functions are holomorphic, we obtain the definition of a
holomorphic Frechet vector bundle.

Example 15. The tangent bundle T X of a Frechet manifold X is a Frechet vector
bundle. The fibre of TX at x € X is formed by vectors 2'(t)|;—9, where z(t) is a
smooth path in X', emanating from z. The coordinate transition function for TX
are given by the derivatives of coordinate transition functions for X.

Example 16. If, in particular, X = C*°(X,Y), then apath f : [0,1] — C>*(X,Y)is
given by amap f : [0,1] x X — Y i.e. by a l-parameter family of maps f; : X — Y,
t € [0,1]. For any z € X the image f;(x) for 0 <t < 1 constitutes a path in Y, whose
tangent vector at fi(z) coincides with the derivative f/(z) € Ty )Y = fi(TY),.
Hence, f; is a section of the inverse image fTY — X of the tangent bundle 7Y
under the map f; and

T;C®(X,Y) = C™(X, f*TY) .

Example 17. Let X be a (finite-dimensional) smooth manifold and S(X) be the
Frechet manifold of its smooth compact submanifolds (cf. Ex. 10). Then its tangent
bundle T78(X) has the fibre at S € S(X), equal to the Frechet space of sections
C>(S, NS) of the normal bundle NS.

We shall need later another Frechet vector bundle, related to the Frechet mani-
fold S(X). Namely, denote by C'*(S) the Frechet space of smooth functions on S.
Then the union of the spaces C*°(S) over all S € S(X) is a Frechet vector bundle
C>*S(X) — S(X). Indeed, a coordinate chart ¢ on S(X) in a neighborhood of the
submanifold S € S(X) maps this neighborhood into the Frechet space C*°(S, N.S)
of smooth sections of the normal bundle NS. Using this map, we can identify diffeo-
morphically submanifolds S’, close to S, with the submanifold S, which corresponds
to the zero section of NS. Accordingly, smooth functions on S’ will be identified
with smooth functions on S, which defines a coordinate chart ¢ on C*S(X) in a
neighborhood of S with values in C*°(S, NS) x C*°(S), compatible with the coor-
dinate chart ¢ on S(X).

Definition 8. A map A: X — Y between Frechet manifolds is called smooth if for
any point x € X we can find coordinate charts ¢ in a neighborhood of this point and
1 in a neighborhood of its image y = A(z) such that the composition ¢ o Ao ¢!,
called otherwise a local representative of A, is a smooth map of Frechet spaces.

We say that a smooth map A : X — ) is an immersion (resp. submersion) if
for any point € X we can find coordinate charts near x and its image y = A(z)
so that the local representative of A is an immersion (resp. submersion) of Frechet
spaces, i.e. it is an inclusion of a summand (resp. projection onto a summand) in a
direct sum of Frechet spaces.

Example 18. A smooth map A : X — ) between Frechet manifolds generates a
tangent map T(A) : TX — TY of their tangent bundles. This map sends any fibre
T,X at x € X to the fibre T,y at the image point y = A(x) € Y. In a coordinate
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chart it is given by the derivative of the corresponding local representative. The
linear map DA : T,X — T,Y, induced by T'(A) on the tangent space T, X, is the
derivative of A at x, which agrees with the definition, given in Subsec. 1.1.2, in the
case when X and ) are Frechet spaces.

Definition 9. A smooth map 7w : £ — X between Frechet manifolds is called a
Frechet fibre bundle, if it is a submersion and for any point x € X we can find an
open neighborhood U of this point such that there exists a Frechet manifold F and
a diffeomorphism ¢ : 771(U) — F such that the following diagram is commutative:

7T_1(U) T UX.7:

Trl lprojcction

v - U
As in the finite-dimensional situation, a smooth map A : & — &, of a fibre bundle
m & — X to a fibre bundle my : & — X is called a fibre bundle map if it sends
fibres to fibres, i.e. for any x € X it sends the fibre ;' () to the fibre 7, ' (z).

Example 19. Let m; : & — X and my : & — X be two fibre bundles of Frechet
manifolds. Then we can form a new fibre bundle over X', called the fibre product of
these two bundles, which a closed submanifold in & x &. Namely, we set

51 Xx 52 = {(61,62) € 51 X 82 . 7T1(€1> = 7T2(62)} .

It is a closed subset in & x &, since & Xy & coincides with the preimage of the
diagonal A in & x & under the product map m xmg : £ xE — X' x X. To prove that
it is a fibre bundle over X and a submanifold in £ x &;, take an arbitrary point © € X
and choose an open neighborhood U so that 7 : 7 H(U) — U and 7y : m;, "(U) — U
are compatible with the projections U x F; — U and U x Fy; — U respectively in
the sense of Def. 9. This generates a diffeomorphism 7,1 (U) x 7, (U) C & x &
into U x F; x U x Fy. Restricting this diffeomorphism to the diagonal A in U x U,
we obtain for & Xy & a local diffeomorphism v, required in the Def. 9. The same
argument shows that £ x y & is a closed submanifold in & x &.

1.2.3 Connections

Let m: V — X be a Frechet vector bundle over a Frechet manifold X'. Given a point
v € V denote by V,, = Ker D the subspace in TV, formed by vectors, annihilated by
the derivative D : T,V — Ty(,)&X. By mimicking the finite-dimensional definition,
we want to define a connection H on 7 : V — & as a rule, assigning to any point
v € V a subspace H, in TV, complementary to V.

The tangent bundle 7V can be considered as a Frechet vector bundle 7y, : TV —
VY over V and also as a Frechet vector bundle T'w : TV — TX over TX. So we have
a natural projection

(my, Tm): TV — VBTX |, v+ (mp(v), Tm(v))

for 6v € TV. Note that the composite map womy : TV — X provides TV with a
structure of a fibre bundle over X.
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Definition 10. A connection on a Frechet vector bundle 7 : V — X is a smooth
fibre bundle map
H:VeTXx — TV

of fibre bundles over X such that
(my, Tmr)oH=1id on V&TX

and is bilinear. The latter means that for any x € X the restriction of H to the
fibre over x is a map H, : V, & T, X — TV, which is linear in both arguments.

To understand what this definition means in local terms, consider a coordinate
neighborhood U in X, over which we have the following identifications

TU «—UxF, 7Y U)«—UxG,TUxG)+ (UxG)x(FxGq).
In these terms our connection H has the following representation
H(I7 v, g) = (l‘, v, Hl(x7 v, 5)7 HQ(ZEJ v, 5))

where z € U, v € G, £ € F. Since (mp,Tm)oH = id on V & TX, we have
Hi(x,v,&) = ¢ and the bilinearity condition implies that Hy(z,v,§) is bilinear in
(v,&). We shall denote this map, called the Christoffel symbol of the connection H,
by

[''UxGxF—G, T'y(v§:=Hx,v,f).

Denote, as above, by V' the subbundle in 7TV, given by the kernel Ker T'm of
the tangent map T'm : TV — TX. We call V' the vertical subbundle of TV. The
complementary subbundle H in TV, given by the image Im’H of the map H :
V& TX — TV, is called the horizontal subbundle of TV. Note that, while the
vertical subbundle V' is canonically defined by 7 : VV — X', the horizontal subbundle
H is determined by the connection H.

There is another way to view the connection, based on the notion of covariant
derivative. The covariant derivative is defined in terms of connection H as follows.
Consider a path v(t) in V, represented in local coordinates as v(t) = (z(t), g(t)) with
z(t) € U, g(t) € G. Then its covariant derivative Vu(t) is equal to

Vu(t) = (£(1),E(1))
where
§t) =2'(t), E(t) =g'(t) = Taw(9(t), (1)) -
The path v(t) in V, covering the path z(t) in X, is horizontal iff Vu(t) = 0.

For Banach manifolds we can always find for a given path z(¢) in X with the
initial value z(0) a uniquely determined horizontal lift v(¢) in V, covering z(¢). On
the contrary, for Frechet manifolds the horizontal lift may not exist and, even if
it exists, it may be not unique. This is due to the absence of the existence and
uniqueness theorem for the ordinary differential equations in Frechet spaces.

By definition, a connection on a Frechet manifold X is a connection on its tangent
bundle TX. If z(t) is a path in X, then its derivative v(t) := 2'(t) is a path in TX.
Its covariant derivative Vo(t) is called otherwise the acceleration of z(t). A path z(t)
is a geodesic of X iff its acceleration is zero. We say that a connection H on T'X is
symmetric if its local representatives I',.({,n) are symmetric in (§,n) € T,X x T, X.
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Definition 11. The curvature R of a connection H on a Frechet vector bundle
m:V — X is a trilinear map

R:VXTX XTX — YV,

given in terms of local representatives by the formula

Rx(,U?gv 77) = DFx(U7£a 77) - Drx(vﬁ 7775) - Fx(l—‘l‘(,u?g)v 77) + FI(FSC(U???))g) )

where ', (v, &) is a local representative of the connection H. This definition does
not depend upon the choice of a local chart.

Example 20. Consider the Frechet manifold C*°(X,Y") of smooth maps from a
compact manifold X into a manifold Y. Suppose that Y has a connection, repre-
sented locally by the Christoffel symbol I'y (£, 7). Then we can define a connection
on C*(X,Y) locally by the Christoffel symbol

(TAE) (2) = Ty (€@, (@) forze X

where f € C®(X,Y), {,71 € T;C*(X,Y) = C®(X, f*TY) (cf. Ex.16 in Sub-
sec. 1.2.2). Note that £(z), 7i(z) € Ty .

A path f(t) in C*(X,Y), evaluated at x € X, yields a path fi(z) in Y. The
path f(t) is a geodesic in C*°(X,Y) if and only if the path f;(z) is a geodesic in Y
for any x € X. The curvature R of the introduced connection on C*(X,Y’) is given
in terms of the curvature R of the connection on Y by the formula

i.e. is computed from R pointwise.

Example 21. Consider the Frechet manifold S(X) of smooth compact submani-
folds S in a Riemannian manifold X (cf. Ex. 10 in Subsec. 1.2.1 and Ex. 17 in
Subsec. 1.2.2). For any S € S(X) and f € C*(S) we can define vector bundles T'f
and N f over S by setting

Tf:=graphof Df ={(v,D,f):v€TS} CTX xR

and Nf =TX xR/Tf.
Then we have the following natural isomorphisms

TsS(X)=C>®(S,NS), TispC*S(X)=C>(S,Nf).

The vector bundle N f may be included into the following exact sequence of vector
bundle maps over S
0 —R—Nf—NS—0,

which induces an exact sequence of maps of Frechet vector spaces
0— C(S) — C*°(S,Nf) — C*(S,NS) — 0 .
By above isomorphisms, it coincides with the exact sequence

0 — C%(S) — Tys,pCS(X) — TsS(X) — 0 .
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The third arrow in this sequence is the tangent map of the vector bundle projection
C>*S(X) — S(X), while the second arrow realizes C*°(.S) as the vertical subspace
of this bundle at f € C*°(S).

To define a complementary subspace, we need a connection on C*°S(X), which is
generated by the Riemannian connection on X. This connection ‘H may be described
as follows. For S € S(X) we can identify its normal bundle V.S with the subbundle
of TX|S, consisting of vectors, orthogonal to T'S with respect to the Riemannian
metric of X. Then NS x R would be a complementary subbundle to T'f in T X x R,
so we can identify Nf = TX x R/Tf with NS x R. Weset Hf = NS x {0} to be
the horizontal subbundle, complementary to the vertical subspace {0} x R. Then
C>(S, Hf), which is complementary to the vertical subspace C'*°(S), will be the
horizontal subspace of our connection H. Note that it projects isomorphically onto
the space C®°(S, NS) = TsS(X), since Hf = NS x {0} ~ NS.

Let us compute the curvature of this connection. Using the Riemannian con-
nection V on X, we can define covariant derivatives Vf of f € C*(S) and V¢ of
¢ € C=(S,NS) and compute their inner product Vf - V& in TX|S. The curvature
R of the connection H is a trilinear map

R:C*S(X)xTC®S(X) x TC*S(X) — C*S(X) ,
which can be interpreted at a point S € S(X) as a linear map
Rg: C®(S) x C°(S,NS) x C*°(S,NS) — C>(9) .
This map is given explicitly by the formula
Rs(f,&m) =V f-VE-n—=Vf-Vn-¢.

1.2.4 Differential forms

Definition 12. A differential form of degree r (or simply an r-form) on a Frechet
manifold X is a smooth map

w:g”Xx-uxTXl—NC

g
T

of the rth direct power TX x --- x T'X of the tangent bundle T'X such that for any
x € X its restriction
wy : TpX X xT,X — C

to T, X X --- x T, X is an r-multilinear alternating map. In other words, w, is an
r-multilinear alternating form on 7, X. We denote the space of r-forms on X by
Q" (X). We shall consider smooth functions on X as forms of degree 0.

In a coordinate neighborhood U of X we can identify an r-form w on U with a
smooth map from an open subset of a Frechet space F' into the vector space Q" (F)
of r-multilinear alternating r-forms on F. If &, ... &, are smooth vector fields on
U C F, we denote by w(&,...,&.) the map from U to C, whose value at x € U
is equal to w, (& (z),...,&(x)), i.e. the value of the r-form w, € Q"(F) on vectors
&i(x),. .., & (x) in F.

Differential forms on Frechet manifolds share many properties with differential
forms on finite-dimensional manifolds. In particular, one can define their exterior
derivative and wedge product similar to the finite-dimensional case.



1.2. FRECHET MANIFOLDS 27

Definition 13. The ezterior derivative dw of an r-form w on X is an (r+1)-form on
X, which can be defined locally as follows. For any smooth vector fields &y, &1, ..., &,
in a coordinate neighborhood U C F', the value of dw on &, &1, ..., &, is equal to

dw(&)a 517 cee 757‘) = Z(_l)zgl (W(goa s 757 s 757‘)) +
=0

(1.3)

+ 3 (1) <[§i,gj],go,__.,@,...,gj,...,@) :
4,7=0
1<J

This definition does not depend on the choice of the local data in the sense that

there is a unique (r + 1)-form on X, which respects the given local representations
(cf. [47], Ch.V, Prop. 3.2).

Example 22. If f is a O-form on &', i.e. a smooth map f : X — C, then df, for
any r € X coincides with the tangent map

Tzf . TIX — Tf(x)(C .
Moreover, for any vector field £ on X we have

df (&) = &f -

If wis a 1-form on &', then locally

dw(&,m) = & (w(n)) —n (W) —w (&) -

For a 2-form w we have locally

dw(&;m,¢) =& (wn, Q) +n(w(¢, )+ C(w(&n)) —
—W([faﬁ]»o —W([U,C]yf) —W([C,f]aﬁ) :

Definition 14. The wedge product of an r-form w and an s-form ¢ on X is an
(r + s)-form w A1) on X, which can be defined locally as follows. For any smooth
vector fields &, ... & in a coordinate neighborhood U C F', the value of w A ¢ on

&1, ... & s 1s equal to

(1.4)

r+s

(w A ¢)(€17 .- -5r+8) = Z(_l)g(a)w(fa(lb s 7fa(r))¢(5a(r+1)7 s 750’(T+S)) )

=1

where the sum is taken over all permutations o of the numbers (1,...,7 + s) and
€(o) is the parity of o.

Again, this definition does not depend on the choice of the local data in the
sense that there is a unique (r 4 s)-form w A1 on X', which respects the given local
representations.

In particular, the wedge product of a function f and a form w is equal to fAw =
fw. One can easily check that the wedge product of two forms w and 1 on X is
related to the exterior derivative by the usual formula

dw A ) =dw A+ (—1)%8“ A dip

and the square of d is equal to zero: ddw = 0.



28 CHAPTER 1. FRECHET MANIFOLDS

1.2.5 Symplectic and complex structures

Definition 15. A symplectic structure on a Frechet manifold X is a 2-form w on
X, having the following properties:

1. wis closed, i.e. dw = 0;

2. w is non-degenerate at any point x € X, i.e. for any & € T, X, £ # 0, there
exists an n € T, X such that w,(£,n) # 0.

A Frechet manifold X', provided with a symplectic structure w, is called symplectic.

Remark 1. Note that we have used here the weakest form of the non-degeneracy
condition. For Banach manifolds, modelled locally on a Banach space F, a conven-
tional non-degeneracy condition on w requires that for any x € X" the linear operator
A, from T,X ~ E to the dual space T X ~ E', defined by w,(-,n) = A.(-)(n), is
invertible for any non-zero n € T X.

Most of Frechet manifolds, considered in this book, are symplectic in the sense
of the Def.15. Moreover, they usually have, along with their symplectic structure, a
compatible almost complex structure.

Definition 16. An almost complex structure on a Frechet manifold X is a smooth
vector bundle automorphism J of the tangent bundle T'X, such that for any r € X
the restriction J, of J to T,X satisfies the condition

J? = —id .

A Frechet manifold X, provided with an almost complex structure, is called almost
complezx.

If J is an almost complex structure on a Frechet manifold &X', then the iso-
morphism J can be extended complex linearly to the complezified tangent bundle
TCX = TX ® C, so that T°X decomposes into the direct sum of subbundles

T°X =T"X T X |

where for any € X the restriction of J, to T}°X is given by the multiplication by
i, and the restriction of J, to T>'X is given by the multiplication by —i. Sections
of the bundles T°X and TO'X are called otherwise the vector fields of type (1,0)
and (0, 1) respectively.

We call an almost complex structure J on a Frechet manifold X integrable or
formally integrable complex structure, if the bracket of any two vector fields on X
of type (1,0) is again a vector field of type (1,0).

Remark 2. An almost complex structure J provides a complex structure on every
tangent space T,X, determined by the action of J,. In particular, any complex
Frechet manifold X has a natural almost complex structure, given by the multipli-
cation by ¢ on T, X. Such an almost complex structure is automatically integrable.
For finite-dimensional manifolds the Newlander-Nirenberg theorem asserts that the
converse is also true, namely, any almost complex manifold with an integrable al-
most complex structure is, in fact, complex. It means that one can introduce an
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atlas of local complex charts on this manifold in such a way that the original al-
most complex structure in these coordinates will be given by the multiplication by
i on tangent spaces. For Frechet manifolds this theorem is, in general, not true (cf.
[51]), so in order to show that a given Frechet manifold is complex, it’s necessary to
construct, following Def.5 from Subsec. 1.2.1, an atlas of local complex charts.

The most important class of Frechet manifolds, considered in this book, is that
of Kéahler Frechet manifolds, i.e. Frechet manifolds, which are both symplectic
and complex, and these two structures are compatible in the sense of the following
definition.

Definition 17. A complex symplectic Frechet manifold X is called a Kdhler Frechet
manifold, if its complex structure J and symplectic structure w are compatible in
the following sense:

L. we(Jp€, Jon) = we(§,n) forany &neT, X, xeX;

2. a symmetric form on T, X x T, X, defined by

g$(£7 T]) = wx(é, Jrn) )

is positively definite for any = € X.

Such a form g is called the Kdhler metric on X.

Bibliographic comments

A key reference to Ch.1 is the Hamilton’s paper [32] on the Nash—Moser theorem.
Its first part is an excellent introduction to the theory of Frechet manifolds. In
our exposition (except for Subsecs.1.2.4,1.2.5) we follow closely that paper. The
definition Def.10 of the connection on a Frechet vector bundle is borrowed from [47].
The latter book can be recommended for the readers, interested in the theory of
infinite-dimensional manifolds with a special emphasis on the Banach case.
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Chapter 2

Frechet Lie groups

Definition 18. A Frechet Lie group is a Frechet manifold G, provided with the
group structure, such that the multiplication

ng—>g7 <g7h)'—>gh7

and ”taking-the-inverse”
1

G—G, gr—y9g
are smooth maps of Frechet manifolds. The Frechet Lie algebra of a Frechet Lie
group G is the tangent space & = T1G at the unit 1 of the group G.

For g € G denote by

Ly:G—G, Lg(h)=yg
R,:G—G, Ryh)=h-

respectively the left and right translations on the group G.

Any element ¢ of the Lie algebra & generates by left translations a vector field
X¢ on G, invariant under these translations. The correspondence § «+— X, allows
us to consider elements of the Lie algebra & as left-invariant vector fields on the
Lie group G. The left-invariant vector fields on G form a Lie algebra with respect
to the bracket of vector fields, which induces a Lie algebra bracket on 717G = & by
the identification & «— X, (this justifies the use of the term ”Lie algebra” with
respect to T1G). We note that there exists a unique connection H on G, called the
Cartan—Maurer connection, such that the left-invariant vector fields are horizontal
with respect to H, its curvature being equal to zero. Of course, the choice of
the left-invariant vector fields and left translations in this argument was absolutely
ambiguous (though traditional), with the same success we could employ here the
right-invariant vector fields and right translations.

If in the definition of a Frechet Lie group the group G is a Banach (resp. Hilbert)
manifold, we say that G is a Banach (resp. Hilbert) Lie group.

Suppose that for any element & of the Lie algebra & there exists a unique 1-
parameter subgroup ¢ : R — G of the group G such that v¢(0) = £. Then, as in the
finite-dimensional case, we can define the exponential map

exp: ® — (G
31
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by setting exp £ := v¢(1). In particular, for Banach Lie groups G the above condition
is always satisfied. Indeed, any element ¢ € & is identified with the left-invariant
vector field X¢, which can be integrated to a 1-parameter group of transformations
¢+ G — G. In this case v¢(t) := pg(1).

We supplement the definition of Frechet fibre bundles, given in Subsec. 1.2.2 (cf.
Def.9), with the definition of a principal Frechet bundle. We say that a Frechet Lie
group G acts on a Frechet manifold X, if there is a smooth map

gX‘X—>X? (gux)'—)gxa
such that 1 -z =2 and (g192) - = g1 - (92 - x).

Definition 19. Let G be a Frechet Lie group, acting on a Frechet manifold £. This
manifold is called a principal Frechet G-bundle, if there is a smooth submersion
7w : €& — X onto another Frechet manifold X, such that for any x € X there exists
an open neighborhood U of x and a diffeomorphism of its preimage 7=1(U) in &
onto U x G, satisfying the following conditions:

1. the action of G on & corresponds to the natural action of G on the second
factor of U x G;

2. the following diagram
W U) —— Uxg

ﬂl J{projection

RSN 5

1S commutative.

We consider next the two most important examples of Frechet Lie groups, playing
a special role in this book.

2.1 Group of currents C*(X,G)

2.1.1 Basic properties

Let X be a smooth compact manifold and G is a Lie group. The space C*(X, G)
of all smooth maps from X into G is a Frechet manifold, as we have pointed out in
Subsec.1.2.1 (cf. Ex.12). Let us recall the definition of the structure of a Frechet
manifold on C*°(X, @) for this particular case.

The exponential map exp : g — G determines a local diffeomorphism

exp:u— U,

mapping an open neighborhood u of zero in the Lie algebra g onto an open neighbor-
hood U of the unit e € GG. Using this diffeomorphism, we can construct a local chart
in a neighborhood U = C*°(X,U) of the identity 1 := X — e € G in C*(X,U). It
is given by the homeomorphism

x: U:=0%Xu —CoX,U)=U,
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given by the pointwise application of the exponential map exp : u — U. The inverse
map ¢ = x ! : U — Y yields a homeomorphism of the neighborhood U of the
identity 1 € C*°(X,U) onto the open subset { in the Frechet space C*(X, g).

The manifold C*° (X, G) is a group with respect to the pointwise multiplication.
Using this group structure, we can construct local charts at any point of C*°(X, G).
To define a local chart at an arbitrary point v € C*(X, G), denote by U, a neigh-
borhood of v of the form £, := «-U and define a local chart ¢, in the neighborhood
U, as the composition map

Py i=proy U, — U,

where the map v~! : U, — U is given by the multiplication by 7! from the left.
The neighborhoods {U,} and the maps {¢,} with v € C*°(X, G) form an open atlas
and a system of local charts on C*°(X, &), which defines the structure of a smooth
Frechet manifold on C*°(X, G), modelled on the Frechet space C*(X,g).

The pointwise multiplication and taking-the-inverse maps in the group C*(X, G)
are smooth with respect to the introduced structure of a Frechet manifold, hence
C*(X,@G) is a Frechet Lie group, called the group of currents.

The Lie algebra of C*°(X, G) coincides with the Frechet space C*(X, g), the Lie
bracket in C*°(X, g) being given by the pointwise application of the Lie bracket in
g. The exponential map

exp : C*(X,g) — (X, G) ,

given by the pointwise application of the exponential map exp : g — G, is a local
homeomorphism in a neighborhood of zero.

Consider now the most important example of the group C* (X, ), corresponding
to the case when X = S'. In this case the group C*(X, G) is called the loop group
of the Lie group G, and is denoted by

LG = C>(5',Q) .
The Lie algebra of LG coincides with the loop algebra
Lg:=C>(S'g) .

Since all operations in the loop group LG are defined pointwise, one can expect
that the properties of LG will be close to the properties of the group G itself. And
this is true in most of the cases, but there are still some differences, demonstrated
by the examples below.

Consider first the homotopy structure of LG. Let us introduce the based loop
space
OG = LG/G

of G, where GG in the denominator is identified with the group of constant maps
St — gy € G. We can realize QG as the closed submanifold of LG, consisting of the
maps v € LG, which send the identity 1 € LG to the unit e € G: (1) = e. Then
the loop group LG will be identified with the direct product QG x G. It is well
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known (cf.,e.g., [36]) that the homotopy groups of QG coincide with the homotopy
groups of G, shifted by one:

Wz(QG) = 7Ti+1(G> .
It follows that

In particular, mo(LG) is equal to m (G) @ m(G), i.e. the group LG is connected if
and only if G is connected and simply connected. The fundamental group of LG
coincides with m(G) @ m(G) = m(G), since mo(G) = 0 for any connected compact
Lie group G. Hence, LG is connected and simply connected if the Lie group G itself
1s connected and simply connected.

2.1.2 Exponential map of the loop algebra
As we have pointed out, the exponential map
exp: Lg — LG

of the loop algebra Lg is given by the pointwise application of the exponential map
exp:g— G.

If G is a compact Lie group, then it has the following well-known property.
Denote by G° the identity connected component of G. Then the exponential map
exp : g — G° is surjective. This property is a corollary of the fact that every element
of G° belongs to some 1-parameter subgroup of GG. However, for the loop group LG
it is not true, in general.

Consider, for example, the simply connected group G = SU(2). Then the element

LG97:2—>(S qu) . ze S,

is not an exponential of any element in the loop algebra Lg.

Indeed, if we suppose that v = exp& for some & € C*(S!, g), then the matrix
v(z), being a function of £(z), should commute with £(2) for any 2z € S*. It’s easy
to see that this condition implies that the matrix £(z) should be diagonal for any

ze S ie.
z 0\ [V 0
0 z71) L 0 e R

for some smooth real-valued function f on S'. In particular, z = ¢/*), which is
impossible, since the logarithm In(z) does not admit a continuous branch on the
circle.

However, one can prove the following property of the loop group LG, which may
be considered as a substitution of the surjectivity of exp : g — G°.

Proposition 1. Let G be a connected compact Lie group. Then the exponential map
exp : Lg — (LG)°

has a dense image in the connected component of the identity (LG)° of the group

LG.



2.1. GROUP OF CURRENTS 35

Proof. To prove this assertion, we note first that a connected compact Lie group G
is the direct product of a torus and a connected semisimple compact Lie group. Our
assertion for the torus is easily checked directly, so it is sufficient to consider the
case of a semisimple connected compact Lie group G. In this case the group G can
be realized as the connected component of the identity of the automorphism group
Aut g of the Lie algebra g (since an arbitrary semisimple connected compact Lie
group G is a finite covering over (Aut g)°). If this is the case, then the critical points
of the exponential map exp : g — G lie on a closed hypersurface I' in g, dividing g
into an interior convex domain D, containing 0, and its complement. The image of
' under the exponential map, denoted by expI', is contained in a submanifold of G
of codimension > 3.

Consider now an arbitrary loop v(z) € (LG)°, passing through e € G: (1) = e.
We assert that it can be approximated by smooth loops in (LG)°, which are the
exponentials in LG (we call a loop §(z) in LG an exponential, if it can be represented
in the form § = exp £ for some £ € Lg).

By smoothly deforming, if necessary, the loop v, we can approximate it by a
smooth loop 7 € (LG)°, starting at e, such that ¥(e) does not intersect expT" for
0 < t < 2. Since the exponential exp : g — G is locally diffeomorphic along (e®)
for t < 27, we can, beginning from e, choose a continuous logarithm branch of the
loop 7(e®) for t < 2m. As a result, we obtain a smooth (but, generally speaking, not
closed) path £(e), 0 <t < 2m, in g such that exp& = 7.

The limit & of the path &(e) for t — 27 — 0 belongs to D. If expI' does not
contain e, then &, cannot belong to I' = 9D, because exp &, = e. Hence, & € D,
which forces it to be equal to zero (since, otherwise, exp will be equal to e on the
whole orbit of & in D\ 0 under the adjoint action Ad, being a smooth submanifold
in g of a positive dimension). So £(e”), 0 < ¢ < 27, is a smooth loop in g such that
exp & =7, i.e. we have found a logarithm of 7 in g.

If expI' contains e, then, in contrast with the considered case, it may happen
that the limit limy .o, o &(e) = & belongs to I'. But in such a situation the loop ¥
will not be contractible, i.e. 4 ¢ (LG)°, contrary to our assumption. To prove it,
note that in this case our path ¢(e®) is homotopic to a linear path &(e') := 52,
0 <t < 2, with the same endpoints 0 and &, as £(e). Accordingly, the loop 7 is
homotopic to the loop Yo(e®) in G, given by

70:5196”1—>exp(t2§—0) , 0<t<2r.

™

But it is easy to see that vy is not contractible in G. So the loop 7 is also not
contractible in G. O

2.1.3 Complexification

The loop group LG, similar to compact Lie groups, admits the complexification.
Recall that the complexification of a Lie algebra g coincides with the complex
Lie algebra
g“=gC=g+ig.

Definition 20. We call by the complexification of a connected Lie group G a con-
nected complex Lie group G, having the following properties:
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1. the Lie algebra of G coincides with the complexification g€ of the Lie algebra
9

2. G© contains G as a subgroup, i.e. there exists a monomorphism i : G — G°©.

In particular, a group G, which admits the complexification, should have non-
trivial homomorphisms into complex Lie groups (the monomorphism 7 is one of
them).

The complexification G, introduced above, exists and is uniquely defined for
any compact connected Lie group G. For example, the complexification of the
group G = S! coincides with the multiplicative group G = C* = C\{0} of complex
numbers, and the complexification of G = SU(n) coincides with G® = SL(n, C). For
the non-compact group SL(n,R) its complexification also coincides with SL(n, C).

We give an example of a Lie group, which admits no complexification in the
above sense. As we have pointed out, the complexification of the group SL(2,R)
coincides with the group SL(2,C). The group SL(2,C) is simply connected, while
the fundamental group of SL(2, R) is isomorphic to Z. Let G be a universal covering
group of SL(2,R). Then we have a homomorphism 7 : G — SL(2,R), whose kernel
is equal to Z. Suppose that G has the complexification G¢. Then it should be a
covering group of SL(2, C). Indeed, the composition of 7 with the natural embedding
i : SL(2,R) — SL(2,C) yields a non-trivial homomorphism of G into the complex
group SL(2,C) with the kernel, equal to Z. This homomorphism extends to a
covering homomorphism G® — SL(2, C) with the same kernel. But such a covering
cannot exist, since SL(2, C) is simply connected. The property of the group G, used
in this argument, can be reformulated as follows: any homomorphism of G into a
connected complex Lie group factors through SL(2,R) or (still another formulation)
the kernel of such a homomorphism should contain Z.

In the case of the loop group LG = C*(S', G) of a compact connected Lie
group G its complexification coincides with the loop group LGC = C>=(S!, G°)
of the complexified group G¢. The group LG® is a complex Frechet Lie group,
modelled on the Frechet Lie algebra C>(S1, g©).

2.2  Group of diffeomorphisms Diff(X)

Let X be a smooth compact manifold and Diff(X) is the group of diffeomorphisms
of X. The group Diff(X) is a Frechet manifold, being an open subset in the Frechet
manifold C*°(X, X). It is a Frechet Lie group with respect to this Frechet manifold
structure.

The group Diff(X) is closely related to the group of currents C*°(X, ), con-
sidered in the previous Sec.2.1. Namely, Diff(X) acts smoothly on the manifold
C*>(X, @) by the "reparametrization” of maps from C°(X, G).

The Lie algebra of the group Diff(X) coincides with the Frechet Lie algebra

C*(X,TX) =: Vect(X)

of smooth tangent vector fields on X.
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The exponential map
exp : Vect(X) — Diff(X)

can be defined, as in the beginning of this Chapter. Namely, any vector field ¢ €
Vect(X) generates a 1-parameter subgroup of diffeomorphisms gpf of X, defined as
follows. The image y(t) := ¢%(2) of an arbitrary point # € X under the action of ¢}
coincides with the value at t of the integral path of the ordinary differential equation
y' = £(y) with the initial condition: y = = for t = 0. We set exp ¢ := <,0§.

Restrict now to the case of X = S', which is the most important for us. As we
have already remarked in Subsec.1.2.1 (Ex. 14), the group Diff(S') consists of two
connected components, and the connected component of the identity Diff, (S!) is
formed by the maps from Diff(S!), preserving the orientation of S?.

The Lie algebra of the group Diff(S') coincides with the algebra Vect(S!) of
smooth tangent vector fields on the circle S*. Elements v € Vect(S') can be written
in the form v = v(#)45, where v(f) is a smooth 2m-periodic function of 6. The
bracket of two vector fields vy, v, € Vect(S') is given by the standard formula

d d d
1(6) 5 02(0) 35| = 11(6)0400) ~ O 7

Denote by Vect®(S') the complexification of the Lie algebra Vect(S'), identified

with the Frechet vector space TiDiff(S!):

Vect®(S) := Vect(S") @ C .

It is convenient to represent the coefficients v(6) of vector fields v = v(6)<% from
Vect®(S') by their Fourier series

[e.9]

v(0) = Z vpe™ v, eC .

n=—oo

In these terms the real subalgebra Vect(S?) of Vect®(S?) is specified by the relations:
V_p = Up, N € L.
The complexified Lie algebra VectC(S 1) has a natural vector space basis, given
by the vector fields ;
- _inf
en = 1€ R n=0,+1,+£2 ...,
satisfying the commutation relations:

[en,em] = (n—m)epsm , m,n € Z.

2.2.1 Finite-dimensional subalgebras in Vect,(S?)

Consider the subalgebra Vect,,(S') of Vect(S'), consisting of vector fields v(0)%
with real analytic coefficients v(#). Such v(6) are represented by Fourier series of

the form .

U(H) = Z Uneme y V—p = Up ,
n=—00

converging in a neighborhood of S! in C.
The Lie algebra Vect,,(S') has the following interesting property.
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Proposition 2. There are no finite-dimensional Lie subalgebras in Vect,(S') of
dimension> 3. Moreover, for any dimension d = 1,2, 3 there exists only one (up to
an isomorphism) Lie subalgebra of dimension d in Vect,(S").

Proof. To prove this assertion, we note first that the bracket of two (not identically
zero) vector fields vy, vy € Vect,(S!) is identically zero if and only if these fields are
linearly dependent, i.e. A\jv; 4+ Agvs = 0 for some constants Ay, As. So any non-trivial
commutative subalgebra in Vect,,(S!) should be one-dimensional. In particular, the
rank of any non-trivial subalgebra in Vect,(S') (i.e. the dimension of its Cartan
subalgebra) is equal to 1.

We show that any subalgebra g of the Lie algebra Vect,(S!) of dimension > 3
is semisimple, i.e. it contains no non-zero commutative ideals. Suppose, on the
contrary, that g contains such an ideal, which should be, as we have just noted,
one-dimensional. Choose a basis {e1, e, €3,...} in g so that our ideal is generated
by e; (by assumption, this basis has, at least, three elements). Then

le1,e0] = Aer  and  [eq, e3] = peq

where A\, u # 0, since ey, ey, €3 are linearly independent. Hence, [eq, pea — Aeg] = 0,
which implies the linear dependence of ey, es, €3 in contradiction with our assump-
tion.

Note that the dimension constraint on the Lie algebra g in this assertion is essen-
tial, since we shall see below that the unique two-dimensional subalgebra, contained
in Vect,,(S), is not semisimple.

We show next that any finite-dimensional subalgebra g in the algebra Vect,(S') of
dimension > 3 1s simple, i.e. it contains no non-trivial ideals. Indeed, any semisimple
algebra g is decomposed into the direct sum of simple ideals. If g is not simple, then
it contains an ideal I of dimension less than %dim g. We choose a basis in g of
the form {ey,...,em, f1,..., fr}, so that the vectors ey, ..., e, form a basis of the
ideal I. It’s clear that m > 2 (otherwise, the ideal I would be commutative). The
brackets

ler, il €1 ,..., [ex, fe] €1 ,[e1,es) €1

are non-zero (otherwise, the corresponding vectors would be linearly dependent) and
so form a collection of £+ 1 > m non-zero vectors in the m-dimensional subalgebra
I. Hence, they are linearly dependent, which implies, as before, that the vectors
€1y €m, f1,..., fr are linearly dependent, contrary to our assumption.

From the list of simple Lie algebras, one can see that only two simple Lie algebras
of dimension 3 can have the properties, described above. Namely, it is the non-
compact Lie algebra sly(R) and the compact Lie algebra su(2). By comparing the
Lie brackets in the Lie algebras su(2) and Vect,(S'), one shows that the second
possibility is not realized. A standard embedding of sly(R) into Vect,(S!) realizes
sly(R) as the Lie subalgebra in Vect,,(S'), generated by three vector fields d/d#,
cos(0)d/df, sin(0)d/df. This subalgebra coincides with the Lie algebra of the M6bius
group PSLy(R) of all fractional linear automorphisms of the unit disc.

Any two-dimensional subalgebra in Vect, (S') is necessarily non-commutative
since, as we have seen before, the vanishing of the bracket of two vector fields in
Vect,,(S') implies their linear dependence. Since all two-dimensional non-commuta-
tive Lie algebras are isomorphic, there exists only one (up to an isomorphism) two-
dimensional Lie subalgebra in Vect,(S'). One of its realizations inside Vect,,(S*)
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is given by the subalgebra, generated by two vector fields vy = cos(0)d/df, vy =
d/df + sin(0)d/d6. O

2.2.2 Exponential map of Vect(S!)

We analyze now the exponential map
exp : Vect(S') — Diff (S")

in more detail. Recall that this map associates with a tangent vector field v =
d

v(0) 4 on the circle S* the diffeomorphism exp v := ¢, where ¢} is the 1-parameter
subgroup of diffeomorphisms in Diff, (S!) with the tangent vector v at the identity
id € Diff, (S?). In other words, yo(t) := ¢}(6) is a solution of the equation % =
v(yp) with the initial condition y,(0) = 6.

For finite-dimensional Lie groups one proves easily, using the inverse function
theorem, that the map exp (whose derivative at zero is equal to the identity) is
locally invertible. However, as we have already pointed out several times before,
the inverse function theorem is, in general, not true for Frechet manifolds. By this

reason we should not be surprised by the following proposition, proved in [32, 65].
Proposition 3. The exponential map

exp : Vect(S") — Diff, (S")
is neither locally injective, nor locally surjective in any neighborhood of zero.

Proof. We prove first that the exponential is not injective in any neighborhood of
zero. Denote by Ry, the rotation of S ! by the angle 27” and note that this rotation
may be chosen arbitrary close to the identity map id € Diff, (S!) for sufficiently
large n.

Consider 1-parameter subgroups of Diff, (S1) of the form f o S'o f~! where
f € Diff,(S') and S' is identified with the subgroup of rotations in Diff, (S?).
Denote by T',, the subgroup in Diff (S1), consisting of diffeomorphisms f, commuting
with the rotation Roz/p:

R;ﬂ—l/n % f o R27r/n = f .

In other words, it is the subgroup of (27 /n)-periodic diffeomorphisms in Diff, (S1).
An element f € I',, can be written in the form

f(0) =6+ h(#) mod 27 ,

where h is a smooth (27 /n)-periodic function on R and S! is identified with R/27Z.
If f € ', then the 1-parameter subgroup f o S'o f~! contains Ry, since

fﬁloRQW/nof:RQﬂ'/nesliR27r/n€foslofil .

Hence, all 1-parameter subgroups I',, of the above form intersect in Rayy, so the
exponential is not injective near zero.
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To prove that the exponential is not a surjection onto a neighborhood of id in
Diff, (S'), we use the diffeomorphisms from T',,, which are small deformations of the
rotation Ry./,. Such a diffeomorphism f € I', can be given by the formula

2
f0) =0+ il esin(nf) mod 27 .
n

For sufficiently large n and sufficiently small ¢ > 0 this diffeomorphism may be
made arbitrary close to the identity. The point § = 0 is a periodic point of this
diffeomorphism of order n, i.e.

J"(0)=fo---0f(0)=0mod2r,

n times

but f™ # id, since the derivative of f™ at zero is equal (by the composition law) to
(1 + en)™. Moreover, for a sufficiently small € the diffeomorphism f is close to the
rotation and therefore has no fixed points.

It follows that f cannot be the exponential of any vector field v € Vect(Sh).
Indeed, assuming the opposite, let f = expv for some v € Vect(S'). The vector
field v = U(@)d% does not vanish, since f has no fixed points. Hence, the vector
field v(0)4 may be transformed into a constant field ¢4 with the help of a smooth

do
change of variable x = x(€) of the form

O at
x(6 —c/ —, 0<0<27,
) o v(t)

2T dt
0 w(t)

X(27) = 27, This argument shows that the 1-parameter subgroup, generated by the
vector v, is conjugate to a rotation R:

—1
where the normalizing constant ¢ = 27 ( ) is chosen from the condition:

f=x""oRox.

Then f* = xy ' o R"o and, since f*(0) = 0, the rotation R" has a fixed point, i.e.
R"™ = id, which contradicts the relation f™ # id. O

Remark 3. The last Proposition asserts that there exist diffeomorphisms in Diff, (S),
which cannot be represented as the exponential of a smooth vector field on the
circle. Onme can ask if there exist diffeomorphisms in Diff, (S'), which cannot be
represented as the nth power (with respect to the composition) of a diffeomorphism
from Diff (S')? It’s clear that such diffeomorphisms, if they exist, also cannot be
represented as the exponentials of smooth vector fields. We try to construct these
diffeomorphisms again in the form

2 -
£(0) =0+ = + eh(6) mod2r (2.1)
n
where € > 0 is sufficiently small (the map f constitutes a diffeomorphism of S ! when

€ is less than 1/max|A/|). The function h, 0 < h < 1, is a smooth 27 /n-periodic
function on the real line, whose restriction to the interval [0, 27 /n) is denoted by h.
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Note that the zeros of the function & are n-periodic points of the diffeomorphism f.
Then the following assertion is true.

Suppose that h vanishes on the interval [0, 27 /n) in a finite number of points, and
this number is not divisible by n. Then for a sufficiently small € the diffeomorphism
f, given by the formula (2.1) above, can not be represented as the nth power of any
diffeomorphism from Diff (S1).

To prove this assertion, we note that if g is a diffeomorphism from Diff, (S*'),
then the number of orbits of n-periodic points of g" is a multiple of n. The latter
statement is a corollary of the following combinatorial fact: the number of orbits
of k-periodic points of g™ is a multiple of the largest common divisor of n and k,
denoted by (n, k), which is easy to check by direct calculation.

To deduce our assertion from the statement on the number of n-orbits of ¢", it
is sufficient to prove that our diffeomorphism f has no other n-periodic points apart
from those, given by zeros of h. Indeed, suppose for a moment that we have proved
already that the set of n-periodic points of f coincides with the set of zeros of h.
The number of orbits of n-periodic points is equal to the number of zeros of h on
the interval [0, 27 /n), which is not divisible by n by the assumption. Hence, by the
above statement, f cannot be represented in the form ¢" for any g € Diff (S').

To prove that the diffeomorphism f has no other n-periodic points apart from
the zeros of l~1, suppose, on the contrary, that there exists an n-periodic point 6, in
which h(6y) > 0. Consider the orbit {6y, 6;,...,60,_1,0, = 6y} of this point on S!
under f. Then 6,, may be written in the form

6, = "(6) = o + ¢ (ﬁ(eo) R0+ + ﬁ(en_l)) mod 27 .

If f"(6y) = 6y mod 2w, then € (h(6y) + -+ + h(0,—1)) = 0mod 2w. The coefficient of
€ in the latter relation is positive and does not exceed n, since 0 < h < 1. Hence,
for € < 27 this relation cannot be true, i.e. f"(fy) cannot be equal to 8y modulo
2m. This contradiction proves that the only n-periodic points of f are those, given
by zeros of h, which implies that f cannot be represented in the form ¢ for any
g € Diff (S1).

Using the above assertion, one can easily construct concrete examples of diffeo-
morphisms f € Diff, (S'), which cannot be represented as the nth power (n > 1) of
any diffeomorphism from Diff, (S!). For instance, one can take a diffecomorphism f
of the type (2.1) with

0
h(0) = sin2(n§) for 0 <6 <2n/n.
Or, take h(f) = ho (£(6 + 1)), where hg is a smooth function on [—1,1) of the form

ho(t) = (t—1)2(t+1)% or he(t)=e/® D for —1<t<1.

All these diffeomorphisms f cannot be represented as the nth power of any diffeo-
morphism from Diff, (S1).
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2.2.3 Simplicity of Diff, (S!)

One of the remarkable properties of the group Diff, (S!) is its simplicity, which
means that the only normal subgroups in Diff, (S*) are the identity and the group
itself. This fact (which can be anticipated from Prop.2 in Subsec. 2.2.1) was proved
by M.R.Herman in [33, 34]. We shall present in this Subsection an idea how to prove
the following, somewhat weaker, statement, contained in [33].

Proposition 4. Any normal subgroup in Diff,(S*), containing the rotation subgroup
S, coincides with the whole group Diff, (S").

The simplicity property of the group Diff, (S?) is closely related to the following
problem, going back to Poincaré and Denjoy: when a diffeomorphism f € Diff, (S*)
is conjugate to a rotation? We have already touched upon this problem in the proof
of Prop.3 in Subsec. 2.2.2. We shall discuss it in more detail after a short digression
on the Poincaré rotation number.

Digression 1 (Poincaré rotation number). Let f be an arbitrary diffeomorphism
from the group Diff, (S?). Denote by f : R — R its pull-back to R, induced by the
universal covering map

R— R/Z~ S*.

Then f is a diffeomorphism of R of the form f = id 4+ h with A being a smooth
periodic function on the real line with period 1. Denote the set of diffeomorphisms
of R of this form by Diff;(R). (Recall that f is determined by f up to an integer
additive constant). Note that any shift Ry : 2 — = + A of R by the real number
A projects under the above covering map to the rotation R, of S' by the angle
a = Amod1.

H.Poincaré has found that any diffeomorphism f € Diff (R), being iterated
sufficiently many times, behaves like a translation Ry. More precisely, there exists
the uniform limit

& —id

— A for k— o0,

where ) is a real number, called the rotation number of f and denoted by A = j(f).
The map p : Diff;(R) — R is continuous in the C°-topology. Moreover, for any
shift R, we have the following relations:

PR =X and p(R,of)=n+p(f) foranyneZ.
Therefore, pushing down to S, we obtain a correctly defined, continuous map
p: Diff (S') — R/Z ~ S* |

assigning to a diffeomorphism f € Diff, (S?) its Poincaré number p(f) € S*. This
number is invariant under conjugations.

If the rotation number of a diffeomorphism f € Diff; (R) is rational, i.e. p(f) =
for coprime integers p and ¢, then there is a simple criterion of its conjugacy to
shift, namely: f is conjugate to the shift f{p/q if and only if 1= }?p.

The situation in the case of an irrational Poincaré number is much more delicate
— everything depends on the arithmetic properties of this number. V.I.Arnold (cf.

D
q
a
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[4]) gave an example of a diffeomorphism with an irrational Poincaré number, which
is not conjugate to a shift, and conjectured that there exists a set A C S'\ (Q/Z)
of a full Haar measure on S*, such that any diffeomorphism f € Diff, (S!) with the
Poincaré number o € A is conjugate to the shift R,. This conjecture was proved by
M.R.Herman in [34]. As it was anticipated, the set A in the Herman’s theorem has
a Diofantine nature and may be described in terms of the decomposition of « into
the continuous fraction.

We shall describe here a simpler result by Herman of a similar character, sufficient
for the proof of the above Prop. 4.

Recall that, according to the Dirichlet principle, any irrational number X may be
approximated by rationals so that the following relation holds

1
q q
where § € Q s an wrreducible fraction.
We say that a number A satisfies the Diofantine condition (B.) with some € > 0,

if there exists a constant C, > 0, such that for all rational numbers p/q the following
inequality holds

‘A — E‘ > G .

q - q2+6
If a number A satisfies to the Diofantine condition (B,) for any € (with a constant C.,
depending on €), then X is called the Roth number, and the corresponding o € S*
form a set of a full Haar measure on the circle. (The numbers, which do not satisfy
the condition (B,) for any e > 0, are called the Liouville numbers.)

Lemma 1 (cf. [33]). Suppose that o € S*\ (Q/Z) satisfies the condition (B.) for
some € > 0. Then there exists a neighborhood U of the rotation R, in Diff, (S*)
such that any diffeomorphism f € U 1is represented in the form

f=Rgo(goRaog™?)
for some g € Diff, (S*) and 3 € S*.

The proof of this Lemma can be found in [33], we shall only demonstrate how it
implies the Prop. 4.

Proof of Proposition 4. Let H be a normal subgroup in Diff, (S'), containing S*.
Take a € S\ (Q/Z), satisfying the Diofantine condition (B,) for some ¢ > 0. The
rotation R, € H (since H D S'), and Lemma 1 implies that the whole neighborhood
U of R, belongs to H, due to the normality of H. Hence, the subgroup H is open
and so contains a neighborhood of the identity in the group Diff, (S'). It implies
that H is also closed, hence it should coincide with the whole group Diff, (S'), due
to the connectedness of Diff, (S'). The Proposition is proved. [

Remark 4. We have proved in Prop. 3 from Subsec. 2.2.2 that there are diffeomor-
phisms from Diff, (S'), which cannot be represented as the exponentials of smooth
vector fields on the circle. Using Prop. 4, it’s easy to prove that, nevertheless,
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the exponentials of smooth vector fields generate the whole group Diff, (S'). More
precisely, any diffeomorphism f € Diff (S') may be written as the composition

f=expuvio---oexpu

for some vector fields vy, ..., v, € Vect(S').

Another non-trivial corollary of Prop. 4 is that the group Diff, (S') does not
admit the complexification. In other words, there is no complexr Lie group, having
the complexified Lie algebra Vect®(S') as its Lie algebra.

This statement is the corollary of the following Proposition.

Proposition 5. There are no non-trivial homomorphisms from the group Diff, (S*)
into a connected complex Lie group.

Proof. Take the Mébius group PSL(2,R) of fractional linear automorphisms of the
unit disc, which can be considered as a subgroup of Diff,(S1). Denote by G, :=
PSL™ (2, R) the n-fold covering group of PSL(2,R). More precisely, denote by X the
n-fold covering map of S*, given by A : z — 2". Then, by definition, G,, consists of
the diffeomorphisms of S!, which are the n-fold coverings of diffeomorphisms from
PSL(2,R). It means that for any ¢ € G, there exists an element ¢» € PSL(2,R)
such that
Aop=1o\.

On the level of Lie algebras, the Lie algebra sl(2,R) is generated by the vector
fields £, sin 6% cos§-L, and the Lie algebra of the group G,, (isomorphic to sl(2,R))
is generated by the vector fields £, sin(nf)%, cos(nf).

The center of the group G, consists of rotations {Roxp/m : k= 0,1,...,n — 1}
And it can be proved, as in Subsec.2.1.3, that any homomorphism from G,, to a
complex connected Lie group should factor through PSL(2,R). In other words, its
kernel contains all rotations from the centre of GG,,. It follows that the kernel of any
homomorphism from Diff, (S1) into a complex connected Lie group should contain
all rotations of the form {Razi/p : £ =0,1,...,n — 1} for any n, hence, all rotations
from S'. But this kernel is a normal subgroup in Diff, (S!), and any normal subgroup
in Diff, (S!), containing S*, should coincide, according to Prop. 4, with the whole
group Diff, (S'). This proves that there are no non-trivial homomorphisms from
Diff, (S') into a connected complex Lie group. O
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Chapter 3

Flag manifolds and representations

Flag manifolds are finite-dimensional compact Kahler manifolds, homogeneous with
respect to a Lie group action. They can be characterized by the existence of two
kinds of homogeneous space representations, namely, a "real” one, as a quotient of
a compact Lie group G, and a ”complex” one, as a quotient of the complexified Lie
group GC. The real representation implies that the flag manifold is compact and
homogeneous with respect to the G-action by left shifts, and the complex represen-
tation implies that it is a complex Kéahler manifold.

Flag manifolds are closely related to the representation theory of the group G
via the Borel-Weil construction. We present this construction in Subsec. 3.2.2 to-
gether with a necessary background from the representation theory of semisimple
Lie groups, given in Subsec. 3.2.1. In the last Subsec. 3.2.3 we give an outline of
the orbit method, related to the coadjoint representation of GG, which stands behind
many constructions in this book.

3.1 Flag manifolds

3.1.1 Geometric definition of flag manifolds

To define flag manifolds in C, we fix a decomposition of n into the sum of natural
numbers
n==Fk+---+k

and denote k = (ky,..., k).
Definition 21. A flag manifold of type k in C" is the space
Fl(C") = {collections of flags E = (E4,..., E,): E; are linear subspaces
inC" FE,C...CE,withdimFE; =k +...+k} .
(3.1)
In particular, for k = (k,n — k) we obtain

Flikn—i)(C") = {subspaces £ C C" of dimension k} = Gr;(C") ,

i.e. the flag manifold in this case is the same as the Grassmann manifold of k-
dimensional subspaces in C". For k = 1 it coincides with the (n — 1)-dimensional
complex projective space Flj ,_1)(C") = CP" 1.

47
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For k = (1,...,1) the manifold Fl,(C™) =: FI(C") is called the full flag manifold

The unitary group U(n) acts transitively on the flag manifold F1,(C"), so that
F1x(C") coincides with a homogeneous space of this group. In more detail, fix a
basis in C" and denote by E° the standard flag in Fly(C") with E® = (EY,... EY),
where E? is the subspace in C", generated by the first k; + - -+ + k; vectors of our
basis. The isotropy subgroup of U(n) at the point E° coincides with the direct
product

Uk(n) =U(ky) x -+ x U(k,) ,

so that the flag manifold F1,(C") is a homogeneous space of U(n) of the form
Flx(C") = U(n)/ Uk(n) = U(n)/ U(ky) x --- x U(k,) . (3.2)

On the other hand, the complex general linear group GL(n,C) is also acting
on F1y(C") transitively. The isotropy subgroup at the standard flag E® € F1,(C")
coincides in this case with the subgroup Py of blockwise upper-triangular matrices

of the form
* ry x .. *

T1

0 * o * .. *

2

So, along with the "real” homogeneous representation (3.2), we obtain for F1,(C™)
a "complex” representation as a homogeneous space of the group GL(n,C):

In the particular cases k = (k,n — k) and k = (1,...,1) we get the well known
homogeneous representations for the Grassmann manifold

Gri(C") = U(n)/U(k) x U(n — k) = GL(n,C)/ Py n-r)
and the full flag manifold
FI(C") = U(n)/T" = GL(n,C)/B, ,

where T™ = U(1) x --- x U(1) is the n-dimensional torus, and By = P
standard Borel subgroup of upper-triangular matrices.

Note that the flag manifold F1x(C") can be represented also as a homogeneous
space of a complex semisimple Lie group by replacing the group GL(n,C) with
SL(n,C). The corresponding homogeneous representations will take the form

F1,(C") = SU(n)/SUx(n) = SL(n, C) /SPx ,

.....
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where

SUk(n) = S[U(k1) x ... x U(ky)] = Ulky) x ... x U(k,) N SL(n, C),
SPk(TL) = Pk N SL(?’L, C) .

3.1.2 Borel and parabolic subalgebras

To give an invariant definition of flag manifolds, we need some basic notions, related
to the Borel and parabolic subalgebras. We recall them here, assuming that a reader
is familiar with the basics of the theory of semisimple Lie algebras and groups,
presented, e.g., in [76, 75, 28, 67].

Let G¢ be a complex semisimple Lie group with the Lie algebra gc.

Recall that a Cartan subalgebra in gc is a maximal Abelian subalgebra h¢ in gc,
for which all the operators ad x, € h¢, are diagonal in gc. All Cartan subalgebras
in gc are conjugate to each other with respect to the adjoint action of the group G¢
on its Lie algebra gc. A standard example of the Cartan subalgebra in the case of
the general matrix algebra gc = gl(n,C) is the algebra of all diagonal matrices in
gc-

We fix now a Cartan subalgebra h¢ in a complex semisimple Lie algebra g¢ and
consider the adjoint action ad of hc on the Lie algebra gc. Note that the operators
ad h for different h € hc commute with each other. The eigenspaces of the adjoint
representation, having the form

go = { € g% ad () = a(h)¢},

where « is a linear functional on he (i.e. an element of the dual space b.), are
called the root subspaces. The linear functionals «, entering into this definition,
are called the roots of the algebra g€ with respect to the Cartan subalgebra g,
and the eigenvectors & are called the root vectors. In particular, the root subspace
go, corresponding to the zero functional @« = 0 € h*, coincides with the Cartan
subalgebra h¢ itself.

The Lie algebra g© decomposes into the direct sum of its root subspaces

i =bhcePaa. (3.4)

aEA

where A denotes the set of all nonzero roots of the algebra g© with respect to the
Cartan subalgebra he. This decomposition, called the root decomposition, deter-
mines a filtration in g©, since

(80, 85) C Gats -

A subset IT C A is called the set of simple roots, if any root a € A can be
represented as a linear combination of roots from II with integer coefficients, such
that all of them are either positive, or (all of them are) negative. Such subsets II,
forming bases in b, always exist. It can be shown that all of them are conjugate to
each other with respect to the coadjoint action of the group Ge.
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Fix some set Il = {ay,...,q} of simple roots of the algebra gc. The choice of
IT defines on bh¢ (hence, on A) a partial ordering, namely, for «, 5 € b, the relation
« > (3 means that

l
a—ﬁzZaiozi with a; >0 .
i=1

In particular, a root a € A is called positive (notation: « € A™T), if

!
a:Zaiai with a; > 0.

=1

Using the Killing form (-, -) on g¢, we can identify the dual space hg with be, so
that any root o can be considered also as an element o of hc. We associate with
a root a of the algebra gc with respect to be the dual root or co-root o by the
formula

*

«
a’ =2 .
(a,a)
It is well known that a system of simple roots 11 = {a,...,} and its Cartan

matriz, defined by:

cij = (g, af)

uniquely determine the Lie algebra gc.

Example 23. Consider as an example the complex semisimple Lie algebra sl(n, C).
Choose in sl(n, C) the standard Cartan subalgebra b, consisting of diagonal matri-
ces. Denote by E;; the matrix, having 1 at the (¢, j)th place, and zeros at all other
places. The matrices E;; are the root vectors of the algebra sl(n, C):

ad(zl, ey Zn)Eij = (Zi — Zj>Eij s

where we denote by (z1, ..., 2,) the diagonal matrix diag(z, ..., z,)-
Introduce a functional ¢; € b by the formula

€21, -y 2n) = % -

Then the roots of the algebra sl(n, C) with respect to he will have the form
A={e—€ 1 i#j}.

The roots
O={e—€41 :i=1,...,n—1}

form a system of simple roots, so that the set of positive roots is given by
AT ={e—¢ i <j}.

By analogy with the Borel subalgebra of upper-triangular matrices in gl(n, C),
we can define a standard Borel subalgebra b, of a complex semisimple Lie algebra
gc as

by =bcOn,;,
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where n, is a nilpotent subalgebra of the form

In the particular case of the algebra sl(n, C), considered in Ex. 23 above, the subal-
gebra n, coincides with the subalgebra of above-diagonal matrices, while b, is the
subalgebra of upper-triangular matrices.

Definition 22. A Borel subalgebra is a subalgebra b in g¢, conjugate to the standard
Borel subalgebra b, with respect to the adjoint action of the group G¢ on gc. (In
a more invariant way, a Borel subalgebra is a maximal solvable subalgebra in gc.)
Any subalgebra p in gc, containing a Borel subalgebra b, is called parabolic.

As in the case of Borel subalgebras, we could define the parabolic subalgebras p
as subalgebras in g¢, which are conjugate to one of standard parabolic subalgebras.
These standard subalgebras (their explicit description is given below) are analogous
to the parabolic subalgebras py of the algebra gl(n, C), being the Lie algebras of the
parabolic subgroups Py from Sec. 3.1.1.

Now we define the standard parabolic subalgebras in g¢ explicitly. For that fix
a set II = {ay,..., o} of simple roots of the algebra gc and an arbitrary ordered
subset 7 in the set {1,...,l}. We associate with 7 a subset of simple roots I, C II
with indices from 7. To define the corresponding standard parabolic subalgebra
p., we denote by A, the linear span of simple roots from Il in A and introduce a
reductive Levi subalgebra of the form

[C:b(C@@ga-

OéEATr

We define also a nilpotent subalgebra in gc by setting

= @D o

a€AT\AL

The standard parabolic subalgebra p, is by definition
pr=Ilchu.

It contains the standard parabolic subalgebra b, and so is, indeed, parabolic. In the
case of the algebra sl(n, C) the subalgebra [¢ coincides with the subalgebra of block-
diagonal matrices in sl(n, C), while u is the subalgebra of blockwise above-diagonal
matrices.

3.1.3 Algebraic definition of flag manifolds

After this algebraic digression, we can give an invariant definition of flag manifolds
of a complex semisimple Lie group Gc.

Definition 23. Let p be an arbitrary parabolic subalgebra in g¢c and P is the
corresponding parabolic subgroup in G¢, having p as its Lie algebra. (Otherwise,
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P can be defined as the normalizer N(p) of the subalgebra p in G¢ with respect to
the adjoint representation.) A flag manifold of the group G, associated with the
parabolic subalgebra p, is a homogeneous space of the form

F=Gg/P. (3.5)

Along with the ”complex” representation (3.5), taken as the definition of the
flag manifold F', there exists also a "real” representation of F' as a homogeneous
space of a real Lie group. Namely, suppose that the group G¢ coincides with the
complexification G® of a compact Lie group G. Then G acts transitively on G¢/P
and

F=G/GNP=G/L, (3.6)

where the Levi subgroup L = G N P in the case of the standard parabolic subalgebra
p has the Lie algebra, given by the real form [ of the Levi subalgebra ¢ = I,
introduced above in Subsec. 3.1.2. (In a more invariant way, the subgroup L can be
defined as the centralizer of a torus in G.)

Hence, we have obtained for the flag manifold F' two kinds of representations as
a homogeneous space

F=G/L=G"/P.

The complex representation (3.5) implies that F' is a complex manifold, provided
with a G-invariant complex structure. The space of tangent vectors of type (1,0) at
the origin with respect to this structure can be identified with the subalgebra 1 in
the decomposition

g“c=Cqueu, p=Cqu,

where the complex conjugation in g® has the property that g = g.

The real representation (3.6) implies that F' is compact and Kéhler. We note also
that F' is simply connected, if the group G is simply connected. It can be shown
that flag manifolds F' exhaust all simply connected compact Kahler G-manifolds
with the transitive action of a compact semisimple Lie group G (cf. [10, 77]).

Remark 5. The real representation (3.6) implies that that the Lie algebra p of the
parabolic group P has the form

p=Cau

where [ is the Levi subalgebra and u is the nilpotent subalgebra of p, described
in Subsec. 3.1.2 for the case of the standard parabolic subalgebras. The parabolic
subalgebras can be defined also in terms of the so called canonical element.

Namely, for any parabolic subalgebra p there exists a unique element & (belong-
ing to the center of the Levi subalgebra 1), for which the operator adé has only
imaginary integer eigenvalues, belonging to /—1Z. Such an element & is called the
canonical element of the parabolic subalgebra p. (This fact is proved, e.g., in [15],
Theor. 4.4.)

We use this equivalent definition of parabolic subalgebras for the construction of
a certain canonical bundle, associated with a flag manifold. The importance of the
canonical bundle will become clear in Sec. 7.5, where we show that the loop space
QG can be considered as a universal flag manifold of the group G.
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Denote by g; the eigenspace of the operator ad £ with the eigenvalue v/—1j. In
terms of g; the parabolic subalgebra p and nilpotent subalgebra u can be described

as
p=a, v=EPa-

i>0 i>1

We define now a symmetric space N = N(F'), canonically associated with the
flag manifold F', by setting

N=G/K
where K is a subgroup of G with the Lie algebra

o]

Since the Lie algebra [ of the Levi group L is contained in g, there exists a homo-
geneous bundle

F=G/L— G/K=N

of the flag manifold F' over the associated symmetric space N. So we have con-
structed for our flag manifold F' the associated symmetric G-space N = N(F)
and canonical homogeneous bundle F — N. Note that the symmetric space N is
uniquely determined by F', while the canonical bundle ' — N is not uniquely de-
fined, due to the fact that different points of N may have the same stabilizer K.
The number of such points is finite, so there exist only a finite number of canonical
bundles of the above type.

The importance of flag manifolds is due, in particular, to the fact that all ir-
reducible representations of the group G can be realized in spaces of holomorphic
sections of complex line bundles over the flag manifolds of G. This is the Borel-Weil
construction, given in Subsec. 3.2.2. To explain this construction, we need some ba-
sic facts from the representation theory of complex semisimple Lie groups, collected
in the next Subsec. 3.2.1 (cf. for a more detailed exposition [75, 76, 28, 39, 67]).

3.2 Irreducible representations

3.2.1 Irreducible representations of complex semisimple Lie
groups

Let hc be a Cartan subalgebra of a complex semisimple Lie algebra gc and p : gc —

End V' is a representation of the algebra gc in a complex vector space V.

A weight of the representation p is a linear functional A € b, for which there
exists a vector v € V' \ {0}, called the weight vector, such that

p(h)v = AX(h)v for any h € h¢ .

The linear subspace V), consisting of the vectors v € V, satisfying the relation
p(h)v = A(h)v for any h € b, is called the weight subspace of weight A.
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Denote by A,(V) C b the set of weights of the representation p. There is a
weight decomposition of p, analogous to the root decomposition (3.4) for the adjoint
representation p = ad from Subsec. 3.1.2. It has the form

V= Vi,
AEAL(V)

where V), is the weight subspace of weight .

Fix a system II = {a,...,q;} of simple roots of the algebra gc with respect to
he. Among the weights of a representation the special role is played by the highest
weights, which are the maximal elements in the set of weights of a representation
with respect to the partial ordering on b, introduced in Subsec. 3.1.2. A highest
weight A of a representation p is characterized by the property that its weight vector
v is annihilated by the nilpotent subalgebra n,, i.e.

p(&)v =0 forany & €n, .

We associate with a system IT = {a,...,q} of simple roots of the algebra gc
the dual system of weights {wy,...,w;}, defined by the relation

(wiaa;‘/) = 52] )

where o is the co-root, associated with a; (cf. Subsec. 3.1.2). The elements
wi,...,w; € b are called the fundamental weights and form a basis in the space of
weights, so that any weight A € b can be written in the form

A= Z()\,a;/)wj
J

and is uniquely determined by the coefficients (), o). A weight X is called dominant,
if all the coefficients (), o) are non-negative integers.

The highest weights characterize uniquely an irreducible representation of a com-
plex semisimple Lie algebra. More precisely, we have the following

Theorem 1. Let p be an wrreducible representation of a complex semisimple Lie
algebra gc. Then it has a unique highest weight A. This weight is dominant and
any other weight A € A,(V') can be written in the form

A=AN—a; —- —a; , wherea; €l1l.

An irreducible representation is uniquely determined (up to equivalence) by its high-
est weight.

We add a comment on the last statement of the Theorem. An irreducible repre-
sentation can be reconstructed from its highest weight A in the following way. Let
vp be the weight vector, corresponding to the weight A. Then by definition

p(§)vy =0 forany & €n, | (3.7)
p(h)vy = A(h)vy  for any h € he . (3.8)
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Consider the vectors, which can be obtained by the action of elements of the nilpo-
tent subalgebra n_ = @, .o+ 9—a on the highest vector vy. More precisely, denote

Viy ..., ::p(éfﬁ) """ p(f*h)vA

where £_; € g_,,. Then the vectors {vy, v;, ;. } generate a subspace V with a natural
action of the representation p. The required representation space V' is obtained
from V by taking the quotient with respect to the maximal invariant subspace in 1%
(different from V) and providing it with the induced action of the representation p.

In the representation theory of loop groups LG it is customary to use, instead
of the highest and dominant weights, the lowest and antidominant weights, dual
to the introduced highest and dominant weights. The main reason for that is that
the Borel-Weil construction of irreducible representations of complex semisimple Lie
groups, presented in the next Subsec. 3.2.2; is naturally formulated in terms of the
lowest and antidominant weights. In order to switch to the lowest and antidominant
weights in the above definitions, it’s sufficient to replace the nilpotent subalgebra
n, with its counter-part n_, defined by

n_:@g_a.

acAt

It follows, in particular, that a weight A\ is antidominant if and only if the weight
—A is dominant. If V is a representation of an algebra gc with a highest weight
A, then the representation of gc with the lowest weight —A is realized in the dual
vector space V*. The above Theorem 1 admits an evident reformulation in terms of
antidominant lowest weights.

3.2.2 Borel-Weil construction

The Borel-Weil construction, presented in this Subsection, realizes the irreducible
representation of a complex semisimple Lie group, associated with a given lowest
weight (or a character of the Cartan subgroup), in a space of holomorphic sections
of a complex line bundle over the full flag manifold.

Suppose that a Lie group GC is the complexification of a compact Lie group G
and H is its Cartan subgroup. A character of H is a homomorphism \ : H — C*
into the multiplicative group of nonzero complex numbers C*. The group X (H) of
all characters of H is a free Abelian group of rank, equal to dim H. If A\ € X (H) is a
character of H, then the map A, tangent to A, is linear, hence, belongs to the dual
space h*. This defines a monomorphism of the group X (H) into h*, which allows to
identify a character A with the corresponding linear functional \,.

Suppose now that the subgroup H is a mazimal torus (i.e. H is a maximal
subgroup in G, isomorphic to the product of several copies of the group C*). Let
R : G — GL(V) be a linear representation of the group G¢. If A € X(H) is a
character of H, then, by analogy with Subsec. 3.2.1, it is called the weight of the
representation R, if there exists a vector v € V'\ {0}, called the weight vector, such
that

R(h)v = A(h)v forany h € H . (3.9)

The vectors v € V, satisfying the relation (3.9), form the weight subspace V), asso-
ciated with weight \.
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Any representation R : G — GL(V) of the group G® admits a weight decompo-

sition
V=D W,

weights A of R

where the summation is taken over the weights A € X(H) of the representation R.
This decomposition is analogous to the weight decomposition from Subsec. 3.2.1 in
the case of Lie algebras. Moreover, the weights of the representation R of the group
G may be identified with the corresponding weights of the associated representation
R, : g€ — End V of the Lie algebra g, and the associated weight subspaces coincide.
Assume now that the maximal complex torus H is the complexification of some
maximal torus 7" in G. By analogy with Subsec. 3.1.1, we define the full flag manifold

I, associated with T', as
F=G/T=G"B,, (3.10)

where B, is the standard Borel subgroup in G, having the standard Borel sub-
algebra b, from Subsec. 3.1.2 as its Lie algebra. On the Lie algebra level the
homogeneous representations (3.10) correspond to the decompositions

g“=t"@n, dn_=b,on_. (3.11)

Let A € X(H) be a character of H, associated with a lowest weight vector of the
algebra g©. It can be extended to a holomorphic homomorphism X : B, — C* of
the Borel subgroup B, by setting it equal to 1 on the Lie subgroup N, , having the
nilpotent subalgebra n, as its Lie algebra. We define a complex homogeneous line
bundle Ly over the flag manifold F = G®/B,., associated with the character X:

L)\:G(C XB+(C
F:GC/B_;’_ )

where G€ xp . C is identified with the quotient G® x C modulo the equivalence
relation: (gb,c) ~ (g, A(b)c) for any g € G, b € B, and ¢ € C. A section of the
line bundle Ly is identified with a function f : G — C, subject to the relation

f(gb) =Ab"")f(g) forallge G°, be B, . (3.12)

Denote by I') the space of holomorphic sections of the bundle Ly or, in other
words, the space of holomorphic functions on G, satisfying the condition (3.12).
The group G® acts from the left on Ly, hence, on the space T').

Theorem 2 (Borel-Weil theorem). If the weight X\ is antidominant, then the rep-
resentation of the group G in the space of holomorphic sections I'y, constructed
above, is the irreducible representation with the lowest weight A and all 1rreducible
representations of the group G can be realized in this way.

3.2.3 Orbit method and coadjoint representation

In this Subsection we outline briefly another method of constructing irreducible
representations of Lie groups, using the orbits of the coadjoint representation of the
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group on the dual space of its Lie algebra (the details may be found in Kirillov’s book
[39]). Though we do not use this method for the construction of representations, we
found it useful to explain its idea to motivate the study of coadjoint representations
of various infinite-dimensional groups in this book.

We recall first some basic facts on the characters of irreducible representations.
Let T : G — GL(V) be a finite-dimensional representation of a Lie group G. We
define its character as a function xr : G — C*, given by the formula

xr(g) =TrT(g), g€ G .

This function is constant on conjugacy classes and depends only on the equivalence
class of the representation T. Moreover, it is a homomorphism with respect to the
tensor product of representations, i.e. xryg1, = X1y X1,- A character of an irreducible
representation determines it uniquely up to equivalence.

Let G be a compact Lie group and L?*(G,dg) denotes the space of all square
integrable functions on G with respect to the Haar measure dg. Then the characters
of all its irreducible unitary representations form an orthonormal basis in a subspace
of L?(G, dg), consisting of functions, constant on conjugacy classes.

The definition of the character xr, given above, is valid, evidently, only for
finite-dimensional representations 7'. However, for an infinite-dimensional represen-
tation it’s often possible to define its character as a distribution on the group G.
Namely, denote by D(G) the space of C*°-smooth functions on G and suppose that
all operators of the form

T(f) = /G f(@)T(9)dg, feD(@),

are of trace class (the definition of the trace class is given in Sec. 5.3 below). Then we
can define a character of the representation 7" as a distribution on the space D(G) of
test functions, or, in other words, as a continuous linear functional on D(G), acting
by the formula

xr(f):=TcT(f), feD@G).

If, in particular, the group G is semisimple, then the character yr can be given by
the formula

() = /G xr(9)f(9)dg

where yr is some measurable locally integrable function on G. As in the case of
finite-dimensional representations, the character xr(f) is constant on conjugacy
classes, i.e.

xr(f) = T T(f) = T[T ()T (/)T (g~")]

for any f € D(G), g € G. Again, an irreducible representation is uniquely deter-
mined (up to equivalence) by its character.

We turn now to the coadjoint representation of the group G. Let g the Lie
algebra of G and g* is its dual space. The adjoint action Ad of the group G on its
Lie algebra g induces by duality the coadjoint action Ad* of the group G on the
space g*.

Consider an orbit F' = G- of an arbitrary point ¢ € g* in g* under the coadjoint
action and denote by G, the isotropy subgroup at ¢. Let g, be the Lie algebra of
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the group G,. Then the tangent space to the orbit F' at ¢ may be identified with
the quotient g/g,.

The orbits F' of the coadjoint representation turn out to be symplectic manifolds,
provided with a canonical Kirillov symplectic form wg. This form is generated by a
G -invariant 2-form w, on g, given by the formula

we(&,n) =& m), &meg.

The kernel of w, on g coincides with g, so the form w, can be pushed down to a
form on g/g, (denoted by the same letter), which is a non-degenerate G,-invariant
2-form on g/g,. So it can be extended to a non-degenerate G-invariant 2-form wp
on F', which does not depend on the choice of the point ¢ on the orbit F'. Moreover,
the form w,, satisfies the Jacobi identity, hence, it is a cocycle on g. This implies
that the induced G-invariant 2-form wp is closed on F', and so defines a symplectic
structure on F'.

It may be proved that any G-homogeneous (with respect to the action of a
connected Lie group G by symplectic transformations) symplectic manifold M is
locally isomorphic to an orbit of the group G or its central extension G in the
coadjoint representation (cf. [46]).

We explain now the idea of the orbit method. We want to construct an irreducible
unitary representation 7" from an orbit of the coadjoint representation in g*.

Let I' = G - ¢ be such an orbit. We construct from it a one-dimensional unitary
representation of the group G,. In a neighborhood of the identity of G, we define
it by the formula

x(exp &) = ™) |

where exp : g, — G, is the exponential map. It extends to a representation of
the isotropy group G, and induces an irreducible unitary representation 7% of the
whole group G, if the orbit F' is integral, i.e. the canonical symplectic form wp
is an integral form on F' (the precise definition of an integral form is given in the
beginning of Sec. 8.1).

The character of the irreducible unitary representation 7T is given by the formula

1

M/Fe%wwﬁly(@ . feg, (3.13)

xr(expé) =

where (r is the Liouville volume form on F', generated by the symplectic form wp,
and pp is some smooth invariant (with respect to conjugations) function on G, equal
to 1 at e € G. The formula (3.13) should be understood in the distributional sense,
i.e. for any test function f € D(G) the integral

f(eXp 5) 2mip(€) }
{ [ Lm0t ane).

mmzﬂﬂmz/

F

converges (here d¢ is the Lebesgue measure on g).

In particular, for compact groups G we have dim Ty := yr(e) = Vol F < oo, and
the integral orbits in this case correspond to flag manifolds. In this case the orbit
method is equivalent to the Borel-Weil method from the previous Subsec. 3.2.2.
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Bibliographic comments

The content of this Chapter is mostly of the reference character and may be found in
a number of books. In particular, general properties of flag manifolds are presented
in [6, 15, 61]. The basics of the representation theory of semisimple Lie algebras
and groups may be found, e.g., in [76, 75, 28, 67]. The Borel-Weil construction is
explained, in particular, in the book [6]. The orbit method is presented in [39, 43].



60

CHAPTER 3. FLAG MANIFOLDS AND REPRESENTATIONS



Chapter 4

Central extensions and
cohomologies of Lie algebras and
groups

In the first Section of this Chapter (Sec. 4.1) we recall the definition and basic
properties of central extensions of Lie algebras and groups. In particular, we point
out a relation between central extensions of Lie groups and their projective repre-
sentations. In Sec. 4.2 we introduce the Lie algebra cohomologies and give several
important examples of this notion (including the cohomological interpretation of
central extensions). The last Sec. 4.3 is devoted to the Lie group cohomologies and
their relation to projective representations.

4.1 Central extensions of Lie groups and
projective representations

Definition 24. A central extension of a Lie algebra & (over the field R) is a Lie
algebra QN5, which can be included into the exact sequence of Lie algebra homomor-
phisms

0—R—&—6—0, (4.1)

where R is considered as an Abelian Lie algebra and the image of the monomorphism
R — & is contained in the center of the algebra &. Two central extensions &; and
®, of the same Lie algebra & are said to be equivalent, if there exist a commutative
diagram of Lie algebra homomorphisms

0 R &, ® 0
idl l lid
0 R B, ® 0.

The exact sequence (4.1) implies that the Lie algebra ®, as a vector space, is
isomorphic to & = & @ R and the Lie bracket in &, due to the centrality of the
image of R — &, has the form

[(,5), (0, 0)] = [(£,0), (n,0)] = ([§, m], w(&,m))
61
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where w is a skew-symmetric bilinear form on &, called the cocycle of the central
extension.
By analogy with Def. 24, we can define central extensions of Lie groups.

Definition 25. A central extension of a Lie group G is a Lie group G, which can
be included into the exact sequence of Lie group homomorphisms

1—>51%g~—>g—>17

where the image of the circle group under the monomorphism S I — G is contained
in the center of the group G.

Topologically, the map G — G is a principal S'-bundle. Consider the case, when
this S'-bundle is trivial, i.e. G — G admits a global section ¢ : G — G. With the
help of this section, we can identify G with the group G x S, provided with the
multiplication

(9, A) - (h, 1) = (gh, Auc(g, b))

where ¢(g, h) = o(g)a(h)o(gh)~! is called the cocycle of the central extension G.
Central extensions of Lie groups are closely related to their projective represen-
tations.

Definition 26. A projective (unitary) representation of a Lie group G is a map
p:G—U(H)

of the group G into the group of unitary operators, acting in a complex Hilbert space
H, satisfying the relation

p(91)p(g2) = c(91, 92)p(g9192) for all g1,g0 € G ,

where ¢(g1, g2) is a complex number with modulus 1, which is called the cocycle of
the projective representation.

Another projective representation p’ : G — U(H) of the same group G is equiva-
lent to p, if

P'(9) =Mgplg), 9€G,

for some \: G — S*.

Any projective representation p of a Lie group G determines a true unitary repre-
sentation j of some central extension G of the group G, which is a topologically trivial
Sl-bundle with the cocycle, equal to the cocycle of the projective representation.
Namely, we define

plg,\) == Ap(g) forall g G, AeS".
Then we’ll have

p((g1, A1) - (92, A2)) = A dac(g1, 92)p(9192) = MA2p(91)p(g2) = p(91, A1)p(g2, A2)

for any g1, 92 € G, M\, Ao € S™.
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Conversely, any unitary representation p of a topologically trivial central exten-
sion G, such that p(A) = A-id for any A € S, determines a projective representation
p of the group G, which is defined in the followmg way. The cocycle ¢ of the central
extension G is given in terms of the trivializing section o : G — G by the formula

c(g1,92) = 0(g1)o(g2)o(g192) ", 91,92 €G .
Then the map p, defined by p(g) := p(c(g)), determines a projective representation
p:G — U(H), since
p(g192) = p(0(9192)) = P (c(g1, 92) "o (g1)o(g2)) = c(g1, 92) " p(91)p(g2)
for any ¢1,92 € G.

4.2 Cohomologies of Lie algebras

Let & be a Lie algebra and p : & — End V is a representation of & in a vector space
V. In other words, V' is a &-module.

Definition 27. A ¢-cochain of the algebra & with coefficients in 'V is a skew-
symmetric continuous g-linear functional on & with values in V, i.e. a continuous
map

a:BxX- - x® —V,
~—————
q
which is skew-symmetric and g-linear. The set of all such cochains is denoted by

013, V).
We define the differential (coboundary map)

5y CUB, V) — CTTH(B,V)
by the formula
5(104(617 cee 7£q+l) = Z <_1)l€za<€la cee aé:i? cee 7€q+1)+

1<i<q+1

Y U Al b G )

1<i<i<qg+1

(4.2)

for a € CYB,V), &, ..., &+ € 6.
It’s easy to check that the coboundary maps have the property d, o d,_1 = 0, so
we obtain a complex

0B, V) 2 (e, V) 2L ot (@, V) —

The cohomologies of this complex are called the cohomologies of the Lie algebra &
with coefficients in the &-module V' and denoted by

HY®,V) := Kerd,/Imj, 1 =
_ {£eCi®,V):6,6£=0}
- {¢e€e 0B, V): £=6,,n forsomene Cri(B,V)}

In the particular case, when V' is the basic number field £ = R, C, considered as the
trivial &-module, the cohomologies HY(®, k) are denoted by H(®).

(4.3)
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The above expression for the coboundary map looks like exterior derivative of a
differential form. This is because differential forms on a smooth manifold X may be
considered as cochains of the Lie algebra Vect(X) with coefficients in the module
C*°(X) of smooth functions on X, considered as a Vect(X)-module.

Here are several particular examples of Lie algebra cohomologies.

Example 24 (cohomology H®(®,V)). Setting C~1(&,V) =0, we get

H(®,V)=Ker {5 : C°(8,V) =V — C'(,V)}
={veV:v=0forany { € &} . (44)

In other words, the cohomology HY(&,V) coincides with the set of invariants of

®-module V.

Example 25 (cohomology H'(®)). In this case the differential §y : C°(&) — C1(&)
is trivial, since the action of & on k is trivial. So

H'(8) =Ker [6;: C'(6) = & — C*(&)]
={Be& :6(¢n]) =0foral £,n € &) = (8/[6,8)" . (4.5)

Otherwise speaking, the cohomology H'(®) consists of continuous linear functionals

on B/ [&, 6|

Example 26 (cohomology H'(&; &)). Consider a Lie algebra & as a &-module with
respect to the adjoint action ad of & on itself. The cohomology H'(®,®) is inter-
preted as the set of outer derivations of the algebra &. Recall that a homomorphism
¢ :® — & is called the derivation of &, if

¢([&:n) = [0(€), nl + (& o(n)] -

The inner derivations, defined by

§— 1€, &l = adg,(€)

where & is a fixed element of &, may serve as an example.

The set of outer derivations coincides, by definition, with the quotient of the set
of all derivations of the algebra & modulo inner derivations.

Let us show that the cohomology H'(®, ) coincides with the set of outer deriva-
tions of the algebra &.

Indeed, cochains from C'(®,®) are given by linear maps ¢ : & — &. The
condition d;¢ = 0 means that ¢ is a derivation, since

010(&n) = o[, n]) — Eo(n) + (&) = o([€,m]) — [€, d(m)] — [¢(£) . ] -

The cochains from C'(®,®), belonging to the image of the map &y : C°(&, &) —
C1(®,8), are inner derivations of the algebra &, since

Eed=C%6,8) = &in)=-En=[-&n.
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Example 27 (cohomology H?(®)). The cohomology H?(®) may be identified with
set of equivalence classes of central extensions of the Lie algebra &, considered in
the previous Sec. 4.1.

Indeed, associate with a cocycle w € C*(&) the central extension

00—k —kdp® —&—0,

where the map k — k & & is an embedding s — (s,0), and the map k& & — &
coincides with the projection (s,&) +— &. The bracket in the algebra & = k & & is
given by the formula

[(s,€), (£, m)] = (w(&n), [§,]) -

The Jacoby identity in the algebra ® is equivalent to the cocyclicity of w. Moreover,
cohomologous cocycles correspond to equivalent central extensions, and the zero in
H?(®) corresponds to the trivial central extension & = k @& &.

Example 28 (cohomology H?*(®)). The cohomology H?(®) of a semisimple Lie
algebra & is interpreted as the set of invariant symmetric bilinear forms on &.

Indeed, with any such form (-,-) we can associate an element of H*(&), given by
the 3-cocycle of the form

& X & x> (§n¢)— (&) -

Apart from the above examples, demonstrating the importance of the coho-
mologies of Lie algebras, there is one more motivation to introduce such an object.
Namely, the cohomologies of a Lie algebra & are closely related to the cohomologies
of the corresponding Lie group G, considered as a smooth manifold. Let us denote
the latter cohomology groups by H{, (G, k). A relation between H{, (G, k) and the
cohomologies of the Lie algebra & is established in the following way.

Construct first a map of the cochain complex C*(®) into the de Rham complex
Q°(G) of the group G. Denote by Qf (G) the subspace of differential forms of
degree ¢ in Q7(G), invariant under the right translations on G. A form in Qf (G) is
uniquely determined by its restriction to the tangent space T.G = &, i.e. there is

an isomorphism

Q% (G) <= AY(B) = CU(®) .

mv

Moreover, the differential 6, : C%(®) — C?(B) coincides with the restriction of
the exterior differential d, : Q4(G) — QIT(G) to Qf (G). So there is a canonical
map

HY(®) — Hi,y(G.F) (46)

This homomorphism is an isomorphism, when £ = R and G is a compact Lie group
(in this case one can associate with any form on G a right-invariant form by averaging
the original form over G). In the complex case k = C the above homomorphism
is an isomorphism, if G is a complex semisimple Lie group. The isomorphism (4.6)
extends also to some infinite-dimensional Lie groups, in particular, to the loop group
LG = C*(S',G) of a compact Lie group G (k = R in this case).
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4.3 Cohomologies of Lie groups

Let G be a Lie group and V' is a G-module, i.e. we have a representation p : G —
GL(V) of the group G in the vector space V. There are two natural definitions of
the cochain complex with values in the G-module V. In the first definition cochains
are given by equivariant functions on G with values in V.

Definition 28. A g-cochain of the group G with values in V' is a function
p:GxX---xG—V |
1
a+

which has the following equivariance property

©(990,---+99¢) = 9-©(gos-- -, 9q) »

bR

where in the right hand side denotes the action of the group G on V', given by
the representation p. The space of all g-cochains is denoted by C?%(G,V') and the
differential

b, : CUG, V) — CTHG, V)

is given by the formula

q+1

6f190<g()7 s 7gq+1> = Z(_l)z()&(gOa s mé\ia cee ng+1) .
=0

In the second definition cochains are given by arbitrary functions on G with
values in V.

Definition 29. A ¢-cochain on the group G with values in V' is a function

Yv:GX--xG—V.

g+1

The space of all g-cochains on G with values in V' is denoted again by C'9(G, V'), but
the differential
5f1 : Cq(g’ V) - Cq+1(g’ V)

is given in this case by the formula
0q¥(G1s - Gg+1) = g1 (g2, - s Ggr1)+
q
+ Z(—l)%(gh s GiGirts e Ggrt) T (1) (g, gg)
- (4.7)

A relation ¢ < 1) between these two definitions of cochains is established via
the formulas

©(go, -+ 9q) = 90~ V(90 91,91 G20+ 9q1q) 5 (4.8)
(g1, 90) = 0(L g1, 9192, - 9192 - -+ Gg) -
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The cohomologies of the group G with values in the G-module V in both cases
are defined as the cohomologies of the complex {C(G,V),d,}, i.e.

. _ Ker[§,: C1G,V) — Cti (G, V)]
H (g, V) T Im [5q71 : qul(g’ V) N Cq(Q,V)] .

We consider now a relation between 2-dimensional cohomologies of the group G
with its projective representations and central extensions (cf. Sec. 4.1).
Let p : G — U(V) be a projective representation of the Lie group G, satisfying
the relation
p(91)p(g2) = c(g1,92)p(g192) for any g1, 90 € G,

where ¢(g1, g2) is the cocycle of the representation p. The associativity of the multi-
plication in G and U(V') implies that ¢ is a 2-cocycle of the group G with values in the
multiplicative group S! with the trivial action of the group G, given by p: G — 1.
In other words, for any three elements gy, g2, g3 of the group G we have the relation

(g2, 93)c(9192, 93) " 'elgr, 9293)c(gr, 92) P =1,

which means that dyc = 1 (we use here the multiplicative analog of dy from Def. 29).
On the other hand, an equivalent projective representation of the form

p'(9) = Mg)p(9)

with A : G — S, corresponds to the cocycle

(g1, 92) = c(g1, 92)M(9192) A(g1) " A(g2) ",

i.e. to the cocycle ¢ € C?(G,S'), cohomologous to the cocycle ¢ € C?(G,S'). So
the class [c] of the cocycle ¢ in the cohomologies H*(G,S') depends only on the
equivalence class of the projective representation p. Hence, the equivalence classes
of projective representations of the Lie group G in a Hilbert space V' can be identified
with the cohomologies H*(G,S').

On the other hand, in Sec. 4.1 we have assigned to any topologically trivial central
extension é — G of the group G its cocycle ¢, which is the same as a 2-cocycle of
the group G with values in the trivial G-module S*. Moreover, equivalent central
extensions of the group G correspond to cohomologous cocycles in H?(G, S'). So,
the class [c] of the cocycle ¢ in H?(G, S) depends only on the equivalence class of the
central extension G and we can identify the set of equivalence classes of (topologically
trivial) central extensions of the Lie group G with the cohomology H*(G,S%).

Bibliographic comments

The content of this Chapter is also of reference character and may be found in [31, 21,
22]. Central extensions and projective representations, together with cohomologies
of Lie algebras and groups, will play an important role in the study of loop groups
and diffeomorphism groups in Parts II and III.
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Chapter 5

Grassmannians of a Hilbert space

In this Chapter we introduce infinite-dimensional Grassmann manifolds of closed
subspaces in a Hilbert space H. We assume that H is polarized, i.e. decomposed into
the direct sum of closed (infinite-dimensional) subspaces H = H, @& H_, and consider
Grassmannians, consisting of subspaces, ”close” to H, in different senses. The
most important case is the so called Hilbert—Schmidt Grassmannian, introduced in
Sec. 5.2. It is a Hilbert Kahler manifold, which has many features of standard finite-
dimensional Grassmannians. In particular, it is the homogeneous space of a Hilbert
Lie group and can be provided with a natural determinant bundle, constructed in
Sec. 5.3.

5.1 Grassmannian Gr,(H)

Let H be a complex (separable) Hilbert space. Suppose that H is polarized, i.e. it
is provided with a decomposition into the direct orthogonal sum

of closed infinite-dimensional subspaces. Denote by pr, (resp. pr_) the orthogonal
projection pr, : H — H, (resp. pr_: H — H_).

We usually have in mind a standard example of such a polarized Hilbert space H,
given by the Hilbert space L3(S!, C) of L*-functions on the unit circle S* with zero
average value. Functions f € L2(S?, C) have Fourier decompositions, converging in
L?-sense, of the form

400
f(z) = Z fiz" fo=0,
k=—o00

where z = €. For this particular realization of H we take for H, (resp. H_) the
subspace, consisting of the functions f € L2(S',C), which have vanishing Fourier
coefficients with negative (resp. positive) indices:

Ho={fel f(:) =3 fi*}, H ={feH: f(z)= Y fi*}.

k=—00

Definition 30. The Grassmannian Gr,(H) consists of all closed subspaces W C H,
such that the orthogonal projection pr, : W — H_ is a Fredholm operator.
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Recall that a linear operator T': H; — H,, mapping a Hilbert space H; into a
Hilbert space Ha, is called Fredholm, if it has finite-dimensional kernel and cokernel.
For such an operator one can define its Fredholm index by the formula

ind 7" := dim(KerT") — dim(Coker T) .

The Fredholm index of T is a topological invariant of T, i.e. it does not change
under bounded continuous deformations of T. An equivalent definition: an operator
T is Fredholm, if it is invertible modulo compact operators, i.e. if there exists an
operator S : Hy — H; such that the operators idy, — ST and idy, —7T'S are compact.

We can reformulate Def. 30 in an equivalent way as follows: a subspace W €
Gry(H) iff it coincides with the image of a bounded linear operator

w:H, — H |,

such that the operator wy := pr, ow is Fredholm.
With respect to the polarization H = H,; & H_ any linear operator w € End H
can be written in the block form

_f(fa b\ f(a:Hy—H,, b:H_ — Hy
W=\e d) " \e:H, >H_ |, a:H —H )"

In these terms the subspace W € Gry(H) iff a is Fredholm.
For any W € Gr,(H) denote by

Uw = {W' € Gr,(H) : the orthogonal projection W' — W is an isomorphism} .

We want to define the structure of a complex Banach manifold on Gry(H), for
which the sets Uy, will play the role of coordinate neighborhoods. More precisely,
we have the following

Proposition 6. Gr,(H) is a complex Banach manifold, having for its local model
the Banach space B(H,,H_) of bounded linear operators w : Hy — H_. The
coordinate neighborhoods

Uw = {W'e Gr,(H) : the orthogonal projection W' — W is an isomorphism} ,

introduced above, form an atlas of Gry(H) and coordinate charts are given by the
maps
Uy 2 W' —w' € BIWW,W+) .

Proof. In order to show that the atlas {Uy } with given charts does define on Gr,(H)
the structure of a complex Banach manifold, consider the intersection Uy, NUy;, # 0
of two coordinate neighborhoods. The coordinate change in H, transforming the
decomposition H = W; & Wit into the decomposition H = Wy & Wik, is given by
the matrix
A= (‘CL Z) W e W — Wy e Wy,

in which the operators a and d are Fredholm, while b and ¢ are bounded. If a
subspace W € Uy, NUyy,, then it can be represented, on one hand, as the graph of a
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bounded operator wy : Wi — Wik, and, on the other hand, as the graph of a bounded
operator wy : Wy — W5k, The orthogonal projection of W onto the subspaces W,
and Wy is an isomorphism, which defines an isomorphism v : W; — Ws, so that W
is the graph of the operator wy o v : Wy — Wik, It implies that

(¢ 0) () = ()
c d w;)  \wyow
as operators from W; to Wy @ Wit In other words, the coordinate change
BW, W) — B(Wy, W3) ,  wy — wy ,
which is given by the formula
wy = (¢4 dw)(a + bw) ™t

determines a holomorphic map, defined on the open subset Uy, N Uy,, identified
with the subset {w; € B(Wy, Wit) : a + bw; is invertible}. O

Note that the manifold Gr,(H) has a countable number of connected components,
numerated by the index of the Fredholm operator w, for a subspace W € Gr,(H),
coinciding with the image of a linear operator w : H, — H. We say that the
subspace W has the wvirtual dimension d, if the index of w, is equal to d.

5.2 Hilbert—Schmidt Grassmannian Grgg(H)

Recall that a linear operator T': H; — H,, acting from a complex Hilbert space H,
into another complex Hilbert space Hs, is called a Hilbert—Schmidt operator, if for
some orthonormal basis {e;} in H; the series

Z | Te;|| < oo

is converging. Note that this condition is satisfied for any orthonormal basis in Hy, if
it is satisfied for some orthonormal basis {e;} in H;. We define the Hilbert-Schmidt
norm of the operator T by the formula

. 1/2
1712 = <Z ||T€i||2> :
i=1

The Hilbert-Schmidt operators T : Hy — Hy form a complex Hilbert space HS(Hy, Ho)
with respect to the introduced norm. Moreover, the space HS(H, H) of Hilbert—
Schmidt operators, acting in a Hilbert space H, is a two-sided ideal in the algebra
B(H) of all bounded linear operators in H.

Denote by GL(H) the group of all linear bounded operators in H, having a
bounded inverse.
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Definition 31. The general linear Hilbert—Schmidt group GLys(H) consists of linear
operators A € GL(H), such that in their block representation (with respect to

polarization H = Hy & H_)
a b
1= (e )

the ”off-diagonal” terms b and ¢ are Hilbert—Schmidt operators (for brevity: HS-
operators). We denote by Ups(H) the intersection of the group GLus(H) with the
group U(H) of all unitary operators in H.

In other words, the group GLyg(H) consists of operators A € GL(H), for which
the ”off-diagonal” terms b and ¢ are ”small” with respect to the ”"diagonal” terms a
and d.

We introduce now the structure of a Banach Lie group on GLys(H). Namely,
consider a subalgebra Bps(H) of the algebra B(H), consisting of operators of the

form
A= (CC‘ Z) € B(H) ,

for which the operators b and ¢ are Hilbert—Schmidt. The algebra Bps(H) is a
Banach algebra with the norm, given by the formula

A= AN+ [Bll2 + llefls -

The group GLys(H) coincides with the group of invertible elements of the algebra
Bys(H) and is a complex Banach Lie group. Accordingly, Uys(H) is a real Banach
Lie group, whose complexification coincides with GLys(H).

There is a Grassmann manifold Grys(H ), associated with the group GLps(H).

Definition 32. The Hilbert—Schmidt Grassmannian Grys(H) is the set of all closed
subspaces W C H, such that the orthogonal projection pr, : W — H, is a Fred-
holm operator, and the orthogonal projection pr_ : W — H_ is a Hilbert—Schmidt
operator.

In other words, Grys(H ) consists of the subspaces W C H, which differ "little”
from the subspace H, in the sense that pr, : W — H, is an "almost isomor-
phism” (recall that Fredholm operators are invertible modulo compact operators,
cf. Sec. 5.1), and pr_ : W — H_ is "small”.

Equivalently, a subspace W € Gryg(H) iff it coincides with the image of a linear
operator

w:H, — H

such that the operator w, := pr, ow is Fredholm, and w_ := pr_ o w is Hilbert—
Schmidt.

It’s easy to see that if W € Grys(H), then the graph of any HS-operator w'’ :
W — W+ also belongs to Gryg(H). We denote the set of all such subspaces by Uyy:

Uw = {W' € Grug(H) : W' is the graph of an HS-operator w’ : W — W=} .
As in Sec. 5.1, this definition can be rewritten in the form

Uw = {W' € Grpg(H) : the orthogonal projection W’ — W is an isomorphism} .
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The group GLpg(H ), introduced above, acts in a natural way on Grgg(H). Con-
sider, in particular, the action of its unitary subgroup Ups(H) on Grys(H) and
show that it is transitive. It will allow us to obtain a realization of Gryg(H) as a
homogeneous space of the group Uyg(H ), analogous to the realization of the finite-
dimensional Grassmannian as a homogeneous space of the unitary group.

To prove that the action of Uys(H) on Grug(H ) is transitive, we should construct
for a given subspace W € Gryg(H) an operator A € Uyg(H) such that A(H,) = W.
Consider an isometric operator w : H; — H, which has the image, equal to W, and
denote by wt : H_ — H an isometric operator with the image W+. Then the
operator

A=wow'  H=H . 6oH - H=WaoWw'

defines an isometry of H onto itself and so is unitary. Moreover, it maps H, onto
W and has the block representation of the form

I
_ W+ Wy
A= (w wL) .
Here, the operator w, is Fredholm, and w_ is Hilbert—Schmidt, because W &
Grps(H). Since A is also unitary, it follows that A € Uyg(H).

The isotropy subgroup of Ups(H) at H, € Grus(H) coincides with U(H,) x
U(H_), hence we have the following

Proposition 7. The Grassmannian Grys(H) is a homogeneous space of the group
Uys(H) of the form

Grus(H) = Uys(H)/ U(H,) x UH_) .

The Hilbert—-Schmidt Grassmannian Grys(H) has the structure of a complex
Hilbert manifold, defined in the following way.

Proposition 8. The Grassmannian Grys(H) is a complex Hilbert manifold, having
for its local model the Hilbert space of Hilbert Schmidt operators HS(Hy, H_). The
coordinate neighborhoods

Uy = {W' € Grys(H) : W'is the graph of an HS-operator w' : W — W=}
form an atlas for Grys(H), and the coordinate charts are given by the maps
Uy > W —w' € HS(W, W) .

This Proposition is proved in the same way, as Prop. 6 from Sec. 5.1.

There is another atlas on Grys(H), which is more natural in some sense. To
construct it, we identify H with the Hilbert space L?*(S*,C). This space has a
canonical basis, given by {2*}, k € Z. The subspace H, is generated by the elements
{z*}, k € Z,, and H_ by the elements {z*}, k € Z_, where we denote by Z, the
subset of nonnegative integers in Z, and by Z_ its complement in Z.

We take for ”coordinate” subspaces in H the closed linear subspaces Hg C H,
generated by vectors {z°}, s € S, which are numerated by the subsets S C Z,
comparable with Z,. We say that a subset S C Z is comparable with Z,, if the sets
S — 74 and Z; — S consist of finite number of points. The ensemble of all such
subsets S C Z is denoted by S, and the number |S — Z| — |Z, — S| is called the
virtual cardinality of S. Note that the virtual dimension of the subspace Hg is equal
precisely to the virtual cardinality of .S.
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Lemma 2. For any W € Grys(H) there ezists a subset S € S, such that the
orthogonal projection

prg : W — Hg

1S an tsomorphism.

Proof. Indeed, if W € Grus(H), then the orthogonal projection pr, : W — H has
finite-dimensional kernel and cokernel, so there exists a subset Sy € S, containing
Z., for which the orthogonal projection

pr: W — Hg,

is injective. If it’s not surjective, then one can find an s € Sy, such that z® does not
belong to pr(W). In this case we replace Sy with S; := Sy \ {s}. The projection
pr: W — Hg, still remains injective. If it’s not surjective, we repeat the described
procedure. Since the complement of pr, (W) in H, is finite-dimensional, after a finite
number of steps we shall arrive to a subset S, for which the projection prg : W — Hg
is an isomorphism. Il

Based on the above Lemma, we can define an atlas on Grus(H), formed by the
open sets {Ug}ses, where the coordinate neighborhood Us = Uy, consists of the
subspaces, which are the graphs of Hilbert-Schmidt operators Hg — Hg = Hg1
with St =Z — S.

Since Ung(H) acts transitively on the Grassmannian Gryg(H ), one can construct
an Ups(H )-invariant Kéahler metric on Gryg(H) from an inner product on the tan-
gent space Ty, Grus(H) at the origin Hy € Gryg(H ), invariant under the action of
the isotropy subgroup U(H,) x U(H_).

The tangent space Ty, Grug(H) coincides with the Hilbert space of Hilbert—
Schmidt operators HS(H, H_), and an invariant inner product on it can be given
by the formula

(A, B) — Re{tr(AB")}, A,Be€HS(H, H_).
The imaginary part of the complex inner product tr(AB*):
w(A, B) :=Im {tr(AB")}

defines a non-degenerate invariant 2-form on Ty, Grys(H), which extends to an
Uns(H)-invariant symplectic form on Grps(H).

This defines on Grus(H) a Kdahler structure, making Grys(H) into a Kdhler
Hilbert manifold.

We shall use in Ch. 9 the "smooth” part Gr*(H) of the Grassmannian Grys(H),
which can be defined in terms of the open covering {Us}gses in the following way.

Definition 33. The Grassmannian Gr>(H) consists of the graphs of all bounded
linear operators w : Hg — Hg, S € S, whose matrix components w,, withp € Z—S5,
q € S are rapidly decreasing, i.e. the quantities |p — ¢|"w,, are bounded for each r.
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5.3 Plicker embedding and determinant bundle

As in the finite-dimensional case, the Hilbert—Schmidt Grassmannian Grys(H) may
be realized, with the help of the Pliicker embedding, as a submanifold in a projective
Hilbert space.

In order to define this Pliicker embedding, we introduce a notion of an admissible
basis for a subspace W € Grys(H). Suppose that W € Grys(H) has the virtual
dimension d. A model example for such a subspace in the case of H = L3(S!,C) is
the subspace W = 279H .

Definition 34. A basis in W, consisting of elements {wy }r>_q, is called admissible
if:

1. the linear map
w:z H — W,

defined on the basis elements {2*};>_,4 by the formula 2* — wy, is a continuous
isomorphism;

2. the composition of w with the orthogonal projection onto the subspace z=¢H
. —d —d
prow:z “Hy — 27 "H,
is an operator with determinant.

We recall the definitions of the class Tr of operators with trace and related class
Det = 1+ Tr of operators with determinant. A linear operator T : H; — Hs, acting
from a Hilbert space H; into a Hilbert space Hs, is called an operator with trace or
an operator of trace class, if for some orthonormal bases {e;} in the space H; and

{f;} in the space Hy the series
> (Te. )

2

converges. If this condition is satisfied for some orthonormal bases in H; and H,
then it is fulfilled also for any orthonormal bases {¢;} in H; and {f;} in Hs and the

Z(T% fi)

2

does not depend on the choice of bases. It is called the trace of the operator 7" and
denoted by TrT'. Operators T': H — H of trace class, acting in a Hilbert space H,
form a two-sided ideal Tr(H, H) in the algebra B(H) of all bounded linear operators
in H, which contains the ideal HS(H, H) of Hilbert—Schmidt operators. Moreover,
it’s easy to see that the product of two operators from Tr(H, H) is a Hilbert—Schmidt
operator, i.e. belongs to HS(H, H). The trace of an operator T' € Tr(H, H) coincides
with the sum of its eigenvalues

T => N(T).

and behaves like the matrix trace.



76 CHAPTER 5. GRASSMANNIANS OF A HILBERT SPACE

If T": H — H is an operator of the trace class, then one can define for the
operator I — T', where [ is the identity operator, its determinant by

det(I = T) := [J(1 = X(T)) .

i

The product in the right hand side is converging, since for an operator T': H — H of
the trace class the sum ) . |\;(T)| is always finite. Operators of the form A =1—T,
where T' € Tr(H,H), are called the operators with determinant or operators of
determinant class, and the set of such operators is denoted by Det(H, H). It’s clear
that the class Det(H, H) is closed under the product of operators.

Coming back to the Def. 34, note that the second condition in this definition
means that the isomorphism w is ”sufficiently close” to the identity. Moreover, it
implies that the orthogonal projection prgow : 2~¢H, — Hg onto any subspace Hg
of virtual dimension d has a determinant, and any two admissible bases in a subspace
W € Grus(H) are related by the change of variables, which has a determinant.

Using the notion of the admissible basis, we can define the Pliicker coordinate
of a subspace W € Grps(H).

Definition 35. Let W be a subspace of virtual dimension d, having an admissible
basis w. The Pliicker coordinate of W is a function of S € S of the following form

(w) det(prgow) for S € S of virtual cardinality d ,
ms(w) =
> 0 for S € S of any virtual cardinality, other than d .

If w’ is another admissible basis in W, then
ms(w') = Apwms(w)

where A, is the determinant of the change of variables, relating w with w’. Hence,
the projective class [mg(w)] does not depend on the choice of an admissible basis w
in the subspace W and is uniquely determined by the subspace itself.
In terms of the Pliicker coordinate the neighborhoods Ug may be redefined as
follows:
W € Ug <= mg(w) # 0 for any admissible basis w in W .

Proposition 9. The Plicker map
m: Grys(H) — P(H) , W +— [ms(w)]ses ,

determines a holomorphic embedding of the Grassmannian Grys(H) into the pro-
jectivization of the Hilbert space H = I*(S).

We omit the proof of this assertion (it may be found in [65], Prop. 7.5.2), and
only note that it is based on the relation

> frs(w)[? = det(w*w) < oo, (5.2)
Ses

satisfied for any admissible basis w in W € Gryg(H).
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We shall construct now a holomorphic line bundle over Gryg(H ), being an ana-
logue of the determinant bundle over the finite-dimensional Grassmannian.

Let a subspace W € Grpg(H ) has the virtual dimension d. Consider the linear
space, consisting of formal semi-infinite forms of the type

A w] = w_gAw_gi1 A...

where A € C, w = {wy }x>_q is an admissible basis in W. If v’ is another admissible
basis in W, then we shall identify the pair [\, w'] with the pair [\, w], if X' = AA .,
where A, is the determinant of the change of variables, relating w with w’.

The linear space Det W, obtained by taking the quotient of the space of semi-
infinite forms of the type [\, w] with respect to the above equivalence relation, is a
complex line.

We denote by Det the union of spaces Det W over all W € Grus(H).

Proposition 10. The natural projection
Det — Gryg(H)
1s a holomorphic line bundle.

This Proposition follows from the fact that the restriction of Det to any coor-
dinate neighborhood Uy is trivial and the transition function for Us, N Us, # 0 is
given (in the notation of Sec. 5.1) by the formula

[)\lawl] — [)\2,'(1]2] )

where
wy = (c+dwp)(a+bwy)™, A= Adet(a+ bwy) .

This defines the structure of a holomorphic line bundle on Det.
We add several comments on the Pliicker embedding and determinant bundle.

Remark 6. The bundle Det can be provided with a natural Hermitian metric, given
by

1A wlf* = [A]* det (w*w)* .
Remark 7. The Pliicker embedding 7 : Grus(H) — P(H) may be pulled up to a

holomorphic map
7:Det - H ,

which is linear on the fibres, so that the bundle Det will coincide with the inverse
image of the tautological line bundle over P(H) with respect to the embedding .
Moreover, the pulled back map 7 : Det — H will preserve the norms (it follows
from the relation (5.2) above).

Remark 8. The holomorphic line bundle Det has no non-trivial (global) sections,
on the contrary, the dual bundle Det* has many such sections. For example, all
Pliicker coordinates mg determine holomorphic sections of Det*. Indeed, the formula
[\, w] — Amg(w) defines a holomorphic function Det — C, which is linear on fibres,
and induces a global holomorphic section of Det*.

Note also that the symplectic form of the manifold Grys(H), constructed in
Sec. 5.2, represents the Chern class of the complex line bundle Det — Gryg(H ). Oth-
erwise speaking, it is induced by the Fubini-Study form on P(H) under the Pliicker
embedding m : Grus(H) — P(H).
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Chapter 6

Quasiconformal maps

In this Chapter we introduce quasiconformal maps and prove main existence and
uniqueness theorems for such maps. The quasiconformal maps will play a crucial
role in Ch. 11, where we study the universal Teichmiiller space. For a detailed
exposition of the theory of quasiconformal maps cf. [1, 49].

6.1 Definition and basic properties

Let w: D — w(D) be a homeomorphism, mapping a domain D in the Riemann
sphere C onto another domain w(D) in C.

Definition 36. Suppose that w : D — w(D) is a homeomorphism and w has
locally L'-integrable derivatives (in the generalized sense) in D. Then w is called
quasiconformal, if there exists a measurable complex-valued function p € L*°(D)
with

|| :=ess sup,ep|p(2)] =1k <1, (6.1)

such that the following Beltrami equation
Wz = pw, (6.2)

holds for almost all z € D.

The function pu = pu,, is called the Beltrami differential or the complex dilatation
of w, and the constant k is often indicated in the name of the k-quasiconformal
maps.

In particular, for £ = 0 the homeomorphism w determines a conformal map
from D onto w(D). For diffeomorphisms w the quasiconformality of w means that
infinitesimally it transforms small circles into ellipses, whose eccentricities (the ratio
of the large axis to the small one) are bounded by a common constant K < oo,
related to the above constant k = ||| by the formula

1+ k
K=-—""
1—k

The least possible constant K is called the mazimal dilatation of w and is often
included in the name of the K-quasiconformal maps.

79
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The term ”Beltrami differential” for the complex dilatation p is motivated by
the behavior of p under conformal changes of variables. Namely, it follows from
(6.2) that for a conformal change of variables f we should have

for almost all z € D. In general, we call a functional ¢,,, defined on complex-valued
functions w, a differential of type (m,n) with m,n € Z, if the quantity ¢,,(z)dz"dz"
remains invariant under conformal changes of variables. In the sense of this definition
the complex dilatation p,, is a differential of type (—1,1).

The inverse of a K-quasiconformal map f is again K-quasiconformal. The com-
position of a Kj-quasiconformal map f with a K>-quasiconformal map g is a (K7 K3)-
quasiconformal map. This composition property may be deduced from the chain rule
for Beltrami differentials. Namely, if f and g are two quasiconformal maps of a do-
main D with Beltrami differentials ;1 and j1 4 respectively, then the following chain
rule holds
) - g.)

1= pp(2)pg(2) g

Mfogfl(g(z)) ’ (63)

183
—~
N
~—

for almost all z € D. In particular,

1g-1(9(2)) = —py(2) -

50 |1g-1(g(2))| = |1g(2)| for almost all z € D.

From the chain rule (6.3) we can deduce the following transformation property
of Beltrami differentials ., with respect to compositions of w with conformal maps
f. If fis a conformal map (i.e. us =0), then

A
[z

These transformation rules for Beltrami differentials imply the following unique-
ness property of solutions of the equation (6.2).

ffow(2) = pw(2) s fwof = (fw © f)

Proposition 11. Suppose that two quasiconformal homeomorphisms w; and wsy in
a domain D satisfy the same Beltrami equation

Wz = Jw,

for almost all z € D, where p is a Beltrami differential in D, satisfying the condition
(6.1). Then wyow,' and wyow; " are conformal. Conversely, the composition fow;
with any conformal map f, defined on wy (D), satisfies the same Beltrami equation,
as wy .

Quasiconformal homeomorphisms have a good behavior at the boundary, accord-
ing to the following
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Theorem 3 (Mori (cf. [1])). Let w : A — A be a K-quasiconformal homeomor-
phism of the unit disc onto itself, normalized by the condition: w(0) = 0. Then the
following sharp estimate

|w(z1) — w(ze)| < 16|21 — 22\1/[(

holds for any z1 # 2o € A. In other words, the homeomorphism w satisfies the
Hélder condition of order 1/K in the disc A.

Mori’s theorem implies, in particular, that w extends to a homeomorphism of the
closed unit disc A. Another corollary of Mori’s theorem is that K-quasiconformal
homeomorphisms w of the unit disc A onto itself, normalized by the condition
w(0) = 0, form a compact family with respect to the topology of normal convergence
(i.e. uniform convergence on compact subsets). This result easily extends to general
domains D C C.

Proposition 12. Consider the family of all K-quasiconformal maps in D, nor-
malized by the condition that any map in the family sends two fixed distinct points
21,22 € D to another two fized distinct points (1,(s. Then this family is compact
with respect to the topology of normal convergence and any map w n this family
satisfies the Holder condition

lw(z1) — w(ze)| < Alz1 — ZQ|1/K

on any compact subset in D, where the constant A depends only on K and the
compact subset.

In particular, any quasiconformal homeomorphism w : D; — Dy extends to a
homeomorphism w : D; — D5 of the closures and so defines a homeomorphism of
the boundaries.

We can ask the converse question: when a given homeomorphism w : 9Dy — 9D,
extends to a quasiconformal homeomorphism D; — D,. It’s convenient to study
this problem first in the partial case, when both domains coincide with the upper
half-plane: Dy = Dy = H.

Suppose that f : R — R is a monotone-increasing homeomorphism of the ex-
tended real line R C C, satisfying the normalization condition: f(co) = co. We
call it quasisymmetric, if there exists a constant A > 0, such that the following
finite-difference condition

A7 flz) = flz—1)
is satisfied for all x € R and all t > 0.
This condition can be considered as a variant of the cross ratio condition for
quadruples of points. Recall that the cross ratio of four different points z1, 29, 23, 24
on the complex plane is given by the quantity

24 —R1 R3— X1

pP= P(Zla 227237'24) = . .
24 —R2 23 22

The equality of two cross ratios p(z1, 22, 23, 24) = p((1, (2, (3, (4) 1S a necessary and
sufficient condition for the existence of a fractional-linear map of the complex plane,
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transforming the quadruple zq, 29, 23, 24 into the quadruple (i, (5, (3, (4. In the case
of quasiconformal maps the cross ratios of quadruples may change but in a controlled
way. The quasisymmetricity condition (6.4) expresses this control in a convenient
form. Namely, we choose for a given homeomorphism f : R — R a quadruple of
points on R in the form & := (z — t, 2,z + t,00) with the cross ratio p(¥) =: p and
associate with it the quantity

Aﬂmaw=M@w=T§;.

If, in particular, p = 1/2, then M (p) = 1. In this case the condition (6.4) means that
the corresponding cross ratio of the quadruple f(Z) := (f(x —t), f(z), f(z + 1), )
satisfies the inequality

S MGU@) <A,

The same condition in terms of p(f(Z)) can be rewritten as

1 A
- < 7)) < ——
71 SPV@) s e
or as .
< olf@) < e
where € = ¢(A) == 1 — A+r1'

Theorem 4 (Beurling-Ahlfors (cf. [1,49])). Suppose that f : R — R is a monotone-
increasing homeomorphism of the extended real line R onto itself, satisfying the
normalization condition: f(oo) = oco. Then it can be extended to a quasiconformal
homeomorphism w : H — H if and only if [ is quasisymmetric, i.e. if there exists
a constant A > 0, such that

(x+1t) — fz)

G RO

L/
AT F
forallz e R, t > 0.

We have already explained above, where the necessity of the condition (6.4)
comes from. The sufficiency of this condition is based on the following remarkable
Beurling—Ahlfors formula, which gives a quasiconformal extension w to H of the
quasisymmetric homeomorphism f:

fo+ww=1A<ﬂx+w»+ﬂx—w»ﬁ+¢A<ﬂx+w»—ﬂx—w»ﬁ

2
for x +it € H.
We formulate also an analogue of the above Theorem for the case of the cir-
cle S'. We say that an orientation-preserving homeomorphism f : S* — S! is
quasisymmetric, if it satisfies for some 0 < ¢ < 1 the inequality

(1+¢€) (6.5)

N | =

L1- 0/ < o). Slea) S0, ) <
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for any quadruple 21, 29, 23, 24 € S* with cross ratio p(z1, 29, 23, 24) = %

An analogue of the Beurling—Ahlfors theorem for S! asserts that an orientation-
preserving homeomorphism f : S' — S can be extended to a quasiconformal home-
omorphism w : A — A if and only if it is quasisymmetric. Douady and Earle (cf.
[19]) have found an explicit extension operator E, which assigns to a quasisymmetric
homeomorphism f its extension to a quasiconformal homeomorphism w of A and is
conformally invariant in the sense that F(wo f) = wo E(f) for any fractional-linear
automorphism of A.

The image C' of the circle S* under a quasiconformal homeomorphism of C is
called a quasicircle and the domains Dy, Dy, complementary to C' in C, are called
quasidiscs. All quasicircles have zero area and their Hausdorff dimension is always
less than 2. However, it can be equal to any A with 1 <\ < 2 (cf. [24]).

Remark 9. There is a natural description of quasicircles in terms of quasiconformal
reflections. Recall that a reflection across a Jordan curve C' on C, dividing C \ C
into two domains Dy, D,, is an orientation-preserving involutive homeomorphism ¢
of C, which maps D; onto D, (and vice versa) and fixes every point of C. The
quasicircles are characterized by the following

Proposition 13. A Jordan curve C on C is a quasicircle if and only if it admits a
quasiconformal reflection across it.

We omit the proof of this Proposition, referring to the book [49], Theor. 6.1.

There is a simple geometric criterion for the quasicircles, passing through oo € C.
Namely, a Jordan curve C| passing through oo, is a quasicircle if and only if there
exists a constant ¢ > 0, for which the following condition is satisfied: for any three
finite points 21, 2o, 23 on C, such that z; lies between z; and z3, we have an inequality

|Zl — 22| + ‘22 — 23| < C‘Zl — 23|

(ct. [L, 49]).

6.2 Existence of quasiconformal maps

A key role in the theory of quasiconformal maps is played by the following existence
theorem for solutions of the Beltrami equation (6.2).

Theorem 5 (Existence theorem). For any measurable function u in a domain D C
C, such that ||| = k < 1, there exists a quasiconformal map on D, whose complex
dilatation agrees with | almost everywhere on D. In other words, there exists a
solution w of the Beltrami equation

Wz = ,U/wz )
satisfied for almost all z € D.

As we have already pointed out earlier (cf. Prop. 11 in Sec. 6.1), any other
solution w of the above Beltrami equation has the form

@=wof,
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where f is a conformal map.

The existence theorem implies the following generalization of the Riemann map-
ping theorem: Let D; and Dy be two domains in C, whose boundaries consist of
more than one point. If p is a measurable function on Dy with ||p]|s < 1, then there
exists a quasiconformal map of Dy onto Ds, whose complex dilatation agrees with 1
almost everywhere.

Proof. A detailed proof of Theorem 5 is given in [1], here we only point out its main
points. First of all, it’s sufficient to prove the existence theorem for the whole plane,
since any p € L®(D) with ||]|cc < 1 can be extended (by setting it equal to zero
outside D) to the whole plane, preserving the estimate ||u|lo < 1.

Starting the proof of the existence theorem for the complex plane, we restrict
first to the case, when the complex dilatation p has a compact support.

We show under this hypothesis that there exists a unique solution of the Beltram:
equation (6.2):

Wz = HW;

satisfying the conditions:
w(0)=0 and w,—1€LP,

where p > 2 is a number, sufficiently close to 2, which will be chosen later.
Introduce the Cauchy—Green operator

Pr(@) = [ ) (2= 2 ) oy

s z—( z

where the integral is taken over the complex plane. This operator is correctly defined
for functions h € LP with p > 2 and determines a continuous function (the function
Ph(() is even Holder-continuous in ¢ with Hélder exponent 1 — %)

The partial derivatives of Ph (in the generalized sense) satisfy the equations
(Ph); =h, (Ph),=Th,

where 1" is the Calderon—Zygmund integral operator, defined by

Th(() = —%P.V./h(z)ﬁdm dy .

Here the integral is taken in the principal value sense, i.e.

1. 1
Th(¢) := ——lim |ZiC|>€h(z)mdx dy .

The operator T'h is correctly defined on functions h of class C? (i.e. C*-smooth with
compact supports). For such h, the function Th(¢) is C'-smooth. The operator T
is also isometric in L?-sense, i.e.

I Thl2 = [|R]2 -
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It follows that it can be extended to a bounded linear operator on L?. Moreover,
it can be proved, using the Calderon—Zygmund inequality, that T is bounded on
functions h € LP with p > 1:

IThll, < Cplillp

and C, — 1 for p — 2. We choose now p > 2 in such a way that the inequality
| ptlloeCyp < 1 is satisfied.

We return to the construction of a solution w of the Beltrami equation (6.2),
satisfying the conditions: w(0) =0 and w, — 1 € LP.

We show first that there could be only one such solution. Suppose that w is such
a solution and consider the function

W =w— P(ws) .

Then its partial derivative with respect to Z is equal to zero, hence W is an entire
function. On the other hand, the condition w, — 1 € LP implies that the derivative
of W, equal to W' = w, — T'(w3), satisfies the condition W' —1 € LP, since w; = pw,
belongs to LP. This is possible only if W/ =1, i.e. W(z) = z 4+ const. The constant
is equal to zero because of the normalization, so W(z) = z and

w= P(w;)+ z .
By differentiating this equality in z, we get for w, an integral equation
w, =T(ws)+1="T(uw,)+1,
in which the operator h — T'(uh) is contractible, since
IT 0 ull, < llloCy <1

Suppose now that @ is another solution of (6.2), satisfying the conditions w(0) =0
and w, — 1 € LP. Then w — w satisfies the equation

W, —w, = T(:u(wz - wZ>>

which implies, because of the uniqueness of its solution, that w, = w, almost every-
where. It follows from the Beltrami equation that also w; = w; almost everywhere.
Hence, w — w is a constant, which is equal to zero, due to the normalization.

To prove the existence of a solution w of (6.2), satisfying the conditions w(0) = 0
and w, — 1 € LP, we use the integral equation

h=T(uh)+ T .

Its unique LP-solution yields a desired solution of the Beltrami equation (6.2), given
by the formula
w=Pluh+1))+=z. (6.6)

Indeed, since p(h + 1) € LP (recall that p has a compact support), the function
P(u(h+1)) is correctly defined and continuous. The derivatives of w (in the gener-
alized sense) are equal to

wr=ph+1), w,=T(h+1)+1=hr+1
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and w, — 1 = h € LP. Hence, w, given by (6.6), satisfies the equation (6.2) and
additional conditions w(0) = 0 and w, — 1 € LP. According to the uniqueness
assertion in Prop. 11, the constructed solution w of (6.2) will be uniquely defined, if
we suppose additionally that it fixes not only the origin 0, but also two other points,
say, z = 1 and z = oco. We denote such a normalized solution by w]u].

To end the proof, we should get rid of the compactness of the support of the
complex dilatation p. This can be done, using the following trick from [1], Sec. VB.

Note that the case, when p = 0 in a neighborhood of 0, which is opposite to
the case, when p has a compact support, can be settled down by the reflection with
respect to the unit circle S*. More precisely, given a u, vanishing in a neighborhood
of 0, we set

72 M
z
Then £ has a compact support, so we can find a normalized solution @ = w[j]

of the Beltrami equation with the complex dilatation ji, satisfying the additional
conditions, indicated in the proof above. Then the "reflected” function

1
w(3)

will coincide with the normalized solution w(u] of the Beltrami equation (6.2).

In the general case we decompose a given complex dilatation p into the sum
I = loo + o of complex dilatations p.,, having a compact support, and pg, equal
to zero in a neighborhood of 0. We would like to write w[u| as the composition
W(peo] © w(po] of the corresponding normalized solutions w(pus| and w(ue]. But this
is not possible, unfortunately, due to the composition formula (6.3) for complex
dilatations. However, taking into account the formula (6.3), we can write w[u] as
the composition

w(z) =

wlp] = wA] owlpo] ,

where the complex dilatation

= [(252m) (e o

still has a compact support. This concludes the proof of the existence theorem. [J

Due to the uniqueness theorem (Prop. 11 in Sec. 6.1), we have the following

Corollary 1. For any measurable function p in a domain D with ||p]|s < 1, there
exists a unique normalized quasiconformal map on D, fixing the points 0,1, 0o, whose
complex dilatation agrees with v almost everywhere on D.

Using the existence Theor. 5, it’s easy to construct a solution of the Beltrami
equation (6.2) in the upper half-plane H = H,. For that it’s sufficient to extend
the dilatation u to the lower half-plane H* = H_ by symmetry, setting

~ —

f(z):=p(z) forze H_. (6.7)
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Then, applying the existence theorem to the Beltrami equation with the dilatation
ft, we obtain a unique solution w, of this equation, fixing the points 0,1,00. It
follows from the uniqueness of the solution that w, satisfies the relation

wu(2) = wu(2) .

So w,, maps the real axis onto itself and, consequently, preserves the upper half-plane
H,.

Another natural method to solve the Beltrami equation in the upper half-plane
is to extend the given potential 1 to the whole plane C by setting

a(z) =0 forze H_ .

Applying the existence theorem to the Beltrami equation with the dilatation i, we
obtain a solution w*, which is conformal in the lower half-plane H_ and fixes the
points 0, 1, co.

The first method of constructing the solution w, of the Beltrami equation in
H, is called real-analytic, since in this case w, depends real-analytically on pu.
Respectively, the second method is called complez-analytic, since w* depends on
p holomorphically (cf. [56], Ch. 1.2, for a rigorous proof of these assertions).

Both methods are naturally transferred to the Beltrami equation in the unit disc
A. For that in the first method one should substitute the symmetry transformation
(6.7) by the reflection with respect to the unit circle S* := A. In other words, the
dilatation u, defined in the unit disc A = A, is extended to its exterior A_ by the

formula )

1 z
M(E) ::,u(z)-? for z € A .

The existence theorem for the extended dilatation fi yields a quasiconformal home-
omorphism w,, : C — C, which preserves Ay and A_ and fixes the points £1, —i.
The second method provides a quasiconformal homeomorphism w* : C — C, which
is conformal on A_ and fixes the points +1, —1.

Remark 10. There is an interesting assertion, due to Mané, Sad and Sullivan, charac-
terizing quasiconformal homeomorphisms as holomorphic perturbations of the iden-
tity. More precisely, we say that a homeomorphism f : C — C is a holomorphic
perturbation of the identity, if it can be included into a family of homeomorphisms
fr: C — C, depending on a parameter A € A, such that for every fixed z, € C the
function fy(z) is holomorphic in A € A, and

fo=id, fy, =[f forsome \; €A .

It is proved in [52] that any member f, of such a family necessarily extends to
a quasiconformal homeomorphism fA of the extended complex plane C with the
complex dilatation, not exceeding (1 4 |A|)/(1 — |A]).

Conversely, any quasiconformal homeomorphism f of the extended complex
plane C is a holomorphic perturbation of the identity. Indeed, if f = w* for some
Beltrami differential p with ||i||cc = & < 1, then we can include f into a holomorphic
family of quasiconformal homeomorphisms, defined by

fr= w/E
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quasiconformal maps.
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Chapter 7

Loop space QG

Let G be a compact Lie group. Its loop space or based loop space is a homogeneous
space of (right conjugacy classes) of the loop group LG = C*°(S', G) of the form

0G = LG/G | (7.1)

where LG = C*(S!, G) is the group of smooth maps of the circle S' = {|z] =1} Cc C
into the group GG, and G in the denominator is identified with the group of constant
maps S! — g € G.

The loop space QG is a homogeneous space of the Frechet Lie group LG with a
natural action of LG on it by left translations. The origin (neutral element) in QG
is given by the class o := [1] = [G] of constant maps.

The space QG may be identified (as a homogeneous space) with the subgroup
LG of maps v € LG such that

v:1eS'—yl)=ced,

by associating with a class [y] of a loop v € LG the map v(1)"'y € L;G. Under this
identification QG is realized as a closed submanifold (of codimension 1) of the Frechet
manifold LG and so is itself a Frechet manifold. We note that this identification of
QG with LG is not canonical, since GG is not a normal subgroup in LG.

7.1 Complex homogeneous representation

One of the main features of the loop space (G, which plays a key role in the study of
its Kéahler geometry, is the existence of two kinds of its homogeneous representations.
Namely, together with the "real” representation (7.1) of G as a homogeneous space
of the real Frechet Lie group LG, there exists also a ”complex” representation of
QG as a homogeneous space of the complex Frechet Lie group LG® = C=(S!, G%),
where GC is the complexification of the Lie group G. More precisely, we have the
following representation

OG = LG®/ L.G%, (7.2)

where LTG® = Hol(A,G®) is the subgroup of maps from LG®, which extend
smoothly to holomorphic (and smooth up to the boundary) maps of the unit disc
A C C into the group G®.

91
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Let us explain the meaning of the representation (7.2) in the case of the unitary
group G = U(n). In this case G = GL(n,C), and the equality (7.2) means that
any complex non-degenerate (i.e. taking values in GL(n,C)) matrix function 7'(z)
on the circle S can be represented in the form

T(2)=U(2) -Hy(2), z=¢", (7.3)

where U(z) is a smooth unitary (i.e. with values in U(n)) matrix function, and H, (z)
smoothly extends to a holomorphic non-degenerate matrix function in the disc A.
It is a parametric analog of the standard representation of a matrix 7" € GL(n, C)
as the product of a unitary and upper-triangular matrices. The representation (7.3)
would be unique, if one requires that U € L;U(n). Moreover, the product map
(U,Hy) — U - Hy defines a diffeomorphism QU(n) x LTGL(n,C) — LGL(n,C).

In the same sense we shall understand the equality (7.2) in the case of an arbitrary
compact Lie group G. Namely, we have the following

Theorem 6 (Pressley—Segal). The product map
QG x LTG® — LG®
is a diffeomorphism of Frechet manifolds.

The proof of this Theorem, given in [65], uses the Grassmann realization of the
loop space )G and will be given later in Ch. 9, after we introduce the Grassmann
model of QG.

Remark 11. There is another approach to the proof of this Theorem, based on the
Beurling-Helson theorem, describing the shift-invariant subspaces in L?-spaces on
the circle (this approach to the proof of Theorem 6 was proposed to us by A.Fedotov).
We explain how to apply this theorem to the proof of Theor. 6 in the scalar case,
i.e. for G = St

Denote by H? the Hardy subspace in L? = L?(S!), consisting of functions f,
which extend holomorphically into the unit disc and have boundary values in the
sense of L? on the circle S'. In terms of Fourier decompositions f € H? if and only
if

oo

f(z):chz” : Z|Cn|2::||f||%_12<OO,Z€A.
0

n=0
Consider the shift operator S in L?, which is defined by the formula

S f(z) — 2f(2)
and maps H? into itself.

Theorem 7 (Beurling-Helson (cf., e.g. [60])). Any subspace E in L?, invariant under
the shift operator S, has the following form:

1. If SE = E, then there exists a measurable subset d in S* such that
E = XdL2 )

where x4 is the characteristic function of the set d.
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2. If SE C E, but SE # E, then there exists a function 8 € L? such that |0] = 1
almost everywhere on S* and

E =0H?.

We return to the relation (7.2). Consider for a function f € LC* (here C* = (S*)©
denotes the multiplicative group of non-zero complex numbers) the subspace E in
L? of the form

E=fH?.
It is invariant under the shift operator S and SE # E, if f ¢ LTC*. So by Beurling—
Helson theorem

fH?* = 60>
for some function § € L?, such that |§] = 1 almost everywhere on S*. Tt implies
that
f=f-1=06-h

for some h € H?, which is already the relation, we are looking for. It only remains
to show that the functions § and h may be chosen smooth (and smoothly depending
on f), so that §# € QS and h € LTC*. It may be done as in [65], Ch. 8 (we also
discuss this point in Ch. 9).

7.2 Symplectic structure

Since QG is a homogeneous space of the loop group LG, it’s natural to use geometric
structures, invariant under the action of LG, for the study of its Kahler geometry.
Such structures are uniquely determined by their values at the origin o € QG. By
this reason we start from the description of the tangent space T,(Q2G).

The tangent space T,(Q2G) coincides with the quotient of the tangent space
Ti(LG) = Lg = C*(S", g) modulo constant maps, i.e.

T,(QG) = Lg/g =: Qg .
It is convenient to represent vectors from the complexified tangent space
T, (QG) = Lg®/g" =: Qg°
by their Fourier decompositions
Og°38(2) =) G2, 2=¢",
k40

where &, € g (the term, corresponding to k = 0, is eliminated by the factorization
modulo g© in Qg°). A vector £ € TE(QG) belongs to the real tangent space T,(QG)
if and only if
k=&,
where the "bar” means the complex conjugation in g, for which g = g.
We construct now an invariant (with respect to LG-action) symplectic structure
on €)G. Define first its value at the origin or, in other words, the restriction of the
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symplectic form to the tangent space T,(2G) = Qg, and then transport it to other
points of QG with the help of left translations by LG.

To define a symplectic form at the origin, we should fix an invariant inner product
< -, > on the Lie algebra g of the group G. Let us recall basic definitions, related
to this notion.

Digression 2 (Invariant inner product). The inner product on the Lie algebra g of
the Lie group G is a positively definite symmetric bilinear form on g. We say that
it is invariant, if it is invariant under the adjoint action Ad of the group G on its
Lie algebra g, defined in the following way. The group G acts on itself by inner
automorphisms of the form

G23¢g: Goh— ghg ' €qG .

This action fixes the identity e € G and generates an action of the group G on
T.G = g, called the adjoint action and denoted by Adg : g — g. Its differential is
called the adjoint representation of the Lie algebra g and has the form

ad{:g—9, adl:n+—[n].
An inner product < -,- > on the Lie algebra g is invariant iff
< (Adg)n, (Adg)¢ >=<n,( > foranyn, (€g. (7.4)

If the group G is connected, this condition is equivalent to a relation on the Lie
algebra level, obtained from (7.4) by differentiation:

< (ad&)n, ¢ >+ <n,(ad§)¢ >=0

or, equivalently,
<Enl,¢>+<n[¢>=0.

On any Lie algebra g there exists an invariant symmetric bilinear form, called
the Killing form, defined by

<& n>=tr(ad€adn), &neg.

In particular, for G = GL(n,C) we have g = gl(n,C) and < £,n >:= tr({n). The
Killing form is non-degenerate, if the group G is semisimple (e.g. for G = SL(n, C)).
If, moreover, GG is compact, then the Killing form is negatively definite. Hence, the
negation of this form defines an invariant inner product on the Lie algebra g of a
compact semisimple Lie group G.

We return to the construction of an LG-invariant symplectic form w on QG. Let
us fix an invariant inner product < -,- > on the Lie algebra g of the group G and
define the restriction of the form w to 7,(Q2G) = Qg = Lg/g.

Using the inner product < -,- >, we introduce, first of all, a 2-form wy on the
loop algebra Lg, by setting it equal to

dn(e')

2m
(e = 5= [ < (e, T > as (7.5



7.2. SYMPLECTIC STRUCTURE 95

on vectors & = £(e?), n = n(e?) from the loop algebra Lg = C*°(S!, g).

This is a skew-symmetric bilinear form on Lg, which is, due to the invariance
of < -,- >, invariant under the adjoint action of the group G of constant loops on
Lg. It’s evident that wo(&,n) is equal to zero, if at least one of the maps & 7 is
constant. So the form wy can be pushed down to §2g, and the pushed-down form
is already non-degenerate (to show that it is non-degenerate, consider its value on
£(e?) = /(") = %ﬁ;e)). Hence, we have constructed a skew-symmetric bilinear
form wy on 2g, which is invariant under the adjoint action of the group G on Qg.
This form can be extended (with the help of left translations) to an LG-invariant
non-degenerate 2-form w on QG.

It remains to check that the obtained form w is closed on Q2G. The closedness
condition (cf. Subsec. 1.2.4), due to the invariance of w, takes on the form

w([&,m], €) +w([n, ¢], &) +w([¢,&],m) =0 (7.6)

It is sufficient to check it on vectors &,7n,( € Lg. In this case the equality (7.6)
means that

27
/{< [€.n],¢" >+ <[n, (], >+ <[C.&,n >}do=0. (7.7)
0

Integrating the first integral by parts, we obtain

27 2T 27
/<K%C>w=—/<WMK>W—/<KM£>W- (7.8)
0 0 0

Due to the invariance of the inner product < ;- > on g

<[ n),( >=<&,[n,¢] >=<[n,¢,& >,

and the first term in the right hand side of (7.8) sum to zero together with the
second integral in the formula (7.7). By the same reason

<[6n],¢ >=<7,[¢, & >=<[(,&], 1 >

and the second term in the right hand side of (7.8) sum to zero together with the
third integral in the formula (7.7). It proves the validity of the equality (7.6), which
implies that dw(&,n,() =0 for all {,n,{ € Lg.

The choice of the formula (7.5) for the form wy on Lg looks somewhat ambiguous,
but it may be shown that this form is uniquely determined by the invariant inner
product < -,- > on g in the case of a semisimple Lie group G. More precisely, we
have the following

Proposition 14 (Pressley—Segal ([65])). If the Lie group G is semisimple, then any
2-form wg on Lg, which satisfies the relation (7.6) and is invariant under the adjoint
action of the group G on Lg, is given by the formula (7.5) for some symmetric
invariant bilinear form < - - > on g.
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Proof. We note, first of all, that bilinear invariant forms on complex semisimple Lie
algebras are necessarily symmetric. More precisely, the following assertion is true.

Lemma 3. If G is a semisimple Lie group with the Lie algebra g, then any complex-
bilinear G-invariant form on the complexified Lie algebra g© is necessarily symmet-
Tic.

In the case of a simple Lie group G the assertion of Lemma follows from the fact
that there exists a unique (up to the proportionality) complex-bilinear G-invariant
form on G (the Schur’s lemma), namely, the Killing form. The case of a semisimple
Lie group G is reduced to the considered case (cf. for details [65]).

We turn now to the proof of the Proposition. The form wy; on Lg may be
extended to a complex-bilinear form wy : Lg® x Lg® — C. Since any element
¢ € Lg® is represented by the Fourier series

§= ngzp )

the form wy is uniquely determined by its values on monomials of the type §,27, i.e.
by the forms

wp.q(&,1) 7= wo(€2",m21)

defined for p,q € Z and (§,n) € g© x g¢. The forms w,, are G-invariant and so,
by Lemma, they are symmetric. Moreover, the skew-symmetricity of wgy implies
that wy, = —w,,. The condition of closedness of wy on Lg, when applied to the
monomials § = £27, N =nz4, ¢ = (2", has the form

wO([f,ﬁ]a é:) +w0([ﬁ>dvé) + wO([éa 5]777) =0.

This equality transforms into the following relation for the forms w, 4:

Wptqr([£,1], C) + Warrp([1, €1, €) + wrapa([C€],m) =0 . (7.9)

From the symmetricity and G-invariance of the forms w, , we obtain

Watrp([0, €1, ) = Warrp(&, [0, C]) = wWarrp (€5 7], €)

and, analogously,

Wr—l-p,q(Ka 5]7 77) = Wr—l-p,q(nv Ka 5]) = WTH&Q([& 77]7 O .

Hence, the equality (7.9) may be rewritten in the form
Wprrqr (1§71 €) + Worrp([€, 1], €) + wrap g (€51, C) = 0,
equivalent in the case of a semisimple Lie algebra to the relation
Wptqr T Wotrp + Wripg =0 . (7.10)

This relation for ¢ = r = 0 implies that w,o = 0 for all p. Setting r = —p — ¢ in
(7.10), we get

Wptq,—p—q = Wp,—p T Wg,—q »
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whence wy, _, = pw; 1. Setting r =n —p — ¢ in (7.10), we obtain

Wn—p—g,p+q = Wn—pp T Wn—g,q »
implying wy,_,, = pwy,—1,1. Hence,

Wo,n
=0

Wn—11 =

and so wy, = 0, if p+ ¢ # 0. Thus, the form wy on vectors £ = > §,27, n =Y 1,21
takes the value

wo (&) prq &ps1g) = pr,—p@pvn—p) = prl,—l(gpm—p) :

On the other hand

2 2
i / 1 % %
5 [ €@ @) a0 == 3" 5 [ i@ ane)do -
0 P 0
2
- Z /pwl -1 5;0777 p) df = prl,—l(gpan—P) . (711)
P
So
2w

() = 5= [ (€00).1/(6) a9

0
with the invariant inner product on the Lie algebra g, given by the formula

<&n>=w (&), (7.12)
which concludes the proof of the Proposition. n

Remark 12. There is also a physical motivation behind the formula (7.5) for the
symplectic form w. It comes from the relation with the bosonic open string theory
in the flat background space-time (cf. [14]). Mathematically, we consider the space
QOR? of based loops S — RY, taking values in the (non-compact) group R? of
translations of the d-dimensional Euclidean vector space. The loop space QRY may
be interpreted as the phase space of the bosonic open string theory. More precisely,
the configuration space of this theory consists of the smooth maps ¢ : [0, 7] — R?
with all derivatives, vanishing at boundary points. The corresponding phase space
consists then of pairs of maps (p, q) of the same type. The symplectic form on this
phase space is given by the string analogue of the standard formula

w(dp,dq) = /5p ) A dq(o)do (7.13)

where dp, dq are smooth maps [0, 7] — R? of the same type, as before, interpreted
as tangent vectors to the phase space. A natural map, associating with a pair (p, ¢)
the map x : [—7, 7] — R, given by the formula

(o) p(o) + ¢ (o), for0<o<m;
0’ pr—
p(—=o)+q¢(—0o), for =7 <o<0,
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identifies the introduced phase space with the space QRY. It also converts the stan-
dard symplectic form (7.13) on the phase space of string theory into the symplectic
form on QR?, given by the formula, analogous to (7.5) (cf. [14]).

We have assigned to any invariant inner product on the Lie algebra g an invariant
symplectic structure w on the loop space QG, determined by the formula (7.5). On
the other hand, any invariant symplectic structure on the loop space (G uniquely
determines an invariant inner product on g, given by the formula (7.12). As we have
pointed out in Sec. 4.2, invariant bilinear forms on g are parameterized by elements
of the cohomology H?3(g).

Remark 13. We note in passing that the condition of invariance of the form w with
respect to the adjoint action of the group GG on the loop algebra Lg is not essential
and plays the role of normalization. Indeed, if wy is an arbitrary 2-form on Lg,
satisfying the condition (7.6), then the form

g-wo(§,n) = wo((Adg)§, (Adg)n) forge G

belongs to the same cohomology class, as wy (it follows from the cocycle identity

(7.6)). So the form
L/ng'(uodga
e

obtained from wy by averaging over the group G, belongs to the same cohomology
class, as wyp, but is already invariant under the adjoint action of constant loops.

7.3 Complex structure

A complex structure on the loop space QG is induced from the complex representa-
tion

QG = LG*/L,G* , (7.14)

in which LG® is a complex Lie Frechet group, and L, GT is its closed complex
subgroup.

This complex structure, denoted by J° in the sequel, is LG-invariant, and its
restriction to the tangent space TC(QG) = Qg at the origin may be given by an

explicit formula. Namely, if £ = > &2 € Qg then
k40

T =iy &)y Gt (7.15)

k>0 k<0

The corresponding tangent space T}°(QG) of (1, 0)-vectors consists of vectors of the
form Y, _,&2", while the space T''(QG) of (0, 1)-vectors contains vectors of the
form Y, &2

It’s clear from the description of (1,0)-vectors on G that the complex struc-
ture JO is formally integrable in the sense of Subsec. 1.2.4, i.e. the bracket of any
two (1,0)-vector fields on QG is again a (1,0)-vector field. But we have already
pointed out in Subsec. 1.2.4 that the formal integrability of a complex structure in
the infinite-dimensional case does not imply the existence of an atlas of coordinate
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neighborhoods and local complex coordinates on a given manifold. In order to con-
struct local complex coordinates on G, one should use the complex representation
(7.14) and the Birkhoff factorization theorem. We formulate next a particular case
of this theorem, sufficient for our applications.

Denote by L~G® a closed subgroup of LG®, consisting of maps v € LG, which
extend to holomorphic and smooth up to the circle ST maps of the disc A_ (equal
to the complement of the closed unit disc A on the Riemann sphere C). We also
consider a closed subgroup Ly G¢ of L~G®, consisting of maps v € L~G®, taking
the value e € G© at infinity co € A_.

Theorem 8 (Birkhoff theorem ([8, 9], cf. also [65], Ch.8)). The product map
LTG® x L7G* — LG® (7.16)
is a diffeomorphism onto a dense open subset in the identity component of LGC.
The Birkhoff theorem implies that for all ¥ € LG® in a neighborhood of the
identity 1 € LG® we have a representation
V=40

where v, € LTG®, v_ € L7 G®. The factors 71 are uniquely defined by v and their
product yields a local diffeomorphism (7.16). In particular, it implies that the loop
space QG is locally diffeomorphic to the complex Lie Frechet group L] G°.

7.4 Kahler structure

We show now that the loop space QG is a Kahler Frechet manifold. For that,
according to Def. 17 from Subsec. 1.2.5, we need to demonstrate that the introduced
complex and symplectic structures on QG are compatible.

Since both structures are LG-invariant, it’s sufficient to check their compati-
bility only at the origin o € QG. Consider vectors &, € T,(2G) with Fourier

decompositions
E=) 625 =Y _m.
k#£0 1#0
Then
2m 2m
1
(g 7]) 5 /<§( i0 i0 > do = 2_/ <£k€1k9 l’f] €’Ll9> do =
] 0 kl#0
) 2
1 .
T 0 d k+£0

where the inner product (-, -) is extended to a complex-bilinear positive definite form
on g°. (Recall that the form (-,-) on g€ is positive definite, if (£,&) > 0 for any
¢ € g°\{0}). The above relation implies the first property in Def. 17. To prove the
second property in this definition, consider the form

gg(é? 77) = w0(£7 Jon)
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on (g and show that it is positively definite. Note that for n = £ this form can be
given by the formula

906 6) = =i > k(G ibi) =i D k(€ —i€ k) =2 k(& Ek) -

k>0 k<0 k>0

Since £ ;, = &, and the inner product (-,-) is positively definite on g€, the form
g2(&, ) is also positively definite. Extending it to a LG-invariant positively definite
form on QG, we get an invariant Kahler metric ¢° on QG. So, we have proved that
the loop space Q)G is a Kdhler Frechet manifold with the symplectic structure w and
complex structure J°.

7.5 Loop space ()G as a universal flag manifold of
a group G

We have pointed out in the beginning of Sec. 7.1 that one of the characteristic
properties of the Kahler Frechet manifold QG is the existence of two different rep-

resentations of QG:
OG = LG/G = LG°/LTG*

as a homogeneous space of the real Lie Frechet group LG and its complexification
LGE®.

We have seen in Ch. 3 that finite-dimensional Kahler manifolds, having a similar
property, i.e. being homogeneous spaces of real compact and complex Lie groups
simultaneously, are called the flag manifolds. So (G may be considered as an
infinite-dimensional analogue of flag manifolds. Moreover, we show in this Section
that in some sense it may be considered as a universal flag manifold of the group
G, since all flag manifolds of G are canonically embedded into QG as complex
submanifolds.

The real homogeneous representation of a flag manifold

F=G/L

of the group G may be interpreted otherwise as a representation of F' as an orbit
of the adjoint action Ad of G on its Lie algebra g (or as an orbit of the coadjoint
action Ad" of G on the dual space g*). Namely, the orbit of an element £ € g with
respect to the adjoint action has the form

G/G(E)
where the isotropy subgroup G(§) at £ coincides with the centralizer of £, i.e. with
G()={ge€G: Adg(§) =¢} .

All such orbits are flag manifolds and, conversely, any flag manifold of a compact
semisimple Lie group may be represented in this form.

Consider now a natural action of S! on the loop space QG, identified with the
subgroup LG in LG, given by the rotation of loops

A(z) =N (A2), Ae St
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where v € QG. A loop 7 is a fixed point of this S'-action if and only if
Y(Az) = y(A\)y(z) forall, z € S*.

In other words, 7 should be a group homomorphism S* — G. But if v : St — G
is a homomorphism, so are all the loops, conjugate to v, i.e. the loops of the form
v, = gv9~* for g € G. The set of all such loops (the conjugacy class of the loop 7)
is parameterized by points of the homogeneous space

F,=G/G() .

where G(7) is the centralizer of the one-parameter subgroup v(S') in G. The ho-
mogeneous space F., can be identified, as we have pointed out above, with a flag
manifold of the group G.

So, the set of fized points of the S*-action on QG is the disjoint union

Fix(S") = F,

of flag manifolds F.,, where v runs over the set of conjugacy classes of homomor-
phisms S' — G. The flag manifolds F, are immersed into QG as finite-dimensional
Kahler submanifolds.

Remark 14. We can say much more about the constructed embedding of flag mani-
folds of the group G into the loop space QG. Namely, denote by

QG — G, yr—(-1),

the map, associating with a loop 7 its value at the point —1 € S*. This map is an
analogue of the canonical bundle 7 : FF — N, considered in Sec. 3.1, Rem. 5.
According to Uhlenbeck [73], the embedding of flag manifolds F' of the group
G into QG respects canonical bundles. In other words, not only the loop space
QG may be considered as a universal flag manifold of the group G, but also the
above canonical bundle 7 : QG — G may be considered as a universal canonical flag

bundle.
More precisely, there exists the following commutative diagram

F -1 oa

N(F) /- @

where 7: F' — N(F) is the canonical bundle over the symmetric space N(F'), con-
structed in Sec. 3.1, and the map I' is the embedding of a flag manifold into Q2G|
constructed above.

The horizontal maps in the this diagram admit a simple description in terms of
the canonical element, introduced in Sec. 3.1, Rem. 5. Namely, suppose that the
group G has a trivial center, and consider the flag manifold F = G/L = G®/P with
the canonical element . The triviality of the center of G implies that exp(27§) = e €
G. So we can define a map I': F' — QG by setting it equal to I'(0) := a map {e" —
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exp(t€)} at the neutral element o € F', and transporting it to other points of G/L
with the help of left translations by . On the other hand, there is a natural map
~v: N(F) — G, assigning to a point z of the inner symmetric space N (F'), associated
with F, the element «(x) of the group G, generating the involution at the point x.
Both maps I'" and v are totally geodesic immersions.

Remark 15. The fixed points of the S'-action on QG can be also interpreted as
critical points of some Morse function on QG (cf. [65]). Namely, define the energy
E : QG — R, of a loop v by the formula

1
 4r

2
BO) =4 [ <€) ) ) > ds
0
It may be shown that the Hamiltonian vector field on €2G, corresponding to the
function E, generates the above Sl-action on QG by rotation of loops. So the
critical points of E correspond to the fized points of the S-action on QG, i.e. to
the homomorphisms v : S — G.

7.6 Loop space (G

According to the Borel-Weil theorem (cf. Sec. 3.3), the full flag manifold F' = G/T
of the group G, where T is a maximal torus in GG, plays a special role in the theory
of irreducible representations of GG. A natural analogue of the full flag manifold in
the case of the loop group LG is given by the homogeneous space

OrG = LG/T .

We list some of the properties of this Kahler Frechet manifold.

In order to define a symplectic structure on QrG, we note, first of all, that
the loop group LG is diffeomorphic (as a Frechet manifold) to the direct product
G x QG. If we identify QG with the subgroup LG in LG, then this diffeomorphism
will assign to a loop v € LG the element (v(1),7(1)7'y) € G x QG. From the
group-theoretical point of view, the loop group LG is the semidirect product of G
and L;G. It follows that, as a Frechet manifold, Q,G is diffeomorphic to

OrG = LG/T = G/T x QG .

A symplectic structure on QpG is generated by the symplectic structure on QG,
introduced in Sec. 7.2, and a canonical symplectic structure on the full flag manifold
G/T. Recall that, as we have remarked in the previous Sec. 7.5, the flag manifolds
of the group G may be considered as orbits of the coadjoint representation of G
on the dual space g* to the Lie algebra g. Such orbits have a canonical symplectic
structure, given by the Kirillov form (cf. Subsec. 3.2.3).

A complex structure on QG is induced, as in the case of the loop space QG, from
the ”complex” representation of {2rG as a homogeneous space of the complexified
loop group LG®, which has the form

QrG = LG°/ BLG® , (7.18)
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where B, GC is a subgroup in L,G® = Hol(A, G®), consisting of the maps v €
Map(St, G%), which extend to holomorphic and smooth up to the circle S maps
v : A — G of the unit disc, and satisfy the additional condition: v(0) € B, , where
B, is the standard Borel subgroup in GG. The proof of this assertion is similar to
the proof of the complex representation for the loop space QG (cf. [65], Ch.8).
The introduced complex structure on 2rG is compatible with the symplectic
structure and so defines on QrG the structure of a Kahler Frechet manifold.

Bibliographic comments

A key reference for this Chapter is the Pressley—Segal book [65]. In particular,
the proof of the factorization theorem 6 is given in Ch.8 of [65]. Another method
of proving this theorem, based on the Beurling—Helson characterization of shift-
invariant subspaces in L?, is due to A.Fedotov (unpublished). We present its idea in
the scalar case, though the proof is valid for general matrix functions on the circle.
The results in Secs. 7.2,7.3,7.4,7.6 may be found in [65]. An interpretation of the
loop space QG as a universal flag manifold may be found in [5].
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Chapter 8

Central extensions of loop
algebras and loop groups

We start this Chapter by recalling a general method of constructing central exten-
sions of Lie groups, acting on a smooth manifold. We then apply this method for
the construction of central extensions of loop groups. In the last Section of this
Chapter we describe the coadjoint action of the loop groups.

8.1 Central extensions and S!'-bundles

Suppose that a Lie group G acts by smooth transformations on a smooth simply
connected manifold X. We assume that there exists a closed 2-form w on X, which is
invariant under the action of G, such that w/2m is an integral form. In other words,
the cohomology class of w/2m in H*(X,R) is integral, i.e. contained in H*(X,Z)
(in other words, the integral of w/27 over any 2-dimensional homology cycle is an
integer). We shall construct a natural S'-bundle over X, associated with these data.

Proposition 15. Suppose that a Lie group G acts by smooth transformations on a
smooth simply connected manifold X. Assume that w is a closed G-invariant 2-form
on X, such that w/27 is an integral form. Then there exists a principal S*-bundle
L — X with a connection V, having the curvature, equal to w.

The S*-bundle, which existence is asserted in the Proposition, is used extensively
in algebraic geometry and geometric quantization. In geometric quantization the line
bundle, associated with the S'-bundle L — X, is called the prequantization bundle.

Proof. In terms of Cech cohomology, any cohomology class in H?(X,Z) is given by
an integer-valued 2-cocycle {v .} with respect to an acyclic open covering {U,} of
X:
Uwe =U, NU,NU, +— vy €7 .

(We shall assume from now on that all open sets U, in this covering are contractible
and their intersections are connected to guarantee the acyclicity of the covering
{U,}. This can be always achieved by the refinement of the covering.)

In terms of de Rham cohomology, the integrality condition of the form w/2m
means that there exists an integral closed 2-form v on X such that

w=2mv+di,
105
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where 3 is an arbitrary 1-form on X. The integral form v in terms of Cech coho-
mology is given by an integer-valued cocycle {v4.}. Given such a cocycle, one can
recover the form v by choosing a smooth partition of unity {\,}, subordinate to the
covering {U, }, and setting

V=) Vapeha dNy AdA, .

a,b,c

We define the required S'-bundle L — X by explicit transition functions

Pap = exp{2mi Z VabeAe }

with respect to the covering {U,}. It’s easy to check that {¢a} is a cocycle, i.e. the
following relation is satisfied on every triple intersection Ugpe: @ap@pcPea = 1 -
Consider a connection on L, given by the collection of local 1-forms

Qg = 2T Z Vabe Ny d ¢
b,c

satisfying on double intersections Uy, the relation

ap = Qg + i@;bld@ab .

The curvature of this connection is equal to
Z Ag dov, = 21V .
a

So, by adding [ to all forms «a,, we obtain a connection V on L, given by the local
1-forms a, + df and having the curvature, equal to 27v + df = w. n

Remark 16. In terms of the sheaf cohomology, the above proof can be rephrased
as follows. Denote by & the sheaf of C*°-smooth functions on X, and by £* the
(multiplicative) sheaf of non-vanishing functions in £. We have the following exact
sequence of sheafs over X

0 7Z g =2, g 0,

where exp is the map f —— 2™/, The corresponding long exact sequence of sheaf
cohomology have the form

. —— HYX,E) — HY(X,&) 2> H*X,Z) —— H*X,E) — ... .

The cohomology H'(X,£E*) can be identified with the set of isomorphism classes of
complex line bundles on X, and the map ¢, : HY(X,&*) — H?*(X,Z) assigns to
a complex line bundle E its 1st Chern class ¢;(£). Since the sheaf £ is fine, the
cohomologies on the extreme left and extreme right in the above long exact sequence
vanish, i.e.

HY(X,E) = H*(X,E) =0,

and it follows that ¢; : H'(X,&*) — H?*(X,Z) is an isomorphism. Recall that the
cohomology class [w/27] is integral, i.e. [w/27] € H*(X,Z). Hence, there exists a
complex line bundle L — X with ¢;(L) = [w/27].
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We prove next that the S'-bundle L — X, constructed in the above Proposition,
is almost uniquely defined.

Proposition 16. If L and L' are two S*-bundles over X with connections V and V',
having the same curvature w, then there exists a fibrewise isomorphism ¢ : L — L'
such that

PV =V .

Such an isomorphism 1 is determined uniquely up to multiplication by an element

of St.

Proof. Suppose that the bundle L is given by the transition functions {p.} with
respect to the covering {U,} of the manifold X, and the bundle L’ is given by the
transition functions {¢/,} with respect to the same covering. If ¢ : L — L’ is the
required isomorphism, then it should be given locally by functions v, : U, — S,
such that

Voipab = Poptla (8.1)

on double intersections Uy, = U, N U,. The condition ¥*V’ = V in terms of local
representatives V,, V/ of connections V, V' means that

V) =V, +i,  di, . (8.2)

We shall construct now the isomorphism v, having the required properties. Since
d(V!, — V,) =0 on U,, there exist functions ¢, : U, — R such that

dpy =V, — V, .

The local representatives of connections V, V' satisfy on double intersections U,
the relations
Vi — Vo = ipgdea , Vi— Vi, =iy ddl, (8.3)

which imply that

/
dey — dp, = idIngl, —idlnpy, <= —id(vy — pa) = dIn @ :
Pab

Hence
d(e™ o) = d(pppe” ")

whence
—i I —ipa i
e Lpb(pab — (pabe <Pae Hab on Uab ,

where 4 is a real number.
The numbers {4} define a Cech 1-cocycle on X, hence, due to the simply
connectedness of X, we can find real numbers {m,}, such that u, = m, — m,.

Then the functions
wa — efi(80a+ma)

satisfy the properties (8.1), (8.2), and so determine the required isomorphism 9 :
L— L.
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We analyze next the uniqueness of the constructed isomorphism. Suppose that
there exists another isomorphism 1" of the same type, given by local representatives
{9} with respect to the covering {U,}. The relations (8.1) imply that

Q/Jb%b = @gbwa s %%b = @;bw; )
whence
Uo(y) T = (Wl) T =1k

for all a,b, i.e. the local representatives {1, } and {¢/} differ by a global function
h: X — S'. Then the relations (8.2) imply that

dpy =V, — VY, =i, dip, | (8.4)
dp, = i, 'h™ - hdip, + i th™ dhay, | (8.5)
whence dh = 0, i.e. h = const. Il

Using these Propositions, we can construct for a group G, acting by smooth
transformations on X, its central extension G, acting on the bundle L — X. We
assume again that we are given with a closed G-invariant 2-form w on X, such that
w/2m is an integral form. Then, by Prop. 15, we can construct the S'-bundle L — X
with the connection V, having the curvature, equal to w.

Consider for a given g € G the pull-back of L under the action of g and provide
it with the connection V, = ¢*V, having the curvature g*w = w (recall that w is
invariant under G). According to Prop. 16, there exists an isomorphism ¢ : L. — ¢g*L
such that

YV, =gV =V

We define G as a group, consisting of all pairs (9,%), where g € G and ) is an
isomorphism L — ¢*L, for which ¢*V, = ¢¥*¢*V = V. Or, equivalently, we can
define G as a group, consisting of pairs (9,¢), where g € Gand ¢ : L — L is a
fibrewise isomorphism, covering the action of g on X, and having the property that
©*V = V. Note that the fibrewise map ¢ : L — L of the above type, covering the
action of g on X, is uniquely determined by the element g and the image ¢()g) of
an arbitrary fixed point \g € L,,, 29 € X.

8.2 Central extensions of loop algebras and groups

Consider first central extensions of the loop algebra Lg. As we have pointed out in
Sec. 4.1, any such extension is determined by a cocycle w € H?(Lg,R), or, in other
words, by a closed bilinear skew-symmetric form w : Lg x Lg — R. We can assume,
according to Rem. 11 at the end of Sec. 7.2, that the form w is invariant under the
adjoint action of the group G. Any such form on Lg, according to Prop. 14 from
Sec. 7.2, in the case of a semisimple Lie group G is given by the formula

1 2 ; ;
w(&,m) = wo(&,m) = %/ <&(e”),n'(e”)>do, &nelg,
0
where < -,- > is an invariant inner product on the Lie algebra g. This yields a

description of all central extensions Lg (in the case of a semisimple group G) in
terms of the cohomology H?(g,R) (cf. Ex. 28 in Sec. 4.2).
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However, not every central extension of the loop algebra Lg generates a central
extension of the loop group LG, even in the case of a simply connected group G.
For that the form w should be integral in the sense of the definition, given in the
beginning of Sec. 8.1. More precisely, the following theorem is true.

Theorem 9 (Pressley—Segal [65] Theor. 4.4.1). If the Lie group G is simply con-

nected, then a central extension Lg of the loop algebra Lg is associated with some
central extension LG of the loop group LG if and only if the corresponding form
w/2m on LG (where w is the cocycle of the central extension Lg) is an integral form.

In this case the central extension LG is uniquely determined by the cocycle w.

Proof. The sufficiency of the integrality condition of the form w/27 follows from the
argument in the previous Section (cf. Prop. 15). Namely, we apply the construction
of Prop. 15 to the case, when the group G is the loop group LG and the manifold
X coincides also with LG. According to Sec. 8.1, we can construct for an integral
form w/27m a complex line bundle L over LG with a connection V, having the
curvature, equal to w. Then we define the central extension LG as the group of
bundle automorphisms of L, covering left translations of LG by elements of LG.

We prove the necessity of the integrality condition in the general setting of
Sec. 8.1. If a central extension

1—>Slﬁg~ﬁgﬁl

of a Lie group G is generated by a cocycle w on the Lie algebra &, then the form
w/2m represents the 1st Chern class of a complex line bundle over X, associated
with S'-bundle G — G. Hence, it must be integral.

It remains to prove the uniqueness of the central extension G of G, corresponding
to the cocycle w. We note first that a central extension G — G is trivial, if the
corresponding cocycle w is trivial. Indeed, in this case the principal S!-bundle
C; — G has a flat connection. So we can define a splitting homomorphism o : G — C;
by associating with an element g € G the end-point of a horizontal lift of any path
in G, connecting e € G with g (recall that G is simply connected). To prove the
uniqueness in the general case, suppose that there are two central extensions G and
G of G, corresponding to the same cocycle w. Then from the two pr1nc1pal St
bundles p : G — G and p G' — G we can form a ”difference” bundle P’ -G — g,
which is a central extension of G, corresponding to the trivial cocycle. To define
Q” we first pull back G’ to G by p to get a subbundle p (Q’ ) of the fibre product
G xg G The circle S* is mapped into G xg G’ by the homomorphism u — (u, u ™).
We define G” as the quotient of p (g ) by the image of this homomorphism. Now,
as we have proved, the difference extension G” should be trivial, which implies that
both central extensions G and G’ are equivalent. ]

Remark 17. Let us discuss in more detail the integrality condition of the form w/2,
required in the above Theorem. We have pointed out earlier in Sec. 7.2 that the
form w is uniquely determined by the choice of an invariant inner product on the
semisimple Lie algebra g. If this algebra g is simple, then all invariant inner products
on it are proportional to each other and among those, satisfying the integrality
condition, there exists a minimal one. It is called the basic inner product and the
corresponding central extension is called the basic central extension of the loop group
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LG. The Killing form on g satisfies the integrality condition and so is an integer
multiple of the basic inner product. (The corresponding integer proportionality
coefficient in the case of a simply laced group G coincides with the Coxeter number
of G.)

The integrality condition can be also formulated in terms of co-roots a" of the
algebra g. Namely, the form w/2w is integral if and only if the inner product (o¥, ")
is an even number for all co-roots o¥ of the algebra g (cf. [65], Sec. 4.4).

Remark 18 ([65], Sec. 4.11). At the end of Sec. 4.2 we have remarked that in the
case of the loop algebra Lg there is an isomorphism

HY(Lg) = H(Lg,R) — H!

top(LG,R) .
This isomorphism can be used for the computation of the cohomologies of the
loop algebra Lg. Namely, since LG is diffeomorphic to QG x G, the cohomolo-
gies H} (LG, R) coincide with the tensor product of cohomologies H}, (G, R) ®
top(G R)

But in the case of a compact Lie group G, as we have pointed out in Sec. 4.2,

we have
top(G R) H*(g> :

The cohomologies H*(g) form an exterior algebra with r generators of odd-dimensio-
nal degrees, where r is the rank of GG, and the generators correspond to generators of
the algebra of invariant polynomials on g. By this correspondence we associate with
an invariant polynomial of degree k a symmetric k-linear function P : gx---xg — R,
and use this function to define a skew-symmetric form S of degree 2k — 1, having

the form

Sy 6m1) =
_ Z 1)) P([&, 1), @), o @) Eo@)s - - - oar—s)s Eo@r—2)), Eoab1)) 5 (8.6)

where the summation in the formula (8.6) is taken over all possible permutations
o of the set {1,2,...,2k — 1}. If, in particular, G = U(n), then one can choose
for generators of the algebra of invariant polynomials the functions P, ..., P, with
Pj(A) = tr(A%).

The de Rham cohomologies H}, (2G,R) (in the case of a simply connected
group () may be computed in terms of the cohomologies H} (G,R). Namely,
the cohomologies Hy, (G, R) form an algebra of polynomials of even-dimensional
classes, obtained from generators of the algebra M} (G,R) with the help of the
transgression map. More precisely, consider the evaluation map

S'x QG — G, (0,7)—~(0)e€qG.

The differential forms on G, which are the generators of the algebra H; (G,R),
may be first pulled up to S* x QG by the evaluation map, and then integrated
over S'. The obtained even-dimensional classes generate the algebra H, (QG,R).
More precisely, the image of the (2k — 1)-from S from the formula (8.6) under the
described transgression map coincides with a (2k — 2)-form ¥ on QG, which value
at a point v € QG on vectors &1, ..., &k o € (g is equal to

1 2m

Y&, bom2) = o . S(&(0), - .. Ean—2(0),7(0)"7'(0)) db .
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8.3 Coadjoint representation of loop groups

To describe the coadjoint representation of the loop group LG of a compact Lie group
G, we fix an invariant inner product < -,- > on the Lie algebra g. It generates an
inner product on the loop algebra Lg by the formula

1 2
<£,n>::%/ <&(0),n(0) > do, &nelg.
0

The adjoint action of the loop algebra Lg on the central extension If;é of Lg, deter-
mined by a cocycle w(,n), is given by the formula

n- (675) = ([7775]7(")(7775)) )

where n € Lg, (§,5) € EE; = Lg ® R. It is generated by the adjoint action of the

group LG on Lg, defined by the formula
v (&s) = (v Es— <y E>)

where v € LG, (§,s) € [Té and v - £ denotes the (pointwise) adjoint action of the
loop group LG on its Lie algebra Lg. .
Consider the coadjoint action of the loop group LG on the dual space (Lg)*. We
note, first of all, that the dual space of the Frechet space Lg = C*(S', g) coincides
with the space
(Lg)' = D/(S,g") = D(S") & ",

i.e. with the space of distributions on S! with values in g*. Using the invariant
inner product on the Lie algebra g, we can identify this space with the space of
distributions on S* with values in the Lie algebra g. Under this identification, the
”smooth” part of (Lg)*, consisting of regular distributions in (Lg)*, corresponds to
the space Lg* = C*(S!, g*) or the space Lg = C>(S', g).

We describe first the coadjoint action of the loop group LG on the smooth part
of (Lg)* = (Lg)* & R, which coincides with Lg* & R = Lg @& R. It is given by the
formula

v (ps) = (v ety ),

where v € LG, (¢,s) € Lg®R, and ~- ¢ denotes, as above, the adjoint action of the
loop group LG on its Lie algebra Lg. It’s easy to see that the map S(vy) :=~'y"! €
Lg defines a 1-cocycle in the space C1(LG, Lg) of 1-cochains on LG with values in

Lg, i.e. it satisfies the relation

S(my2) =7 - S(y2) +S(n) -

We describe now the orbits of regular elements (g, s) from (Lg)* & R under the
action of the loop group LG. For that note that any element (¢, s) € Lgx{s}, s # 0,
is uniquely determined by a path ¢ : R — G, satisfying the ordinary differential
equation

dwwlz_w o v e

dt s dt s
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with the initial condition ¢ (0) = e. It follows from the periodicity of ¢ with respect
to 6 that the shifted ¢(6 4 27) is also a solution of this equation together with ().
From the uniqueness theorem we obtain that

P(0 + 2m) =(0) M, ,

where the monodromy M., is defined by M, := ¢(2m).
The coadjoint action of v € LG on a regular element (¢, s) € Lg X {s} in terms
of 1 corresponds to

— f=7-pts!

i.e. the coadjoint action of v on (fﬁ)* generates (in terms of the monodromy M.,,)
an inner automorphism of the group G. Hence, we obtain a 1-1 correspondence
between the orbits of reqular elements of (Lg)* x {s} with respect to the coadjoint
action of the loop group LG and the conjugacy classes of elements M, in the group
G. Under this correspondence the isotropy subgroup of an element (¢, s) in the loop
group LG corresponds to the centralizer of the monodromy M, in the group G.
We note that the orbit of an element (¢, s) is integral, if s is an integer and the
corresponding conjugacy class of the monodromy M € G has the following property.
The centralizer of M is a maximal torus 7" in G (with the Lie algebra t), in which
terms M can be written in the form: M = exp % for an element £ € t C t*, belonging

to the lattice of characters T' (cf. [65], Sec. 4.3, for details).

Bibliographic comments

A key reference for this Chapter is the Pressley—Segal book [65]. In particular, the
Propositions 15 and 16 are proved in Ch.4 (Prop. 4.5.3) of this book. The Theorem
9 on central extensions of loop groups is contained in Theor. 4.4.1 of [65]. The
coadjoint representation of the loop group is described in Sec. 4.3 of [65].



Chapter 9

Grassmann realizations

In this Chapter we introduce the ”widest” space of loops, to which the most part of
the theory applies, namely, the Sobolev space of ”half-differentiable” loops on S*.
This space contains the loop space 2G, studied in previous sections, as a ”smooth”
part. In Sec. 9.2 we construct the Grassmann realization of this extended loop space
and then apply the same idea to define the Grassmann realization of the ”smooth”
part QG. We end up with the postponed proof of the factorization theorem from
Sec. 7.1, using the Grassmann realization of QG.

9.1 Sobolev space of half-differentiable loops

We consider first the Sobolev space of real-valued half-differentiable functions on S*.
This is a Hilbert space
V= H*(s"R)

which consists of functions f € L?*(S',R) with zero mean value over the circle,
having the generalized derivative of order 1/2 in L?*(S* R).
It may be shown (cf. [81]) that the Fourier series of a function f € Hl/Q(S1 R):

:kazka .fk’:f—ka Z:eiea
k#0

converges outside a set of zero (logarithmic) capacity and has a finite Sobolev norm

of order 1/2
1£1I3 /2 = Z k|| fr]? = sz’fﬁ ~

k0 k>0

Moreover, by associating with a function f € V the sequence {fi.} of its Fourier
coefficients, we establish an isometric isomorphism between the Sobolev space V
and the Hilbert space 5 2 of sequences { fy} € /s, satisfying the relations: fy = f_4,
fo =0, and having a finite Sobolev norm: 37, ., |k||fi|* < oo.

We can consider V as a natural Hilbert extension of the space Qg := C§°(S*, R)
of smooth real-valued functions f on S!, having the zero average over the circle. In
terms of their Fourier series, the coefficients f of f € €y decrease faster than any
power k™ with n € N. In fact, V' coincides with the completion of €}y with respect
to the Sobolev norm.

113
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The smooth part €2y of V' is a Kahler Frechet space, for which a complex and
symplectic structures are introduced in the same way, as for the loop space QG with
a compact Lie group G.

Namely, a symplectic structure on ) is given by the 2-form w : €y x ¢ — R of

the type
2

w(€n) = 5 [ @)

In terms of Fourier decompositions of £, 1 € Q:

E2)=¢00) =) &, n)=n0)=> mz, 2=,

k0 k40

this form has the following expression

w€m) = =iy k&n- = 2Im Y k&g

k0 k>0

A complex structure operator J° on €y is given by the Hilbert transform J° €
End(€, Q), defined by the formula

(1°9(6) = 5-PV. [ k6. 0)e(o)d (9.

with the kernel )
K0, 0) = cot 5 (0~ )

(the integral is taken in the principal value sense). In terms of Fourier decomposi-
tions the operator J° is given by the formula

€2) =) G2 — (J%)(2) = —i Y G2 +i )y Gk

k0 k>0 k<0

The introduced complex structure J° is compatible with the symplectic structure w
and, in particular, defines a Kdahler metric on €y by the formula

9"(&m) = w(&, J"n)

or, in terms of Fourier decompositions,

9°(&;m) = 2Re Zkfkﬁk = Z LSS

k>0 k0

So, the space Qy = C5°(S',R) is provided with the structure of a Kéhler Frechet
space.

The above definitions of the complex structure J° and symplectic structure w on
the space € extend to its completion V. (For the complex structure operator J it’s
evident and for the symplectic structure w follows immediately from the Cauchy—
Schwarz inequality.) So, V' has the structure of a Kdhler Hilbert space, provided
with the Kahler metric

g°(&m) = w(& ') = 2Re k&l = > |kl -

k>0 k0
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The complexification

Ve =Hy*(s",C)

of V is a complex Hilbert space and the Kahler metric ¢° on V extends to a Hermitian
inner product on VC, given by the formula

< 57?7 >= Z |k‘€kﬁk .
k0

We extend the symplectic form w and the complex structure operator J° complex
linearly to VC.
The space VC can be decomposed into the direct sum of subspaces

VC:W+@W_,

where W, is the (Fi)-eigenspace of the operator J° € End VC. In other words,

We={feVe: f(z)=) fi}, Wo=W,={feV®: f(2)=) fir}.

k>0 k<0

The subspaces W are isotropic with respect to the symplectic form w (i.e. w(&,n) =
0,if &,m € Wy or £,np € W_), and the splitting VC = W, @& W_ is an orthogonal
direct sum with respect to the Hermitian inner product < -, - >. The inner product
< -,- > has a simple expression in terms of the decomposition V¢ = W, & W_:

< 5777 >= iw<€+7ﬁ+) - iw(ﬁ—?ﬁ—) )

where ¢, denotes the projection of € € VC onto the subspace W.
The operator J° in terms of the decomposition VE = W, @ W_ has the following

matrix representation
0 —i 0
J' — (O Z) )

There is another useful realization of the space V' in terms of harmonic functions
(cf. [58]). Namely, the space V' can be identified with the space D of (real-valued)
harmonic functions F' in the unit disc A, such that F(0) = 0, and the Dirichlet

integral
1 2
E(F) .= — dzd
" 27r/A< ) o

is finite. In other words, D is the Hilbert space of harmonic functions on A, having
their first derivatives in L?(A) and satisfying the normalization condition F'(0) = 0.
The norm of F' € D is equal, by definition, to the square root of E(F). A map
V — D, given by the Poisson integral, establishes an isometric isomorphism of
Hilbert spaces V and D. The inverse map D — V associates with a harmonic
function I € D its boundary values on A = S* in the Sobolev sense.

We define next the Sobolev space HY?(S*, GL(n,C)) of half-differentiable ma-
triz functions on S'. It consists of measurable matrix-valued functions v : S —

GL(n,C) of the form

OF

_2+ OF
ox

y

oo
E k 0
Y= T2, Z=€,

k=—oc0
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with a finite Sobolev norm of order 1/2:

o0

e = 3 kIl < oo

k=—o0

Accordingly, the space HGL(n,C) := HS/Q(Sl, GL(n,C)) denotes the subspace of
H'Y2(S', GL(n,C)), consisting of functions v with Fourier decompositions of the

form
= Z’Ykzk .
k0

We define also the group L;2(GL(n,C)) of half-differentiable matrix functions.
For that we consider the Banach algebra of essentially bounded functions v €
H'Y2(S', GL(n,C)), provided with the norm [|v|ls + [|7]/1/2- The group of invert-
ible elements in this algebra is called the group L /2(GL(n,C)) of half-differentiable
matrixz functions on S'. It is a Banach Lie group.

In the same way one can define the Sobolev space HG of half-differentiable loops

in a compact Lie group GG, when G is realized as a matrix group, i.e. a subgroup of
U(n).

9.2 GGrassmann realization

Consider first the Grassmann realization of the group L /o(GL(n, C)) of half-differenti-
able matrix functions on S*.

Take for a complex Hilbert space H the space H™ := L?(S', C") with a natural
polarization, determined by the subspaces

HY ={feH: f(z)=)_ fiz" with fp €C", 2z = ¢}
k>0

and

HY ={feH: f(z) =) fiz" with f € C"} .

k<0

Associate with a loop v € L;/2GL(n, C) the multiplication operator
M, € End H™ |

which acts on a vector f € L?(S',C") by the pointwise application of the matrix
v(2) € GL(n,C) to the vector f(z) € C™

(M f)(z) :=(2)f(2) -

Proposition 17. For any loop v € L1/GL(n,C) the multiplication operator M,
belongs to GLys(H™) (cf. Sec. 5.2 for the definition of the Hilbert-Schmidt group
GLys).

Proof. Let

UOED IS
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where ;, € L(n, C). We choose in H™ the basis, given by the functions of the form
€;2P, where {¢;} is a fixed orthonormal basis in C", p € Z. The operator M, in this
basis has a matrix representation of the form

M, —— (M) where M, , =7,-p € L(n,C) .

P,qEZ ’
For M, € GLys(H™), it’s necessary and sufficient that its components, given by
the maps

M HY B and Mt HY - HYY

are Hilbert—Schmidt operators. In terms of the matrix representation (M, ), ez it
means that the following inequalities should be satisfied

Z [ Mpl* < 00 and Z [ My < 00 .

p=0,9<0 p<0,g>0

These relations are equivalent to the inequality

> klul® < oo,

keZ
which is satisfied if v € L;2GL(n,C). O

The Grassmann realization of the group L;,»G can be constructed in the same
way, when G is realized as a matrix group, i.e. a subgroup of U(n). For example,
if G is a compact semisimple Lie group with the trivial centre, it can be identified
with the identity component of the automorphism group of its Lie algebra g. In
this case we can choose for H the Hilbert space L?(S', g®), on which the loop group
L1,2G acts by the adjoint representation. By identifying g© with C" (where n is
the dimension of the Lie algebra g) and fixing an invariant inner product on g, we
realize Ly,»G as a subgroup of the loop group L;/,U(n). Then the above embedding
of L/5GL(n,C) into GLys(H™) will map Ly ,,U(n) into Uns(H™).

We shall describe now the image of the embedding of L ,,U(n) into Uns(H™),
following [65], Sec. 8.3. This embedding defines an action of L;,,U(n) on H™ and,
hence, on Gryg(H™). In particular, the image of this action contains the subspaces
W € Grus(H™) of the form MV(HSF”)) = vHJ(rn), where v € Ly5U(n). They have
the property that M,(W) := zW C W, since the action of v commutes with the
multiplication by z. It turns out that the set of such subsets W € Gryg(H™)
coincides with the image of the action of L ,U(n) on Grys(H™).

Before we prove this fact, let’s introduce some necessary notations. Denote

Cry(H™) = {W € Crus(H™) : zW c W} .

We also denote, as in Secs. 7.1,7.3, by LT/QGL(H, C) the subgroups of L, ,,GL(n,C),
consisting of loops 7, which are the Sobolev boundary values of holomorphic maps
v: Ay — GL(n,C).

Proposition 18 ([65]). The group Ly U(n) acts transitively on Gry(H™) and the
isotropy subgroup of HJ(:L) coincides with the group U(n) of constant loops.
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Proof. The assertion about the isotropy subgroup follows from a well known fact:
’yH(ﬁ) = HJ(F") if and only if v € LIL/QGL(n, C). The "if” part is evident. To prove the
"only if” part, we decompose v into the sum v = v, +v_ with 74 € Lfﬂgl(n, C) (cf.,
e.g., [58], Theor. 2.1). Then the equality vHEL") = HEL") will imply that ’y,HJ(:L) C
HJ(F"), whence v_ € Hi”), ie. y— = 0. If we know that v € L;,2U(n) belongs to
LfmGL(n, C), then, by the symmetry principle, v extends holomorphically to the
whole Riemann sphere, which implies that v = const.

To prove the transitivity of the action of L;/;2U(n) on Gry(H™), we note first
that W € Gr(H™) implies that zW has codimension n in W. Indeed, consider

the commutative diagram
W — W

l |

2H" —— HY

where the horizontal arrows are inclusions and the vertical arrows are orthogonal
projections. These projections are Fredholm operators, having their index, equal to
the virtual dimension of W. Since the inclusion zHJ(r") — HJ(F") is evidently Fredholm
with the index, equal to —n, the same is true for the inclusion zW — W.

We choose now an orthonormal basis {wy, ..., w,} in the orthogonal complement
of 2W in W and form an (n X n)-matrix-valued function v on S* from the vector
columns wy, ..., w, . We assert that v(f) is unitary for almost all # € S'. Indeed,
write down wy(6) in the form

wi(0) = Zwkpeipe , wy, € CM L
p

Y

Then

<wi(0), wi(0) >= Y < wipwg > P =N " <y, 2wy >y e =0y
p.q r

where we have denoted by < -,- >p the inner product in H™ to distinguish it from
the inner product < -,- > in C". This calculation implies that the multiplication
operator M., is unitary in H™ and

M, (H™ & 2*H™) =W & z*W  for any k .

It follows also that MV(HJ(F")) = W, since [, 2"W = 0 (which can be proved by the
iteration of the codimension assertion).

It remains to check that M, € Upg(H™). But the component M~ of this
operator (we are using the same notation, as in the proof of Prop. 17) is factorized
into the composition Hfrn) - W — H(_"), where the second map, given by the

orthogonal projection, is a Hilbert—Schmidt operator. The same is true for the
component M of M, O

This proposition implies that the loop space HU(n) = Ly;,U(n)/U(n) can be
identified with the Grassmanian Gr,(H™). The same proof realizes the space
QU(n) of smooth loops in U(n) as a ”smooth” part Gr¥(H™) of Gr,(H™). Here,

Gre(H™) = Gr*(H™) N Gr, (H™) |
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and the “smooth” part Gr*(H ™) was introduced at the end of Sec. 5.2. It can be
also shown that the group LU(n) of smooth loops acts smoothly and transitively on
the Grassmanian Gr™(H(™) and the same is true for the action of LGL(n,C) on
Gre(H™).

An embedding of the loop group LG, where G is a simply connected compact Lie
group, into Gr3’(H (M) can be constructed in a similar way, if one takes for H the
Hilbert space L%(S*, g®), on which the group LG acts by the adjoint representation.
Identifying g© with C* (where n is the dimension of the Lie algebra g) and fixing
an invariant inner product on g, we can realize LG as a subgroup of LU(n). The
action of LU(n) on Gr*™*(H™), described above, realizes LU(n) as a subgroup of
Uns(H™). This embedding generates an embedding of the loop space QG into the
Grassmann manifold Gr™(H ™).

9.3 Proof of the factorization theorem

The Grassmann realization of the loop space QU(n), constructed in the previous
Section, allows us to give the postponed proof of the factorization theorem 6 from
Sec. 7.1. We recall its formulation.

Theorem 10 ([65]). The product map
QG x LTG® — LG®
is a diffeomorphism of Frechet manifolds .

We have pointed out in the proof of Prop. 18 that the complex group L;/,GL(n, C)

acts on the Grassmanian Gry(H™) and has the stabilizer at HJ(F") , equal to the
subgroup Lf/zGL(n,(C). Since the loop group L;,,GL(n,C) acts transitively on
Gry(H™), we have proved that the loop group Ly GL(n,C) coincides with the
product

Ly/;GL(n,C) = L2U(n) - LIF/QGL(TL7 C) .
The same factorization holds for the group LGL(n,C) of smooth loops. We have to
show now that the multiplication map

QU(n) x LYGL(n,C) — LGL(n,C)
is a diffeomorphism. It is sufficient to prove that the map
u: LGL(n,C) — QU(n) ,

assigning to a loop < its unitary component, is smooth. This map is factorized
into the composition of two maps: v — 4 — wu(y). The first of them assigns to
v a loop 4, which is obtained from ~ by projecting the columns (7i,...,7,) of
v € LGL(n, C) onto the orthogonal complement W & zW of the subspace zW in W,
where W := vH J(r"). The second map 4 — () consists of the orthonormalization of
the basis {71, . .., Jn} of the subspace WS zW. The second map is evidently smooth.
The smoothness of the first map follows from the smoothness of the projection map

C=(S',C") x Gr*(H™) — C¢*>(S',C)
assigning to a smooth vector function f on S! its orthogonal projection pry, f to a
given subspace W € Gro,(H™).



120 CHAPTER 9. GRASSMANN REALIZATIONS
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Chapter 10

Virasoro group and its coadjoint
orbits

In this Chapter we introduce the Virasoro group Vir, which is a central extension of
the diffeomorphism group of the circle Diff (S1), and study its coadjoint represen-
tation. We are especially interested in the coadjoint orbits, which have, along with
the natural symplectic form, also a compatible complex structure. These Kahler
coadjoint orbits of Vir are studied in Sec. 10.3 of this Chapter.

10.1 Virasoro group and Virasoro algebra

The Virasoro group is a central extension of the diffeomorphism group of the circle
Diff, (S'). To describe it explicitly, we find first central extensions of the Lie algebra
Vect(S) of Diff, (S'), being the algebra of tangent vector fields on S*.

As we have pointed out in Sec. 4.1, any central extension of Vect(S?') is de-
termined by some 2-cocycle w on the algebra Vect(S!). We extend this cocycle
complex-linearly to the complexification Vect®(S?) of the algebra Vect(S'). The ex-
tended cocycle, denoted by the same letter w, is uniquely determined by its values
Wiy = W(em, €,) on the basis vector fields

e = ic™ L 20, 1,42

m 7R ,EL 2,00
of Vect®(S") (cf. Sec. 2.2). The cocycle condition for w, written for three vector
fields (eg, €m, €n):

w([eo, em], €n) + w(em, [eo, en]) = w(eq, [em, en]) ,

implies that the cohomology class [w] does not change under the action of rotations
(generated by the vector field ey). So the cocycle, obtained from w by averaging
over S!, belongs to the same cohomology class, as w. Therefore we can suppose
from the beginning that the cocycle w is invariant under rotations, i.e.

w([eo, em], €n) + w(em, [eo, en]) =0

on the basis vector fields e,,, e,,. Due to the commutation relations for basis vector
fields

[€m7 en] = (m - n)em+n )

123
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it means that
MWy, + MWy, = 0 . (10.1)

The latter relation implies that w,,, = 0 for m +n # 0. So we set w,, := Wy, _m
and note that w_,, = —w,, due to the skew-symmetricity of w. It remains to find
out the values of w,, for natural m.

The cocycle condition for w on three basis vector fields (e,,, €,, €m+,) means that

(m — n)Wpin = (M ~+ 2n)w,, — (2m + n)w, , (10.2)

so we get a finite-difference equation of the 2nd order for the computation of values
Wy,. In order to find a general solution of (10.2), it’s sufficient to find its two
particular solutions. But it’s easy to see that w,, = m and w,, = m? are two
independent solutions of (10.2). Hence a general solution of (10.2) has the form

Wy, = am® + Bm (10.3)

with arbitrary complex coefficients «, (3.
Note that the cocycle w with w,, = m is a coboundary, since in this case

w(ema en) = de(em’ en) = 6([671? em]) )

where 0 is a 1-cochain on Vect®(S'), defined by: 6(eg) = —3 and 6(e,) = 0 for
m # 0. So the value of 3 in the formula (10.3) is not essential. Hence all cocycles w,
defining non-trivial central extensions of the algebra Vect(S!), up to coboundaries,

are proportional to each other. In other words, we have proved the following

Proposition 19. The cohomology group H*(Vect(S'),R) has dimension 1. A gen-
eral central extension of the algebra Vect(S') is determined by a cocycle w of the
form

( ) am(m?—1) form+n=0a€R,
W\Em, €n) =
0 form+n+#0.

We have chosen the parameter = —a in order to annihilate the restriction of the
cocycle w to the subalgebra sl(2, R) in Vect(S!), generated by the vectors eg, e1,e_1
(this subalgebra coincides with the Lie algebra of the M&bius group PSL(2,R) of
diffeomorphisms of the circle S*, extending to the fractional-linear automorphisms
of the unit disc A).

We note that the Gelfand—Fuks cocycle

1 [ d d
w(€,n) =5 i §(0)dn'(0) . &= §(0) =g, n=mn(0) -5 € Vect(S")
found in [25], has the basis values, equal to w,, = im?, m € Z.

One can also change the value of a;, multiplying the central element by a number.
The usual choice for a (based on physical analogies) is o = % The corresponding
central extension of the algebra Vect(S!) is called the Virasoro algebra and denoted
by vir. The Virasoro algebra is generated (as a vector space) by the basis vector fields
{em} of the algebra Vect(S!') and a central element r, satisfying the commutation
relations of the form

m3—m

12

[em, k] =0, [em,en] = (M —n)emin + Om —n K .
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This central extension of the Lie algebra Vect(S!) corresponds to a central ex-
tension of the Lie group Diff, (S), which we describe next.

Since the Frechet manifold Diff, (S1) is homotopy equivalent to the circle S* (cf.
Sec. 1.2.1), all S'-bundles over Diff, (S!) are topologically trivial and any central
extension of the group Diff (S!) is determined by some 2-cocycle ¢ on Diff, (S1) (cf.
Sec. 4.1). In other words, such a central extension consists of elements of the form

(f,\), feDiff (S"), xe s,
and the product is given by the formula

(f, A) - (g, 1) = (f 0 g, Aue® 9 |

where c(f, g) = €®f9) is the 2-cocycle on Diff,(S'), defining the central extension.
The cocycle condition in terms of b takes the form

b(f,g9) +b(fog,h) =b(f,goh)+blg,h) . (10.4)
An explicit solution of this functional equation, found by Bott [11], has the form

bo(f.g) = i/o In(f o g)' dlng' .

27
Note that the Bott group cocycle corresponds on the Lie algebra level to the Gelfand—
Fuks cocycle of the Lie algebra Vect(S?).
A general solution of (10.4) coincides with by up to a coboundary, more precisely,
it has the form

b(f,g) = abo(f,g9) +al(fog)—alf)—alg),

where a = const € R, and a is an arbitrary smooth real functional on Diff, (S1).
The central extension of the group Diff, (S!), determined by the Bott cocycle, is
called the Virasoro group or Virasoro—Bott group and is denoted by Vir.

10.2 Coadjoint action of the Virasoro group

Consider the coadjoint action of the diffeomorphism group of the circle Diff, (S?)
and its central extension, the Virasoro group Vir, on the dual spaces of their Lie
algebras.

We study first the coadjoint action of the diffeomorphism group Diff, (S!) on the
space Vect*(S!), dual to the Lie algebra Vect(S') of Diff (S*). The space Vect*(S1),
dual to the Frechet space Vect(S'), can be identified with the tensor product

Q(S") @p(s1) D'(SY)

over the ring D(S'), consisting of all C*°-smooth (real-valued) functions on S*.
Here, Q'(S') is the Frechet space of C*-smooth 1-forms on S*, and D'(S') is the
space of distributions on S', i.e. of linear continuous functionals on D(S') (note
that D’(S1) is not a Frechet space!). The above tensor product should be taken in
the category of topological vector spaces, we recall its definition for convenience.
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Digression 3 (Tensor product of topological vector spaces). The tensor product
E®F of topological vector spaces F and F is provided with the projective topology,
generated by the seminorms p ® ¢, where {p} and {¢} are families of seminorms on
E and F respectively. The seminorm p ® ¢ is defined as

(P®q)(z) = inf{ ZP(%)Q(%) P E= Ziﬂz @ Y } ;

where the infimum is taken over all possible representations of z € E ® F' as finite
sums of the form >z, ® y; with z; € E, y; € F.

The elements of the completion EQE)/F of the space £ ® F with respect to this
topology in the case of metrizable spaces E and F' can be given by series of the form

EeF3:=3 \aioy,

i=1

where % |\ < oo and the sequences {z;}, {y;} tend to zero in E and F respec-
tively. o

For the nuclear spaces E' and F' the topology, introduced on F ® F', coincides
with the topology of the uniform equicontinuous convergence (i.e. topology of uni-
form convergence on the sets of the form S ® T, where S and T are uniformly
equicontinuous subsets in £’ and F’ respectively).

We return to the dual space Vect*(S1), which is identified with the tensor product
QNS ®@ps1yD'(S*) by the map, associating with an element («, ) € Q'(S") ®p(sn)
D’'(Sh) a linear continuous functional on Vect(S') of the form

Tiap)(€) = ola(€)] . & € Veet(S') .

As in Sec. 8.3, we restrict ourselves to the study of the coadjoint action of the
group Diff, (S') on the "smooth” part of the space Vect*(S'), identified with the
tensor product of Frechet spaces

QY(S") ®@p(sy Q'(ST) .
An element («, 3) of this space determines a linear continuous functional on Vect(S!)
by the formula
1 2

Vect(S') 2 & — Tiap) (&) = o ; B(E0))a() .

In other words, the smooth part of the space Vect*(S!) may be identified with the
space Q(S1) of quadratic differentials on S* of the form

q = q(0)(dh)*

where ¢ is a smooth 27-periodic function of 6.
From another point of view, one can consider Q(S') as a set of pseudometrics
on S! (the term ”pseudo” indicates that the function q(#) may have zeros on S*).
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The coadjoint action of the group Diff, (S') on Q(S') coincides with the natural
action of the group Diff, (S!) on quadratic differentials

Diff, (') 3 f+— K(f)a=qo [~ = q(g(0))g'(0)*d0* ,

where g(0) = f~1(6).

We consider next the coadjoint action of the group Diff, (S') on the dual space
vir® of the Virasoro algebra vir. Since the Virasoro algebra coincides with vir =
Vect(S') @R (as a vector space), we have vir* = Vect*(S') @ R. So the smooth part
of vir* may be identified with the space

Q(SH @R ={(g,s): qis a quadratic differential, s € R} .

The coadjoint action of the group Diff, (S*) on Q(S') @R associates with an element

f € Diff, (S') a linear transformation K (f) of the space Q(S') @ R, acting by the
formula

K(f)(g,s) = (K(f)a+sS(f)of,s) = ((a+sS(f) o[ s), (10.5)
where S is a 1-cocycle on the group Diff, (S1), satisfying the relation
S(foh)=(S(f)oh)+5S(h). (10.6)
A non-trivial particular solution of this equation is given by the Schwarzian
2
S[f] = (fT - ; (J;_> ) 0% = d®1n ' — %(dln 72 (10.7)
while a general solution has the form

where ¢ € Q(S') is a quadratic differential.

Digression 4 (Schwarzian). A characteristic property of the Schwarzian is its con-
formal invariance:
g {a f+b

cf+d] =5l

for any fractional-linear transformation z — %+8 from the Mébius group Mob(S!) :=

PSL(2,R). This property follows immediately from the transformation rule for the
Schwarzian

SIf o h] = (S[f] o ) (') + S[h] (108)

which is just a decoded version of (10.6).
The Schwarzian S|[f] of a diffeomorphism f € Diff, (S') measures its deviation
from conformal automorphisms of the unit disc in the sense that

S[f] = 0 <= f is fractional-linear .

Moreover, one can define the Schwarz derivative S|[f] of any conformal map f: A —
C by the same formula (10.7). Then S[f] measures again the deviation of a conformal
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map f in A from fractional-linear automorphisms of A, and the maximal deviation
may be explicitly computed. Introduce a natural norm on Schwarz derivatives S[f],
coinciding with the hyperbolic norm on quadratic differentials in A:

151712 := sup [ SLA()I(T - |2*) -

There is a following remarkable theorem, known as Nehari theorem.

Theorem 11 ((cf. [49], Theor. 11.1.3)). For any conformal map f of the unit disc A
the following sharp estimate holds

ISl <6 .

The upper bound is attained on the Koebe function z — z/(1+ z).

The infinitesimal variant of the coadjoint representation (10.5) is given by the
representation of the Lie algebra Vect(S!) on the space Q(S') @ R, defined by the
formula

k(€)(q.5) = (— Dyt 5) | (10.9)
where ¢ = £(6) %L € Vect(S'), ¢ = q(0)(d6)? € Q(S"), and the operator Dy, has the

form
d? d d
q’S:S%+QE+£Q-
What can be said about the orbits of the coadjoint representation of Diff, (S*)?
The orbit of a regular element (g,s) € Q(S') @ R under the action of the group
Diff (S') is completely determined by the isotropy subgroup G, s with respect to
the coadjoint action. The Lie algebra g, s of this subgroup consists of vector fields
& = f(@)d% € Vect(S"), satisfying the condition: D, = 0. In other words, to
describe the subalgebra g, ,, one should find periodic solutions £(#) of the linear
differential equation

D

s€" +2¢€' +qdu=0. (10.10)

Referring for the general solution of this problem to the papers [40, 30], we
consider here only its particular case, when a regular element (g, s) has the form
(q(d)?, s) with ¢ = const =: ¢, s # 0. In this case the equation (10.10) takes on the
form

s€" +2c€ =0, (10.11)

which, after the change of variable n := £’, reduces to the equation
57]// +2en=0.

The latter equation has non-trivial periodic solutions only for 2¢ = n?, where n is
a natural number, and all these solutions are linear combinations of the functions
cosnf and sinnf. In other words, the only periodic solutions of the equation (10.11)
for % # n? are given by constants, while for % = n? they are linear combinations
of the functions 1, %COS nf and %sin no.

The isotropy subalgebra g, s in the first case coincides with R, and in the second
case with the algebra sl(2,R). Respectively, the isotropy subgroup G, in the first

case coincides with the rotation group S* C Diff, (S'), and in the second case with
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the group PSL(™ (2, R), which is the n-fold covering of the M&bius group Mob(S!) =
PSL(2,R). We have already encountered this group in Sec. 2.2. Recall that a
diffeomorphism f € Diff, (S) belongs to the group PSL(™ (2, R) if and only if there
exists a transformation ¢ € PSL(2,R) such that

Mmof=pol,

where )\, : z > 2" is the map, defining the n-fold covering of the circle S*.

It follows from the description of isotropy subgroups that the coadjoint or-
bit of a constant element (q,s) = (cdf?,s) coincides with the homogeneous space
Diff, (S1)/(S'), when 2¢/s is not a square of a natural number, and with the homo-
geneous space Diff, (S1)/PSL(™(2,R), when 2¢/s = n?.

As we have explained earlier in Subsec. 3.2.3, all coadjoint orbits have a natural
symplectic structure, given by the Kirillov form. In the case, we are considering,
the value of this form at a point (¢,s) € Q(S') @ R of an orbit O of the group
Diff, (S') may be computed in the following way. Let 6§ and dn be tangent vectors
from T, O, which are the images of tangent vectors &, 7 € Vect(S!) under the map

k from (10.9):

06 = K(€)(a,) ,  n=Fk(n)(gs) -

Then the value of the form wp on these vectors is equal to

wol0€,6m) = — / (D) (O)n(8)d6

Sl

Thus every coadjoint orbit of Vir has a symplectic structure. But not all of them
can be provided with a compatible complex structure. In fact, among the coadjoint
orbits of the group Vir, described above, only the orbits

Diff, (S')/(S"), Diff(S")/Mob(S") = Diff (S')/PSL(2, R)

are Kahler (cf. [78]). In other words, only these orbits admit Diff, (S')-invariant
complex structures, compatible with the symplectic structure wo. We shall concen-
trate our attention on these Kahler orbits.

Example 29. We give now an interesting interpretation of the coadjoint action of
the Virasoro group in terms of Hill operators, due to Lazutkin and Pankratova [48].
Recall that a Hill operator is a differential operator of the 2nd order, having the

form

d2

L=—+u(f

62 + ( ) )
where u = u(f) is a potential, given by a C*°-smooth 27-periodic function on R.
The corresponding ordinary differential equation

y//+uy:0

is called the Hill equation. Its solutions form a two-dimensional vector space V/,
provided with a natural symplectic 2-form, given by the Wronskian of two solutions.
The shift of a solution y of the Hill equation Ly = 0 to the period 27 transforms
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it into another solution, obtained from y by the action of an operator M € SL(V),
called the monodromy matriz of the operator L.

If {y1,y2} is a fundamental system of solutions, i.e. a basis in the space V' of
solutions of the Hill equation, then one can reconstruct the potential u from this
system by the Schwarz formula:

u(f) = {

where S[y| is the Schwarzian of y.

The diffeomorphism group Diff, (S1) acts in a natural way on the space of Hill
operators. Namely, we can associate with any diffeomorphism f € Diff, (S'), which
lifts to a diffeomorphism f of the real line R, a transformation, which sends a given
Hill operator L = % + u(#) to another Hill operator f*L = % + f*u(f) with

5S[y/y2)(0) . if ya(0) # 0,
3Sly2/ni)(0) , if 41 (6) #0

Fru() = u(7(0)) - (FO)? + 3S[71(6)

Under this transformation a solution y of the Hill equation Ly = 0 is transferred to
a solution z of the Hill equation (f*L)z = 0 with

2(0) = y(f(9)) - (f'(8))

Note that, due to the periodicity of the potential u, the action of f on potentials
does not depend on the choice of the lift f of the diffecomorphism f € Diff, (S') and
so defines an action of the group Diff, (S') on Hill operators. This action coincides
with the coadjoint action of the group Diff, (S!) on elements (u, %) of the space
Q(SY) @ R, given by (10.5).

But the action of f on solutions of the Hill equation depends on the choice of the
lift f, because of the monodromy. In accordance with the above formula, solutions
of the Hill equation transform under the action of diffeomorphisms f, as densities
of order —1/2 on the line R.

The constructed action of the group Diff, (S') on Hill operators was studied
in the Lazutkin—Pankratova’s paper [48]. The authors formulate, in particular, a
conjecture that any Hill operator with the help of the above action can be brought
to the Matieu normal form of the type:

N

2

L= 02 + acos(2mnd) +b .

10.3 Kahler structure of the spaces
Diff, (S')/ Mob(S?) and Diff, (S1)/(S1)

As we have pointed out in the previous Section, among the coadjoint orbits of the
Virasoro group Vir only two are Kéahler, namely:

R :=Diff, (5")/(S") and S := Diff (S")/Mob(S") .

In this Section we study their Kahler structure in detail.



10.3. KAHLER STRUCTURE 131

As coadjoint orbits of the group Vir, these spaces have a natural symplectic
structure w, given by the Kirillov form.

We introduce now a complex structure J on the space S = Diff (S1)/Mob(S?),
invariant under the action of the diffeomorphism group Diff, (S!) by left translations.
Due to its invariance, it’s sufficient to define this complex structure only at the origin
o€S.

The tangent space T,S may be identified with the quotient of the Lie algebra
Vect(S!) of tangent vector field on S! modulo its subalgebra sl(2,R). In terms of
Fourier decompositions vector fields v = v(@)d% € T,S are given by series of the
form

v(0) = Z vpe™ v, €C,

n#—1,0,1

subject to the condition: v_,, = ¥,. In these terms the restriction of the Diff, (S 1)-
invariant complex structure J to 7T,S is given by the formula

Ju(f) = —i Zvneme +1 Z v, el

n>1 n<—1

for v = U(@)d% € T,S. It’s easy to see that the constructed complex structure on &
is formally integrable (i.e. the bracket of two tangent vector fields of type (1,0) with
respect to this complex structure is again a vector field of type (1,0)). Moreover, this
complex structure is compatible with the symplectic structure w on &, mentioned
above.

The symplectic form w on S together with the complex structure J define a
Kéhler metric g on §. In terms of Fourier decompositions this metric can be defined
in the following way. Suppose that tangent vectors u,v € T,S are given by the

Fourier series
U= E Upe, and v= g UpCn - (10.12)
n#—1,0,1 n#-1,0,1

Then the value of the metric g on these vectors is equal to

g(u,v) = 2Re (Z Up T (N — n)) : (10.13)

n=2

The infinite series in the right hand side of (10.13) is absolutely converging, if the
Fourier series (10.12) correspond to the vector fields u, v of the class C%/2*¢ on S'.

We turn now to the orbit R := Diff, (S')/(S?). It can be identified (as a
homogeneous space) with a subgroup of Diff, (S'), consisting of diffeomorphisms
f € Diff, (S1), fixing the point 1 € S*: f(1) = 1.

The embedding of the rotation group of the circle S!' into the Mobius group
Mob(S1) generates a homogeneous bundle

R = Diff,.(§1)/(5") — S,

having the unit disc A as a fibre.

We describe explicitly the symplectic structure on R, given by the Kirillov form.
This form, being invariant under the left translations of the group Diff,(S%), is
completely determined by its restriction to the tangent space at the origin T,R.
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The tangent space T,R is identified with the space Vect(S?), consisting of vector

fields v = v(6)-L, whose coefficients v(§) are 27-periodic functions with zero average:

1 2
— v(0)dd =0 .
o J, (6)
In terms of Fourier decompositions tangent vectors v € T, R are given by the series
of the form v = Zn?éo Unen, subject to the condition: v_, = v,.

An invariant symplectic structure on R is defined by a 2-cocycle w on the Lie
algebra Vect®(S"), invariant under rotations. Such a cocycle is determined by its

values w(e,, €,) on the basis elements {e,, }. These basis values necessarily have the
form (cf. Prop. 19 in Sec. 10.1):

w(em, en) = (am® + Bm)m. _n

for some real «, 8. Denote the form, corresponding to the parameters «, 3, by wq 3.
It’s easy to see that it is non-degenerate on Vecto(S!) if and only if

am® 4+ fm # 0 for all natural m .

The latter condition is satisfied, if either o = 0, § # 0, or —(3/« is not a square of a
natural number. In the first case the form w, g is exact (cf. Sec. 10.1), so we choose
the second possibility.

The form w, g defines a symplectic structure on Vecto(S*), which can be written
in a more invariant way as

1

wnal0) = 5= [ u®) (6016) — v (6)) db

where u, v € Vecto(S!). In terms of Fourier decompositions

u= E uneznO . v= E vnean ’

n#0 n#0

we get
W g(u,v) = 2Im Z(an3 + 1) -
n>1

The constructed 2-parameter family of symplectic structures on R has a natural
interpretation in terms of the coadjoint action of the group Diff, (S'). Recall that
the orbit of an element (cdf?,s) coincides with R, if 2¢/s is not a square of a
natural number. By identifying the homogeneous space R with the orbit of an
element (cdf?, s) and providing it with the canonical symplectic structure, given by
the Kirillov form, we shall obtain, for different choices of (¢, s) with 2¢/s # n?, the
two-parameter family of symplectic structures on R, constructed above.

Introduce a Diff, (S')-invariant complex structure J on the space R. Its re-
striction to T,R = Vecto(S') is given by the Hilbert transform, which assigns to a
tangent vector v € Vecty(S') the vector

(Ju)(0) = %/%cot@;d} v()dy , 0<60<2m.
0
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In terms of the Fourier decomposition v =) 40 Unn € Vecto(S!) we get

Ju = —Z'Zvnen—l—innen )

n>0 n<0

The complex structure J is formally integrable, i.e. the bracket of two tangent
vector fields of type (1,0) with respect to this complex structure is again a vector
field of type (1,0). Moreover, it can be shown that this complex structure is a unique
formally integrable Diff, (S!)-invariant complex structure on R.

The constructed complex structure J is compatible with all symplectic structures
Wa,g, SO it generates a 2-parameter family of Kéhler metrics gq g(u, v) 1= wq,5(u, Jv)
on R, given at the origin by the formula:

Gap(u,v) = 2Re Z(om?’ + On)u, v,

n>1

where v = ) 40 Un€n, U = >on LoUn€n € T,R. Hence, R is a Kahler Frechet
manifold with a 2-parameter family of Kahler metrics g, g.

As we know, the existence of a formally integrable complex structure on an
infinite-dimensional manifold does not guarantee the existence of an atlas of local
complex coordinates on it. We shall introduce local complex coordinates on R,
following an idea, proposed by Kirillov and Yuriev [44]. Namely, we shall realize R
as the space of holomorphic univalent functions in the unit disc A.

Denote by A the complex Frechet space of all C"*°-smooth complex-valued func-
tions in the closure A of the unit disc A, which are holomorphic inside A and vanish
at the origin. Let Ay be a subset of A, consisting of all f € A, which define a C'*°-
smooth embedding of the closed disc A into C. It is an open subset in A, which
inherits a complex Frechet manifold structure. Denote by & the set of functions
f € Ay, such that f’(0) = 1, which is a smooth hypersurface in 4;. The functions
f € & are holomorphic and univalent in A, they define C"*°-smooth embeddings
A — f(A) and satisfy the normalizing conditions: f(0) = 0, f/(0) = 1. They can
be given by power series of the form

f(2)=z4c2? +e3+...

whose coefficients satisfy, according to de Branges theorem, the relations: |cx| < k.
The coefficients {c;} may be chosen for local complex coordinates in a neighborhood
of f(z) =z1in &.

We construct now a map from G to R. For that we associate with a function
f € & the contour K := f(S!). The function f := fx maps conformally the unit
disc A := A, onto the domain Dg, bounded by the contour K. Denote by

gx : A_ — C\ Dg

the conformal map of the complement A_ := ( C\ A, of the closed unit disc A, on
the Riemann sphere C onto the domain C\ Dy, normalized by the conditions:
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The map gx extends to a diffeomorphism of OA_ = S! onto dDg. We associate
with f € G the diffeomorphism

Vi =[x o gkls -

In order to construct an inverse map from R to &, note that, using an arbitrary
diffeomorphism v € R, we can construct a new complex structure on the Riemann
sphere C. Indeed, denote by C, the smooth manifold, obtained by gluing A, with
A_ with the help of 7. In other words, @7 is obtained from the disconnected union
A UA_ by the identification of points from S* = A, = OA_ via the rule:

z€ST=0A, «—— 1 (2) € ST =0A_ .

The complex manifold 67 is diffeomorphic to the Riemann sphere C. But, according
to the theorem of Ahlfors, there exists a unique complex structure on the Riemann
sphere C. So the two manifolds are biholomorphic to each other, i.e. there exists a
biholomorphic map

F. @ﬁ, —C,

which is uniquely defined, being normalized by the following conditions:

The biholomorphism F' is given by a pair of functions (f,g), where the function
f is holomorphic in A, and C*-smooth up to S' = A, and the function g is
holomorphic in A_ and C*-smooth up to S* = OA_, while

f=go~y™' on S'.

Setting K := f(S%), we get that v = v mod S* (since the normalization of F' does
not fix arg g(o0)).

As it is pointed out by Lempert [50], one can construct the inverse map by
using, instead of the Ahlfors theorem, the factorization theorem of Pfliiger [62],
which asserts that any diffeomorphism v € R may be represented in the form

y=[flog,

where f and g have the same properties, as above.
The constructed one-to-one map from & to R is smooth and defines a diffeo-
morphism

K:R—G6.

It’s easy to describe its tangent map
doli . T()R — T16 .

The tangent space T16 is identified with the space ®, consisting of functions ¢,
which are holomorphic in A, C'"*°-smooth up to A and normalized by the conditions:
©(0) =0, ¢'(0) = 0. (Indeed, any such vector ¢ is tangent to the curve f;(z) =
z 4 tp(z), which is contained in & for 0 <t < e.) The map dyx associates with a
vector v € TyR a function ¢ € T1S by the formula

2Rep(e”) = (Jv)(0) ,
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where J is the Hilbert transform on TyR. The Hilbert transform J on TR corre-
sponds to the multiplication by ¢ in the space 77GS, hence the map, inverse to dyk,
is given by the formula: v(#) = —2Im p(e®).

It follows from the definition of complex structures on R and S that the homo-
geneous disc bundle R — S is, in fact, holomorphic.

We note also that on the Virasoro group Vir itself there exists a complex struc-
ture, induced by the complex structure on R, such that the natural projection

7:Vir — R

is a holomorphic C*-bundle with respect to this complex structure (cf. [50]).
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Chapter 11

Universal Techmaiuller space

In this Chapter we study the Kahler geometry of the universal Teichmiiller space,
which can be defined as the space of normalized homeomorphisms of S!, extending
to quasiconformal maps of the unit disc A. It may be also realized as an open subset
in the complex Banach space of holomorphic quadratic differentials in a disc. All
classical Teichmiiller spaces T'(G), where G is a Fuchsian group, are contained in 7°
as complex Kahler submanifolds. The homogeneous space S = Diff, (S1)/Mob(S?),
introduced in the previous Chapter 10, may be considered as a ”smooth” part of 7.

11.1 Definition of the universal Techmiiller space

Definition 37. A homeomorphism f : S — St is called quasisymmetric, if it can
be extended to a quasiconformal homeomorphism of the unit disc A.

This definition agrees with the definition of a quasisymmetric homeomorphism
of S! as an orientation-preserving homeomorphism of S!, satisfying the Beurling—
Ahlfors condition (6.5), given in Sec. 6.1. The equivalence of two definitions is
established in the Beurling—Ahlfors theorem in Sec. 6.1.

We denote by QS(S!) the set of all orientation-preserving quasisymmetric home-
omorphisms of S'. This is a group with respect to the composition of homeomor-
phisms.

Any diffeomorphism f € Diff (S!) extends to a diffeomorphism of the closed
unit disc A, and so to a quasiconformal homeomorphism f (recall that the Jacobian
of a diffeomorphism f is equal to |f.|*>—|f:|?). Hence, Diff, (S*) C QS(S'). Since the
Mobius group Mob(S!) of fractional-linear automorphisms of the disc is contained
in Diff, (S!), we obtain the following chain of embeddings

Méh(S') c Diff (S') c QS(S') € Homeo(S") .
Definition 38. The quotient space
T = QS(SY)/Mab(Sh)

is called the universal Teichmiiller space. It can be identified with the space of
normalized quasisymmetric homeomorphisms of S!, fixing the points £1 and —i.
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The reasons for choosing the name "universal Teichmiiller space” for the intro-
duced object will become clear later.
As we have just pointed out, we have an inclusion

S = Diff, (') /Msb(SY) < T = QS(S)/Méb(S) .

Using the existence theorem for quasiconformal maps (Theor. 5 from Sec. 6.2),
we can describe the universal Teichmiiller space in terms of Beltrami differentials.
Denote by B(A) the set of Beltrami differentials in the unit disc A. It can be
identified, as we have pointed out in Sec. 6.1, with the unit ball in the complex
Banach space L*(A).

Given a Beltrami differential 1 € B(A), we can extend it by symmetry (cf.
Sec. 6.2) to the Beltrami differential /i on the whole plane. Theor. 5 from Sec. 6.2
implies the existence of a unique normalized quasiconformal homeomorphism w,, on
the extended complex plane C with complex dilatation . Moreover, this homeo-
morphism preserves the unit disc A, so we can associate with u the quasisymmetric
homeomorphism w,,|s1 of the unit circle S*. Introduce an equivalence relation be-
tween Beltrami differentials in A: u ~ v if and only if

1
w, =w, ons .

Then the universal Teichmiiller space T will be identified with the quotient of the
space B(A) of Beltrami differentials modulo this equivalence relation:

T = B(A)/ ~ .

Or, to put it in another words, 7 coincides with the space of normalized quasicon-
formal self-homeomorphisms of the unit disc A.

We can give still another definition of the universal Teichmiiller space 7, using
the extension of a given Beltrami differential 1 by zero outside the unit disc A (cf.
Sec. 6.2). In more detail, we denote by fi the Beltrami differential on the complex
plane, obtained by the extension of u by zero outside A. Then by Theor. 5 from
Sec. 6.2 we obtain a normalized quasiconformal homeomorphism w* of the extended
complex plane C, which is conformal on the exterior A_ of the closed unit disc
A C C and fixes the points +1, —i. Recall that the image A* := w"(A) of the unit
disc A under the quasiconformal map w* is called the quasidisc. We associate with
the Beltrami differential © € B(A) the normalized quasidisc A*.

Introduce now another equivalence relation between Beltrami differentials in A
by saying that two Beltrami differentials p and v are equivalent, if w”|x_ = w"|a_.
We claim that this new equivalence relation between Beltrami differentials coincides
with the previous one. More precisely, we have the following

Lemma 4. Two Beltrami differentials p, v € B(A) are equivalent if and only if
wylsr = wy|g1 <= w'|a =w"|a_ .

The proof of Lemma will be given below. Note that it implies that the universal
Teichmiiller space T can be identified with the space of normalized quasidiscs in C.
This last definition of 7 allows us to consider the elements of 7 as univalent
holomorphic functions in A_ (which extend to quasiconformal homeomorphisms of
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the extended complex plane C and fix the points 1 and —i). For such functions it is
standard to use an alternative normalization by fixing their Laurent decompositions
at oo in the form ; ;
1 2
f(Z)—Z—f‘;‘i‘?—f—... .
The complex numbers by, bs, . .. play the role of complex coordinates on 7. Accord-
ing to the classical area theorem, they satisfy the inequality

> nppa <1

n=1

A relation between two different interpretations of Teichmiiller space 7', namely,
as the space of normalized quasisymmetric homeomorphisms of S! and the space of
normalized quasidiscs in C, can be established in the following way.

If f is a given quasisymmetric homeomorphism of S*, then it can be extended to
a quasiconformal homeomorphism of the unit disc A, associated with some Beltrami
differential y. Then the corresponding quasidisc

Al = wH(A)

will not depend on the choice of the quasiconformal extension of f to A.
Conversely, let A* be the quasidisc, corresponding to a quasiconformal map
with the complex dilatation x. Since both maps w* : A — A* and w, : A — A are
quasiconformal and have the same Beltrami potential p in A, the map p := w* ow;1
defines a conformal transform of the unit disc A onto the quasidisc A*. Denote this
map by p,, and by p_ : A_ — A" a conformal map of A_ onto the exterior
A" of the closed quasidisc A#, provided by the Riemann mapping theorem. We
associate with the quasidisc A* the quasisymmetric homeomorphism of S!, given

by the formula
fe=pitop s
The constructed correspondences preserve the normalizations and so establish a

relation between two different interpretations of the universal Teichmiiller space 7.
We give now the proof of the Lemma, formulated above.

Proof of Lemma. Suppose first that w”|x_ = w”|a_. Then the maps w* o w;l and

w”ow;, ! are both conformal in A, which they map onto the same quasidisc. Being
normalized, they should agree on S'. But w#|s1 = w”|g1, so we should also have
wu]51 = wy‘sl.

Conversely, suppose that w,|s1 = w,|s1. Consider a map w of the extended
complex plane C, given by

v — {w“ o (w”)™? on w’(A_),

[w" o (w) ™' o [wy, 0 (W)~ on w’(Ay).

It follows from the assumption w,|s1 = w,|g that w is a homeomorphism of C.
Moreover, w is conformal on w”(A_) by construction and w is conformal on w” (A ),
since both maps w* o (w,)™! and w, o (w”)~! are conformal there. It follows from
the quasiconformal extension property (cf. [49], Lemma 1.6.1) that w extends to
a conformal map of C, i.e. to a fractional-linear automorphism of C. Since it is
normalized, it should be equal to identity, so w#|a_ = w"|a_. ]
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The universal Teichmiiller space 7 can be provided with a natural metric, called
the Teichmiiller distance, which can be defined as follows. Representing the points
of 7 as normalized quasiconformal self-homeomorphisms of A, fixing the points +1
and —i, we can define the distance between two points [ws], [ws] of 7 as

L.
T([un], [we]) := 3 inf{log K

wa0ow,

1wy € [wy], we € [wal}

where K, is the maximal dilatation of a quasiconformal map w (cf. Sec. 6.1). This
metric converts 7 into a complete metric space (cf. [49], Sec. I11.3.2). Moreover, it
can be shown that 7 is contractible (cf. [49], Theor. I11.3.2).

11.2 Kahler structure of the universal Techmauller
space

We shall study the Kéahler geometry of the universal Teichmiiller space 7, using an
embedding of 7 into the space of quadratic differentials, proposed by L.Bers. This
embedding will allow us to introduce complex coordinates on 7. It is convenient
to use for its definition the model of 7 as the space of normalized quasidiscs A* =
wh(A,) or, which is the same, the space of normalized conformal maps w* of A_.
By using a suitable Mébius transform, we can substitute here the disc A, by the
upper halfplane H, and represent 7 as the space of normalized quasidiscs w*(H),
i.e. the images of the upper halfplane H, under quasiconformal homeomorphisms
w* of the extended complex plane C, which are conformal on H_ and fix the points
0,1, 00.

Suppose that [u] is an arbitrary point of 7, represented by a normalized quasidisc
wt(H,), and define a map

U [u] — lu] = Slw!|a_] (11.1)

where S denotes the Schwarzian (cf. Sec. 10.2). Due to the invariance of the
Schwarzian under the Mébius transformations, the image of this map v [u] depends
only on the class [p] of the Beltrami differential p in 7 and is a holomorphic function
in H_. The converse is also true: if ¢[u] = ¥[v], then [u] = [v] in T . Indeed, consider
the conformal map h := w" o (w”)~! from w”(H_) to w"(H_). Then, applying the
transformation rule (10.8) for the Schwarzian on H_, we shall have

S[w") = S[how"] = (S[h] o w”) (w")"* + Sw"] .

Since S[w*] = S[w”] in H_, it follows that S[h] = 0in H_. So h is a fractional-linear
transformation (cf. Sec. 10.2), which is normalized (i.e. fixes the points 0,1, c0).
Hence, h is the identity, which implies that [p] = [v] in 7.

The transformation rule for the Schwarzian (10.8) suggests that the image ¥[u]
of a Beltrami differential ;1 € B(H_) is a holomorphic quadratic differential in H_.
So the map (11.1) defines an embedding of the universal Teichmiiller space 7 into
the space of holomorphic quadratic differentials in H_, called the Bers embedding.

We have already considered in Sec. 10.2 a natural hyperbolic norm on the space
of quadratic differentials. In the case of H_ it is equal to

[4l2 == sup 4y*|9(2)]

zEH_
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for a quadratic differential . It follows from Theor. 11 in Sec. 10.2 that

[kl < 6

for any Beltrami differential ;1 € B(H_). Denote by By(H_) the space of holomor-
phic quadratic differentials in H_ with a finite norm:

By(H_) = {holomorphic quadratic differentials ¢y on H_ : [[¢]|2 < o0} .

So we have an embedding
U:T — By(H_)

of 7 into a bounded subset in By(H_). It can be shown that it is a homeomorphism
(with respect to the topology on 7', determined by the Teichmiiller distance) onto
the image of W (cf. [49], Theor. II1.4.1). The image ¥(7) is an open subset in
By(H_), which contains the ball of radius 1/2 (cf. [1]). Moreover, it is known (cf.
[20]) that it is a connected contractible set.

Using Bers embedding, we can introduce a complex structure and complex coor-
dinates on the universal Teichmiiller space 7 by pulling them back from the complex
Banach space By(H_). It provides 7 with the structure of a complex Banach man-
ifold. Consider now the natural projection of the space of Beltrami differentials
to the universal Teichmiiller space, defined in the beginning of Sec. 11.1. In our
realization of 7 this map is given by the projection

®:B(H,) — T =B(H,)/ ~ .

Then it is holomorphic with respect to the introduced complex structure on 7  (cf.
[56], Ch. 3.4). So the composition map

F:=Vod:B(H,) — By(H-)

is also holomorphic.

We study next the tangent structure of this map, i.e. the differential of F'. We
describe the tangent bundle 77, using the definition of 7 in terms of Beltrami
differentials

T =DB(H)/~ .

Due to the homogeneity of 7 with respect to the right action of quasisymmetric
homeomorphisms of R, it’s sufficient to determine the tangent space Ty7 at the
origin, corresponding to the identity homeomorphism, associated with pu = 0.

Let p € L®(H,) represents an arbitrary tangent vector from ToB(H,). Then
for the corresponding quasiconformal map w we’ll have an expansion

w'(2) = z + tw(2) + o(t)

for t — 0, where o(t) := td(z,t) and d(z,t) — 0 uniformly in 2z, when z belongs to a
compact subset in C. The term

wi(z) = wlp)(2)

represents the first variation of the quasiconformal map w' with respect to pu. We
substitute w' into the Beltrami equation and differentiate it with respect to t at
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t = 0. Since 0/0t commutes with 0/0z and 0/0z for almost all z, being applied to
w'(z) (cf. [2]), we obtain that

& () = )

for almost all z, i.e. w[u](z) satisfies the d-equation. Hence its solution can be given
by the Cauchy-Green formula: if p has a compact support in C, then any solution
is given by

1

——/ﬂdgdn for ¢ = € +in

™ Jc C —Z
plus an arbitrary entire function, which in our case can be only a linear function of
the form (cf. [1])

N I V)
A+ Bz = (z 1)/@ c dédn z/(cc_ldfdn.
Altogether it gives the following formula for w[u](z)
L 2z -1) (<)
wn(2) = ilul(z) = =2 [ e (11.2)

which holds for all y € L>(H,) (the restriction on the support of  being compact
is removed by a standard approximation argument, cf. [1]).
We are now able to prove the following

Proposition 20 ([1, 56]). The differential of the map
F=VUod:B(H,) — By(H.)

at zero is giwen by the formula

do (U 0 ®) [ (2) = —2/11 (C’“‘_(Cz)4 dédn, zeH_ | (11.3)

for pe B(Hy).
Proof. Fix zg € H_. We want to find the derivative of the function
p(t, 2) = S[w™](z) = Fltp)(=)

at t = 0. By denoting w := w", the derivative with respect to ¢t by "dot”, and
derivative with respect to z by "prime”, we get

. (w’” 3 <w//>2>' (w/)?,w’” _ w/(w/)2w’“ _ 3w//(w/)2w// + 3w/w/(w//)2
Y= -

w2\ w (w')4
For t = 0 we have w(z) = z, so w' = 1, w” = w" = 0. Hence, the above formula
reduces to .y
(9(,0 (w/)3 m

ot

t=0 - (w')*
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But the formula (11.2) implies that

) u(©)
=) =~ /H DT R

(note that 4 = 0 on H_). Differentiating this formula three times over z, we obtain
the desired formula (11.3). O

In addition to formula (11.3), it may be proved (cf. [56], Theor. 3.4.5) that the
operator doF' is a bounded linear operator and estimate its norm by an absolute
constant.

We describe the kernel of the differential dgF'. We note that there is a natural
pairing between the space Ay(H, ) of L'-integrable holomorphic quadratic differen-
tials in H, and the space B(H,) of Beltrami (—1, 1)-differentials in H,, denoted
by

<, >::/ s (11.4)
Hy
In terms of this pairing, the kernel of dyF’ can be identified as follows.

Theorem 12 (Teichmiiller lemma). The kernel of doF' coincides with the subspace
N=AyH) ={pe€ L®H,): < p,p>=0 for allyp € Ay(H,)} .

The proof of this Lemma may be found in ([1], Sec.IV(D); [56], Sec.3.7).
It will be useful to summarize the previous results also in the case of the unit
disc A = A,. The Bers embedding for this case coincides with the map
F:B(Ay) — By(A)

associating with a Beltrami differential ¢ € B(A ) in the unit disc A the restriction
Slw*]|a_ of the Schwarzian S[w"] to the exterior A_ = {|z| > 1} U oo of the closed
unit disc A, on the Riemann sphere C. The image of this map is contained in the
space of holomorphic quadratic differentials in A_ with a finite norm

[Pz := sup (1 —[2*)*[eo(2)] < o0 .

zEA_

The formula for the differential dyF' is given by

do P[] (2) = —%/A (g“_(gi)4 dedn, ze€ A, (11.5)

for € L*(Ay). The kernel of dyF is equal to
N=A AN ={pe LA : <pp>=0forall e Ay(Ay)}.

This definition is equivalent to the following (cf. [56], Sec. 3.7.2)

N={ueL>®A): /A (gMECZ)y dédn=0forall z€ A_} .
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The formulas (11.3),(11.5) suggest how a Ké&hler metric on 7 can be defined.
Namely, we employ the Ahlfors map (cf. [3]): L®(A) — B2(A), given by

(<)
L¥(A) 3 pr— plp)(2) = / ————=—d&dn .
A (1—=20)
It associates with any u € L*°(A) a holomorphic quadratic differential ¢[u] with a
finite norm |||z = sup,ca(1 — |21*)?|¢(2)] < co. The kernel of this map coincides
with N = Ay(A,)*. Now we can define formally a Hermitian metric on 7 by setting

for two tangent vectors u, v in To7 = L>®(A)/N:

(u, V) =< p, plv] >= /A/A%dfdndxdy : (11.6)

However, this metric is only densely defined. More precisely (cf. [59]), for a general
p € L*(A) its image ¢[u] in Ba(A) may be not integrable, i.e. it does not belong,
in general, to As(A), in which case the integral in (11.6) will diverge. In fact, the
formula (11.6) is correctly defined, if the tangent vectors u, v in Ty7 are sufficiently
smooth. To formulate this smoothness condition more precisely, we realize 7 as the
space of normalized quasisymmetric homeomorphisms of S'. Then a tangent vector
p € L>®(A) = ToB(A) will correspond under the differential dq® to the vector field
v =1v(0)9/06 on S* of the form

o0) g = i) 5 2=

where w(u] is the derivative with respect to ¢ of the one-parameter flow wy, of
quasisymmetric homeomorphisms:

Wy, (2) = z + twlp)(z) +o(t) fort—0.

Then it may be proved (cf. [59]) that the integral in (11.6) converges, if the tangent
vectors u, v in TyZ correspond to C%?*“-smooth vector fields on S'. Whenever the
metric (11.6) is well-defined, it determines a K&hler metric, in particular, it defines
a Kéhler metric on the ”smooth” part of 7.

11.3 Teichmiiller spaces T(G) and Diff (S')/Mob(S?)

The universal Teichmiiller space 7 contains, as its complex submanifolds, all clas-
sical Teichmiiller spaces T(G), where G is a Fuchsian group (cf. [49, 56]). In
particular, it is true for all Teichmiiller spaces of compact Riemann surfaces. This
property of 7 motivates the use of the term ”universal” in the name of 7.

With an arbitrary Fuchsian group G we associate the Riemann surface X :=
A /G, uniformized by the unit disc A. By definition, T'(G) consists of quasisymmetric
homeomorphisms f € QS(S'), which are G-invariant in the following sense:

fogo f~* belongs to Méb(S!) for all g € G,

modulo fractional-linear automorphisms of the disc A. If we denote by QS(S*)“ the
subset of G-invariant quasisymmetric homeomorphisms in QS(S!), then

T(G) = QS(SH)“/Mob(S?h) .
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The universal Teichmiiller space 7 itself corresponds to the Fuchsian group G' = {1}.

The various interpretations of the universal Teichmiiller space 7, given in Sec. 11.1,
are compatible with the notion of G-invariance. In particular, the Teichmiiller spaces
T(G) admit a description in terms of G-invariant Beltrami differentials. More pre-
cisely, denote by B(A)Y the subspace of B(A), consisting of Beltrami differentials
1, satisfying the relation

'(2)

1(gz) = pu(z) almost everywhere on A for all g € G .

'(2)

Then we’ll have, as in Sec. 11.1:

Q

Q

T(G) = B(A)/ ~,

where p ~ v iff w, = w, on S* or,equivalently, w*|n = w"|a_.
We can associate with a G-invariant Beltrami differential ;1 a Fuchsian group
G, conjugate to G:
G, = quw;1 ,

where w,, is the quasiconformal homeomorphism of C, leaving AL invariant (cf.
Sec. 11.1).

We have a natural quasiconformal map of the Riemann surface X := A/G onto
another Riemann surface X, := A/G,, which is biholomorphic precisely, when
p € Mob(Sh). Hence, one can say that the space T'(G) parametrizes, with the help
of the map p — G, different complex structures on the Riemann surface X := A/G,
which can be obtained from the original one by quasiconformal deformations.

On the other hand, we can associate with a G-invariant Beltrami differential
p € B(A)Y another conjugated group

G* = w'G(w") ™t

operating properly discontinuously on the quasidisc A* := w#(A). Here, w* is the
quasiconformal homeomorphism of C, which is conformal on A_ (cf. Sec. 11.1). The
group G* is a Kleinian group, called otherwise a quasi-Fuchsian group (cf. [49, 56]).
The Riemann surface X, is biholomorphic to A*/G* (cf. [56], Theor. 1.3.5). We
note also that the Riemann surface A" /G* is biholomorphic to the Riemann surface
A_/G, due to the conformality of w* on A_.

The definition and main properties of the Bers embedding, given in Sec. 11.2,
extend to the Teichmiiller spaces T'(G). For the case of the unit disc A = A, the
Bers embedding is the map

F:B(AL)Y — By(A)Y

associating with a Beltrami differential ;1 € B(A,)Y the restriction S[w*]|a_ of the
Schwarzian S[w*] to A_. The image of this map is contained in the space By(A_)%
of G-invariant holomorphic quadratic differentials in A_ with a finite norm

]l = sup (1 — [2]*)*[2(2)] < o0 .

zZEA_



146 CHAPTER 11. UNIVERSAL TECHMULLER SPACE

The formula for the differential dyF' has the form

wrl) ==+ | (C“£<;>4 dedy, e

for € L°(A)¢. The kernel of dyF is given by
N = (Ay( A ={pe L®(A)C . <, >=0for all ¢ € Ay(A})} .

This definition is equivalent to

NC = {p e L®(A)C . / #(©) —dédn=0forall z€ A} .
a(C—2)
So the tangent space of T'(G) at the origin coincides with the space L>(A)¢/N¢.
As in Sec. 11.2, there is the Ahlfors map L®(A)Y /N — By(A)%, given by

L®(A)Y 3 p— olul(2) = /A %dﬁdn :

Using this map, we can define the Weil-Petersson metric on T'(G), as in Sec. 11.2,
by setting for two tangent vectors ju, v in TyT(G) = L>(A)Y/NC:

_ p(2)v(Q) N
g (p,v) == /A/G/A (1= 20y dédn dzdy . (11.7)

As was pointed out in Sec. 11.2, the image p[u] € By(A)Y of the Ahlfors map
for a general Fuchsian group G may not belong to the space Ay(A)% of integrable
holomorphic quadratic differentials, so the formula (11.7) for the metric gg(u, v)
is ill-defined for general Fuchsian groups. But in the case of finite-dimensional
Teichmiiller spaces T(G) this difficulty does not show up, since in this situation
By(A)Y = Ay(A)C (cf. [56]), and the introduced metric coincides with the standard
Weil-Petersson metric on the finite-dimensional Teichmiiller spaces T'(G). Moreover,
S.Nag has proved (cf. [59]) that the metric go(p,v) on T(G) can be obtained from
the metric (u,v) on 7 by a certain reduction procedure. This procedure involves a
regularization of the integral

B p(z)v(¢) B
wn=[ [ HLEP ded dody - [t (11.8)

To define the regularization, we rewrite the integral (11.8) in the form
(,v) = lim g, (n,v)

where

6: (1 v) = / bl (11.9)

and A, :={zeA:|z|<r},0<r<1.
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In the case when p,v are G-invariant, i.e. belong to L=(A)Y/N¢, the integral
(11.8) coincides with

w [ el = ngatn)
AJG

where n is the number of copies of the fundamental domain A/G, contained in A.
Hence, this integral must diverge, if the group G has infinitely many elements. The
integral (11.9) by the same argument is proportional to n,gq (i, v), where n, is the
number of copies of the fundamental domain A/G, contained in A,. It follows that
the integral (11.9) may be regularized by dividing it by a quantity, proportional to
n,. More precisely, the following assertion is true .

Proposition 21 ([59]). For any finite-dimensional Teichmiiller space T(G) its Weil—
Petersson metric ga(p,v) may be computed by the formula

gG’(”> V) — I r (H> V)
_ > = m ——
gc(tto, o) 7=1-0 g, (1o, o)

Y

where p,v € L®(A)Y, and o € L=(A)Y/NY is an arbitrary nonzero tangent vector
from TyT(G).

As we have remarked at the beginning of Sec. 11.1, the universal Teichmiiller
space 7 contains the homogeneous space S = Diff, (S')/Mob(S!) as its ”smooth”
part:

S = Diff (S')/M&b(S') — T = QS(S*)/Mob(S*) .

In Sec. 10.3 we have defined the structure of a Kahler-Frechet manifold on S.
We recall the definition of the Kéhler metric g on this space in terms of Fourier
decompositions. For given tangent vectors u,v € T,S with Fourier decompositions

u = E Upe, and v = g Un€n

n#—1,0,1 n#—1,0,1

the value of g on these vectors is equal to

g(u,v) =2Re (Z U, 0y, (n® — n)) . (11.10)

n=2

As we have noted before, the series on the right hand side is absolutely converging,
if the vector fields u, v are of the class C%/%*¢ on S*.

It was pointed out in [59] that the Kéhler metric g on S coincides (up to a con-
stant factor) with the Weil-Petersson metric (11.6) on S, induced by the embedding
S — 7. (Note that the metric (11.6) on the smooth part S of 7 is correctly defined,
as we have remarked in Sec. 11.2.) Using the interpretation of tangent vectors from
TyT, given at the end of Sec. 11.2, we can express the equality of these metrics on S
as follows. Given two tangent vectors u, v € TS, written in the form u = w[u]0/0z,
v = w[r]0/0z, we have

91, ) = A /A /A %dédndmy
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for a suitable choice of the constant A. By introducing this constant into the defini-
tion of the Kahler metric on §, we can make the embedding & < 7 an isometry.

It is an interesting question, how the smooth part S is placed inside the universal
Teichmiiller space 7 with respect to the classical Teichmiiller spaces T'(G). It can
be shown (cf. [12]) that the quasidiscs, corresponding to all points of T'(G), except
the origin, have fractal boundaries (i.e. boundaries of Hausdorff dimension> 1) in
contrast with the giasidiscs, corresponding to points of &, which have C*°-smooth
boundaries.

11.4 Grassmann realization of the universal
Teichmiiller space

The Grassmann realization of the universal Teichmiiller space 7 is based on the fact
that the group QS(S?) of quasisymmetric homeomorphisms of the circle acts on the
Sobolev space V' of half-differentiable functions on S* (cf. Sec. 9.2).

Suppose that f: S' — St is a homeomorphism of S!, preserving its orientation.
We define an operator 7y by the formula

1

7€) = o f —5- [ <@ as

for £ € V. This operator has the following remarkable property.

Proposition 22 ([58]). The operator Ty acts on' V' (i.e. T¢(&) belongs to V' for any
£ e V)if and only if f € QS(S*). Moreover, if f extends to a K-quasiconformal
homeomorphism of the disc A, then the operator norm of Ty does not exceed

VK + K-

The proof of this assertion, given in [58], uses the interpretation of the space V'
in terms of harmonic functions in the disc, given at the end of Sec. 9.1.

Transformations of the form Ty with f € QS(S') preserve the symplectic form
w, i.e. they are symplectic transformations of V.

Proposition 23 ([58]). If f € QS(S'), then

w(f*(€), [ () = w(&n)

for any &,m € V.. Moreover, the complez-linear extension of the QS(S*)-action on'V
to the complezification V' preserves the “holomorphic” subspace W (cf. Sec. 9.1)
if and only if f is a Mobius transformation, i.e. f € Mob(S). In the latter case,
Ty acts as a unitary operator on W.

Proof. For homeomorphisms f of the class C! the first assertion is a corollary of
the change of variables formula. For a general quasisymmetric homeomorphism
[ € QS(S!) the assertion follows from the fact (cf. [49]) that f may be uniformly
approximated by real analytic quasisymmetric homeomorphisms of S!, having the
same quasiconformal constant K as f.

If the action of f on VC preserves W, then it should extend to a map A — A.
This map must be a biholomorphism, since f is a homeomorphism, hence, it is a
Mobius transformation. It is clear from the definition of the inner product on V©
(cf. Sec. 9.1) that such a transformation acts unitarily on W.. O
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The symplectic form w on V' is uniquely determined by the invariance property,
stated in the above Proposition. In fact, a much stronger assertion is true.

Proposition 24 ([58]). Suppose that wy is a real-valued continuous bilinear form
on V' such that

wi(f*(§), f(n) = wi(&,m)

for any f € Mob(S") and arbitrary £&,m € V. Then wy is a real multiple of w, in
particular, any form wy, satisfying the hypothesis of the Proposition, coincides nec-
essarily with a symplectic form, invariant under quasisymmetric homeomorphisms

of St.
Proof. Note that both forms w and w; define the duality maps
:V—V" and %:V —V",

given by
() =w(+8), Xi(§) =wi(§)

for £ € V. In the case of w the duality operator X coincides, in fact, with the (minus
of) J°. In particular, ¥ is a bounded invertible operator, defining an isomorphism
between V' and its dual.

We consider an intertwining operator

M=Y"1o%,:V—5V.
It is a bounded linear operator on V', defined by the equality

Ld(f, M77) - Wl(fﬂ?) :

Note that M commutes with any invertible bounded linear operator on V', preserving
the forms w and wy. Indeed, if T" is such an operator, then

W(Tfa TMT]) = w(f? Mn) = W1(§7 77) = Wl(T€7 TT’) - W(Tg, MT”) .
Since T' is invertible, it implies that
w(§ TMn) = w(&, MTn)

for any &, € V. Since the duality operator ¥, determined by w, is an isomorphism,
the last equality implies that TM = MT, as asserted.

We have to show that the intertwining operator M coincides with the scalar
operator const - I. We prove it by considering the complex-linear extension of M to
the complexification V.

Consider the complexified action f + T} of the Mébius group Mob(S') on V.
Then its restriction to W, can be identified with the standard unitary representation
of the group SL(2,R) on the space of L*-holomorphic functions in the disc A (cf.
[58], lemma 4.6), hence, it is irreducible. The same is true for the restriction of
f = Tf to W_. Moreover, W, are the only irreducible invariant subspaces of the
representation f +— T of Mob(S') on VE.

As we have just proved, the intertwining operator M commutes with all operators
Ty : VE — VC with f € Mob(S'). Since W4 are the only invariant subspaces for all
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such T, the operator M should map W, either to W, or W_. If M maps W, into
W, then by Schur’s lemma it should be a scalar, which is real, since the operator
M was real. If the other possibility (when M maps W, into W_) would realize, we
would substitute M by its complex conjugate, mapping W, into W, , which should
be again a real scalar. But in this case M cannot map W, into W_, so the second
possibility does not occur. O

The Propositions 22 and 23 imply that the quasisymmetric homeomorphisms
from QS(S') act on the Hilbert space V' by bounded symplectic operators. Hence,
we have a map

T = QS(S*)/Mob(S*) — Sp(V)/U(W,) . (11.11)

Here, by Sp(V) we denote the symplectic group of V', consisting of linear bounded
symplectic operators on V', and by U(W,) its subgroup, consisting of unitary oper-
ators, i.e. operators, whose complex-linear extensions to VC preserve the subspace
W,.. We describe these groups in more detail.

Recall that the complexified Hilbert space VC is decomposed into the direct sum

V(C — W+ @ W,
of subspaces

W,={feVC®: f(z):Zxkzk}, W_=W,={feV": f(z):Zxkzk}

k>0 k<0

In terms of this decomposition any linear operator A : V¢ — VC can be written in

the block form b
a
A= (o)

a:Wy—-Wy , bW =W, ¢ W —-W_,d: W, —W_.

where

In particular, the linear operators on VC, obtained by the complex-linear extensions
of operators A : V — V, have the block form

a b
= (5 2)

where we identify W_ with the complex conjugate W .
An operator A : V' — V belongs to the symplectic group Sp(V), if it preserves
the symplectic form w. This condition is equivalent to the following relation:

AL JA = JY

o (-t O
Y

In other words, the condition A € Sp(V') can be written in the form:

where

14:<%g)ESMV%ﬁﬁﬁa—H_zl,ﬁb:Na. (11.12)
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Here a', b* denote the transposed operators
a WL =W, <=ad - W_—-W_, bW, ->W <=b . W.—->W,,

where the space W, dual to W, is identified with W_ with the help of the inner
product < -, - > (cf. Sec. 9.1).
The unitary group U(WW,) is embedded into Sp(V') as a subgroup, consisting of
block matrices
a 0
UW,)s A= 0 al

a

We return to the map (11.11). The space
Sp(V)/U(W,) ,

standing on the right hand side of the formula (11.11), can be considered as an
infinite-dimensional Siegel disc. To justify this assertion, we should study the action
of QS(S') on compatible complex structures on the space V.

As we have proved above, Mébius transformations f € Mob(S1) define, via the
representation f +— T, unitary operators in U(W,), in particular such transforma-
tions preserve the complex structure Jy on V. If a quasisymmetric homeomorphism
f does not belong to Mob(S1), it does not preserve the original complex structure
J°, transforming it into another complex structure J;, which is also compatible with
the symplectic form w. We explain this assertion in more detail.

Any complex structure J on V', compatible with w, determines a decomposition

VE=waoWw (11.13)

into the direct sum of subspaces, isotropic with respect to w. This decomposition is
orthogonal with respect to the Kihler metric g; on V¢, determined by .J and w. The
subspaces W and W are identified with, respectively, the (—i)- and (+i)-eigenspaces
of the operator J on VC. Conversely, any decomposition (11.13) of the space V'
into the direct sum of isotropic subspaces determines a complex structure J on V',
which is equal to —i - I on W and +i - I on W and is compatible with w.

This argument shows that the symplectic group Sp(V') acts transitively on the
space J (V) of complex structures J, compatible with w. It follows that the space
Sp(V)/U(W,) can be identified with the space J (V). Otherwise, it may be con-
sidered as the space of the so called positive polarizations of V', i.e. decompositions
(11.13) of V® into the direct sum VC = W @ W of isotropic subspaces of V¢,
orthogonal with respect to the Kéhler metric g; on VC,

We are ready to give a Siegel disc interpretation of the space Sp(V)/U(W,). By
definition, the Siegel disc is the set of bounded linear operators Z of the form

D ={Z: W, — W_ is a symmetric bounded linear operator with ZZ < I} .

The symmetricity of Z means, as above, that Z! = Z and the condition ZZ < I
means that the symmetric operator I — ZZ is positive definite. In order to identify
J (V) with D, consider the action of the group Sp(V') on D, given by fractional-linear
transformations A : D — D of the form

Z— (aZ +b)(bZ +a)™ ",
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b oa) € Sp(V). The invertibility of the operator bZ + a follows from

the invertibility of the operator a (cf. (11.12)) and the inequality (cf. (11.12))

where A = ((—L b

bZZb < bbt < aa' .

It’s evident that A : D — . The isotropy subgroup of the point Z = 0 consists of
the operators A € Sp(V), for which ba™! = 0, i.e. b = 0. This subgroup coincides
with U(WW,). It remains to check that the action of Sp(V') on D is transitive, i.e.
to construct for a given Z € D an operator A, sending Z = 0 to this Z. Such an

operator may be given by
a b
(o) (119

with b = aZ and
a(1-ZZ)a=1= @) 'a'=1-ZZ=a=01-22)""2.
This proves that the space
J(V) =Sp(V)/U(Wy)

may be identified with the Siegel disc D.

In Sec. 5.1 we have introduced the Grassmanian Gr;,(V®), consisting of the images
of bounded linear operators W, — W. It is clear from the given description of D
that it is embedded in Gry(V®) as a complex submanifold.

Summarizing the argument above, we have the following

Proposition 25 ([58]). The map
T = QS(S")/Mib(S*) — Sp(V)/UW,) =D — Gry,(VE)

is an equivariant holomorphic embedding of Banach manifolds.

11.5 Grassmann realization of Diff, (S')/Mo6b(S?)
and Diff, (S1)/(S1)
We have constructed in the previous Sec. 11.4 the natural embedding
T = QS(S")/M&b(S") = Sp(V)/U(W,) = D = Gry(V") .

Recall now that in Sec. 10.3 we have identified the space S with the ”"smooth” part
of the universal Teichmiiller space 7. Combining the above embedding

T — Sp(V)/U(Wy)

with the embedding
S—1T,

we obtain an embedding

S —Sp(V)/UW,) ,



GRASSMANN REALIZATION 153

giving a realization of S in the Grassmann manifold Gr,(V©).

However, this result may be significantly strengthened by replacing the Grass-
mann manifold Gr, (V) with its "regular” part, namely, the Hilbert-Schmidt Grass-
manian Grys(V), introduced in Sec. 5.2.

We recall that this Grassmanian Grgg(V') consists of closed subspaces W C V
such that the orthogonal projection pr, : W — W, is a Fredholm operator, while the
orthogonal projection pr_ : W — W_ is a Hilbert—Schmidt operator. It was shown
in Sec. 5.2 that Grys(V') is a Kéhler Hilbert manifold, having as its local model the
Hilbert space HS(W,, W_) of Hilbert—Schmidt operators. Recall (cf. Sec. 5.2) that
Grps(V) is a homogeneous space of the Hilbert—Schmidt unitary group Ugs(V),
more precisely

Grus(V) = Uns(V)/ U(W,) x UW_) .

We introduce now, by analogy with the group Uys(V'), the Hilbert-Schmidt sym-
plectic group Spyg(V). Recall that the symplectic group Sp(V') consists of bounded
linear operators A : V& — V¢ having the block representations of the form

a b
a=(52)

ala—bb=1, a'b="a.

where

By definition, the group Spyg(V) C Sp(V') consists of transformations A € Sp(V),
for which the operator b is Hilbert—Schmidt. The unitary group U(W,) is contained
in Spyg(V) as a subgroup

U(W+)9a|—>A:<g 2) |

The diffeomorphism group Diff, (S') acts on the space V' by symplectic trans-
formations, given by the same formula, as in Sec. 11.4:

1

Ty () :=£of—ﬂ/0 ﬂf(f(é’))d@.

As before, the transformation T preserves the subspace Wy C V if and only if
f € Mob(S?), and in this case Ty € U(W,). The correspondence f +— T} defines an
embedding

S = Spus(V)/UW,) .

Moreover, the following result is true.
Proposition 26 ([57]). The map

S = Spps(V)/ UW,) = Grus(V)
15 an equivariant holomorphic embedding.

By analogy with Sec. 11.4, we identify the space Spyg(V')/U(W,) with the space
Jus (V') of admissible complex structures on V', compatible with the symplectic form
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w. As in the previous Section, it has a natural realization as a Hilbert—Schmidt Siegel
disc

Dys = {Z : W, — W_is a symmetric Hilbert-Schmidt operator with ZZ < I} .
So, the above Proposition yields a holomorphic embedding
S — Spyg(V)/U(W,) = Dus .

There is another interpretation of the space S as the space of complex structures,
namely, as the space of admissible complex structures on the loop space Q2G.

There is a natural action of the diffeomorphism group of the circle Diff (S1) on
the loop group LG by the reparametrization of loops. It is given by the formula

-5 | s

for v € LG, f € Diff (S'). By identifying QG with the subgroup L;(G), it’s evident
that this action can be pushed down to the action of Diff (S') on the loop space
QG.

From the definition of the symplectic structure w on QG, generated by the form

fr(0) :=~ (£(0))

27
wolEsn) = %/ﬂ < £(e), /() > db |

on Lg, it’s clear (by the change of variables in the integral) that diffeomorphisms
from Diff, (S') preserve w, i.e. generate symplectomorphisms of the manifold QG.
The complex structure J% on QG is given at the origin o € QG by the formula

=) &G egt = Jle=—i) &2 +i) &2,

k#0 k>0 k<0

so the tangent subspaces, consisting of vectors of the type (1,0) and (0, 1), have the
form

TG = {6 =) & e Q%) TONQG) = {6 =) &2" € Q).

k<0 k>0

A diffeomorphism f € Diff, (S!) transforms the complex structure J° into the com-
plex structure
‘]f ::f*_lojoo )

where f, is the tangent map to f.

Proposition 27. The complex structure J; with f € Diff, (S') coincides with the
original complex structure Jy if and only if f € Mob(S').

Proof. 1f the diffeomorphism f € Diff, (S*) does not change the original complex
structure, i.e. defines a biholomorphism of QG| provided with the complex structure
Jo, it means , in particular, that it preserves the tangent space T>'(QG). Hence,
such a diffeomorphism should preserve the subspace L*G®, implying that it extends
to a biholomorphism of the unit disc A. So, f € Méb(S!). The converse assertion
is obvious. O]
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We shall call the complex structures J; on QG, obtained from J° by the action
of the diffeomorphism group

J:f*_lojoo *

the admissible complex structures on Q2G. The Proposition 27 implies that the space
of admissible complex structures on (G can be identified with the manifold S.

Recall that the complex structure J° on QG is invariant under the left LG-
translations on the space G and compatible with the symplectic structure w (in
the sense of Def. 17 from Sec. 1.2.5). Due to the invariance of w with respect to the
action of the group Diff, (S'), the complex structures .J; are also invariant under
the left LG-translations and compatible with w. In particular, any such complex
structure J defines a Kdhler metric g on Q2G by the formula

95(&n) == w(&, Jpm)
for any &,n € T,(QG), v € QG.
Consider now the space R = Diff, (S')/(S'). Combining the above embedding

S — Spys(V)/U(Wy) = Das
with the holomorphic map
R = Diff,.(§)/(5") — S,
we obtain the Grassmann realization of the space R = Diff, (S')/(S1):
R — Spus(V)/U(W,) = Dus

As in the case of S, the space R can be also considered as a space of complex
structures on the loop space QG. Recall that the loop space QG provided with the
complex structure Jy, admits the following complex homogeneous representation

OG = LG°/ L G" .

According to Birkhoff theorem (cf. Sec. 7.3), we can identify a neighborhood of the
origin in QG with a neighborhood of the identity in the loop subgroup Ly G€. If a
diffeomorphism f € Diff, (S1) fixes the origin in QG and generates a biholomorphism
of

(QG, Jy) = LG°/ L, G,
it generates also a biholomorphism of Ly GC. In this case we shall say that the

complex structure Jy, associated with f € Diff, (S'), is equivalent to the original
complex structure Jj.

Proposition 28. The complex structure Jp with f € Diff, (S*) is equivalent to the
original complex structure Jy in the above sense if and only if [ is a rotation, i.e.
fest
Proof. If the diffeomorphism f € Diff, (S') generates a biholomorphism of

(QG, Jy) = LG°/ LG,

fixing the origin, then it leaves the subspace L* G invariant and generates a biholo-
morphism of L7 G€. The first property implies that f extends to a biholomorphism
of the unit disc A, while the second one implies that f extends to a biholomorphism
of its exterior A_, fixing the infinity. Then, by Liouville theorem, f € S!. m
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Chapter 12

Dirac quantization

This Chapter is devoted to the Dirac definition of the geometric quantization of
classical mechanical systems. In Sec. 12.1 we recall the notion of classical systems
from Hamiltonian mechanics. The geometric quantization of such systems is defined
in Sec. 12.2.

12.1 Classical systems

We start from the definition of a classical (mechanical) system — an object to be
quantized. A classical (mechanical) system is given by a pair (M, .A), consisting of
the phase space M of the system and the algebra of observables (Hamiltonians) A.

12.1.1 Phase spaces

Mathematically, the phase manifold M is a smooth symplectic manifold of an even
dimension 2n, provided with a symplectic 2-form w. Locally, it is diffeomorphic
(and, in fact, symplectomorphic) to the standard model My := (R*",wy), where wy
is the standard symplectic form on R?**. In the conventional coordinates (p;,q;),
i=1,...,n, on R* this form is given by the expression

W = Zn:dpi Adg; .
i=1

The corresponding local coordinates (p;,q;), @ = 1,...,n, on M, in which the sym-
plectic form w takes on the above standard form, are called canonical. The coordi-
nates ¢; are interpreted as physical ”coordinates”, while p; correspond to physical
"momenta’”.

The standard examples of phase spaces, apart from the standard model My, =
(R?" wy), are given by the cotangent bundles and coadjoint orbits of Lie groups.

Example 30 (cotangent bundles). Denote by M the cotangent bundle T*N of a
smooth n-dimensional manifold N, called the configuration space. Local canonical
coordinates (p;, q;) on M have the following meaning: ¢ := (q1, ..., q,) are local co-
ordinates on N, and p := (p1, ..., p,) are coordinates in the fibre 7, N. A symplectic

159
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2-form w, given in the introduced local coordinates by the standard formula

W:zn:dpz‘/\d%',

=1

is a correctly defined (global) 2-form on M, as well as a 1-form 6, given in local
coordinates by the expression
0= Zpidqz' .
i=1

It follows that w = df, that is w in this case is exact. To show that € is a correctly
defined (global) 1-form, we note that it can be also defined in an invariant way.
Namely, for any p € TN and any tangent vector € T(, ) (T*N) it can be given by

9(5) - p(7*§> )
where 7, : T(T*N) — T'N is the map, tangent to the projection 7 : T*N — N.

Example 31 (coadjoint orbits). Consider the coadjoint representation of a Lie
group G on the dual space g* to the Lie algebra g of G. It is given by the formula

K:G—Endg*, g~ (Adg™")".

The orbits of this action (when they are smooth) are symplectic manifolds with
the symplectic structure, given by the Kirillov form, defined in the following way.
Denote by &, the vector field on g*, generated by & € g via the coadjoint action K.

More precisely,
&) = K.(Or forzeg"

where K, : g — Endg* denotes the differential of K : G — Endg*. Then the
Kirillov form is defined by the equality

w(&(x),n.(x)) == x([&,n]) forEmeg xegh.

The restriction of this 2-form to a smooth K-orbit defines a symplectic structure on
this orbit.

12.1.2 Algebras of observables

An algebra of observables A, mathematically, is an arbitrary Lie subalgebra of the
Poisson Lie algebra C*°(M,R) of smooth real-valued functions on the phase space
M with respect to the Poisson bracket, determined by the symplectic 2-form w.

Recall the definition of this bracket. Given a smooth function h € C*(M,R),
denote by X}, the Hamiltonian vector field on M, associated with h. It is determined
by the following relation

dh(§) = w(Xp,€) ,
fulfilled for any vector field £ on M. Then the Poisson bracket {f, g} of two functions
f,g € C°°(M,R) is uniquely defined by the relation

X{fvg} = [Xfan] .
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Example 32 (Heisenberg algebra). In the case of the standard model My = (R*", wy)
we can take for the algebra of observables A the Heisenberg algebra heis(R**). Tt
is the Lie algebra, generated by the coordinate functions p;,q;, ¢t = 1,...,n and 1,
satisfying the following commutation relations

{pi,p;} = {4, 9} =0,
{pi,q]'}:dij forz',jzl,...,n.
We consider heis(R?*") as a "minimal” algebra of observables on M,. The oppo-
site extreme is the Poisson algebra C*°(M,,R). The Hamiltonian vector field Xy,

corresponding to an observable f € C°°(My,R), is given in standard coordinates
(pi, q;) on My by the formula

&~ [9f d of 0
Xf B Z <8pi 0g; 0g; apz‘) '

=1

In particular, X, = i_, Xy = —8%_. The Poisson bracket on M is given by the

expression
N~ (0f 09 Of dg
tha} = Z_: (81% Jdq;  9q; Op;

=1

for f,g € C>(My,R).

Example 33 (Hamiltonian algebra). Let I be a Lie group of symplectomorphisms,
acting on a phase space M, so that its Lie algebra Lie(I') can be regarded as a
subalgebra of the Lie algebra of Hamiltonian vector fields on M. If M is simply
connected, then Lie(I") may be also considered, in the dual way, as a subalgebra of
the Poisson algebra C*° (M, R). Namely, it can be identified with the algebra Ham(I")
of Hamiltonians (smooth real functions) on M, generating symplectomorphisms from
I

If a Lie group I' acts on M transitively, such a manifold M is called a homogeneous
symplectic T'-manifold. 1t is proved in [46] that any homogeneous symplectic I'-
manifold M is locally equivariantly symplectomorphic to a coadjoint orbit of I" or
its central extension I'.

12.2 Quantization of classical systems

Definition 39. Let (M, A) be a classical system. The Dirac quantization of (M, .A)
is given by an irreducible Lie-algebra representation

r: A— End*H

of the algebra of observables A in the algebra End*H of linear self-adjoint operators,
acting in a complex (separable) Hilbert space H, called the quantization space. The
algebra End* H is provided with the Lie bracket, given by the commutator of linear
operators of the form "

l

[Am:§m3_&@.
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In other words, it is required that

P({.0) = 2 0r(1)r(a) — o) ()

for any f,g € A. We also assume the following normalization condition:
r(l) =1id .

If a representation r satisfies all these conditions, except for the irreducubulity, it is
called a prequantization of the system (M, A).
We set h =1 in the sequel for the convenience.

Remark 19. Sometimes it is useful to deal with the complezified algebra of observ-
ables AT instead of A. Its Dirac quantization is given by an irreducible Lie-algebra

representation
r: A® — End H ,

satisfying the normalization condition and the conjugation law

r(f) =r(f)* forany f€A.

In other words, the complex conjugation in A% should correspond to the Hermitian
conjugation in End H.

Remark 20. The quantization operators r(f) in the Dirac definition are usually
unbounded. In that case we require that all operators 7(f) for f € A (or f € A% in
the complexified version) are densely defined and, moreover, have a common dense
domain of definition in H.

Bibliographic comments

The Dirac definition of geometric quantization of classical systems is presented (with
minor modifications) in all books on geometric quantization. A reader may look for
a more detailed exposition [29, 37, 42, 70, 79].



Chapter 13

Kostant—Souriau prequantization

It is difficult (and, often, not possible) to construct the Dirac quantization, defined
in the previous Chapter, for realistic classical systems. However, there exists a
quite general prequantization construction, due to Kostant and Souriau, which is
valid for a large class of phase spaces and the "maximal” algebra of observables
A = C>®(M,R). We describe it in this Chapter, starting from the simple case of the
cotangent bundle.

13.1 Prequantization of the cotangent bundle

Let N be a smooth n-dimensional manifold and M = T*N denotes its cotangent
bundle. Recall (cf. Ex. 30) that the symplectic form w on T*N is given by the for-
mula w = df, where 6 is a canonically defined 1-form on M with the local expression
0 => ", pidg;. We take for an algebra of observables A of our system the Poisson
algebra C°°(M,R) and for the Hilbert prequantization space H the space

H = L*(M,w")

of square integrable functions on M with respect to the Liouville measure, given by
w". A representation of 4 = C*°(M,R) in H is given by the following formula

T:fl—>T(f):f—in—(9(Xf), (13.1)

where f — 6(Xy) is considered as the multiplication operator on H. Note that
this operator, as well as the Hamiltonian vector field Xy, are correctly defined on
the subspace C§°(M, R) of C*°(M,R), consisting of smooth functions with compact
supports on M.

In particular, for the standard model N = R", M = T*R™ = R?" the represen-
tation (13.1) acts on the coordinate functions in the following way

r(p;) = pj— 11Xy, —0(Xy,) =pj —is— —pj = , 13.2
) = Xy, —00%,) =y~ g —p=ig (13.2)
(q5) X, 0(X,.) ( 0 > +1 0 (13.3)

j j q q j ap, I o
since X,, = 0/dq;, X,, = —0/0p;. Note that this representation is reducible,

even if we restrict it to the "minimal” Heisenberg algebra heis(R?"). Indeed, the

163
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operators i% and p; + iaiqj commute with all operators r(p;), r(g;), being non

scalar. However, we can make the representation of heis(R?"), defined by the above
formulas (13.2),(13.3), irreducible by restricting it to the subspace of H, consisting
of functions, depending only on (g;). Then the representation (13.2),(13.3) will
reduce to the well known Heisenberg representation of heis(R**) in the space Hy) 1=
L2(R?q), d"q), given by

r(p;) = —i@—qj , r(g) =q5 -

We can also construct a dual Heisenberg representation of heis(R?") in the space
Hyy = LQ(]RZD), d"p), given by

0
r(pj) =pj, T(QJ)IZ@-

Remark 21. The ”physical” explanation of the reducibility of the representation
7 : heis(R**) — End*H ,

given by (13.1), is that, according to the Heisenberg uncertainty principle, the ”phys-
ical” quantization space cannot contain the functions, depending on some pair of
variables (p;, ¢;) simultaneously, as it occurs in the space H = L*(M,w").

13.2 Kostant—Souriau (KS) prequantization

13.2.1 Prequantization map

Suppose now that M is a general smooth symplectic manifold of dimension 2n
with symplectic form w. Take the Poisson algebra C°(M,R) as the algebra of
observables. We are going to quantize the classical system, represented by the pair
(M, C>*(M,R)).

Let us begin with some heuristic considerations. Note that the symplectic 2-form
w, being closed, is locally exact, so we can find an open covering {U,} of M, such
that

w=4df, onU,

for some smooth 1-forms 6, defined on U,. Using these local forms 6, we can apply
the idea, described in the previous Section 13.1, to construct local representation
operators r,, in the spaces L?(U,,w") by the formula (13.1) with § = 6,,. It turns out
that (under some topological restrictions) we can combine these local representation
operators r, into a unique operator r, which acts, however, not on functions, but on
sections of a certain complex line bundle L over M. The structure of this line bundle
L — M is, in fact, prescribed by the local formulas (13.1) with 8 = 6,. Namely, the
local expressions X — 6, (X*) (with X® being a vector field on U,) in the right
hand sides of the local formulas (13.1) look like local expressions for the covariant
derivative of a connection in a line bundle over M. If these expressions do arise
from some connection V on a line bundle L — M (i.e. if they match together on
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intersections U, NUs up to gauge transformations, given by the transition functions
of L), then the local representation operators r,(f) in the spaces L?(U,,w™) will
match into a global representation operator

r:fr—f—iVx,, fe€C®(M,R),

acting on sections of L — M. In this case the curvature of such a connection would
be equal to w. In particular, the 2-form %w, representing the first Chern class ¢1(L),
should be integral, i.e.

1

[Q—w] € H*(M,7Z) c H*(M,R) .
T

From Sec. 8.1 we know that the integrality of [%w] is not only necessary, but also

sufficient for the existence of a line bundle L — M with a connection V. Namely,

rephrasing Prop. 15, we have the following

Proposition 29. Suppose that the manifold M satisfies the following quantization
condition: the cohomology class

1

[2—w] is integral in H*(M,R) . (13.4)
T

Then there exists a Hermitian line bundle L — M, called the prequantization bun-

dle, having a Hermitian connection V, whose curvature is equal to w.

Proof. The only new assertion in this Proposition, compared to Prop. 15, is the
Hermiticity of the connection V. Recall (cf. Rem. 16) that under the integrality
condition (13.4) there exists a complex line bundle L — M, such that ¢;(L) =
[w/27]. We take now an arbitrary Hermitian metric and a Hermitian connection V'
on L. Note that the curvature w’ of V' also represents the class ¢1(L). Hence,

w=2rw' +dj

for some 1-form 8 € Q'(M,R). If the connection V' is represented by a 1-form o/,
we introduce a connection V on L, represented by the 1-form

a=2ra’ —if3 .
This connection is Hermitian and its curvature is equal to w. Il

The Prop. 29 allows us to realize the scheme, described in the beginning of
this Section. Namely, suppose that our phase space M satisfies the quantization
condition, so that the assertion of Prop. 29 holds. Then there exists a Hermitian line
bundle L — M together with a Hermitian connection V, having the curvature, equal
to w. We take for the algebra of observables the Poisson algebra A = C*(M,R)
and define the prequantization space as

H=L*M,L;w") ,
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i.e. the Hilbert space of square integrable sections of . — M with respect to the
inner product, given by

(51, 52) 11 = /M < 51(2), 52(x) > W" |

where < s1(x), so(z) > is the Hermitian product of sections si,ss of L at x € M.
Then the Kostant-Souriau (KS) prequantization of the algebra A in H will be given
by the formula

TKS 5./49 ff—>7”(f) :f—z’VXf . (135)

It’s easy to check directly (cf. also [29, 37, 42, 70, 72, 79]) that the formula (13.5)
defines a representation of the algebra A = C*°(M,R) in the prequantization space
H.

Remark 22. There is another interpretation of the Kostant—Souriau operator kg
in terms of the automorphism group G of the prequantization bundle (L,V). An
automorphism of (L, V) is a pair (¢, g), where ¢ : L — L is a fibrewise isomorphism,
preserving the Hermitian metric on L and the connection V (i.e. ¢*V = V). The
projection of ¢ to M is a symplectomorphism g : M — M, belonging to the group G
of all symplectomorphisms of M. In other words, we have a commutative diagram

ﬁl lﬁ

M — M .
g

o)
—

According to Prop. 16, the automorphism group G of the prequantization bundle
(L, V) can be identified with a central extension of the symplectomorphism group
G by S, i.e. there is an exact sequence

1 St g g 1.

Note that (assuming that M is simply connected) the Lie algebra Lie G of the group
G can be identified with the Lie algebra of Hamiltonian vector fields on M, generated
by Hamiltonians f € C*(M,R), so that that the Lie algebra Lie G of the group G
is a central extension of LieG by R.

The action of the symplectomorphism group G on M generates an action of its
central extension G on L. Namely, if an action ¢ on M is generated by a Hamiltonian
vector field X with f € C*°(M,R) = LieG, then the corresponding action ¢ :
C>®(M, L) — C*(M, L) on the space of sections of L is generated by

Xs(s) = fs — iVx,s . (13.6)

Remark 23. In conclusion of this Subsection, we give a description of the C*-bundle
L — M, associated with the prequantization bundle L — M. It is sometimes more
convenient to use for computations this bundle, rather than . — M. Denote by
7 : L — M the bundle, obtained from the prequantization bundle 7 : L — M by
deleting its zero section. It is a principal C*-bundle, associated with the line bundle
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m: L — M. The space I'(L) := C*°(M, L) of sections s of L — M can be identified
with the space I'(L) of complex-valued functions s on L, subject to the condition

$(2p) = ~3(0)

for any p € L and any z € C*. The correspondence between sections s of L — M
and functions $ on L — M is established via the relation

s(m(p)) = é(p)p forany pe L.

Note that if a section s of L — M is non-vanishing at some point x € M: s(x) # 0,
then s(x) € L and, applying the above relation for p = s(z), we obtain that s(z) =
5(s(z))s(x), i.e. s0s =1 at any point z € M, where s(x) # 0.

We can introduce a connection V on L — M , associated with the connection V
on L — M. In terms of the local representatives 6, of the connection V, the local
representatives 6, of V are given by

éa:9a+i%
z

on U, x C*. It’s easy to check that these local forms define a global 1-form, which is
the connection form of V. This connection generates the horizontal lifting of vector
fields on M. Let £ be such a vector field, then its horizontal lift is a vector field f
on L, such that m,(§) = € and V(£) = 0. A correspondence £ « & between vector
fields £ on M and their horizontal lifts 5 on L has the following properties

(Ves) =&, (fs) =fs

for any vector field £ on M, section s of L and function f € C*°(M,R).

We can also give an interpretation of the generator (13.6) in terms of the bundle
L (cf. [72]). Given a Hamiltonian f € C*°(M,R), we define a vector field 7y on L
by local representatives

0
oY
on U, x C*. Here the vector field a% is the differentiation with respect to the angle

coordinate ¥ in the polar representation of the coordinate z = re?” on C*. It follows
from this definition that the generator (13.6) can be written in terms of L as

Nia = Xp + (0a(Xy) = f)

X(s) = —ings . (13.7)

Remark 24. Using the vector field 7y, introduced in Rem. 23, one can prove that the
KS-operator rgg(f), given by the formula (13.5), is self-adjoint under the assumption
that the Hamiltonian vector field X is complete. (In this case the vector field
ns is complete too.) Denote by go’} the 1-parameter group of transformations of

L, generated by the vector field n;. Consider the 1-parameter unitary group of
transformations of I'(L) (with respect to the inner product, induced from T'(L)),
generated by ¢%. It acts by the formula: 5+ 50 ¢ for 5 € I'(L). The operator
ris(f), given by (13.5), coincides with the generator of this unitary group, according
to (13.7). Hence, it is self-adjoint by Stone’s theorem. (This argument is due to
[72].)
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13.2.2 Polarizations

The representation of the algebra A = C*°(M,R) in the prequantization space H,
defined by (13.5), is reducible by the same reasons, as in Sec. 13.1. According to
the Heisenberg uncertainty principle, we can make this representation irreducible
by restricting it to a "half” of the prequantization space H, i.e. to a subspace of
H, containing the functions from H, which depend, in terms of the local canonical
variables (p;, ¢;)I;, only on one variable from each pair (p;, ¢;). This naive idea may
be formalized, using the notion of the polarization.

Let (M,w) be a symplectic manifold of dimension 2n. We extend its symplectic
form w complex linearly to the complexified tangent bundle TCM .

Definition 40. A polarization on M is an integrable involutive Lagrangian distri-
bution P on M. In other words, P is a complex distribution P : x +— P, C TCM of
rank n, satisfying the following conditions: (a) P is involutive, i.e. [P, P] C P; (b)
the restriction of w to P is identically zero.

For a polarized phase space (M, P), satisfying the quantization condition (13.4),
it’s natural to choose for the quantization space H the space of polarized sections.
It is defined as

H=LHM,L;w") :={s € L*(M,L;w") : Ves=0 for any £ € P} .
There are two distinguished classes of polarizations.

Example 34. A polarization P on a phase space M is called real, if P = P, where
"bar” denotes the complex conjugation in TCM. A standard example of such a
polarization is the cotangent bundle M = T*N of a configuration manifold N with
local canonical coordinates (p;, ;) and polarization P, given by the subbundle of
T M, generated by the vector fields {9/dp;}, i = 1,...,n. (One can take for P the
subbundle of T'M, generated by the vector fields {9/d¢;}, i = 1,...,n, as well.)
The space L% (M, L;w™) of polarized sections in this case consists of sections from
L*(M, L;w"), which do not depend on momenta {p,}.

A polarization P is called Kdhler, if PN P = 0. To give an example of such a
polarization, suppose that our phase space (M, w) is Kahler, i.e. it is provided with a
complex structure J, compatible with w. Then we take for P the subbundle 70! M
of (0,1)-vector fields in TCM. In this case the prequantization bundle L can be
made holomorphic with the holomorphic structure, determined by the d-operator,
given by the (0,1)-part V%! of the connection V. The space L%(M, L;w™) of polar-
ized sections for P = T%!' M coincides with the space L% (M, L;w™) of holomorphic
sections of L. — M.

Given a polarized phase space (M, P), satisfying the quantization condition
(13.4), we can hope to obtain an irreducible representation of the algebra of ob-
servables A by restricting the Kostant—Souriau prequantization map to the space
L%4(M, L;w™) of polarized sections. Unfortunately, this straightforward idea works
only for very special phase spaces and algebras of observables, since in most of the
cases the space L% (M, L;w™) of polarized sections is not invariant under the action of
the Kostant—Souriau representation. In the next Section we shall demonstrate how
the idea of restriction to the space of polarized sections can be realized for the flat
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space R*" = C" and the Heisenberg algebra of observables heis(R**) =: heis(C"). In
this case the restriction of Kostant—Souriau representation to the space L%(C™;w™)
of holomorphic sections yields an irreducible Bargmann—Fock representation of the
Heisenberg algebra in L4 (C™;w™).

Bibliographic comments

The prequantization of the cotangent bundle was known long ago to physisists (cf.,
e.g., [35]). Its generalization to general manifolds, satisfying the quantization con-
dition, due to B.Kostant and J.-M.Souriau, is presented in all books on geometric
quantization (cf. [29, 37, 42, 70, 69, 79]). In these books a more detailed discussion
of polarizations may be also found.
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Chapter 14

Blattner—Kostant—Sternberg
quantization

In this Chapter we present the Blattner—Kostant—Sternberg (BKS) quantization
scheme for Kéhler manifolds, provided with Kéahler polarizations. We start from the
simplest example of such a quantization, namely, the Bargmann—Fock quantization
of the standard model (R*", wy), provided with the Heisenberg algebra of observables.
In Secs. 14.2-14.5 we explain how to construct the BKS-quantization of a quantizable
Kéhler manifold. In Sec. 14.2 we introduce the Fock spaces of half-forms and in
Sec. 14.4 define the BKS-pairing between them, using the metaplectic structure,
introduced in Sec. 14.3. In Sec. 14.5 we explain how to quantize Kahler phase
manifolds, using the BKS-pairing.

14.1 Bargmann—Fock quantization

Let My = (R*",wp) be the standard model with standard coordinates (p;,q;), j =
1,...,n. In these coordinates

n
Wy = dej /\dqj s
j=1

so that wy = dfy with 6y = Y77, p; dg;. We identify R*" with C" by introducing
complex coordinates
Lo _PitiG P
’ v o V2
(following [70], we have replaced the usual factor 1/2 in these formulas by 1/v/2 to
make the expression for KS-representation more symmetric). In these coordinates

7=1,...,n,

n
Wy = —idej /\de .
j=1

The Hamiltonian vector fields, corresponding to coordinates z;, z;, have the form

X __ii_i(iﬂ-i) X_ii_i(i_ii)
5 0z, V2 \9p; 9q;) " T 0z V2 \0p;  dq;)
171
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In particular, iw(X.,, Xz, ) = ;. Evidently, the vector fields {X,,..., X, } span
the antiholomorphic tangent space T%1(C") (which is the Kihler polarization space
in the sense of Ex. 34).

The prequantization bundle L — C” is the trivial bundle C"* x C — C". We fix
a trivializing section \g : C" — L with < Xy, \¢g > = 1. The connection V on L is
determined by the property

Vdo=—i) pjdg @A .

=1

Following [70], we replace the trivializing section A\ by another trivializing section
A1, given by

1 « ,
>\1 = exp <_Z Z(Q? —i—p? — 21])ij)> )\0 .
j=1

Then .
V)\l = (91 X )\1 with 91 = —1 Z Zdej .

j=1

In particular, the section \; is covariantly constant along the vector fields from
T%1(C™). Hence, any section of L, covariantly constant along 7%!(C"), have the
form

QO(Z))‘l )

where (z) is a holomorphic function of z € C". We also have

n

1
<A1, A >=exp <—§ > (¢ +p§)> = exp (—|2[°)

j=1

with |2> = 37, Z;2;. The inner product in the prequantization space H = L*(C", L; wg)
takes on the following form

- .12
(ohon) = [ p@i)e

Following the idea, formulated at the end of Sec. 13.2, we define the quantization
space to be the space of polarized sections L2 (C", L;wy). In our case it coincides
with the Bargmann—Fock space

F(C™) = L3 (C, e 1H1/2)

of holomorphic square integrable functions on C" with the Gaussian weight e~ 171%/2,

The Kostant—Souriau (KS)-operators, associated with observables from the Heisen-
berg algebra heis(R?") = heis(C") by formula (13.5), leave the Bargmann-Fock space
F(C") invariant and so admit a restriction to this space. To see that, we compute
the KS-operators, corresponding to the coordinates z;, z;:

0
rrs(2) (A1) = zjoA1,  rrs(Z5) (A1) = 8_5A1
J
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for j =1,...,n. Using the expression for the basis Hamiltonian vector fields, corre-
sponding to coordinates and momenta:

i 0 0 1 0 0
%o a5) s as)

we get the expression for the KS-operators, corresponding to the generators of the
Heisenberg algebra heis(R*"):

rrs(py) (A1) = % sz + %) 90] Ay rrs()(0A) = % sz - E)%) 90] Ar

It is clear from this expression that these operators leave the Bargmann—Fock space
invariant. So we can restrict our KS-representation to this space, obtaining a repre-
sentation ry of the Heisenberg algebra heis(R?*) = heis(C") in the Bargmann-Fock
space F(C") = L2(C", e 12/2),

This representation, which is called the Bargmann—Fock representation, is al-
ready irreducible. The easiest way to see that is to use the so called creation and
annihilation operators , given in this case by the formulae

*_

a;

rks(z;) = multiplication by z; , a; = rks(%;) = 0/0%; ,

acting in the Bargmann—Fock space F/(C"). Denote by ¢y = 1 the so called vacuum
vector in F(C"). Note that the Bargmann Fock space F(C") = L%(C", e 1°/2) is
generated by vectors, obtained from ¢ by the action of creation operators a}

s Le.
by vectors of the form

aj, .. a; Qo -
To show that the Bargmann—Fock representation ry is irreducible, suppose that
we have an operator A in F(C"), commuting with all creation and annihilation
operators aj,a; of our representation. Then Agq should be equal to cpg for some
constant ¢, since Ay is annihilated by all annihilation operators a; = 0/0z;. On
the other hand,
Alaj, ...aj po) = aj, ...a; (Apo) = c(aj, ... aj o) -

These two properties imply that A = ¢ - id, so, by Schur’s lemma, the Bargmann—
Fock representation ry is irreducible.

Unfortunately, the described method of quantization of the standard model
My = (R*,wy) = (C" wy), provided with the Heisenberg algebra heis(R*") =
heis(C™), does not apply to other Kéhler phase spaces and polarizations, since the
KS-prequantization operators do not preserve, in general, the Fock spaces of holo-
morphic sections. We describe this situation in more detail in the next Sec. 14.2.1.

14.2 Fock spaces of half-forms

14.2.1 KS-action on Fock spaces

Suppose that our phase space (M, w) is a Kdhler manifold, provided with a compat-
ible complex structure J. Assume that (M, w) satisfies the quantization condition
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(13.4) and L — M is the prequantization bundle, provided with a Hermitian con-
nection V. We introduce a holomorphic structure on L, which is determined by the
d-operator, given by the (0, 1)-component V%! of the connection V with respect to
the complex structure J. The Fock space

F(M,J):=L5(M, L; w™)

is the space of square integrable sections of L — M, holomorphic with respect
to the introduced holomorphic structure on L. Denote by A the Lie algebra of
Hamiltonians, which can be identified (under the assumption that M is simply
connected) with the Lie algebra of Hamiltonian vector fields on M. Any observable
f € A generates a (local) 1-parameter group I' of symplectomorphisms of M, given
by

@} = exp(2mitXy)

where Xy is the Hamiltonian vector field, generated by f. As we have pointed
out in Sec. 13.2 (cf. Rem. 22), the action of I' can be lifted to the action of its
central extension I' on L, and this lifted action is generated by the KS-operator
r(f) = rks(f). More precisely, the lifted action is given by

@Y = exp (2mitr(f)) : L*(M, L;w") — L*(M, L;w") .

However, these operators do not preserve, in general, the Fock space F(M, J), since
@’ maps the Fock space F(M,J) into the Fock space F'(M, J};), associated with
the transformed complex structure J§ := ¢}, o J o go;i, which, in general, is not
equivalent to J. When this happens, the corresponding KS-operator rxg(f) does
not admit a restriction to F(M,J). If we still want in this case to construct a
quantization of (M, A), using the KS-operators, we need to find a method of canon-
ical identification of Fock spaces F'(M,J) with different J. In other words, we are
looking for a canonical unitary pairing between different Fock spaces F'(M, J).
A naive idea would be to have some sort of an integral pairing, given by

/ < 81,8 > W
M

for sy € F(M, Jy), s, € F(M,Jy). But this idea does not work already for the
Bargmann-Fock quantization. In this case sections s; and s, belong to L2-spaces
with different weights, more precisely, s; belongs to F(C",J;) = L%(C", e K1(2)/2)
and sy belongs to F(C",.J;) = L4(C", e 52()/2) where K, (z) and K,(z) denote
the Kéhler potentials of Kahler metrics, determined by J; and J,. It is clear that
the product of these two factors may be not integrable. A better idea is to replace
square integrable sections s of L — M by square integrable "half-forms” s ® v/w™.
Then the integral of their product will be finite by the Cauchy inequality. In the
next Subsection we realize this approach by formalizing the notion of half-forms.

14.2.2 Half-forms

Bundle of J-frames. Let (M,w,J) be a Kéhler manifold of dim¢ M = n. Its
complexified tangent bundle T¢M splits into the direct sum

1,0 0,1
T°M =T, T,
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of the subbundles, formed by the (4i)-eigenspaces of the operator J. The bundle of
J-frames
FI‘J — M

is the bundle of frames in Tf;’l, i.e. its fibre at x € M consists of all frames in T° 3;
The change of frames in the fibre generates a right GL(n, C)-action on Fr;, making
Fr; a principal GL(n, C)-bundle.
We denote by
=K' — M

the anti-canonical bundle, associated with Fr;, which coincides with the maximal
exterior power of Fr;: Fr’; = A"(Fr;). This is a complex line bundle on M, asso-
ciated to Fr; by the homomorphism det : GL(n,C) — C*. Its sections p can be
identified with functions gt on Frj, satisfying the relation

(X - C) = det(C™Hu(X) (14.1)

for X = (Xy,...,X,) € C®°(M,Fr,), C € GL(n,C).

We can define a partial connection, acting on sections of the bundle Fr’;, following
[70, 72]. Suppose that u is a section of Fr'}, identified with the function g on Fry,
and £ is a (0, 1)-vector field on M, i.e. a section of Tg’l. To define the value of
Veii at a point 2° € M on a frame X° € Fr;,,, we extend X to a local J-frame

X = (Xy,...,X,) in a neighborhood U of z°, represented by Hamiltonian vector
fields X1,..., X,,. Then we set

(Vei)(X?) == € u(X)]ao

i.e. the value of V¢fi on the frame X at 2° is equal to the value of the vector field
¢ on the function (X)) at 2°. It can be checked that this definition is correct, i.e.
Vefu is again a function on Frj, satisfying (14.1), and does not depend on the choice
of the local extension X of a J-frame X°. So we can define V¢pu as the section of
Fr’}, identified with the function V¢f on Fr;.

The introduced derivative V has the properties of a partial connection (cf. [18]).
Namely, for any (0, 1)-vector fields &, n, any functions f,¢g € C*°(M,R) and any
sections p, v of Fr'y we have:

L Vigergntt = fVep+ gV
2. Ve(p+v) = Vepu+ Ver;
3. Ve(fp) = fVep+ (Ef ).
Moreover, this partial connection satisfies the equality
VeV = VopVep = Vi

which means that it is flat.
Bundle of half-forms. Denote by ML(n,C) the metalinear group, which is a
double covering of GL(n, C):

p : ML(n,C) LN GL(n,C) .
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Its elements can be identified with the square roots of (nxn)-matrices from GL(n, C)
in the sense that there is a commutative diagram

ML(n, C) X (G

\ det

GL(n,C)

where x is a unique complex square root of det, such that x(/) = 1.

Suppose that the principal GL(n, C)-bundle Fr; — M of J-frames can be ex-
tended to a principal ML(n,C)-bundle over M. Note that such an extension, in
general, may not exist, since there is a topological obstruction for its existence (cf.
[79, 29, 70]). This obstruction is an element of the cohomology group H?*(M,Z,),
moreover, the different choices of such metalinear extensions (if there are any) are
parameterized by the elements of H'(M,Z,). So we suppose that this topological
obstruction vanishes for our J-frame bundle Fr; — M and it can be extended to a
principal ML(n, C)-bundle

ﬁr} — M .

We call F—E] the bundle of metalinear J-frames. It is a principal ML(n, C)-bundle
over M together with a double covering bundle epimorphism 7, such that

FI‘J

a FI'J .
ML(n,;x A(n,@)
M

We denote by s
B =K, — M

a complex line bundle on M, associated to 15;; — M by the homomorphism y :
ML(n,C) — C*. Its sections v can be identified with functions 7 on Fr;, satisfying
the relation

(X -C)=x(CHp(X) (14.2)

for X € C*(M,Fr,), C € ML(n,C).

We can define a partial connection, acting on sections of the bundle ]ﬂ:;’}, similar
to the case of the bundle Fr;. Suppose that v is a section of FAr?}, identified with the
function 7 on ]5:;], and ¢ is a (0, 1)-vector field on M. To define the value of V&

at a point 2° € M on a metalinear frame X° € F/rz,jo, we extend the corresponding
J-frame X° = 7(X°) to a local J-frame X = (Xi,...,X,) in a neighborhood
of 2%, represented by Hamiltonian vector fields Xi,...,X,. Since 7 is a double
covering, there exists a local metalinear J-frame X, defined (perhaps, on a smaller)
neighborhood U of 2°, extending X° and covering X, i.e. 7(X) = X. Then we set

(Ver)(X®) = E0(X)]oo ,

i.e. the value of V¢ on the metalinear frame X at 2° is equal to the value of the

vector field ¢ on the function 7(X) at 2% This definition is correct, i.e. V¢r is
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again a function on Ff‘\ri,, satisfying (14.2), and does not depend on the choices of the
extension X and its metalinear lift X. So we can define Vv as the section of Fr” Ty,

identified with the function V. on Fr, J- The defined partial connection V on Fr
is again flat.

Fock space of half-forms. Consider a line bundle L ® K M2 M. It can be
provided with a partial connection V, induced by the Herm1t1an connection on the
prequantization bundle L and the partial connection on the anti-canonical bundle

_1 2 defined above. More precisely, given a (0, 1)-vector field ¢ and a section

a—)\®yofL®KJl/ we define
VgO’Z (Vg/\)@y—f—)\@(v&V).

Denote by Oy /9(M, J) the space of holomorphic sections o of L ® KJI/Q — M.
We want to define an inner product of two sections o, 09 in Oy/5(M, J). Locally (in
a neighborhood U of an arbitrary point = € M) these sections may be written as

oL=MQ®U, 3= Q1

for M, e € O(U,L), v, € O(U, K;j/Q). We choose a local J-frame X =
(X1,...,X,) on U, so that {X1,...,X,, X1,...,X,} form a basis of T*M|; and

iW(Xj,Xk> = 0jk » w(Xj,Xk) = W(Xj,Xk) =0.

Denote by < 01,09 > a density on U, defined by

< 01,09 >:=< )\1([1)),)\2(1’) > 51()2)52()2)

for z € U and any metalinear lift X of X (such a lift locally always exists). It may
be checked (cf. [70, 72]) that this definition does not depend on the choice of the lift
and correctly defines a density, linear in oy, anti-linear in o5 and positive definite in
the sense that (o,0) > 0 for non-vanishing o.

Introduce a pre-Hilbert space

PFy3(M,J) :={0 € O1)2(M,J): / < 0,0 >< o0}
M
and provide it with the inner product, defined by

(01,09) ::/ < 01,09 > .
M

The Fock space of half-forms Fy/2(M, J) is, by definition, the completion of PF} o(M, J)
with respect to this inner product.

Locally (in a neighborhood U of a point x € M) we can write down the integrand
< 01,09 > exphc1tly by choosing local trivializing holomorphic sections Ay of L and
vy of K , subject to the conditions

<A X >=1, p(X)=1

in U. In terms of these trivializations, holomorphic sections o1, 09 of L® K ;1/ % over
U will be written as

or=fi R, 03=fo:A®
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for some holomorphic functions fi, fo on U. Then in terms of J-holomorphic local
coordinates (z1,...,2,) in U we’ll have

< 01,09 >= <%)nf1(2)mdn2 ANd"Z .

14.3 Metaplectic structure

14.3.1 Bundle of metaplectic frames

Metaplectic group. The metaplectic group Mp(2n,R) is a connected double cover-
ing group of the symplectic group Sp(2n,R), i.e. there is a 2:1 group homomorphism

p: Mp(2n,R) — Sp(2n,R) .

Such a covering exists, because the fundamental group m; of Sp(2n,R) is equal to
Z. To see that, note that Sp(2n,R) is homeomorphic to

Sp(2n, R)

) =~ S x SU(n) x {Siegel disc} ,

U(n) x
and the second and third factors on the right are simply connected.

Metaplectic structure. Let (M, w) be a symplectic manifold of dimension 2n.
Denote by Fr, — M the principal Sp(2n, R)-bundle of symplectic frames on M. A
metaplectic structure on M is an extension of the bundle Fr, — M to a principal
Mp(2n, R)-bundle Fr,, — M, called the bundle of metaplectic frames on M. In other
words, we have a double covering bundle epimorphism 7 : Fr, — Fr,,, which may be
included into the following commutative diagram

Fr,

a Fr, .
Mp(n;{\ %p(n,R)

)
M

There is a topological obstruction for the existence of the metaplectic structure
on M, due to Kostant [46]. Namely, denote by J an almost complex structure on
M, compatible with w, so that ¢;(M) is the 1st Chern class of T'M with respect
to J. Then for the existence of a metaplectic structure on M it is necessary and
sufficient that ¢;(M)mod2 = 0 <= ¢;(M) is even in H*(M,Z). If this condition is
satisfied, then the set of all metaplectic structures on M (up to a natural equivalence)
is parameterized by H'(M,Zs).

14.3.2 Bundle of Kahler frames

It is also convenient to introduce the bundle Frx — M of J-frames for all w-
compatible almost complex structures J on M. It is a fibre bundle over M with
the fibre at x € M, parameterizing J,-frames on T, M for all w,-compatible almost
complex structures J, on T, M. This fibre can be identified with

Sp(2n,R)

Uin) x GL(n, C) = {Siegel disc} x GL(n,C)
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in the following way. Given a symplectic frame ( n) = (&, &My, M) at
x € M, we can write down any J-frame X = (X,...,X,) at z uniquely as (cf. [70])

X=&U+nV,

where U, V are complex n x n-matrices, such that the rank of (2n xn)-matrix *(U, V)
equals n, 'UV = VU, and the matrix (VU — UTV) is positive definite. The set of
such matrices (U, V') can be identified with with the set: {Siegel disc} x GL(n, C),
by associating with a matrix ‘(U, V) a pair of matrices

W= U+iV)U—-iV)"', C:=U-iV. (14.3)
Then C belongs to GL(n,C) and W belongs to the Siegel disc
D :={W € L(n,C) : "W = W, I — W'W is positive definite} .

The structure group of the bundle Frx — M, acting on the left, coincides with
Sp(2n,R). There is also a natural GL(n,C)-action on Frx — M from the right,
given by the frame change. The bundle Frx — M is associated to the bundle
Fr, — M of symplectic frames by a natural Sp(2n, R)-action on the fibre.

In a similar way, we introduce the bundle Frx — M of all metalinear J-frames
on M for all w-compatible J. It is a fibre bundle with the fibre at x € M, given by

Sp(2n,R)

To XML ©) (14.4)

and the structure group Mp(2n,R), acting by the homomorphism p : Mp(2n,R) —
Sp(2n,R) on the first factor. The bundle Frx — M is associated to the bundle

Fr, — M of metaplectic frames by the Mp(2n, R)-action. There is a commutative
diagram

FI"K )

where 7 is a double covering.

Note that for a fixed w-compatible almost complex structure J on M the bundle
Fr; — M is a subbundle of Frx — M, invariant under the right GL(n C)-action.
The bundle Fr; — M is a ML(n, C)-invariant subbundle of Frx — M, which
coincides with the inverse image of Fr; — M under the double covering map 7 :
Frg — Frg. In other words, we can say that a metaplectic structure on M, given
by the metaplectic frame bundle together with the double covering 7 : Fr, — Fr,,
induces metalinear structures on all J-frame bundles simultaneously.

14.4 Blattner—Kostant—Sternberg (BKS) pairing

Lemma 5. Suppose that Jyi, Jo are two w-compatible almost complex structures on
a symplectic manifold (M,w). Then they are transversal in the sense that

T Ty =TM .
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Proof. Suppose, on the contrary, that there exists a vector £ # 0, such that

ce T}fx @ 7%

Tox for some z € M .

Then
0< w(f, J1f) = w(§72§) = zw(f,f) s

where the inequality on the left is implied by the w-compatibility of J; and the first
equality is provided by & € T}lox Similarly,

0< w(é.a J2§) = w(§7 _Zé.) = —Z(,d(f7§) :

So we have simultaneously the two following relations
iw(€€) >0 and  —iw(E€) >0,

contradicting each other. Hence, T}{?x NTY' = {0} for any € M. By dimension

Jo,x
counting we obtain that

1,0 0,1
TJI’:E @ T

Jo,x

=TEM for any z € M .

]

Due to the above Lemma 5, we can always choose locally, in a neighborhood U
of an arbitrary fixed point x € M, a J;-frame X; and Jo-frame X5, so that

iw(X?, XE) = 6 . (14.5)

Given two sections o; of L ® K;ll/z and o9 of L ® K;;/Z on U, we can write them
down in the form
OL=MQU, T2=MQ.

We define a density, similar to that in Subsec. 14.2.2:

< 01,09 >:=< )\1($)7 )\2(1’) > ﬁl(Xl)ﬁQ(Xg) (146)

where Xl,Xg are metalinear lifts of X, X5, satisfying a metalinear analogue of
(14.5). We shall describe this analogue (formula (14.9)) in Rem. 25 below. Now
we note only that the definition (14.6) does not depend on the choice of the frames
Xi, Xy, satisfying the normalization condition (14.5), and their metaplectic lifts
X1, X,, satisfying the metaplectic normalization condition (14.9) below (this fact is
proved in [70], Sec.5.1; cf. also [29], Ch.V Sec.5).

We define the BKS-pairing between different Fock spaces of half-forms Fy 5(M, J;)
and F/5(M, J>) by the formula

(O'1,0'2>12 Z—/ < 01,092 > . (].47)
M

Suppose now that our almost complex structures J; and J, are integrable. Then
locally, in a neighborhood U of a point © € M, we can write down an explicit formula
for the integrand in the above formula. For that we fix a Ji-frame X; and a Jo-frame
X, in U, satisfying the normalization condition (14.5), and their metaplectic lifts
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X1, X, satisfying the metaplectic normalization condition (14.9), and choose local
trivializing holomorphic sections Ay of L, 14 of K ;11/ > and vy of K ;21/ 2, subject to
the conditions

<X >=1, (X)) =1, X)) =1

in U. Then holomorphic sections o1 of L ® Kj_ll/ > and 0y of L ® K;;/ 2 over U will
be written as

o1=Jfi-®r, 02=[fa-A®1,
where f; is a Ji-holomorphic function on U, and fs5 is a Jy-holomorphic function

on U. Since J; and Jy are transversal, we can find local J;-holomorphic coor-
dinates (z1,...,2,) and Jy-holomorphic coordinates (wy,...,w,) in U, such that

(0/0z1,...,0/02,,0/0w, ..., 0/0w,) form a local basis of TM over M. Then

< 01,09 >= <%>nf1( )fz( )an/\dn

Remark 25 ([70]). To describe the metaplectic analogue of (14.5), suppose that
our frames X; and X, are written in terms of a single symplectic frame (£,7) =
(&1, &M, - ., Mn), as in Subsec. 14.3.1:

Xi=8Ui+nVi, Xo=&Uz+nVs.
Then Eq. (14.5) can be written in the form
ViU, — UV, = —il .
In terms of the matrices
Wi =(U;+iVy)(U; —iVy) ™, Ci=U;—iV;, j=12,
this condition means that
I—wWiw, =2(Cch=tort. (14.8)
Note that Z := WJ W1 belongs to the matrix disc
D :={Z e L(n,C): I — Z'Z is positive definite} .

Consider the map D — GL(n,C), given by Z + I — Z. Since D is contractible

—~—

(moreover, convex), this map can be uniquely extended to a map Z — [ —Z,
sending D to ML(n,C) and taking the value I at Z = 0 (where we denote by I
the unit element in ML(n,C)). Suppose that the metalinear lifts X, Xy of our
frames X1, X, are described, according to (14.4), by pairs (Wi, Cy), (Wa, Cy), where
W, € D, C; € ML(n,C) for j = 1,2. Then the metalinear analogue of (14.5) has
the form

—_—

I—Wiw, =2(CHCt . (14.9)
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14.5 Blattner—Kostant—Sternberg (BKS) quanti-
zation

14.5.1 Lifting the y-action

Let (M,w,J) be a Kdhler manifold, and f € C*(M,R) is an observable on M,
for which the Hamiltonian vector field X, is complete, i.e. the 1-parameter flow
¢ = exp(2mitXy), generated by Xj, is defined for all ¢ € R. Hence, {¢%} is a
1-parameter group of symplectomorphisms of M. The flow ng} generates a natural
flow on the space of w-compatible complex structures on M, given by

T Jhi= g0 Togg

and a natural flow, denoted by the same letter @?, on the bundle Frx — M of all
J-frames on M.

By the covering homotopy property, this flow can be lifted to a 1-parameter flow
35? on the bundle Frx — M of all metalinear J-frames on M, yielding a 1-parameter
flow of bundle isomorphisms

@?:15;]—>FrJ}.

We are going to define an extension of the <p’}—ﬂow to the Fock spaces of half-

forms, denoted by
Hy = HY = Fipa(M, J}) .
@}-action on K ;1/ ?. Define first a gpﬁc—action on the bundle K~'/2 over the space
of w-compatible complex structures on M. Let v be a section of K ;1/ 2, identified

2 = po=1/2

with the function 7 on the bundle ﬁrvj Denote by ¢%v a section of K, '~ = o

identified with the function go?jy, defined by

Pr(X) = i(g;'X)

for any metalinear frame X € Fr, = l:ﬂr\];
gp?—action on sections of L. By Rem. 22, the gp?—ﬂow on M can be lifted to a
gpﬁc—ﬂow on sections of L. More precisely, the generator of the gpjc—action on L

d

PrA) =iz (95A)] 2,

is equal to
Pf()\) = ’I"Kg(f)()\) == f)\ — iva)\ .
¢-action on the Fock space of half-forms. Recall (cf. Subsec. 14.2.2) that
the Fock space of half-forms H is defined as

H - Fl/Q(M, J) .
Suppose that an element o of H is written in the form

c=ARU,
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where A € O(M, L), v € O(M, K;lﬂ). Then by definition

Qb0 = PIAQ v .

By linearity and continuity this definition extends to arbitrary sections in H, so we
obtain a Hilbert space isomorphism

QOI}ZH—>H75

with the inverse map, given by gp}t. It may be shown (cf. [70]) that g&} :H — H; is
unitary.

14.5.2 Quantization of quantizable observables

Let f be an observable on M with a complete Hamiltonian vector field X;. Sup-
pose first that f is quantizable, i.e. the associated flow 9030’* preserves the complex
structure J <= @} is a J-holomorphic map. Otherwise speaking, f is quantizable
iff [ Xy, TE’IM ] C TS’IM . The quantizable observables form a subalgebra of the Lie
algebra A of all observables. If f is quantizable, then the go?-ﬂow preserves H, i.e.
we have a 1-parameter group of unitary operators go? : ' H — 'H, and we can define
the quantized observable Qf by

d
Q;(0) : i (¥50)|,_, (14.10)
for any o € H.

We can describe the operator Q; in a more explicit way as follows. Suppose
that £ is any vector field on M, preserving J, i.e. [£,T3’1M] C Tf,]’lM. Define a
partial Lie derivative L¢ of half-forms with respect to {. Namely, for any half-form
v, identified with the function 7 on the bundle P:I\::], we identify L¢r with the function

ngy, given by the formula

LerX)ls = (Len) (X = |y (P& 5))

for any metalinear J-frame X. In other words, the L¢-derivative of the function o,
evaluated on a metalinear J-frame X at a point z, is equal to the % -derivative at
t = 0 of the function 7, evaluated on the metalinear J-frame @}X’ at the point gogca:.

The derivative L¢ has the properties of the Lie derivative, but it can be taken
only along the vector fields &, preserving J. The operator Q; can be written in
terms of partial Lie derivative as

Qf(/\® I/) = (—Z‘va)\—Ff)\) &® V—i/\®LXfV .

Locally, we can compute the second term on the right as follows. Denote by X =
(X1',...,X™) a local J-frame on an open set U, consisting of Hamiltonian (0, 1)-
vector fields X7. Then

n

[(Xp. X)) =) af (2)X*

k=1
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for some smooth matrix function A := (af;) on U. Denote by X a metalinear lift of X

over U and choose a local section 7y of K;l/Q, so that 7(X) = 1. Any o € Fy (U, J)
can be written in the form
g = )\ ® 170

for some holomorphic section A € O(U, L). Then (cf. [70], Sec.6.2)
LXfﬁO = —§tI'A : DO s
so that .
Qf(/\ ® 17()) = (—iva)\ + f)\ — iitI‘A . )\) ® 170 .
It can be shown (cf. [70, 72]) that the map f +— Q; is a Lie-algebra representation

{Lie algebra of quantizable observables} 2, End*H
in the Fock space of half-forms H = Fy »(M, J).

14.5.3 Quantization of general observables

Assume that for an observable f the integrals, defining the BKS-pairing H xH; — C,
are finite, so we have a unitary operator

Ut . Ht —H .
In its terms the BKS-pairing, defined by formula (14.7), may be written as
(0,00)0 = (0, Us0y)

for c € H = Hy, o; € H;.
Consider a unitary operator

(ID? ::Utogoﬁc:H—ﬂi
and define a self-adjoint quantized observable Qy by
d o,
Qy =i q)f’t:O:H—WH )
Then the map f +— Q; defines an irreducible Lie-algebra representation

Q: A— End"H

of the algebra of observables A in the Fock space of half-forms H (under the as-
sumption that the BKS-pairing is finite for all observables f € A).

Bibliographic comments

The BKS-quantization is presented in several books on geometric quantization. We
follow mainly the Snyatycki book [70], dealing with different kinds of polarizations.
We also recommend the Guillemin—Sternberg book [29], devoted mostly to real po-
larizations, and Tuynman lecture notes [72]. Our goal here was to present the
BKS-quantization scheme without going too much into details (which may be found

in [70, 29, 72]).
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Chapter 15

Quantization of the loop space of a
vector space

In this Chapter we solve the geometric quantization problem for the classical system
(QR?, A,), where the phase space QR? consists of smooth loops in the d-dimensional
vector space R, and the algebra of observables A, is the Lie algebra of the Frechet
Lie group G4, being the semi-direct product of the loop group LR? and the diffeo-
morphism group Diff, (S') of the circle.

We start from the quantization of the "enlarged” system, obtained from (QR?, A,)
by enlarging both the phase space and the algebra of observables. More precisely, we
enlarge the phase space QR? to the Sobolev space V¢ of half-differentiable vector-
functions (a vector analogue of the Sobolev space V', introduced in Sec. 9.1), and
the algebra of observables A, to the Lie algebra A of the Hilbert Lie group G, be-
ing the semi-direct product of the Heisenberg group Heis(V?) and the symplectic
Hilbert—Schmidt group Spyg(V¢). The group G may be considered as a Hilbert-space
(symplectic) analogue of the standard group of motions of the d-dimensional vector
space RY. The latter group is the semi-direct product of the group of translations
of R% and the group of rotations of R%. In the case of the Hilbert space V the role
of translation group is played by the Heisenberg group, and the group of rotations
is replaced by the symplectic group Spyg(V).

To simplify the formulas, we set d = 1 in the most part of this Chapter, replacing
it with a general d only in Sec. 15.6, where the quantization of QR? is completed.
The last Sec. 15.7 is devoted to the quantization of the universal Teichmiiller space.

15.1 Heisenberg representation

15.1.1 Fock space

Consider the Sobolev space
V= H)*(S",R)

of half-differentiable functions on the circle S (cf. Sec. 9.1) and its complexification

Ve = Hy*(8'.C) .
187
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A natural complex structure operator Jy on V¢, introduced in Sec. 9.1, generates
a decomposition of V¢ into the direct sum of subspaces

VE=W,oW_=W,aW, (15.1)

where W. is the (F4)-eigenspace of the operator J° € End V. The subspaces W
are isotropic with respect to the symplectic form w on V®. Moreover, the splitting
(15.1) is an orthogonal direct sum with respect to the Hermitian inner product on
VC, defined by

< z,w >=iw(zq, Wy ) —iw(z_,w_) ,
where zy (resp. wy) denotes the projection of z € VC (resp. w € V®) onto the
subspace W.

We introduce the Fock space Fy = F(VC,Jy) as the completion of the algebra of
symmetric polynomials on W, with respect to a natural norm.

In more detail, denote by S(W) the algebra of symmetric polynomials in vari-
ables z € Wy = W, and introduce an inner product on S(Wj), induced by the
Hermitian product < -,- > on VC. This inner product on monomials is given by the
formula

<2l Zpy B2l >= E <z, z > <z, >
{ilv-”vin}

where the summation is taken over all permutations {41, ...,%,} of the set {1,...,n}
(the inner product of monomials of different degrees is set to 0 by definition). This
inner product is extended by linearity to the whole algebra S(W;). The completion

—

S(Wy) of S(Wy) with respect to the introduced norm is called the Fock space Fy =
F(VE, Jy) over VC with respect to the complex structure J°

Fy = F(VE, J% .= S(W) .
If {w,}, n =1,2,..., is an orthonormal base of W, then one can take for an
orthonormal base of F the family of polynomials of the form
1
Pk (2) = \/? <zoaw SM o<z w, > e W,
where K = (k1,..., k), ki € Ny and K! = kq!-... -k,

Recall that, according to Sec. 11.4, any complex structure J on V', compatible
with w, determines a decomposition

VE=W, oW, =WaoeW (15.2)

into the direct sum of subspaces W and W, isotropic with respect to w. The sub-
spaces W and W are identified, respectively, with the (—i)- and (+i)-eigenspaces of
the operator J on V. The complex structure J and the symplectic form w deter-
mine together a Kahler metric g; and the associated inner product < -,- >; on VC.
The decomposition (15.2) is orthogonal with respect to the Kéhler metric g; on V°C,
determined by J and w.

Using the decomposition (15.2), we can define the Fock space F; = F(VC, J) as
the completion of the algebra of symmetric polynomials on W with respect to the
norm, generated by < -, >:

F; = F(V® J):= completion of S(W) with respect to < -,- > .
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15.1.2 Heisenberg algebra and Heisenberg group

The Heisenberg algebra heis(V') of the Hilbert space V' is a central extension of the
Abelian Lie algebra V', generated by the coordinate functions. In other words, it
coincides, as a vector space, with

heis(V) =V &R,
and is provided with the Lie bracket
[(z,5), (y, )] == (0,w(z,y)) , zyeV, st,eR.

The Heisenberg algebra heis(V) is the Lie algebra of the Heisenberg group Heis(V'),
which coincides with a central extension of the Abelian group V. In other words,
Heis(V) is the direct product

Heis(V) =V x S* |
provided with the group operation, given by

(2,A) - (g, 1) := (2 + y, Ape™v)) |

15.1.3 Heisenberg representation

Representation of the Heisenberg algebra. We are going to construct an
irreducible representation of the Heisenberg algebra heis(V') in the Fock space F; =
F(VE,J), where V€ = W @ W and F; is the completion of the symmetric algebra
S(W) with respect to the norm, generated by < -,- >;. We can consider elements
of S(W) as holomorphic functions on W by identifying z € W with a holomorphic
function @ +— < w,z > on W. Accordingly, F; may be considered as a subspace
of the space O(W) of functions, holomorphic on W (provided with the topology of
uniform convergence on compact subsets).
With this convention we can define the Heisenberg representation

ry : heis(V) — End F;
of the Heisenberg algebra heis(V') in the Fock space F; = F(VC,J) by the formula
vi— 1) f(0) = =0, f(W)+ <w,v >, f(w), (15.3)

where 0, is the derivation operator in the direction of v € V. Extending r; to the
complexified algebra heis®(V') by the same formula (15.3), we'll have for v = z € W

ri(2)f (@) := =0:f(w) ,

and for z €¢ W
ry(z)f(w) =< w,z>; f(w) .

For the central element ¢ € heis(V') we set

c—rry(e)=X-T,
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where )\ is an arbitrary fixed non-zero constant.
Introduce creation and annihilation operators on F;, defined for v € V€ by
ry(v) —iry(Jv) ry(v) +ir;(Jv)

ay(v) = 5 , ay(v) = 5 . (15.4)

In particular, for z € W

ay(2)f(w) =< w,z >; f(w) , (15.5)
and for z € W
a;(2)f(w) = =0z f(w) . (15.6)
Choosing an orthonormal basis {e, } of W, we can introduce the operators
ar=a*(e,), ap:=alé,), n=12,...,
and ag := A\ - 1.
A vector f; € Fy\ {0} is called the vacuum, if a,f; = 0 for n = 1,2,.... In

other words, the vacuum is a non-zero vector, annihilated by all operators a,. It is
uniquely defined by 7; (up to a multiplicative constant) and in the case of the initial
Fock space Fy = F(V, Jy) we take fo = 1. By acting on the vacuum f; by creation
operators a;, we can define the action of the representation r; on any polynomial,
which implies the irreducubility of r;.

Moreover, any irreducible representation r : heisC(V) — End F' of the algebra
heisC(V), having a vacuum f, is equivalent to the Heisenberg representation rq. In-
deed, vectors of the form (a})*t-----(a*)* f, obtained from the vacuum by the action
of creation operators, are linearly independent and generate the whole representa-
tion space F. Assigning to a polynomial P(z) = P(z,...,z,) in the Fock space Fj
the vector of the form P(aj,...,a})f in the space I, we obtain an intertwining map
from Fj into F'. This map can be made unitary by introducing a Hermitian inner
product on F', for which the vectors (a})* - -- .- (aX)*n f form an orthogonal base.

Representation of the Heisenberg group. The Heisenberg representation
ry of the algebra heis(C(V) may be integrated to an irreducible unitary representa-
tion Ry of the Heisenberg group Heis®(V) in the Fock space F;. The integrated
representation is given by the formula

Ry(2)f(w) = f(w - Z)

for z € W, and by
R;(2)f(w) = e~ f(w)

for z € W. In particular, the creation operator a*(z) generates the multiplication
operator f(w) — e<**>7f(w) and the annihilation operator a(z) generates the
translation operator f(w) — f(w — Z).

The constructed representation of the group Heis®(V) in F; may be conveniently
described in terms of the so called coherent states, given by the functions in F; of
the form

e.(w) == e~
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parameterized by vectors z € W. The action of the representation of Heis®(V") on
coherent states is given by the formula

_ 1
veV i — RJ(U)EZ —e <w,z>j 2<w,w>J€Z+w
for v = w + w. We have
!
< €y €y >p,= € 577 (15.7)

and
< RJ(U)EZ, RJ(U)GZ/ >, =< €, € >, .

The Fock space F; may be defined in terms of coherent states as the completion of
the complex vector space, generated by vectors {e.}, z € W, with respect to the
norm, given by the inner product (15.7).

Using these properties of coherent states, it may be proved (cf. [65], Sec. 9.5)
that the defined representation of the Heisenberg group in the Fock space F' is
unitary and irreducible.

15.2 Action of Hilbert—Schmidt symplectic group
on Fock spaces

Recall the definition of the symplectic Hilbert—Schmidt group Spyg(V') from Sec. 11.5.
In terms of the block representation, generated by the decomposition

VE=Ww,.,aeW_=WyaW,,

the elements A of Spyg(V') are written in the form

where B
ala—bb=1, a'b="'a,

and the operator b is Hilbert—Schmidt. The unitary group U(W,) is embedded into
Spus(V) as a subgroup of operators of the form

A:(g g).

In Subsec. 15.1.3 we have constructed the Heisenberg representations r; of the
Heisenberg algebra heis®(V) in Fock spaces F;. A general theorem of Shale (cf.
[68]) asserts that the representations ro in Fy and rj in Fj are unitary equivalent
if and only if J € Spyg(V). In other words, for J € Spyg(V') there exists a unitary
intertwining operator Uj : Iy — Fy such that

TJ:UJOT()OU;l :
The Spyg(V)-action, defined by

Spus(V) 2 Ar— Uy : Fy — F; with J=A-J°,
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defines a projective (unitary) action of the group Spyg(V') on the Fock bundle

Spus(V)

F = U F; — Dpg = U,

JEDysg

covering the Spyg(V)-action on the Siegel disc Dyg (cf. Sec. 11.5). An explicit
description of this projective action is given in [66].

15.3 Hilbert—Schmidt symplectic algebra repre-
sentation

The algebra spyg (V) is the Lie algebra of symplectic Hilbert—Schmidt group Spyg(V).
It follows from the definition of this group (cf. Sec. 15.2) that spyg(V') consists of
linear operators A in V¢, which have the following block representation (with respect
to the decomposition VE = Wy @ W)

_(a B
A‘(aa)’

where « is a bounded skew-Hermitian operator and [ is a symmetric Hilbert—
Schmidt operator. The complexified Lie algebra spyg(V)C consists of operators

of the form
A (@ I}
vy o—at)

where « is a bounded operator, while § and 4 are symmetric Hilbert—Schmidt op-
erators.

The infinitesimalization of the projective Spyg(V')-action on the Fock bundle F,
described in the previous Sec. 15.2, yields a projective representation of spyg(V) in
the Fock space Fy = F)j,. Its complexified version is given by the formula (cf. [66])

a B 1 1
SPHS(V(C)9A:(7 _at)'—’P(A):Da+§ ﬁ+§ v

Here, D, for a: Wy — W) is the derivation of F{y in the a-direction, defined by
D, f(w) =< aw,dg > f(w) .

The operator Mg for 3 : Wy — W is the multiplication operator on Fy, defined by
My f (i) =< Bu, @ > f()

and the operator M is the adjoint of M.,:
M f() =< 1y, D > f(1) -

This is a projective representation with the cocycle

[p(A1), p(Ag)] — p([A1, Ag]) = %tr<'_)/2ﬁl —MN1B2) - (15.8)

Note that the constructed Lie-algebra representation of spyg(V') is intertwined with
the Heisenberg representation rqy of heis(V') on Fyy (cf. [66]).
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15.4 Twistor interpretation

15.4.1 Twistor bundle

Let us call a complex structure J on V admissible, if it can be obtained from a
reference complex structure Jy by the action of the Spyg(V') group. Such structures
are parameterized by points of the Siegel disc

Dus = Spus(V)/U(Wo) .

The twistor bundle m : Z — V is, by definition, the vector bundle of admissible
complex structures on V. Its fibre Z, = Dyg at x € V is formed by the restrictions
J, of admissible complex structures J to the tangent space T,V = V. The twistor
bundle is a trivial bundle on V', and the admissible complex structures on V' may
be considered as its translation-invariant sections. In particular, we have a natural
projection p : Z — Dpyg, assigning to a point z = (z,J,) the translation-invariant
complex structure J = J, on V. The fibre p~'(J) of this projection is identified
with the space (V,J), i.e. with the space V, provided with the complex structure
J. The introduced maps may be united into the following twistor diagram

Z —2 5 Dy

:

The twistor space Z has a natural complex structure. To define it, consider a
decomposition of the tangent bundle T'Z into the direct sum

TZ=V&H (15.9)

of the wvertical subbundle V), identified with the tangent bundle to the fibres of m,
and the horizontal subbundle H, identified with the tangent bundle to the fibres of
p. The complex structure J on Z is the direct sum

TJ. =T o J"

of the natural complex structure J! on the vertical space V,, identified (by py)
with the tangent space T),;)Dus to the Siegel disc Dyg, and the complex structure
Jh = Jx(zy on the horizontal space H., identified (by 7,) with the tangent space
T%(»)V. Note that the map p is holomorphic with respect to the introduced complex
structure (while 7 is not!).

We note that with respect to the decomposition (15.9) the Heisenberg group
Heis(V') acts on the twistor space Z horizontally, preserving the fibres of p, and the
symplectic group Spyg(V) acts on Z vertically (this action is induced by the action
of Spyg(V') on the Siegel disc Dyg).

15.4.2 Fock bundle

The Fock space F); = F(V, J) can be characterized in terms of the twistor diagram as
the Fock space F(p~'(J)) of holomorphic functions on the fibre p~(.J) (in variables
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w € W ;) with respect to the complex structure on Z, introduced above. The Fock
bundle
F = U FJ I DHS

JGDHS

is a Hermitian holomorphic Hilbert-space bundle over Dyg. Since Dyg is contractible
(even convex), it is trivial on Dyg. Moreover, the holomorphic map Uy : Fy — F,
defined in Sec. 15.2; establishes an explicit holomorphic trivialization of F. Note
that the trivialization map Uj; : Fy — F); is equivariant with respect to the action
of the Spyg(V') group.

In Sec. 15.3 a projective representation p of the Lie algebra spyg(V) in the
Fock space F, was constructed. Using this representation, we can define a linear
connection on the Fock bundle F, whose curvature coincides with the cocycle of the
representation p.

Using the description of the Lie algebra spyg(V), given in Sec. 15.3, we can
decompose it into the direct sum

spus(V) = u(Wy) @ m . (15.10)

Here, u(W)) is the Lie algebra of the unitary group U(W}), identified with the set

of matrices
a 0
0 —at)

where « is a bounded skew-Hermitian operator. The linear subspace m = T Dyg is

identified with the set of matrices
0 p
g 0]

where 3 is a symmetric Hilbert—Schmidt operator. Note that the adjoint action of
U(Wp) on spyg(V') preserves the subspace m.

According to the general theory of invariant connections (cf. [45], Ch. II.11), the
decomposition (15.10) together with the projective representation p determine an
Spys(V)-invariant connection A on the Fock bundle F with the curvature, given by
the cocycle of p.

The original quantization problem from Sec. 12.2 can be reformulated in twistor
terms as follows: construct a quantization Hilbert-space bundle H — Dpyg together
with a flat unitary connection on it. The connection in this definition may be
considered as an infinitesimal analogue of the BKS-operator from Sec. 14.4. In
the next Sec. 15.5 we consider in more detail a relation between the twistor and
Dirac quantizations of the system (V,.A), where A is the semi-direct product of the
Heisenberg algebra heis(V') and the symplectic Hilbert—Schmidt algebra spyg (V).

15.5 Quantization bundle

In this Section we construct a quantization bundle ‘H — Dyg over Dyg. From finite-
dimensional considerations in Ch. 14, it is clear that a good candidate for H should
be the Fock bundle of half-forms, which we are going to define next.



15.5. QUANTIZATION BUNDLE 195

15.5.1 Bundle of half-forms
We define first a bundle of half-forms

K—1/2 _ DHS

on the Siegel disc Dys.
Namely, consider on the Siegel disc Dyg the following analogue of the Poincaré
metric:

92(&m) = {(l - Z2)7*¢n}

for Z € Dys, &, € Té’ODHS = Fys. It is a correctly defined Kéahler metric on Dyg
with Kihler potential K(Z, Z) := —tr log(1 — ZZ). Moreover, it is invariant under
the action of the group Spyg(V') on the Siegel disc (cf. Sec. 11.4).

The canonical bundle X — Dgg is the restriction of the determinant bundle
Det — Grys(V), defined in Sec. 5.3, to the Siegel disc Dys. The metric g on Dys
induces a Hermitian metric g on K, given by the formula

IO, 2)|1? = | AP det(1 — ZZ)? (15.11)

for A € C, Z € Dys.

There is a natural action of a central extension Spyg(V) of symplectic group
Spus(V) on the canonical bundle K, covering the action of Spyg(V) on the Siegel

disc Dyg. If A € Spys(V) projects to

I
I
R
R
Qo

) € Spys(V)

then A acts on K by the formula
A-(\Z)=(Ndet(1+a '02)* A-Z) ,

where A-Z = (aZ + b)(bZ + @)~'. The canonical connection on K, determined by

—~——

the metric (15.11), is invariant under this Spyg(V)-action on K.

The anticanonical bundle K~! — Dyg of Dyg coincides with the restriction of
the dual determinant bundle Det” — Gryug(V'), defined in Sec. 5.3, to Dyg. Since
the Siegel disc Dyg is contractible, the anticanonical bundle K ! has a square root
K~Y2 — Dyg. The metric § on K induces a Hermitian metric on K~/2, given by
the formula

I 2)|)? = [MPdet(1—ZZ)t . (15.12)

The group Spyg(V) acts on K~/2 by the formula
A-(\Z)=(Ndet(1+a 'b2) " A-Z) .

1/2

The canonical connection B on K~/ — Dyg, generated by Hermitian metric

(15.12) is invariant under the action of Spyg(V) on K~1/2.
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15.5.2 Quantization bundle

By definition, the quantization bundle H coincides with the Fock bundle of half-
forms on Dyg, given by the tensor product of the Fock bundle F and the bundle of
half-forms K ~1/2:

H:=F® K * — Dys .

We provide it with the tensor product connection

C=Apl1+1B.

15.6 Twistor quantization of the loop space QOR?

In this Section we apply the construction of quantization bundle, described in
Sec. 15.5, to the original system (QR?, A;). As in Sec. 9.2, we can embed the phase
space QR? into the Sobolev space V¢ of half-differentiable loops in R¢. The space
V4 coincides with the Sobolev space of half-differentiable vector-functions S' — R,
defined in the same way, as its scalar analogue V' (cf. also [17], Sec. VI.5.1). The
embedding of QR? into V¢ realizes the loop algebra LR? as a subalgebra of the
Heisenberg algebra heis(V¢) and the Lie algebra Vect(S') as a subalgebra of the
symplectic Lie algebra spyg(V?). Moreover, under the above embedding the diffeo-
morphism group Diff, (S!) is realized as a subgroup of Spyg(V?). We have also,
according to Sec. 11.5, a holomorphic embedding

8 = Diff, (8")/M&b(S") — Spys(V)/U(WY) = Dys .

the space § into the Siegel disc Dys.
Denote by
F—S

the Fock bundle over §, obtained from the Fock bundle F — Dyg by restricting it
to §. We still have the Heisenberg representations

TJ:Z/LI\R/d—>End*FJ

for J € S, defined by the same formulas, as in Sec. 15.1. The projective Spyg(V?)-
action on the Fock bundle yields a projective Diff, (S1)-action on F — S. This
action of Diff; (S?) on F — S was constructed in [27]. Its infinitesimal version is a
projective representation

p: Vect(S') — End*F .

It can be described explicitly in terms of the basis {e,} of the complexified algebra
Vect®(S') (cf. Sec. 2.2).
Denote by

Ly, = p(en)

the operators in Fj, corresponding to the basis elements of VectC(Sl). They are
called otherwise the Virasoro operators and can be computed explicitly, using the
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formulas, given in Sec. 15.3. The cocycle of representation p in the basis {e,} is
equal to (cf. [14])

[o(em), p(en)] = p ([em, en]) = %(m3 = 1)0m, - (15.13)

This cocycle coincides with the curvature of the connection A on the Fock bundle
F — S, defined in Sec. 15.4.2.

Consider the anticanonical bundle K~'/2 — &, obtained by the restriction of
the bundle K~/2 — Dyg (cf. Sec. 15.5.1) to S. The curvature of the canonical
connection B on K~'/2 — & in the basis {e, } was computed in [13]. It is equal to

Rp(em,en) = ——=(m° — m)0m,—p . (15.14)

We define the quantization bundle, as in Sec. 15.5.2, to be the Fock bundle of
half-forms

H=FoK'? 8

and provide it with the tensor product connection
C=A®R1+1®B.

The curvature of C is equal to the sum of the curvatures of connections A and B,

ie.

d— 26
12

Rc(em, en) = (m® —m)6pm,—n - (15.15)

It vanishes precisely, when d = 26. For this dimension our system (QR?, A;), where

I

the algebra of observables Ay is the semi-direct product of the loop algebra LR? and
Vect(S'), admits the twistor quantization.

To derive from an obtained solution of the twistor quantization problem a so-
lution of the original quantization problem , i.e. a representation of the algebra of
observables A, in the Fock space of half-forms Hy = Fo ® K, Y 2, identified with
the fibre of the quantization bundle at the origin o € S, we should proceed along
the same lines, as in the BKS-quantization method in Sec. 14.5. Namely, the rep-
resentation of the Heisenberg algebra in the fibres of the Fock bundle F extends to
a representation in the fibres of the quantization bundle H. The group Diff, (S')
acts projectively on the bundle H and this action intertwines with representations
of the Heisenberg algebra in the fibres. The Kostant—Souriau operators L,,, corre-
sponding to the basis elements of the algebra Vect(S'), do not preserve, in general,
the spaces F, and H, since the symplectic diffeomorphisms ¢!, corresponding to
L,,, transform the spaces F; and H, into the spaces F}; and H;, associated with the
complex structure J' = ¢! o J%0 (¢!)~1. However, by integrating the flat Hermitian
connection on the quantization bundle ‘H, one can construct a unitary operator Uy,
identifying H; with Hy. The composition U, o L,, acts now in Hy, and, after the
differentiation, yields the required representation of the algebra Vect(S') in H,.
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15.7 Quantization of the universal Teichmiiller
space

In the previous Section we have defined the Fock bundle
F—S

over the smooth part S = Diff, (S!)/Mob(S?) of the universal Teichmiiller space
7 = QS(S')/Mob(S!). This bundle is provided with a projective action of the dif-
feomorphism group Diff, (S!), covering the natural action of Diff, (S') on the base S.
The infinitesimal version of this action yields a projective representation of the Lie
algebra Vect(S?) in the Fock space Hy. We can consider this construction as a geo-
metric quantization of the phase space § with the algebra of observables, given by the
Virasoro algebra vir, the quantization being given by the projective representation
of Vect(S') in Hy. Note that it can be obtained by restriction to S of the analogous
construction over the Hilbert—Schmidt Siegel disc Dys = Spyg(V)/U(WS), given in
Subsec. 15.4.2. Recall that we have constructed there the Fock bundle

:F—>DHS

over Dyg, provided with the projective action of the symplectic group Spyg(V),
covering the natural action of Spyg(V) on Dys. The infinitesimal version of this
action yielded the projective representation of the symplectic algebra spyg(V) in
the Fock space Hjy, described in Sec. 15.3. This construction may be considered
as a geometric quantization of the phase space Dys = Spyg(V)/U(W,) with the
algebra of observables, given by a central extension of the Lie algebra spyg(V), the
quantization being given by the projective representation of spyg(V') in Hy.

Unfortunately, the described quantization procedure does not apply to the whole
universal Teichmiiller space 7 = QS(S')/Mob(S'). According to Prop. 25 from
Sec. 11.4, we can still embed this space into the infinite-dimensional Siegel disc
D = Sp(V)/U(W,.), but we cannot construct a Fock bundle over D = Sp(V)/U(W,)
with a projective action of the whole symplectic group Sp(V'). The reason is that,
according to the theorem of Shale (cf. Sec. 15.2), it is possible only for the Hilbert—
Schmidt symplectic subgroup Spyg(V') of Sp(V'). So one should look for another
way of quantizing the universal Teichmiiller space 7 = QS(S')/Mob(S?). It seems
that a natural way to do that is to use the quantized calculus of A.Connes and
D.Sullivan. We now present briefly the idea of this approach in application to our
problem, borrowed from Ch.IV of the Connes’ book [16].

Recall that in Dirac’s approach (cf. Sec. 12.2), we quantize a classical system
(M, A), consisting of the phase space M, which is a symplectic manifold, and the
algebra of observables A, which is a Poisson Lie algebra, consisting of smooth func-
tions on M. The quantization of this system is given by a representation 7 of A in
a Hilbert space H, sending the Poisson bracket {f, g} of two functions f, g € A into
the commutator [7(f),7(g)] (times 1/7) of the corresponding operators. In Connes’
approach the algebra of observables A is an associative involutive algebra, provided
with an exterior differential d. Its quantization is, by definition, a representation
of A in H, sending the differential df of a function f € A into the commutator
[S, 7(f)] of the operator 7(f) with a symmetry operator S, which is self-adjoint and
of square 1.
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If the algebra of observables A consists of smooth functions on the phase manifold
M, this new formulation is essentially equivalent to that of Dirac. Indeed, the
differential df of an observable f € A is symplectically dual to the Hamiltonian
vector field Xy, so we can reproduce the Poisson Lie algebra from the associative
algebra with the exterior differential. On the other hand, a symmetry operator S
on the polarized quantization space H = H, & H_ is given by the rule: S = £/ on
H.. But in the case, when A contains non-smooth functions, the Dirac definition
does not work, while Connes quantization still makes sense, as we shall demonstrate
on examples below.

Before that, we formalize the definition of Connes quantization. Suppose that
our Hilbert space H is provided with a polarization H = H, & H_. We can associate
with it a self-adjoint symmetry operator S such that

Hy={x € H:Sx==*x}

and S? = I. Suppose that the algebra of observables of our physical system .4
is an associative involutive algebra over C (in other words, A is an algebra with
conjugation). A Fredholm module over A is an involutive representation 7 of A in
the Hilbert space H, such that the commutator [S, 7(a)] is a compact operator for
any a € A.

We demonstrate now that the notion of a Fredholm module provides a natu-
ral concept for the quantization of algebras of observables, containing non-smooth
functions. Consider the following example, in which A coincides with the alge-
bra L>®(S') of bounded functions on the circle S*. Any function f € A defines a
bounded multiplication operator in the Hilbert space H = L*(S1):

My:he H— fhe H.

The operator S in this case is given by the Hilbert transform S : L?(S') — L?*(S1).
The differential of a general function f € A is not defined in the classical sense, but
we can still define its quantum analogue by setting

dUf =[S, M) .

The correspondence between functions f € A and operators My on H has the
following remarkable properties (cf. [64]):

1. The differential d?f is a finite rank operator if and only if f is a rational
function.

2. The differential d?f is a compact operator if and only if the function f has a
vanishing mean oscillation.

3. The differential d?f is a bounded operator if and only if the function f has a
bounded mean oscillation.

This list may be supplemented by further function-theoretic properties of functions
in A, which have nice operator-theoretic characterizations (cf. [16], Ch.IV).

How this idea can be applied to the quantization of the universal Teichmiiller
space 7 = QS(S')/Mob(S')? Let us switch for convenience from S* to the real line
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R, so that 7" will be identified with the space QS(R)/M&b(R) of normalized qua-
sisymmetric homeomorphisms of R. Our main Sobolev space H'/?(R) := H'/?(R,R)
of half-differentiable functions on the real line R has a simple description in terms
of the quantum differential. Namely, the symmetry operator S is again given by the
Hilbert transform

f(t)

(Sf)(s) = = P.V. i, feri®), (15.16)

iy’ S —

where the integral is taken in the principal value sense.
The quantum differential d?f = [S, M| of a function f € L>(R) is an operator
on L*(R), given by
1
wm@:f/mﬁww

i
with the kernel, equal to

k(s,t) = M , s, teR.
s—1
Note that the quasiclassical limit of this operator, defined by taking the value of
the kernel on the diagonal, i.e. for s — ¢, coincides with the multiplication operator
h — f'h, and the quantization means in this case the replacement of the derivative
by its finite-difference analogue.

Then f € HY2(R) if and only if its quantum differential df is a Hilbert-Schmidt
operator on L*(R); moreover, the Hilbert—Schmidt norm of d?f coincides with the
H'Y?(R)-norm of f (cf. [58], Prop. 6.1). This result may be considered as a hint
that the Dirac’s quantization method can still be realized in the case of 7, when
reformulated in terms of the quantized calculus.

The idea of how to do it, may be grasped from studying the action of the group
QS(R) of quasisymmetric homeomorphisms of R on H'/ 2(R). Introduce an operator
L, sending 1-forms on R to functions on R, defined by

Lip(s) = / log |5 — t](t)

The operator L can be considered as a ” generalized inverse” to the exterior derivative
d, since it is related to d by the following identities

doL=S, Lod=S5,

where the Hilbert transform S acts on 1-forms by the same formula (15.16) as above,
i.e. by the integration with kernel (s —¢)~!. To describe the action of QS(R) on
H'2(R) in terms of the quantized calculus means to study its action on operators
L and S.
A quasisymmetric homeomorphism h € QS(R) transforms the operators L and
S into
L":=hoLoh™, S"':=hoSoh™!.

In [58] the perturbations L" — L and S" — S are explicitly computed. Namely, denote
by K"(s,t) the kernel, defined by
h(s) — h(t)

KMs.t) =1
(5,1) = log —=——
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Then L" — L is an integral operator with the kernel K"(s,t). Note that the quasi-
classical limit of this kernel, i.e. its value on the diagonal {s = t}, coincides with
log 1/ (s).

The quantized analogue of L" — L is given by d?(L" — L), which is an integral
operator with kernel d, K"(s,t), having the quasiclassical limit, equal to hh—///ds. The
quantized version of S* — S is given by d9(S" —S), which is an integral operator with
kernel dyd,K"(s,t), having the quasiclassical limit, equal to ¢Schwarzian(h)ds?.
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Chapter 16

Quantization of the loop space

OrG

In this Chapter we solve the geometric quantization problem for the phase space, rep-
resented by the Kéhler-Frechet manifold {27G. The role of the algebra of observables
A is played by the Lie algebra Lgx vir, an extension of the Lie algebra Lgx Vect(S!).
The latter is the Lie algebra of the Frechet Lie group LG x Diff  (S1), the semi-direct
product of the loop group LG and the diffeomorphism group Diff, (S!) of the circle.

In the most part of this Chapter we assume that G is a simply connected and
simple Lie group.

16.1 Representations of loop algebras

In the loop space case the role of the Heisenberg algebra and its Heisenberg repre-
sentation from Ch. 15 is played by central extensions Lg of the loop algebras Lg
and its lowest weight representations.

16.1.1 Affine algebras

The S*-action plays a central role in the representation theory of the loop algebras
and groups. To take care of this action, it is convenient to extend the loop algebra
Lg to the extended loop algebra C & Lg, the generator of U(1)-action being denoted
by ep in accordance with Sec. 10.1. In the same way we extend the loop group LG
to the extended loop group U(1) x LG by taking the semi-direct product of LG with
the circle group S = U(1).

Suppose that gc is a complex simple Lie algebra and fix a Cartan subalgebra h¢
in gc. The corresponding root decomposition of the extended Lie algebra Cey & Lgc
with respect to the Cartan subalgebra Cey @ he has the form

CGO D Lg(c = C@O D

P ve="

neL

o g2 | | (16.1)
)

(n7a

where g, are the root subspaces of the Lie algebra gc. The pairs a = (n, «), where
n € Z and « is a root of gc with respect to h¢, are called the roots of the algebra

203
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Lgc. They can be considered as linear functionals on the Lie algebra Cey & he. If,
in particular, we introduce a functional § € (Cey @ hc)* by setting:

5(6()) =1, 5(b(C) =0,

then the whole set of roots of Ceg @ Lgc with respect to Cey @ he will be described

as
A={a+nd:aeA neZYUu{nd:neZ},

where A is the set of roots of g¢ with respect to he. Accordingly, the set of positive
roots of Cey @ Lgc with respect to Ceg @ hc is identified with

At ={a+nd:aecA n>0U{nd:n>0 UA*

where AT is the set of positive roots of gc with respect to he. If {ay,..., o} is a
system of simple roots of gc with respect to hc, and A is the highest root in A™,
then any root in AT may be written in the form

Nog +nioq + -+ + nyoy

with non-negative integer coefficients ng,nq,...,n;, where oy := § — A. We call
{ag, a1, ..., q;} asystem of affine simple roots in A.
We associate with any root a = (n, ) the root subspace g,y in Lgc, defined by

I(na) = G2’ fora#0,
g(n,0) = becz" fora=0.
The loop analogue of the decomposition of the Lie algebra g¢

gc=bhce®nt®&n,

* are nilpotent subalgebras of gc of the form

n+:®ga s niz@gav

acAt aEA~

where n

has the form
Lgc =hc® Ntgc® N gc ,

where

Nfgc=n"a®

n>0 n<0

@QC'Zn] , N gc=n" & @gc~z”].

The loop analogues of the Borel subalgebras have the form

B*gc = he ® N¥gce .

We introduce now a central extension I//;‘]TC of the loop algebra Lgc. Recall (cf.
Sec. 8.2) that such an extension is determined by a 2-cocycle on Lgc, given by the
formula

27
w(&n) =wo(&,n) = %/0 < &), n(e”)>df, &mne Lge,
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where < -, - > is an invariant inner product on the Lie algebra gc. As a vector space,
Lgc=Lgc®Cc,
with commutation relations

[E+se,n+tc=I[n+w(En)c

for £, € Lgc, s,t € C. We denote the corresponding central extension of the loop
group LGc (cf. Sec. 8.2) by LGe.

The representations of the loop algebra Lg and the loop group LG, which we
consider here, are projective and intertwine with the S'-action. It means that they
arise, in fact, from representations of the affine algebra

EQ\CIC%@ZQV(C:C%@LQC@CC

and the affine group
LG(C =C" x LG(C .

The root decomposition of the affine algebra ITgTC has the form
Lgc = hc® NTgc © N gc ,

where
be = Ceg @ he = Ceg ® he d Ce .
Accordingly,
Bge = he ® N*ge .
Having a root a € h,, we extend it to be by setting a( ¢) = a(eg) = 0. We also
extend the functional § € ((Ceo @ bhe)* to E(E* by setting §( ¢) = 0. It’s also useful to
introduce a functional 5 € f)(c , defined by

6(C>:17 6(60):07 6(6@)20

With any system «q, aq,...,q; of affine simple roots we can associate a corre-
sponding system of co-roots oy, ay, ..., o), where af, j = 1,...,l, are the co-roots,
associated with simple roots «a; of the algebra gc¢, and

2c

\/:_AV
% Jr<A,A>

is the affine co-root, associated with the highest root A € A*.

Denote by {wy, . ..,w;} the system of fundamental weights of the algebra g¢, dual
to the simple root system a1, ..., We can introduce the corresponding system
{@o, @1, ..., @} of fundamental weights of Lg(c, dual to the system «q, aq,...,q; of
affine simple roots, defined by

Oi(a)) =0 for 0<i k<Il, &fe)=0.
Then

1
@0:§<A,A>ﬁ, C:JjIWj+<u)j,A>ﬁ, 1<5<1.



206 CHAPTER 16. QUANTIZATION OF QG

16.1.2 Highest weight representations of affine algebras

Suppose that p : Lgc — Vs a representatlon of the loop algebra Lg@, ie. an
Lgc—module. Consider for any linear form on f)(c, i.e. an element \ € (f)(c> , the
subspace .
Vi={v eV :ph)v=Ahv forh€hbhc}.
If V) # 0, then A is called the weight of p, and the subspace V) is the weight subspace
of p, corresponding to A. Any vector v € V) \ {0} is called the weight vector of p.
A weight \ € (6;) is dominant integral, if A(«)') is a non-negative integer for

any affine co-root o, 0 < i < [. Any such weight can be written in the form
)\:ngwg+...+nld)l+85 s (162)

where n; = M), 0 < i <, and s = A(eg) € C. Respectively, an anti-dominant
integral weight A\ € <EE>* takes non-positive integer values on affine co-roots «,
0 < i <[, and can be written in the same form (16.2) with non-positive integer
coefficients n;, 0 <7 <.

Given a weight \ € (EE)*, we can extend it to the Borel subalgebra ﬂ by

setting it equal to zero on Ntgc. Consider an [Tg?c-module of the form

~ A

V=Vi=U(Lgc)® Cy ,

U(B*gc)

where the symbol "U” stands for the universal enveloping algebra, and C, denotes
the 1-dimensional Btgc-module, i.e. the complex line C, provided with an action
of the Borel subalgebra Btgc, given by: z —— A(b)z for b € B*gC, 2z € C. Since

Lgc = N gc @ Bge
the Poincaré-Birkhoff-Witt theorem implies that
U(Lgc) = UN gc) @ U(B gc) -

So we have a natural isomorphism

~

V)\ gL[(N_gc) ®(C)\ .

Denote by V' = V) the quotient of V modulo the maximal submodule in V/,
strictly contained in V' (in other words, the maximal submodule, not containing

1 ®1). This V, together with the natural action of [Tg?c, is called the standard

representation of the Lie algebra fg\@ with the highest weight A and the weight
vector 1 ® 1.
More generally, we shall say that a representation p : Lgc — End V) of the affine

algebra Lg@ is the highest weight representation with weight \ € f)@ , if there exists
a highest weight vector vy € V) such that:

1. p(h)vx = A(h)vy for any h € be ;
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2. p(n)uy=0 forany n € Ntgc ;
3. V) is spanned by vectors p(b)v, with b € a .

The highest weight vector vy plays the role, analogous to that of the vacuum in the
Heisenberg representation.

In analogous way one can define the lowest weight representation of the affine
algebra [//g\c. For that one should replace in the above definition the nilpotent
subalgebra N Tgc by the nilpotent subalgebra N~ gc and the Borel subalgebra ﬁ
by the Borel subalgebra ﬁ.

The standard I//g\@—module V,\,* defined above, is an irreducible highest weight
representation of ITgTC, if A\ e (EE) is an integral dominant weight. Moreover, it was
proved in [23], that if A(eg) is real, then V) admits a positive-definite (contravariant)
Hermitian inner product. We denote by H = H) the completion of V = V) with
respect to this inner product. The space H, will play the role of the Fock space,
associated with the weight \.

16.2 Representations of loop groups

We present here some general properties of irreducible representations of the affine
group LGC and the Borel-Weil construction for LGC.

16.2.1 Irreducible representations of affine groups

Consider the affine group
LG :=U(1l) x LG

and fix a maximal torus 7 in LG , given by
T:=U1)xT xS

Here, the first factor U(1) = S is the group of rotations, the second factor T is a
maximal torus in G, and the third one S = S is a central subgroup in LG.

Any irreducible representation of the affine group LG has a unique highest weight
A, which is a character of the maximal torus T. This character has the form

A= (77/, >\07h) )

where n € Z is an eigenvalue of the S'-rotation operator ey, called the energy of
the representation, Ag is a character of T', and h € Z is an eigenvalue of the central
subgroup action, called the level of the representation. The highest weights of LG
are integral and dominant and the isomorphism classes of irreducible representations
of LG are in 1:1 correspondence with the set of integral dominant weights.

There is a similar characterization of irreducible representations of the affine
group LG in terms of lowest weights.
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16.2.2 Borel-Weil construction
Consider the full flag loop space (cf. Sec. 7.6)

QrG = LG/T = LG*/BTG® .

In terms of central extensions, {rG may be written in the form

QrG = LGE/B+GC .

Suppose that X is a lowest weight of the maximal torus T =T x S. We extend it to
B+GC by setting A = 1 on the nilpotent subgroup NTG in

B+GC = TC x N+GC .

Define a holomorphic line bundle L = L) over QG by

L=1GC x — C — Q;G = LGC/B+GE |

B+GC

where BTGC acts on the complex line C by the character A

Bt*GC 3 b:— A(b)z .

Denote by I' = I'y the vector space of holomorphic sections of L = Ly. Sections

s € T can be identified with holomorphic functions $ : LG®¢ — C, satisfying the
condition

$(7071) = A(b)3(7)

for any b € BtGC, ~ € f&E. The group f@E acts in a natural way on L and

on I', and this action defines a holomorphic representation of LGC on I'. We note
that I' is non-trivial (i.e. contains non-zero holomorphic sections of L) if and only
if the weight X is anti-dominant (cf. [65], Prop. 11.3.1). Under this condition it
may be proved (cf. [65], Prop. 11.1.1) that the corresponding representation of the

loop group LG is an irreducible lowest weight representation of LG with the lowest
weight A. Moreover, it can be proved (cf. [65], Prop. 11.2.3) that any irreducible
representation of the group LG is essentially equivalent to some I'y.

Note that I' contains a 1-dimensional subspace of sections, invariant under the
action of the nilpotent subgroup N~GC. Indeed, it follows from the representation
(7.18) in Sec. 7.6 that QG contains a dense open orbit, containing the origin o €
QrG, which can be identified with the subgroup N~G®. Hence, any N~ GC-invariant
section in I' is uniquely determined by its value at o. We take for the vacuum the
lowest weight vector v = vy, which is an N~G%-invariant section in I', equal to 1 at
the origin o.

There is a Hermitian inner product, defined on a dense subspace of I'. Namely,
consider the anti-dual space T and introduce a complex-linear map 3 : T — T,
which value on the element € € T is a section 3(£) € T, identified with the function

B(€) on Z@TC, defined by

ﬁ(ﬁ)(V) =&(y-v) forye ZEE )
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Using this map, we define a Hermitian inner product of two elements &, 7 € T by
<& m>=1) (6(5)) :

The constructed inner product on T is positive definite and we denote by H = H),
the completion of T’ with respect to this inner product, so that T’ ¢ H C . The
space H plays the role of the Fock space, associated with the lowest weight .

The elements ¢, of I with v € LG, defined by

e(s):=s(71), sel,
play the role of the coherent states. They have the inner product, equal to

< €y15 vy >= U(W?’?l_l) )

and generate a dense subset in T .

16.3 Twistor quantization of (G

There are two different approaches to the geometric quantization of the loop space
QrG. One method is to replace the original classical system (QrG, Lg X vir) by
an enlarged system. One can do it by enlarging first the phase space QrG to the
Sobolev space HG of half-differentiable loops in G (cf. Sec. 9.1), and then embedding
HG into the space VG := HY2(S' GL(V)), using a faithful representation V of
the group G. Accordingly, the algebra of observables Z/}E; x vir should be enlarged
to an algebra A, which is an extension of the semi-direct product of the algebra
Hg, embedded into Vg := HY?(S*, End(V)), and the Lie algebra of the symplectic
Hilbert—Schmidt group Spyg(V), acting on VG and Vg by change of variables. We
obtain the quantization of the original system by first quantizing the enlarged system
and then by restricting this quantization to the original system. The described
method was used in Ch. 15 for the quantization of QR?. In this Chapter we follow a
more direct approach, based on the Goodman—Wallach construction of a projective
action of the diffeomorphism group Diff, (S') on representations of the affine algebra

fg\‘c and affine group L/G\‘C.

16.3.1 Projective representation of Vect(S!)

The projective action of Diff, (S'), mentioned in the introduction to this Section,
can be generated by exponentiating a projective representation of the Lie algebra
Vect(S1), constructed in this Subsection.

Choose an orthonormal base {e,}, @« = 1,..., N, of the Lie algebra g with respect
to an invariant inner product < -,- > on g. Then the elements

ea(n) =eq2", z=¢€% a=1,...,N,neZ,

form a basis in the vector space Lg®.
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Introduce for k € Z the Casimir operators, given by the formal series

Ay ;:%ZZ; caln)calk—n)) : |

neZ a=1

where the normally ordered product : - : is defined by the rule

e(m)e(n) form <n

s e(m)e(n) = {

e(n)e(m) form >n .

The Casimir operators Ay, are correctly defined, when applied to any element v € V|
since in this case the power series reduces to a finite sum (cf. [23]). In other
words, the Casimir operators determine endomorphisms of V. The operator Ay is
homogeneous of order k& with respect to the action of the operator ¢y in the sense
that

eoArv = Ag(eg + k)v  forany v € V.

Moreover, for any ¢ € g€ and any n € Z the following relation between operators
on V holds

6(n), Al = n (c+ %) E(n+m) .

Given a \ € (ITE)\C)*, denote by ) its restriction to the Cartan subalgebra b, and
set p = 22:1 w;. Then we have the following

Proposition 30. (/26]) The operators Ao + (c+ 1) eg and

A, ALl + (c + %) (n—m)Anin

—_—

commute with the action of Lg® on V. Moreover,

1
Ny = — ey + (§ < Ao, Ao + 2p > —|—,u)\(eo)) 1,
(A, Ay = p(m —n) Ay + (5m7_nl/m(m2 -1),
where 1= A(c) + &, v = 29\ ().

Using the introduced Casimir operators, we construct a projective action of
Vect(S') on V. More precisely, recall (cf. Sec. 10.1) that the Virasoro algebra vir is a
central extension of the Lie algebra Vect(S'). As a vector space, vir = Vect(S') &Rk,
and the Lie bracket is given by

(€ + sk, n+tr] = [§,n] +w(E )k,

where £,n € Vect(S'), s,t € R, and w is the Gelfand-Fuks cocycle, defined on the
basis elements {e,} by
B n(n?—1)
w(em,en) = Om—n TR

Then the following Theorem is true.
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Theorem 13. (/26]) Let (V,7) = (Vi, 7)) be a highest weight representation ofL/g\(C
with the dominant integral weight X. Introduce the operators

1
Dk = ——Ak fOT’ kel .
M

—

Then the representation m of LgC on V' can be extended to a representation & of the

algebra LgC x vir on V' by setting

dim g
12p

w(ex) =Dy, (k)= M)l .

Moreover, V' can be provided with a positive definite Hermitian form, contravariant

with respect to LgC X wvir.

The operator Dy = 7(ep) from Theor. 13, which is given by the formula

< )\07 Ao + 2p >
Dy = - A —
0 =m(eo) (€0) 2M(c) + 1 ’
is diagonalizable on V' with eigenvalues
2
AT U S T

pi=—r e 2Me)+1

The eigenspaces of Dy are finite-dimensional and mutually orthogonal. Denote by
T the closure of I — Dy, then T is a self-adjoint operator, bounded from below by I
and having a compact inverse T~!. So by spectral theorem, all its powers T% with
t € R are correctly defined and we can set

lv||; == || T"|| for any v €V .

Denote by H* = H the completion of V' = V) with respect to the norm || - ||; and
set
H*=Hy =(\H,, H>=H,"=|JH].
teR teR
The inner product on H defines a sesquilinear pairing between H* and H~*°, and
the operator T yields an isomorphism between H® and H'™*, defining a pairing
between them, given by

(u,v) == (T"u, T ') forue H',ve H ",

where the inner product on the right is taken in H.

16.3.2 Goodman—Wallach construction

We extend a natural right action of Diff, (S') on Lg® by change of Varlables to
Lg demanding that Diff, (S!) acts tr1v1ally on the central subalgebra in Lg For
f € Diff . (S*) we denote the action of f on Lg by: £ & for € € Lg
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Given a highest weight representation (V,7) = (V),m)) of Lg® we define an
action of f € Diff, (S') on (V,7) by setting

fimr— s, where m(§)v = 7(&f)v

for £ € [//\gTC, v € V. Note that for v € H* the image 7(£{;)v is again in H*.
The main result of [26] asserts that representations 7 and 7y are unitary equivalent.
More precisely, we have the following

Theorem 14. (Goodman-Wallach [26]) There is a unitary projective action o of
Diff, (S*) on H = Hy, such that the map

Diff, (8") x H" — H" . (f.v) — o(f)v .
is continuous for any n > 0, and
o(f)ms(§)v =m(&)a(fv
for any v € H®, f € Diff, (SY), ¢ € LgC.

Moreover, in [26] it is proved that this Diff, (S')-action on H is uniquely defined
up to projective equivalence. More precisely, suppose that 7 is another projective
action of Diff (S') on H, such that 7,H> C H*™ for any f € Diff,(S'), which
intertwines 7 with 7y, i.e.

77 p(§) = m(&)Ty

for any f € Diff, (S!), ¢ € ZE;(/C. Then there exists a continuous map p : Diff, (S!) —
St such that 74 = u(f)oy.

16.3.3 Twistor quantization of QG

In Subsec. 16.2.2 we have constructed for any lowest weight A of the loop algebra [E
a holomorphic line bundle L = Ly — Q7G and the space I' = I'y of its holomorphic
sections, on which the representation of LG with lowest weight A is realized. We
denoted by H = H), the completion of T with respect to the natural norm on .

This construction depends on the complex structure on Q27G, which is provided
by the complex representation

QrG = LG%/BTG* .

Denote this complex structure by J° and the corresponding spaces of sections I'y
and H) respectively by I'g and Hj, so that we have a representation my of LG in I'y.

If we change this complex structure to Jy by the action of a diffeomorphism
f € Diff (S'), then we can again, using the Borel-Weil construction, realize the
lowest weight representation 7, of the group Eé, corresponding to the lowest weight
A, in the space I'y of sections of L, holomorphic with respect to the complex structure
Jy on QrG. Denote the corresponding completion of f; by Hy.

By the Goodman—-Wallach construction, there is a projective unitary action

UfIF0—>Ff
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of the group Diff; (S!), intertwining the representations my and ;:
wUp(v) = Usmp(v) for v € Hy .

It is uniquely defined by the normalization condition on the lowest weight vectors:
Usvg = vy, and defines a continuous unitary operator

Up: H* — H' .

So we have again, as in Sec. 15.4, a holomorphic Hilbert space bundle

H=|J Hy

fes

and a projective unitary action of the group Diff (S') on H, given by f — Uy,
which covers the natural Diff, (S')-action on 8. The infinitesimalization of this
action yields a projective unitary representation p of lowest weight A of the Lie
algebra Vect(S') in the space Hy, constructed in Subsec. 16.3.1.

Having a projective representation p of Vect(S'), we can construct a Diff (S*)-
invariant connection A on the bundle H — S, whose curvature at the origin o € §
coincides with the cocycle of p, given in the basis {e;} by (cf. [53, 54])

plen)sp(en)] — o (em enl) = L — m)s
where b di
img
c(g) = m ;

and x(g) is the dual Cozeter number of g (cf., e.g., [76]).
The construction of the connection A is similar to that in Subsec. 15.4.2. Namely,
we have again a splitting of the Lie algebra Vect(S!) into the direct sum

Vect(S') =s1(2,R) @ m

where sl(2,R) is the Lie algebra of Mob(S!) and m = T3S. This splitting is, in
fact, induced by the splitting (15.10) from Subsec. 15.4.2, under the embedding of
Vect(S') into spyg(Hp). The above splitting together with the projective representa-
tion p : Vect(S') — End (Hy) determine, as in Subsec. 15.4.2, a Diff, (S!)-invariant
connection A on the bundle H — &, whose curvature at the origin o € S coincides
with the cocycle of p.

Consider now, as in Sec. 15.5.2, the quantization bundle

H=HK'*=S§
and provide it with the tensor-product connection C:
C=A®R1+1®B,

where B is the connection on K ~'/2, defined in Subsec. 15.5.1. The curvature of C
in the basis {ey} is equal to
— 26
&(mkfi — M) —n
12 ’
which vanishes precisely for ¢(g) = 26. Under this condition we get a flat unitary

connection on H. By integrating it, we obtain a unitary action of Diff, (S') on H,
yielding the geometric quantization of the system (G, .A) in Hy.

RC(ema en) -
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Bibliographic comments

In Sec. 16.1 we follow mostly the papers [23, 26]. The Borel-Weil construction
of the lowest weight representations of the loop group is explained in Chap. 11
of Pressley—Segal’s book [65]. The projective action of the diffeomorphism group
Diff, (S') on the lowest weight representations of the loop algebra is studied in de-
tail in Goodman—Wallach’s paper [26]. Its infinitesimal version, i.e. the projective
representation of the Lie algebra Vect(S!), given by the Casimir operators, is well
known and may be found, for example, in the books [38],[65]. The geometric quan-
tization of loop spaces of compact Lie groups was first considered by Mickelsson

53, 54].
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