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LECTURES ON RECONSTRUCTION ALGEBRAS I

MICHAEL WEMYSS

1. Introduction

Noncommutative algebra (=quivers) can be used to solve both explicit and non-explicit
problems in algebraic geometry, and these lectures will try to explain some of the features of
both approaches. I want to use these notes to give a gentle (!) introduction to the subject,
and will try and make them as self-contained as possible. Since I want to eventually end
up doing non-toric geometry, throughout I shall never adopt the language of toric geometry,
even if the example I am considering is toric. First some motivation:

From a noncommutative perspective we would like to take a singularity X = Spec R
and produce a NC ring A from which we can extract resolution(s) of X . We can then ask
whether the NC ring has some geometrical meaning, and if so whether this gives information
about A. We can also ask what A says about X and its resolutions.

From a more geometric perspective we may already have some resolution Y of X and
would like produce other resolutions, for example by flopping certain curves. We may also
want to describe the derived category of Y . This can sometimes be done using noncommu-
tative algebra.

In practice however things are not quite as simple as this, since most of the time a
specific problem will be a mixture of the two above problems. Sometimes it is easier to solve
the problem using the geometry, sometimes it is easier using quivers. Thus geometry can
give us results in noncommutative algebra and noncommutative algebra can give us results in
geometry; it is the process of playing the two sides off each other which gives us the strongest
results.

Today I’m going to define quivers and tell you how to think of them, then following
King [King1] I’ll talk about their moduli space(s) of finite dimensional representations. Time
permitting I’ll then show how to calculate the moduli spaces in some easy examples.

2. Quivers and Representations

Any algebra with a finite number of generators and a finite number of relations (i.e.
almost all algebras you can think off) can be written as a quiver with relations1. You want
to do this since the quiver gives you a way to visualize the algebra, and more importantly it
gives you a way to visualize the finite dimensional modules (see later).

Definition 2.1. A quiver Q is just a finite directed graph.

At this stage loops, double arrows,... are all allowed, and the directed graph need not
be connected. For example

Q = • • • • •

is an example of a quiver. A small technical point: for every vertex i we actually also add
in a trivial loop at that vertex and denote it by ei, but we do not draw these loops. In the
above example, the loops drawn are the non-trivial loops.

Denoting the vertices of Q by Q0 and the arrows by Q1, you can view the directed graph
Q as simply a piece of combinatorial data (Q0, Q1, h, t) where h and t are maps Q1 → Q0.
The map h (the ‘head’) assigns to an arrow its head, and the map t (the ‘tail’) assigns to an
arrow its tail.

1This cannot be done in a unique way
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2 MICHAEL WEMYSS

Definition 2.2. A non-trivial path of length n in Q is just a sequence of arrows a1 · · · an in
Q with h(ai) = t(ai+1) for all 1 ≤ i ≤ n− 1. We call this path a cycle if h(an) = t(a1).

We want to add more structure to the combinatorial data of a quiver by producing an
algebra:

Definition 2.3. For a given quiver Q, the path algebra kQ is defined to be the k-algebra with
basis given by the paths, with multiplication

pq :=

{

pq h(p) = t(q)
0 else

eip :=

{

p t(p) = i
0 else

pei :=

{

p h(p) = i
0 else

for any paths p and q.

This is an algebra, with identity 1kQ =
∑

i∈Q0
ei. Note we are using the convention

that pq means p then q; be aware that some savage barbarians2 use the opposite convention.
Note that by the definition of multiplication the path algebra is often noncommutative: for
example if

Q = •
a
•

b
•

then ab 6= ba since ba = 0. In fact in this example kQ is easy to describe: the basis of kQ is
e1, e2, e3, a, b, ab. Its not hard to convince yourself that

kQ ∼=





k k k
0 k k
0 0 k



 .

Exercise 2.4. Let Q be a quiver, then kQ is finite dimensional if and only if Q has no
non-trivial cycles.

For quivers Q without cycles, the resulting path algebras kQ have been used in geometry
although their use is generally limited to projective varieties; since in these talks we are going
to be resolving singularities we need to make one more definition:

Definition 2.5. For a given quiver Q, a relation is simply a k-linear combination of paths
in Q. Given a finite number of relations, we can form their two sided ideal R in the path
algebra, and we thus define the algebra kQ/R to be a quiver with relations.

We can assume (by removing arrows if necessary) that the length of every path in every
relation is greater than or equal to two. Note that with relations it is possible that kQ/R can
be finite dimensional even when Q has cycles, though in these lectures most of the examples
will involve infinite dimensional algebras.

In practice you should think of the relation p − q as saying ‘going along path p is the
same as going along path q’, since p = q in the quotient kQ/R.

Now as is standard in ring theory (and geometry), we tend to study a ring by instead
studying its module category (=coherent sheaves), since this is an abelian category and so we
have the machinery of homological algebra at our disposal. Representation theorists would
tell us that we are we’re studying the ring’s representations - I’ll now make this more precise.

Definition 2.6. Let kQ/R be a quiver with relations. A finite dimensional representation
of kQ/R is the assignment to every vertex i of Q a finite dimensional vector space Vi, and
to every arrow a a linear map fa : Vt(a) → Vh(a), such that the relations R between the linear
maps hold. Denote αi = dimVi and let α = (αi) be the collection of all the αi. We call α the
dimension vector of the representation.

2you know who you are
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LECTURES ON RECONSTRUCTION ALGEBRAS I 3

For example let kQ/R be •
a
•

b
•

c

subject to bc = 0. Denoting

M :=
C

4
C

( 1 0 )

C2

( 0
1 )

N :=
C

1
C

1
C

3

then M is a representation of dimension vector (1, 1, 2) whereas N is not a representation of
dimension vector (1, 1, 1).

We also have the obvious notion of a morphism between two representations:

Definition 2.7. Let V = (Vi, fa) and W = (Wi, ga) be finite dimensional representations of
kQ/R. A morphism ψ from V to W is given by specifying, for every vertex i, a linear map
ψi : Vi → Wi such that for every arrow a ∈ Q1,

Vt(a)
ψt(a)

fa

Wt(a)

ga

Vh(a)

ψh(a)
Wh(a)

commutes.

Note ψ is an isomorphism if and only if each ψi is a linear isomorphism. Also note we
have the obvious notion of a subrepresentation. It is fairly clear that in this way the finite
dimensional representations form a category, which we denote by fRep(kQ,R)

The whole point to all this is the following:

Lemma 2.8. Let A = kQ/R be a quiver with relations. Denote by fdmodA the finite dimen-
sional modules of A. Then there is a categorical equivalence

fRep(kQ,R) ≈ fdmodA

Proof. This is actually quite tautological. Given a representation (Vi, fa) then ⊕i∈Q0Vi is the
corresponding module. Conversely given any finite dimensional module W , setting Wi = eiW
(where ei is the trivial path at vertex i) gives us the corresponding representation. �

Thus we now see the benefit of writing an algebra A as a quiver with relations, as by
the above lemma we have a way to visualize the finite dimensional modules of A.

3. Moduli and GIT

In this section we consider a quiver with relations A = kQ/R and define various moduli
spaces of finite dimensional representations. In the process we have to take a very fast detour
through the world of geometric invariant theory (GIT).

For a fixed dimension vector α we may consider all representations of A = kQ/R with
dimension vector α:

R := Rep(A,α) = {representations of A of dimension α}

This is an affine variety, so denote the co-ordinate ring by k[R]. The variety (hence the
co-ordinate ring) carries a natural action of G :=

∏

i∈Q0
GL(αi) acting on an arrow a as

g · a = g−1
t(a)agh(a). Actually its really an action of PGL since the diagonal one-parameter

subgroup ∆ = {(λ1, · · · , λ1) : λ ∈ k∗} acts trivially, but this won’t concern us much. Anyway,
by linear algebra the isomorphism classes of representations of A = kQ/R are in natural one-
to-one correspondence with the orbits of this action.

To understand this space is normally an impossible problem (e.g. wild quiver type), so
we want to throw away some representations and take what is known as a GIT quotient.

- 3 -



4 MICHAEL WEMYSS

To make a GIT quotient we need to add the extra data of a character χ of G. Now the
characters χ of G =

∏

i∈Q0
GL(αi) are given by powers of the determinants

χ(g) =
∏

i∈Q0

det(gi)
θi

for some collection of integers θi ∈ ZQ0 . Since such a χ determines and is determined by the
θi, we usually denote χ by χθ. Now consider the map

θ : fdmodA → Z

M 7→
∑

i∈Q0
θi dimMi

This is additive on short exact sequences, so really its a map K0(fdmodA)→ Z.
Now assume that our character satisfies χθ(∆) = {1} (this is need to use Mumford’s

numerical criterion [King, 2.5]). It not too hard to see that this condition translates into
∑

i∈Q0
θiαi = 0. Hence for these χθ, θ(M) = 0 if M has dimension vector α.

We arrive at the key definition [King,1.1]

Definition 3.1. Let A be an abelian category, and θ : K0(A ) → Z an additive function.
We call θ a character of A . An object M ∈ A is called θ-semistable if θ(M) = 0 and
every subobject M ′ ⊆ M satisfies θ(M ′) ≥ 0. Such an object M is called θ-stable if the
only subobjects M ′ with θ(M ′) = 0 are M and 0. We call θ generic if every M which is θ-
semistable is actually θ-stable.

For A = kQ/R as before, we are interested in the above definition for the case A =
fdmodA. We shall see how this works in practice in the next section. The reason King gave
the above definition is that it is equivalent to the other notion of stability from GIT, which
we now describe:

R is an affine variety with an action of a linearly reductive group G =
∏

i∈Q0
GL(αi).

Since G is reductive, we have a quotient

R → R//G = Speck[R]G

which is dual to the inclusion k[R]G → k[R]. Its the reductiveness of the group which ensures
that k[R]G is a finitely generated k-algebra, and so Speck[R]G is really a variety, not just a
scheme. Virtually by definition the above is a categorical quotient (quite a weak condition);
further its actually a good quotient (if you don’t know what this means, don’t worry)

To make a GIT quotient we have to add to this picture the extra data of χ, some
character of G.

Definition 3.2. f ∈ k[R] is a semi-invariant of weight χ if f(g ·x) = χ(g)f(x) for all g ∈ G
and all x ∈ R. We write the set of such f as RG,χ. We define

R//χG := Proj





⊕

n≥0

k[R]G,χ
n





Definition 3.3. x ∈ R is called χ-semistable (in the sense of GIT) if there exists some
semi-invariant f of weight χn with n > 0 such that f(x) 6= 0, otherwise x ∈ R is called
unstable.

The set of semistable points R
ss forms an open subset of R; in fact we have a morphism

q : R
ss → R//χG

which is a good quotient. One more definition:

Definition 3.4. x ∈ R is called χ-stable (in the sense of GIT) if it is χ-semistable, the G
orbit containing x is closed in Rss and further the stabilizer of x is finite.

- 4 -



LECTURES ON RECONSTRUCTION ALGEBRAS I 5

In fact q is a geometric quotient on the stable locus Rs, meaning that Rs//χG really is
an orbit space.

The point in the above discussion is the following result [King1, 3.1], which says the two
notions are the same

Proposition 3.5. Let M ∈ Rep(A,α) = R, choose θ as in Definition 3.1. Then M is
θ-semistable (in the sense of Definition 3.1) if and only if M is χθ-semistable (in the sense
of GIT). The same holds replacing semistability with stability.

Thus we use the machinery from the GIT side to define for quivers the following:

Definition 3.6. For A = kQ/R choose dimension vector α and character θ satisfying
∑

i∈Q0
αiθi = 0. Denote Rep(A,α) = R and G = GL(α). We define

M
ss
θ (A,α) := R//χθ

G := Proj





⊕

n≥0

k[R]G,χ
n





and call it the moduli space of θ-semistable representations of dimension vector α.

This is by definition projective over the ordinary quotient R//G = Speck[R]G. We make
some remarks

(i) If k[R]G = k then M
ss
θ (A,α) is a projective variety.

(ii) In the resolution of singularities we ideally would like the zeroth piece Speck[R]G to
be the singularity since then the moduli space is projective over it! However, even
in cases where we use NC rings to resolve singularities, Speck[R]G might not be the
thing we want; see Example 4.6 later.

(iii) Note that M
ss
θ (A,α) may be empty.

(iv) One way to compute this space is to compute semi-invariants, but this in general is
quite hard.

One small point before we continue: we can’t just call M
ss
θ (A,α) a moduli space, we really

have to justify that it is a moduli space, i.e. why it parameterizes certain objects. We shall
describe this more precisely in a future section. For now though we shall concern ourselves
with showing how to calculate the moduli space in some examples:

4. Examples

The last section was quite abstract, here we show how it works in practice. For A =
kQ/R, we may want to construct a space X from A as a moduli space of θ-stable A-modules.
What this means [King2]:

“To specify such a moduli space we must give a dimension vector α and a
weight vector (or ‘character’) θ satisfying

∑

i∈Q0
θiαi = 0. The moduli space

of θ-stable A-modules of dimension vector α is then the parameter space
for those A-modules which have no proper submodules with any dimension
vector β for which

∑

i∈Q0
θiβi ≤ 0.”

For computational ease I will only compute moduli with dimension vector (1, . . . , 1) in
this section; I will return and do a computation of some other dimension vectors in a future
section. There are many different (and better) ways to view the following example, but here
I give the easiest:

Example 4.1. Consider the quiver
• •

with no relations. Choose α = (1, 1) and θ = (−1, 1). With these choices, since
∑

θiαi = 0
we can form the moduli space. Now a representation of dimension vector α = (1, 1) is θ-
semistable by definition if θ(M ′) ≥ 0 for all subobjects M ′. But the only possible subobjects
in this example are of dimension vector (0, 0), (0, 1) and (1, 0), and θ is ≥ 0 on all but the last
(in fact its easy to see that θ is generic in this example). Thus a representation of dimension

- 5 -



6 MICHAEL WEMYSS

vector (1, 1) is θ-semistable if and only if it has no submodules of dimension vector (1, 0).
Now take an arbitrary representation M of dimension vector (1, 1)

M = C b
a

C .

Notice that M has a submodule of dimension vector (1, 0) if and only if a = b = 0, since the
diagram

C
∼=

0 0

C

b a

0
0

C

must commute. Thus by our choice of stability θ,

M is θ-semistable ⇐⇒ M has no submodule of dim vector (1, 0) ⇐⇒ a 6= 0 or b 6= 0.

and so we see that the semistable objects parametrize P1 via the ratio (a : b), so the moduli
space is just P1. Another way to see this: we have two open sets, one corresponding to a 6= 0
and the other to b 6= 0. After changing basis we can set them to be the identity, and so we
have

U0 = { C b
1

C : b ∈ C} U1 = { C 1
a

C : a ∈ C}

Now the gluing is given by, whenever U0 3 b 6= 0

U0 3 b = C b
1

C = C 1
b−1

C = b−1 ∈ U1

which is evidently just P1.

This lecture series is devoted to resolving singularities, so we warm up by blowing up
the origin in C2:

Example 4.2. Consider the quiver with relations

•
a
b •
t

atb = bta

and again choose dimension vector (1, 1) and stability θ0 = (−1, 1). Exactly as above if

M = C
a
b Ct

then

M is θ-semistable ⇐⇒ M has no submodule of dim vector (1, 0) ⇐⇒ a 6= 0 or b 6= 0.

For the first open set in the moduli U0 (when a 6= 0): after changing basis so that a = 1
we see that the open set is parameterized by the two scalars b and t subject to the single
relation (substituting a = 1 into the quiver relations) tb = bt. But this always holds so it
isn’t really a relation, thus the open set U0 is just C2 with co-ordinates b, t. We write this as
C2
b,t. Similarly for the other open set:

C
1
b Ct

C
a
1 Ct

U0 = C2
b,t U1 = C2

a,t.

Now the gluing is given by, whenever b 6= 0

U0 3 (b, t) = C
1
b Ct

= C
b−1

1 C
bt

= (b−1, bt) ∈ U1

and so we see that this is just the blowup of the origin of C2.

Exercise 4.3. What does the stability θ1 = (1,−1) give us in the above example?

Example 4.4. Consider the group 1
3 (1, 1) := 〈

(

ε3 0
0 ε3

)

〉 where ε3 is a primitive third root of

unity. This acts on C2 giving us a quotient singularity C[x, y]
1
3 (1,1). Consider the quiver with

relations (the reconstruction algebra)

•
c1
c2 •a1
a2
k1

c1a2 = c2a1 a2c1 = a1c2
c1k1 = c2a2 k1c1 = a2c2

- 6 -



LECTURES ON RECONSTRUCTION ALGEBRAS I 7

Choose dimension vector (1,1). We are going to calculate the moduli space for stability
θ0 = (−1, 1), then calculate the moduli space for stability θ1 = (1,−1).
(i) Take θ0 = (−1, 1). As in the examples above, for a module

M = C

c1
c2

Ca1
a2
k1

to be semistable requires c1 6= 0 or c2 6= 0 and so we have two open sets U0 = (c1 6= 0) and
U1 = (c2 6= 0). Changing basis so that these are 1, by the relations we have

C

1
c2

Ca1
c2a1

c22a1

C

c1
1

Cc21k1
c1k1
k1

U0 = C2
c2,a1

U1 = C2
c1,k1

.

Now the gluing is given by, whenever c2 6= 0

U0 3 (c2, a1) = C

1
c2

Ca1
c2a1

c22a1

= C

c
−1
2
1

Cc2a1

c22a1

c32a1

= (c−1
2 , c32a1) ∈ U1

since we read off the co-ordinates in U1 in the c1 and k1 positions. Thus by inspection we
see that our space is OP1(−3), the minimal resolution.
(ii) Take θ1 = (1,−1). Its clear that we now have 3 open sets U0 = (a1 6= 0), U1 = (a2 6= 0),
U2 = (k1 6= 0). Consider first U0: after changing basis so that a1 = 1, we have

C

c1
c2

C1
a2

k1

c1a2 = c2 a2c1 = c2
c1k1 = c2a2 k1c1 = a2c2

which is parameterized by the three variables c1, a2, k1 subject to the one relation c1k1 = c1a
2
2

i.e. c1(k1 − a
2
2) = 0. This is singular in dimension 1! If we draw U0, it looks something like

It has two components, namely the c1 = 0 component and the k1 = a2
2 component. The

k1 = a2
2 component is the one that we want, since it ends up giving us (part of) the minimal

resolution.

From the above example we see that a moduli space may not be smooth and might have
components. Note that in the above example there is one component which is particularly
nice, however the next example shows that a moduli space may be both irreducible and
singular.

- 7 -



8 MICHAEL WEMYSS

Example 4.5. Consider the group 1
5 (1, 2, 3) :=

〈(

ε 0 0
0 ε2 0
0 0 ε3

)

: ε5 = 1

〉

giving a three dimen-

sional quotient singularity. The algebra to consider is

•

y3
x3

z3

• y2

z2

x2

•

y4

z4

x4

•

y1

z1

x1

•x5

y5

z5 x1y2 = y1x3 x1z2 = z1x4 y1z3 = z1y4
x2y3 = y2x4 x2z3 = z2x5 y2z4 = z2y5
x3y4 = y3x5 x3z4 = z3x1 y3z5 = z3y1
x4y5 = y4x1 x4z5 = z4x2 y4z1 = z4y2
x5y1 = y5x2 x5z1 = z5x3 y5z2 = z5y3

Consider α = (1, 1, 1, 1, 1) with stability θ = (−4, 1, 1, 1, 1). Consider the open set given by
x1 6= 0, y1 6= 0, y3 6= 0 and z1 6= 0. After changing basis so that these are the identity we
have

C

1
x3

z3

C y2

z2

x2

C

y4

z4

x4

C

1

1

1

Cx5

y5

z5 y2 = x3 z2 = x4 z3 = y4
x2 = y2x4 x2z3 = z2x5 y2z4 = z2y5
x3y4 = x5 x3z4 = z3 z5 = z3
x4y5 = y4 x4z5 = z4x2 y4 = z4y2
x5 = y5x2 x5 = z5x3 y5z2 = z5

from which elimination of variables gives that this open set is parameterized by a = y5,
b = x3, c = z4 and d = x4 subject to the one relation ad = bc. This is singular at the origin
and so consequently the moduli space is singular. In fact in this example it is also irreducible.

Example 4.6. Consider the group 1
3 (1, 1, 0) giving the three dimensional singularity

C[x, y, z]
1
3 (1,1,0) = C[x, y]

1
3 (1,1) ⊗C C[z]

i.e. really just a surface crossed with C. In this case the algebra to consider is the higher-
dimensional reconstruction algebra

•z1

c1
c2 • z2a1
a2
k1

c1a2 = c2a1 a2c1 = a1c2 z1c1 = c1z2 z2a1 = a1z1
c1k1 = c2a2 k1c1 = a2c2 z1c2 = c2z2 z2a2 = a2z1

z2k1 = k1z1

An easy calculation shows that for α = (1, 1) and θ0 = (−1, 1) we resolve the singularity;
unsurprisingly its just the minimal resolution crossed with C. Again the same is true for
θ1 = (1,−1) but again we have to pass to components. The point in this example is that

although for θ0 = (−1, 1) the moduli space is projective over C[x, y, z]
1
3 (1,1,0), the zeroth part

of the graded ring which we take the Proj of (i.e. the invariants k[R]G) is not C[x, y, z]
1
3 (1,1,0),

so a little care should be taken. The reason for this is that both z1 and z2 belong to k[R]G,
and there is no relation which tells us they are the same (they are however the same as soon
as c1 6= 0 or c2 6= 0). Thus k[R]G has an ‘extra’ z.

One of the advantages of quivers is that they allow you to resolve singularities explictly
in examples you wouldn’t be able to do otherwise, especially in the case of quotients by a
non-abelian group: we will illustrate this principle in more complicated examples in a future
lecture.
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LECTURES ON RECONSTRUCTION ALGEBRAS II

MICHAEL WEMYSS

1. Introduction

Last lecture I introduced quivers with relations. Then after choosing a dimension vector
α and character θ such that

∑

i∈Q0
αiθi = 0 we constructed what we called a moduli space. I

again emphasize that, given kQ/R, we need to make two choices to define the moduli space.
This seminar is aiming to resolve singularities (in particular rational surfaces) so today

I’m going to start to go in that direction. First though I have one thing to finish from last
time, namely to prove that the spaces we introduced are actually moduli spaces in the strict
sense of the word. I’ll do this in the first section. I will then spend the rest of the lecture
giving the geometric motivation of a reconstruction algebra, and I will highlight many of the
subtleties and technicalities we will need to overcome in future.

2. Why its a Moduli Space

In the last lecture, given a dimension vector α and stability θ such that
∑

i∈Q0
αiθi = 0

we constructed a space M
ss
θ (A, α) = M

ss
θ and called it a moduli space. In this section we

justify the name: we are going to rigorously define what a ‘moduli space’ is and then apply it
to quivers. Proving that the ‘moduli spaces’ from the last lecture are actually moduli spaces
is important since (in some circumstances) it gives us the existence of a universal bundle on
the space.

First some motivation: in what follows, ‘moduli set’ means a set of things we would like
to parameterize by a geometric object. The natural question to ask is

Q1: Does there exist a scheme X whose closed points are the objects in the ‘moduli set’
A: Usually no.

Thus we ask

Q2: Does there exist a scheme X whose closed points are ‘some’ of the objects in the
‘moduli set’

A: More often

We clearly have to make this more precise. To do this, for any category C define [C, Set]
to be the category of contravariant functors from C to Set. For any object X in C define

HomC(−, X) : C → Set

C 7→ HomC(C, X)

in the obvious way, so HomC(−, X) ∈ [C, Set]. We call this the functor of points of X since in
many examples (but not all!) there exists an object Z of C with the property that HomC(Z, X)
is the set of points of X . For example in the category of groups Gp, Z is an object for which
HomGp(Z, G) = |G| as sets, for any group G. Another example would be Z[X ] in the category
of rings.

Now Yoneda’s Lemma tells us that

C → [C, Set]
C 7→ HomC(−, C)

is an embedding, so we can view C inside the category [C, Set]. This may look like we’ve
made things more difficult but in fact it may be the case that in the larger category [C, Set]
some constructions are much easier. Anyway,
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Definition 2.1. We call F ∈ [C, Set] representable if F is naturally isomorphic to HomC(−, A)
for some object A of C.

Denote the category of affine varieties by AfVar then by Yoneda affine varieties are
precisely those functors AfVar→ Set which are representable. This is all very tautological.
Note that affine algebraic groups are (by definition) those representable functors AfVar→ Set

which take values in the category Gp (instead of Set).
Now a moduli problem for some class of objects in algebraic geometry consists of

• for every scheme X , a notion of a family parameterized by the scheme X .

We call this a family over X . Note at this stage this is inprecise, but the point is that we
specialize this general framework to a precise meaning of ‘family over X ’ whenever we want
to do anything. Now the moduli problem is considered solved if there exists a single scheme
Y such that the family over Y is universal, in the sense that given any other X , every member
of the family over X is uniquely induced by a morphism X → Y .

Denoting the category of schemes by Sch, more formally the moduli problem is a con-
travariant functor

F : Sch → Set

S 7→ the set {members of the family over S}

and the moduli problem is considered solved if F is representable. This is again tautological:
if F ∼= Hom(−, Y ) then

{members of the family over X} = FX ∼= Hom(X, Y ).

This leads to the following definition

Definition 2.2. If a contravariant functor F : Sch→ Set is represented by a scheme Y , we
call Y the fine moduli space of F .

This is normally too strong since many moduli problems don’t have representable func-
tors. So we compromise:

Definition 2.3. Given F ∈ [Sch, Set], a scheme Y is said to be a best approximation to F
(or sometimes Y corepresents F ) is there is a natural transformation

α : F → Hom(−, Y )

which is universal amongst the natural transformations from F to schemes, i.e. given any
other β : F → Hom(−, Z), there exists a unique natural transformation

F
α

β

Hom(−, Y )

∃!

Hom(−, Z)

such that the diagram commutes. If F is a moduli functor, we cal (Y, α) the moduli space of
F . If further (Y, α) satisfies

αSpecC : F (SpecC)→ Hom(SpecC, Y )

is bijective, we call (Y, α) a coarse moduli space.

We now apply this to quivers. To begin we define the notion of a family over X :

Definition 2.4. A family of kQ-modules with dimension vector α = (αi) over a scheme X
is an assignment, for each vertex i, of a vector bundle Vi of rank αi, and for every arrow in
Q a corresponding morphism of vector bundles.

If you like, you can think of this as specifying a map kQ/R→ End(⊕i∈Q0Vi). Or you can
also view it as a representation in the category of vector bundles VbX . The above definition
really is a family of representations over X in the obvious way: for any point x ∈ X if we take
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the stalk of the bundles (=the fibre) at x then each vertex just becomes a finite dimensional
vector space and the morphisms become linear maps such that the relations still hold. This
isn’t saying anything other than a vector bundle is locally trivial. Thus for every point x ∈ X
we get an actual representation of kQ/R.

We now make our moduli problem precise by defining the families we would like to
classify:

Definition 2.5. A family of semistable kQ/R-modules with dimension vector α over a
scheme X is just a family of kQ-modules with dimension vector α = (αi) as above, in which
all members in the family are θ-semistable. We have the similar notion for θ-stability.

This just means that for every point x ∈ X , the associated stalk (i.e. actual representa-
tion) is θ-semistable.

Now every θ-semistable M has a Jordan-Hölder filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mn−1 ⊂Mn = M

in which every subobject Mi is θ-semistable, and every factor Mi/Mi−1 is simple (in the
category of θ-semistable modules). This is just constructed in the standard way; since M is
finite dimensional the process must eventually finish.

It is clear that if M is θ-stable then the JH filtration is just 0 ⊂M (since by definition
M has no θ-semistable subobjects). In more fancy language the θ-stable objects are precisely
the simple objects in the category of θ-semistable objects.

Definition 2.6. Two θ-semistable objects are called S-equivalent (with respect to θ) if their
Jordan-Hölder filtrations have isomorphic composition factors

By the above discussion this collapses in the case of stability: two θ-stable modules M
and N are S-equivalent if and only if they are isomorphic, since their JH filtrations are just
0 ⊂M and 0 ⊂ N .

The quotient (=moduli space) defined last time M
ss
θ := R//χG parameterizes the θ-

semistable representations up to S-equivalence. I’m not going to explain why this is true, since
it involves more GIT than I want to get into. The open set of the quotient which corresponds
to the stable points thus parameterizes the θ-stable representations up to isomorphism. This
answers a question Osamu asked last time.

If θ is generic then stability and semistability coincide (by definition), thus in these cases
we are always classifying up to isomorphism. In practice we’re only going to be dealing with
generic stability conditions.

Now we have defined the moduli problem, so we get the moduli functors

Mss
kQ,α,θ : Sch → Set

X 7→ the set {families of θ-semistable kQ/R modules with dim α over X}/S-equiv
Ms

kQ,α,θ : Sch → Set

X 7→ the set {families of θ-stable kQ/R modules with dim α over X}/ ∼=

Theorem 2.7 (King 5.2). M
ss
θ is a coarse moduli space for the functor Mss

kQ,α,θ.

Denote the stable points in M
ss
θ by M

s
θ, then

Theorem 2.8 (King, 5.3). If α is indivisible, M
s
θ represents the functor Ms

kQ,α,θ, i.e. M
s
θ

is a fine moduli space.

Thus for generic θ and indivisible α, M
ss
θ is a fine moduli space. This is important as it

means we have a universal bundle1: since for generic θ and indivisible α

Ms
kQ,α,θ

∼= Hom(−, Mss
θ )

as functors from schemes to sets, apply both sides to the scheme M
ss
θ . Then

1 ∈ Hom(Mss
θ , Mss

θ ) ∼=Ms
kQ,α,θ(M

ss
θ )

1this is backwards: the theorem is proved by exhibiting such a bundle!
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so we have a family of θ-stable kQ/R modules with dimension vector α over M
ss
θ correspond-

ing to the identity map. This just means that for every point x ∈M
ss
θ , the representation in

this family corresponding to x is just x. We call this family the universal family.

3. Geometric Motivation of Reconstruction Algebras

Before talking about the SL(2, C) McKay correspondence and its generalization to GL(2, C)
I’ll first give some motivation as to what we might regard as being the ‘best’ possible answer.

In this section consider a rational normal surface singularity X = SpecR with minimal

resolution ˜X
π
→ X . From this we have the dual graph, which you should view as a simplified

picture of the resolution:

Definition 3.1. Denote by {Ei} the exceptional collection of P1s. Define the (labelled)
dual graph as follows: for every Ei draw a dot, and join two dots if the corresponding P1’s
intersect. Additionally, decorate each vertex with the self-intersection number corresponding
to the curve at that vertex.

In practice what this means is that if we have a collection of P1’s (which are one-
dimensional, so we draw as lines) intersecting as follows:

with all curves having self-intersection number (−2), then the dual graph is

•
-2

•
-2

•
-2

•
-2

The theory of rational normal surfaces is in many ways dictated by the following piece
of combinatorial data (the fundamental cycle Zf ) which we can associate to the dual graph:

Definition 3.2 (Artin). For the dual graph {Ei}, define the fundamental cycle Zf =
∑

i riEi

(with each ri ≥ 1) to be the unique smallest element such that Zf ·Ei ≤ 0 for all vertices i.

What this means in practice: for the dual graph

•
E4

•
E1

•
E2

•
E3

E1 · E1 = −2
E2 · E2 = −2
E3 · E3 = −2
E4 · E4 = −2

first try the smallest element Zr = E1 + E2 + E3 + E4:

Zr · E1 = E1 · E1 + E2 · E1 + E3 · E1 + E4 · E1 = (−2) + 1 + 0 + 0 = −1 ≤ 0

Zr · E2 = E1 · E2 + E2 · E2 + E3 · E2 + E4 · E2 = 1 + (−2) + 1 + 1 = 1 � 0

Zr · E3 = E1 · E3 + E2 · E3 + E3 · E3 + E4 · E3 = 0 + 1 + (−2) + 0 = −1 ≤ 0

Zr · E4 = E1 · E4 + E2 · E4 + E3 · E4 + E4 · E4 = 0 + 1 + 0 + (−2) = −1 ≤ 0

Since it fails against E2, try Z2 = E1 + 2E2 + E3 + E4. A similar calculation shows that

Z2 ·Ei ≤ 0 for all curves Ei. Consequently Zf = Z2, and we write this as Zf = 1

1 2 1
.

Observe that changing the middle curve in the above example changes the fundamental

cycle to be Zf = 1

1 1 1
, but keeping the middle curve the same and changing any other

curve results in the same Zf = 1

1 2 1
.

I emphasize that Zf is defined entirely in terms of the dual graph. Consequently given
a dual graph you can (if you wish) think of Zf as a purely combinatorial piece of data which
we can associate to it, but it is perhaps best to think a little more geometrically.
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Now in fact

•
-2

•
-2

•
-2

•
-2

in the above discussion is the dual graph of the minimal resolution of C2/BD4·2 where BD4·2

is the binary dihedral group of order 8 inside SL(2, C):

BD4.2 :=

fi„

ε4 0
0 ε3

4

«

,

„

0 ε4

ε4 0

«fl

This has been extensively studied by many people. Say we have an open cover of the minimal
resolution looking something like:

U
−

U+

U2

U1

U0

Now say we want to change the red curve in the minimal resolution into a (-3) curve, i.e. we
want the dual graph2 to become

•
-2

•
-2

•
-2

•
-3

.

How should we go about doing this? Note first that the fundamental cycle is still Zf =

1

1 2 1
. We want to change the original space as little as possible to achieve our goal, so

it would appear sensible to suggest that we only (at worst) change the equation of the open
set U0, and also change how U0 glues to U1. The change in glue will give the change in
self-intersection number. The rest of the open sets (and their glues) will remain the same,
and so we will have the desired configuration of P1s. I’m actually glossing over the fact that
our map down to the singularity also changes, but the quiver takes care of this too so we
shouldn’t worry.

Here comes the key point:

Remark 3.3. If we change the geometry to accommodate a different self-intesection number,
then provided Zf does not change the new geometry will be very similar to the old geometry.

This is a subtle change in approach, so I’ll emphasize it again. If you are given a group
G inside GL(2, C) then instead of trying to resolve it using the G-Hilbert scheme (which we
view as a ‘new’ space dependent on the group G), we should instead view the resolution as
being a very small modification of a space we already understand. It is the (yet to be defined)
reconstruction algebra which encodes the difference. Of course at this stage we don’t know
what space the resolution will be similar to, but the reconstruction algebra will tell us this.

The G-Hilbert scheme turns out to give the minimal resolution, but I do not know of
any conceptual reason why this should be true. The groups under consideration can become
very large and complicated, but the geometry stays quite simple.

Another point: in the above example if we had changed the middle curve instead of the
red curve, you might think it would be more complicated as lots of things would have to

2In fact this new dual graph corresponds to the non-abelian group D5,3 of order 24
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change. However I contest that this is actually the easiest case, since the fundamental cycle
has decreased. Since Zf can only decrease (i.e. improve) or remain the same under changing
a self-intersection number, you should view this as saying that the difficulty in the geometry
either

(A) remains the same (when Zf stays the same)
(B) becomes easier (when Zf changes, i.e. decreases)

As we shall see this is very important, since in many cases for non-abelian subgroups of
GL(2, C) to extract the geometry explicitly from the reconstruction algebra is precisely the
same level of difficultly as the toric case. The slogan is

Slogan 3.4. Take any non-abelian subgroup of GL(2, C). Then if the fundamental cycle Zf

is reduced (i.e. consists only of 1’s), the geometry is not toric, but it may as well be.

In practice Zf is reduced almost all of the time. I’ll show how the above slogan works
in my next lecture, but for now I’ll illustrate case (A) with an example.

4. A computation

Earlier I promised to give an example of explicitly resolving a singularity which would be
very difficult to do without quivers, and also I promised to give an example of a computation
of a non-abelian group action. I’ll now do this, and in the process I’ll be able to illustrate
some of the points I raised in the previous section. At the moment you should view the NC
rings that I use in this section as being constructed by magic, but I’ll explain in my next
lecture where I get them from.

Example 4.1. Consider the group BD4·2 of order 8. This is classical McKay Correspondence
territory, so the algebra to consider is the preprojective algebra

•

c

• b •

A

C

B

D •
d

?

a

aA = bB = cC = dD = 0
Aa + Bb + Cc + Dd = 0

This is Morita equivalent to the skew group ring, if you know about these things. We choose
dimension vector and stability

α =
1

1 2 1

1

θ =
1

1 1 1

-5

Notice that
∑

i∈Q0
αiθi = 0 so we can form the moduli space. With these choices the

computation becomes more complicated than the ones we did before, but not massively so;
to now specify an open set we must

• specify, for each one-dimensional irreducible representation ρ, a non-zero path (which
we can change basis to assume to be the identity) from the trivial representation to
the vertex ρ.
• specify paths (0 1) and (1 0) from the trivial representation to the 2-dimensional

representation.

Different choices in the above lead to different open sets. Note that we must be able to make
such choices for any θ-stable module M since by definition M is ?-generated and so paths
leaving the trivial vertex must generate the vector spaces at all other vertices. For a stable
M , it must be true that a 6= 0 and so after changing basis we can (and will) always assume
that a = (1 0).

Define the open sets U0, U1, U2, U+ and U− by the following conditions:

U0 aB = 1 aC = 1 aBbD = 1 a = (1 0) b = (0 1)
U1 aB = 1 aC = 1 aD = 1 a = (1 0) b = (0 1)
U2 aB = 1 aC = 1 aD = 1 a = (1 0) d = (0 1)
U+ aB = 1 aDdC = 1 aD = 1 a = (1 0) d = (0 1)
U
−

aDdB = 1 aC = 1 aD = 1 a = (1 0) d = (0 1)
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Pictorially we draw this as follows:

•

• • •

•

•

• • •

•

•

• • •

•

•

• • •

•

•

• • •

•

U0 U1 U2 U+ U
−

where the solid black lines correspond to the identity, and the dotted arrow corresponds to
the choice of vector (0 1). These actually cover the moduli, but the proof is a bit messy.
Note that there are lots of other open covers we could take.

We do the U0 calculation in full, and just summarize the others. Any stable module in
U0 looks like

C

( c1 c2 )

C
( 0 1 )

C2

“

A1
A2

”

( 1
C2

)

( 1
B2

)
( D1

1 )
C

( d1 d2 )

C

( 1 0 )

where the variables are scalars, subject only to the quiver relations. Now

• aA = 0 implies A1 = 0
• bB = 0 implies B2 = 0
• cC = 0 implies c1 = −c2C2

• dD = 0 implies d2 = −d1D1

and so plugging this in our module becomes

C

( -c2C2 c2 )

C
( 0 1 )

C2

( 0
A2

)

( 1
C2

)

( 1
0 )

( D1
1 )

C
( d1 -d1D1 )

C

( 1 0 )

But now there is only one relation left, namely Aa + Bb + Cc + Dd = 0. This gives

„

0 0
A2 0

«

+

„

0 1
0 0

«

+

„

-c2C2 c2

-c2C2
2 c2C2

«

+

„

d1D1 -d1D2
1

d1 -d1D1

«

=

„

0 0
0 0

«

which yields the four conditions

c2C2 = d1D1

c2 = d1D2
1 − 1

A2 = c2C2
2 − d1

c2C2 = d1D1

The second and third conditions eliminate the variables c2 and A2, whereas the first and
last conditions are the same. Substituting the second condition into the first we see that
this open set is completely parameterized by d1, D1 and C2 subject to the one relation
d1D1 = (d1D

2
1 − 1)C2, so U0 is a smooth hypersurface in C3.

- 15 -



8 MICHAEL WEMYSS

Similarly we have

U1

C

( -c2C2 c2 )

C

( 0 1 )

C
2

“

0
A2

”

“

1
C2

”

“

1
0

”

“

1
D2

”

C

( -d2D2 d2 )

C

( 1 0 )

c2C2 = -d2D2

1 + c2 + d2 = 0
A2 = c2C2

2 + d2D2
2

c2C2 = -d1D1

C
3
d2,D2,C2

/(1 + d2)C2 = d2D2

U2

C

( -c2C2 c2 )

C

( -b2B2 b2 )

C
2

“

0
A2

”

“

1
C2

”

“

1
B2

”

“

1
0

”

C
( 0 1 )

C

( 1 0 )

b2B2 = -c2C2

1 + b2 + c2 = 0
A2 = b2B2

2 + c2C2
2

b2B2 = -c2C2

C
3
b2,B2,C2

/(1 + b2)C2 = b2B2

U+

C

( c1 -c1C1 )

C

( -b2B2 b2 )

C
2

“

0
A2

”

“

C1
1

”

“

1
B2

”

“

1
0

”

C
( 0 1 )

C

( 1 0 )

b2B2 = c1C1

b2 = c1C2
1 − 1

A2 = b2B2
2 − c1

b2B2 = c1C1

C
3
c1,B2,C1

/(c1C2
1 − 1)B2 = c1C1

U
−

C

( -c2C2 c2 )

C

( b1 -b1B1 )

C
2

“

0
A2

”

“

1
C2

”

“

B1
1

”

“

1
0

”

C
( 0 1 )

C

( 1 0 )

b1B1 = c2C2

c2 = b1B2
1 − 1

A2 = c2C2
2 − b1

b1B1 = c2C2

C
3
b1,B1,C2

/(b1B2
1 − 1)C2 = b1B1

Note in U2 above the equation 1+b2+c2 = 0 really means that we have a choice of co-ordinate
between b2 and c2; thus we could equally well parameterize U2 as C

3
c2,B2,C2

/c2C2 = (1+c2)B2.

Hence we see that the space is covered by 5 open sets, each a smooth hypersurface in C3.
It is also quite easy to write down the glues (I don’t have time), and just see the configuration
of P1’s: for example the gluing between U0 and U1 is

U0 3 (d1, D1, C2)
D1 6=0

(-d1D
2
1, D

−1
1 , C2) ∈ U1

The picture of the glues should (roughly) coincide with the picture I drew earlier.

The next example explains how to change the red P1 in the previous picture into a
(−3)-curve.

Example 4.2. Consider the reconstruction algebra

•

c

• b •

A

C

B

D •
d

k1

?

a

aA = bB = cC = dD = 0
Aa + Bb + Cc + Dd = 0

k1aD = dBbD

aDk1 = aCcA
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Choose dimension vector and stability as in the previous example. Now notice that the same
conditions that defined an open cover in the previous example give an open cover here (since
the stability cannot ‘see’ the extra arrows).

Now our old calculation tells us almost everything, except now we have a new variable
k1 inside every open set. The point is that the only open set which changes is U0. The reason
for this is quite simple: in the relations k1aD = dBbD and notice that aD = 1 in every open
set except U0. Thus k1 = dBbD in every open set except U0 and consequently we can put k1

in terms of the other variables. Hence k1 isn’t really an extra variable in these open sets, so
they do not change.

What happens to U0? Well by the previous calculation we have

C

( -c2C2 c2 )

C

( 0 1 )

C
2

“

0
A2

”

“

1
C2

”

“

1
0

”

“

D1
1

”

C

( d1 -d1D1 )

k1

C

( 1 0 )

c2C2 = d1D1

c2 = d1D2
1 − 1

A2 = c2C2
2 − d1

c2C2 = d1D1

k1D1 = d1

D1k1 = c2A2

Since d1 = k1D1, instead of being given by d1, D1, C2 subject to d1D1 = (d1D
2
1 − 1)C2,

the open set is now given by k1, D1, C2 subject to k1D
2
1 = (k1D

3
1 − 1)C2 . Also, the gluing

between U0 and U1 has changed to

U0 3 (k1, D1, C2)
D1 6=0

(-(k1D1)D
2
1, D

−1
1 , C2) = (-k1D

3
1, D

−1
1 , C2) ∈ U1

Thus we see that the red curve has changed into a (−3)-curve, nothing else in the open cover
has changed and so the dual graph is now

•
-2

•
-2

•
-2

•
-3
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MICHAEL WEMYSS

1. Introduction

Last lecture I gave lots of geometric motivation behind the idea of a reconstruction

algebra. I said that instead of viewing the minimal resolution ˜X of a quotient singularity
C

2/G as G-Hilb (which a priori has nothing to do with other resolutions) we should instead

view ˜X as being very similar to a space we already understand. The reconstruction algebra
encodes the difference. There are two main problems with these statements:

(1) we don’t yet know what space to compare ˜X too!
(2) we haven’t defined the reconstruction algebra yet.

In fact it turns out, after we define the reconstruction algebra, that its underlying quiver tells
us the answer to (1).

So today I’m going to lead up to the definition of the reconstruction algebra, and conse-
quently I’m going to have to change perspective slightly and become more algebraic. I’ll try
and give some motivation from the world of commutative ring theory (=CM modules here)
and also from representation theory.

First though I’ll stay geometrical and illustrate the slogan I stated last time.

2. Non-toric Toric Geometry

Last time I made the somewhat counter-intuitive statement that for most non-abelian
finite subgroups G ≤ GL(2, C) (namely those with reduced fundamental cycle), to resolve
the singularity explicitly is the same level of difficulty as toric geometry.

Example 2.1. I’m going to start by computing the geometry in a toric example. This also
illustrates the pattern in the reconstruction relations. Consider the group 1

67 (1, 41). The

continued fraction expansion 67
41 = [2, 3, 4, 4] and so the dual graph of the minimal resolution

of C2/ 1
67 (1, 41) is

•
-2

•
-3

•
-4

•
-4

The reconstruction algebra of Type A in this example is

• c+1

a+0

•
a1+

k2

c12 •

k3

k4

a21
c23 •
a32

k5
k6
c30

?

c0+

a03

a+0c0+ = c+1a1+
a1+c+1 = k2a03a32a21 a03a32a21k2 = c0+a+0

k2c0+c+1 = c12a21
a21c12 = k3a03a32 a03a32k3 = c0+c+1k2

k3c0+c+1c12 = k4a03a32 c0+c+1c12k3 = a03a32k4
k4c0+c+1c12 = c23a32

a32c23 = k5a03 a03k5 = c0+c+1c12k4
k5c0+c+1c12c23 = k6a03 c0+c+1c12c23k5 = a03k6
k6c0+c+1c12c23 = c30a03 c0+c+1c12c23k6 = a03c30

where the bizarre labeling will soon become clear. Pick dimension vector (1, 1, 1, 1, 1) and
stability condition (−4, 1, 1, 1, 1), where the −4 is in the position of ?. We are used to this
now - it means that a module M of dimension vector (1, 1, 1, 1, 1) is θ-stable if and only if
for every vertex in the quiver there is a non-zero path from ? to that vertex. Consequently
we have the following five open sets:

C 1 C 1 C 1 C

C

1

C 1 C 1 C C

C

1

1

C 1 C C C
1

C

1

1
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C C C
1

C
1

C

1

1

C C
1

C
1

C
1

C 1

This is why we choose the stability (−4, 1, 1, 1, 1), since it is ‘blind’ to the extra green arrows.
Notice no matter how many extra green arrows we add to the above quiver, picking the
dimension and stability as above the moduli is still covered by five open sets. Call the open
set in the top left U0. I shall now show that U0

∼= C2, i.e. the open set U0 is parameterized
by two variables b and c subject to no relation.

Place b in the position of c30 and c in the position of a03. I claim that every other arrow
is determined by these. Well

k6c0+c+1c12c23 = c30a03 ⇒ k6 = bc
k5c0+c+1c12c23 = k6a03 ⇒ k5 = k6c = bc2

a32c23 = k5a03 ⇒ a32 = k5c = bc3

...

Continuing in this fashion (it is best done visually; I will explain this in the lecture), we get

C 1

b7c26

C

b7c26

b3c11

1 C

b2c7

bc3

b3c11

1 C

bc3

bc2

bc
b

C

1

c

and so indeed this open set is just C2. Now the next open set U1 is also just C2, and is
parameterized by the variables in the c23 and a32 positions. By changing basis at the vertex
3 it immediate from the above picture (multiply all arrows out of vertex 3 by c, divide all
arrows into vertex 3 by c) that the glue is

U0 3 (b, c)↔ (b−1, bc4) ∈ U1

Example 2.2. We are now going to explicitly resolve the singularity C2/D56,15, where

D56,15 :=

fi„

ε30 0

0 ε
−1
30

«

,

„

0 ε4

ε4 0

«

,

„

ε82 0
0 ε82

«fl

is a non-abelian group of order 2460. I claim this is really easy, once you know the recon-
struction algebra. In this case it is

•

a
−0

c
−1

• c+1

a+0

•

a1−

a1+

k2

c12 •

k3

k4

a21

c23 •
a32

k5
k6
c30

?

c0−

c0+

a03

c0+c+1 − c0−c
−1 = 4A01

c0+a+0 = c0−a
−0

a
−0c0− = c

−1a1−
a1+c+1 = a1−c

−1
a+0c0+ = c+1a1+

a1+c+1 = k2a03a32a21 a03a32a21k2 = c0+a+0
k2c0+c+1 = c12a21

a21c12 = k3a03a32 a03a32k3 = c0+c+1k2
k3c0+c+1c12 = k4a03a32 c0+c+1c12k3 = a03a32k4

k4c0+c+1c12 = c23a32
a32c23 = k5a03 a03k5 = c0+c+1c12k4

k5c0+c+1c12c23 = k6a03 c0+c+1c12c23k5 = a03k6
k6c0+c+1c12c23 = c30a03 c0+c+1c12c23k6 = a03c30

Note that the relations below the horizontal line are exactly the same as for the toric example
we did earlier. Choose dimension vector (1, 1, 1, 1, 1, 1) and stability (−5, 1, 1, 1, 1, 1) where
the −5 corresponds to the position ?. Its not too hard to see1 that the moduli is covered by

1If you get stuck, use the only non-monomial relation. If you’re still stuck, try using the non-monomial

relation again.
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the following six open sets

C

C 1 C 1 C 1 C

C

1

1

C

C 1 C 1 C C

C

1

1
1

C

C 1 C C C
1

C

1

1
1

C

C C C
1

C
1

C

1

1
1

C

C C

1

C
1

C
1

C

1
1

C

C C
1

C
1

C
1

C

1

1

Denote these by U0, U1, U2, U3, U+ and U− respectively. Lets look at U0. Setting a = a1−,
b = c30 and c = a03 then using exactly the same calculation as the toric example earlier, U0

looks like

C

a-0

c-1

C 1

b7c26

C

a

b7c26

b3c11

1 C

b2c7

bc3

b3c11

1 C

bc3

bc2

bc
b

C

1

1

c

now subject to the 4 new relations above the horizontal line. But these give that a−0 = b7c26,
c−1 = 1 − 4b4c15 and a(1 − 4b4c15) = b7c26. Thus our open set is C3

a,b,c subject to the one

equation a(1− 4b4c15) = b7c26. Note that basically everything in this calculation is the same
as the toric case, except the one non-monomial relation ends up giving us a hypersurface in
C3.

The other open sets are done similarly, and all follow very quickly from the toric case.
We find that we can read off the co-ordinates in the following positions (I’ve also stated their
abstract equations):

U0 (a1−, c30, a03) a(1− 4b4c15) = b7c26

U1 (a1−, c23, a32) a(1− 4bc4) = b2c7

U2 (a1−, c12, a21) a(1− 4c) = bc2

U3 (a1−, a1+, c+1) a(c− 4) = bc
U+ (c0−, a1+, a−0) b(a2c + 4) = ac
U− (c0+, a1−, a+0) b(a2c− 4) = ac

Actually there is a choice of coordinate in U3 above since we can pick the position c−1 instead
of c+1; denoting d as this new third coordinate changes the abstract equation to a, b, d subject
to ad = b(4− d). With respect to the above ordering, the gluing of these open sets is:

U0 3 (a, b, c) ↔ (a, c−1, c4b) ∈ U1

U1 3 (a, b, c) ↔ (a, c−1, c4b) ∈ U2

U2 3 (a, b, c) ↔ (ca, c3b, c−1) ∈ U3

U3 3 (a, b, d) ↔ (a−1, b, a2d) ∈ U+

U3 3 (a, b, c) ↔ (b−1, a, b2c) ∈ U−
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The dual graph in this example is

•
−2

•
−2

•
−4

•
−4

•
−4

3. The SL(2) McKay Correspondence: Preliminaries

The last section was very geometrical; I’ll now come back and motivate the algebraic
side. If we take a finite subgroup G of GL(2, C) we would like to use the representation
theory of G to resolve the singularity C2/G. In this section I’ll introduce the notions needed
to explain the classical McKay correspondence (i.e. when G ≤ SL(2, C)), but I’ll define
everything when G ≤ GL(2, C).

The geometry of C2/G is a function of two variables, the group G and the natural
representation V = C2. Changing either may change the geometry. Consequently the repre-
sentation theory by itself will tell us nothing about the geometry (since it is only a function of
one variable, namely the group G), so we have to enrich the representations with the action
of G on V . We will do this in three ways: the first is as follows

Definition 3.1. For given finite G acting on C2 = V , the McKay quiver is defined to be the
quiver with vertices corresponding to the isomorphism classes of indecomposable representa-
tions, and the number of arrows from ρ1 to ρ2 is defined to be

dimCHomCG(ρ1, ρ2 ⊗ V )

Example 3.2. For the groups 1
4 (1, 3) and BD4·3 inside SL(2, C) the McKay quivers are

1 1

? 1

1

1 2 2 1

?

respectively, where the number on a vertex is the dimension of the representation at that
vertex.

Beware that sometimes the McKay quiver is defined with the arrows reversed, i.e. the
number of arrows from ρ1 to ρ2 is dimCHomCG(ρ2, ρ1 ⊗ V ). This is just a convention, so it
doesn’t really matter.

The second way we are going to encode the geometry into the representation theory is
to treat every representation as a semi-invariant, and take the corresponding endomorphism
ring:

Definition 3.3. For a representation ρ, form ρ⊗C C[x, y]. Now G acts on both sides of the
tensor, so we can form (ρ⊗C[x, y])G, which is a CM module over the invariant ring C[x, y]G =
(ρ0 ⊗ C[x, y])G where ρ0 is the trivial representation. We denote Sρ := (ρ ⊗ C[x, y])G and
call it the CM module associated to ρ. Denote A := EndC[x,y]G

(

⊕ρ∈IrrG(ρ⊗ C[x, y])G
)

In fact the above gives a 1-1 correspondence between the representations and the CM
modules. You should perhaps view the CM modules as being ‘better’ than the representations,
since they generalize to the non-quotient singularity case.

The third way to encode the geometry into the representation theory is done as follows:

Definition 3.4. Define the skew group ring C[x, y]#G to be the vector space C[x, y]⊗C CG
with multiplication given by

(f1 ⊗ g1) · (f2 ⊗ g2) := (f1(g1 · f2))⊗ g1g2
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You should view this as the algebra put together from CG and C[x, y] in a natural way,
and it is the twist in the multiplication which is encoding the action of G on V . Note that a
C[x, y]#G module is exactly the same thing as C[x, y] module M (=coherent sheaf on C2)
with a compatible G-action; i.e. a G-action such that

g(f ·m) = g(f) · g(m) for all f ∈ C[x, y], g ∈ G, m ∈M

Thus we can think of modules for C[x, y]#G a little more geometrically as G-equivariant
sheaves on C2.

The following theorem due to Auslander tells us that our two naturally defined algebras
give us the same answer:

Theorem 3.5. If G ≤ GL(2, C) is small (i.e. contains no pseudoreflections) then

C[x, y]#G ∼= EndC[x,y]G
(

⊕ρ∈IrrGS⊕dimρ
ρ

)

.

Consequently (killing multiplicity) A = EndC[x,y]G(⊕ρ∈IrrGSρ) is Morita equivalent to the
skew group ring C[x, y]#G.

Actually the three ways of encoding the geometry onto the representation theory give
us the same answer:

Lemma 3.6. The underlying quiver of C[x, y]#G (and thus A = EndC[x,y]G(⊕ρ∈IrrGSρ)
when the group is small) is the McKay quiver.

The relations on the McKay quiver that give the Morita equivalence with the skew group
ring (at least in the case when G is small) are known as the mesh relations from AR theory.
Perhaps more will be said about this later.

4. The SL(2) McKay Correspondence

The last section introduced the algebra and notation, in this section we get to the point.

Let G ≤ SL(2, C) and denote by ˜X → C
2/G the minimal resolution. Firstly, there is a 1-1

correspondence

{exceptional curves} ↔ {non-trivial irreducible representations}

where recall that the right hand side is in 1-1 correspondence with the non-free CM modules.
I emphasize that so far this is a numerical correspondence, we want more structure. McKay
observed that

{dual graph} McKay quiver

where we go from one side to the other by deleting (or adding) the vertex corresponding to
the trivial representation. For example

?

2

1 2 3 2 1

←→

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

1

1 2 2 1

?

←→

•
−2

•
−2

•
−2

•
−2

•
−2

If we consider an algebra instead of just a quiver (by adding relations, which are the pre-
projective relations if you know about these things) we can say more. Firstly the above
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correspondence becomes

{dual graph} quiver of EndC[x,y]G(⊕ρ∈IrrGSρ)

In fact there are also statements about the derived category and quiver GIT. I will now sum-
marize all this into one theorem. By Theorem 3.5 we can replace C[x, y]#G by EndR(⊕ρ∈IrrGSρ)
throughout.

Theorem 4.1 (SL(2, C) McKay Correspondence). Let G be a finite subgroup of SL(2, C),

denote R = C[x, y]G, X = SpecR and ˜X
π
→ X the minimal resolution. Then

(i) There is a 1-1 correspondence

{exceptional curves} ↔ {indecomposable non-free CM modules}

(ii) The McKay quiver gives the dual graph ˜X after we delete the trivial vertex. The only
possibilities are the Dynkin diagrams of type ADE.

(iii) The co-efficients in Zf correspond to the dimensions of the representations associated
to the vertices.

(iv) Db(modC[x, y]#G) ≈ Db(coh ˜X).
(v) Considering C[x, y]#G, take the dimension vector α given by the co-efficients in Zf .

Then for any generic stability condition θ,

M
s
θ

π
→ X

is the minimal resolution.

I should add some remarks. View (i) as a numerical correspondence, to which (ii) and
(iii) adds more structure. To improve this we have to add in relations (i.e. we need to
consider an algebra, not just a quiver) and as soon as we do this we can start talking about
modules, and so consider (iv) and (v). The derived equivalence in (iv) can be seen using
either Fourier-Mukai transforms or tilting. Perhaps (v) is the strongest statement.

I should also say that via Artin-Verdier we can view this correspondence geometrically
on the minimal resolution in terms of full sheaves and their Chern classes. This is important
when considering Wunram’s generalization later.

The above theorem fails for GL(2, C) but I shall explain how to modify the above so that
properties (i)-(iv) hold. Property (v) the way it is stated will turn out to be false even after
the modification, however there will be one particular stability condition which will work.
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1. Introduction

Last lecture Osamu introduced the notion of a special CM module and gave some of
their properties. Here I briefly recap some of his lecture and also add the geometric part of
the definition.

Let X = SpecR be an affine complete rational surface singularity, denote the minimal

resolution by f : ˜X → SpecR and the exceptional curves by {Ei}. Also, for a given CM

module M of R, denote by M := π∗M/torsion the corresponding vector bundle on ˜X.

Definition-Proposition 1.1. A CM module M is called special if one of the following

equivalent conditions hold

1. H1(M∨) ∼= Ext1eX(M, O) = 0

2. M ⊗R ωR/torsion is CM

3. Ext1R(M, R) = 0
4. HomR(M, R) is the first syzygy of some CM module.

5. ΩM ∼= HomR(M, R).

How to interpret this: 1 ⇐⇒ 2 is due to Wunram, and links the geometric notion of
1 (which involves the minimal resolution) to the more algebraic notion of 2 (which does not
involve the minimal resolution). Condition 3 says that we can deduce the vanishing of the
ext group upstairs (i.e. 1) by deducing the vanishing of the ext group downstairs on the
singularity. This is very useful, but note that such a phenomenon is very rare! It is still not
clear from conditions 1,2 or 3 how to obtain special CM modules - it is 4 which now helps
since just taking the syzygy of your favorite CM module (and then taking the dual) gives
you a special CM module. Condition 5 is a refinement of condition 4 (for example when
G ≤ SL(2, C) is gives an alternative proof that Ω2 = id) and is useful in proving homological
statements.

We arrive at the definition:

Definition 1.2. The ring EndR(⊕M), where the sum is over all indecomposable special CM

modules, is called the reconstruction algebra.

A long time ago I said that instead of viewing the minimal resolution as G-Hilb (which
you can do), the new idea is to instead view the minimal resolution as being very similar to
a space we already understand. It is the reconstruction algebra which tells us which space to
compare to, and it is the reconstruction algebra which encodes the difference. This is related
to why I call EndR(⊕M) the reconstruction algebra, which I shall now explain in the next
section.

2. The Correspondence

Recall that given the data of a dual graph, simple combinatorics give us Artin’s fun-
damental cycle Zf . In the case of finite subgroups of SL(2, C) these numbers are what you
expect. I need one further piece of combinatorial data, since now the canonical sheaf need
not be trivial and so we need to encode this combinatorially. It is already known how to do
this: use the canonical cycle ZK . It is the rational cycle defined by the condition

ZK · Ei = −K eX
· Ei
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for all i. By adjunction this means that

ZK · Ei = E2
i + 2

for all i. Note that on the minimal resolution the self-intersection number of every curve is
≤ −2 and so consequently ZK · Ei ≤ 0 for all i.

The canonical cycle appears in the theorem below since at some point in the proof Serre
duality is envoked.

Theorem 2.1. Let ˜X → SpecR be the minimal resolution of some affine complete rational

surface singularity. Then EndR(⊕M) can be written as a quiver with relations as follows:

for every exceptional curve Ei associate a vertex labelled i, and also associate a vertex ⋆
corresponding to the free module. Then the number of arrows and relations between the

vertices is given as follows:

Number of arrows Number of relations
i → j (Ei · Ej)+ (−1 − Ei · Ej)+
⋆ → ⋆ 0 −ZK · Zf + 1 = −1 − Zf · Zf

i → ⋆ −Ei · Zf 0
⋆ → i ((ZK − Zf) · Ei)+ ((ZK − Zf ) · Ei)−

From this I should make some remarks

• We call EndR(⊕M) the reconstruction algebra since it can be reconstructed from
the dual graph of the minimal resolution. Although it looks quite complicated, the
combinatorics are actually very easy (see lemma below).

• If you already know the dual graph (e.g. through the Brieskorn classification for
quotient singularities) to obtain the quiver is very quick. If you don’t know the dual
graph then at least in the case of quotient singularities there is another way to build
the reconstruction algebra, using the AR quiver. If you like, you can view this AR
quiver method as another (but not so good) proof of the Brieskorn classification.

• Some version of the above theorem holds for non-minimal resolutions too, but the
quiver and relations are sightly different.

Ideally we don’t want to compute all the combinatorics in all examples, so the next
lemma is useful since it reduces the calculation of the quiver to simply adding arrows to a
certain base quiver1. This also tells you which space to compare to!

Key Lemma 2.2. Suppose two curve systems E = {Ei} and F = {Fi} have the same dual

graph and fundamental cycle, such that −F 2
i ≤ −E2

i for all i. Then the quiver for the curve

system E is obtained from the quiver of the curve system F by adding −E2
i +F 2

i extra arrows

i → ⋆ for every curve Ei.

Thus if you have a dual graph and you want to compute the corresponding quiver, just
reduce the self-intersction numbers (i.e. make them closer to −2) in such a way that the
fundamental cycle does not change. Calculate this base quiver. Then just add extra arrows
as in the Lemma. This will make more sense after some examples.

3. Some examples

I’ll start with type A, i.e. cyclic groups. Since its hard to draw n vertices, consider only
the case of A3.

Example 3.1. Consider the group 1

4
(1, 3). For this example the dual graph is

•
−2

•
−2

•
−2

1If you were in my talk last week in Kyoto and were wondering why everything didn’t make sense after

some point, it is because I forgot to say the Key Lemma. Oops.
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After the i → j and ⋆ → ⋆ steps in the theorem, we have the following picture

• •

⋆ •

Now to calculate how to connect ⋆, we need to know the fundamental cycle. But here
Zf = 1 1 1 and so in matrix from (−Ei · Zf )i∈I = 1 0 1 . Thus after the i → ⋆ step:

• •

⋆ •

For the ⋆ → i step notice that since all curves are (−2)-curves the canonical cycle is trivial,
thus the number of arrows ⋆ → i is equal to the number of arrows i → ⋆. Consequently the
quiver of the reconstruction algebra is

• •

⋆ •

Example 3.2. Consider now the dual graph

•
−4

•
−3

•
−4

corresponding to the group 1

40
(1, 11). Now the Zf is the same as the previous example,

so by Lemma 2.2 we just have to add extra arrows to the above; we thus deduce that the
reconstruction algebra is

• •

⋆ •

All other cyclic group cases are identical, and follow easily. For example

Example 3.3. For the group 1

693
(1, 256), the reconstruction algebra is

• •

• •

• •

⋆ •

corresponding to the dual graph

•
−3

•
−3

•
−2

•
−4

•
−2

•
−4

•
−3
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We now venture into some non-abelian groups. Right at the end I’ll do some crazy
non-quotient singularities.

Example 3.4. Some dihedral groups. I restrict to only 3 examples; notice that we have
already seen the group D56,15 in Lecture 3.

Reconstruction Algebra dual graph Zf group
•

• • • •

⋆

•
−2

•
−2

•
−2

•
−2

•
−4

1

1 2 2 1
D10,7

•

• • • •

⋆

•
−2

•
−2

•
−2

•
−4

•
−4

1

1 2 1 1
D26,15

•

• • • •

⋆

•
−2

•
−2

•
−4

•
−4

•
−4

1

1 1 1 1
D56,15

Now for some examples of non-quotient singularities:

Example 3.5. Consider the dual graph

•
−2

•
−3

•
−2

•
−2

•
−2

•
−2

•
−2

This is one of Artin’s rational triple points; there are combinatorics which tell us that this
corresponds to some rational singularity. It is not a quotient singularity by Brieskorn’s
classification, but it does look quite similar to the dual graph corresponding to the group E7.

Now here the fundamental cycle Zf = 2

1 3 4 3 2 1
(compare to 2

2 3 4 3 2 1
for E7) which

makes the reconstruction algebra in this case

•

• • • • • •

⋆

Example 3.6. Consider the dual graph

•
−2

•
−2

•
−2

•
−3

•
−2

•
−3

•
−2
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The fundamental cycle is reduced, i.e. Zf = 1 1

1 1 1 1 1
Hence the reconstruction algebra is

⋆

• •

• • • • •
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NONCOMMUTATIVE RESOLUTION VIA FROBENIUS
MORPHISMS AND D-MODULES

TAKEHIKO YASUDA

This is a note of my talk at Nagoya University in November, 2008.
The aim of the talk was to outline my joint work with Yukinobu Toda
[6].

1. Motivation

Throughout the note, we work over an algebraically closed field k of
characteristic p > 0.

Consider a finite group G ⊂ GLd(k) of order prime to p. Then the
associated G-Hilbert scheme HilbG(Ad) is a blowup of the quotient va-
riety X := Ad/G. Namely we have a natural projective and birational
morphism

HilbG(Ad) → X.

This is a restriction of the Hilbert-Chow morphism.
On the other hand, for each e ∈ Z≥0, the e-th F-blowup of X,

FBe(X), is defined as the universal flattening of the e-th k-linear Frobe-
nius

F e : Xe → X.

It was found [9] that for sufficiently large e, HilbG(Ad) and FBe(X) are
isomorphic. The isomorphism was constructed as follows: Indeed there
is a canonical morphism

HilbG(Ad) → FBe(X)

for any e. A point of HilbG(Ad) is identified with a 0-dimensional
subscheme of Ad of length l := ]G, write Z ⊂ Ad. Then pull it back by
the Frobenius Ad

e → Ad and obtain a subscheme Z̃ ⊂ Ad
e of length lpde.

Then take the quotient scheme Z̃/G, which is a subscheme of X and
corresponds to a point of FBe(X). It defines the map HilbG(Ad) →
FBe(X), which coincides with the morphism HilbG(Ad) → X if e = 0.

One of the motivations of our work is to understand the isomorphism
from the viewpoint of noncommutative geometry.

Bridgeland-King-Reid [2] proved that if G ⊂ SLd(k), d = 2, 3, then
the derived category of coherent sheaves on HilbG(Ad) is equivalent to
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2 T. YASUDA

that of G-equivariant ones on Ad.

D(HilbG(Ad)) ∼= DG(Ad)

The equivalence is obtained as the Fourier-Mukai transform associated
to the universal family in the following diagram,

Univ. fam.

²²

// Ad

²²
HilbG(Ad) // X

But we have a similar diagram associated to the F-blowup,

Univ. fam.

²²

// X

²²
FBe(X) // X

The other motivation of our work is to obtain a similar result as the
Bridgeland-King-Reid’s one for the F-blowup.

We look at the problems from the viewpoint of the noncommutative
resolution after Van den Bergh [7].

2. Morita equivalence of the skew group ring and a ring
of differential operators.

Let G ⊂ GLd(k) be as before, S := k[x1, . . . , xd] with the natural G-
action and R := SG the ring of invariants. Thus we have Ad = Spec S
and X = Spec R. Moreover we assume that G is small, that is, there
is no reflection. Then the skew group ring S ∗ G is canonically iso-
morphic to the endomorphism ring EndR(S) of S as an R-module, and
then we write A := S ∗ G = EndR(S). This ring is a noncommuta-
tive resolution of R in the sense that they have finite global dimen-
sion. Using the noncommutative ring A, Van den Bergh translated the
Bridgeland-King-Reid equivalence into his framework of the noncom-
mutative resolution [7] as follows: A G-equivariant coherent sheaf on
Ad is nothing but a (left) A-module. On the other hand, HilbG(Ad) is
(an irreducible component of) the moduli space of stable A-modules.
Thus the equivalence is interpreted as a derived equivalence between
the abelian category of A-modules and that of coherent sheaves on the
moduli space of A-modules.

D(the moduli space of A-modules) ∼= D(A).

Now the translated statement is applicable to a broader range of issues.
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NONCOMMUTATIVE RESOLUTION VIA FROBENIUS MORPHISMS 3

Pursuing the analogy between the G-Hilbert scheme and the F-
blowup, we shall consinder the ring De := EndR(R1/q), q = pe, in
place of A = EndR(S).

S

///o/o/o A = EndR(S) = S ∗ G

R
?Â

Galois

OO

R1/q

///o/o/o/o De = EndR(R1/q)

R
?Â

purely inseparable

OO

Proposition 2.1. For sufficiently large e, A and De are Morita equiv-
alent.

Outline of the proof. The proposition follows from the fact that as R-
modules, S is a direct summand of (R1/q)⊕l for some l, and vice versa.
Indeed we saw [6] that S and R1/q are full modules of covariants, that
is, they contain as a a summand every indecomposable module of co-
variant. ¤

Since Morita equivalent rings have the same global dimension, we
obtain:

Corollary 2.2. De is a noncommutative resolution of R in the sense
that it has a finite global dimension.

We can see that the F-blowup is an irreducible component of the
moduli space of stable De-modules. But for e À 0, since the categories
of A-modules and De-modules are equivalent, we obtain isomorphic
moduli spaces. Thus the isomorphism HilbG(Ad) ∼= FBe(Ad/G) is now
a direct consequence of the Morita equivalence. Moreover applying
Van den Bergh’s interpretation of the Bridgeland-King-Reid derived
equivalence to the F-blowup and the ring De, we see that if G ⊂ SLd(k),
d = 2, 3, then for e À 0, FBe(X) and De are derived equivalent.

D(FBe(X)) ∼= D(De)
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Remark 2.3. The stability of modules, in fact, depends on a parameter
called the stability condition. For a general stability condition, the
stable S ∗ G-modules are called G-constellations [3].

Remark 2.4. If G is abelian and if q > ]G, then the assertion of the
proposition holds. But in the non-abelian case, we have not obtained
such an effective estimate on how large e is enough.

Remark 2.5. Each element of De is a differential operator on R1/q.
Moreover the ring ∪

e≥0

EndRpe (R)

is the ring of all differential operators on R.
In the Galois theory for purely inseparable extensions, derivations

play a role of automorphisms in the Galois theory of normal extensions
(see [4]). Hence it seems natural that differential operators appear
instead of the group G of automorphisms.

3. De for some other singularities

Let now R be a Noetherian complete local domain over k. The ring
De := EndR(R1/q) is well-defined for such R, not only in the case of
quotient singularities. Therefore it is natural to ask

Problem 3.1. When is De a noncommutative resolution?

We have proved that the answer is affirmative in the following cases:

(1) the 1-dimensional case
(2) the singularity of type A1 (in odd characteristic), that is, R is

of the form

k[[x0, x1, . . . , xd]]/(x
2
0 + x2

1 + · · · + x2
d).

In the first case, for sufficiently large q, we have that R̄ ⊂ R1/q, where
R̄ is the normalization. For such q, indeed De is Morita equivalent to
R̄.

In the second case, we can see that for e > 0, R1/q is a representa-
tion generator, that is, contains as a summand every indecomposable
maximal Cohen-Macaulay module. Then from a theorem of Auslander
[1] (see also [5]), De has finite global dimension.

Problem 3.2. Suppose that R has finite representation type, that is,
there are only finitely many indecomposable maximal Cohen-Macaulay
modules up to isomorphisms. Then for sufficiently large q, is R1/q a
representation generator? In particular, what about the case of simple
singularities?
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NONCOMMUTATIVE RESOLUTION VIA FROBENIUS MORPHISMS 5

4. F-blowup as the moduli space

We saw that in the case of quotient singularities, the F-blowup is
the moduli space of De-modules. We can also show that this holds
for F-pure singularities. A k-algebra R is F-pure if the inclusion map
R ↪→ R1/p splits as an R-module map. Then for any e, we can write
R1/q ∼= R ⊕ M for some R-module M . From this decomposition and
some parameters, we obtain the stability condition of De-modules [7].

Proposition 4.1. Let X := Spec R. Then FBe(X) is canonically iden-
tified with the irreducible component dominating X of stable De-module
with respect to the mentioned stability condition.

Remark 4.2. When X is F-pure, the sequence of F-blowups is mono-
tone, that is, FBe+1(X) dominates FBe(X) for every e (see [8]).
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Mutations and noncommutative

Donaldson-Thomas theory

Kentaro Nagao

February 15, 2009

Abstract

Given a quiver with a potential, we can define counting invariants
so called noncommutative Donaldson-Thomas invariants. In this note,
we study how the generating function of the invariants changes under
mutations of the quiver.

1 Quiver with potentials

Let Q = (I,H) be a quiver and ω be a potential which is homogeneous with
respect to a degree H → Z>0. Assume that A = (Q,ω) is 3-dimensional Calabi-
Yau in the sense of Bocklandt [Boc08]. In this section we give some examples
of such quivers.

1.1 Conifold

Let Y(−1,−1) = OP1(−1) ⊕OP1(−1) be the resolved conifold and π : Y(−1,−1) →
P1 be the projection. The vector bundle P(−1,−1) := OY(−1,−1) ⊕ π∗OP1(1) is
a tilting generator of the derived category Db

(
CohY(−1,−1)

)
and we have the

derived equivalence

RHom
(
P(−1,−1),−

)
: Db

(
CohY(−1,−1)

) ∼−→ Db
(
A(−1,−1)-mod

)
,

where A(−1,−1) = EndY

(
P(−1,−1)

)
. Let Q(−1,−1) be the quiver in Figure 1 and

ω(−1,−1) = a1b1a2b2 − a1b2a2b1. Then we have A(−1,−1) ' (Q(−1,−1), ω(−1,−1)).

a1

a2

b1

b2

Figure 1: Q(−1,−1)
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1.2 Local P2

The next example have been studied carefully by T. Bridgeland ([Bri], [Bri06]).
Let Y−3 := OP2(−3) be the total space of the canonical bundle on P2 and
π : Y(−3) → P2 be the projection. The vector bundle

P(−3) := OY(−3) ⊕ π∗OP2(1) ⊕ π∗OP2(2)

is a tilting generator of the derived category Db
(
CohY(−3)

)
and we have the

derived equivalence

RHom
(
P(−3),−

)
: Db

(
Coh Y(−3)

) ∼−→ Db
(
A(−3)-mod

)
,

where A(−3) = EndY

(
P(−3)

)
. Let Q(−3) be the quiver in Figure 2 and

ω(−3) =
∑

σ∈S3

ε(σ)cσ(1)bσ(2)aσ(3).

Then we have A(−3) '
(
Q(−3), ω(−3)

)
.

b1, b2, b3

a1, a2, a3 c1, c2, c3

Figure 2: Q(−3)

1.3 Geometric engineering

Let Γ be a finite subgroup of SL(2, C), which acts on the resolved conifold
Y(−1,−1) fiber-wisely, and YΓ → XΓ = Y(−1,−1)/Γ be the crepant resolution (see
Figure 3). By the derived McKay correspondence we have

Db (Coh YΓ) ' Db
(
CohΓ Y(−1,−1)

)
.

The Γ-equivariant vector bundle

PΓ :=
⊕

ρ∈Irr(Γ)

P ⊗ ρ

is a tilting generator of Db
(
CohΓ Y(−1,−1)

)
and the endomorphism algebra

AΓ := End (PΓ) can be described as follows: the vertex set of QΓ is

{(ε, ρ) | ε ∈ {0, 1}, ρ ∈ Irr(Γ)}.
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YZ/4Z :

XZ/4Z :

Figure 3: the crepant resolution YZ/4Z → XZ/4Z

We have two arrows a1
ρ and a2

ρ from (0, ρ) to (1, ρ) for each ρ. If ρ and ρ′ are
connected by edges in the McKay quiver, we have one arrow from (1, ρ) to (0, ρ′)
and one arrow from from (1, ρ′) to (0, ρ). Let bρ,ρ′ and bρ′,ρ denote these arrows
respectively. The potential ωΓ is the sum of the following elements:

a0
ρ ◦ bρ′,ρ ◦ a1

ρ′ ◦ bρ,ρ′ .

Figure 4: the quiver QZ/4Z

1.4 Small crepant resolutions of toric CY 3-folds

Let Xa,b be the affine toric Calabi-Yau 3-fold associated with the trapezoid (or
possibly triangle) with height 1 and with parallel edges of length a and b. Let σ
be a partition of the trapezoid into triangles with areas 1/2 and Y σ

a,b → Xa,b be
the associated crepant resolution. The inverse image of 0 ∈ Xa,b is the Aa+b−1

configuration of (−1,−1) or (0,−2)-curves. In [Nag], using the result of M.
Van den Bergh ([VdB04]), the author constructed a tilting vector bundle with
endomorphism algebra Aσ = (Qσ, ωσ). The Qσ is given by adding some loops
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to the affine Dynkin quiver of type Aa+b−1. Roughly speaking, a vertex with a
loop corresponds to a (0,−2)-curve. See [Nag] for details.

Example 1.1. Let a = 2, b = 4 and σ be the partition in Figure 5. Then the

Figure 5: a partition σ

quiver Qσ is given as in Figure 6.

Figure 6: the quiver Qσ

1.5 Non-toric case: obstructed (0,−2)-curve

For n ≥ 2 we patch two C3 with coordinates {(x, y, z)} and {X,Y, Z} respec-
tively by the following transition functions to construct the Calabi-Yau 3-fold
Y n

(0,−2):
X = x−1, Y = x2y + xzn, Z = z.

The subvariety {y ≡ z ≡ 0} ∪ {Y ≡ Z ≡ 0} is an obstructed (0,−2)-curve.
In [AK06] the endomorphism algebra of a tilting vector bundle is computed:
the quiver Qn

(0,−2) is given by adding two loops l0 and l1 for each vertex to the
quiver in Figure 1.

2 Mutations

Let Pk be the projective A-module associated with a vertex k ∈ I and we set
P :=

⊕
k Pk(= A). We define the new A-module

P ′
k := coker

Pk →
⊕

h∈H; out(h)=k

Pin(h)

 .

The object µk(P ) =
⊕

l 6=k Pl ⊕ P ′
k is a tilting generator in Db(A-mod). Let

µk(A) denote the endomorphism algebra End (µk(P )).
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Example 2.1. Recall that we take the tilting vector bundle

P(−1,−1) := OY(−1,−1) ⊕ π∗OP1(1)

on the resolved conifold Y(−1,−1) and get the derived equivalence

Db(Coh Y(−1,−1))
∼−→ Db(mod A(−1,−1)).

We identify objects in the two categories under the derived equivalence. Let P0

and P1 denote the projective A(−1,−1)-modules OY(−1,−1) and L := π∗OP1(1)
respectively. We mutate the quiver A(−1,−1) at the vertex 0, then we have

P ′
0 = coker

(
OY(−1,−1) → L⊕L

)
' L2.

Hence we have

µ0(P ) = P ⊗ L, µ0

(
A(−1,−1)

)
-mod = A(−1,−1)-mod ⊗ L.

and
µ0

(
A(−1,−1)

)
' A(−1,−1).

In general, if Q does not have any 1-cycles nor 2-cycles, then µk(A) is given
by the mutation of the original quiver with the potential A = (Q,ω) in the sense
of [FZ02] and [DWZ].

b1, b2, b3

a1, a2, a3 c1, c2, c3

b′1, . . . , b
′
6

c′1, c
′
2, c

′
3a′

1, a
′
2, a

′
3

µ0

0 0

Figure 7: a mutation for Q(−3)

4
µ0

0 0

Figure 8: a mutation for QZ/2Z

3 Moduli spaces and counting invariants

Let (F, s) be a pair of a finite dimensional A-modules and a map s : Pk → F .
For a pair of real numbers ζ ∈ RI , a pair (F, s) said to be ζ-(semi)stable if and
only if the following two conditions satisfied:
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• for any nonzero subobject 0 6= F ′ ⊆ F ∈ A-mod, we have

dimAV ′ · ζ (≤) 0,

• for any proper subobject F ′ ( F ∈ A-mod through which s factors, we
have

dimAV ′ · ζ (≤) dimAV · ζ,

where dimA is the composition of the canonical map

Obj(Db(A-mod)) → K(A-mod)

and the linear map
K(A-mod) → ZI

such that (dimAV )i = dimVi for an A-module V .
By the result of A. King ([Kin94]), for v ∈ ZI we can construct the moduli

space
Mk

ζ (v) := {(V, s) | dimAV = v, ζ-stable}.

by geometric invariant theory. We define the counting invariants

D eu
ζ,k(v) := χ

(
Mk

ζ (v)
)

as the Euler characteristics of the moduli spaces and their generating function

Zeu
ζ,k(q) :=

∑
v

D eu
ζ,k(v) · qv.

Example 3.1. In the conifold case

(1) For ζtriv such that ζ0
triv, ζ1

triv > 0 then

Mk
ζtriv

(v) =

{
∅ v = 0,

pt v 6= 0

and hence Zeu
ζ,k = 1.

(2) For ζcyclic such that ζ0
cyclic, ζ1

cyclic < 0 then a pair (F, s) is ζcyclic-stable if
and only if s is surjective. The moduli space have been studied in non-
commutative Donaldson-Thomas theory by B. Szendroi ([Sze]). Let
Zeu

NCDT,k(q) denote the generating function of the counting invariants.

3.1 Remark on virtual counting

Let M = Mk
ζ (v) be the moduli stack of framed representations of the quiver

(without relation) Q. Taking the trace of the potential, we can define the func-
tion on M. Then the moduli space M := Mk

ζtriv
(v) is the critical locus of this

function. We take the Euler characteristic of the Milnor fiber around each crit-
ical point to get the constructible function ν : M → Z. The virtual counting of
the moduli space is given as the weighted Euler characteristic:

Dζ,k(v) :=
∑

n

χ(ν−1(n)).
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The function ν is called Behrend’s constructible function (or χ-function. When
the moduli space is compact, the weighted Euler characteristic coincides with the
virtual counting ([Beh]), which is defined by integrating the constant function
1 over the virtual fundamental cycle [M]vir ([BF]).

The virtual counting is believe to be the correct invariant rather than the
Euler characteristic.

One of the reasons is its ”deformation invariance”. For example, the Donaldson-
Thomas invariants of a smooth projective Calabi-Yau 3-fold Y , which are defined
as virtual countings of Hilbert schemes of curves, are invariant under the defor-
mation of Y . Though, in our setting deformation invariance is a subtle problem
since the moduli is not compact.

Another reason is that the (conjectural) ”rationality property” of the gen-
erating function (see [PT], [MR]).

Example 3.2. In the example in §1.5, the generating function of the virtual
counting is given by

Zζcyclic,0(q0, q1)

=
∏

i

(
1 − (−q0)iqi−1

1

)ni ·
∏

i

(
1 − (−q0q1)i

)−2i ·
∏

i

(
1 − (−q0)iqi+1

1

)ni
,

and the generating function of the Euler characteristics is given by

Zeu
ζcyclic,0(q0, q1) =

∏
i

(
1 + qi

0q
i−1
1 + · · · + qni

0 q
n(i−1)
1

)i

·
∏

i

(
1 − q0q

i
1

)−2i ·
∏

i

(
1 + qi

0q
i+1
1 + · · · + qni

0 q
n(i+1)
1

)i

.

When the 3-dimensional Calabi-Yau quiver is derived from a brane tiling,
then the virtual counting coincides with the Euler characteristic up to sign (see
[MR]).

4 Results

For k ∈ I we define the map µk : ZI → ZI by

(µk(v))l =

{
−vk +

∑
h;out(h)=k vin(h) l = k,

vl otherwise

for v ∈ ZI . We also define µk : RI → RI by

v · ζ = µk(v) · µk(ζ)

for any v and ζ.
Let ζ ∈ RI be a generic stability parameter satisfying the following condi-

tions:

• there exists η ∈ RI
>0 such that ζ + d · η on an intersection of two walls for

any d ≥ 0.

• We have the sequence C0, . . . , Cr of chambers such that
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– ζ − d · η ∈ ∪Cs for any d ≥ 0,

– for any Cs, there exists some d ≥ 0 such that ζ − d · η ∈ Cs, and

– suppose ζ − d · η ∈ Cs, ζ − d′ · η ∈ Cs′ and s < s′, then d > d′.

• we have the sequence k1, . . . , kr of elements in I such that

Cs−1 ∩ Cs ⊂ Wαs (αs = µks−1 ◦ · · · ◦ µk1(αks)),

where αk denote the simple root vector.

We denote µs := µks
◦ · · · ◦ µk1 , Ψs := Ψks

◦ · · · ◦ Ψk1 and µζ := µr, Ψζ := Ψr.
We set P := A-mod and denote by Pζ the image of the Abelian category

µζ(A)-mod under the equivalence Ψ−1
ζ .

Definition 4.1. Let (V, s) be a pair of an element V ∈ Pζ and a map s : Pk →
V . For ξ ∈ RÎ , we say (V, s) is (ξ,Pζ)-(semi)stable if the following conditions
are satisfied:

(A) for any nonzero subobject 0 6= S ⊆ V in Pζ , we have

ξ · dimS (≤) 0,

(B) for any proper subobject T ( V in Pζ which s factors through, we have

ξ · dimT (≤) ξ · dimV.

From now on, the ζ-(semi)stability for a pair (F, s) with F ∈ P = A-mod
is written as the (ζ,P)-(semi)stability. We set ξcyclic := µζ(ζ). Note that
(ξcyclic)l < 0 for any l ∈ I.

Theorem 4.2. (1) [Nag, Lemma 3.5] Let (F, s) be a (ζ,P)-stable, then F ∈
Pζ .

(2) [Nag, Proposition 3.6] Let (F, s) be a (ζ,P)-stable, then (F, s) is (ξcyclic,Pζ)-
stable.

(3) [Nag, Lemma 3.7] Let (F, s) be a (ξcyclic,Pζ)-stable, then F ∈ P.

(4) [Nag, Proposition 3.8] Let (F, s) be a (ξcyclic,Pζ)-stable, then (F, s) is
(ζ,P)-stable.

This theorem claims that replacing t-structures corresponds to replacing
stability conditions. In particular, we can define

Mk
Pζ ,ζcyclic

(v) := {(V, s) | V ∈ Pζ , dimAV = v, (ζcyclic,Pζ)-stable}

which is isomorphic to Mk
P,ζ(v) = Mk

ζ (v). We can also define the generating
function

Zeu
Pζ ,k(q) =

∑
v

χ(Mk
Pζ ,ζcyclic

(v)) · qv.

of the counting invariants.
In [NN] and [Nag], we study how the generating function changes when we

replace the stability condition. Now we get the following formula describing
how the generating function changes when we mutate the quiver.
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Theorem 4.3.

Zeu
Pζ ,k(q) =

(
1 + qαr

)(αr)k Zeu
Pr−1,k(µkr (q)),

where the left hand side is given by substituting qk with(
1 + qαr

)〈αk,αr〉
qk.

Here 〈−,−〉 is the Euler pairing on K(Db(Coh(Y ))).

Example 4.4. In the conifold case, the Euler pairing is trivial and the theorem
provides a conceptual interpretation of Young’s combinatorial formula ([You]).
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SPECIAL MCKAY CORRESPONDENCE

YUKARI ITO

1. Introduction

This note is based on the paper “Special McKay correspondence ”
[6] by the author.

The McKay correspondence is originally a correspondence between
the topology of the minimal resolution of a 2-dimensional rational
double point, which is a quotient singularity by a finite group G of
SL(2, C), and the representation theory (irreducible representations or
conjugacy classes) of the group G. We can see the correspondence via
Dynkin diagrams, which came from McKay’s observation in 1979 [10].

Let G be a finite subgroup of SL(2, C), then the quotient space
X := C

2/G has a rational double point at the origin. As there exists

the minimal resolution X̃ of the singularity, we have the exceptional
divisors Ei. The dual graph of the configuration of the exceptional
divisors is just the Dynkin diagram of type An, Dn, E6, E7 or E8.

On the other hand, we have the set of the irreducible representations
ρi of the group G up to isomorphism and let ρ be the natural repre-
sentation in SL(2, C). The tensor product of these representations

ρi ⊗ ρ = Σr
j=0aijρj,

where r is the number of the non-trivial irreducible representations,
gives a set of integers aij and it determines the Cartan matrix which
defines the Dynkin diagram. 1

Then we have a one-to-one numerical correspondence between non-
trivial irreducible representations {ρi} and irreducible exceptional curves
{Ei}, that is, the intersention matrix of the exceptional divisors can be
written as (−1)× Cartan matrix.

This phenomenon was explained geometrically in terms of vector
bundles on the minimal resolution by Gonzalez-Sprinberg and Verdier
([4]) by case-by-case computations in 1983. In 1985, Artin and Verdier
[1] proved this more generally with relexive modules and this theory was
developed by Esnault and Knörrer ([2], [3]) for more general quotient

1More precisely, the Cartan matrix is defined as the matrix 2E − A, where E is
the (r − 1) × (r − 1) identity matrix and A = {aij} (i, j �= 0).
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surface singularities. After Wunram [14] constructed a nice generalized
McKay correspondence for any quotient surface singularities in 1986 in
his dissertation, Riemenschneider intoruduced the notion of “special
representation etc.” and made his propaganda for the more generalized
McKay correspondence [11].

In particular, we would like to discuss special representations and
the minimal resolution for quotient surface singularities from now on.
Around 1996, Nakamura and the author showed another way to the
McKay correspondence with the help of the G-Hilbert scheme, which
is a 2-dimensional G-fixed set of the usual Hilbert scheme of |G|-points
on C

2 and isomorphic to the minimal resolution. Kidoh [9] proved
that the G-Hilbert scheme for general cyclic surface singularities is
the minimal resolution. Then Riemenschneider checked the cyclic case
and conjectured that the representations which are given by the Ito-
Nakamura type McKay correspondence via G-Hilbert scheme are just
special representations in 1999 ([12]) and this conjecture was proved
by A. Ishii ([5]). In this paper, we will give another characterization
of the special representations by combinatorics for the cyclic quotient
case using results on the G-Hilbert schemes.

2. Special representations

In this section, we will discuss the special representations. Let G be
a finite small subgroup of GL(2, C), that is, the action of the group G
is free outside the origin, and ρ be a representation of G on V . G acts
on C

2 × V and the quotient is a vector bundle on (C2 \ {0})/G which
can be extended to a reflexive sheaf F on X : = C

2/G.
For any reflexive sheaf F on a rational surface singularity X and the

minimal resolution π : X̃ → X. We define a sheaf F̃ : = π∗F/torsion.

Definition 2.1. ([2]) The sheaf F̃ is called a full sheaf on X̃.

Theorem 2.2. ([2]) A sheaf F̃ on X̃ is a full sheaf if the following
conditions are fulfilled:

1. F̃ is locally free,

2. F̃ is generated by global sections,

3. H1(X̃, F̃∨ ⊗ ωX̃) = 0, where ∨ means the dual.

Note that a sheaf F̃ is indecomposable if and only if the correspond-
ing representation ρ is irreducible. Therefore we obtain an indecom-

posable full sheaf F̃i on X̃ for each irreducible representation ρi, but
in general, the number of the irreducible representations is larger than
that of irreducible exceptional components. Therefore Wunram and
Riemenschneider inroduced the notion of a speciality for full sheaves:
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Definition 2.3. ([11]) A full sheaf is called special if and only if

H1(X̃, F̃∨) = 0.

A reflexive sheaf F on X is special if F̃ is so.
A representation ρ is special if the associated reflexive sheaf F on X

is special.

With these definitions, following equivalent conditions for the spe-
ciality hold:

Theorem 2.4. ([11], [14])

1. F̃ is special ⇐⇒ F̃ ⊗ ωX̃ → [(F ⊗ ωX̃)vv]∼ is an isomorphism,
2. F is special ⇐⇒ F ⊗ ωX̃/torsion) is reflexive,

3. ρ is a special representation ⇐⇒ (Ω2
C2)

G ⊗ (OC2 ⊗ V )G → (Ω2
C2 ⊗

V )G is surjective.

Then we have following nice generalized McKay correspondence for
quotient surface singularities:

Theorem 2.5. ([14]) There is a bijection between the set of special non-
trivial indecomposable reflexive modules Fi and the set of irreducible

components Ei via c1(F̃i)Ej = δij where c1 is the first Chern class,
and also a one-to-one correspondence with the set of special non-trivial
irreducible representations.

As a corollary of this theorem, we get the original McKay correspon-
dence for finite subgroups in SL(2, C) back because in thsi case all
irreducible representations are special.

3. G-Hilbert schemes and combinatorics

In this section, we will discuss G-Hilbert schemes and a new way
to find the special representations for cyclic quotient singularities by
combinatorics.

Hilbert scheme of n-points on C
2 can be described as a set of ideals:

Hilbn(C2) = {I ⊂ C[x, y] | I : ideal, dim C[x, y]/I = n}.
It is a 2n-dimensional smooth projective variety. The G-Hilbert scheme
HilbG(C2) was introduced in the paper by Nakamura and the author
([7]) as follows:

HilbG(C2) = {I ⊂ C[x, y] | I : G-invariant ideal, C[x, y]/I ∼= C[G]},
where |G| = n. This is a union of components of fixed points of G-
action on Hilbn(C2) and in fact it is just the minimal resolution of the
quotient singularity C

2/G. It was proved for G ∈ SL(2, C) in [7] first
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by the properties of Hilbn(C2) and finite group action of G and they
state a McKay correspondence in terms of ideals of G-Hilbert schemes.

Later Kidoh ([9]) proved that the G-Hilbert scheme for any small
cyclic subgroup in GL(2, C) is also the minimal resolution of the corre-
sponding cyclic quotient singularities and Riemenschneider conjectured
that the G-Hilbert scheme for any G ⊂ GL(2, C) is the minimal reso-
lution of the quotient singularity C

2/G and it was based on his result.
That is, he checked the irreducible representation which are given by
the ideals of G-Hilbert scheme, so-called Ito-Nakamura type McKay
correspondence, are just the same as the special representations de-
fined by himself [12], see also [11] A. Ishii ([5]) proved more generally
that the G-Hilbert scheme for any small G ⊂ GL(2, C) is always iso-
morphic to the minimal resolution of the singularity C

2/G and the
conjecture is true:

Theorem 3.1. ([5]) Let G be a finite small subgroup of GL(2, C).
(i) G-Hilbert scheme HilbG(C2) is the minimal resolution of C

2/G.
(ii) For y ∈ HilbG(C2), denote by Iy the ideal corresponding to y and

let m be the maximal ideal of OC2 corresponding to the origin 0. If y
is in the exceptional locus, then, as representations of G, we have

(3.2) Iy/mIy
∼=

{
ρi ⊕ ρ0 if y ∈ Ei and y �∈ Ej for j �= i,

ρi ⊕ ρj ⊕ ρ0 if y ∈ Ei ∩ Ej,

where ρi is the special representation associated with the ireducible ex-
ceptional curve Ei.

Remark 3.3. In dimension two, we can say that G-Hilbert scheme is
the same as a 2-dimensional irreducible component of the G-fixed set
of Hilbn(C2). A similar statement holds for G ⊂ SL(3, C) in dimen-
sion three, that is, the G-Hilbert scheme is a 3-dimensional irreducible
component of the G-fixed set of Hilbn(C3) and a crepant resolution of
the quotient singularity C

3/G. In this case note that Hilbn(C3) is not
smooth.

Moreover, Haiman proved that Sn-Hilbert scheme HilbSn(C2n) is a
crepant resolution of C

2n/Sn = n-th symmetric product of C
2, i.e.,

HilbSn(C2n) ∼= Hilbn(C2)

in process of the proof of n! conjecture. (cf. [8])

From now on, we restrict our considerations to G ⊂ GL(2, C) cyclic.
Wunram constructed the generalized McKay correspondence for cyclic
surface singularities in the paper [13] and we have to consider the cor-
responding geometrical informations (the minimal resolution, reflex-
ive sheaves and so on) to obtain the special representations. Here we
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would like to give a new characterization of the special representations
in terms of combinatorics. It is much easier to find the special repre-
sentation because we don’t need any geometrical objects, but based on
the result of G-Hilbert schemes.

Let us discuss the new characterization of the special representations
in terms of combinatorics. Let G be a cyclic group Cr,a which is gener-

ated by a matrix

(
ε 0
0 εa

)
where εr = 1 and gcd(r, a) = 1 and consider

a character map C[x, y] −→ C[t]/tr as x 
→ t and y 
→ ta, then we have
a corresponding characters for each monomials in C[x, y].

Let Ip be the ideal of the G-fixed point p in the G-Hilbert scheme,
then we can define the following sets.

Consider a G-invariant subscheme Zp ⊂ C
2 for which H0(Zp,OZp) =

OC2/Ip is the regular representation of G. Then the G-Hilbert scheme
can be regarded as a moduli space of such Zp.

Definition 3.4. The set of monomials in C[x, y] Y (Zp) is called G-
cluster if all monomials on Y (Zp) are not in Ip and it can be drawn as
a Young diagram of |G| boxes.

Definition 3.5. For any small cyclic group G, let B(G) be the set of
monomials which are not divisible, by any G-invariant monomial and
call it G-basis.

Definition 3.6. If |G| = r, then let L(G) be {1, x, · · · , xr−1, y, · · · , yr−1},
i.e., the set of monomials which cannot be devided by xr, yr or xy. We
call it L-space for G because the shape of this diagram looks as the
chapital “L.”

Definition 3.7. The monomial xmyn is of weight k if m + an = k.

Let us describe the method to find the special representations of G
with these diagrams:

Theorem 3.8. For a small finite cyclic subgroup of GL(2, C), the
irreducible representation ρi is special if and only if the correspond-
ing monomial in B(G) are not contained in the set of monomials
B(G) \ L(G).

Proof. In Theorem 2.4 (3), we have the definition of the special rep-
resentation, and it is not easy to compute all special representations.
However look at the behavior of the monomials in C[x, y] under the

map Φi (Ω
2
C2)

G ⊗ (OC2 ⊗Vi)
G → (Ω2

C2 ⊗Vi)
G for each representation ρi:

First, let us consider the monomial bases of each set. Let Vi = Cei

and ρ(g)ei = ε−i. An element f(x, y)dx ∧ dy ⊗ ρi is in (Ω2
C2 ⊗ Vi)

G if
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and only if

g∗f(x, y)dx ∧ dy · ε1+a ⊗ ε−i = f(x, y)dx ∧ dy,

that is,
g∗(f(x, y)dx ∧ dy) = εi−(a+1)(f(x, y)dx ∧ dy).

Therefore the monomial base for (Ω2
C2 ⊗ Vi)

G is a set of monomials
f(x, y) such that

g : f(x, y) 
→ εi−(a+1)f(x, y)

under the action of G, that is, monomials of weight i − (a + 1).

Similarly, we have the monomial bases for (Ω2
C2)

G
as the set of mono-

mials f(x.y) of weight r − (a + 1).
The monomial bases for (OC2 ⊗ Vi)

G is given as a set of monomials
f(x, y) of weight i.

Let us check the surjectivity of the map Φi. If Φi is surjective, then
all the monomial bases in (Ω2

C2 ⊗ Vi)
G can be obtained as a product of

the monomial basis of two other sets. Therefore the degree of the mono-
mials in (Ω2

C2 ⊗ Vi)
G must be higher than the degree of the monomials

in (OC2 ⊗ Vi)
G.

Now look at the map Φa+1. The vector space (OC2 ⊗ Va+1)
G is

generated by the monomials of weight a+1, i.e., xa+1, xy, · · · , yb where
ab = a + 1 mod r. On the other hand, (Ω2

C2 ⊗ Va+1)
G is generated by

the degree 0 monomial 1. Then the map Φa+1 is not surjective.
By this, if a monomial of type xmyn, where mn �= 0, is a base of

(OC2 ⊗Vi)
G, then there exists a monomial xm−1yn−1 in (Ω2

C2 ⊗Vi)
G and

the degree become smaller under tha map Φi. This means Φi is not
surjective.

Moreover, if the bases of (OC2 ⊗ Vi)
G is generated only by xi and yj

where aj = i mod r, then the degrees of the monomials in (Ω2
C2 ⊗Vi)

G

is bigger and Φi is surjective. Thus we have the assertion. �
Remark 3.9. From this theorem, we can also say that a representation
ρi is special if and only if the number of the generators of the space
(OC2 ⊗ Vi)

G is 2.

Theorem 3.10. Let p be a fixed point by G-action, then we can define
an ideal Ip by the G-cluster and the configuration of the exceptional
locus can be described by these data.

Proof. The defining equation of the ideal Ip is given by⎧⎪⎨⎪⎩
xa = αyc,

yb = βxd,

xa−dyb−c = αβ,
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where α and β are complex numbers and both xa and yc (resp. yb and
xd) correspond the same representation (or character).

The pair (α, β) is a local affine coorinate near the fixed point p and
it is also obtained from the calculation with toric geometry. Moreover
each axis of the affine chart is just a exceptional curve or the original
axis of C

2. The exceptional curve is isomorphic to a P
1 and the points

on it is written by the ratio like [xa : yb] (resp. [xd : yc]) which is
corresponding to a special representation ρa (resp. ρd). The fixed
point p is the intersection point of 2 exceptional curves Ea and Ed.

Thus we can get the whole space of exceptional locus by deformation
of the point p and patching the affine pieces. �

We will see a concrete example in the following section. Here we
would like to make one remark as a corollary:

Corollary 3.11. For An-type simple singularities, all n + 1 affine
charts can be described by n + 1 Young diagrams of type (1, · · · , 1, k).

Proof. In An case, xy is always G-invariant, hence B(G) = L(G).
Therefore we have n + 1 G-clusters and each of them corresponds to
the monomial ideal (xk, yn−k+2, xy). �

4. Example

First, we recall the toric resolution of cyclic quotient singularities
because the quotient space C

2/G is a toric variety.
Let R

2 be the 2-dimensional real vector space, {ei|i = 1, 2} its stan-
dard base, L the lattice generated by e1 and e2, N := L+

∑
Zv, where

the summation runs over all the elements v = 1/r(1, a) ∈ G = Cr,a,
and

σ :=

{
2∑

i=1

xie
i ∈ R

2, xi ≥ 0,∀i, 1 ≤ i ≤ 2

}
the naturally defined rational convex polyhedral cone in NR = N ⊗Z R.
The corresponding affine torus embedding Yσ is defined as Spec(C[σ̌ ∩
M ]), where M is the dual lattice of N and σ̌ the dual cone of σ in MR

defined as σ̌ := {ξ ∈ MR|ξ(x) ≥ 0,∀x ∈ σ}.
Then X = C

2/G corresponds to the toric variety which is induced
by the cone σ within the lattice N .

Fact 1 We can construct a simplicial decomposition S with the
verteces on the Newton Boundary, that is, the convex hull of the lattice
points in σ except origin.

Fact 2 If X̃ := XS is the corresponding torus embedding, then XS

is non-singular. Thus, we obtain the minimal resolution π = πS :
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X̃ = XS −→ C
2/G = Y . Moreover, each lattice point of the Newton

boundary corresponds to an exceptional divisor.

Example Let us look at the example of the cyclic quotient singu-

larity of type C7,3 which is generated by the matrix

(
ε 0
0 ε3

)
where

ε7 = 1. The toric resolution of this quotient singularity is given by the
triangulation of a lattice N : = Z

2 + 1
7
(1, 3)Z with the lattice points:

See Figure 4.1.

(3,2)

(5,1)

(1,3)

(2.6)

(4,5)

(6,4)

(7,0)

(0,7)

(0,0)

Figure 4.1. toric resolution of C
2/G

From this Newton polytope, we can see that there are 3 exceputional
divisors and the dual graph gives the configuration of the exceptional
components with a deformed coordinate from the original coordinate
(x, y) on C

2 as in Figure 4.2.
Therefore we have 4 affine pieces in this example and we have 4

coordinate systems corresponding to each affine piece. In this picture,
we will see the corresponding special irreducible representations, but
we would like to use our method in the previous section to find the
representations.

Let us draw the diagram which corresponds to the G-basis and L-
space. First we have the following G-basis B(G) and the corresponding
characters in a same diagram. In Figure 4.3 we draw the L-space as
shaded part in B(G).

Now we have three monomials xy, x2y and x3y in B(G) \ L(G) and
they correspond to the characters (resp. representations) 4, 5 and 6
(resp. ρ4, ρ5 and ρ6). Therefore we can find a set of special repre-
sentations, that is, {ρ1, ρ2, ρ3}, and find the corresponding G-clusters,
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Figure 4.2. configuration of X̃
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Figure 4.3. G-basis B(G) and the characters
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representing the origin of the affine charts of the resolution, can be
drawn as 4 young diagrams and get the corresponding special repre-
sentations in this case. See Figure 4.4.

11 x x x x

y

y

y

y

yyx x

7

5

3

7

2 2

(1) (2) (3) (4)

2 31 1

Figure 4.4. G-cluster Y (Zp)

Let us see the meanings of the corresponding G-clusters in this case.
From Y (Zp) for (2), we obtain an ideal I2 = (y5, x2, xy2) for the origin of
the affine chart (2) in Figure 4.2, and the corresponding representations
are ρ1, ρ2 and ρ0. If we take the maximal ideal m of OC2 corresponding
to the origin 0, then we have

I2/mI2
∼= ρ1 ⊕ ρ2 ⊕ ρ0.

Similarly we have the ideal I3 = (y3, x3, xy2) and

I3/mI3
∼= ρ2 ⊕ ρ3 ⊕ ρ0.

These descriptions coincide with the results of Theorem 3.1 for an
intersecting point at E1 ∩ E2.

For any other points p on the exceptional component Ei, we must
have

Ip/mIp
∼= ρi ⊕ ρ0. (∗)

In fact, we can see that on the exceptional divisor E2 in this example
was determined by the ratio x2 : y3, that is, the corresponing ideal of
a point on E2 can be described as Ip = (αx2 −βy3, xy2 −γ). Therefore
the ratio (α : β) gives the coordinate of the exceptional curve (∼= P

1)
and we also have (∗).
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ALGEBRAS OF FINITE GLOBAL DIMENSION AND SPECIAL
COHEN-MACAULAY MODULES

OSAMU IYAMA

In my note I will present some results in joint work [IW] with Michael Wemyss on special
Cohen-Macaulay modules. We start with explaining briefly the background in noncommu-
tative algebra. After Auslander [A], algebras of finite global dimension are one of the most
important subjects in representation theory. For example, famous Auslander-Reiten theory
[Y] is based on certain algebras of global dimension two, called Auslander algebras (e.g. see
[I]). We will explain the connection to special Cohen-Macaulay modules. I recommend any-
one who is interested in non-commutative algebra to learn the work of Auslander (especially
[A], which is available in [A2]). Additionally, my recent trial [I] to extend this a little bit.

1. Introduction

Λ any ring, M an arbitrary Λ module. We write pdM ≤ n if there exists

0 → Pn → . . . P0 → M → 0

such that each Pi is a projective Λ module. We define gl.dimΛ := sup{pdM : M ∈ modΛ}.
In this note we study rings with finite global dimension.

Example 1.1. (1) Λ is a commutative complete local k-algebra where k is algebraically
closed. Cohen’s structure theorem says that gl.dimΛ is finite if and only if Λ is power
series ring.

(2) Λ finite dimensional k-algebra. Then by Artin-Wedderburn the global dimension of
Λ is 0 if and only if Λ is product of matrix rings over k. The global dimension is ≤ 1
if and only if Λ is morita equivalent to the path algebra of some quiver Q.

There are quite a lot of finite dimensional algebra Λ with global dimension 2, which
aren’t so nice! For instance

•
..

•
..

•
divide by arbitrary relations.

2. The setup

Fix R a commutative ring, complete local so that we get Krull-Schmidt in the category
of modules. Denote by d the Krull dimension of R.

Question 2.1. (Auslander [A], 1971): (in modified form) Is there an R-algebra Λ such that
(i) global dimension of Λ is finite,
(ii) the center of Λ is R,
(iii) Λ is a finitely generated R-module.

The last two conditions show the relationship between R and Λ. The idea behind (iii)
is that Λ is not much bigger than R.

Question 2.2. (Auslander [A]): Is there M ∈ modR such that the global dimension of
EndR(R ⊕ M) is finite.

A positive answer to question 2 implies a positive answer to question 1.
In the rest of this note we will discuss this question in a more explicit setting. Note that

question 2 is studied in several contexts recently.
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(i) Auslander’s representation dimension [A], which is defined by

inf{gl.dimEndR(R ⊕ X ⊕ ω) : X ∈ CM(R)} := rep.dimR

for the canonical module ω. The above questions are variants of this.
(ii) Cluster tilting theory as three dimensional Auslander-Reiten theory. See survey [I].
(iii) Noncommutative resolution of singularities [V].
But in (i) and (ii) these both impose more assumptions on the module M in Q2. The

idea in (iii) is to construct M using the usual resolution of R and vice versa.

3. Three results

Theorem 3.1 (Auslander [A]). If d = 0 (i.e. an Artin ring), then Q2 is true.

In fact he showed something much stronger, he doesn’t assume commutativity. In this
case the module M was constructed explicitly as follows: denote by JR the Jacobson radical
of R. Since Artinian there exists m such that Jm

R = 0. Have

R = R/Jm
R � R/Jm−1

R � ... � R/JR � 0

each surjective. Sum them up and take the endomorphism ring.

Theorem 3.2 (König [K], 1991). If d = 1, R is a domain (or reduced, but something similar).
Then Q2 is also true.

In this case let K be the quotient field of R. It is itself infinitely generated, but let
R0 = R and define inductively Ri+1 = {x ∈ K : xJRi ⊂ JRi}. Get a chain

R = R0 ⊂ R1 ⊂ . . . ⊂ Rm

which has to stop at the normalization of R, which is Rm (this is where we use the domain
bit). Again take the sum of the Ri gives the required module

Want the third case d = 2. To do this want to introduce a nice class of modules, the
CM modules. Keeping the assumptions on R being commutative complete local,

Definition 3.3. Let X ∈ modR. Define the depth of X to be the maximal length of X-regular
sequences. Homolgically, this is equal to

inf{i ≥ 0 : Exti
R(R/JR, X) �= 0}.

We call X a Cohen-Macaulay (CM) R-module if depthX = d

The larger the depth, the nicer the module. We denote CM(R) the category of CM
modules. Some general properties:

(i) CM(R) is closed under extensions in modR.
(ii) CM(R) is closed under kernels of epimorphisms.
(iii) Auslander-Buchsbaum formula: if pdX is finite then

depthX + pdX = depthR.

Consequently if R is regular (i.e. global dimension is finite) then CM(R) is just the
projective modules.

This leads to

Question 3.4. Define the right representation dimension by

inf{gl.dimEndR(R ⊕ X) : X ∈ CM(R)} := r.rep.dimR.

What can we say about r.rep.dimR?

Definition 3.5. We call R finite CM type if there are only finitely many isomorphism classes
of indecomposable CM R-modules.
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Example 3.6. (i) So-called simple singularity. An is defined as k[[x0, x1, . . . , xd]]/f
where f = xn+1

0 + x2
1 + x2

2 + . . . + x2
d. To see this by Knorrer periodicity reduce to

either d = 1 (easy but a computation) or d = 2, which we deal with later. There are
also types Dn, E6, E7 and E8.

(ii) 2-dimensional quotient singularities. Take a finite subgroup G ≤ GL(2, k) and con-
sider R = k[[x, y]]G. This has finite CM type. The proof is quite amusing - just show
that CM(R) = addk[[x, y]].

Now want to go back to Q3: want some nice CM module such that the endomorphism
ring has finite global dimension.

Theorem 3.7 (Auslander [A], 1986). Suppose R is a CM ring of finite CM type. Sum them
altogether and take the endomorphism ring. Then this has finite global dimension, and in
fact its ≤ max{2, d}.

4. Krull dimension 2

In the rest of my note, assume the following:
(i) R is still complete local noetherian,
(ii) R is normal domain,
(iii) d = 2.
In this setting we have the following:

Remark 4.1. X is CM if and only if it is reflexive i.e. the natural map X → X∗∗ is an
isomorphism.

Consequently the functor ∗ is a duality on the category CM(R).
The key lemma is the following:

Lemma 4.2 (essentially Auslander [A], see also [IW]). Assume M ∈ CM(R) is a generator
(i.e. has R as a summand). Then the following two conditions are equivalent, for any n ≥ 0.

(1) gl.dimEndR(M) ≤ n + 2.
(2) for any X ∈ CM(R) there is an exact sequence

0 → Mn → . . . → M0 → X → 0

with each Mi ∈ addM such that

0 → (M, Mn) → . . . → (M, M0) → (M, X) → 0

is exact.

Proof. Denote Λ = EndR(M). Firstly note that we have an equivalence (M,−) : addRM →
addΛΛ.

(2)⇒(1) For all Y ∈ modΛ take the first two terms

P1 → P0 → Y → 0

in the projective resolution. We can write the projectives as P1 = (M, M1) and P0 = (M, M0)
and the map P1 → P0 comes from M1 → M0. Taking the kernel of this map (its CM by the
depth lemma) and using (2) we get

0 → Mn+2 → . . . → M3 → M2 → M1 → M0

such that

0 → (M, Mn+2) → . . . → (M, M3) → (M, M2) → (M, M1) → (M, M0)

is exact. But this gives projective resolution of X .
(1)⇒(2) is similar, and uses the fact its a generator. �

Now apply this to a special case
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Corollary 4.3 (essentially Auslander [A]). Let M ∈ CM(R) generator. Then addM =
CM(R) if and only if gl.dimEndR(M) = 2.

Proof. Apply key lemma to n = 0 to get gl.dimEndR(M) ≤ 2. An easy argument shows that
it is in fact equality. �

Remark 4.4. (1) From the above: r.rep.dimR ≤ 2 if and only if R has finite CM type.
(2) Most R is not finite CM type! For d = 2 only the quotient singularities are finite CM

type.

Thus just summing all the CM isn’t going to work, need some new idea. This comes
from the special CM modules

Definition 4.5 (Wunram [W]). We call M ∈ CM(R) special if and only if M⊗Rω/T (M⊗ω)
is CM, where for X ∈ modR define

TX := {x ∈ X : ∃0 �= r ∈ R, rx = 0}.
Note that by definition the depth of M ⊗R ω/T (M ⊗ ω) is always ≥ 1; the specials are

those with depth 2. The problem with the definition is that it is hard to handle. Can show
the following:

Lemma 4.6 ([IW]). For M ∈ CM(R) the following are equivalent.

(1) M is special.
(2) Ext1R(M, R) = 0.
(3) M∗ ∈ ΩCM(R), where ΩCM(R) is the category of first syzygies of CM modules.

Remark: denote by SCM(R) the category of special CM modules. The duality ∗ on the
level of CM(R) induces a duality between ΩCM(R) and SCM(R).

Definition 4.7. Call R finite SCM type if there are only finitely many indecomposable special
CM modules.

Could also state the definition on the level of first syzygies.

Theorem 4.8 (Wunram [W]). All rational normal surface singularities have finite SCM
type.

Converse holds? Remark: Wunram gives a 1-1 correspondence (for rational singularities)
between the exceptional curves on the minimal resolution of SpecR and the indecomposable
non-free special CM modules.

Theorem 4.9 ([IW]). Let M be the sum of all the indecomposable modules in ΩCM(R), then

gl.dimEndR(M) =
{

2 RGorenstein
3 else

The idea is quite simple: use n = 1 case in the previous key lemma. Thus we need to
show that for all X ∈ CM(R) there exists

0 → M1 → M0 → X → 0

such that

0 → (M, M1) → (M, M0) → (M, X) → 0

is exact. The map M0 → X is constructed by taking generators of the module (M, X). These
give a map M0 = Mn → X . Applying (M,−) gives a surjective map, thus the map itself has
to be a surjection since M is a generator. Since M0 is a first syzygy of a CM module, the
kernel of the map is also a first syzygy of a CM module, so we are done.
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