
LECTURES ON RECONSTRUCTION ALGEBRAS III

MICHAEL WEMYSS

1. Introduction

Last lecture I gave lots of geometric motivation behind the idea of a reconstruction

algebra. I said that instead of viewing the minimal resolution ˜X of a quotient singularity
C

2/G as G-Hilb (which a priori has nothing to do with other resolutions) we should instead

view ˜X as being very similar to a space we already understand. The reconstruction algebra
encodes the difference. There are two main problems with these statements:

(1) we don’t yet know what space to compare ˜X too!
(2) we haven’t defined the reconstruction algebra yet.

In fact it turns out, after we define the reconstruction algebra, that its underlying quiver tells
us the answer to (1).

So today I’m going to lead up to the definition of the reconstruction algebra, and conse-
quently I’m going to have to change perspective slightly and become more algebraic. I’ll try
and give some motivation from the world of commutative ring theory (=CM modules here)
and also from representation theory.

First though I’ll stay geometrical and illustrate the slogan I stated last time.

2. Non-toric Toric Geometry

Last time I made the somewhat counter-intuitive statement that for most non-abelian
finite subgroups G ≤ GL(2, C) (namely those with reduced fundamental cycle), to resolve
the singularity explicitly is the same level of difficulty as toric geometry.

Example 2.1. I’m going to start by computing the geometry in a toric example. This also
illustrates the pattern in the reconstruction relations. Consider the group 1

67 (1, 41). The

continued fraction expansion 67
41 = [2, 3, 4, 4] and so the dual graph of the minimal resolution

of C2/ 1
67 (1, 41) is

•
-2

•
-3

•
-4

•
-4

The reconstruction algebra of Type A in this example is
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a+0c0+ = c+1a1+
a1+c+1 = k2a03a32a21 a03a32a21k2 = c0+a+0

k2c0+c+1 = c12a21
a21c12 = k3a03a32 a03a32k3 = c0+c+1k2

k3c0+c+1c12 = k4a03a32 c0+c+1c12k3 = a03a32k4
k4c0+c+1c12 = c23a32

a32c23 = k5a03 a03k5 = c0+c+1c12k4
k5c0+c+1c12c23 = k6a03 c0+c+1c12c23k5 = a03k6
k6c0+c+1c12c23 = c30a03 c0+c+1c12c23k6 = a03c30

where the bizarre labeling will soon become clear. Pick dimension vector (1, 1, 1, 1, 1) and
stability condition (−4, 1, 1, 1, 1), where the −4 is in the position of ?. We are used to this
now - it means that a module M of dimension vector (1, 1, 1, 1, 1) is θ-stable if and only if
for every vertex in the quiver there is a non-zero path from ? to that vertex. Consequently
we have the following five open sets:
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This is why we choose the stability (−4, 1, 1, 1, 1), since it is ‘blind’ to the extra green arrows.
Notice no matter how many extra green arrows we add to the above quiver, picking the
dimension and stability as above the moduli is still covered by five open sets. Call the open
set in the top left U0. I shall now show that U0

∼= C2, i.e. the open set U0 is parameterized
by two variables b and c subject to no relation.

Place b in the position of c30 and c in the position of a03. I claim that every other arrow
is determined by these. Well

k6c0+c+1c12c23 = c30a03 ⇒ k6 = bc
k5c0+c+1c12c23 = k6a03 ⇒ k5 = k6c = bc2

a32c23 = k5a03 ⇒ a32 = k5c = bc3

...

Continuing in this fashion (it is best done visually; I will explain this in the lecture), we get

C 1

b7c26

C

b7c26

b3c11

1 C

b2c7

bc3

b3c11

1 C

bc3

bc2

bc
b

C

1

c

and so indeed this open set is just C2. Now the next open set U1 is also just C2, and is
parameterized by the variables in the c23 and a32 positions. By changing basis at the vertex
3 it immediate from the above picture (multiply all arrows out of vertex 3 by c, divide all
arrows into vertex 3 by c) that the glue is

U0 3 (b, c)↔ (b−1, bc4) ∈ U1

Example 2.2. We are now going to explicitly resolve the singularity C2/D56,15, where

D56,15 :=

fi„

ε30 0

0 ε
−1
30

«

,

„
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«

,

„

ε82 0
0 ε82

«fl

is a non-abelian group of order 2460. I claim this is really easy, once you know the recon-
struction algebra. In this case it is
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?

c0−

c0+

a03

c0+c+1 − c0−c
−1 = 4A01

c0+a+0 = c0−a
−0

a
−0c0− = c

−1a1−
a1+c+1 = a1−c

−1
a+0c0+ = c+1a1+

a1+c+1 = k2a03a32a21 a03a32a21k2 = c0+a+0
k2c0+c+1 = c12a21

a21c12 = k3a03a32 a03a32k3 = c0+c+1k2
k3c0+c+1c12 = k4a03a32 c0+c+1c12k3 = a03a32k4

k4c0+c+1c12 = c23a32
a32c23 = k5a03 a03k5 = c0+c+1c12k4

k5c0+c+1c12c23 = k6a03 c0+c+1c12c23k5 = a03k6
k6c0+c+1c12c23 = c30a03 c0+c+1c12c23k6 = a03c30

Note that the relations below the horizontal line are exactly the same as for the toric example
we did earlier. Choose dimension vector (1, 1, 1, 1, 1, 1) and stability (−5, 1, 1, 1, 1, 1) where
the −5 corresponds to the position ?. Its not too hard to see1 that the moduli is covered by

1If you get stuck, use the only non-monomial relation. If you’re still stuck, try using the non-monomial

relation again.
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the following six open sets

C
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Denote these by U0, U1, U2, U3, U+ and U− respectively. Lets look at U0. Setting a = a1−,
b = c30 and c = a03 then using exactly the same calculation as the toric example earlier, U0

looks like

C

a-0

c-1

C 1

b7c26

C

a

b7c26

b3c11

1 C

b2c7
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c

now subject to the 4 new relations above the horizontal line. But these give that a−0 = b7c26,
c−1 = 1 − 4b4c15 and a(1 − 4b4c15) = b7c26. Thus our open set is C3

a,b,c subject to the one

equation a(1− 4b4c15) = b7c26. Note that basically everything in this calculation is the same
as the toric case, except the one non-monomial relation ends up giving us a hypersurface in
C3.

The other open sets are done similarly, and all follow very quickly from the toric case.
We find that we can read off the co-ordinates in the following positions (I’ve also stated their
abstract equations):

U0 (a1−, c30, a03) a(1− 4b4c15) = b7c26

U1 (a1−, c23, a32) a(1− 4bc4) = b2c7

U2 (a1−, c12, a21) a(1− 4c) = bc2

U3 (a1−, a1+, c+1) a(c− 4) = bc
U+ (c0−, a1+, a−0) b(a2c + 4) = ac
U− (c0+, a1−, a+0) b(a2c− 4) = ac

Actually there is a choice of coordinate in U3 above since we can pick the position c−1 instead
of c+1; denoting d as this new third coordinate changes the abstract equation to a, b, d subject
to ad = b(4− d). With respect to the above ordering, the gluing of these open sets is:

U0 3 (a, b, c) ↔ (a, c−1, c4b) ∈ U1

U1 3 (a, b, c) ↔ (a, c−1, c4b) ∈ U2

U2 3 (a, b, c) ↔ (ca, c3b, c−1) ∈ U3

U3 3 (a, b, d) ↔ (a−1, b, a2d) ∈ U+

U3 3 (a, b, c) ↔ (b−1, a, b2c) ∈ U−
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The dual graph in this example is

•
−2

•
−2

•
−4

•
−4

•
−4

3. The SL(2) McKay Correspondence: Preliminaries

The last section was very geometrical; I’ll now come back and motivate the algebraic
side. If we take a finite subgroup G of GL(2, C) we would like to use the representation
theory of G to resolve the singularity C2/G. In this section I’ll introduce the notions needed
to explain the classical McKay correspondence (i.e. when G ≤ SL(2, C)), but I’ll define
everything when G ≤ GL(2, C).

The geometry of C2/G is a function of two variables, the group G and the natural
representation V = C2. Changing either may change the geometry. Consequently the repre-
sentation theory by itself will tell us nothing about the geometry (since it is only a function of
one variable, namely the group G), so we have to enrich the representations with the action
of G on V . We will do this in three ways: the first is as follows

Definition 3.1. For given finite G acting on C2 = V , the McKay quiver is defined to be the
quiver with vertices corresponding to the isomorphism classes of indecomposable representa-
tions, and the number of arrows from ρ1 to ρ2 is defined to be

dimCHomCG(ρ1, ρ2 ⊗ V )

Example 3.2. For the groups 1
4 (1, 3) and BD4·3 inside SL(2, C) the McKay quivers are

1 1

? 1

1

1 2 2 1

?

respectively, where the number on a vertex is the dimension of the representation at that
vertex.

Beware that sometimes the McKay quiver is defined with the arrows reversed, i.e. the
number of arrows from ρ1 to ρ2 is dimCHomCG(ρ2, ρ1 ⊗ V ). This is just a convention, so it
doesn’t really matter.

The second way we are going to encode the geometry into the representation theory is
to treat every representation as a semi-invariant, and take the corresponding endomorphism
ring:

Definition 3.3. For a representation ρ, form ρ⊗C C[x, y]. Now G acts on both sides of the
tensor, so we can form (ρ⊗C[x, y])G, which is a CM module over the invariant ring C[x, y]G =
(ρ0 ⊗ C[x, y])G where ρ0 is the trivial representation. We denote Sρ := (ρ ⊗ C[x, y])G and
call it the CM module associated to ρ. Denote A := EndC[x,y]G

(

⊕ρ∈IrrG(ρ⊗ C[x, y])G
)

In fact the above gives a 1-1 correspondence between the representations and the CM
modules. You should perhaps view the CM modules as being ‘better’ than the representations,
since they generalize to the non-quotient singularity case.

The third way to encode the geometry into the representation theory is done as follows:

Definition 3.4. Define the skew group ring C[x, y]#G to be the vector space C[x, y]⊗C CG
with multiplication given by

(f1 ⊗ g1) · (f2 ⊗ g2) := (f1(g1 · f2))⊗ g1g2
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You should view this as the algebra put together from CG and C[x, y] in a natural way,
and it is the twist in the multiplication which is encoding the action of G on V . Note that a
C[x, y]#G module is exactly the same thing as C[x, y] module M (=coherent sheaf on C2)
with a compatible G-action; i.e. a G-action such that

g(f ·m) = g(f) · g(m) for all f ∈ C[x, y], g ∈ G, m ∈M

Thus we can think of modules for C[x, y]#G a little more geometrically as G-equivariant
sheaves on C2.

The following theorem due to Auslander tells us that our two naturally defined algebras
give us the same answer:

Theorem 3.5. If G ≤ GL(2, C) is small (i.e. contains no pseudoreflections) then

C[x, y]#G ∼= EndC[x,y]G
(

⊕ρ∈IrrGS⊕dimρ
ρ

)

.

Consequently (killing multiplicity) A = EndC[x,y]G(⊕ρ∈IrrGSρ) is Morita equivalent to the
skew group ring C[x, y]#G.

Actually the three ways of encoding the geometry onto the representation theory give
us the same answer:

Lemma 3.6. The underlying quiver of C[x, y]#G (and thus A = EndC[x,y]G(⊕ρ∈IrrGSρ)
when the group is small) is the McKay quiver.

The relations on the McKay quiver that give the Morita equivalence with the skew group
ring (at least in the case when G is small) are known as the mesh relations from AR theory.
Perhaps more will be said about this later.

4. The SL(2) McKay Correspondence

The last section introduced the algebra and notation, in this section we get to the point.

Let G ≤ SL(2, C) and denote by ˜X → C
2/G the minimal resolution. Firstly, there is a 1-1

correspondence

{exceptional curves} ↔ {non-trivial irreducible representations}

where recall that the right hand side is in 1-1 correspondence with the non-free CM modules.
I emphasize that so far this is a numerical correspondence, we want more structure. McKay
observed that

{dual graph} McKay quiver

where we go from one side to the other by deleting (or adding) the vertex corresponding to
the trivial representation. For example

?

2

1 2 3 2 1

←→

•
−2

•
−2

•
−2

•
−2

•
−2

•
−2

1

1 2 2 1

?

←→

•
−2

•
−2

•
−2

•
−2

•
−2

If we consider an algebra instead of just a quiver (by adding relations, which are the pre-
projective relations if you know about these things) we can say more. Firstly the above
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correspondence becomes

{dual graph} quiver of EndC[x,y]G(⊕ρ∈IrrGSρ)

In fact there are also statements about the derived category and quiver GIT. I will now sum-
marize all this into one theorem. By Theorem 3.5 we can replace C[x, y]#G by EndR(⊕ρ∈IrrGSρ)
throughout.

Theorem 4.1 (SL(2, C) McKay Correspondence). Let G be a finite subgroup of SL(2, C),

denote R = C[x, y]G, X = SpecR and ˜X
π
→ X the minimal resolution. Then

(i) There is a 1-1 correspondence

{exceptional curves} ↔ {indecomposable non-free CM modules}

(ii) The McKay quiver gives the dual graph ˜X after we delete the trivial vertex. The only
possibilities are the Dynkin diagrams of type ADE.

(iii) The co-efficients in Zf correspond to the dimensions of the representations associated
to the vertices.

(iv) Db(modC[x, y]#G) ≈ Db(coh ˜X).
(v) Considering C[x, y]#G, take the dimension vector α given by the co-efficients in Zf .

Then for any generic stability condition θ,

M
s
θ

π
→ X

is the minimal resolution.

I should add some remarks. View (i) as a numerical correspondence, to which (ii) and
(iii) adds more structure. To improve this we have to add in relations (i.e. we need to
consider an algebra, not just a quiver) and as soon as we do this we can start talking about
modules, and so consider (iv) and (v). The derived equivalence in (iv) can be seen using
either Fourier-Mukai transforms or tilting. Perhaps (v) is the strongest statement.

I should also say that via Artin-Verdier we can view this correspondence geometrically
on the minimal resolution in terms of full sheaves and their Chern classes. This is important
when considering Wunram’s generalization later.

The above theorem fails for GL(2, C) but I shall explain how to modify the above so that
properties (i)-(iv) hold. Property (v) the way it is stated will turn out to be false even after
the modification, however there will be one particular stability condition which will work.
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