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Abstract

Given a quiver with a potential, we can define counting invariants
so called noncommutative Donaldson-Thomas invariants. In this note,
we study how the generating function of the invariants changes under
mutations of the quiver.

1 Quiver with potentials

Let Q = (I,H) be a quiver and ω be a potential which is homogeneous with
respect to a degree H → Z>0. Assume that A = (Q,ω) is 3-dimensional Calabi-
Yau in the sense of Bocklandt [Boc08]. In this section we give some examples
of such quivers.

1.1 Conifold

Let Y(−1,−1) = OP1(−1) ⊕OP1(−1) be the resolved conifold and π : Y(−1,−1) →
P1 be the projection. The vector bundle P(−1,−1) := OY(−1,−1) ⊕ π∗OP1(1) is
a tilting generator of the derived category Db

(
CohY(−1,−1)

)
and we have the

derived equivalence

RHom
(
P(−1,−1),−

)
: Db

(
CohY(−1,−1)

) ∼−→ Db
(
A(−1,−1)-mod

)
,

where A(−1,−1) = EndY

(
P(−1,−1)

)
. Let Q(−1,−1) be the quiver in Figure 1 and

ω(−1,−1) = a1b1a2b2 − a1b2a2b1. Then we have A(−1,−1) ' (Q(−1,−1), ω(−1,−1)).

a1

a2

b1

b2

Figure 1: Q(−1,−1)
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1.2 Local P2

The next example have been studied carefully by T. Bridgeland ([Bri], [Bri06]).
Let Y−3 := OP2(−3) be the total space of the canonical bundle on P2 and
π : Y(−3) → P2 be the projection. The vector bundle

P(−3) := OY(−3) ⊕ π∗OP2(1) ⊕ π∗OP2(2)

is a tilting generator of the derived category Db
(
CohY(−3)

)
and we have the

derived equivalence

RHom
(
P(−3),−

)
: Db

(
Coh Y(−3)

) ∼−→ Db
(
A(−3)-mod

)
,

where A(−3) = EndY

(
P(−3)

)
. Let Q(−3) be the quiver in Figure 2 and

ω(−3) =
∑

σ∈S3

ε(σ)cσ(1)bσ(2)aσ(3).

Then we have A(−3) '
(
Q(−3), ω(−3)

)
.

b1, b2, b3

a1, a2, a3 c1, c2, c3

Figure 2: Q(−3)

1.3 Geometric engineering

Let Γ be a finite subgroup of SL(2, C), which acts on the resolved conifold
Y(−1,−1) fiber-wisely, and YΓ → XΓ = Y(−1,−1)/Γ be the crepant resolution (see
Figure 3). By the derived McKay correspondence we have

Db (Coh YΓ) ' Db
(
CohΓ Y(−1,−1)

)
.

The Γ-equivariant vector bundle

PΓ :=
⊕

ρ∈Irr(Γ)

P ⊗ ρ

is a tilting generator of Db
(
CohΓ Y(−1,−1)

)
and the endomorphism algebra

AΓ := End (PΓ) can be described as follows: the vertex set of QΓ is

{(ε, ρ) | ε ∈ {0, 1}, ρ ∈ Irr(Γ)}.
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YZ/4Z :

XZ/4Z :

Figure 3: the crepant resolution YZ/4Z → XZ/4Z

We have two arrows a1
ρ and a2

ρ from (0, ρ) to (1, ρ) for each ρ. If ρ and ρ′ are
connected by edges in the McKay quiver, we have one arrow from (1, ρ) to (0, ρ′)
and one arrow from from (1, ρ′) to (0, ρ). Let bρ,ρ′ and bρ′,ρ denote these arrows
respectively. The potential ωΓ is the sum of the following elements:

a0
ρ ◦ bρ′,ρ ◦ a1

ρ′ ◦ bρ,ρ′ .

Figure 4: the quiver QZ/4Z

1.4 Small crepant resolutions of toric CY 3-folds

Let Xa,b be the affine toric Calabi-Yau 3-fold associated with the trapezoid (or
possibly triangle) with height 1 and with parallel edges of length a and b. Let σ
be a partition of the trapezoid into triangles with areas 1/2 and Y σ

a,b → Xa,b be
the associated crepant resolution. The inverse image of 0 ∈ Xa,b is the Aa+b−1

configuration of (−1,−1) or (0,−2)-curves. In [Nag], using the result of M.
Van den Bergh ([VdB04]), the author constructed a tilting vector bundle with
endomorphism algebra Aσ = (Qσ, ωσ). The Qσ is given by adding some loops
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to the affine Dynkin quiver of type Aa+b−1. Roughly speaking, a vertex with a
loop corresponds to a (0,−2)-curve. See [Nag] for details.

Example 1.1. Let a = 2, b = 4 and σ be the partition in Figure 5. Then the

Figure 5: a partition σ

quiver Qσ is given as in Figure 6.

Figure 6: the quiver Qσ

1.5 Non-toric case: obstructed (0,−2)-curve

For n ≥ 2 we patch two C3 with coordinates {(x, y, z)} and {X,Y, Z} respec-
tively by the following transition functions to construct the Calabi-Yau 3-fold
Y n

(0,−2):
X = x−1, Y = x2y + xzn, Z = z.

The subvariety {y ≡ z ≡ 0} ∪ {Y ≡ Z ≡ 0} is an obstructed (0,−2)-curve.
In [AK06] the endomorphism algebra of a tilting vector bundle is computed:
the quiver Qn

(0,−2) is given by adding two loops l0 and l1 for each vertex to the
quiver in Figure 1.

2 Mutations

Let Pk be the projective A-module associated with a vertex k ∈ I and we set
P :=

⊕
k Pk(= A). We define the new A-module

P ′
k := coker

Pk →
⊕

h∈H; out(h)=k

Pin(h)

 .

The object µk(P ) =
⊕

l 6=k Pl ⊕ P ′
k is a tilting generator in Db(A-mod). Let

µk(A) denote the endomorphism algebra End (µk(P )).
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Example 2.1. Recall that we take the tilting vector bundle

P(−1,−1) := OY(−1,−1) ⊕ π∗OP1(1)

on the resolved conifold Y(−1,−1) and get the derived equivalence

Db(Coh Y(−1,−1))
∼−→ Db(mod A(−1,−1)).

We identify objects in the two categories under the derived equivalence. Let P0

and P1 denote the projective A(−1,−1)-modules OY(−1,−1) and L := π∗OP1(1)
respectively. We mutate the quiver A(−1,−1) at the vertex 0, then we have

P ′
0 = coker

(
OY(−1,−1) → L⊕L

)
' L2.

Hence we have

µ0(P ) = P ⊗ L, µ0

(
A(−1,−1)

)
-mod = A(−1,−1)-mod ⊗ L.

and
µ0

(
A(−1,−1)

)
' A(−1,−1).

In general, if Q does not have any 1-cycles nor 2-cycles, then µk(A) is given
by the mutation of the original quiver with the potential A = (Q,ω) in the sense
of [FZ02] and [DWZ].

b1, b2, b3

a1, a2, a3 c1, c2, c3

b′1, . . . , b
′
6

c′1, c
′
2, c

′
3a′

1, a
′
2, a

′
3

µ0

0 0

Figure 7: a mutation for Q(−3)

4
µ0

0 0

Figure 8: a mutation for QZ/2Z

3 Moduli spaces and counting invariants

Let (F, s) be a pair of a finite dimensional A-modules and a map s : Pk → F .
For a pair of real numbers ζ ∈ RI , a pair (F, s) said to be ζ-(semi)stable if and
only if the following two conditions satisfied:
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• for any nonzero subobject 0 6= F ′ ⊆ F ∈ A-mod, we have

dimAV ′ · ζ (≤) 0,

• for any proper subobject F ′ ( F ∈ A-mod through which s factors, we
have

dimAV ′ · ζ (≤) dimAV · ζ,

where dimA is the composition of the canonical map

Obj(Db(A-mod)) → K(A-mod)

and the linear map
K(A-mod) → ZI

such that (dimAV )i = dimVi for an A-module V .
By the result of A. King ([Kin94]), for v ∈ ZI we can construct the moduli

space
Mk

ζ (v) := {(V, s) | dimAV = v, ζ-stable}.

by geometric invariant theory. We define the counting invariants

D eu
ζ,k(v) := χ

(
Mk

ζ (v)
)

as the Euler characteristics of the moduli spaces and their generating function

Zeu
ζ,k(q) :=

∑
v

D eu
ζ,k(v) · qv.

Example 3.1. In the conifold case

(1) For ζtriv such that ζ0
triv, ζ1

triv > 0 then

Mk
ζtriv

(v) =

{
∅ v = 0,

pt v 6= 0

and hence Zeu
ζ,k = 1.

(2) For ζcyclic such that ζ0
cyclic, ζ1

cyclic < 0 then a pair (F, s) is ζcyclic-stable if
and only if s is surjective. The moduli space have been studied in non-
commutative Donaldson-Thomas theory by B. Szendroi ([Sze]). Let
Zeu

NCDT,k(q) denote the generating function of the counting invariants.

3.1 Remark on virtual counting

Let M = Mk
ζ (v) be the moduli stack of framed representations of the quiver

(without relation) Q. Taking the trace of the potential, we can define the func-
tion on M. Then the moduli space M := Mk

ζtriv
(v) is the critical locus of this

function. We take the Euler characteristic of the Milnor fiber around each crit-
ical point to get the constructible function ν : M → Z. The virtual counting of
the moduli space is given as the weighted Euler characteristic:

Dζ,k(v) :=
∑

n

χ(ν−1(n)).
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The function ν is called Behrend’s constructible function (or χ-function. When
the moduli space is compact, the weighted Euler characteristic coincides with the
virtual counting ([Beh]), which is defined by integrating the constant function
1 over the virtual fundamental cycle [M]vir ([BF]).

The virtual counting is believe to be the correct invariant rather than the
Euler characteristic.

One of the reasons is its ”deformation invariance”. For example, the Donaldson-
Thomas invariants of a smooth projective Calabi-Yau 3-fold Y , which are defined
as virtual countings of Hilbert schemes of curves, are invariant under the defor-
mation of Y . Though, in our setting deformation invariance is a subtle problem
since the moduli is not compact.

Another reason is that the (conjectural) ”rationality property” of the gen-
erating function (see [PT], [MR]).

Example 3.2. In the example in §1.5, the generating function of the virtual
counting is given by

Zζcyclic,0(q0, q1)

=
∏

i

(
1 − (−q0)iqi−1

1

)ni ·
∏

i

(
1 − (−q0q1)i

)−2i ·
∏

i

(
1 − (−q0)iqi+1

1

)ni
,

and the generating function of the Euler characteristics is given by

Zeu
ζcyclic,0(q0, q1) =

∏
i

(
1 + qi

0q
i−1
1 + · · · + qni

0 q
n(i−1)
1

)i

·
∏

i

(
1 − q0q

i
1

)−2i ·
∏

i

(
1 + qi

0q
i+1
1 + · · · + qni

0 q
n(i+1)
1

)i

.

When the 3-dimensional Calabi-Yau quiver is derived from a brane tiling,
then the virtual counting coincides with the Euler characteristic up to sign (see
[MR]).

4 Results

For k ∈ I we define the map µk : ZI → ZI by

(µk(v))l =

{
−vk +

∑
h;out(h)=k vin(h) l = k,

vl otherwise

for v ∈ ZI . We also define µk : RI → RI by

v · ζ = µk(v) · µk(ζ)

for any v and ζ.
Let ζ ∈ RI be a generic stability parameter satisfying the following condi-

tions:

• there exists η ∈ RI
>0 such that ζ + d · η on an intersection of two walls for

any d ≥ 0.

• We have the sequence C0, . . . , Cr of chambers such that
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– ζ − d · η ∈ ∪Cs for any d ≥ 0,

– for any Cs, there exists some d ≥ 0 such that ζ − d · η ∈ Cs, and

– suppose ζ − d · η ∈ Cs, ζ − d′ · η ∈ Cs′ and s < s′, then d > d′.

• we have the sequence k1, . . . , kr of elements in I such that

Cs−1 ∩ Cs ⊂ Wαs (αs = µks−1 ◦ · · · ◦ µk1(αks)),

where αk denote the simple root vector.

We denote µs := µks
◦ · · · ◦ µk1 , Ψs := Ψks

◦ · · · ◦ Ψk1 and µζ := µr, Ψζ := Ψr.
We set P := A-mod and denote by Pζ the image of the Abelian category

µζ(A)-mod under the equivalence Ψ−1
ζ .

Definition 4.1. Let (V, s) be a pair of an element V ∈ Pζ and a map s : Pk →
V . For ξ ∈ RÎ , we say (V, s) is (ξ,Pζ)-(semi)stable if the following conditions
are satisfied:

(A) for any nonzero subobject 0 6= S ⊆ V in Pζ , we have

ξ · dimS (≤) 0,

(B) for any proper subobject T ( V in Pζ which s factors through, we have

ξ · dimT (≤) ξ · dimV.

From now on, the ζ-(semi)stability for a pair (F, s) with F ∈ P = A-mod
is written as the (ζ,P)-(semi)stability. We set ξcyclic := µζ(ζ). Note that
(ξcyclic)l < 0 for any l ∈ I.

Theorem 4.2. (1) [Nag, Lemma 3.5] Let (F, s) be a (ζ,P)-stable, then F ∈
Pζ .

(2) [Nag, Proposition 3.6] Let (F, s) be a (ζ,P)-stable, then (F, s) is (ξcyclic,Pζ)-
stable.

(3) [Nag, Lemma 3.7] Let (F, s) be a (ξcyclic,Pζ)-stable, then F ∈ P.

(4) [Nag, Proposition 3.8] Let (F, s) be a (ξcyclic,Pζ)-stable, then (F, s) is
(ζ,P)-stable.

This theorem claims that replacing t-structures corresponds to replacing
stability conditions. In particular, we can define

Mk
Pζ ,ζcyclic

(v) := {(V, s) | V ∈ Pζ , dimAV = v, (ζcyclic,Pζ)-stable}

which is isomorphic to Mk
P,ζ(v) = Mk

ζ (v). We can also define the generating
function

Zeu
Pζ ,k(q) =

∑
v

χ(Mk
Pζ ,ζcyclic

(v)) · qv.

of the counting invariants.
In [NN] and [Nag], we study how the generating function changes when we

replace the stability condition. Now we get the following formula describing
how the generating function changes when we mutate the quiver.
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Theorem 4.3.

Zeu
Pζ ,k(q) =

(
1 + qαr

)(αr)k Zeu
Pr−1,k(µkr (q)),

where the left hand side is given by substituting qk with(
1 + qαr

)〈αk,αr〉
qk.

Here 〈−,−〉 is the Euler pairing on K(Db(Coh(Y ))).

Example 4.4. In the conifold case, the Euler pairing is trivial and the theorem
provides a conceptual interpretation of Young’s combinatorial formula ([You]).
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