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In my note I will present some results in joint work [IW] with Michael Wemyss on special
Cohen-Macaulay modules. We start with explaining briefly the background in noncommu-
tative algebra. After Auslander [A], algebras of finite global dimension are one of the most
important subjects in representation theory. For example, famous Auslander-Reiten theory
[Y] is based on certain algebras of global dimension two, called Auslander algebras (e.g. see
[I]). We will explain the connection to special Cohen-Macaulay modules. I recommend any-
one who is interested in non-commutative algebra to learn the work of Auslander (especially
[A], which is available in [A2]). Additionally, my recent trial [I] to extend this a little bit.

1. Introduction

Λ any ring, M an arbitrary Λ module. We write pdM ≤ n if there exists

0 → Pn → . . . P0 → M → 0

such that each Pi is a projective Λ module. We define gl.dimΛ := sup{pdM : M ∈ modΛ}.
In this note we study rings with finite global dimension.

Example 1.1. (1) Λ is a commutative complete local k-algebra where k is algebraically
closed. Cohen’s structure theorem says that gl.dimΛ is finite if and only if Λ is power
series ring.

(2) Λ finite dimensional k-algebra. Then by Artin-Wedderburn the global dimension of
Λ is 0 if and only if Λ is product of matrix rings over k. The global dimension is ≤ 1
if and only if Λ is morita equivalent to the path algebra of some quiver Q.

There are quite a lot of finite dimensional algebra Λ with global dimension 2, which
aren’t so nice! For instance

•
..

•
..

•
divide by arbitrary relations.

2. The setup

Fix R a commutative ring, complete local so that we get Krull-Schmidt in the category
of modules. Denote by d the Krull dimension of R.

Question 2.1. (Auslander [A], 1971): (in modified form) Is there an R-algebra Λ such that
(i) global dimension of Λ is finite,
(ii) the center of Λ is R,
(iii) Λ is a finitely generated R-module.

The last two conditions show the relationship between R and Λ. The idea behind (iii)
is that Λ is not much bigger than R.

Question 2.2. (Auslander [A]): Is there M ∈ modR such that the global dimension of
EndR(R ⊕ M) is finite.

A positive answer to question 2 implies a positive answer to question 1.
In the rest of this note we will discuss this question in a more explicit setting. Note that

question 2 is studied in several contexts recently.
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(i) Auslander’s representation dimension [A], which is defined by

inf{gl.dimEndR(R ⊕ X ⊕ ω) : X ∈ CM(R)} := rep.dimR

for the canonical module ω. The above questions are variants of this.
(ii) Cluster tilting theory as three dimensional Auslander-Reiten theory. See survey [I].
(iii) Noncommutative resolution of singularities [V].
But in (i) and (ii) these both impose more assumptions on the module M in Q2. The

idea in (iii) is to construct M using the usual resolution of R and vice versa.

3. Three results

Theorem 3.1 (Auslander [A]). If d = 0 (i.e. an Artin ring), then Q2 is true.

In fact he showed something much stronger, he doesn’t assume commutativity. In this
case the module M was constructed explicitly as follows: denote by JR the Jacobson radical
of R. Since Artinian there exists m such that Jm

R = 0. Have

R = R/Jm
R � R/Jm−1

R � ... � R/JR � 0

each surjective. Sum them up and take the endomorphism ring.

Theorem 3.2 (König [K], 1991). If d = 1, R is a domain (or reduced, but something similar).
Then Q2 is also true.

In this case let K be the quotient field of R. It is itself infinitely generated, but let
R0 = R and define inductively Ri+1 = {x ∈ K : xJRi ⊂ JRi}. Get a chain

R = R0 ⊂ R1 ⊂ . . . ⊂ Rm

which has to stop at the normalization of R, which is Rm (this is where we use the domain
bit). Again take the sum of the Ri gives the required module

Want the third case d = 2. To do this want to introduce a nice class of modules, the
CM modules. Keeping the assumptions on R being commutative complete local,

Definition 3.3. Let X ∈ modR. Define the depth of X to be the maximal length of X-regular
sequences. Homolgically, this is equal to

inf{i ≥ 0 : Exti
R(R/JR, X) �= 0}.

We call X a Cohen-Macaulay (CM) R-module if depthX = d

The larger the depth, the nicer the module. We denote CM(R) the category of CM
modules. Some general properties:

(i) CM(R) is closed under extensions in modR.
(ii) CM(R) is closed under kernels of epimorphisms.
(iii) Auslander-Buchsbaum formula: if pdX is finite then

depthX + pdX = depthR.

Consequently if R is regular (i.e. global dimension is finite) then CM(R) is just the
projective modules.

This leads to

Question 3.4. Define the right representation dimension by

inf{gl.dimEndR(R ⊕ X) : X ∈ CM(R)} := r.rep.dimR.

What can we say about r.rep.dimR?

Definition 3.5. We call R finite CM type if there are only finitely many isomorphism classes
of indecomposable CM R-modules.
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Example 3.6. (i) So-called simple singularity. An is defined as k[[x0, x1, . . . , xd]]/f
where f = xn+1

0 + x2
1 + x2

2 + . . . + x2
d. To see this by Knorrer periodicity reduce to

either d = 1 (easy but a computation) or d = 2, which we deal with later. There are
also types Dn, E6, E7 and E8.

(ii) 2-dimensional quotient singularities. Take a finite subgroup G ≤ GL(2, k) and con-
sider R = k[[x, y]]G. This has finite CM type. The proof is quite amusing - just show
that CM(R) = addk[[x, y]].

Now want to go back to Q3: want some nice CM module such that the endomorphism
ring has finite global dimension.

Theorem 3.7 (Auslander [A], 1986). Suppose R is a CM ring of finite CM type. Sum them
altogether and take the endomorphism ring. Then this has finite global dimension, and in
fact its ≤ max{2, d}.

4. Krull dimension 2

In the rest of my note, assume the following:
(i) R is still complete local noetherian,
(ii) R is normal domain,
(iii) d = 2.
In this setting we have the following:

Remark 4.1. X is CM if and only if it is reflexive i.e. the natural map X → X∗∗ is an
isomorphism.

Consequently the functor ∗ is a duality on the category CM(R).
The key lemma is the following:

Lemma 4.2 (essentially Auslander [A], see also [IW]). Assume M ∈ CM(R) is a generator
(i.e. has R as a summand). Then the following two conditions are equivalent, for any n ≥ 0.

(1) gl.dimEndR(M) ≤ n + 2.
(2) for any X ∈ CM(R) there is an exact sequence

0 → Mn → . . . → M0 → X → 0

with each Mi ∈ addM such that

0 → (M, Mn) → . . . → (M, M0) → (M, X) → 0

is exact.

Proof. Denote Λ = EndR(M). Firstly note that we have an equivalence (M,−) : addRM →
addΛΛ.

(2)⇒(1) For all Y ∈ modΛ take the first two terms

P1 → P0 → Y → 0

in the projective resolution. We can write the projectives as P1 = (M, M1) and P0 = (M, M0)
and the map P1 → P0 comes from M1 → M0. Taking the kernel of this map (its CM by the
depth lemma) and using (2) we get

0 → Mn+2 → . . . → M3 → M2 → M1 → M0

such that

0 → (M, Mn+2) → . . . → (M, M3) → (M, M2) → (M, M1) → (M, M0)

is exact. But this gives projective resolution of X .
(1)⇒(2) is similar, and uses the fact its a generator. �

Now apply this to a special case
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Corollary 4.3 (essentially Auslander [A]). Let M ∈ CM(R) generator. Then addM =
CM(R) if and only if gl.dimEndR(M) = 2.

Proof. Apply key lemma to n = 0 to get gl.dimEndR(M) ≤ 2. An easy argument shows that
it is in fact equality. �

Remark 4.4. (1) From the above: r.rep.dimR ≤ 2 if and only if R has finite CM type.
(2) Most R is not finite CM type! For d = 2 only the quotient singularities are finite CM

type.

Thus just summing all the CM isn’t going to work, need some new idea. This comes
from the special CM modules

Definition 4.5 (Wunram [W]). We call M ∈ CM(R) special if and only if M⊗Rω/T (M⊗ω)
is CM, where for X ∈ modR define

TX := {x ∈ X : ∃0 �= r ∈ R, rx = 0}.
Note that by definition the depth of M ⊗R ω/T (M ⊗ ω) is always ≥ 1; the specials are

those with depth 2. The problem with the definition is that it is hard to handle. Can show
the following:

Lemma 4.6 ([IW]). For M ∈ CM(R) the following are equivalent.

(1) M is special.
(2) Ext1R(M, R) = 0.
(3) M∗ ∈ ΩCM(R), where ΩCM(R) is the category of first syzygies of CM modules.

Remark: denote by SCM(R) the category of special CM modules. The duality ∗ on the
level of CM(R) induces a duality between ΩCM(R) and SCM(R).

Definition 4.7. Call R finite SCM type if there are only finitely many indecomposable special
CM modules.

Could also state the definition on the level of first syzygies.

Theorem 4.8 (Wunram [W]). All rational normal surface singularities have finite SCM
type.

Converse holds? Remark: Wunram gives a 1-1 correspondence (for rational singularities)
between the exceptional curves on the minimal resolution of SpecR and the indecomposable
non-free special CM modules.

Theorem 4.9 ([IW]). Let M be the sum of all the indecomposable modules in ΩCM(R), then

gl.dimEndR(M) =
{

2 RGorenstein
3 else

The idea is quite simple: use n = 1 case in the previous key lemma. Thus we need to
show that for all X ∈ CM(R) there exists

0 → M1 → M0 → X → 0

such that

0 → (M, M1) → (M, M0) → (M, X) → 0

is exact. The map M0 → X is constructed by taking generators of the module (M, X). These
give a map M0 = Mn → X . Applying (M,−) gives a surjective map, thus the map itself has
to be a surjection since M is a generator. Since M0 is a first syzygy of a CM module, the
kernel of the map is also a first syzygy of a CM module, so we are done.
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