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Chapter 1

Introduction

Combinatorial designs have their roots in the work of L.P. Euler, who in 1780s presented the
well known “36 officers problem.” In 19th century, T.P. Kirkman, J. Steiner, and A. Cayley
worked on combinatorial design theory. In 1930s, the area of design theory underwent rapid
development due to the development of finite affine and projective geometries. And the
development of the theory of Latin squares, which are an example of algebraic systems with
binary operations, expedited the progress of design theory. Furthermore, actual demands
from an area of applications, namely statistical design of experiments, were also one of the
important motivations of the development. The investigation of a connection between finite
geometry and group theoretic combinatorial designs was initiated by R. Baer in 1930s. Since
1960s, many researchers including R.J. Turyn, U. Ott, E.F. Assmus, Jr., and H.F. Mattson, Jr.
have found a close relation between algebraic design theory and coding theory. Some of those
results were based on algebraic number theory.

One of the most successful and famous applications of combinatorial designs is found in the
field of statistical design of experiments. Fisher’s and Yates’s investigations established a
connection between combinatorial designs and the theory of statistical planning and infer-
ences [50, 117]. Such applications use an important property, so-called “balancedness,” of
designs. Subsequently, Bose [14] and some other statisticians studied systematic construc-
tions of experimental designs with balancedness, for example, “balanced incomplete block
designs,” “group divisible designs,” etc. The techniques have been further developed and
contributed to the investigation of various kinds of combinatorial designs. Several methods
to systematically construct block designs have been appeared in the past fifty years and one
of the most useful techniques is “the method of differences” first introduced by Bose [14].
The reason why the method of differences is so useful is that one can easily generate designs.
For example, balanced incomplete block designs and group divisible designs can be derived
from a “difference families” as we see in Sections 1.1 and 1.2 in this chapter. In combinatorial
design theory, fundamental problems related to difference families are their “existence,” “con-
structions,” and “classifications.” In general, a difference family has an interesting algebraic
property and the three problems above are fascinating not only in a practical sense but also
in a theoretical one. In particular, existence problems of difference families over finite groups
are difficult even in the case of cyclic groups and there are a vast amount of articles trying
to solve the problem. For example, Wilson [110] showed an asymptotic existence theorem of
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difference families over a finite field and Buratti [16, 17, 18, 19] generalized many of Bose’s
results. Since then, a number of difference families have been found mainly over abelian
groups, and problems related to difference families has been studied as on one of the main
topics of combinatorial design theory.

At the earliest stage of the study, there was no application of difference families except for
constructions of combinatorial designs used in design of agricultural field experiments or
industrial experiments. However, recently there have been found significant roles of the the-
ory of difference families in the field of information science, particularly, in the theory of
“multiple-access communications.” In communication theory, a technique that two or more
users share a communication channel and communicate simultaneously is called a multiple-
access communication. Though the beginning of multiple-access communications is more than
fifty years ago, “optical code-division” multiple-access communications have been developed
rapidly from 1980s [62, 63, 102, 103]. In such a multiple-access communication model, a
combinatorial code called an “optical orthogonal code” is applied, which is also used for con-
structing protocol sequences for multiple-access collision channel without feedback [84, 85].
Multiple-access communication systems employ some classical difference families as combi-
natorial codes whilst they sometimes require new types of difference families proposed in
various recent articles. For example, Colbourn, Dinitz, and Stinson [44] provided a survey of
applications in this field (see also [38, 39, 42, 48, 72, 73, 97]). Thus, the theory of difference
families can help the development of the theory of communications, and new problems in the
theory of communications bring fresh insights to the theory of difference families.

In this thesis, we consider several types of difference families, for example, relative difference
families, strong difference families, δ-support difference families, etc. As an application of
difference families, we also discuss about existence problems and constructions of some kinds
of combinatorial codes, in particular, optical orthogonal codes and conflict avoiding codes,
which are applied in multiple-access communications. Some results given in this thesis include
many known results on difference families and combinatorial codes. This thesis is based on
the author’s publications [88, 89, 90, 91, 92]. This chapter is dedicated to provide a brief
introduction to difference families in combinatorial designs and their applications to codes
in multiple-access communication systems. In particular, we will review some definitions,
basic notions, and known results related to ordinary difference families, relative difference
families, and radical difference families and will take a concise look at their relation to optical
orthogonal codes and conflict-avoiding codes.

1.1 Difference families

Let G be a finite group of order v and let k be a positive integer. Throughout this thesis, we
call a subset including k elements of G as a k-subset of G. Let

(
G
k

)
be the set of all k-subsets

of G. Given a k-subset X ∈ (
G
k

)
, the list of differences of X is a multiset defined by

∆X =
{
ba−1 | a, b ∈ X, a 6= b

}
or

{
b− a | a, b ∈ X, a 6= b

}

depending on whether G is multiplicatively or additively written, respectively. A family
F ⊆ (

G
k

)
is called a (G, k, λ) difference family, briefly (G, k, λ)-DF, if every nonzero element

of G occurs λ times in the list ∆F =
⋃

B∈F ∆B. The family F is also called as a (v, k, λ)-DF
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over G. If |F| = 1, the uniquely included set B ∈ F is called a (G, k, λ) difference set. A
difference family is also called a supplementary difference sets as a natural generalization of
a difference set. In particular, if the group G is cyclic, a (G, k, λ)-DF is called cyclic, and
we denote it by (v, k, λ)-CDF. In this case, we identify G as Zv, the residue ring of integers
modulo v, and denote each coset [i], 0 ≤ i ≤ v − 1, in Zv by i for simplicity. Members of F
are called blocks or base blocks. Obviously, the number of blocks is (v−1)λ

k(k−1) , which gives the
trivial necessary condition

λ(v − 1) ≡ 0 (mod k(k − 1)) (1.1)

for the existence of (v, k, λ)-DFs.

Example 1.1.1. (i) The set of the three blocks

B1 = {0, 1, 3, 24}, B2 = {0, 4, 9, 15}, and B3 = {0, 7, 17, 25}

forms a (37, 4, 1)-CDF.

(ii) The set of the five blocks

B1 = {1, x, x4}, B2 = {1, x2, yx}, B3 = {1, x5, y},
B4 = {1, x6, yx2}, and B5 = {1, x7, yx5}

forms a (16, 3, 2)-DF over the dihedral group G = 〈x, y |x8 = y2 = 1; yx = x7y〉.

In this thesis, we mainly treat the case when G is abelian. In order to ease some notations
and computations, we restate the definition of difference family in terms of a group algebra.
For an additive group G and the ring Z of rational integers, let ZG denote the ring of formal
polynomials

ZG =

{∑

a∈G

caX
a | ca ∈ Z

}
,

where X is an indeterminate, which has the operations
∑

a∈G

caX
a +

∑

a∈G

c′aX
a =

∑

a∈G

(ca + c′a)X
a

and (∑

a∈G

caX
a

) (∑

a∈G

caX
a

)
=

∑

b∈G

(∑

a∈G

cac
′
b−a

)
Xb.

The zero and the identity elements of ZG are
∑

a∈G 0Xa = 0 and X0 = 1, respectively.
For the convenience of notations, we often identify each multiset D defined on G with the
group ring element

∑
a∈G caX

a ∈ ZG, where ca means the multiplicity of a in D. We denote
D(−1) =

∑
a∈G caX

−a. With this notation, we can restate the definition of a (G, k, λ)-DF
F = {Bi | 1 ≤ i ≤ m} as ∑

1≤i≤m

BiB
(−1)
i = (k − λ){0}+ λG. (1.2)

Many researchers have investigated problems related to difference families over finite fields
from the beginning of modern design theory. For k = 3, Netto [95] showed that for any prime
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power q ≡ 1 (mod 6), there exists a (q, 3, 1)-DF over the additive group of Fq, the finite field
of order q. For the cases of k = 4 and 5, Bose [14], Buratti [16], and Wilson [110] investigated
the existence of (Fq, k, 1)-DFs, and Chen and Zhu [34] completely solved the problem. Those
results are summarized as follows:

Theorem 1.1.2. ([34, 35, 95, 110]) When k = 3, 4, 5, and 6, there exists an (Fq, k, 1)-DF for
any prime power q ≡ 1 (mod k(k − 1)) except for (k, q) = (6, 61).

The cases of k ≥ 6 were treated in [35, 36, 110]. The following theorem was given by
Wilson [110].

Theorem 1.1.3. ([110]) Suppose that q is a prime power such that λ(q−1) ≡ 0 (mod k(k − 1)).
Then there exists an (Fq, k, λ)-DF if one of the following holds:

(i) λ is a multiple of k/2 or (k − 1)/2,

(ii) λ ≥ k(k − 1),

(iii) q >
(
k
2

)k2−k
.

In particular, the condition (iii) indicates that (Fq, k, 1)-DFs asymptotically exist, i.e., (Fq, k, 1)-
DFs exist for all sufficiently large prime power q for fixed k. Recently, using the theorem of
Weil on multiplicative characters (Theorem 5.39 in [76]), the bound of (iii) was improved by
Buratti and Pasotti [26] (also given by Chang and Ji [31]) as

q >

(
k

2

)2k

. (1.3)

Peltesohn [98] determined the values v for which a (v, 3, 1)-CDF exists long time ago, but it
still remains unsolved for each k ≥ 4.

Theorem 1.1.4. ([98]) For any positive integer v ≡ 1 (mod 6), there exists a (v, 3, 1)-CDF
except for v = 9.

We briefly describe what has been done for the case of k > 3. The earliest results are due
to Bose [14] who gave sufficient conditions for the existence of a (p, k, 1)-CDF for a prime p
and k = 4 and 5. The necessary and sufficient conditions for this special kind of difference
families, called “radical difference family,” was given in [18] for 4 ≤ k ≤ 7. The formal
definition of a radical difference family is given in Section 1.3. Furthermore, the results of
Theorems 1.1.2 and 1.1.3 can be applied to the case when q is a prime. Cyclic difference
families of composed order v = v1v2 can be obtained by applying the recursive construction
provided in Theorem 1.2.7 of Section 1.2, see also [21]. Moreover, Buratti and Pasotti [27]
obtained the following theorem.

Theorem 1.1.5. ([27]) There exists a (p1p2, 4, 1)-CDF for every pair of primes (p1, p2) with
p1 ≡ p2 ≡ 7 (mod 12) and 7 ≤ p1 ≤ p2 < 1000. There exists a (p1p2, 5, 1)-CDF for every pair
of primes (p1, p2) with p1 ≡ p2 ≡ 11 (mod 20) and 11 ≤ p1 ≤ p2 < 1000.
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However, existence problems of difference families remain unsolved in many cases.

The concept of “difference families” or “the method of differences” was first introduced by
Bose [14] as a useful tool for systematically constructing a “balanced incomplete block design.”
Let V be a set of v elements, called points, and let B be a family of k-subsets (not multiset),
called blocks, of V , where |B| = b. A pair (V,B) is called a balanced incomplete block design
(BIBD) if the following conditions are satisfied:

(i) every point is contained in exactly r blocks,

(ii) every pair of two distinct points of V occurs in exactly λ blocks of B.

From the conditions above, it is easy to see that the relations

vr = bk and λ(v − 1) = r(k − 1) (1.4)

hold among the five parameters of a BIBD. By these relations, the five parameters are de-
pendent, so we denote a BIBD by (v, k, λ)-BIBD. If λ = 1, then a (v, k, λ)-BIBD is called
a Steiner 2-design. An automorphism of a BIBD (V,B) is a bijection on V whose induced
mapping from B to B is also a bijection. The set of all such mappings forms a group under
composition called the full automorphism group of the design. Any of its subgroups is called
an automorphism group of the design. Let F be a (G, k, λ)-DF, and define the development
of F as devF = {B + i |B ∈ F , i ∈ G}. Then, the pair (G,devF) forms a (|G|, k, λ)-BIBD
which admits G as a point-regular automorphism group.

Example 1.1.6. A (7, 3, 1)-BIBD on V = {0, 1, 2, 3, 4, 5, 6} is given by

B = {{0, 1, 3}+ i | i ∈ V },

where each element is reduced modulo 7. The set F = {{0, 1, 3}} is a (7, 3, 1)-CDF.

Many methods have been developed to construct BIBDs, and the concept of difference families
is one of the useful tools as we saw before. When k = 3 and 4, it has been proved by Hanani [58]
that the necessary conditions (1.4) are also sufficient for the existence of (v, k, λ)-BIBDs. For
k ≥ 5, the conditions of (1.4) are generally not sufficient. However, Hanani [59, 60] settled
the case when k = 5 and gave partial results for k = 6 and 7. For general k, it was proved by
Wilson [111, 112, 113] that there exists a constant vk,λ such that for any v > vk,λ satisfying the
conditions of (1.4) there exists a (v, k, λ)-BIBD, in which he used the result of Theorem 1.1.3.

1.2 Relative difference families

Next, we define “relative” difference families which was first introduced by Buratti [21] as a
generalization of “relative” difference sets.

Let G be a finite group. A family F ⊆ (
G
k

)
is called a scarce (G, k, λ) difference family or

also called a (G, k, λ) difference packing with difference leave L ⊆ G if every element of G \L
occurs λ times in the list ∆F =

⋃
B∈F ∆B but no element of L. If L = N , a subgroup of G,
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then we say that F is a relative (G,N, k, λ) difference family, briefly denoted by (G, N, k, λ)-
DF. If |G| = nv and |N | = n, a (G,N, k, λ)-DF is also called as an (nv, n, k, λ)-DF over G
relative to N . If |F| = 1, the uniquely included set B ∈ F is called a relative (G,N, k, λ)
difference set. Obviously, the concepts of a scarce difference family and a relative difference
family are natural generalizations of that of an ordinary difference family. All notations and
terminologies used for ordinary difference families are also applied for scarce difference families
and relative difference families. For example, if G is cyclic, a (G, N, k, λ)-DF is called cyclic
and denoted by (nv, n, k, λ)-CDF.

The number of blocks of (G,N, k, λ)-DF is n(v−1)λ
k(k−1) , which gives the necessary condition

n(v − 1)λ ≡ 0 (mod k(k − 1)) (1.5)

for the existence of a (G,N, k, λ)-DF. An (nv, n, k, λ)-DF with n = 1 is clearly a (v, k, λ)-DF,
and it is also called perfect.

Example 1.2.1. The set of the three blocks

B1 = {0, 1, 3, 31, 45}, B2 = {0, 4, 10, 19, 57}, and B3 = {0, 5, 16, 41, 48}

forms a (65, 5, 5, 1)-CDF.

Here are partial existence results on cyclic relative difference families with small blocksize:

Theorem 1.2.2. There exist (nv, n, 4, 1)-CDFs for the following parameters (n, v):

(i) ([30]) n = 4, v = 4mu and every prime factor of u is congruent to 1 modulo 6, where
m ≥ 2 or m = 1 and gcd (u, 7 · 13 · 19) 6= 1,

(ii) ([23]) n = 4 and every prime factor of v is of the form 6pm + 1, where m ≥ 1 and p is
a prime with p ≤ 19,

(iii) ([23, 33]) n = 6 and v is any positive integer such that gcd (v, 30) = 1,

(iv) ([23]) n = 8 and every prime factor of v is congruent to 1 modulo 6,

(v) ([53]) n = 9, 15 and every prime factor of v is congruent to 1 modulo 4 greater than 5.

Theorem 1.2.3. There exist (nv, n, 5, 1)-CDFs for the following parameters (n, v):

(i) ([31]) n = 4 and v ≡ 1 (mod 10) is any prime with v 6= 11,

(ii) ([31]) n = 4 and v = 2p or 3p, where p ≡ 11 (mod 20) is any prime,

(iii) ([79]) n ∈ {60, 80, 100, 120, 140, 160, 180} and v is any positive integer such that gcd (v, 30) =
1.

For further results related to relative difference families with small blocksize, see [1].

For general k and λ, several series of relative difference families constructed by using “strong
difference families” are known. Some of such known series are listed below.
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Theorem 1.2.4. (i) ([56]) There exists an (Fq′ × Fq, {0} × Fq, q,
q−1
2 )-DFs for odd prime

powers q and q′ with q′ > q,

(ii) ([22]) There exists an (Fq′ × Fq, {0} × Fq, q,
q−1
4 )-DFs for prime powers q ≡ 1 (mod 4)

and q′ ≡ 1 (mod q − 1),

(iii) ([56]) There exists an (Fq′ × Fq, {0} × Fq, q + 1, q + 1)-DFs for odd prime powers q and
q′ with q′ > q,

(iv) ([56]) There exists an (Fq′ × Fq, {0} × Fq, q + 1, q+1
2 )-DFs for odd prime powers q, q′ ≡

3 (mod 4) with q′ > q,

(v) ([22]) There exists an (Fq′ × Fq × Fq+2, {0} × Fq × Fq+2, (q + 1)2, (q+1)2

2 )-DFs for odd
prime powers q, q + 2, and q′ with q′ > q(q + 2).

Some constructions of relative difference families are known. The following theorem gives one
of the construction methods of cyclic relative difference families, called a recursive construction
using “difference matrices.” A cyclic difference matrix (v, k, λ)-CDM is a k × λv matrix
M = [σi,j ] such that σi,j ∈ Zv and for every pair (i, i′) ∈ Zv × Zv every element of Zv occurs
exactly λ times among the list of differences {σi,j − σi′,j | 1 ≤ j ≤ λv}. Here is a construction
of difference matrices.

Theorem 1.2.5. ([43]) Let v and k be positive integers such that gcd (v, (k − 1)!) = 1. Let
σi,j ≡ ij (mod v) for i = 0, 1, . . . , k − 1 and j = 0, 1, . . . , v − 1. Then M = [σi,j ] is a (v, k, 1)-
CDM. In particular, if v is an odd prime power, then there exists a (v, k, 1)-CDM for any
integer k (≤ v).

Example 1.2.6. The matrix




0 0 0 0 0 0 0
0 1 2 3 4 5 6
0 2 4 6 1 3 5
0 3 6 2 5 1 4




is a (7, 4, 1)-CDM.

The following theorem was provided by Jimbo and Kuriki [65].

Theorem 1.2.7. ([65]) Assume that there exist:

(i) an (n1v1, n1, k, λ)-CDF,

(ii) an (n1v2, n2, k, λ)-CDF, where n2 |n1v2,

(iii) a (v2, k, λ)-CDM.

Then, there exists an (n1v1v2, n2, k, λ)-CDF.
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The concept of “relative difference families” was introduced for constructing “group divisible
designs” in [21]. Similar to BIB designs, let V be a finite set of elements, called points, with
|V | = nv, and let B be a family of k-subsets of V , called blocks. Moreover, let G be a family
of n-subsets of V , called groups (or groops to distinguish from “groups” as algebraic systems),
which partition V . An (nv, n, k, λ) group divisible design (GDD) is a triple (V,G,B) satisfying
the following:

(i) for each group C ∈ G and each block B ∈ B, |C ∩B| ≤ 1

(ii) any two points belonging to distinct groups are contained, together, in exactly λ blocks.

From the definition of a GDD, it is easy to see that the following are the necessary conditions
for the existence of an (nv, n, k, λ)-GDD:

v ≥ k, λ(v − 1)n ≡ 0 (mod k − 1), and λv(v − 1)n2 ≡ 0 (mod k(k − 1)). (1.6)

Clearly, the existence of a (v, 1, k, λ)-GDD is equivalent to that of a (v, k, λ)-BIBD. Let F
be a (G,N, k, λ)-DF, and let G be the set of cosets of N in G. Then, the triple (G,G, devF)
forms a (|G|, |N |, k, λ)-GDD.

Example 1.2.8. An (8, 2, 3, 1)-GDD on V = {0, 1, 2, 3, 4, 5, 6, 7} is given by

B = {{0, 1, 3}+ i | i ∈ V },
where each element is reduced modulo 8. The set F = {{0, 1, 3}} is an (8, 2, 3, 1)-CDF.

For the case when k = 3, Hanani [60] proved that the necessary condition (1.6) for the
existence of (nv, n, k, λ)-GDDs is also sufficient. When k = 4, a similar sufficiency was
established by Brouwer, Schrijver, and Hanani [15].

1.3 Cyclotomic cosets and difference families

The study of “cyclotomic cosets” (or also known as “cyclotomy”) is an old topic of elementary
number theory and has been widely used to construct many kinds of combinatorial designs.
In this section, we provide some known results on difference families based on cyclotomic
cosets.

Let α be a primitive root of the finite field Fq and let e be a positive integer such that e | q−1.
Cyclotomic cosets of index e are the e cosets of the multiplicative subgroup 〈αe〉 generated
by αe in the multiplicative group F×q of Fq. More concretely, all such cosets are written as

Ce
0 = 〈αe〉, Ce

1 = α · 〈αe〉, . . . , Ce
e−1 = αe−1 · 〈αe〉.

Here is an easy example of difference families derived from cyclotomic cosets.

Example 1.3.1. The family F of cyclotomic cosets Ce
i , 0 ≤ i ≤ e − 1, forms an (Fq, (q −

1)/e, (q − e− 1)/e)-DF. For example, put q = 13, e = 3 and α = 2, then we have

C3
0 = {1, 5, 8, 12}, C3

1 = {2, 3, 10, 11}, C3
2 = {4, 6, 7, 9}.

It is easy to check that the set {C3
0 , C3

1 , C3
2} forms a (13, 4, 3)-CDF.
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The most important concept related to cyclomotic cosets is “cyclotomic numbers.” Cyclo-
tomic numbers of order e are defined as

(i, j)e =
∣∣(Ce

i + 1) ∩ Ce
j

∣∣ (1.7)

for i, j ∈ {0, 1, . . . , e − 1}. It is obvious that (i, j)e is the number of pairs (x, y) ∈ Ce
i × Ce

j

such that x + 1 = y.

Cyclotomic numbers are related to Waring’s problem [46], difference sets [10, 68, 105], coding
theory [80, 81, 86], and cryptography [48]. The concept of cyclotomic cosets was initiated by
Gauss in his “Disquisitiones Arithmetica” [54], where he introduced the concepts so-called
“Gaussian periods” and “cyclotomic numbers.” The cyclotomic numbers of order e have been
partially calculated for e ≤ 24 using various kinds of character sums.

The following basic lemmas are given in [105] and we will use these in Section 4.4 of Chapter 4.

Lemma 1.3.2. ([105]) Let q = ef + 1 be a prime power. Then, the following hold:

(i) (i, j)e = (i′, j′)e when i ≡ i′ (mod e) and j ≡ j′ (mod e).

(ii) (i, j)e = (e− i, j − i)e =
{

(j, i)e if f or q is even,
(j + e/2, i + e/2)e if f and q are odd.

(iii)
∑e−1

j=0(i, j)e = f − ηi, where

ηi =





1 if i ≡ 0 (mod e) and f is even,
1 if i ≡ e/2 (mod e) and f is odd,
0 otherwise.

(iv)
∑e−1

i=0 (i, j)e = f − θj , where

θj =
{

1 if j ≡ 0 (mod e),
0 otherwise.

In the following lemma, we identify a subset (cyclotomic coset) on a finite field Fq with a
group ring element in ZFq.

Lemma 1.3.3. ([105]) Let q = ef + 1 be a prime power. Then, it holds that

Ce
i C

e (−1)
j =

{
fC∞ +

∑
0≤`≤e−1(j − `, j − `)eC

e
` if i ≡ jmod e,∑

0≤`≤e−1(j − `, i− `)eC
e
` otherwise,

where C∞ = {0} (or 0 ∈ ZFq).

There are some further basic properties of cyclotomic numbers, for example, see [11, 105],
whereas we use only the above lemmas for constructing “difference covers” over Fq, which is
defined in Section 4.1 of Chapter 4.

Now, we provide examples of difference families constructed from cyclotomic cosets.

9



Theorem 1.3.4. (i) ([116]) For a prime power q, let e = q + 1 and d | e. Let Ce
l be the lth

cyclotomic coset of Fq2 . Let {A0, A1, . . . , Ad−1} be a partition of {0, 1, . . . , q}, where
|Ai| = e/d for all i. Then, the family of Di =

⋃
l∈Ai

Ce
l , i = 0, 1, . . . , d − 1, is an

(Fq2 , (q2 − 1)/d, (q2 − d− 1)/d)-DF.

(ii) ([116]) Let q be a prime power ≡ 1 (mod 4) and put e = q+1. Let E = {0, 1, . . . , e−1} =
E0 ∪ E1, E0 = {i ∈ E | i ≡ 0 (mod 2)} and E1 = {i ∈ E | i ≡ 1 (mod 2)}. Assume that
A0 and A1 are subsets of E0 and E1, respectively, such that |A0| = |A1| = (q − 1)/4.
Further, let A2 = A0 and A3 = A1. Then, the family of Di =

⋃
l∈Ai

Ce
l ∪C4

i , i = 0, 1, 2, 3,
is an (Fq2 , q(q − 1)/2, q(q − 2))-DF.

(iii) ([114]) Let q be a prime power ≡ 3 (mod 4) and put e = q + 1. Let E, E0, and E1 be
the same with (ii). Let {A0, A2} and {A1, A3} be partitions of E1 and E2, respectively,
where |Ai| = (q + 1)/4 for all i. Then the family of Di =

⋃
l∈Ai

Ce
l ∪C4

i , i = 0, 1, 2, 3, is
an (Fq2 , (q2 − 1)/2, q2 − 3)-DF.

(iv) ([109]) Let q ≡ 3 (mod 4) be a prime power. Set M = {a | g2a − 1 ∈ C2
0} and N =

{a | g2a + 1 ∈ C2
0}, where C2

i is a cyclotomic coset of Fq. Then, the family of M and N
is a ((q − 1)/2, (q − 3)/4, (q − 7)/4)-CDF.

Hereafter, in relation to cyclotomic cosets, we treat “radical difference family.” Let q ≡
1 (mod k(k − 1)) be a prime power. We say that an (Fq, k, 1)-DF F is radical if each of blocks
in F is a coset of C

(q−1)/k
0 for odd k or the union of a coset of C

(q−1)/(k−1)
0 and {0} for even k.

The terminology of radical difference family was first introduced by Buratti [18] as a powerful
tool for constructing (Fq, k, 1)-DFs. However, some results on radical difference families were
obtained by Netto [95] much earlier.

Theorem 1.3.5. ([95]) For any prime power q ≡ 1 (mod 6), there exists a radical (Fq, 3, 1)-
DF.

As a general result, Wilson [110] showed the following for the existence of a radical (Fq, k, 1)-
DF.

Theorem 1.3.6. ([110]) Let q ≡ 1 (mod k(k − 1)) be a prime power. When k is odd, let ε
be a primitive kth root of unity in Fq, and put

m =
k − 1

2
, S = {εi − 1 | 1 ≤ i ≤ m}.

When k is even, let ε be a primitive (k − 1)th root of unity in Fq, and put

m =
k

2
, S = {εi − 1 | 1 ≤ i ≤ m− 1} ∪ {1}.

If S is a complete system of representatives for the cosets of mth powers in F×q , i.e., each coset
of mth powers in F×q contains exactly one of the elements of S, then there exists a radical
(Fq, k, 1)-DF.

Buratti [17] has shown a necessary and sufficient condition for the existence of radical (Fq, k, 1)-
DFs for the cases when k = 4 and 5, which improved the results of Bose [14]. Furthermore,
Theorem 1.3.6 has been also improved by Buratti [18] as follows:
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Theorem 1.3.7. ([18]) Let q = nk(k−1)+1 be a prime power. Under the same assumptions
and notations as Theorem 1.3.6, if there is a chain of divisors of mn of the form

d0 = 1 | d1 | · · · | d2t | d2t+1 = mn

such that

n =
t∏

i=0

d2i+1

d2i
and Φ(S) ⊂

⋃

0≤i≤t

(Cd2i−1

0 \ Cd2i
0 ) ∪ {1},

where Φ(S) = {xy−1 |x, y ∈ S}, there exists a radical (Fq, k, 1)-DF.

Buratti [18] proved that the condition given in Theorem 1.3.7 is also necessary for the existence
of radical (Fq, k, 1)-DFs for the cases when k = 6 and 7. Furthermore, in [19, 20], Buratti
introduced the concept of “perfect packings” (different from that of “difference packings”
defined in Section 1.2) in order to systematically treat radical difference families. This concept
is defined in Chapter 3.

Lastly, we provide the following useful theorem on relative difference families.

Theorem 1.3.8. ([26]) Let q ≡ 1 (mod e) be a prime power and ` be a positive integer. Put

rq(`, e) = q −√q
∑

0≤i≤`−2

(`− i− 1)
(

`

i

)
(e− 1)`−i − `e`−1. (1.8)

If rq(`, e) > 0, then for any `-tuple (j1, j2, . . . , j`) ∈ {0, 1, . . . , e − 1}` and for any ` distinct
elements x1, x2, . . . , x` of Fq there exist at least drq(`, e)/e`e elements x ∈ Fq such that
x− xi ∈ Ce

ji
for each i, 1 ≤ i ≤ `.

In this thesis, we denote the set of all prime powers q satisfying drq(`, e)/e`e ≥ t by P (e, `, t)
and we will use this theorem in Chapters 2 and 4. Theorem 1.3.8 was proved by Buratti and
Pasotti [26] using the theorem of Weil on multiplicative character sums and they applied the
theorem to show the bound (1.3). Furthermore, they also utilized Theorem 1.3.8 to obtain
asymptotic existence theorems of “Z-cyclic triplewhist tournaments” and “(Fq, Γ, λ) difference
families” where Γ is an arbitrary graph. Especially, they gave the following existence theorem
related to relative difference families using the concept of (N, k, µ) strong difference families,
that is, a family {Ai | 1 ≤ i ≤ m} of “multisets” of size k defined on an abelian (additively
written) group N such that the multiset {b− a | a, b ∈ Ai; 1 ≤ i ≤ m} of differences covers all
elements in N (including 0) exactly µ times.

Theorem 1.3.9. ([26]) If there exists an (N, k, µ) strong difference family, then there is a
sufficiently large integer qk,µ such that there exists an (N×Fq, N×{0}, k, 1)-DF for any prime
power q ≡ µ + 1 (mod 2µ) > qk,µ.

The concepts of strong difference families and difference covers play an important roll in
treating problems related to relative difference families.

11



1.4 Combinatorial codes in multiple-access communications

Recently, wireless communications have become important not only for professional appli-
cations but also for many fields in our daily routine. For example, mobile telephones are
widely used not only for calls but also for data transmissions. The communications make
use of a sophisticated technique which is known as “multiple-access communication sys-
tems” including code-division mutiple-access (CDMA) communications, frequency hopping
spread-spectrum communications, etc. Many kinds of combinatorial subjects are inhered in
these communication systems besides information-theoretical problems. For example, Col-
bourn, Dinitz, and Stinson [44] provided a survey on such applications in this field (see also
[38, 39, 42, 48, 72, 73, 97]).

In this section, applications of difference families to combinatorial codes in multiple-access
communication systems are stated. Although there are many applications where a problem
related to differences of subsets defined on a finite group plays important roles, we restrict
ourselves to describing about “optical orthogonal codes” and “conflict-avoiding codes” since
a typical manifestation of applications of “difference families” to multiple-access communica-
tions can been seen in these two areas.

1.4.1 Optical orthogonal codes

Let v, k, λa and λc be positive integers. A (v, k, λa, λc)-OOC C is a family of (0, 1) sequences,
called codewords, of length v and Hamming weight k satisfying the following properties:

(i) (The auto-correlation property)

v−1∑

i=0

xixi+s ≤ λa

holds for any X = (xi) ∈ C and every s 6≡ 0 (mod v),

(ii) (The cross-correlation property)

v−1∑

i=0

xiyi+s ≤ λc

holds for any X = (xi), Y = (yi) ∈ C with X 6= Y and every integer s,

where all subscripts are taken modulo v. The concept of OOCs can be more conveniently
reformulated by using the following set notation. By identifying codewords in C with k-subsets
of Zv representing the indices of the nonzero positions, C can be viewed as a family F ⊆ (Zv

k

)
satisfying:

(i) (The auto-correlation property)

|X ∩ (X + s)| ≤ λa

holds for any X ∈ F and every s ∈ Zv \ {0},
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(ii) (The cross-correlation property)

|X ∩ (Y + s)| ≤ λc

holds for any X,Y ∈ F with X 6= Y and every s ∈ Zv.

Example 1.4.1. (1) The set

C = {(1100100000000), (1010000100000)}

is a (13, 3, 1, 1)-OOC with two codewords. In the set notation above, C can be viewed
as

F = {{0, 1, 4}, {0, 2, 7}}.

(2) The set
C = {(11001100000000000), (10100000101000000)}

is a (17, 4, 2, 1)-OOC with two codewords. In the set notation above, C can be viewed
as

F = {{0, 1, 4, 5}, {0, 2, 8, 10}}.

The objective of a multiple-access communication is to allow the users to share a single
common channel and transmit data successfully. Now we briefly mention how to use optical
orthogonal codes in an optical CDMA communications system.

When a (v, k, λa, λc)-OOC C with m codewords is used in a communication, each codeword
in C is assigned to a transmitter/receiver pair. A transmitter encodes every information bit
into a frame of v optical chips, where any chip is an optical time unit which has one of the
two signals ON and OFF corresponding to the symbols 1 and 0 of a codeword of the OOC,
respectively, in the following way: Let X = {x1, x2, . . . , xk} be the assigned codeword for a
particular user pair, where X is the set-notation of a codeword X ∈ C. When an information
bit is 1, in the corresponding frame, which consists of v optical chips, ON signals are sent at
exactly the x1th, x2th, . . ., and xkth chips. In the other v − k chips, OFF signals are sent.
In other words, the codeword X is used as the signature sequence of the transmitter. On the
other hand, if an information bit is 0, all OFF signals are sent in the corresponding frame.

All m transmitters are allowed to send at any time. Each receiver uses a decoding machine,
called a “tap-device,” which corresponds to a codeword assigned to each user pair in order to
separate transmitted signals at the receiving end. The tap-device corresponding to a user pair,
say transmitter A and receiver A’, having the codeword X = {x1, x2, . . . , xk} ∈ C collects ON
signals at intervals of x2−x1, x3−x2, . . . , xk−xk−1, x1−xk chips in each time and effectively
accumulates the level of the output (the sum of ON signals). The tap-device distinguishes
the strength of the accumulated optical signals, and when the strength attains the peak, the
syncronization of the user pair is accomplished. Thus, the lower auto-correlation property of
the OOC enables to distinguish the peak of signal levels easily, and then the peak enables the
receiver to synchronize. (See Figure 1.1, which is a situation that a user pair synchronizes in
a communication system applying an OOC of length 7 and weight 3.)

At the same time, the lower cross-correlation property of the OOC is used to avoid mutual in-
terferences from the other user pairs. When more than one user pair transmits simultaneously,
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Transmitted data

Signals in optical chips 
1: ON
0: OFF

T ap-device for A&A ’

……

Signal level is 1

Signal level is 1

Signal level is 3

Frame!!

0    0    1    0    1    1    0    0    0    1    0   

…… 0    0    1    0    1    1    0    0    0    1    0   

…… 0    0    1    0    1    1    0    0    0    1    0   

…

Signal level is 1

…… 0    0    1    0    1    1    0    0    0    1    0   

1st position:

2nd position:

3rd position:

7th position:

…

T ap-device for A&A ’

T ap-device for A&A ’

T ap-device for A&A ’

Figure 1.1: A situation that a user pair, say transmitter A and receiver A’, tries to synchronize
in a communication system applying an OOC of length 7 and weight 3: The codeword X =
{0, 2, 3} of the OOC is assigned to A&A’, and A’ use the corresponding tap-device to the
codeword X to collect ON signals. In the first and second positions, the tap-device provides
the level 1 respectively, but the level 3 in the third position. In this example, the tap-device
provides the level 3 exactly once at seven possible positions of tap-devices because of the
property |X ∩ (X + s)| ≤ 1 for every s 6≡ 0 (mod 7) (the low auto-correlation property).
Hence, the third position enables A’ to synchronize, i.e., to know how the sequence of signals
is partitioned into frames.

say the transmitters A and B, OFF signals of the signature sequence of the transmitter A (or
B respectively) are influenced from ON signals at corresponding chips of that of the trans-
mitter B (or A respectively) and then all signals at those chips are determined as ON. Note
that, under the assumption that the synchronization is successfully done, when one transmits
the information bit 1 in a frame, then the corresponding tap-device provide a high-level out-
put even if it is influenced from the others, i.e., the information bit 1 is always successfully
transmitted. On the other hand, when a user transmits the information bit 0 in a frame, in
order to make the receiver recognize that the information bit is 0, it is important to make the
level of outputs in the frame lower and which is successfully done by the low cross-correlation
property of the OOC to avoid high influences by the other transmitted frames. (See Fig-
ure 1.2, which is a situation that three user pairs communicate simultaneously utilizing an
OOC of length 10 and weight 3.) Thus, it is required that values of λa and λc of the auto-
and cross-correlations of OOCs are kept as lower as possible. For more detailed description
of the system and for other related ideas, see [42, 102, 103, 82, 83].

OOCs with lower auto- and cross-correlations are required in order to assure a transmission
under the condition that there are a given number of active users. Whereas, it is important to
find OOCs with a larger number of codewords given parameters v, k, λa, and λc to increase
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A

・・・ ・・・

・・・ ・・・

・・・ ・・・

1                         1                                     0

0                                        1C

・・・ ・・・

Composed!

Tap-device for A&A’ Tap-device for A&A’

0   1   0   0   1  0   1   1   1   1  0   1   0   0   1   0  0  1   0

1                                         0

B

Transmitter

Signal level is 3 Signal level is 3

A’, B’, and C’ receive 
this sequence.

0   1   0   0  1   0   0   1   0   0  0   0   0   0  0   0   0  0   0

0   1   0   0  1   0   1   0   0  0   0   1   0   0  1   0   0  0   0

0   0   0   0  0   0   0   0   1  1   0   0   0   0  0   0   0  1   0

Figure 1.2: A situation that three user pairs communicate simultaneously utilizing an OOC
of length 10 and weight 3: The user pairs A&A’, B&B’, and C&C’ use the codewords
{0, 3, 6}, {0, 3, 5}, and {0, 1, 2} of the OOC, respectively. It is assumed that the synchro-
nization is successfully done for every user pair. The transmitter A sends the sequence
· · · 1001001000000000000 · · · of signals to A’ by encoding the information bits · · · 10 · · · us-
ing their codeword as shown in this figure. Similarly, B and C sends sequences of packets to
B’ and C’, respectively. As a result, those three sequences are composed into the sequence
· · · 10010111101001001000 · · · , and then all of A’, B’ and C’ receive the same composed se-
quence. At the receiving end, A’ recognizes that the information bits sent by A are · · · 11 · · · ,
i.e., the former information bit 1 is successfully transmitted but the latter bit 0 failed to de-
code, which is caused by the high cross-correlation λc = 2 relative to the weight k = 3.

the number of potential users. An OOC with the maximum number of codewords for given v,
k, λa, and λc is called maximal. In [53, 118], it was shown that a maximal (v, k, λa, λc)-OOC
is equivalent to a combinatorial structure called a maximal cyclic (λ + 1)-(v, k, 1) difference
packing when λ = λa = λc, and a tight upper bound of the maximum number of codewords of
a (v, k, λ, λ)-OOC was given applying the well-known Johnson bound [67] for constant weight
error-correcting codes. We denote the maximum number of codewords of (v, k, λa, λc)-OOCs
by M(v, k, λa, λc).

The problems to determine M(v, k, λa, λc) and to construct maximal OOCs are difficult in
general and remained largely unsettled. Nevertheless there are many known results for the
case of λa = λc = 1. In this case, we can find a strong connection between OOCs and
difference families. Let F be a (v, k, λa, λc)-OOC. Then, by the definitions of the auto- and
cross-correlation properties, it is clear that

(i) λa = 1 if and only if any element of Zv does not occur repeatedly in ∆X for every
X ∈ F ,

(ii) λc = 1 if and only if ∆X ∩∆Y = ∅ for every X, Y ∈ F , X 6= Y .
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By a simple counting argument, it is obvious that

M(v, k, 1, 1) ≤
⌊ v − 1
k(k − 1)

⌋
. (1.9)

We say that a (v, k, 1, 1)-OOC attaining the bound 1.9 is optimal. Hence, we immediately see
the following consequence:

Lemma 1.4.2. ([118]) The existence of a cyclic scarce (v, k, 1)-DF with b blocks is equivalent
to that of a (v, k, 1, 1)-OOC with b codewords. In particular, a (nv, n, k, 1)-CDF with n ≤
k(k − 1) gives a optimal (nv, k, 1, 1)-OOC.

By Lemma 1.4.2, in order to obtain a optimal (v, k, 1, 1)-OOC, we need only to construct a
“maximal” cyclic scarce (v, k, 1)-DF with respect to the number of blocks. As discussed in
the previous sections, since there abundantly exist relative difference families, we can obtain
many infinite series of optimal (v, k, 1, 1)-OOCs. Some of known results on constructions
of (v, k, 1, 1)-OOCs are listed in Table 1.1. For more results on (v, k, 1, 1)-OOCs with small

Table 1.1: Known optimal (v, k, 1, 1)-OOCs

Construction Parameters M(v, k, 1, 1)

Projective geometry (v, k) = ( qm−1
q−1 , q + 1) qm−1

q2−1
, d: even

q: a prime power qm−q
q2−1

, d: odd

Affine geometry (v, k) = (qm − 1, q) qm−1−1
q−1

(also [93]) q: a prime power
[41, 98] k = 3, v 6≡ 14, 20 (mod 24) bn−1

6 c
[28, 29, 55] k = 4, v ≡ 0, 6, 18, (mod 24) bn−1

12 c
Wilson’s construction [110] v = p = k(k − 1)m + 1 m

using cyclotomy p: any sufficiently large prime for given k

weight not listed in Table 1.1, see [2, 12, 13, 23, 30, 41, 31, 32, 33, 52, 53, 69, 78, 79]. Researches
to find OOCs with a large number of codewords have been concentrated on the case when
λa = λc in many papers. However, it does not mean that a (v, k, λa, λc)-OOC with λa 6= λc

is of no interest. The advantage of using OOCs with λa > 1 or λc > 1 is that it enables a
larger number of potential users (or equivalently codewords). In this case, there are several
results, for example, see [3, 4, 5, 6, 7, 37, 40, 49, 51, 87], but the existence problem remains
unsolved in most parts.

1.4.2 Conflict-avoiding codes

In the previous subsection, we considered an optical orthogonal code as an application of dif-
ference families. As described in the previous subsection, the low auto- and cross-correlation
properties of an optical orthogonal code facilitate the detection of the expected signal in an op-
tical CDMA communication channel. However, an optical orthogonal code with large λa and
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small λc can be used as a “conflict-avoiding code,” which can be applied in a collision channel
without feedback [75, 57, 84, 85, 96]. A (v, k, λc)-conflict-avoiding code (CAC) is defined as a
family of (0, 1) sequences of length v and Hamming weight k satisfying

∑v−1
i=0 xiyi+s ≤ λc for

any X = (xi), Y = (yi) ∈ C with X 6= Y and every integer s, where all subscripts are taken
modulo v. In this subsection, we provide a brief explanation how to use CACs in a collision
channel without feedback.

In a sort of multiple-access collision channel without feedback, the time axis is partitioned into
slots which corresponds to the transmission time for one packet and all users are supposed
to have slot synchronization, but no other synchronization is assumed. In a particular slot,
if none of the users is sending a packet, then the channel output in that slot is the silence
symbol, that is, a null packet. If exactly one user is sending a packet in a particular slot,
then the packet is transmitted successfully and the channel output in that slot is this packet
value. If more than one user is sending packets in a particular slot simultaneously, then there
is a conflict and the channel output in that slot is the unreadable collision symbol, called an
erasure.

A codeword, say X = (x0, x1, . . . , xv−1) of a (v, k, λc)-CAC C with m codewords, is randomly
assigned to each user pair, say transmitter A and receiver A’, which controls his/her sending
of packets in the following manner: By using the codeword X = (x0, x1, . . . , xv−1) ∈ C, the
transmitter A sends k packets in each frame consisting of v slots. When the user pair A&A’
becomes active (after some period of inactivity), the transmitter A sends a packet or a null
packet in the j-th slot (0 ≤ j ≤ v − 1) of a frame according as xj = 1 or xj = 0. The
transmitter A continues to use his codeword periodically in this manner until there are no
more packets to be sent, and after that A must remain inactive for at least v− 1 slots. Those
(at least v−1) silent slots enable the receiver A’ to synchronize without any assumption other
than slot synchronization, which is a major difference from the synchronizing technique of
optical orthogonal codes.

By using the codeword X = (x0, x1, . . . , xv−1) ∈ C, the transmitter A sends k packets in each
frame consisting of v slots. When A is sending a message by using his/her codeword Xi,
different message from the other transmitter B may be sent by the codeword Xj ∈ C or its
cyclic shift since only slot synchronization is assumed. If more than one user sends packets
simultaneously in a particular slot, the packets cause a collision which results in an erasure.
It is easily checked that a (v, k, λc)-CAC with m codewords has the property that at least
σ = k − λc(u − 1) successful packet transmissions in a frame are guaranteed for each active
user, provided that at most u users out of m potential users are active. In order to guarantee
for each user that at least one information packets in a frame are survived from collision, the
weight k of the CAC have to satisfy k ≥ λc(u− 1)+1. If there is at least one packet survived
from collision, there may be a chance by utilizing an error correcting code as an “inner code”
to correct erasures. Let ` be the bit length of each slot. An (k`, σ`, k` − σ` + 1) shortened
Reed-Solomon (RS) code over Fq can be used as an inner code for each user to encode his
σ information packets into k transmitted packets, since a (k`, σ`, k` − σ` + 1) shortened RS
code can correct k`−σ` position erasures where the user’s packets suffer from collision. Then
the k− σ information packets are recovered from the σ survived packets at the receiver. (See
Figure 1.3, which is a situation that three user pairs communicate simultaneously applying a
CAC of length 13 and weight 3.) We should mention that errors caused by noises in a channel
besides erasures due to collisions are not negligible in a practical data transmission and an
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Time slot 0    1     2    3    4    5    6    7    8    9   10   11 12 0 1

A & A’

B & B’

User pairs

……
Hello Packet survived

from collisions

C & C’

…
……Null packet

Erasure
1    0  1    1  0     1… … …

Conflict!

Figure 1.3: A situation that three user pairs communicate simultaneously applying the
(13, 3, 1)-CAC F = {{0, 1, 2}, {0, 3, 6}, {0, 4, 8}}: The transmitter C is sending the message
“Hello” to the receiver C’, which is translated into a codeword of an inner code and it is
partitioned into three packets. The user pairs A&A’, B&B’, and C&C’ use the codewords
{0, 4, 8}, {0, 1, 2}, and {0, 3, 6} of the CAC, respectively. In this example, for each user pair
there is at least one packet (exactly one packet in this case) survived from collision since
λc = 1 and the number of active users is at most three.

appropriate inner code should be used for error and erasure corrections. In order to use an
inner code, every codeword of C should have constant weight k.

Obviously, a CAC can be seen as an OOC without the auto-correlation property, which
implies that the maximum size of a CAC should be larger than that of an OOC with the
same parameters. Noting that |X ∩ (X + s)| = k for X ∈ (Zv

k

)
and some s ∈ Zv \ {0} if and

only if k | v and X = v
kZv, any (v, k, 1)-CAC consists of codewords of a (v, k, k − 1, 1)-OOC

and the codeword X = v
kZv. In particular, any maximal (v, k, k−1, 1)-OOC is also a maximal

(v, k, 1)-CAC when k - v. In the case of k = 3 and λc = 1, Levenshtein and Tonchev [74] and
Levenshtein [73] obtained the following results, respectively:

Theorem 1.4.3. ([74]) Let v be a positive integer. Then

M(v, 3) =
v − 2

4
if v ≡ 2 (mod 4)

holds, where M(v, 3) means the maximum number of codewords of (v, 3, 1)-CAC.

Theorem 1.4.4. ([73]) Let v be an odd integer. Then

M(v, 3) =
v

4
+ O

(
v

log2 v

)
.

Furthermore, Jimbo et al. [66] obtained the following lower and upper bounds:
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Theorem 1.4.5. ([66]) Let v = 4m be a positive integer. Then

v

6
+ O(log4 m) ≤ M(v, 3) ≤ 7

32
v + ε

holds, where ε is a non-negative constant depending on the congruence of m modulo 24.
Especially, the lower bound is sharp for any v being a power of 2, and the upper bound is
sharp for every v such that m ≡ 2 (mod 4).

Thus, there are some results on the existence of maximal (v, 3, 1)-CACs (for other results, see
[106, 107]). However, as far as the author knows, there are no results in the case when k > 3.

1.5 Outline of this thesis

In the remainder of this thesis, we discuss existence problems and constructions of several
kinds of difference families and discuss their relations to combinatorial codes, in particular,
optical orthogonal codes and conflict-avoiding codes in the following four chapters.

In Chapter 2, we introduce a new type of cyclic difference families, so-called “cyclic δ-support
difference families,” including ordinary difference families, which is motivated from a certain
classification of optical orthogonal codes. In particular, we find a tight upper bound on the
number of codewords of (v, 4, 2, 1)-OOCs and investigate relations between maximal OOCs
and cyclic δ-support difference families. Furthermore, some direct and recursive constructions
of (v, 4, 2, 1)-OOCs attaining the upper bound is presented. As a consequence, we will obtain
many new infinite series of maximal (v, 4, 2, 1)-OOCs.

In Chapter 3, we will discuss a relation between (almost) maximal (v, k, 1)-CACs ((v, k, k −
1, 1)-OOCs) and cyclic δ-support difference families. Especially, we give a necessary and
sufficient condition for the existence of a special class of cyclic δ-support difference families
with small blocksize related to a problem of “perfect packings” and show that such difference
families exist infinitely many by investigating the Kronecker density of the set of primes
satisfying certain conditions. As consequences, it is shown that there exist infinitely many
maximal (v, k, 1)-CACs with v−1

2(k−1) codewords for k = 3, 4 and 5.

In Chapter 4, strong difference families, difference covers, and their relations to relative differ-
ence families are considered. Beginning with fundamental facts on strong difference families
and difference covers, we apply some classical approach to construct a lot of new strong differ-
ence families and difference covers. Furthermore, we show an asymptotic existence theorem of
relative difference families under the assumption of the existence of a strong difference family
by generalizing Theorem 1.3.9 for λ ≥ 1. Moreover, we improve Theorem 1.3.9 in the case
when k ≤ 5 and we show that if there exists an (N, k, µ) strong difference family for k ≤ 5,
there is a sufficiently large integer qk,µ such that there exists an (N ×Fq, N ×{0}, λ = 1)-DF
for any prime power q ≡ 1 (mod µ) > qk,µ. The results obtained in Chapter 4 also give a
partial generalization of Theorem 1.1.3.

Chapter 5 is dedicated to study relative difference families with variable blocksize which is
defined as a natural generalization of relative difference families so that blocksizes are variable.
In particular, the existence of relative difference families with G = Z qm−1

n
, N = ( qm−1

q−1 )Z qm−1
n

,
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λ = qm−2(q−1)
en , and whose blocksizes are bounded from lower and upper, is proved using group

characters over a finite field. As a corollary, we can find a new large family of optimal optical
orthogonal codes whose auto- and cross-correlations are λa = 1 and λc = 1, respectively. It
is remarkable that the new series includes (q2 − 1, q, 1)-OOCs ((q2 − 1, q, 1) difference sets)
listed in Table 1.1.

In Chapter 6, we provide concluding remarks and open problems in this thesis.
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Chapter 2

Cyclic 8-support (v, 4)2 difference
families and (v, 4, 2, 1) optical
orthogonal codes

In this chapter, we introduce a new type of difference families which includes difference
families treated in Chapter 1 as a special case. The new concept, called “δ-support difference
families,” is motivated from a certain classification of optical orthogonal codes with λc = 1. As
described in Section 1.4.1 of Chapter 1, it is preferred in view of applications to optical CDMA
communications that the values λa and λc of a (v, k, λa, λc)-OOC are as low as possible. On
the other hand, when λa > 1 or λc > 1, in general a maximal (v, k, λa, λc)-OOC enables a
larger number of codewords than maximal (v, k, 1, 1)-OOCs though there is a disadvantage
such that robustness of communication systems with respect to synchronizations and collisions
declines. Thus if we require more codewords, it may worth to consider OOCs with λa > 1
or λc > 1. In this chapter, we consider the case when λa = 2 and λc = 1 and obtain
(v, 4, 2, 1)-OOCs with a larger number of codewords than (v, 4, 1, 1)-OOCs.

In this chapter, we study bounds and constructions of (v, 4, 2, 1)-OOCs in relation to δ-
support difference families. In Section 2.1, the concept of δ-support difference families is
introduced. In Section 2.2, a tight upper bound on M(v, 4, 2, 1), which is the maximum
number of codewords of (v, 4, 2, 1)-OOCs, is obtained. In Sections 2.3 and 2.4, many series of δ-
support relative difference families and “optimal” (v, 4, 2, 1)-OOCs attaining the upper bound
are constructed via finite fields. A relation between δ-support difference families and “cyclic
kite-decompositions” of a complete multipartite graph is discussed and we consequently get a
recursive construction of δ-support relative difference families. In Section 2.6, combining all
previous results, we obtain many infinite series of optimal (v, 4, 2, 1)-OOCs.

2.1 Definition of cyclic δ-support difference families

Given a k-subset X ∈ (Zv

k

)
, the support of the list ∆X of differences of X, denoted by supp∆X,

is the set of underlying elements in the multiset ∆X. Note that k−1 ≤ |supp∆X| ≤ k(k−1)
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for any X ∈ (Zv

k

)
. Furthermore, we define

µ(X) = max{ma(∆X) | a ∈ ∆X}, (2.1)

where ma(∆X) means the multiplicity of the element a ∈ Zv in ∆X. Then, it is easy to see
that

µ(X) = max {|X ∩ (X + s)|∣∣s ∈ Zv \ {0}}. (2.2)

From this correspondence, we have:

Lemma 2.1.1. Every (v, k, λa, 1)-OOC can be viewed as a family F ⊆ (Zv

k

)
satisfying the

following conditions:

(i) λa = max{µ(X) |X ∈ F},
(ii) ∆X ∩∆Y = ∅ for any X, Y ∈ F with X 6= Y .

The above conditions (i) and (ii) are corresponding to its auto- and cross-correlation proper-
ties, respectively.

Now we introduce new difference families. For positive integers δ and µ with k − 1 ≤ δ ≤
k(k − 1) and 1 ≤ µ ≤ k, let F be a family of k-subsets (called blocks) of Zv such that
|supp∆B| = δ and µ(B) = µ for every B ∈ F . We say that F is a cyclic δ-support (v, k)µ

scarce difference family, shortly denoted as δ-supp (v, k)µ-CDF, if

∆B ∩∆B′ = ∅ (2.3)

holds for any B,B′ ∈ F with B 6= B′. If the number of blocks in F is maximum for given
v, k, µ, δ, we say that the family F is maximal. A cyclic δ-support (nv, k)µ scarce difference
family F is called relative to vZnv, denoted by δ-supp (nv, n, k)µ-CDF, if it satisfies the
property ⋃

B∈F
supp∆B = Znv \ vZnv.

When n = 1, a δ-supp (v, 1, k)µ-CDF is also called a perfect δ-supp (v, k)µ-CDF. The number
of blocks of a δ-supp (nv, n, k)µ-CDF is equal to n(v−1)

δ and hence we obviously have the
necessary condition n(v − 1) ≡ 0 (mod δ). Note that |supp∆X| = k(k − 1) iff µ(X) = 1 for
any X ∈ (Zv

k

)
, i.e., δ = k(k − 1) iff µ = 1. By definitions, the following lemma is immediate:

Lemma 2.1.2. Any δ-supp (nv, n, k)µ-CDF gives an (nv, k, µ, 1)-OOC with n(v−1)/δ code-
words.

2.2 Upper bounds for M(v, 4, 2, 1)

To get a tight upper bound similar to (1.9) for (v, k, λa, 1)-OOCs with λa ≥ λc = 1, we need
to know relations between |supp∆X| and X ∈ (Zv

k

)
.

From now on, we fix the weight k as 3 or 4. For the case of k = 3 and |supp∆X| < 6 we can
easily specify the following correspondence between |supp∆X| and X:
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Lemma 2.2.1. For X ∈ (Zv

3

)
, it holds that

|supp∆X|

=





2 iff X = (v
3 )Zv,

3 iff X ⊂ (v
4 )Zv,

4 iff X = {0, a, 2a} except for the case |supp∆X| = 2 and 3,
5 iff X = {0, a, v/2} except for the case |supp∆X| = 3.

Proof: We classify all forms of triples X ∈ (Zv

3

)
by |supp∆X|. Given X = {a0, a1, a2} ∈

(Zv

3

)
,

assume that
a0 = 0 < a1 < a2 ≤ v − 1

and associate X with the sequence S(X) = (d0, d1, d2), where di = ai+1−ai, 0 ≤ i ≤ 2. Then
we have ∆X = {±d0,±d1,±d2} and

d0 + d1 + d2 = v. (2.4)

Now we suppose that there are repeated elements in ∆X, i.e., |supp∆X| ≤ 5, and we check
all possible forms of X ∈ (Zv

3

)
case by case.

Case 1. If d0 = v − d1, by (2.4), we have d2 = 0, which contradicts to k = 3. Hence, this
case is impossible.
Case 2. If d0 = v − d2 or d1 = v − d2, this is essentially same with Case 1.
Case 3. If d0 = d1, by (2.4), we have

2d0 + d2 = v. (2.5)

We distinguish four subcases.
Subcase 3-1. If there are no further repeated elements in ∆X, we have X = {0, d0, 2d0}

and supp∆X = {±d0,±2d0}.
Subcase 3-2. If d0 = v− d1, by (2.5), we have d2 = 0, which contradicts to k = 3. Hence,

this subcase is impossible.
Subcase 3-3. If d0 = d2, by (2.5), we have X = (v

3 )Zv and supp∆X = {±v/3}.
Subcase 3-4. If d0 = v − d2, by (2.5), we have d1 = 0, which contradicts to k = 3.

Case 4. If d0 = d2 or d1 = d2, this is essentially same with Case 3.
Case 5. If d0 = v − d0, we have d0 = v/2 and

d1 + d2 = v/2. (2.6)

Subcase 5-1. If there are no further repeated elements in ∆X, we have X = {0, v/2, v/2+
d1} and supp∆X = {v/2,±d1, v/2± d1}.

Subcase 5-2. If d1 = d2, by (2.6), we have X ⊆ (v
4 )Zv and supp∆X = {v/2,±v/4}.

Subcase 5-3. In the other cases, it is impossible by (2.6).
Case 6. If d1 = v − d1 or d2 = v − d2, we essentially find Case 5 again.

It is easy to see that all possible cases have been examined and the assertion follows. ¤

From this correspondence, the following lemma for the number µ(X) of X ∈ (Zv

3

)
is shown:

Lemma 2.2.2. For X ∈ (Zv

3

)
, it holds that

µ(X) =





3 iff |supp∆X| = 2,
2 iff |supp∆X| = 3, 4, or 5,
1 iff |supp∆X| = 6.
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Proof: It is enough to check that each X ∈ (Zv

3

)
of Lemma 2.2.1 has the corresponding µ(X),

since all forms of X ∈ (Zv

3

)
are completely classified according to |supp∆X| in Lemma 2.2.1.

For example, any X = {0, a, 2a} ∈ (Zv

3

)
with |supp∆X| = 4 has

∆X = {±a,±a,±2a} and supp∆X = {±a,±2a}.

Then, by (2.1) and (2.2), we have µ(X) = 2. By checking the other cases similarly, we easily
get the assertion. ¤

Hence, we have the following upper bound on M(v, 3, 2, 1):

Lemma 2.2.3. Let v = 4rm, where m is not divisible by 4. Then it holds that

M(v, 3, 2, 1) ≤
{ b(v − 1)/4c if r = 0,

v/4 if r ≥ 1.

For example, when r ≥ 1, since there may be a (v, 3, 2, 1)-OOC which contains one codeword
X with |supp∆X| = 3 and whose every other codeword Y satisfies |supp∆Y | = 4, we have

M(v, 3, 2, 1) ≤
⌊v − 1− 3

4
+ 1

⌋
=

v

4
.

Remark 2.2.4. In general, for any k and X ∈ (Zv

k

)
with |supp∆X| ≡ 1 (mod 2), ∆X must

contain the element v/2 and then v must be divisible by 2. From this fact, any (v, k, λa, 1)-
OOC contains at most one codeword X ∈ (Zv

k

)
with |supp∆X| ≡ 1 (mod 2).

Similarly, for the case of k = 4 and |supp∆X| < 12 we have the following correspondence:

Lemma 2.2.5. For X ∈ (Zv

4

)
, it holds that

|supp∆X|

=





3 iff X = (v
4 )Zv,

4 iff X ⊂ (v
5 )Zv,

5 iff X = {0, a, v/2, v/2 + a} or X ⊂ (v
6 )Zv except for |supp∆X| = 3,

6 iff X = {0, a, 2a, 3a} or X ⊂ (v
7 )Zv except for |supp∆X| = 3, 4 and 5,

7 iff X = {0, a, v/2, v − a}, X = {0, a, v/2− a, v/2}, or X ⊂ (v
8 )Zv

except for |supp∆X| = 3, 5 and 6,
8 iff X = {0, a, a + b, 2a + b}, X = {0, a, v/3, 2v/3}, or X = {0, a, 2a, 4a}

except for |supp∆X| = 3, 4, 5, 6 and 7,
9 iff X = {0, a, 2a, v/2} or X = {0, a, v/2, 3v/4} except for

|supp∆X| = 3, 5 and 7,
10 iff X = {0, a, 2a, 2a + b} except for |supp∆X| = 3, 4, 5, 6, 7, 8 and 9,
11 iff X = {0, a, b, v/2} except for |supp∆X| = 3, 5, 7 and 9.

Proof: Similar to the case of k = 3, we can assume a0 = 0 < a1 < a2 < a3 ≤ v − 1 for
X = {a0, a1, a2, a3} ∈

(Zv

4

)
. We associate X with the sequence S(X) = (d0, d1, d2, d3), where

di = ai+1 − ai, 0 ≤ i ≤ 3. Then we have

∆X = {±d0,±d1,±d2,±d3,±(d0 + d1),±(d1 + d2)}
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and
d0 + d1 + d2 + d3 = v. (2.7)

Suppose that there are repeated elements in ∆X, i.e., we have |supp∆X| ≤ 11, then by
checking all possible forms of X ∈ (Zv

4

)
case by case, one can easily, though tediously, get the

assertion. ¤

Similarly to Lemma 2.2.2, one can see that the following holds.

Lemma 2.2.6. For X ∈ (Zv

4

)
, it holds that

µ(X) =





4 iff |supp∆X| = 3 or 5 (X = {0, a, v/2, v/2 + a}),
3 iff |supp∆X| = 4, 5 (X = {0, v/6, v/3, v/2}, X = {0, v/6, v/3, 2v/3}),

6 (X = {0, a, 2a, 3a}) or 8 (X = {{0, a, v/3, 2v/3}),
2 iff |supp∆X| = 6, 7, 8, 9, 10 or 11

except for µ(X) = 3,
1 iff |supp∆X| = 12.

Then we have the following upper bounds on M(v, 4, 3, 1) and M(v, 4, 2, 1):

Lemma 2.2.7. Let v = 5r6sm, where m is not divisible by 5 and 6. Then it holds that

M(v, 4, 3, 1) ≤





b(v + 1)/6c if r ≥ 1, s = 0,
v/6 if r = 0, s ≥ 1,
b(v + 2)/6c if r ≥ 1, s ≥ 1,
b(v − 1)/6c if r = s = 0.

Lemma 2.2.8. Let v = 2r7sm, where m is not divisible by 2 and 7. Then it holds that

M(v, 4, 2, 1) ≤





bv/8c if r ≥ 1, s = 0,
b(v + 1)/8c if r = 0, s ≥ 1,
b(v + 2)/8c if r ≥ 1, s ≥ 1,
b(v − 1)/8c if r = s = 0.

For example, when r ≥ 1 and s ≥ 1 in Lemma 2.2.8, since there may be a (v, 4, 2, 1)-OOC
which contains two codewords X and X ′ with |supp∆X| = 6 and |supp∆X ′| = 7 and whose
every other codeword Y satisfies |supp∆Y | = 8, we have

M(v, 4, 2, 1) ≤
⌊v − 1− 6− 7

8
+ 2

⌋
=

⌊v + 2
8

⌋
.

We say that a maximal (v, 4, 2, 1)-OOC attaining the bound of Lemma 2.2.8 is optimal.

2.3 Direct constructions of 8-supp (np, n, 4)2-CDFs

Note that an optimal (v, 4, 2, 1)-OOC contains at most two codewords X ∈ (Zv

4

)
such that the

support size of the list of differences is less than 8. So, to construct such an optimal (v, 4, 2, 1)-
OOC we mainly use quadruples X ∈ (Zv

4

)
such that |supp∆X| = 8. Again, we recall that if
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µ(X) = 2 and |supp∆X| = 8 for X ∈ (Zv

4

)
, X has either of the forms X = {0, a, a+ b, 2a+ b}

or X = {0, a, 2a, 4a}, where X = {0, a, 2a, 4a} has the same support of the list of differences
with X ′ = {0, a, 3a, 4a} which is a special case of X = {0, a, a + b, 2a + b}. Now, we note the
following important facts:

(i) If b is in 2Zv, we can take

X ′ = {± b

2
,±b + 2a

2
}

instead of X since X ′ = X − b+2a
2 , i.e., X ′ is a translation of X. Conversely, any

quadruple X = {±a,±b} ∈ (Zv

4

)
can be replaced by X ′ = {0, a′, a′ + b′, 2a′ + b′} with

(a′, b′) = (b− a, 2a) since we have X + b = X ′.

(ii) If X = {±a,±b} ∈ (Zv

4

)
and |supp∆X| = 8, then µ(X) = 2. In fact, we have µ(X) 6= 2

and |supp∆X| = 8 if and only if X = {0, a, v/3, 2v/3} by Lemma 2.2.6.

(iii) If a (or b) in X = {0, a, a + b, 2a + b} is invertible in Zv, then X can be written as

X = a · {0, 1, c + 1, c + 2} (or = b · {0, c, c + 1, 2c + 1}),
where c = ba−1 (or = ab−1, respectively).

By Lemma 2.2.8, it immediately follows:

Lemma 2.3.1. Any 8-supp (nv, n, 4)2-CDF with n ≤ 6 gives an optimal (nv, 4, 2, 1)-OOC.

In this section, we find direct constructions for 8-supp (np, n, 4)2-CDFs in the following cases:

(i) n = 1 and any prime p ≡ 1 (mod 8),

(ii) n = 2 and any prime p ≡ 1 (mod 4),

(iii) n = 4 and any prime p > 5,

(iv) n = 8 and any prime p ≡ 1 (mod 4) with p > 5.

All 8-supp (np, n, 4)2-CDFs obtained in Subsections 2.3.1, 2.3.2, and 2.3.3 generate optimal
(np, 4, 2, 1)-OOCs by Lemma 2.3.1. In Subsection 2.3.4, we will obtain cyclic 8-supp (8p, 8, 4)2-
CDFs corresponding to (8p, 4, 2, 1)-OOCs. Though such OOCs are not optimal, it easily leads
to optimal ones with the same parameters by adding the single codeword {±p,±2p} to those.

2.3.1 Perfect 8-supp (p, 4)2-CDFs for primes p

Example 2.3.2. For the prime p = 17, the supports of the lists of differences of X =
{±10,±11} and Y = 2 · {±10,±11} defined on Zp are given by

supp∆X = {±1,±3,±4,±5}
and

supp∆Y = {±2,±6,±7,±8},
respectively. Thus, F = {X,Y } gives a perfect 8-supp (17, 4)2-CDF.
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The following lemma was basically used to construct optimal (p, k, 1, 1)-OOCs (or cyclic
difference families) for primes p in some papers, for example, [2, 19, 34, 35, 110].

Lemma 2.3.3. Let p be a prime and X be a k-subset of Zp. If S is a subset of Zp \ {0} such
that supp∆X · S has no repeated elements, then F = {X · s | s ∈ S} is a (p, k, λa, 1)-OOC
with λa = µ(X) and with |S| codewords.

The problem of finding a set S ⊂ Zp satisfying the condition of Lemma 2.3.3 and having
the maximum possible size is related to a problem of “packings” treated in [19] (see also
Chapter 3). In the case when p = 2es + 1 and supp∆X has the form {1,−1} · L, where
the elements of L are lying in pairwise distinct cosets of Ce

0 , we can take S as a complete
system of representatives for the cosets of {1,−1} in Ce

0 . In this way, Construction 3.3 in [19]
corresponds to the case when λa = 1.

In the following theorem, we apply Lemma 2.3.3 to the set X of the fourth roots of unity in
Zp.

Theorem 2.3.4. Let p ≡ 1 (mod 8) be a prime and let 2e be the largest power of 2 dividing
p−1. Then there exists a perfect 8-supp (p, 4)2-CDF whose codewords are cosets of the fourth
roots of unity in Zp if and only if −4 is not a 2eth power in Zp.

Proof: Set p = 8t + 1 and let C2t
0 = 〈c〉 be the group of fourth roots of unity in Zp. Note

that we have
supp∆C2t

0 = ±{2, 2c, c + 1, c− 1} = C2t
0 · {c + 1, 2}.

So there exists a perfect 8-supp (p, 4)2-CDFs whose codewords are cosets of C2t
0 if and only if

there exists a t-subset T of Z×p such that {1, 2/(c+1)}·T is a complete system of representatives
for the cosets of C2t

0 in Z×p . When we write 2/(c + 1) = αx, where α is a primitive root of
Zp, this is equivalent to that there exists a t-subset Y of Z2t such that {0, x} + Y = Z2t.
By Corollary 2.7 in [19] (Theorem 3.3.5 in Chapter 3), such a subset Y exists if and only if
2t/ gcd (x, 2t) is even and hence if and only if 2e−2 is not a divisor of x, that is to say that
2/(c + 1) is not a 2e−2th power in Zp. Observing that (2/(c + 1))4 = −4, the assertion then
follows. In fact, we have that

2
c + 1

∈ C2e−2

0 iff (
2

c + 1
)

p−1

2e−2 = 1 iff (−4)
p−1
2e = 1,

i.e., −4 is a 2eth power in Zp. ¤

When the condition −4 6∈ C2e
0 is satisfied, the 8-supp (p, 4)2-CDF given by Theorem 2.3.4 is

explicitly given by

F = {C2t
0 · α2xi+j | 0 ≤ i < t/ gcd (x, 2t); 0 ≤ j < gcd (x, 2t)},

where 2/(c + 1) = αx.

The following are all primes p < 1000 satisfying p ≡ 1 (mod 8) and the condition of Theo-
rem 2.3.4:

p = 73, 89, 97, 193, 233, 241, 257, 281, 337, 353, 401, 433,

449, 577, 601, 617, 641, 673, 769, 881, 929, 937, 977.

In the following theorem, we apply Lemma 2.3.3 to X = {±c,±(c + 2)} with e = 4.
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Table 2.1: An element c ∈ Z×p such that (1, c, c+1, c+2) is a complete system of representatives
for the cosets of C4

0 in Z×p for each prime p ≡ 1 (mod 8), 41 ≤ p ≤ 6577, except for primes
covered by Theorem 2.3.3.

p c

41 5
113 10
137 23
313 13
409 21
457 10
521 32
569 10
593 9
761 6
809 11
857 6
953 9
1129 11
1201 65
1249 19
1321 13

p c

1657 21
1993 5
2113 5
2129 28
2137 29
2153 9
2297 5
2377 17
2521 72
2617 10
2633 20
2713 10
2729 22
2777 6
2953 17
3001 69
3089 11

p c

3121 29
3209 10
3217 40
3313 10
3433 18
3593 12
3761 39
3769 40
3881 6
3929 19
4073 31
4441 37
4649 19
4657 19
4729 29
4793 9
4817 9

p c

4889 6
4969 67
5233 37
5273 31
5393 11
5417 6
5449 38
5641 29
5657 24
5801 5
5849 55
5897 6
6073 13
6217 10
6329 11
6473 6

Theorem 2.3.5. There exists a perfect 8-supp (p, 4)2-CDF for every prime p ≡ 1 (mod 8).

Proof: Since Example 2.3.2 shows the existence of a perfect 8-supp (17, 4)2-CDF, we consider
the case of p ≥ 41. Take X = {±c,±(c + 2)} with an element c ∈ Zp such that L =
{1, c, c + 1, c + 2} is a complete system of representatives for the cosets of C4

0 in Z×p . Note
that for any prime p ≡ 1 (mod 8) with p ≥ 6673 such an element c always exists in Z×p by
Theorem 1.3.8. The remaining cases 41 ≤ p ≤ 6577 are covered by computer search (see
Table 2.1). By noting that

supp∆X = ±2 · L,

if we take a complete system S of representatives for the cosets of {1,−1} in C4
0 , we have

±2 · L · S = Z×p .

It follows that F = {X · s | s ∈ S} is the desired CDF. ¤

Note that Theorem 2.3.5 includes Theorem 2.3.4 as an existence theorem, but the construction
of Theorem 2.3.4 is more direct than Theorem 2.3.5.

2.3.2 8-supp (2p, 2, 4)2-CDFs for primes p

The following lemma was used to construct optimal (np, k, 1, 1)-OOCs for primes p in many
papers, for example, [2, 19, 22, 24, 23, 28, 29, 53, 55, 78] (see also Chapter 4).

Lemma 2.3.6. Let p be a prime and X be a k-subset of Zn × Zp satisfying p - n. Set
supp∆X =

⋃
i∈Zn

{i} × Li, where Li’s are subsets of Zp, and assume that there exists a
subset S of Zp such that Li · S has no repeated elements for each i ∈ Zn. Then the family
F = {X · (1, s) | s ∈ S} is an (np, k, λa, 1)-OOC with λa = µ(X) and |S| codewords.

28



Lemma 2.3.6 is essentially applied in this and next subsections to construct 8-supp (np, n, 4)2-
CDFs for n = 2, 4 and 8.

Theorem 2.3.7. There exists an 8-supp (2p, 2, 4)2-CDFs for every prime p ≡ 1 (mod 4).

Proof: Put p = 4t + 1 and identify Z2p with Z2 × Zp. Consider

X = {±(0, 1),±(1, c)} ⊂ Z2 × Zp,

where c is a primitive fourth root of unity. Note that we have

supp∆X =
⋃

i∈Z2

{i} × Li,

where L0 = 2 · Ct
0 and L1 = (c− 1) · Ct

0. Now, let S be a complete system of representatives
for the cosets of Ct

0 in Z×p . Then, we obviously have Li · S = Z×p for i = 1, 2 and hence, by
Lemma 2.3.6, F = {X · (1, s) | s ∈ S} is the desired CDF. ¤

2.3.3 8-supp (4p, 4, 4)2-CDFs for primes p

Example 2.3.8. The set of the eight quadruples

Wh = (1, h) · {(0, 0), (1, 1), (0, 6), (1, 7)} for h = 1, 13,
Xi = (1, i) · {(0, 0), (3, 1), (2, 8), (1, 9)} for i = 1, 13,
Yj = (1, j) · {(0, 0), (1, 1), (1, 7), (2, 8)} for j = 2, 8,
Zk = (1, k) · {(0, 0), (2, 1), (2, 4), (0, 5)} for k = 3, 10,

over Z4 × Z17 give an 8-supp (68, 4, 4)2-CDF.

Theorem 2.3.9. There exists an 8-supp (4p, 4, 4)2-CDF for every prime p > 5.

Proof: We give two constructions as follows:

(Construction for non-Fermat prime p’s) Identify Z4p with Z4 × Zp. Consider

X = {±(0, α2e−1 − 1),±(1, α2e−1
+ 1)},

where α is a primitive root of Zp and 2e is the largest power of 2 in p− 1. We have:

supp∆X =
⋃

i∈Z4

{i} × Li,

where L0 = 2 · {±(α2e−1 − 1)}, L1 = 2 · {1, α2e−1}, L2 = 2 · {±(α2e−1
+ 1)} and L3 = −L1.

Consider the set S = {α2ei+j | 0 ≤ i < (p − 1)/2e; 0 ≤ j < 2e−1}. It is easy to see that
Li · S = Z×p for 0 ≤ i ≤ 3. Hence, by Lemma 2.3.6, we have that F = {X · (1, s) | s ∈ S} is
the desired CDF.

(Construction for primes p ≡ 1 (mod 8)) Take the following four quadruples over Z4 × Zp:

X1 = {±(0, c1),±(1, c1 + 2},
X2 = {±(1, c1(c2 + 1)),±(2, (c1 + 2)(c2 + 1))},
X3 = {±(0, c2),±(3, c2 + 2)}, and
X4 = {±(3, c2(c1 + 1)),±(2, (c2 + 2)(c1 + 1))}
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such that
(c1, c1 + 1, c1 + 2) ∈ C4

3 × C4
1 × C4

0

and
(c2, c2 + 1, c2 + 2) ∈ C4

1 × C4
2 × C4

3 ,

where such elements c1, c2 ∈ Zp exist for all p ≥ 6673 by Theorem 1.3.8. Note that there is
only one Fermat prime such that 5 < p < 6673, that is, p = 257. In this case, take c1 = 13
and c2 = 197. Then we have

⋃

1≤i≤4

supp∆Xi =
⋃

j∈Z4

{j} × Lj ,

where

L0 = ±2 · {c1, (c2 + 1)(c1 + 2), c2, (c1 + 1)(c2 + 2)},
L1 = L3 = ±2 · {1, c1 + 1, c2 + 1, (c1 + 1)(c2 + 1)}, and
L2 = ±2 · {c1 + 2, c1(c2 + 1), c2 + 2, c2(c1 + 1)}.

The assumptions on the pair (c1, c2) imply that each Li is of the form {1,−1} · L′i, where L′i
is a complete system of representatives for the cosets of C4

0 in Z×p . Thus, if S is a complete
system of representatives for the cosets of {1,−1} in C4

0 , we obviously have Li · S = Z×p for
each i and hence, by Lemma 2.3.6, F = {Xi · (1, s) | 1 ≤ i ≤ 4, s ∈ S} is the desired CDF.

By combining Example 2.3.8 and the two constructions above, we immediately get the asser-
tion. ¤

A computer search has shown that there are no 8-supp (4p, 4, 4)2-CDFs for p = 3 and 5.

2.3.4 8-supp (8p, 8, 4)2-CDFs for primes p

Example 2.3.10. The set of the twelve quadruples

Wh = (1, h) · {±(0, 1),±(1, 3)} for h = 1, 3, 9,
Xi = (1, i) · {±(0, 2),±(3, 1)} for i = 1, 3, 9,
Yj = (1, j) · {±(2, 1),±(1, 6)} for j = 1, 3, 9,
Zk = (1, k) · {±(2, 2),±(3, 5)} for k = 1, 3, 9,

over Z8 × Z13 give an 8-supp (104, 8, 4)2-CDF.

Theorem 2.3.11. There exists an 8-supp (8p, 8, 4)2-CDF for every prime p ≡ 1 (mod 4) with
p > 5.

Proof: Since Example 2.3.10 shows the existence of an 8-supp (8·13, 8, 4)2-CDF, we consider
the case of p ≥ 17. Take the following four quadruples over Z8 × Zp:

X1 = {±(0, 1),±(1, c)},
X2 = {±(0, c + 2),±(3, c)},
X3 = {±(2, −c+3

2 ),±(1, c+1
2 )}, and

X4 = {±(2, 3c+3
2 ),±(3, c+1

2 )}
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such that
(c + 1, c + 2) ∈ C2

1 × C2
1

and
(2c, c− 1, 3(c− 3)) ∈ C2

0 × C2
0 × C2

0 ,

where such an element c ∈ Zp exists for all p ≥ 2579 by Theorem 1.3.8. The remaining cases
of p ≤ 2557 are completed by computer search and listed in Table 2.2. Note that we have

⋃

1≤i≤4

supp∆Xi =
⋃

j∈Z8

{j} × Lj ,

where

L0 = ±2 · {1, c + 2},
L1 = L7 = ±{c− 1, c + 1},
L2 = L6 = ±{2c, c + 1},
L3 = L5 = ±2 · {1, c + 1}, and
L4 = ±{c− 3, 3(c + 1)}.

The assumptions on c imply that each Li is of the form {1,−1} · {`i, `
′
i} where `i and `′i are a

square and a non-square of Zp, respectively. Thus, if S is a complete system of representatives
for the cosets of {1,−1} in C2

0 , we obviously have Li · S = Z×p for each i and hence, by
Lemma 2.3.6, F = {Xi · (1, s) | 1 ≤ i ≤ 4, s ∈ S} is the desired CDF. ¤

A computer search has shown that there are no 8-supp (8 · 5, 8, 4)2-CDFs.

Remark 2.3.12. For 8-supp (8p, 8, 4)2-CDFs constructed in this section, we have the follow-
ing comments:

(i) If there exists an 8-supp (np, n, 4)2-CDF F for a prime p, then it holds that p ≡
1 (mod 8/ gcd(n, 8)). In this section, we completely determined the existence of such
difference families in the cases of n = 1, 2 and 4. In the case of n = 8, we determined
the existence of 8-supp (np, n, 4)2-CDFs for p ≡ 1 (mod 4) but not for p ≡ 3 (mod 4).

(ii) The construction in Theorem 2.3.4 is similar to those for radical (p, 4, 1) and (p, 5, 1)
difference families given in [17] and revisited in [19].

2.4 Further direct constructions of maximal 8-supp (np, 4)2-
CDFs

In this section, we obtain further constructions of maximal 8-supp (np, 4)2-CDFs, whose code
length np is not covered by the OOCs constructed in the previous section.

Theorem 2.4.1. If p = 8t + 5 is a prime, then there exists a maximal 8-supp (p, 4)2-CDF
with t blocks consisting of cosets of the fourth roots of unity in Zp if and only if −4 is a
primitive fourth power in Zp.
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Table 2.2: An element c ∈ Z×p such that (c + 1, c + 2) ∈ C2
1 × C2

1 and (2c, c − 1, 3(c − 3)) ∈
C2

0 × C2
0 × C2

0 for each prime p ≡ 1 (mod 4), 17 ≤ p ≤ 2557.

p c

17 9
29 17
37 13
41 10
53 30
61 6
73 9
89 22
97 12
101 10
109 39
113 32
137 50
149 55
157 20
173 61
181 6
193 9
197 11
229 6
233 9
241 50
257 36
269 31
277 31
281 40
293 11
313 19
317 17
337 9
349 6
353 65
373 32
389 21
397 50
401 29
409 54

p c

421 39
433 27
449 36
457 9
461 10
509 31
521 22
541 37
557 11
569 57
577 12
593 9
601 27
613 13
617 32
641 37
653 20
661 6
673 9
677 26
701 37
709 22
733 43
757 22
761 10
769 20
773 198
797 26
809 20
821 55
829 6
853 37
857 9
877 13
881 26
929 149
937 9

p c

941 10
953 9
977 44
997 43
1009 21
1013 45
1021 6
1033 9
1049 26
1061 59
1069 6
1093 41
1097 9
1109 26
1117 42
1129 50
1153 36
1181 31
1193 22
1201 21
1213 22
1217 9
1229 17
1237 45
1249 27
1277 30
1289 20
1297 9
1301 31
1321 12
1361 10
1373 32
1381 40
1409 46
1429 77
1433 22
1453 65

p c

1481 41
1489 12
1493 11
1549 29
1553 9
1597 13
1601 10
1609 27
1613 37
1621 22
1637 45
1657 9
1669 6
1693 17
1697 60
1709 21
1721 50
1733 37
1741 6
1753 12
1777 9
1789 30
1801 21
1861 6
1873 28
1877 11
1889 10
1901 21
1913 9
1933 31
1949 10
1973 45
1993 9
1997 11
2017 66
2029 6
2053 32

p c

2069 21
2081 37
2089 61
2113 12
2129 81
2137 67
2141 10
2153 9
2161 27
2213 30
2221 38
2237 17
2269 30
2273 9
2281 12
2293 13
2297 38
2309 10
2333 50
2341 6
2357 26
2377 50
2381 32
2389 40
2393 9
2417 9
2437 13
2441 10
2473 28
2477 11
2521 21
2549 107
2557 65

Proof: The proof is quite similar to that of Theorem 3.7. Let C2t+1
0 = {±1,±c} be the

subgroup consisting of fourth roots of unity in Z×p . We have:

supp∆C2t+1
0 = C2t+1

0 · {c + 1, 2}.
So, there exists a maximal 8-supp (p, 4)2-CDFs with t blocks which are cosets of C2t+1

0 if and
only if there exists a t-subset T of Z×p such that ({1, 2/(c+1)} ·T )∪{1} is a complete system
of representatives for the cosets of C2t+1

0 in Z×p . When we write 2/(c + 1) = αx, where α is
a primitive root of Zp, this is equivalent to that there exists a t-subset Y of Z2t+1 such that
({0, x} + Y ) = Z2t+1 \ {0}. By Corollary 2.7 in [19] such a subset Y exists if and only if
gcd (x, 2t + 1) = 1. The assertion then easily follows observing that −4 = α4x. ¤
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Explicitly, in the case that −4 is a primitive fourth power, the maximal 8-supp (p, 4)2-CDFs
given by Theorem 2.4.1 is

F = {C2t+1
0 · 2i | 0 ≤ i ≤ t− 1}.

The assumption of Theorem 2.4.1 is satisfied quite frequently. Indeed, the following are all
primes p < 1000 such that p ≡ 5 (mod 8) not satisfying the condition of Theorem 2.4.1:

p = 109, 157, 229, 277, 397, 733, 997. (2.8)

Theorem 2.4.2. Let p = 10t± 1 be a prime such that (1+
√

5
2 )2 is a primitive square in Zp.

Then there exists a maximal 8-supp (p, 4)2-CDF with bp/8c blocks.

Proof: Observe first that the assumption p ≡ ±1 (mod 10) assures that 5 is a square in Zp.
Consider X = {±1,±(2 +

√
5)}. An easy counting shows that :

supp∆X = 2 · {±1,±c,±c2,±c3}

holds, where c = 1+
√

5
2 . Note that the assumption that c2 is a primitive square assures that

either c or −c is a primitive root of Zp. It is then clear that F = {X · c4i | 0 ≤ i < bp/8c} is
the desired CDF. ¤

The following are all primes p < 1000 satisfying p 6≡ 1 (mod 8) and the condition of Theo-
rem 2.4.2:

p = 11, 19, 31, 59, 61, 71, 79, 109, 131, 149, 179, 191, 239, 251, 269, 271, 311, 359, 379, 389,

419, 431, 439, 479, 491, 499, 571, 599, 631, 659, 701, 719, 739, 751, 821, 839, 971.

Theorem 2.4.3. Let p = 8t + 7 be a prime such that (1 +
√

2)2 is a primitive square in Zp.
Then there exists a maximal 8-supp (2p, 4)2-CDF with 2t + 1 blocks.

Proof: The assumption p ≡ 7 (mod 8) assures that 2 is a square in Zp. Consider

X = {±(0, 1),±(1, c)} ⊂ Z2 × Zp,

where c = 1 +
√

2. Then we have

supp∆X =
⋃

i∈Z2

{i} × Li,

where L0 = 2 · {±1,±c} and L1 =
√

2 · {±1,±c}. Note that c or −c is a primitive root of Zp.
Then, F = {X · (1, c2i) | 0 ≤ i ≤ 2t} is the desired OOC. ¤

The following are all primes p < 1000 satisfying the condition of Theorem 2.4.3:

p = 7, 23, 31, 47, 71, 127, 151, 167, 191, 263, 271, 311, 359,

367, 383, 431, 439, 463, 479, 503, 631, 647, 719, 727,

743, 823, 839, 863, 887, 911, 919, 967, 983, 991.

Remark 2.4.4. (i) We do not know whether there are infinitely many primes satisfying
the condition of each theorem given in this section. However, the constructed maximal
8-supp (v, 4)2-CDFs (optimal (v, 4, 2, 1)-OOCs) yield new infinite series of maximal
(optimal) ones by applying the recursive construction given in the next section.
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(ii) We must mention that some other constructions given in [2], in particular Theorem 2.3
and Construction 4.4 for getting a special (p, 4, 1, 1)-OOCs, called “good” OOCs, may
be adapted to construct maximal 8-supp (v, 4)2-CDFs and optimal (v, 4, 2, 1)-OOCs. In
fact, we could construct a maximal 8-supp (p, 4)2-CDF for every prime p 6= 109 listed
in (2.8) (see Table 2.3). The prime p = 109 does not require this kind of construction
since it is covered by Theorem 4.2.

Table 2.3: This table shows an optimal (p, 4, 2, 1)-OOC for each p = 157, 229, 277, 397, 733,
and 997. For primes p = 157, 277, 397, 733, and 997, c is a primitive fourth root of unity in
Zp. For the prime p = 229, c = 82 is the fourth power of the primitive root 112 in Zp.

p c codewords

2i · 〈c〉, 0 ≤ i ≤ 2
23 · 2i · 〈c〉, 0 ≤ i ≤ 1

157 28 24 · 2i · 〈c〉, 0 ≤ i ≤ 5
25 · 2i · 〈c〉, 0 ≤ i ≤ 5

ci · {±66,±67}, i = 0, 1

229 82 112i · 19j · {±1± c}, 0 ≤ i ≤ 3, 0 ≤ j ≤ 6

2i · 〈c〉, 0 ≤ i ≤ 8
53 · 2i · 〈c〉, 0 ≤ i ≤ 10

277 217 54 · 〈c〉
55 · 2i · 〈c〉, 0 ≤ i ≤ 10

ci · {±111,±112}, i = 0, 1

2i · 〈c〉, 0 ≤ i ≤ 4
17 · 2i · 〈c〉, 0 ≤ i ≤ 4
18 · 2i · 〈c〉, 0 ≤ i ≤ 4
19 · 2i · 〈c〉, 0 ≤ i ≤ 4
49 · 2i · 〈c〉, 0 ≤ i ≤ 4

397 63 127 · 2i · 〈c〉, 0 ≤ i ≤ 4
176 · 2i · 〈c〉, 0 ≤ i ≤ 4
225 · 2i · 〈c〉, 0 ≤ i ≤ 4
92 · 2i · 〈c〉, 0 ≤ i ≤ 4

ci · {±189,±190}, i = 0, 1
ci · 49 · {±180,±181}, i = 0, 1

2i · 〈c〉, 0 ≤ i ≤ 1
7 · 2i · 〈c〉, 0 ≤ i ≤ 29

733 380 8 · 2i · 〈c〉, 0 ≤ i ≤ 26
9 · 2i · 〈c〉, 0 ≤ i ≤ 29

ci · {±362,±363}, i = 0, 1

2i · 〈c〉, 0 ≤ i ≤ 37
19 · 2i · 〈c〉, 0 ≤ i ≤ 40

997 836 20 · 2i · 〈c〉, 0 ≤ i ≤ 1
21 · 2i · 〈c〉, 0 ≤ i ≤ 40

ci · {±488,±489}, i = 0, 1
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2.5 Compositions of 8-supp (v, 4)2-CDFs

In this section, we find a nice connection between 8-supp (v, 4)2-CDFs and “cyclic kite-
decompositions of a complete multipartite graph.” As an immediate consequence, we can
derive a recursive construction of 8-supp (v, 4)2-CDFs.

Let K = (a1, a2, a3)-a4 be the kite, that is, the graph consisting of a triangle (a1, a2, a3) with
an attached edge (a3, a4). A set F of kites with vertices in Znv is called a cyclic (nv, n, K, 1)
difference family, briefly (nv, n,K, 1)-CDF, if the list ∆F of differences from F , namely the
list of all possible differences a−b, where (a, b) is an ordered pair of adjacent vertices of a kite
in F , covers all elements of Znv \ vZnv exactly once, while no element in the subgroup vZnv.
(See [25] for the definition of a (nv, n,Γ, λ) difference family, where Γ is an arbitrary graph and
λ is an arbitrary positive integer.) As a special case of general results, any (nv, n, K, 1)-CDF
generates a cyclic kite-decomposition of Kn×v, the complete n-partite graph whose parts have
size v [25].

Let us say that a kite K with vertices in Znv is good if, up to translations, it is of the form
(a, a + b, 0)-(2a + b) for suitable elements a and b in Znv. Analogously, let us say that a
(nv, n, K, 1)-CDF is good if all its kites are good.

Lemma 2.5.1. The existence of an 8-supp (nv, n, 4)2-CDF F is equivalent to that of a good
(nv, n, K, 1)-CDF.

Proof: We can assume that each codeword of F = {Xi | 1 ≤ i ≤ t} has the form Xi =
{0, ai, ai + bi, 2ai + bi}. Now note that supp∆Xi coincides with the list of differences of the
good kite Ki = (ai, ai + bi, 0)-(2ai + bi). This implies that F ′ = {Ki | 1 ≤ i ≤ t} is a good
(nv, n, K, 1)-CDF. The converse is also true. ¤

Now we present a recursive construction for 8-supp (nv, n, 4)2-CDFs by applying Theorem
3.2 in [25].

A cyclic (v, K, 1) difference matrix, briefly (v,K, 1)-CDM, is a 4×v matrix with entries in Zv

such that the difference between its ith row and its jth row is a permutation of Zv whenever
ai and aj are adjacent in K. Let us say that a (v, K, 1)-CDM is good if it is of the form




a1 a2 · · · av

a1 + b1 a2 + b2 · · · av + bv

0 0 · · · 0
2a1 + b1 2a2 + b2 · · · 2av + bv




and observe that if gcd(v, 6) = 1, then




1 2 · · · v
2 · 1 2 · 2 · · · 2 · v
0 0 · · · 0

3 · 1 3 · 2 · · · 3 · v




certainly is a good (v,K, 1)-CDM.

As a special case of Theorem 3.2 in [25] we can state:
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Theorem 2.5.2. If there exist an (nu, n, K, 1)-CDF and a (v, K, 1)-CDM, then there exists
an (nuv, nv,K, 1)-CDF.

Now we observe that if we apply the construction given in the proof of Theorem 3.2 in [25]
with the additional assumption that both of the (nu, n, K, 1)-CDF and the (v,K, 1)-CDM
are good, the resultant (nuv, nv, K, 1)-CDF is also good. Hence, in view of Lemma 2.5.1 we
immediately get the following recursive construction.

Theorem 2.5.3. Assume that there exist:

(i) an 8-supp (nu, n, 4)2-CDF F ,

(ii) an 8-supp (nv, 4)2-CDF F ′ with gcd (v, 6) = 1.

Then there exists an 8-supp (nuv, 4)2-CDF which is maximal if F ′ is maximal. Moreover, if
F ′ is an 8-supp (nv, n′, 4)2-CDF for some n′ dividing nv, then the obtained family forms an
8-supp (nuv, n′, 4)2-CDF.

Proof: By Lemma 2.5.1, F can be interpreted as a good (nu, n, K, 1)-CDF. Composing this
difference family with a good (v,K, 1)-CDM (existent in view of the assumption gcd (v, 6) = 1)
we get a good (nuv, nv, K, 1)-CDF and hence, by Lemma 2.5.1 again, an 8-supp (nuv, nv, 4)2-
CDF F ′′. Now, considering that Znv is obviously isomorphic to uZnuv, let us interpret all
codewords of F ′ as codewords in uZnuv and add them to the codewords of F ′′. In this way
we finally get the desired 8-supp (nuv, 4)2-CDF. ¤

Applying, recursively, Theorem 2.5.3 to all 8-supp (nv, n, 4)2-CDFs obtained in Section 2.3
and a few small perfect 8-supp (v, 4)2-CDFs given in the following, we immediately get our
main results in this chapter with respect to 8-supp (nv, n, 4)2-CDFs.

Example 2.5.4. The following are optimal and perfect 8-supp (v, 4)2-CDFs with v = 9, 25,
and 49:

(v = 9)
F = {{±1,±2}},

(v = 25)
F = {{±2,±3}, {±14,±21}, {±17,±19}},

(v = 49)

F = {{±1,±28}, {±4,±5}, {±8,±26}, {±3,±22}, {±7,±30}, {±31,±35}}.

Corollary 2.5.5. There exists an 8-supp (nv, n, 4)2-CDF if one of the following holds:

(i) gcd (n, 6) = 1 and v = 9h25i49jp1p2 · · · pr where h ∈ {0, 1}, i and j are arbitrary
non-negative integers, and each pi is a prime congruent to 1 modulo 8,

(ii) n = 2n′ with gcd (n′, 6) = 1 and v = p1p2 · · · pr where each pi is a prime congruent to 1
modulo 4,
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(iii) n = 4n′ with gcd (n′, 6) = 1 and v is any positive integer prime to 30,

(iv) n = 8n′ with gcd (n′, 6) = 1 and v = p1p2 · · · pr where each pi is a prime ≡ 1 (mod 4)
greater than 5.

2.6 New infinite series of optimal (v, 4, 2, 1)-OOCs

Now we give further maximal 8-supp (n, 4)2-CDFs.

Example 2.6.1. The following are maximal 8-supp (n, 4)2-CDFs for n ∈ {1, 2, 4, 7, 8, 20, 22,
23, 35, 38}:

(n = 1, 2, 4)
F = {∅},

(n = 7)
F = {{0, 1, 3, 6}},

(n = 8)
F = {{0, 1, 3, 4}},

(n = 20, 22, 23)
F = {{0, 1, 4, 5}, {0, 2, 8, 10}},

(n = 35)

F = {{0, 1, 3, 4}, {0, 5, 17, 22}, {0, 6, 14, 20}, {0, 9, 16, 25}}
(n = 38)

F = {{0, 1, 3, 4}, {0, 5, 14, 19}, {0, 7, 15, 22}, {0, 11, 17, 28}}.

By applying Theorem 2.5.3 to the 8-supp (nv, n, 4)2-CDFs given in Corollary 2.5.5 and the
maximal 8-supp (nv, 4)2-CDFs given in Section 2.4 and in Example 2.6.1, we obtain the
following:

Corollary 2.6.2. There exists an optimal (nv, 4, 2, 1)-OOC if one of the following holds:

(i) n ∈ {1, 7, 11, 19, 23, 31, 35, 59, 71, 79, 131, 179, 191, 239, 251, 271, 311, 359, 379, 419, 431, 439,
479, 491, 499, 571, 599, 631, 659, 719, 739, 751, 839, 971} or n is a prime such that n <
1000 and n ≡ 5 (mod 8), and v = 9h25i49jp1p2 · · · pr where h ∈ {0, 1}, i, j, and r are
any non-negative integers and each pi is a prime such that pi ≡ 1 (mod 8),

(ii) n = 2n′ where n′ ∈ {1, 7, 11, 19, 23, 31, 47, 71, 127, 151, 167, 191, 263, 271, 311, 359, 367,
383, 431, 439, 463, 479, 503, 631, 647, 719, 727, 743, 823, 839, 863, 887, 911, 919, 967, 983, 991}
and v = p1p2 · · · pr where r is any non-negative integer and each pi is a prime such that
pi ≡ 1 (mod 4),

(iii) n ∈ {4, 20} and v is any positive integer prime to 30,

(iv) n = 8 and v = p1p2 · · · pr where each pi is a prime such that pi > 5 and pi ≡ 1 (mod 4).
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Chapter 3

Cyclic 2(k − 1)-support (v, k)k−1
difference families and (v, k, 1)
conflict-avoiding codes

In this chapter, we deal with perfect 2(k − 1)-supp (v, k)k−1-CDFs, which yield maximal
(v, k, 1)-CACs and maximal (v, k, k − 1, 1)-OOCs. Though the auto-correlation property of
a (v, k, k − 1, 1)-OOC is high, we can use it as a (v, k, 1)-CAC since it does not require the
auto-correlation property as mentioned in Section 1.4.2 of Chapter 1. We describe our main
theorems of this chapter in Section 3.1 and discuss a relation between 2(k−1)-supp (v, k)k−1-
CDFs and maximal (v, k, 1)-CACs in Section 3.2. In Section 3.3, by using the concept of
“perfect packings,” we give a necessary and sufficient condition for the existence of perfect
2(k − 1)-supp (p, k)k−1-CDFs, where p is a prime and k = 3, 4, and 5. And in Section 3.4, a
recursive construction of perfect 2(k − 1)-supp (v, k)k−1-CDFs is presented. Furthermore, in
Section 3.5, we prove that primes p satisfying the necessary and sufficient condition given in
Section 3.3 exist infinitely many by investigating the Kronecker density.

3.1 Main theorems in this chapter

In this chapter, we obtain the following theorems:

Theorem 3.1.1. There exists a perfect 4-supp (v, 3)2-CDF, which yields a maximal (v, 3, 1)-
CAC and a maximal (v, 3, 2, 1)-OOC, if and only if every prime divisor pi of v = p1p2 · · · pr

satisfies that 2 ∈ Zpi is not 2`ith power, where `i is the highest power of 2 dividing pi−1
2 . And

such primes pi exist infinitely many.

Theorem 3.1.2. There exists a perfect 6-supp (v, 4)3-CDF, which yields a maximal (v, 4, 1)-
CAC and a maximal (v, 4, 3, 1)-OOC, if and only if every prime divisor pi of v = p1p2 · · · pr

satisfies that the multiplicative group of Zpi contains a subgroup K of index a power of
3, which itself has a subgroup H of index 3, such that {1, 2, 3} is a complete system of
representatives for the cosets of H in K. Such primes pi exist infinitely many.
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Theorem 3.1.3. Let v be a positive integer such that 3 - v. There exists a perfect 8-supp
(v, 5)4-CDF, which yields a maximal (v, 5, 1)-CAC and a maximal (v, 5, 4, 1)-OOC, if and
only if every prime divisor pi of v = p1p2 · · · pr satisfies that the multiplicative group of Zpi

contains a subgroup K of index a power of 2, which itself has a subgroup H of index 4, such
that −1 ∈ H and {1, 2, 3, 4} is a complete system of representatives for the cosets of H in K.
Such primes pi exist infinitely many.

3.2 (v, k, 1)-CACs from perfect 2(k − 1)-supp (v, k)k−1-CDFs

The following lemma completely characterizes all k-subsets X of Zv such that µ(X) = k− 1.

Lemma 3.2.1. Up to translations, any k-subset X of Zv for which µ(X) = k − 1 has the
form X = {i · a | 0 ≤ i ≤ r − 1} ∪ {i · a + tj | 1 ≤ i ≤ d; 1 ≤ j ≤ q} where:

(i) a is an element of Zv whose order d does not divide k,

(ii) q and r are quotient and remainder, respectively, of the Euclidean division of k by d,

(iii) 1 ≤ t1 < t2 < · · · < tq < v/d.

Proof: Given a nonzero element a of Zv and a k-subset X of Zv, let G be the circulant
oriented graph of order v with connection-set {a}, namely the oriented graph whose vertices
are the elements of Zv, where (i, j) is an arc if and only if j = i + a. Then it is obvious that
ma(∆X), the multiplicity of a in ∆X, is the number of arcs of G[X], the oriented subgraph
of G induced by X.

Let d be the order of a. We see that G has exactly v/d components each of which is an
oriented d-cycle. So, the connected components of G[X] are some (possibly none) oriented
d-cycles and some (possibly none) oriented paths. Obviously, every connected component
that is a d-cycle contributes to the number of arcs of G[X], namely to ma(∆X), with d. It is
also obvious that every connected component that is an r-path contributes to ma(∆X) with
r − 1. Thus we see that ma(∆X) = k − h where h is the number of connected components
of G[X] which are paths. Hence, ma(∆X) = k− 1 holds if and only if exactly one connected
component of G[X] is an oriented path. Then, the assertion immediately follows. ¤

By noting that d ≤ k− 1 and ad = 0 hold if the graph G[X] contains an oriented d-cycle, we
have the following:

Corollary 3.2.2. If gcd(v, (k − 1)!) = 1, all k-subsets B of Zv for which µ(X) = k − 1 are,
up to translations, multiples of the set {0, 1, ..., k − 1}.

Given positive integers v and k, to construct (v, k, 1)-CACs with a large number of codewords,
we mainly use X = a ·{0, 1, 2, . . . , k−1} ∈ (Zv

k

)
for some a ∈ Zn as codewords. More precisely,

we construct (v, k, 1)-CACs and (v, k, k − 1, 1)-OOCs with v−1
2(k−1) codewords from 2(k − 1)-

supp (v, k)k−1-CDFs by noting that |supp∆X| = 2(k − 1) for X = a · {0, 1, ..., k − 1} if
gcd (v, (2k − 2)!) = 1 and gcd (v, a) = 1. It seems that the resultant CACs and OOCs are
almost maximal. Indeed, for the cases when k = 3 and 4, such CACs are maximal by
Lemmas 2.2.1 and 2.2.5. Furthermore, similar to Lemma 2.2.1, for k = 5 X ∈ (Zv

k

)
such
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that |supp∆X| ≤ 7 are, up to translations, completely characterized as: |supp∆X| = ` if and
only if X = ( v

`+1)Zv, where 4 ≤ ` ≤ 7. Hence, (v, 5, 1)-CACs obtained from perfect 8-supp
(v, 5)4-CDFs are maximal.

We close this section by giving an easy example of perfect 2(k − 1)-supp (v, k)k−1-CDFs as
follows.

Example 3.2.3. The single block B = {0, 1, . . . , k−1} is a perfect 2(k−1)-supp (2k−1, k)k−1-
CDF for any k, which provides a maximal (2k − 1, k, 1)-CAC.

3.3 Perfect packings

In this section, we treat the problem whether the multiplicative group of Zp for a prime
p = de + 1 is factorizable into {1, 2, . . . , d} · S for a suitable e-set S. This problem is restated
in terms of “perfect packing,” which is defined below.

Let G be a finite (additive) group and let X and I be subsets of G. Then the family {X+i | i ∈
I} is called a packing of dev X (packing of the development of X) if (X + i)∩ (X + j) = ∅ for
every distinct i, j ∈ I. Furthermore, we say that the packing is perfect if |I| = |G|/|X|, i.e.,⋃

i∈I X + i = G. The concept of a packing was introduced in [19, 20] with an application to
constructions of radical difference families. From now on, we put G = Zn. By Corollary 3.2.2,
it is obvious that there exists a 2(k− 1)-supp (p, k)k−1-CDF for a prime p if and only if there
exists a set Γ ⊂ Z×p with |Γ| = (p− 1)/(2k − 2) satisfying

±Γ ∪ ±2Γ ∪ · · · ∪ ±(k − 1)Γ = Z×p . (3.1)

Let α be a primitive root of Zp and put X = logα({1, 2, . . . , k − 1}), where logα is the
logarithm function from Z×p to Zp−1. Then, the condition (3.1) is equivalent to that the family
{X + i | i ∈ logα(±Γ)} is a perfect packing of dev X over Zp−1, i.e., {X + i | i ∈ logα(Γ)} is
also a perfect packing of dev X over Z p−1

2
. Hence, we get the following:

Lemma 3.3.1. Let p ≡ 1 (mod 2k − 2) be a prime and α be a primitive root of Zp. Then,
there exists a perfect 2(k−1)-supp (p, k)k−1-CDF if and only if there exists a perfect packing
of dev(logα({1, 2, . . . , k − 1})) over Z p−1

2
.

In [19], the following theorem was given:

Theorem 3.3.2. (Theorem 2.11 in [19]) Let X ⊂ Zn and let (d0 = 1, d1, . . . , d2t, d2t+1 = n)
be a chain of divisors such that

∏t
`=0

d2`+1

d2`
= n

|X| . Suppose that max{` : d` divides z} is odd
for every z ∈ ∆X. Then {X + i | i ∈ I} with

I = {
t∑

`=0

d2`i` | 0 ≤ i` <
d2`+1

d2`
}

is a perfect packing of dev X.

By the above theorem, we immediately have the following:
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Corollary 3.3.3. Let p = 2(k−1)m+1 be a prime and s be a divisor of m. Then, there exists
a perfect 2(k−1)-supp (p, k)k−1-CDF if {1, 2, ..., k−1} is a complete system of representatives
for the cosets of the group of s(k − 1)th powers in Cs

0 , the group of sth powers.

Proof: Put X = logα({1, 2, . . . , k − 1}) reducing modulo (k − 1)m, where α is a primitive
root of Zp, and apply Theorem 3.3.2 with n = (k − 1)m, t = 1, d1 = s, and d2 = s(k − 1). ¤

Example 3.3.4. The first 10 primes p ≥ 2k − 1 satisfying the condition for s = 1 in Corol-
lary 3.3.3 for each 3 ≤ k ≤ 8, k 6= 5, are:

(k = 3) 5, 13, 29, 37, 53, 61, 101, 109, 149, 157,
(k = 4) 7, 37, 139, 163, 181, 241, 313, 337, 349, 379,
(k = 6) 11, 421, 701, 2311, 2861, 3181, 3491, 3931, 4621, 5531,
(k = 7) 13, 7477, 7933, 8293, 10837, 12637, 15013, 19237, 22573, 29917,
(k = 8) 659, 1429, 2087, 3557, 4663, 9689, 12391, 17431, 20749, 21001.

Note that there is no prime p satisfying the condition for s = 1 in Corollary 3.3.3 when k = 5.
(The proof is given in the next section, see Example 3.5.13.) Instead, we provide the first ten
primes p ≥ 2k − 1 satisfying the condition for the case s = 2 in Corollary 3.3.3 when k = 5:

(k = 5) 97, 1873, 2161, 3457, 6577, 6673, 6961, 7297, 7873, 10273.

Now, we concentrate on the cases when k = 3, 4, and 5. In [19], the following were proved:

Theorem 3.3.5. (Corollary 2.7 in [19]) Let n = 2t and let X = {0, a} ⊂ Zn. Then, there
exists a subset I ⊂ Zn such that the family {X + i | i ∈ I} is a perfect packing of dev X if
and only if n

gcd (a,n) is even.

Theorem 3.3.6. (Theorem 2.8 in [19]) Let n = 3t and let X = {0, a, b} ⊂ Zn. Then, there
exists a subset I ⊂ Zn such that the family {X + i | i ∈ I} is a perfect packing of dev X if
and only if there is a power of 3 dividing t, which is the highest power of 3 both dividing a,
b, and a− b.

By applying Lemma 3.3.1 and Theorems 3.3.5 and 3.3.6, we immediately obtain the following
theorems:

Theorem 3.3.7. There exists a perfect 4-supp (p, 3)2-CDF for a prime p ≡ 1 (mod 4) if and
only if 2 6∈ C`

0 for the highest power ` of 2 dividing p−1
2 .

Theorem 3.3.8. There exists a perfect 6-supp (p, 4)3-CDF for a prime p ≡ 1 (mod 6) if and
only if the multiplicative group of Zp contains a subgroup K of index a power of 3, which
itself has a subgroup H of index 3, such that {1, 2, 3} is a complete system of representatives
for the cosets of H in K.

Next, we consider the case of k = 5. To get our desired result, we use the following.

Lemma 3.3.9. (Remark 2.1 in [19]) Let X and I be subsets defined on Zn. Then the
following are equivalent:

(i) The family {X + i | i ∈ I} is a perfect packing of dev X,
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(ii) The family {I + x |x ∈ X} is a perfect packing of dev I,

(iii) The family {X ′ + i | i ∈ I} is a perfect packing of dev X ′, where X ′ is any subset of Zn

such that |X| = |X ′| and ∆X = ∆X ′.

Lemma 3.3.10. Let n = 4s and let X = {0, a, 2a, a + b} ⊂ Zn. Then, the following are
equivalent:

(i) There exists a subset I ⊂ Zn such that {X + i | i ∈ I} is a perfect packing of dev X.

(ii) There is a power of 2 dividing s, say 2r−2 with r ≥ 2, such that 2r−2 and 2r−1 are the
highest powers of 2 dividing a and b, respectively.

Proof: ((i) ⇒ (ii)) Let X0 = X, X1 = {0, a, 2a, a − b}, X2 = {a, b, a + b, 2a + b}, and
X3 = {0, b, b−a, a+b}. Then we have ∆Xj = ∆X for every j, and hence each {I+x |x ∈ Xj},
0 ≤ j ≤ 3, is a perfect packing of dev I over Zn by Lemma 3.3.9. Therefore, we have

Zn = I ∪̇ (I + a) ∪̇ (I + 2a) ∪̇ (I + a + b) (3.2)
= I ∪̇ (I + a) ∪̇ (I + 2a) ∪̇ (I + a− b) (3.3)
= (I + a) ∪̇ (I + b) ∪̇ (I + a + b) ∪̇ (I + 2a + b) (3.4)
= I ∪̇ (I + b) ∪̇ (I + b− a) ∪̇ (I + a + b). (3.5)

By (3.2) and (3.3), we get I + a + b = I + a− b, i.e., I = I + 2b. Furthermore, by (3.2) and
(3.4), we have

I ∪̇ (I + 2a) = (I + b) ∪̇ (I + 2a + b),

while I ∩ (I + b) = ∅ by (3.5), which implies I = I + 2a + b. Let d = gcd (2a + b, 2b), and
then it holds that I = I + dh for any h ∈ Zn since I = I + 2b = I + 2a + b. Moreover, it
is shown have that d - a, 2a and b by (3.2) and (3.5), but d | 2b and d | 4a = 2(2a + b) − 2b
by the definition of d. If we write d = 2rt with 2 - t, then we consequently get that 2r−2 | a
but 2r−1 - a and 2r−1 | b but 2r - b. Finally, we use Corollary 2.4 of [19] which states that a
necessary condition in order that dev X for X ⊂ Zn admits a perfect packing is that n

|X| is
divisible by gcd (X, n). This implies that s is divisible by gcd (a, b, a + b, 4s), which follows
that 2r−2 divides s.

((ii) ⇒ (i)) Apply Theorem 3.3.2 with t = 1, d1 = 2r−2, and d2 = 2r. ¤

For the two elements 2 and 3 of Z×p , we denote 2 = αa and 3 = αa+b, where α is a primitive
root of Zp. Then we have logα({1, 2, 3, 4}) = {0, a, 2a, a + b}. By applying Lemmas 3.3.1 and
3.3.10, we get the following:

Theorem 3.3.11. There exists a perfect 8-supp (p, 5)4-CDF for a prime p ≡ 1 (mod 8) if
and only if the multiplicative group of Zp contains a subgroup K of index a power of 2, which
itself has a subgroup H of index 4, such that −1 ∈ H and {1, 2, 3, 4} is a complete system of
representatives for the cosets of H in K.

3.4 Compositions of perfect 2(k − 1)-supp (v, k)k−1-CDFs

Theorem 3.4.1. Let v1, v2, and k be positive integers such that k ≥ 3 and gcd (v2, `) = 1 for
every `, 1 ≤ ` ≤ k−1. For each i = 1, 2, if there exists a perfect 2(k−1)-supp (vi, k)k−1-CDF
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whose blocks are multiples of {0, 1, . . . , k − 1}, then there also exists a perfect 2(k − 1)-supp
(v1v2, k)k−1-CDF whose blocks are also multiples of {0, 1, . . . , k − 1}.
Proof: Let Fi = Γi · {0, 1, . . . , k− 1}, i = 1, 2, be the perfect 2(k− 1)-supp (vi, k)k−1-CDFs.
Let

Γ′1 = {a + bv1 | a ∈ Γ1, 0 ≤ b ≤ v2 − 1} and Γ′2 = v1 · Γ2,

where each element is reduced modulo v1v2. Then the family F = {a · {0, 1, . . . , k − 1} | a ∈
Γ′1 ∪ Γ′2} is the desired perfect 2(k − 1)-supp (v1v2, k)k−1-CDF. We prove that the lists of
differences of any two blocks of F are disjoint. By the definition of Γ1, any element of
±{1, 2, . . . , k − 1} · Γ′1 is not a multiple of v1. On the other hand, every element of Γ2 is a
multiple of v1, which implies that

(±{1, 2, . . . , k − 1} · Γ′1) ∩ (±{1, 2, . . . , k − 1} · Γ′2) = ∅.

Since it is obvious that the lists of differences of any two blocks from {a · {0, 1, . . . , k −
1} | a ∈ Γ′2} are disjoint, we only show that the list of differences of any two blocks from
{a · {0, 1, . . . , k − 1} | a ∈ Γ′1} are disjoint. Assume `(a + bv1) ≡ `′(a′ + b′v1) (mod v1v2) for
some `, `′ ∈ ±{1, 2, . . . , k − 1} and a + bv1, a

′ + b′v1 ∈ Γ′1, then we need to see that a = a′

and b = b′. By the above assumption, since (`a − `′a′) + (`b − `′b′)v1 ≡ 0 (mod v1v2), we
have `a ≡ `′a′ (mod v1). By the definition of F1, `a ≡ `′a′ (mod v1) if and only if a = a′

and ` = `′. Therefore, we also have (`b− `b′)v1 ≡ 0 (mod v1v2), i.e., `(b− b′) ≡ 0 (mod v2).
Then, the assumption that gcd (v2, `) = 1 for every `, 1 ≤ ` ≤ k − 1, implies b = b′. ¤

By applying Theorem 3.4.1, we get the following:

Corollary 3.4.2. Let v and k be positive integers such that gcd (v, (k − 1)!) = 1. Then, the
following are equivalent:

(i) There exists a perfect 2(k − 1)-supp (v, k)k−1-CDF,

(ii) There exists a perfect 2(k − 1)-supp (pi, k)k−1-CDF for every prime divisor pi of v =
p1p2 · · · pr.

Proof: Note that any block of a perfect 2(k−1)-supp (v, k)k−1-CDF with gcd (v, (k − 1)!) = 1
is a multiple of {0, 1, . . . , k − 1} by Lemma 3.2.2.

((i) ⇒ (ii)) Let F be the perfect 2(k − 1)-supp (v, k)k−1-CDF. Note that (v
p)Zv \ {0} ' Z×p

for any prime divisor p of v. For any block Ba = a · {0, 1, . . . , k − 1} of F , the set ∆Ba

intersects with (v
p)Zv \ {0}, i.e., a` = (v

p)t for some ` ∈ ±{1, 2, . . . , k − 1} and t ∈ Zv \ {0} iff
a ∈ (v

p)Zv \ {0} since gcd (v, (k − 1)!) = 1. In other words, the block Ba lies on (v
p)Zv \ {0}.

This implies that there also exists a perfect 2(k − 1)-supp (p, k)k−1-CDF.

((ii) ⇒ (i)) Let Fi be a perfect 2(k−1)-supp (pi, k)k−1-CDF for each i, 1 ≤ i ≤ r. By applying
Theorem 3.4.1 recursively, and noting pi ≡ 1 (mod 2(k − 1)) and gcd (pi, (k − 1)!) = 1 for
each i, we get the desired perfect 2(k − 1)-supp (v, k)k−1-CDF. ¤

By Theorems 3.3.7, 3.3.8, 3.3.11, and Corollary 3.4.2, we have the following corollaries:

Corollary 3.4.3. There exists a perfect 4-supp (v, 3)2-CDF if and only if every prime divisor
pi of v = p1p2 · · · pr satisfies the condition of Theorem 3.3.7.
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Corollary 3.4.4. There exists a perfect 6-supp (v, 4)3-CDF if and only if every prime divisor
pi of v = p1p2 · · · pr satisfies the condition of Theorem 3.3.8.

Corollary 3.4.5. Let v be a positive integer such that 3 - v. Then, there exists a perfect 8-
supp (v, 5)4-CDF if and only if every prime divisor pi of v = p1p2 · · · pr satisfies the condition
of Theorem 3.3.11.

3.5 The Kronecker density

In this section, we prove that the set of primes p for which there exist perfect 2(k − 1)-supp
(p, k)k−1-CDFs is infinite for each of k = 3, 4, and 5.

3.5.1 Perfect 4-supp (p, 3)2-CDFs

For notations and fundamental facts used in the rest of this chapter, we refer to [61, 64]. Let
ζe = exp(2π

√−1
e ) and let p be a prime ideal in Q(ζe) not containing e. Now, define the eth

power residue symbol by
(

ξ

p

)

e

≡
{

0 if ξ ∈ p,

ξ
N(p)−1

e (mod p) if ξ ∈ Z[ζe] \ p,

where N(p) means the norm of p inQ(ζe)/Q. Note that N(p) = p if p is lying over the principal
ideal (p) for a prime p ≡ 1 (mod e). By this notation, the condition of Theorem 3.3.7 can be
immediately reformulated as follows:

Lemma 3.5.1. Let p ≡ 1 (mod 2`) be a rational prime and put ` = 2r, r ≥ 1. Then the
condition of Theorem 3.3.7 is equivalent to

(
2
p′

)

`

6= 1 and
(−1

p

)

2`

= −1, (3.6)

where p′ ∈ Q(ζ`) is a prime ideal lying over (p) and p ∈ Q(ζ2`) is that lying over p′.

By utilizing the quadratic and quartic reciprocity laws and their supplementary laws, we can
completely characterize prime p’s admitting the condition for the cases of r = 1 and 2 in
Lemma 3.5.1.

Example 3.5.2. (i) In the case of r = 1, the condition that p ≡ 1 (mod 4) and
(
−1
p

)
4

=

−1 are equivalent to p ≡ 5 (mod 8). Then, by the supplementary law of quadratic

reciprocity [61], that is
(

2
p

)
2
≡ (−1)

p2−1
8 for an odd prime p, the condition (3.6) is

equivalent to p ≡ 5 (mod 8).

(ii) In the case of r = 2, the condition that p ≡ 1 (mod 8) and
(
−1
p

)
8

= −1 are equivalent

to p ≡ 9 (mod 16). Then, by the supplementary law of quartic reciprocity [61], that

is
(

2
(π)

)
4
≡ ζ

3b
2

4 for an integer π = a + bζ4 ∈ Q(ζ4) such that π ≡ 1 (mod (1 − ζ4)3),

the condition (3.6) is equivalent to a ≡ 5 (mod 8) and b ≡ 4 (mod 8) for a prime
p = (a + bζ4)(a− bζ4).
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It seems to be difficult to explicitly characterize primes satisfying the condition of Lemma 3.5.1
for every case of r > 2. However, we can show that there are infinitely many such primes
for each r and it is possible to estimate the density of those primes {p} by calculating the
Kronecker density.

Let K be a Galois extension of an algebraic number field F and C be the conjugate class of
σ ∈ G = Gal(K/F ), i.e., C = {γ−1σγ | γ ∈ G}. We define a set Mσ of prime ideals in F for a
fixed σ ∈ G as follows:

Mσ = {P ∩ F |P is a prime ideal in K such that σP ∈ C},
where σP is a Frobenius substitution with respect to P in K/F . The following theorem is
well known as Chebotarëv’s density theorem [101].

Theorem 3.5.3. The Kronecker density δ(Mσ) of Mσ is equal to |C|
|G| , i.e.,

δ(Mσ) = lim
s→1+0

∑

p∈Mσ

1
N(p)s

/ log
1

s− 1
=
|C|
|G| .

Especially, if K/F is an abelian extension, there exist infinitely many prime ideals p in F

such that
(

K/F
p

)
= σ for each σ ∈ Gal(K/F ), and the Kronecker density of the set of such

prime ideals is equal to 1
[K:F ] , where

(
K/F

p

)
is the Artin symbol.

Lemma 3.5.4. The degree of the extension Q(ζ2r2 ,
2r1
√

2)/Q(ζ2r2 ) with 1 ≤ r1 ≤ r2 and
3 ≤ r2 is equal to 2r1−1.

Proof: Let θ = 2r1
√

2. Since the extension is cyclic, we can assume

Gal(Q(ζ2r2 , θ)/Q(ζ2r2 )) = 〈σ〉 and σ2d
= 1,

where σ = (θ → ζθ), and ζθ is a relative conjugate of θ. Then, since

θ = (θ)σ2d

= ζ2d
θ,

we have ζ2d
= 1, i.e., ζ = ζ2d . Therefore, we also have

(θ2d
)σ = (ζθ)2

d
= ζ2d

θ2d
= θ2d

,

i.e., θ2d
is invariant under σ. This implies that θ2d

= 2r1−d√
2 ∈ Q(ζ2r2 ). On the other hand,

it is obvious that 2r1−d√
2 ∈ Q(ζ2r2 ) for r2 ≥ 3 if and only if r1 − d = 1. Hence, we have

d = r1 − 1, i.e., the extension degree is 2r1−1. ¤

Now we prove our main theorem by noting the equivalence of the following (i), (ii), and (iii):

(i) A rational prime p which is relatively prime to an integer e splits completely in Q(ζe),
(ii) A Frobenius substitution σp with respect to p in Q(ζe)/Q is identical,
(iii) p ≡ 1 (mod e).

Furthermore, note that
(

α

p

)

e

= 1 iff
(
Q(ζe, e

√
α)/Q(ζe)
p

)
= 1. (3.7)
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Theorem 3.5.5. The Kronecker density of the set of all prime p’s such that there exists a
perfect 4-supp (p, 3)2-CDF is equal to 5

12 , and there exist infinitely many such primes.

Proof: We investigate the Kronecker density Dr of the set of primes satisfying the condi-
tion (3.6) of Lemma 3.5.1. In the case of r = 1, by Example 3.5.2 (i), the density D1 of
rational prime p’s satisfying (3.6) is obviously equal to 1

4 . Therefore, we consider the case
r ≥ 2. Let P be a prime ideal in Q(ζ2`) lying over (p) and let

σ =

(
Q(ζ4`,

√̀
2)/Q(ζ2`)
P

)
. (3.8)

Then, by (3.7), a necessary and sufficient condition for (3.5.7) is

σ(ζ4`) = −ζ4` and σ(
√̀

2) 6=
√̀

2. (3.9)

Since

Gal(Q(ζ4`,
√̀

2)/Q(ζ2`)) ' Gal(Q(ζ4`,
√̀

2)/Q(ζ2`,
√̀

2))×Gal(Q(ζ2`,
√̀

2)/Q(ζ2`))

is abelian, by Lemma 3.5.4, the density Ar of {P} in Q(ζ2`) satisfying (3.9) is equal to

Ar =
[Q(ζ4`,

√̀
2) : Q(ζ2`,

√̀
2)]− 1

[Q(ζ4`,
√̀

2) : Q(ζ2`,
√̀

2)]
· [Q(ζ2`,

√̀
2) : Q(ζ2`)]− 1

[Q(ζ2`,
√̀

2) : Q(ζ2`)]
=

1
2
· 2r−1 − 1

2r−1
=

2r−1 − 1
2r

.

Then, it is enough to consider only rational primes which split completely in Q(ζ2`). Hence,
the Kronecker density Dr, r ≥ 2, of the set of such primes is equal to

Dr = Ar · 1
[Q(ζ2`) : Q]

=
2r−1 − 1

22r
.

Therefore, the Kronecker density of the set of such primes for all r is in total

∑

1≤r≤r′
Dr =

1
4

+
∑

2≤r≤r′

2r−1 − 1
22r

−→ 5
12

(as r′ →∞),

which completes the proof. ¤

Remark 3.5.6. By Theorem 3.5.5, there exist infinitely many primes satisfying the condition
of Lemma 3.5.1 for each r ≥ 2, and the Kronecker density of those primes is equal to 2r−1−1

22r .

3.5.2 Perfect 6-supp (p, 4)3-CDFs

The condition of Theorem 3.3.8 can be reformulated as follows:

Lemma 3.5.7. Let p = 2`m + 1 be a prime, where ` = 3r′ , r′ ≥ 1, and 3 - m. Then, the
following are equivalent:

(i) There exists a perfect 6-supp (p, 4)3-CDF,
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(ii) There exists an integer r ≤ r′ such that
(

2
p

)

3r

= ζ3(= ζ3r−1

3r ) and
(

3
p

)

3r

= ζ2
3 (= ζ2·3r−1

3r ),

or (
2
p

)

3r

= ζ2
3 and

(
3
p

)

3r

= ζ3,

where p ∈ Q(ζ3r) is a prime ideal lying over (p).

(iii) There exists an integer r ≤ r′ such that
(

2
p′

)

3r−1

= 1,

(
6
p

)

3r

= 1, and
(

2
p

)

3r

6= 1, (3.10)

where p′ ∈ Q(ζ3r−1) is a prime ideal lying over (p) and p ∈ Q(ζ3r) is a prime ideal lying
over p′.

By the cubic reciprocity law and its supplementary law, we can completely characterize prime
p’s satisfying the condition for the case of r = 1 in Lemma 3.5.7.

Example 3.5.8. (Corollary 3.4 of [88]) For the case of r = 1 in Lemma 3.5.7, we apply the
cubic reciprocity law and its supplementary law [61, 64]. The cubic reciprocity law implies
that for a rational integer i prime to 3 and an integer π ∈ Q(ζ3) prime to i and 3 if π is
congruent to a rational integer modulo (1− ζ3)2, then it holds that

(
i

(π)

)

3

=
(

π

(i)

)

3

. (3.11)

The supplementary law of cubic reciprocity implies that for an integer π = a + bζ3 ∈ Q(ζ3)
prime to 3 if π is congruent to a rational integer modulo 3, then it holds that

(
3

(π)

)

3

= ζ
ab
3

3 . (3.12)

For a rational prime p ≡ 1 (mod 6), without loss of generality, we can assume that a ≡ 2
(mod 3) and b ≡ 0 (mod 3) for a prime element π = a+bζ3 ∈ Q(ζ3) such that p = (a+bζ3)(a+
ζ2
3 ). Then, π satisfies the assumption of the cubic reciprocity law and its supplementary law.

Hence, by (3.11), we have
(

2
(π)

)

3

=
(

π

(2)

)

3

= (a + bζ3)
N(2)−1

3 = a + bζ3 (mod 2). (3.13)

Therefore, by (3.12) and (3.13), the condition for the case of r = 1 in Lemma 3.5.7 can be
reformulated as

{
a ≡ 2 (mod 6),
b ≡ 3 (mod 18),

or
{

a ≡ 5 (mod 6),
b ≡ 15 (mod 18),

for a prime element π = a + bζ3 ∈ Q(ζ3) such that p = (a + bζ3)(a + bζ2
3 ).
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Similar to the cases of k = 3, we can show that there are infinitely many primes satisfying
the condition of Lemma 3.5.7 for each r ≥ 1 and it is possible to estimate the density of
those primes {p} by calculating the Kronecker density. To get our main theorem, we need
the following lemma.

Lemma 3.5.9. The degree of the extension Q(ζ3r , 3r1
√

2, 3r2
√

3)/Q(ζ3r) for 1 ≤ r1, r2 ≤ r is
equal to 3r1+r2 .

Proof: Since the extensions Q( 3
√

2)/Q and Q( 3
√

3)/Q are not normal, by the Galois theory,
we have Q( 3

√
2) 6⊂ Q(ζ3r) and Q( 3

√
3) 6⊂ Q(ζ3r), i.e., 2 and 3 are not cubes in Q(ζ3r). Then,

by the Kummer theory, we have

[Q(ζ3r ,
3r1
√

2) : Q(ζ3r)] = 3r1 and [Q(ζ3r ,
3r2
√

3) : Q(ζ3r)] = 3r2 .

Next, we prove K := Q(ζ3r , 3r1
√

2) ∩ Q(ζ3r , 3r2
√

3) = Q(ζ3r). Let θ1 = 3r1
√

2. Since the
extension Q(ζ3r , θ1)/K is cyclic, we can assume

Gal(Q(ζ3r , θ1)/K) = 〈σ〉 and σ3d1 = 1,

where σ = (θ1 → ζθ1), and ζθ1 is a relative conjugate of θ1. Then, since

θ1 = (θ1)σ3d1

= ζ3d1
θ1,

we have ζ3d1 = 1. Therefore, we also have

(θ3d1 )σ = (ζθ1)3
d1 = ζ3d1

θ3d1

1 = θ3d1

1 ,

i.e., θ3d1

1 is invariant under σ. This implies that θ3d1

1 = 3r1−d1
√

2 ∈ K. Similarly, by putting
θ2 = 3r2

√
3 and [Q(ζ3r , θ2) : K] = 3d2 , we have 3r2−d2

√
3 ∈ K. Therefore, it follows that

K = Q(ζ3r ,
3r1−d1

√
2) = Q(ζ3r ,

3r2−d2
√

3),

where r1 − d1 = r2 − d2. On the other hand, 3r2−d2
√

3 ∈ Q(ζ3r , 3r1−d1
√

2) holds iff r1 − d1 = 0.
Hence, we get K = Q(ζ3r) and

[Q(ζ3r ,
3r1
√

2,
3r2
√

3) : Q(ζ3r)]
= [Q(ζ3r ,

3r1
√

2,
3r2
√

3) : Q(ζ3r ,
3r1
√

2) ∩Q(ζ3r ,
3r2
√

3)]
= [Q(ζ3r ,

3r1
√

2,
3r2
√

3) : Q(ζ3r ,
3r1
√

2)] · [Q(ζ3r ,
3r1
√

2,
3r2
√

3) : Q(ζ3r ,
3r2
√

3)]
= [Q(ζ3r ,

3r1
√

2) : Q(ζ3r)] · [Q(ζ3r ,
3r2
√

3) : Q(ζ3r)] = 3r1+r2 ,

which is the desired assertion. ¤

Theorem 3.5.10. The Kronecker density of the set of all prime p’s such that there exists a
perfect 6-supp (p, 4)3-CDF is equal to 3

26 , and there exist infinitely many such primes.

Proof: We investigate the Kronecker density Dr of the set of primes satisfying the con-
dition (3.10) of Lemma 3.5.7. Let p ∈ Q(ζ3r) be a prime ideal lying over (p) and P ∈
Q(ζ3r , 3r−1√

2, 3r√
6) be a prime ideal lying over p, and let

τ =

(
Q(ζ3r , 3r−1√

2, 3r√
6)/Q(ζ3r)

p

)

49



and

σ =

(
Q(ζ3r , 3r√

2, 3r√
6)/Q(ζ3r , 3r−1√

2, 3r√
6)

P

)
.

Then, by (3.7), the condition (3.10) can be reformulated as

τ( 3r−1√
2) = 3r−1√

2, τ( 3r√
6) = 3r√

6, and σ( 3r√
2) 6= 3r√

2. (3.14)

Since the extensions Q(ζ3r , 3r−1√
2, 3r√

6)/Q(ζ3r) and Q(ζ3r , 3r√
2, 3r√

6)/Q(ζ3r , 3r−1√
2, 3r√

6) are
abelian, by Theorem 3.5.3, it is enough to calculate the degrees of the extensions. By noting
that Q(ζ3r , 3s√

2, 3s√
3) = Q(ζ3r , 3s√

2, 3s√
6) for any s and using Lemma 3.5.9, the density Ar of

{p} in Q(ζ3r) satisfying (3.14) is equal to

[Q(ζ3r , 3r√
2, 3r√

6) : Q(ζ3r , 3r−1√
2, 3r√

6)]− 1

[Q(ζ3r , 3r√
2, 3r√

6) : Q(ζ3r , 3r−1√
2, 3r√

6)]
· 1

[Q(ζ3r , 3r−1√
2, 3r√

6) : Q(ζ3r)]
=

2
32r

.

Then, it is enough to consider only rational primes which split completely in Q(ζ3r). Hence,
the Kronecker density Dr of the set of such primes is equal to

Dr = Ar · 1
[Q(ζ3r) : Q]

=
1

33r−1
. (3.15)

Therefore, the Kronecker density of the set of such primes for all r is in total
∑

1≤r≤r′
Dr =

∑

1≤r≤r′

1
33r−1

−→ 3
26

(as r′ →∞),

which completes the proof. ¤

Remark 3.5.11. By Theorem 3.5.3 and (3.15), there exist infinitely many primes satisfying
the condition of Lemma 3.5.7 for each r, and the Kronecker density of those primes is equal
to 1

33r−1 .

3.5.3 Perfect 8-supp (p, 5)4-CDFs

The condition of Theorem 3.3.11 can be reformulated as follows:

Lemma 3.5.12. Let p = 2`m + 1 be a prime, where ` = 2r′ , r′ ≥ 2, and 2 - m. Then, the
following are equivalent:

(i) There exists a perfect 8-supp (p, 5)4-CDF,

(ii) There exists an integer r ≤ r′ such that
(−1

p

)

2r

= 1,

(
2
p

)

2r

= ζ4 and
(

3
p

)

2r

= ζ3
4 ,

or (−1
p

)

2r

= 1,

(
2
p

)

2r

= ζ3
4 and

(
3
p

)

2r

= ζ4,

where p ∈ Q(ζ2r) is a prime ideal lying over (p),
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(iii) There exists an integer r ≤ r′ such that
(−1

p

)

2r

= 1,

(
2
p′′

)

2r−2

= 1,

(
6
p

)

2r

= 1, and
(

2
p′

)

2r−1

6= 1, (3.16)

where p′′ ∈ Q(ζ2r−2), p′ ∈ Q(ζ2r−1), and p ∈ Q(ζ2r) are prime ideals lying over (p), p′′,
and p′, respectively.

By applying the supplementary law of the quadratic reciprocity, we can show that there are
no primes p satisfying the condition for the case of r = 2 in Lemma 3.5.12.

Example 3.5.13. In (3.16), the condition
(
−1
p

)
22

= 1 is equivalent to p ≡ 1 (mod 8). On

the other hand, by the supplementary law of the quadratic reciprocity,
(

2
p

)
2

= 1 for any

prime p ≡ 1 (mod 8). Hence, there are no primes satisfying the condition (3.16) for the case
of r = 2 in Lemma 3.5.12.

Lemma 3.5.14. The degree of the extension Q(ζ2r , 2r1
√

2, 2r2
√

3)/Q(ζ2r) for 1 ≤ r1, r2 ≤ r
and r ≥ 3 is equal to 2r1+r2−1.

Proof: It is well known that Q(
√

m) ⊂ Q(ζN ) for a rational square-free integer m iff M |N ,
where

M =
{ |m| if m ≡ 1 (mod 4),

4|m| if m ≡ 2, 3 (mod 4).

Hence, we have that Q(
√

2) ⊂ Q(ζ2r) for every r ≥ 3 and Q(
√

3) 6⊂ Q(ζ2r) for any r.
Furthermore, the extensions Q( 2i√

2)/Q and Q( 2i√
3)/Q are not normal when i ≥ 2, by the

Kummer theory, we have

[Q(ζ2r ,
2r1
√

2) : Q(ζ2r)] = 2r1−1 and [Q(ζ2r ,
2r2
√

3) : Q(ζ2r)] = 2r2 .

Similar to the proof of Lemma 3.5.9, when we put θ1 = 2r1
√

2, θ2 = 2r2
√

3, and K = Q(ζ2r , θ1)∩
Q(ζ2r , θ2), we have

K = Q(ζ2r ,
2r1−d1

√
2) = Q(ζ2r ,

2r2−d2
√

3),

where 2d1 = [Q(ζ2r , θ1) : K], 2d2 = [Q(ζ2r , θ2) : K], and r1 − d1 − 1 = r2 − d2. On the other
hand, 2r1−d1

√
2 ∈ Q(ζ2r , 2r2−d2

√
3) holds iff r1 − d1 = 1 and 2r1−d1

√
2 ∈ Q(ζ2r). Hence, we get

K = Q(ζ2r) and

[Q(ζ2r ,
2r1
√

2,
2r2
√

3) : Q(ζ2r)]
= [Q(ζ2r ,

2r1
√

2,
2r2
√

3) : Q(ζ2r ,
2r1
√

2) ∩Q(ζ2r ,
2r2
√

3)]
= [Q(ζ2r ,

2r1
√

2,
2r2
√

3) : Q(ζ2r ,
2r1
√

2)] · [Q(ζ2r ,
2r1
√

2,
2r2
√

3) : Q(ζ2r ,
2r2
√

3)]
= [Q(ζ2r ,

2r1
√

2) : Q(ζ2r)] · [Q(ζ2r ,
2r2
√

3) : Q(ζ2r)] = 2r1+r2−1,

which is the desired assertion. ¤

Theorem 3.5.15. The Kronecker density of the set of all prime p’s such that there exists a
perfect 8-supp (p, 5)4-CDF is equal to 1

112 , and there exist infinitely many such primes.
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Proof: We investigate the Kronecker density Dr of the set of primes satisfying the condition
(3.16) of Lemma 3.5.12. Since D2 = 0 by Example 3.5.13, we consider the case when r ≥ 3.
Let p ∈ Q(ζ2r) be a prime ideal lying over (p) and P ∈ Q(ζ2r+1 , 2r−1√

2, 2r√
6) be a prime ideal

lying over p, and let

τ =

(
Q(ζ2r+1 , 2r−2√

2, 2r√
6)/Q(ζ2r)

p

)

and

σ =

(
Q(ζ2r+1 , 2r−1√

2, 2r√
6)/Q(ζ2r+1 , 2r−2√

2, 2r√
6)

P

)
.

Then, by (3.7), the condition (3.10) can be reformulated as

τ(ζ2r+1) = ζ2r+1 , τ( 2r−2√
2) = 2r−2√

2, τ( 2r√
6) = 2r√

6, and σ( 2r−1√
2) 6= 2r−1√

2. (3.17)

By noting that Q(ζ2r+1 , 2s√
2, 2s√

3) = Q(ζ2r+1 , 2s√
2, 2s√

6) for any s and using Lemma 3.5.14,
the density Ar, r ≥ 3, of {p} in Q(ζ2r) satisfying (3.17) is equal to

[Q(ζ2r+1 , 2r−1√
2, 2r√

6) : Q(ζ2r+1 , 2r−2√
2, 2r√

6)]− 1

[Q(ζ2r+1 , 2r−1√
2, 2r√

6) : Q(ζ2r+1 , 2r−2√
2, 2r√

6)]
· 1

[Q(ζ2r+1 , 2r−2√
2, 2r√

6) : Q(ζ2r)]
=

1
22r−1

.

Then, it is enough to consider only rational primes which split completely in Q(ζ2r). Hence,
the Kronecker density Dr, r ≥ 3, of the set of such primes is equal to

Dr = Ar · 1
[Q(ζ2r) : Q]

=
1

23r−2
. (3.18)

Therefore, the Kronecker density of the set of such primes for all r ≥ 3 is in total

∑

1≤r≤r′
Dr =

∑

3≤r≤r′

1
23r−2

−→ 1
112

(as r′ →∞),

which completes the proof. ¤

Remark 3.5.16. In the above proof, we treated the case of r = 2 as an exception. But, it is
easy to see A2 = 0 since [Q(ζ23 ,

√
2, 22
√

6) : Q(ζ23 , 22
√

6)] = 1 holds by noting that
√

2 ∈ Q(ζ23).
Furthermore, it is remarkable that by Theorem 3.5.3 and (3.18) there exist infinitely many
primes satisfying the condition of Lemma 3.5.12 for each r ≥ 3, and the Kronecker density of
those primes is equal to 1

23r−2 .
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Chapter 4

Strong difference families,
difference covers, and relative
difference families

In [22], M. Buratti pointed out an insufficiency of systematic treatments of constructions for
relative difference families. The concept of strong difference families was introduced to cover
such a problem. However, unfortunately, only a few papers related to strong difference families
have appeared in the literature in the past ten years. In this chapter, strong difference families,
difference covers and their connections to relative difference families and optical orthogonal
codes are discussed. Some known results and fundamental facts on strong difference families
and difference covers are summarized in Section 4.1. In Sections 4.2, 4.3, and 4.4, existence
and non-existence theorems related to strong difference families and difference covers are
given. In Section 4.5, we show an asymptotic existence theorem on relative difference families
under the assumption that a strong difference family exists.

4.1 Fundamental facts on strong difference families and dif-
ference covers

In Section 1.3, we introduced the concept of strong difference families. Now, we again provide
its definition. A family E = {Ai | 1 ≤ i ≤ m} of multisets, called blocks, of size k defined
on an abelian group N is called an (N, k, µ) strong difference family (SDF) if the multiset
{b−a | a, b ∈ Ai; 1 ≤ i ≤ m} of differences covers all elements in N exactly µ times. Note that
each block is defined as a multiset and all elements including 0 must be covered as differences,
which are major differences from the definition of ordinary difference families. With notations
of a group ring, we restate the definition of an (N, k, µ)-SDF E = {Ai | 1 ≤ i ≤ n} ⊆ ZN as

∑

1≤i≤m

AiA
(−1)
i = k{0}+ µN. (4.1)

We may also call it as an (n, k, µ)-SDF over N when |N | = n. If N is cyclic, an (N, k, µ)-SDF
is called cyclic and denoted by (n, k, µ)-CSDF. The number of blocks of an (n, k, µ)-SDF is
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nµ/k(k − 1), and hence it must be satisfied that nµ ≡ 0 (mod k(k − 1)). Furthermore, the
element 0 ∈ N is expressed in even ways as differences in any multiset, and then µ ≡ 0 (mod 2)
must hold. When |E| = 1, the uniquely included multiset D ∈ E is called an (N, k, µ)
difference cover. As far as the author knows, only the two papers [24, 25] consciously using
these useful concepts have been appeared in the past ten years. In both of the papers, as
a topic of graph decompositions, they mainly treated connections between (G,N,Γ, λ)-DFs
and (N, Γ, µ)-SDFs where Γ is an arbitrary graph, however, only a few new constructions of
(N, k, µ)-SDFs were given. For the formal definitions of (G, N,Γ, λ)-DFs and (N,Γ, µ)-SDFs,
see [24, 25]. Note that the special case when Γ is a complete subgraph with k vertices exactly
gives the definitions of (G,N, k, λ)-DFs and (N, k, µ)-SDFs. We note that relative difference
families and strong difference families can be studied for any finite group but we restrict our
study to abelian groups. Some of our results can be extended to non-abelian groups as well.

We give the following summary of known results on cyclic SDFs.

Theorem 4.1.1. There exist cyclic SDFs for the following parameters (n, k, µ):

(i) [9] (m(m− 1),m2,m(m + 1)) for any positive integer m,
(ii) [9] (m(m + 1),m2,m(m− 1)) for any positive integer m,
(iii) [22] (m + 1,m2, m2(m− 1)) for any positive integer m,
(iv) [22] (m,m + 1, (m + 1)(m + 2)) for any positive integer m,
(v) [22] (m,m, m(m− 1)) for any positive integer m,
(vi) [8, 9, 22] (p, p, p− 1) for any odd prime p,
(vii) [8, 9, 22] (p, p + 1, p + 1) for any odd prime p ≡ 3 (mod 4),
(viii) [22] (p, p + 1, 2p + 2) for any odd prime p,
(ix) [8, 22] (p(p + 2), p(p + 2) + 1, p(p + 2) + 1) for any twin primes p and p + 2,
(x) [8, 9, 22] ( qd−1

q−1 , qd, qd(q − 1)) for any prime power q and any positive integer d.

Theorem 4.1.2. There do not exist cyclic difference covers for the following parameters
(n, k, µ):

(i) ([9]) (n, k, 2) for all positive integers n and k excepting (n, k) = (3, 3) and (6, 4),
(ii) ([8, 9]) (m2(m± 1),m2,m∓ 1) for all positive integers m,
(iii) ([8, 9]) (m2(m+1)

t ,m2, t(m− 1)) for all positive integers t and m satisfying t |m + 1.

For individual cyclic SDFs with small k, see [23, 28, 31, 34, 55, 53, 78].

4.2 Strong difference families of order 2

4.2.1 Sums of squares

The following is an immediate generalization of Proposition 2.2 in [22].

Lemma 4.2.1. Let E be a family of m k-multisets Ai, 1 ≤ i ≤ m, defined on an abelian
group N , where we denote the replication number of each element a ∈ Ai by ci,a. Then E is
an (N, k, µ)-SDF if and only if the following holds:

µ =
m∑

i=1

∑

a∈N

ci,a(ci,a − 1) =
m∑

i=1

∑

a∈N

ci,aci,a+b for every b ∈ N \ {0}.
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By Theorem 4.2.1, a necessary and sufficient condition for {Ai | 1 ≤ i ≤ m} defined on Z2 to
be a (2, k, k(k − 1)m/2)-CSDF is

m∑

i=1

(ci,0(ci,0 − 1) + ci,1(ci,1 − 1))) =
m∑

i=1

2ci,0ci,1.

Noting that k = ci,0 + ci,1 for every i, this condition can be immediately reformulated as∑m
i=1(k − 2ci,0)2 = km. By substituting xi = k − 2ci,0, 1 ≤ i ≤ m, as variables in this

equation, we have:

Lemma 4.2.2. There exists a (2, k, k(k− 1)m/2)-CSDF for given k and m if and only if the
equation

m∑

i=1

x2
i = km (4.2)

has at least one solution such that every xi has the same parity with k and satisfies |xi| ≤ k.

The problem whether u can be expressed as a sum of m squares or not for given positive
integers u and m has been studied by many researchers in relation to that of factorizations
of integers in an algebraic number field. For this problem, the following solution is known
[94, 108].

Theorem 4.2.3. A positive integer u can be expressed as a sum of m squares if and only if

(m = 1) u is square,
(m = 2) ei is even for every pi ≡ 3 (mod 4) if u = pe1

1 pe2
2 · · · per

r for distinct primes pi,
(m = 3) u 6= 4a(8b + 7) for any positive integers a, b ≥ 0,
(m ≥ 4) u is arbitrary.

4.2.2 Existence of cyclic strong difference families of order 2

From Lemma 4.2.2 and Theorem 4.2.3, to get a complete solution for the existence of
(2, k, k(k − 1)m/2)-CSDFs, it must be known when every xi has the same parity with k
and satisfies |xi| ≤ k in (4.2). Note that x2

i ≡ 0 (mod 4) if xi is even, and x2
i ≡ 1 (mod 8)

otherwise.

First, we give a necessary condition.

Lemma 4.2.4. There do not exist (2, k, k(k − 1)m/2)-CSDFs for all of the following cases:

(i) k ≡ 2 (mod 4) and m ≡ 1 (mod 2),
(ii) k ≡ 3 (mod 4) and m ≡ 1 (mod 2),
(iii) k ≡ 5 (mod 8) and m ≡ 1 (mod 2),
(iv) k ≡ 3 (mod 4) and m ≡ 2 (mod 4).

Proof: In Case (i), denote k = 4`+2 and m = 2t+1. Since k is even, all xi’s must be even and
we can write the left hand side of (4.2) as

∑2t+1
i=1 x2

i = 4
∑2t+1

i=1 w2
i , where wi = xi/2 for all i,

1 ≤ i ≤ m. On the other hand, the right hand side of (4.2) is (4`+2)(2t+1) = 4(2`t+`+t)+2,
which is impossible. In Case (ii), denote k = 4` + 3 and m = 2t + 1. Since k is odd, all xi’s
must be odd and we can write the left hand side of (4.2) as

∑2t+1
i=1 x2

i = 8(
∑2t+1

i=1 wi) + 2t + 1,
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where wi = (x2
i − 1)/8 for all i, 1 ≤ i ≤ m. On the other hand, the right hand side of (4.2)

is (4` + 3)(2t + 1) = 4(2`t + ` + t) + 2t + 3, which is impossible. The remaining cases can be
checked similarly. ¤

Next, we treat the case of k ≤ 2.

Lemma 4.2.5. There exists a (2, k, k(k − 1)m/2)-CSDF for k ≤ 2 if and only if m ≡
0 (mod k).

Proof: The necessity was given in Lemma 4.2.4, and so we show the sufficiency directly.
For the case of k = 1, take xi = 1 for all i, 1 ≤ i ≤ m, in (4.2). For the case of k = 2, take
x2i−2 = 0 and x2i−1 = 2 for all i, 1 ≤ i ≤ m/2. ¤

In the following, we treat the case of m ≤ 7.

Lemma 4.2.6. There exists a (2, k, k(k − 1)m/2)-CSDF for m ≤ 7 if and only if k satisfies
the following:

(m = 1) k is square,
(m = 2) ei is even for every pi ≡ 3 (mod 4) if k = pe1

1 pe2
2 · · · per

r for distinct primes pi,
(m = 3) k 6≡ 2, 3 (mod 4) and k 6= 4a(8b + 5) for any positive integers a, b ≥ 0;
(m = 4) k is arbitrary,
(m = 5) k ≡ 0, 1, 4 (mod 8),
(m = 6) k 6≡ 3 (mod 4),
(m = 7) k ≡ 0, 1, 4 (mod 8).

Proof: Note that if km ≤ k2, all xi’s satisfy |xi| ≤ k in the equation (4.2). Furthermore,
for the cases of m = 1, 2, and 3 except for the cases of Lemma 4.2.4, all xi’s have the same
parity with k in the equation (4.2). By these facts, Theorem 4.2.3, Lemmas 4.2.2, and 4.2.4,
the assertions for m = 1, 2, and 3 follow.

(Case m = 4). When k ≥ 4 is even, it is obvious that all xi’s are even in the equation
(4.2). Then, by Theorem 4.2.3 (iv) and km ≤ k2, xi’s have a suitable solution. When
k ≥ 3 is odd, put k = 2` + 1 and x4 = 3. In this case, the equation (4.2) is reformulated
as

∑3
i=1 x2

i = 8(` − 1) + 3 (≤ k2), and then xi’s are odd and have a suitable solution by
Theorem 4.2.3 (iii). The cases of k = 1 and 2 are completed by Lemma 4.2.4.

(Case m = 5). When k ≡ 0 (mod 8) with k ≥ 8, put k = 8` and x5 = 4. Then the equation
(4.2) is reformulated as

∑4
i=1 x2

i = 4(10`− 4) (≤ k2), and hence this case can be reduced to
that of m = 4 and k is even. Similarly, when k ≡ 1 (mod 8) with k ≥ 9 or k ≡ 4 (mod 8) with
k ≥ 4, put x5 = 3 or x5 = 2, respectively, and then each of these cases are reduced to Case
m = 4. Thus, together with Lemmas 4.2.4 and 4.2.5, we obtain the assertion for m = 5.

Similar to the case of m = 5, we can reduce the cases of m = 6 and 7 to that of m = 4. In
these cases, we give only combinations of (x5, x6) and k or (x5, x6, x7) and k.

(Case m = 6).

(x5, x6) =





(2, 2) if k ≡ 0 (mod 4) with k ≥ 4,
(3, 3) if k ≡ 1 (mod 4) with k ≥ 5,
(2, 4) if k ≡ 2 (mod 4) with k ≥ 6.
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(Case m = 7).

(x5, x6, x7) =





(4, 4, 4) if k ≡ 0 (mod 8) with k ≥ 8,
(3, 3, 3) if k ≡ 1 (mod 8) with k ≥ 9,
(2, 2, 2) if k ≡ 4 (mod 8) with k ≥ 4.

¤

In the following two lemmas, we use (2, k, k(k − 1)m/2)-CSDFs of m = 4, 5, and 6 given in
Lemma 4.2.6.

Lemma 4.2.7. There exists a (2, k, k(k− 1)m/2)-CSDF for any m ≡ 1 (mod 4) with m ≥ 5,
and for any m ≡ 3 (mod 4) with m ≥ 11, except for Case (i), (ii), and (iii) of Lemma 4.2.4.

Proof: When m ≡ 1 (mod 4), take (m − 5)/4 copies of a (2, k, 2k(k − 1))-CSDF and one
(2, k, 5k(k− 1)/2)-CSDF. When m ≡ 3 (mod 4), take (m− 11)/4 copies of a (2, k, 2k(k− 1))-,
one (2, k, 5k(k − 1)/2)-CSDF, and one (2, k, 3k(k − 1))-CSDF. ¤

Lemma 4.2.8. There exists a (2, k, k(k−1)m/2)-CSDF for any even m ≥ 4, except for Case
(iv) of Lemma 4.2.4.

Proof: When m ≡ 0 (mod 4), take m/4 copies of a (2, k, 2k(k − 1))-CSDF. When m ≡
2 (mod 4), take (m− 6)/4 copies of a (2, k, 2k(k− 1))-CSDF and one (2, k, 3k(k− 1))-CSDF.
¤

Combining all lemmas, we immediately get the following:

Theorem 4.2.9. There exists a (2, k, k(k − 1)m/2)-CSDF if and only if k satisfies the fol-
lowing:

(m = 1) k is square,
(m = 2) ei is even for every pi ≡ 3 (mod 4) if k = pe1

1 pe2
2 · · · per

r for distinct primes pi,
(m = 3) k 6≡ 2, 3 (mod 4) and k 6= 4a(8b + 5) for any positive integers a, b ≥ 0,
(m ≥ 4) k is arbitrary when m ≡ 0 (mod 4),

k 6≡ 3 (mod 4) when m ≡ 2 (mod 4),
k ≡ 0, 1, 4 (mod 8) when m ≡ 1 (mod 2).

In Section 4.5, we can find a nice application of Theorem 4.2.9.

4.3 Difference covers from partial difference sets

A construction of difference covers generated from partial difference sets (and ordinary dif-
ference sets) were discussed in [8, 9]. In this section, we try to generalize it. A k-subset (not
multiset) D of an abelian group N is called an (N, k, λ1, λ2) partial difference set if every non-
identity element in D appears in ∆D exactly λ1 times and every non-identity element not in
D exactly λ2 times. From this definition, using notations of the group ring of Subsection 1.1,
the set D is a partial difference set iff

DD(−1) = λ2N + (λ1 − λ2)D + γ{0}, (4.3)
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where γ = k − λ2 if 0 6∈ D and γ = k − λ1 if 0 ∈ D. Note that D is a partial difference set
iff N − D is. In this section, we assume D = D(−1). In this case, it is easy to see that D
(containing 0) is a partial difference set iff D − {0} is. For further basic properties of partial
difference sets, see [77].

Lemma 4.3.1. Let D be an (n, k, λ1, λ2) partial difference set with 0 ∈ D and D = D(−1)

over an abelian group N and set d = λ2 − λ1. Let s be any integer satisfying

4n | s(−2d− 4k + d2s + 4ks− 4λ1s), (4.4)

If x,y, and z defined by

(x, y, z) =
(

y + s,
s(−2d− 4k + d2s + 4ks− 4λ1s)

4n
,
ds

2
+ x

)
(4.5)

are all non-negative, then D′ = x(D − {0}) + y(N − D) + z{0} is an (N, k′ = (d2 + 4k −
4λ1)s2/4, µ) difference cover, where µ = k′(k′ − 1)/n.

Proof: For the (N, k, λ1, λ2) partial difference set D, let D′ = x(D−{0})+y(N−D)+z{0}.
Note that x, y, and z are non-negative integers by the assumption. Then D′ is the desired
difference cover. Indeed, since D is a partial difference sets, it holds that

D′D′(−1)

= (x(D − {0}) + y(N −D) + z{0})2
= (x− y)2D2 + y2N2 + (x− z)2{0}2 − 2(x− y)(x− z)D{0}

−2y(x− z)N{0}+ 2y(x− y)ND

= ((x− y)2λ2 + ny2 − 2y(x− z) + 2ky(x− y))N + ((k − λ1)(x− y)2 + (x− z)2){0}
+((x− y)2(λ1 − λ2)− 2(x− y)(x− z))D

= µN + k′{0},
where |D′| = x(k − 1) + y(g − k) + z = s2(d2 + 4k − 4λ1)/4 and µ = k′(k′ − 1)/n. ¤

It is easy to see that the condition of Lemma 4.3.1 is also necessary for D′ = x(D − {0}) +
y(N −D)+ z{0} to be a difference cover. To ease the expression of this condition, we restrict
the parameters of D (containing 0) to the following two types:

(n, k, λ1, λ2) = (m2, r(m− 1) + 1,m + r2 − 3r + 2, r2 − r), (4.6)

(n, k, λ1, λ2) = (m2, r(m + 1) + 1,−m + r2 + 3r + 2, r2 + r). (4.7)

The above parameters (4.6) and (4.7) are known as Latin square type and negative Latin
square type, respectively (see [77]). Then, by Lemma 4.3.1, we immediately have the following
corollaries:

Corollary 4.3.2. Let D be a Latin square type partial difference set with D = D(−1) having
the parameter (4.6) over N , and let u be any integer such that m |u(2r − 1). If x, y, and z
defined by

(x, y, z) =
(

u2 + 2u− u(2r − 1)
m

, u2 − u(2r − 1)
m

,u(2r −m) + u2 − u(2r − 1)
m

)

are all non-negative, then D′ = x(D−{0}) + y(N −D) + z{0} is an (N,u2m2, u2(u2m2− 1))
difference cover.
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Corollary 4.3.3. Let D be a negative Latin square type partial difference set with D = D(−1)

having the parameter (4.7) over N , and let u be any integer such that m |u(2r + 1). If x, y,
and z defined by

(x, y, z) =
(

u2 + 2u− u(2r + 1)
m

, u2 − u(2r + 1)
m

,u(m− 2r) + u2 − u(2r + 1)
m

)

are all non-negative, then D′ = x(D−{0}) + y(N −D) + z{0} is an (N,u2m2, u2(u2m2− 1))
difference cover.

Example 4.3.4. In [45], Davis found partial difference sets with parameters

(p2r, (p2r + 1)/2, (p2r + 3)/4, (p2r − 1)/4) over Zr
p2

for r ≥ 2, and

(p4a+4b, (p4a+4b + 1)/2, (p4a+4b + 3)/4, (p4a+4b − 1)/4) over Z4a
p2 × Z4b

p2 ,

where a + b is a power of 2. By applying Corollary 4.3.2, we have a (p2r, u2p2r, u2(u2p2r − 1))
difference cover over Zr

p2 and a (p4a+4b, u2p4a+4b, u2(u2p4a+4b−1)) difference cover over Z4a
p2 ×

Z4b
p2 , where u is an arbitrary integer. This example contains Corollary 3.8 in [9].

Remark 4.3.5. Lemma 4.3.1 provides many new infinite series of difference covers since
partial difference sets with the required condition for parameters abundantly exist, see, e.g.,
[45, 71, 77, 99, 100] and references there in. Note that Lemma 4.3.1 includes Lemma 3.6 in
[9].

4.4 Difference covers over a finite field

In this section, we give some classes of new difference covers from finite fields using a classical
approach of cyclotomic cosets.

The following is a necessary and sufficient condition for the multiset yC∞ +
∑

0≤i≤e−1 xiC
e
i

consisting of cyclotomic coset Ce
i ’s of index e and C∞ = {0} to be a difference cover.

Lemma 4.4.1. Let q = ef + 1 be a prime power. Then, the multiset D = yC∞ +∑
0≤i≤e−1 xiC

e
i is an (Fq, k = y + f

∑
0≤i≤e−1 xi, µ) difference cover if and only if the fol-

lowing hold:

(i) y2 + f
∑

0≤i≤e−1 x2
i = k + µ, and

(ii) when both of f and q are odd,

∑

0≤i<j≤e−1

xixj((j−`, i−`)e+(j−`+
e

2
, i−`+

e

2
)e)+

∑

0≤i≤e−1

x2
i (i−`, i−`)e+y(x`+x`+ e

2
) = µ

for every `, 0 ≤ ` ≤ e/2− 1, or
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(ii)’ when f or q is even,
∑

0≤i<j≤e−1

2xixj(j − `, i− `)e +
∑

0≤i≤e−1

x2
i (i− `, i− `)e + 2yx` = µ

for every `, 0 ≤ ` ≤ e− 1.

Proof: By expanding DD(−1) using Lemma 1.3.3, we easily have

DD(−1) =
∑

0≤`≤e−1

(
∑

0≤i<j≤e−1

xixj((j − `, i− `)e + (i− `, j − `)e) +
∑

0≤`≤e−1

yx`C
e
`

+
∑

0≤i≤e−1

x2
i (i− `, i− `)e)Ce

` +
∑

0≤`≤e−1

yx`C
e (−1)
` + (y2 + f

∑

0≤i≤e−1

x2
i )C∞.

In the above, if f and q are odd, the coefficient of Ce
` is equal to

∑

0≤i<j≤e−1

xixj((j − `, i− `)e + (j − ` +
e

2
, i− ` +

e

2
)e) +

∑

0≤i≤e−1

x2
i (i− `, i− `)e + y(x` + x`+ e

2
)

by Lemma 1.3.2 (ii) and by noting −1 ∈ Ce
e/2. Furthermore, the coefficient above is also equal

to Ce
`+e/2 since (i− `, i− `)e = (i− ` + e

2 , i− ` + e
2)e by Lemma 1.3.2 again. If f or q is even,

the coefficient of Ce
` is equal to
∑

0≤i<j≤e−1

2xixj(j − `, i− `)e +
∑

0≤i≤e−1

x2
i (i− `, i− `)e + 2yx`

by Lemma 1.3.2 and by noting −1 ∈ Ce
0 . Then, by the equation (4.1), we get the assertion.

¤

First, we consider the case of e = 2. To this end, we need cyclotomic numbers of order 2,
which are given in the following lemma.

Lemma 4.4.2. ([105]) When e = 2, it holds that

(i) (0, 0)2 = (1, 0)2 = (1, 1)2 = (f − 1)/2 and (0, 1)2 = (f + 1)/2 when f is odd;

(ii) (0, 0)2 = (f − 2)/2 and (0, 1)2 = (1, 0)2 = (1, 1)2 = f/2 when f is even.

Theorem 4.4.3. Let q be a prime power ≡ 3 (mod 4). For any even integers a and b, let

k1 =
q(b2 + qa2)

4
and k2 =

q(4a + b2 + qa2)
4

+ 1.

Then, there exists a (q, ki, ki(ki − 1)/q) difference cover over Fq for each i = 1 and 2.

Proof: Put

(x0, x1, y) =
(

x1 + b,
a(2 + aq) + b(b− 2)

4
,−af +

b + 2x1 − a

2

)

and

(x0, x1, y) =
(

x1 + b,
a(2 + aq) + b(b− 2)

4
, af +

b + 2x1 + a + 2
2

)
,

respectively. Then, by using Lemma 4.4.2, one can directly check that the conditions (i) and
(ii) in Lemma 4.4.1 are satisfied. ¤
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Theorem 4.4.4. Let q be a prime power ≡ 1 (mod 4). There exist (q, a2, a2(a2 − 1)/q) and
(q, (a + 1)2, (a + 1)2((a + 1)2 − 1)/q) difference covers over Fq for any positive integer a such
that q | a(a + 1).

Proof: Put

(x0, x1, y) =
(

a(a + 1)
q

,
a(a + 1)

q
,−a +

a(a + 1)
q

)

and

(x0, x1, y) =
(

a(a + 1)
q

,
a(a + 1)

q
, a + 1 +

a(a + 1)
q

)
,

respectively. Then, by using Lemma 4.4.2, one can directly check that the conditions (i) and
(ii)’ of Lemma 4.4.1 are satisfied. ¤

Theorem 4.4.5. Let q be a prime power ≡ 1 (mod 4). There exist a (q, a2q, a2(a2q − 1))
difference cover over Fq for any integer a.

Proof: Put (x0, x1, y) = (a2 ± a, a2 ∓ a, a2). Then, by using Lemma 4.4.2, one can directly
check that the conditions (i) and (ii)’ of Lemma 4.4.1 are satisfied. ¤

Secondly, we treat the case of e = 3.

Lemma 4.4.6. ([105]) When e = 3, it holds that

(0, 0)3 = (q − 8 + c)/9,

(0, 1)3 = (1, 0)3 = (2, 2)3 = (2q − 4− c− 9d)/18,

(0, 2)3 = (2, 0)3 = (1, 1)3 = (2q − 4− c + 9d)/18,

(1, 2)3 = (2, 1)3 = (q + 1 + c)/9,

where 4q = 4pr = c2 + 27d2 for a prime p and an integer c ≡ 1 (mod 3) such that

(i) if p ≡ 2 (mod 3), then r is even and 4q = (±2pr/2)2 + 27 · 02;

(ii) if p ≡ 1 (mod 3), then 4q = c2 + 27d2 is the unique representation of 4q such that
gcd (c, p) = 1; the sign of d is determined by a choice of a primitive root of Fq.

Theorem 4.4.7. Let q = p2r be a prime power, where p ≡ 2 (mod 3). Then, there exist a
(q, q2u2, qu2(q2u2 − 1)) difference cover over Fq for any integer u.

Proof: Put a = pr or a = −pr depending on whether r is odd or even, respectively, and let

(x0, x1, x2, y) =
(

x2 + 2au, x0, qu
2 − u(1 + 4a)

3
, qu2 +

u(−1 + q)
3

)
.

Then, by using Lemma 4.4.6 as c = 2a and d = 0, one can directly check that the conditions
(i) and (ii)’ in Lemma 4.4.1 are satisfied. ¤

It seems that the size k of difference covers obtained in Theorem 4.4.7 is large, but the result
is new. Furthermore, in particular when p = 2, we can find a good application to relative
difference families, see Corollary 4.5.10 in the next section.

Thirdly, we treat the case when e = 4 and f is odd, i.e., q ≡ 5 (mod 8).
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Lemma 4.4.8. ([105]) When e = 4 and f is odd, it holds that

(0, 0)4 = (2, 0)4 = (2, 2)4 = (q − 7 + 2s)/16,
(0, 1)4 = (1, 3)4 = (3, 2)4 = (q + 1 + 2s− 8t)/16,
(0, 2)4 = (q + 1− 6s)/16,

(0, 3)4 = (1, 2)4 = (3, 1)4 = (q + 1 + 2s + 8t)/16,
(1, 0)4 = (1, 1)4 = (2, 1)4 = (2, 3)4 = (3, 0)4 = (3, 3)4 = (q − 3− 2s)/16,

where q = pr = s2 + 4t2 for a prime p and an integer s ≡ 1 (mod 4) such that gcd (s, p) = 1
and the sign of t is determined by the choice of a primitive root of Fq.

Theorem 4.4.9. Let q = s2 + 4t2 be a prime power ≡ 5 (mod 8), where s ≡ 1 (mod 4) and
gcd (s, q) = 1, and u an arbitrary integer. Put

k1 = 1 + (2 + s2u2)u2q and k2 = 1 + (1 + t2u2)u2q.

Then, there exists a (q, ki, ki(ki − 1)/q) difference cover over Fq for each i = 1 and 2.

Proof: Put

(x0, x1, x2, x3, y) = (u((2−s)u+s2u3−2), x0+2u+2su2, x0+4u, x0+2u+2su2, x0+1+2u+su2)

and

(x0, x1, x2, x3, y) = (u(u3t2 +u(1− t)− 1), x0 +2u+2tu2, x0 +2u, x0 +2tu2, x0 +1+u+ tu2),

respectively. Then, by using Lemma 4.4.8, one can directly check that the conditions (i) and
(ii) of Lemma 4.4.1 are satisfied. ¤

Finaly, we treat the case when e = 6, f is odd, and 2 is a cube in Fq.

Lemma 4.4.10. ([105]) Assume that 2 is a cube in Fq. When e = 6 and f is odd, it holds
that by

(0, 0)6 = (3, 0)6 = (3, 3)6 = (q − 11− 8s)/36,

(0, 1)6 = (2, 5)6 = (4, 3)6 = (0, 2)6 = (1, 4)6 = (5, 3)6 = (q + 1− 2s + 12t)/36,
(0, 3)6 = (q + 1 + 16s)/36,

(0, 4)6 = (1, 3)6 = (5, 2)6 = (0, 5)6 = (2, 3)6 = (4, 1)6 = (q + 1− 2s− 12t)/36,
(1, 0)6 = (2, 2)6 = (3, 1)6 = (3, 4)6 = (4, 0)6 = (5, 5)6 = (q − 5 + 4s + 6t)/36,

(1, 1)6 = (2, 0)6 = (3, 2)6 = (3, 5)6 = (4, 4)6 = (5, 0)6 = (q − 5 + 4s− 6t)/36,

(1, 2)6 = (1, 5)6 = (2, 4)6 = (4, 2)6 = (5, 1)6 = (5, 4)6 = (2, 1)6 = (4, 5)6 = (q + 1− 2s)/36,

where q = s2 +3t2 with s ≡ 1 (mod 3) such that gcd (s, p) = 1 and the sign of t is determined
by the choice of a primitive root of Fq.

The cubic character of 2 ∈ Fq can be characterized by the following lemma.

Lemma 4.4.11. ([105]) Assume that q ≡ 1 (mod 3) is an odd prime power such that 4q =
c2 + 27d2 with c ≡ 1 (mod 3) yielding the cyclotomic numbers for e = 3 in Lemma 4.4.6.
Then, 2 is a cube in Fq if and only if c is even.
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Theorem 4.4.12. Let q = s2 + 3t2 ≡ 7 (mod 12) be a prime power, where s ≡ 1 (mod 3)
and gcd (s, q) = 1, such that 2 is a cube in Fq. Let u be an arbitrary positive integer such
that s | 2(1+3ut2) and put k = (5s2 +12t2)(1+uq)2/s2. Then, there exists a (q, k, k(k−1)/q)
difference cover over Fq.

Proof: Put

x0 = x2 = x4 =
(4 + 5us2 + 12ut2)(1 + uq)

s2
, x1 = x5 =

(4− 2s + 5us2 + 12ut2)(1 + uq)
s2

,

x3 =
(4 + 4s + 5us2 + 12ut2)(1 + uq)

s2
, and y =

(4 + (1 + 5u)s2 + 12ut2)(1 + uq)
s2

.

Then, by using Lemma 4.4.10, one can directly check that the conditions (i) and (ii) of
Lemma 4.4.1 are satisfied. ¤

Note that C6
0 ∪C6

1 ∪C6
3 forms a difference set if q is a prime power of the form q = x2 +27 ≡ 1

(mod 6) [105]. Hence, by using the theorem given in [8, 9], we also get a family of difference
covers for e = 6.

In the theorems of this section, we calculated only the cases when e ≤ 6. One may obtain
further new series of difference covers over a finite field with more computations using cyclo-
tomic numbers and Jacobi sums, see [11, 70, 77, 105]. Again, most of the resultant difference
covers obtained in this section are new and include the results (vi) and (vii) of Theorem 4.1.1.

4.5 Relative difference families and strong difference families

4.5.1 Fundamental relations

Theorem 4.5.1. Let G = N × H be an abelian group. Let σ : N × H → N be the
projection defined by σ((x, y)) = x. If there exists a (G,N × {0}, k, λ)-DF F , then σ(F) is
an (N, k, (|H| − 1)λ)-SDF.

Proof: Let E = σ(F) = {σ(B) |B ∈ F}. Then, we have
⋃

A∈E
∆A =

⋃

B∈F
∆σ(B) =

⋃

B∈F
σ(∆B) = λσ(N × (H \ {0})) = λ(|H| − 1)N.

¤

The following was also given in [24].

Theorem 4.5.2. Let H be any subgroup of an abelian group G. Let σ : G → N = G/H be
the canonical homomorphism. If there exists a (G, k, µ)-SDF F , then σ(F) is an (N, k, |H|µ)-
SDF.

The above is easy, but useful to discuss about non-existence of (nv, n, k, λ)-DFs. The following
are nice applications of Theorems 4.5.1 and 4.5.2 using Theorem 4.2.9.

Example 4.5.3. (i) By Theorems 4.5.1 and 4.2.9, (Z2×H,Z2×{0}, k, k(k−1)m/2(|H|−
1))-DFs do not exist for all pairs (k, m) satisfying the converse condition of Theo-
rem 4.2.9, where H is any abelian group satisfying |H| − 1 | k(k− 1)m/2. For example,
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consider (2v, 2, 5, 1)-CDFs. The admissible v for the existence of (2v, 2, 5, 1)-CDFs is
v ≡ 1 (mod 10). On the other hand, (2v, 2, 5, 1)-CDFs do not exist for all v ≡ 11
(mod 20) by taking H = Zv with v = 10u + 1 and k = 5. This also implies the
non-existence of optimal (2v, 5, 1)-OOCs for all v ≡ 11 (mod 20) since any optimal
(2v, 5, 1)-OOC with v ≡ 1 (mod 10) must be a (2v, 2, 5, 1)-DF.

(ii) Consider (6, 5, 10m)-CSDFs. By Theorems 4.5.2 and 4.2.9, (6, 5, 10m)-CSDFs do not ex-
ist for all odd m by taking H = Z3, n = 3m, and k = 5, which implies the non-existence
of (6v, 6, 5, 1)-CDFs for any v ≡ 11 (mod 20) with gcd (v, 3) = 1 by Theorem 4.5.1.

Next, we discuss about an existence problem of relative difference families via strong difference
families. Wilson [110] showed that there exist (Fq, {0}, k, λ)-DFs for sufficiently large prime
power q unconsciously using trivial (1, k, k(k− 1))-SDFs. After his work, many authors used
his method to construct several kinds of combinatorial designs and codes. On the other hand,
in [22, 24, 25], it was tried to generalize the theorem of Wilson to (N × Fq, N × {0}, k, λ)-
DFs consciously using (N, k, µ)-SDFs, and indeed many new infinite family of (N × Fq, N ×
{0}, k, λ)-DFs were obtained. The following theorems played an important role in [22, 24, 25].

Theorem 4.5.4. Let E = {Ai | 1 ≤ i ≤ n} be an (N, k, µ)-SDF, where Ai =
∑

a∈N ci,aX
a,

1 ≤ i ≤ m, and let q be a prime power and λ a positive integer such that µ |λ(q−1). Assume
that there exists a set S of λ(q − 1)/µ elements of F×q and m k-subsets

Li = {xi,a,h | a ∈ suppAi; 1 ≤ h ≤ ci,a} ⊂ Fq,

1 ≤ i ≤ m, such that S ·∆b = λF×q for every b ∈ N , where

∆b =
⋃

1≤i≤m

{xi,a,h − xi,a′,h′ | a− a′ = b; 1 ≤ h ≤ ci,a; 1 ≤ h′ ≤ ci,a′},

and suppAi means the set of underlying elements in the multiset Ai. Then the family F =
{Bi,s | 1 ≤ i ≤ m; s ∈ S} with

Bi,s = {(a, sxi,a,h) ∈ N × Fq | a ∈ suppAi, 1 ≤ h ≤ ci,a}

is an (N × Fq, N × {0}, k, λ)-DF.

Given an `-tuple (j1, j2, . . . , j`) ∈ {0, 1, . . . , e − 1}` and a set A = {x1, x2, . . . , x`λ} of `λ
elements of Fq, if each cyclotomic coset Ce

ji
, 1 ≤ i ≤ `, contains exactly λ elements of A, then

we say that A is λ-transversal for Ce
ji
, 1 ≤ i ≤ `.

Theorem 4.5.5. Let E = {Ai | 1 ≤ i ≤ m} be an (N, k, µ)-SDF with µ = dλ and q ≡ 1
(mod d) be a prime power. If there are m k-subsets Li’s of F×q such that every ∆b is λ-
transversal for Cd

i , 0 ≤ i ≤ d − 1, where ∆b was defined in Theorem 4.5.4, then there exists
an (N × Fq, N × {0}, k, λ)-DF.

Proof: We can take S = Cd
0 in Theorem 4.5.4, then it is clear that S ·∆b = λF×q . ¤

In the rest of this chapter, we use Theorem 1.3.8.
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Remark 4.5.6. By Theorem 1.3.8, we can choose a k-subset B = {x1, x2, . . . , xk} of Fq such
that every element of the set {xi − xj | 1 ≤ i < j ≤ k} (in general, a complete system of
representatives for the cosets of {−1, 1} in ∆B) can be distributed into a cyclotomic coset Ce

i

specified arbitrarily for any odd prime power q ≡ 1 (mod e) with q ≥ minP (e, k − 1, 1), where
P (e, `, t) means the set of all prime powers q satisfying drq(`, e)/e`e ≥ t in Theorem 1.3.8. It
is important that the index ` of xj−xi ∈ Ce

` depends only on `′ of xi−xj ∈ Ce
`′ . In particular,

when q is an odd prime power, ` = −`′ if q ≡ e + 1 (mod 2e), and ` = `′ if q ≡ 1 (mod 2e).
When q is a power of 2, it holds that ` = `′.

The following two theorems are generalizations of Theorem 5.1 in [25] to any λ, but restricting
Γ as a complete graph. Hereafter, we denote the subgroup {a ∈ N | 2a = 0} of an abelian
group N by N2.

Theorem 4.5.7. If there is an (N, k, µ)-SDF with µ = 2dλ, then there exists an (N×Fq, N×
{0}, k, 2λ)-DF for any prime power q ≡ 1 (mod d) with q ≥ minP (d, k − 1, 1).

Proof: We see that it can be taken subsets Li’s, 1 ≤ i ≤ m, in Theorem 4.5.4 such that ∆b

is 2λ-transversal for Cd
i , 0 ≤ i ≤ d − 1. For b ∈ N2 and any subsets Li’s, there is a subset

Hb such that ∆b = ±Hb since x ∈ ∆b iff −x ∈ ∆b. (Note that Hb = −Hb when q is even.)
Hence, it is sufficient that Hb is λ-transversal for Cd

i , 0 ≤ i ≤ d− 1. Furthermore, for b 6∈ N2,
we have ∆b = −∆−b since x ∈ ∆b iff −x ∈ ∆−b. Hence, it is sufficient that either of ∆b or
∆−b is 2λ-transversal for Cd

i , 0 ≤ i ≤ d − 1. By Theorem 1.3.8 and Remark 4.5.6, there are
such distributions of differences to cyclotomic cosets for any prime power q ≡ 1 (mod d) with
q ≥ minP (d, k − 1, 1). Then, by Theorem 4.5.5, we get the assertion. ¤

Theorem 4.5.8. If there is an (N, k, µ)-SDF with µ = 2dλ, then there exists an (N×Fq, N×
{0}, k, λ)-DF for any prime power q ≡ 2d + 1 (mod 4d) with q ≥ minP (2d, k − 1, 1).

Proof: It is enough to consider the case when λ is odd by Theorem 4.5.7. We see that it is
possible to take subsets Li’s, 1 ≤ i ≤ n, in Theorem 4.5.4 such that ∆b is λ-transversal for
C2d

i , 0 ≤ i ≤ 2d− 1. Note that −1 ∈ C2d
d−1 since q ≡ 2d + 1 (mod 4d). For b ∈ N2, similar to

Theorem 4.5.7, it is sufficient that Hb is λ-transversal for C2d
i , 0 ≤ i ≤ d − 1. Furthermore,

for b 6∈ N2, it is sufficient that either of ∆b or ∆−b is λ-transversal for C2d
i , 0 ≤ i ≤ 2d − 1.

By Theorem 1.3.8 and Remark 4.5.6, there are such distributions of differences. Then, by
Theorem 4.5.5, we get the assertion. ¤

4.5.2 An improvement on distributions of differences

In this subsection, we improve the statement of the case when λ is odd in Theorem 4.5.8. If
there is an (N, k, µ)-SDF with µ = 2dλ, then it is clear that there also exists an (N, k, tµ)-
SDF for any positive integer t, which also means by Theorem 4.5.8 that there exists an
(N ×Fq, N ×{0}, k, λ)-DF for a sufficiently large prime power q ≡ 2dt+1 (mod 4dt). Hence,
if there exists an (N × Fq, N × {0}, k, λ)-DF for any large prime power q ≡ 1 (mod 2sd),
where s is a fixed positive integer, then there exists an (N × Fq, N × {0}, k, λ)-DF for any
sufficiently large prime power q ≡ 1 (mod 2d).

Theorem 4.5.9. Let E = {Ai | 1 ≤ i ≤ m} be an (N, k, µ)-SDF with µ = 2dλ, where
Ai =

∑
a∈N ci,aX

a, 1 ≤ i ≤ m, and q a prime power ≡ 1 (mod 2sd). Assume that there
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exists a family of 2s−1m k-subsets

Li,j = {xi,j,a,h | a ∈ suppAi; 1 ≤ h ≤ ci,a} for 1 ≤ i ≤ m and 1 ≤ j ≤ 2s−1 (4.8)

defined on Fq such that for every b ∈ N

∆b =
⋃

1≤i≤m

⋃

1≤j≤2s−1

{xi,j,a,h − xi,j,a′,h′ | a− a′ = b; 1 ≤ h ≤ ci,a; 1 ≤ h′ ≤ ci,a′} = ±Hb (4.9)

for some Hb ⊂ Fq and each Hb is λ-transversal for C2s−1d
i , 0 ≤ i ≤ 2s−1d − 1. Let S be a

complete system of representatives for the cosets of {−1, 1} in C2s−1d
0 . Then the family

F = {Bi,j,s | 1 ≤ i ≤ m; 1 ≤ j ≤ 2s−1; s ∈ S}

with
Bi,j,s = {(a, sxi,j,a,h) ∈ N × Fq | a ∈ suppAi; 1 ≤ i ≤ m; 1 ≤ j ≤ 2s−1}

is an (N × Fq, N × {0}, k, λ)-DF.

Proof: Note that −1 ∈ C2s−1d
0 by the assumption q ≡ 1 (mod 2sd). Then we have

∆F =
⋃

b∈N

{b} × (S ·∆b) =
⋃

b∈N

{b} × (±S ·Hb)

=
⋃

b∈N

{b} × (C2s−1d
0 ·Hb) = λ(N × F×q ).

¤

When N = {0} or Zm
2 , i.e., N = N2, it is obvious that for s = 1 and for any choice of

sets of (4.8) there exists a set Hb such that ∆b = ±Hb for every b ∈ N . Hence, similar to
Theorems 4.5.7 and 4.5.8, by using Theorem 1.3.8 and Remark 4.5.6 we have the following:

Corollary 4.5.10. Let N = {0} or Zm
2 . If there is an (N, k, µ)-SDF with µ = 2dλ, then

there exists an (N × Fq, N × {0}, k, λ)-DF for any prime power q ≡ 1 (mod 2d) with q ≥
minP (d, k − 1, 1).

Note that Corollary 4.5.10 was also given in [22].

For (N, k, µ)-SDFs with a special structure, one may be able to find some sets of (4.8) sat-
isfying the condition (4.9). Indeed, in [22], by using special (N, k, µ = 2dλ)-SDFs, (N ×
Fq, N × {0}, k, λ)-DFs for prime powers q ≡ 1 (mod 2d) were constructed. But, for general
(N, k, µ)-SDFs, it seems to be difficult to know whether there is a distribution of differences
satisfying (4.9). We can give partial solutions for this problem.

Lemma 4.5.11. Let k = 3, 4, or 5. If there is an (N, k, µ)-SDF E with µ = 2dλ, then
there exists an (N × Fq, N × {0}, k, λ)-DF for any prime power q ≡ 1 (mod 2skd) with
q ≥ minP (2sk−1d, `k, tk), where

(k, sk, `k, tk) = (3, 3, 3, 2), (4, 3, 6, 24 · 47 + 1), and (5, 4, 12, 80 · 159 + 1).
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Remark 4.5.12. In (4.8), if there is a subset Hi,b ⊂ Fq such that
⋃

1≤j≤2s

{xi,j,a,h − xi,j,a′,h′ | a− a′ = b; 1 ≤ h ≤ ci,a; 1 ≤ h′ ≤ ci,a′} = ±Hi,b, (4.10)

then the condition (4.9) is satisfied. Furthermore, in order to verify the condition that each
Hb is λ-transversal for C2s−1d

` , 0 ≤ ` ≤ 2s−1d− 1, it is sufficient that all elements of Hi,b can
be distributed to cyclotomic cosets specified arbitrarily for all i.

Proof: For the case of k = 3, there are three patterns of Ai = {0, a, b} ∈ E , those are, (i)
a ∈ N2 and b 6∈ N2, (ii) a, b, a − b 6∈ N2, and (iii) a, b ∈ N2. For each pattern, we give Li,j ’s
of (4.8).

(i) For Ai = {0, a, b} ∈ E with a ∈ N2 and b 6∈ N2, take xi,j,a,h’s of Li,j ’s of (4.8) as

(xi,j,0,1, xi,j,a,h, xi,j,b,h′) =





(0,−x1 + x2,−x1) for j = 1,
(0,−x2 + y1, y1) for j = 2,
(0, x1 + y2, x1) for j = 3,
(0,−y1 − y2,−y1) for j = 4,

then Hi,b’s of (4.10) are

Hi,a = {x1 − x2, x2 − y1, x1 + y2, y1 + y2}, Hi,b = {x1, y1}, and Hi,b−a = {x2, y2}.
Assume that we want to distribute each element of Hi,b’s to cyclotomic cosets so that

(x1 − x2, x2 − y1, x1 + y2, y1 + y2, x1, y1, x2, y2) ∈ C4d
h1
× C4d

h2
× · · · × C4d

h8

holds. Now we choose x1, x2, y1, and y2 from Fq in that order. More detailed steps are as
follows:

(1) Choose x1 arbitrarily from C4d
h5

.

(2) Choose x2 so that x2 ∈ C4d
h7

and x1 − x2 ∈ C4d
h1

, where such x2 always exists for
q ≥ minP (22d, 2, 1) by Theorem 1.3.8.

(3) Choose y1 so that y1 ∈ C4d
h6

, x2− y1 ∈ C4d
h2

, and x1 + y2 6= y1 + y2, where such y1 always
exists for q ≥ minP (22d, 2, 2) by Theorem 1.3.8. Note that x1 + y2 6= y1 + y2 means
that all elements in ±Hi,b’s have pairwise distinct forms after the choice of y1. This
condition is required to use Theorem 1.3.8 in the next step.

(4) Choose y2 so that y2 ∈ C4d
h8

, x1 + y2 ∈ C4d
h3

, and y1 + y2 ∈ C4d
h4

, where such y2 always
exists for q ≥ minP (22d, 3, 1) by Theorem 1.3.8.

Thus, every element in Hi,b’s can be distributed to arbitrary cyclotomic cosets of Fq for any
prime power q ≡ 1 (mod 23d) with q ≥ minP (22d, 3, 2). For the patterns (ii) and (iii), we
give only the forms of Li,j ’s of (4.8) and the order of choice of xi’s.

(ii) For Ai = {0, a, b} ∈ E with a, b, a− b 6∈ N2, let

(xi,j,0,1, xi,j,a,h, xi,j,b,h′) =





(0, x1, x2) for j = 1,
(0,−x1,−x2) for j = 2,
(0, y1, y2) for j = 3,
(0,−y1,−y2) for j = 4,
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then we have

Hi,a = {x1, y1}, Hi,b = {x2, y2}, and Hi,b−a = {x2 − x1, y2 − y1}.
We can choose x1, x2, y1, y2 from Fq in that order so that all elements in Hi,b’s are dis-
tributed to arbitrary cyclotomic cosets of Fq for any prime power q ≡ 1 (mod 23d) with
q ≥ minP (22d, 2, 1).

(iii) For Ai = {0, a, b} ∈ E with a, b ∈ N2, let

(xi,j,0,1, xi,j,a,h, xi,j,b,h′) =





(0, w1, w2) for j = 1;
(0, x1, x2) for j = 2;
(0, y1, y2) for j = 3;
(0, z1, z2) for j = 4,

then we have

Hi,a = {w1, x1, y1, z1}, Hi,b = {w2, x2, y2, z2}, and Hi,b−a = {w2−w1, x2−x1, y2−y1, z2−z1}.
We choose w1, w2, x1, · · · , z2 in that order so that all elements in Hi,b’s are distributed to arbi-
trary cyclotomic cosets of Fq for any prime power q ≡ 1 (mod 23d) with q ≥ minP (22d, 2, 1).

Hence, by Theorem 4.5.9 and Remark 4.5.12, there exists an (N × Fq, N × {0}, 3, λ)-DF for
any prime power q ≡ 1 (mod 23d) with q ≥ minP (22d, 3, 2) if there is an (N, k, µ)-SDF with
µ = 2dλ. For the cases of k = 4 and 5, one can see the assertions similarly by using Tables 4.1
and 4.2, respectively. Here, we should remark the following to aid checking the cases of k = 4
and 5:

(i) The value ` of P (2sk−1, `, t) is naturally determined when the forms of Li,j ’s are given
and the order of choices of xi’s is determined.

(ii) As described in the step (3) of the pattern (i) for the case of k = 3, after the choice of
each xi, all elements in ±Hi,b’s must have pairwise distinct forms to use Theorem 1.3.8
in the next step. This condition is obviously satisfied when t of P (2sk−1, `, t) is greater
than the number of equations arose from all pairs of two distinct elements in ±Hi,b’s,
which is less than or equal to

(
k(k−1)2sk−1

2

)
. Therefore, we set t =

(
k(k−1)2sk−1

2

)
+ 1, and

then we can avoid to consider individual cases.

¤

By Theorems 4.5.8 and 4.5.9 and Lemma 4.5.11, we immediately get:

Theorem 4.5.13. Let k = 3, 4, or 5. If there is an (N, k, µ)-SDF with µ = 2dλ, then
there exists an (N × Fq, N × {0}, k, λ)-DF for any prime power q ≡ 1 (mod 2d) with q ≥
minP (2sk−1d, `k, tk), where

(k, sk, `k, tk) = (3, 3, 3, 2), (4, 3, 6, 24 · 47 + 1), and (5, 4, 12, 80 · 159 + 1).

Remark 4.5.14. In the cases of k ≤ 5, this method has been implicitly used by many
authors [23, 28, 31, 34, 55, 53, 78, 118], which is generalized to Theorem 4.5.13. In order to
get (N × Fq, N × {0}, k, λ)-DFs for all prime powers q ≡ 1 (mod 2d), Theorem 4.5.13 makes
the necessity for individual studies of distributions of differences abolish, and requires only
the existence of an (N, k, µ)-SDF and (N × Fq, N × {0}, k, λ)-DFs for small q’s.
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Table 4.1: This table gives xi,j,a,h’s of (4.8) for each pattern of blocks Ai = {0, a, b, c} of any
(n, 4, λ)-SDF. In the column j, the symbols o and e indicate j = 1, 3 and j = 2, 4, respectively.

a, b, c j (xi,j,0,1, xi,j,a,h1 , xi,j,b,h2 , xi,j,c,h3) `

1 (1, x1,−1− y1 + z1,−y1)
a, b ∈ N2, 2 (−1,−x2, 1 + y2 − z1, y2)
c 6∈ N2 3 (1− y1, 2 + x2 + y2, z2, 2) 5

4 (−1 + y2,−2− x1 − y1,−z2,−2)
order y1 → y2 → x1 → x2 → z1 → z2

1 (1,−1− x1 + y1,−x1, z)
a, b− c ∈ N2, 2 (−1, 1 + x2 − y1, x2,−z)

c 6∈ N2, 3 (1, x1 + y2, 2 + x1,−1 + y1 + y2 − z) 6
4 (−1,−x2 − y2,−2− x2, 1− y1 − y2 + z)

order y1 → z → y2 → x1 → x2

1 (1,−1− x1 + y1,−x1,−x1 + z)
a ∈ N2, b 6∈ N2, 2 (−1, 1 + x2 − y1, x2, x2 − z)
c, b− c 6∈ N2, 3 (1, x1 + y2, 2 + x1,−x2 + z) 4

4 (−1,−x2 − y2,−2− x2, x1 − z)
order x1 → x2 → z → y1 → y2

a, b, c ∈ N2 (0, xj , yj , zj), 1 ≤ j ≤ 4 3
order x1 → y1 → z1 → x2 → · · · → z4

a, b, c 6∈ N2, o (0, xj , yj , zj)
a− b, b− c, a− c 6∈ N2 e (0,−xj−1,−yj−1,−zj−1) 3

order x1 → y1 → z1 → x3 → y3 → z3

Example 4.5.15. For k = 4 and 5, by Theorems 4.2.9, 4.1.1, 4.4.3, 4.4.4, and 4.4.5, there
are (n, k, µ)-CSDFs with the following parameters:

(n, k, µ) = (1, 4, 12), (2, 4, 6), (3, 4, 4), (6, 4, 2), (1, 5, 20), (2, 5, 20) and (5, 5, 4).

Then, by Theorem 4.5.13, there exist (np, n, k, 1)-CDFs (or optimal (np, k, 1)-OOCs) for the
parameters (n, k, µ) and for any sufficiently large prime p ≡ 1 (mod µ).
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Table 4.2: This table gives xi,j,a,h’s of (4.8) for each pattern of blocks Ai = {0, a, b, c, d} of any
(n, 5, λ)-SDF. In the column j, the symbols o and e indicate j = 1, 3, 5, 7 and j = 2, 4, 6, 8,
respectively.

a, b, c, d j (xi,j,0,1, xi,j,a,h1 , xi,j,b,h2 , xi,j,c,h3 , xi,j,d,h4 ) `

1 (1,−1− v1 + w1, x1,−y1,−v1)
2 (−1, 1 + v2 − w1,−x2,−y2, v2)
3 (1, v1 + z1, 2 + v1 + v2 + x2, 2− y3, 2 + v1)

a, b, c ∈ N2, 4 (−1,−v2 − z1,−2− v1 − v2 − x1,−2− y4,−2− v2)
d 6∈ N2 5 (1,−1 + v2 + w2, x3,−v1 + v2 + y1, v2) 7

6 (−1, 1− v1 − w2,−x4,−v1 + v2 + y2,−v1)
7 (1,−v2 + z2, 2− v1 − v2 + x4, 2 + v1 − v2 + y3, 2− v2)
8 (−1, v1 − z2,−2 + v1 + v2 − x3,−2 + v1 − v2 + y4,−2 + v1)

order v1 → v2 → w1 → w2 → x1 → x2 → x3 → x4 → y1 → y2 → y3 → y4 → z1 → z2

1 (−1− v1, 1− w1,−v1 − w1, x1 − w1, y1)
2 (1 + v2,−1 + w1, v2 + w1,−x1 + w1,−y1)
3 (1 + v1, 2− y2, 3 + v1 − y2,−x1 + w1, 2 + v1 + v2 + y1)

a, b− c ∈ N2, 4 (−1− v2,−2 + y2,−3− v2 + y2, x1 − w1,−2− v1 − v2 − y1)
c, d, c− d 6∈ N2 5 (−1 + v2, 1− w2, v2 − w2, x2 − w2,−1 + v1 + v2 − w2 + y1 + y2) 12

6 (1− v1,−1 + w2,−v1 + w2,−x2 + w2, 1− v1 − v2 + w2 − y1 − y2)
7 (1− v2,−w1 − w2 + y2, 1− v2 + y2 − w1 − w2,−x2 + w2, 1− w2 + y1 + y2)
8 (−1 + v1, w1 + w2 − y2,−1 + v1 − y2 + w1 + w2, x2 − w2,−1 + w2 − y1 − y2)

order w2 → w1 → v1 → v2 → y2 → y1 → x1 → x2

1 (−1, 1 + v1 − w1, v1 − x1, v1,−x2)
2 (3 + v2 − x1, 1− x1 + w1, 2, 2− x1,−x2 − 2v1 − v2 + x1)
3 (−1− v2 + x1,−v1 − v2 + x1 − w2, 0,−2− v1 − v2 + x1, x2 + v1 − x1)

a, d ∈ N2, 4 (−1− v2,−2 + w2,−2− v1 − v2 + x1, 0, x2 + v1)
b, c, c− b 6∈ N2 5 (−1, 1 + v3 − w3, v3 − x3, v3,−x4) 8

6 (3 + v4 − x3, 1− x3 + w3, 2, 2− x3,−x4 − 2v3 − v4 + x3)
7 (−1− v4 + x3,−v3 − v4 + x3 − w4, 0,−2− v3 − v4 + x3, x4 + v3 − x3)
8 (−1− v4,−2 + w4,−2− v3 − v4 + x3, 0, x4 + v3)

order v1 → v2 → x1 → x2 → w1 → w2 → v3 → v4 → x3 → x4 → w3 → w4

1 (1,−1− v1 + w1, x1 − v1,−v1 + y1,−v1)
2 (−1, 1 + v2 − w1,−x1 + v2, v2 − y1, v2)
3 (1, v1 + z1, v1 − x2,−v2 + y1, 2 + v1)

a ∈ N2, b, c, d 6∈ N2, 4 (−1,−v2 − z1,−v2 + x2, v1 − y1,−2− v2)
b− c, c− d, b− d 6∈ N2 5 (1,−1 + v2 + w2, v2 − x2, v2 + y2, v2) 6

6 (−1, 1− v1 − w2,−v1 + x2,−v1 − y2,−v1)
7 (1,−v2 + z2, 2 + v1 − x1, v1 + y2, 2− v2)
8 (−1, v1 − z2,−2− v2 + x1,−v2 − y2,−2 + v1)

order v1 → v2 → y1 → y2 → x1 → x2 → w1 → w2 → z1 → z2

1 (1,−1− v1 + w1, x1, y1,−v1)
2 (−1, 1 + v2 − w1,−x2,−y1, v2)
3 (1, v1 + w2, 2 + v1 + v2 + x2,−1 + w1 + w2 − y1, 2 + v1)

a, b, d− c ∈ N2, 4 (−1,−v2 − w2,−2− v1 − v2 − x1, 1− w1 − w2 + y1,−2− v2)
c 6∈ N2, 5 (1, 5 + v2 − w1 − w2 − w3 + 2y1 + 2y2,−x1 + y1 + y2, y2, v2) 12

6 (−1,−5− v1 + w1 + w2 + w3 − 2y1 − 2y2, x2 − y1 − y2,−y2,−v1)
7 (1,−v2 + w3, 2− v1 − v2 − x2 + y1 + y2, 5− w1 − w2 + 2y1 + y2, 2− v2)
8 (−1, v1 − w3,−2 + v1 + v2 + x1 − y1 − y2,−5 + w1 + w2 − 2y1 − y2,−2 + v1)

order y1 → y2 → v1 → v2 → w1 → w2 → w3 → x1 → x2

a, b, c, d ∈ N2, (0, vj , wj , xj , yj), 1 ≤ j ≤ 8 4
order v1 → w1 → x1 → y1 → v2 → · · · → y8

a, b, c, d 6∈ N2, o (0, vj , wj , xj , yj)
a− b, a− c, a− d 6∈ N2, e (0,−vj−1,−wj−1,−xj−1, yj−1) 4
b− c, b− d, c− d 6∈ N2

order v1 → w1 → x1 → y1 → v3 → · · · → y7
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Chapter 5

Cyclic relative difference families
with variable blocksize

In this chapter, we present a new construction method of optimal optical orthogonal codes
with λc = 1 including an already known constructions of OOCs. Our construction is based
on the concept of “cyclic relative difference families with variable blocksize.”

A family of s ki-subsets Ai, 1 ≤ i ≤ s, of Znv is called a cyclic (nv, n, {ki | 1 ≤ i ≤ s}, λ)
relative difference family with variable blocksize, briefly denoted by (nv, n, {ki | 1 ≤ i ≤ s}, λ)-
CDF, if the list

{b− a | a, b ∈ Ai; 1 ≤ i ≤ s}

contains every element of Znv \ vZnv exactly λ times but no element of vZnv.

We can define relative difference families with variable blocksize in any finite group, but we
restrict ourselves to cyclic groups because of our applications. Relative difference families
with variable blocksize for n = 1 (defined in a general group) were treated in many papers
under the motivation for constructing Hadamard matrices, for example, see [104, 115, 116].
Recently, Ding [47] showed that there exists a (qm−1

n , 1, {ki | 1 ≤ i ≤ q}, qm−1−1
n )-CDF for a

prime power q and for positive integers m and n such that gcd (n,m) = 1 and n | q− 1, where
each ki is bounded as

qm−1 − nq
m
2 − 1

n
≤ ki ≤ qm−1 + nq

m
2 − 1

n
(5.1)

for any i. For n > 1 a quite general recursive construction of such difference families is known
[118, 119]. However, there are only a few known direct constructions for n > 1 even if the
cyclic case.

Section 5.1 is devoted to providing some fundamental facts on characters over finite fields
used in this chapter. In Sections 5.2 and 5.3, we provide a new construction of cyclic relative
difference families with variable blocksize by modifying Ding’s construction [47] and improve
the bound (5.1) given by Ding [47]. Finally, in Section 5.4, we obtain a new infinite series of
optimal (v, k, 1, 1)-OOCs as a corollary of results in the previous sections.
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5.1 Group characters and basic lemmas

For a prime p and a positive integer r, let q = pr. Let TrFq and TrFqm/Fq
denote the absolute

trace from Fq to Fp and the relative trace from Fqm to Fq, respectively. An additive character
of Fq is a nonzero function χ from Fq to the set of nonzero complex numbers such that
χ(x + y) = χ(x)χ(y) for any pair (x, y) of Fq. For each b ∈ Fq, the function

χb(c) = e
2π
√−1TrFq (bc)

p for any c ∈ Fq

defines an additive character of Fq. χ0 is called the trivial additive character of Fq, which
satisfies χ0(c) = 1 for any c ∈ Fq. The additive character χ1 of Fq is called canonical.

A multiplicative character of Fq is a function λ from F×q to the set of complex numbers such
that λ(xy) = λ(x)λ(y) for (x, y) ∈ F×q ×F×q . For each j = 0, 1, . . . , q− 2, the function λj with

λj(αh) = e
2π
√−1jh
q−1 for h = 0, 1, . . . , q − 2

defines a multiplicative character of Fq, where α is a fixed primitive root of Fq. It is obvious
that the multiplicative characters of Fq form a cyclic group of order q−1, called the character
group of Fq, that is isomorphic to the multiplicative group of Fq. This means that any
multiplicative character can be expressed as λ = λj

1 for some j. The multiplicative character
λ0 of Fq is called trivial, which satisfies that λ0(c) = 1 for c ∈ F×q . For each character λ,
the conjugate character λ̄ is defined by λ̄(x) = λ(x) for all x ∈ F×q , where λ(x) means the
complex conjugate of λ(x). Furthermore, we extend the domain of a multiplicative character
to all elements of Fq as λj(0) = 0 for all j 6= 0 and λ0(0) = 1.

Let λ be a multiplicative and χ an additive character of Fq. Then the sum G(λ, χ) =∑
c∈F×q λ(c)χ(c) is called the Gaussian sum. It is well known [76] that

G(λ, χ) =





q − 1 if λ = λ0, χ = χ0,
−1 if λ = λ0, χ 6= χ0,
0 if λ 6= λ0, χ = χ0

(5.2)

holds. If λ 6= λ0 and χ 6= χ0, it holds that

|G(λ, χ)| = q1/2. (5.3)

Let χ′ be an additive and λ′ a multiplicative character in Fq. Then χ′ and λ′ can be
“lifted” to the extension field Fqm by setting χ(β) = χ′(TrFqm/Fq

(β)) for β ∈ Fqm and
λ(β) = λ′(NFqm/Fq

(β)) for β ∈ F×qm , where NFqm/Fq
is a relative norm from Fqm to Fq. It is

clear that χ is an additive and λ a multiplicative character of Fqm . The following theorem
known as Davenport-Hasse Theorem establishes an important relationship between G(λ′, χ′)
in Fq and G(λ, χ) in Fqm .

Theorem 5.1.1. (Theorem 5.14 in [76]) Let χ′ be an additive and λ′ a multiplicative character
of Fq, not both of them trivial. Suppose that χ′ and λ′ are lifted to characters χ and λ,
respectively, of the extension field Fqm . Then, it holds that

G(λ, χ) = (−1)m−1G(λ′, χ′)m.
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Let λ1, . . . , λt be multiplicative characters of Fq. Then the sum

J(λ1, . . . , λt) =
∑

c1+···+ct=1

λ1(c1) · · ·λt(ct)

is called a Jacobi sum in Fq. The following theorems show relationships between Gaussian
sums and Jacobi sums.

Theorem 5.1.2. (Theorem 5.21 in [76]) Let λ1, . . . , λt be nontrivial multiplicative characters
of Fq and χ be a nontrivial additive character of Fq. If λ1 · · ·λt is trivial, then it holds that

J(λ1, . . . , λt) = −1
q
G(λ1, χ) · · ·G(λt, χ). (5.4)

Whereas if λ1 · · ·λt is nontrivial, then

J(λ1, . . . , λt) =
G(λ1, χ) · · ·G(λt, χ)

G(λ1 · · ·λt, χ)
(5.5)

holds.

Theorem 5.1.3. (Theorem 5.27 in [76]) Let λ be a multiplicative character of Fq of order
n ≥ 2 and χ be a nontrivial additive character of Fq. Then it holds that

G(λ, χ)n = λ(−1)qJ(λ, λ)J(λ, λ2) · · ·J(λ, λn−2).

Further basic properties of Gaussian sums and Jacobi sums are referred to [76].

Theorem 5.1.4. (Theorem 5.30 in [76]) Let χ be a nontrivial additive character of Fq, n ∈ N,
and λ be a multiplicative character of order d = gcd (n, q − 1) of Fq. Then,

∑

c∈Fq

χ(acn + b) = χ(b)
d−1∑

j=1

λ̄j(a)G(λj , χ)

holds for any a, b ∈ Fq with a 6= 0.

From now on, we denote the canonical additive characters of Fqm and Fq by χ and χ′, respec-
tively. The following was proved in Theorem 9 of [47].

Lemma 5.1.5. ([47]) Let n and m be positive integers such that n | q−1 and gcd (n,m) = 1.
Then, ∑

b∈Fqm

∑

c∈Fq

χ(bncx) = qm

holds for any x ∈ F×qm .

To prove our main theorem, we use the following:

Lemma 5.1.6. Let λ be a multiplicative character of Fqm of order n. If n | q − 1 and
gcd (n,m) = 1,

∑
d∈F×q λj(d) = 0 holds for every 1 ≤ j ≤ n− 1.

73



Proof: By the assumptions q ≡ 1 (mod n) and gcd (n,m) = 1, it is easy to see that the
restriction of λ to the subfield Fq of Fqm is also a multiplicative character of order n. Hence,
by using (5.2) with χ = χ0, we get our assertion. ¤

Lemma 5.1.7. Let n and m be positive integers such that n | q−1 and gcd (n,m) = 1. Then

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dx)) =
{

qm+1 if x ∈ F×q ,
qm if x 6∈ Fq.

Proof: If x ∈ F×q , by Lemma 5.1.5, we have

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dx)) = q
∑

b∈Fqm

∑

c∈Fq

χ(bnc) = qm+1.

If x 6∈ Fq, it is obvious that c + dx = 0 if and only if (c, d) = (0, 0). Then, by Theorem 5.1.4,
we have

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dx)) =
∑

b∈Fqm

∑

(c,d)∈Fq×Fq\{(0,0)}
χ(bn(c + dx)) +

∑

b∈Fqm

χ(0)

=
∑

(c,d)∈Fq×Fq\{(0,0)}

n−1∑

j=1

λ̄j(c + dx)G(λj , χ) + qm.

Noting that λ(0) = 0 and
∑

d∈F×q λ(d) = 0 for any nontrivial character λ of Fqm by Lemma 5.1.6,
we have

∑

(c,d)∈Fq×Fq\{(0,0)}
λ̄j(c + dx) =

∑

c∈Fq

∑

d∈F×q
λ̄j(c + dx)λ̄j(d)λ̄j(d−1)

=
∑

c∈Fq

∑

d∈F×q
λ̄j(d)λ̄j(cd−1 + x)

=
∑

d∈F×q
λ̄j(d)

∑

c∈Fq

λ̄j(c + x) = 0,

which gives our assertion. ¤

5.2 Construction of cyclic relative difference families with vari-
able blocksize

Let q be a prime power and let n and m be positive integers such that gcd (n, m) = 1 and
n | q − 1. Define Di = {a |TrFqm/Fq

(a) = i; a ∈ Fqm} for i ∈ Fq, and let N be the set of
nth powers of F×qm . Let α be a primitive root of Fqm and let logαn : N → Z(qm−1)/n be the
logarithm function. For i ∈ Fq, put

Ei = logαn(Di ∩N). (5.6)
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Let A be a subset of Fqm . A characteristic function of A is a function fA from Fqm to Z
defined by

fA(x) =
{

1 if x ∈ A,
0 otherwise.

Lemma 5.2.1. Let ζp = e2π
√−1/p. Then the characteristic function of Di is given by

fDi(x) =
1
q

∑

c∈Fq

ζ
TrFq (c(TrFqm/Fq (x)−i))

p .

Proof: If x ∈ Di, i.e., TrFqm/Fq
(x) = i, we have

1
q

∑

c∈Fq

ζ
TrFq (c(TrFqm/Fq (x)−i))

p =
1
q

∑

c∈Fq

ζ
TrFq (0)
p = 1.

If x 6∈ Di, i.e., TrFqm/Fq
(x)− i = s 6= 0, we have

1
q

∑

c∈Fq

ζ
TrFq (c(TrFqm/Fq (x)−i))

p =
1
q

∑

c∈Fq

ζ
TrFq (cs)
p =

1
q

∑

c∈Fq

χ′(cs) = 0.

¤
Theorem 5.2.2. Let e be a positive integer such that gcd (e, n) = 1. Let S be the set of eth
powers of Fq. Then, the family {Ei | i ∈ S} is a ( qm−1

n , q−1
n , {ki | 1 ≤ i ≤ q−1

e }, qm−2(q−1)
en )-CDF.

Proof: Let ` be a fixed nonzero element of Z(qm−1)/n. Then, it is clear that the number of
a ∈ Z(qm−1)/n such that a ∈ Ei and b = a− ` ∈ Ei for all i ∈ S, i.e., ` occurs as a difference
a− (a− `), is given by

∑

i∈S

qm−1
n

−1∑

a=0

fDi(α
na)fDi(α

na−n`). (5.7)

In this proof, we show the following:

∑

i∈S

qm−1
n

−1∑

a=0

fDi(α
na)fDi(α

na−n`) =

{
0 if α−n` ∈ Fq,
qm−2(q−1)

en if α−n` 6∈ Fq.
(5.8)

Again, let ζp = e2π
√−1/p. Now, by using Lemma 5.2.1, the left-hand side of (5.8) is equal to

1
q2

∑

i∈S

qm−1
n

−1∑

a=0

∑

c∈Fq

∑

d∈Fq

ζ
TrFq (c(TrFqm/Fq (αna)−i))

p ζ
TrFq (d(TrFqm/Fq (αna−n`)−i))

p

=
1
q2

∑

i∈S

qm−1
n

−1∑

a=0

∑

c∈Fq

∑

d∈Fq

χ(cαna)χ′(−ic)χ(dαna−n`)χ′(−id)

=
1
q2

∑

i∈S

qm−1
n

−1∑

a=0

∑

c∈Fq

∑

d∈Fq

χ(αna(c + dα−n`))χ′(−i(c + d))

=
1

enq2

∑

i∈F×q

∑

b∈F×qm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`))χ′(−ie(c + d))
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=
1

enq2

∑

i∈F×q

∑

b∈F×qm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`))χ′(−ie(c + d))

+
1

enq2

∑

i∈F×q

∑

c∈Fq

∑

d∈Fq

χ(0 · (c + dα−n`))χ′(−ie(c + d))

− 1
enq2

∑

i∈F×q

∑

c∈Fq

∑

d∈Fq

χ(0 · (c + dα−n`))χ′(−ie(c + d))

=
1

enq2

∑

i∈F×q

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`))χ′(−ie(c + d))

=
1

enq2

∑

i∈F×q

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`))χ′(−ie(c + d))

+
1

enq2

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`))χ′(0 · (c + d))

− 1
enq2

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`))χ′(0 · (c + d))

=
1

enq2

∑

i∈Fq

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`))χ′(−ie(c + d))

− 1
enq2

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`)).

Note that, by Lemma 5.1.7, we have

1
enq2

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`)) =

{
qm−1

en if α−n` ∈ F×q ,
qm−2

en if α−n` 6∈ Fq.

Let

W` = {(c, d) ∈ Fq × Fq | c + dα−n` = 0},
X = {(c, d) ∈ Fq × Fq | c + d = 0},
Y` = {(c, d) ∈ Fq × Fq | c + dα−n` = 0 and c + d = 0},
Z` = {(c, d) ∈ Fq × Fq | c + dα−n` = 0 or c + d = 0}.

Then we have

1
enq2

∑

i∈Fq

∑

b∈Fqm

∑

(c,d)∈W`

χ(bn(c + dα−n`))χ′(−ie(c + d))

=
1

enq2

∑

i∈Fq

∑

b∈Fqm

∑

(c,d)∈W`

χ′(−ie(c + d))

=

{
1

enq2

∑
i∈Fq

∑
b∈Fqm

∑
d∈Fq

χ′(−ied(1− α−n`)) if α−n` ∈ Fq,
1

enq2

∑
i∈Fq

∑
b∈Fqm

χ′(0) if α−n` 6∈ Fq,

76



=

{
1

enq2

∑
b∈Fqm

∑
d∈Fq

χ′(0) if α−n` ∈ Fq,
qm−1

en if α−n` 6∈ Fq,

=
qm−1

en

since 1− α−n` 6= 0 for any 1 ≤ ` < qm−1
n . Furthermore, by Lemma 5.1.5, we have

1
enq2

∑

i∈Fq

∑

b∈Fqm

∑

(c,d)∈X\Y`

χ(bn(c + dα−n`))χ′(−ie(c + d))

=
1

enq2

∑

i∈Fq

∑

b∈Fqm

∑

d∈Fq

χ(bnd(−1 + α−n`))− 1
enq2

∑

i∈Fq

∑

b∈Fqm

χ(0)

=
1

enq

∑

b∈Fqm

∑

d∈Fq

χ(bnd(−1 + α−n`))− qm−1

en

= 0.

Thus, it follows that

1
enq2

∑

i∈Fq

∑

b∈Fqm

∑

c∈Fq

∑

d∈Fq

χ(bn(c + dα−n`))χ′(−ie(c + d))

=
1

enq2

∑

i∈Fq

∑

b∈Fqm

∑

(c,d)∈Fq×Fq\Z`

χ(bn(c + dα−n`))χ′(−ie(c + d)) +
qm−1

en
.

Now let λ and φ be multiplicative characters of order n of Fqm and of order e of Fq, respectively.
Applying Theorem 5.1.4, we get

1
enq2

∑

i∈Fq

∑

b∈Fqm

∑

(c,d)∈Fq×Fq\Z`

χ(bn(c + dα−n`))χ′(−ie(c + d))

=
1

enq2

∑

(c,d)∈Fq×Fq\Z`

n−1∑

s=1

e−1∑

t=1

λ̄s(c + dα−n`)φ̄t(−(c + d))G(λs, χ)G(φt, χ′)

=
1

enq2

n−1∑

s=1

e−1∑

t=1

G(λs, χ)G(φt, χ′)
∑

c∈Fq

∑

d∈Fq

λ̄s(c + dα−n`)φ̄t(−(c + d))

since λ̄s(c + dα−n`)φ̄t(−(c + d)) = 0 for all (c, d) ∈ Z`. Especially, we have

∑

c∈Fq

∑

d∈Fq

λ̄s(c + dα−n`)φ̄t(−(c + d))

=
∑

c∈Fq

∑

d∈F×q
λ̄s(c + dα−n`)φ̄t(−(c + d)) +

∑

c∈Fq

λ̄s(c)φ̄t(−c)

=
∑

c∈Fq

∑

d∈F×q
λ̄s(d)λ̄s(d−1)φ̄t(d)φ̄t(d−1)λ̄s(c + dα−n`)φ̄t(−(c + d)) +

∑

c∈Fq

λ̄s(c)φ̄t(−c)
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=
∑

c∈Fq

∑

d∈F×q
λ̄s(d)φ̄t(d)λ̄s(cd−1 + α−n`)φ̄t(−cd−1 − 1) +

∑

c∈Fq

λ̄s(c)φ̄t(−c)

= (
∑

d∈F×q
λ̄s(d)φ̄t(d))(

∑

c∈Fq

λ̄s(c + α−n`)φ̄t(−c− 1)) +
∑

c∈Fq

λ̄s(c)φ̄t(−c).

By the assumptions n | q−1 and gcd (n, m) = 1, the restriction λ′ of λ to Fq is a multiplicative
character of order n. Furthermore, since gcd (e, n) = 1, we have

∑

d∈F×q
λ̄s(d)φ̄t(d) =

∑

d∈F×q
λ̄′s(d)φ̄t(d) =

∑

d∈F×q
ψ̄es(d)ψ̄nt(d) =

q−2∑

h=0

ζ−(es+nt)h
en = 0,

where ψ is a multiplicative character of order en of Fq and ζen is a primitive enth root of
unity. This implies that

1
enq2

∑

i∈Fq

∑

b∈Fqm

∑

(c,d)∈Fq×Fq\Z`

χ(bn(c + dα−n`))χ′(−ie(c + d)) = 0. (5.9)

Therefore, we get

∑

i∈S

qm−1
n

−1∑

a=0

fDi(α
na)fDi(α

na−n`) =

{
0 if α−n` ∈ Fq,
qm−2(q−1)

en if α−n` 6∈ Fq,

which shows our assertion. ¤

5.3 Improvement of a bound on blocksize

In [47], the following bound for ki’s was given by applying the theorem of Weil on additive
character sums.

Lemma 5.3.1. ([47]) Let n and m be positive integers such that n | q−1 and gcd (n,m) = 1.
Put ki = |Ei| for i ∈ Fq, where Ei is defined in (5.6). Then,

qm−1 − nq
m
2 − 1

n
≤ ki ≤ qm−1 + nq

m
2 − 1

n

holds for any i ∈ Fq.

Now, we improve the bound of Lemma 5.3.1.

Lemma 5.3.2. Let n, m, and ki’s be the same with Lemma 5.3.1. Then, it holds that
k0 = qm−1−1

n and
qm−1 − (n− 1)q

m−1
2

n
≤ ki ≤ qm−1 + (n− 1)q

m−1
2

n
(5.10)

for any i ∈ F×q .
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Proof: The size of each Ei, i ∈ Fq, is given by

qm−1
n

−1∑

a=0

fDi(α
na) (5.11)

=
1
q

qm−1
n

−1∑

a=0

∑

c∈Fq

ζ
TrFq (c(TrFqm/Fq (αna)−i))

p

=
1
q

qm−1
n

−1∑

a=0

∑

c∈Fq

χ(cαna)χ′(−ic)

=
1
nq

∑

b∈F×qm

∑

c∈Fq

χ(bnc)χ′(−ic) +
1
nq

∑

c∈Fq

χ(0)χ′(−ic)− 1
nq

∑

c∈Fq

χ(0)χ′(−ic).

When i = 0, using Lemma 5.1.5, we have

1
nq

∑

b∈F×qm

∑

c∈Fq

χ(bnc)χ′(0) +
1
nq

∑

c∈Fq

χ(0)χ′(0)− 1
nq

∑

c∈Fq

χ(0)χ′(0)

=
1
nq

∑

b∈Fqm

∑

c∈Fq

χ(bnc)− 1
n

=
qm−1 − 1

n
.

When i 6= 0, using Theorem 5.1.4 and 1
nq

∑
c∈Fq

χ(0)χ′(−ic) = 0, we have

qm−1
n

−1∑

a=0

fDi(α
na) =

1
nq

∑

b∈Fqm

∑

c∈Fq

χ(bnc)χ′(−ic)

=
1
nq

∑

b∈Fqm

∑

c∈F×q
χ(bnc)χ′(−ic) +

qm−1

n

=
1
nq

n−1∑

j=1

∑

c∈F×q
λ̄j(c)χ′(−ic)G(λj , χ) +

qm−1

n

=
1
nq

n−1∑

j=1

∑

c∈F×q
λ′−j(c)λ′−j(−i)λ′j(−i)χ′(−ic)G(λj , χ) +

qm−1

n

=
1
nq

n−1∑

j=1

λ′j(−i)
∑

c∈F×q
λ′−j(−ic)χ′(−ic)G(λj , χ) +

qm−1

n
, (5.12)

where λ is a multiplicative character of Fqm of order n and λ′ is its restriction to Fq. By
noting i 6= 0, (5.12) is reformulated as

1
nq

n−1∑

j=1

λ′j(−i)G(λ′−j , χ′)G(λj , χ) +
qm−1

n
. (5.13)
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Then, by using (5.3), we have

| 1
nq

n−1∑

j=1

λ′j(−i)G(λ′−j , χ′)G(λj , χ)| ≤ 1
nq

n−1∑

j=1

∣∣G(λ′−j , χ′)G(λj , χ)
∣∣

=
1
nq

n−1∑

j=1

∣∣G(λ′−j , χ′)
∣∣ · ∣∣G(λj , χ)

∣∣ =
(n− 1)q

m−1
2

n
.

Thus, we get our assertion. ¤

Corollary 5.3.3. For the family {Ei | i ∈ S} of Theorem 5.2.2, it holds

∑

i∈S

ki =
qm−1(q − 1)

en
.

Proof: By (5.13), the sum of ki’s, i ∈ S, is given by the value

1
nq

∑

i∈S

n−1∑

j=1

λ′j(−i)G(λ′−j , χ′)G(λj , χ) + |S| · qm−1

n

=
1

enq

n−1∑

j=1

G(λ′−j , χ′)G(λj , χ)
∑

i∈F×q
λ′j(−ie) +

qm−1(q − 1)
en

.

Noting that λ′ej is not a trivial character for any j, 1 ≤ j ≤ n− 1, we have

∑

i∈F×q
λ′j(−ie) =

∑

i∈F×q
λ′ej(−i) = 0,

which gives our assertion. ¤

It is quite hard to calculate the exact values of ki’s in general, however, when n is small, we
can provide a useful representation of ki’s in terms of Jacobi sums. From now on, we use the
notations in Theorem 5.2.2 and Lemma 5.3.2. The following lemma is necessary to give a
representation of ki’s.

Lemma 5.3.4. (Exercise 5.28 in [76]) Let λ1, . . . , λt be multiplicative characters of Fq. If
λ1 · · ·λt is trivial and λt is nontrivial, then it holds that

J(λ1, . . . , λt) = −λt(−1)J(λ1, . . . , λt−1).

Let h, 1 ≤ h ≤ m− 1, be a unique integer such that mh ≡ 1 (mod n). Then,

λ′hj(NFqm/Fq
(β)) = λ′hj(β

qm−1
q−1 ) = λ′hj(α`· qm−1

q−1 ) = ζhj`m
n = ζj`

n = λj(β)

holds for any β = α` ∈ Fqm , where ζn is a primitive nth root of unity such that λ(α) = ζn.
This implies that the lifted character of λ′hj is λj in Fqm . Hence, by using Theorem 5.1.1 and

80



(5.4) of Theorem 5.1.2, (5.13) is reformulated as

1
nq

n−1∑

j=1

λ′j(−i)G(λ′−j , χ′)G(λj , χ) +
qm−1

n

=
(−1)m−1

nq

n−1∑

j=1

λ′j(−i)G(λ′−j , χ′)G(λ′hj , χ′)m +
qm−1

n

=
(−1)m

n

n−1∑

j=1

λ′j(−i)J(λ′−j , λ′hj , . . . , λ′hj) +
qm−1

n
. (5.14)

Furthermore, by Lemmas 5.3.4, (5.14) is reformulated as

(−1)m+1

n

n−1∑

j=1

λ′j(−i)λ′−j(−1)J(λ′hj , . . . , λ′hj) +
qm−1

n

=
(−1)m+1

n

n−1∑

j=1

λ′j(i)J(λ′hj , . . . , λ′hj) +
qm−1

n
. (5.15)

Thus, we could represent each size ki in terms of Jacobi sums. Especially, when m = ns + 1
(h = 1) or ns− 1 (h = m− 1), by combining (5.5) of Theorem 5.1.2 and Theorem 5.1.3 and
by noting G(λ′j , χ′)G(λ′−j , χ′) = λ′j(−1)q, (5.15) is equal to

(−1)m+1

n

n−1∑

j=1

λ′j(i)
G(λ′hj , χ′)m

G(λ′hjm, χ′)
+

qm−1

n

=
(−1)m+1

n

n−1∑

j=1

λ′j(i)
G(λ′hj , χ′)m

G(λ′j , χ′)
+

qm−1

n

=

{
(−1)m+1

n

∑n−1
j=1 λ′j(i)G(λ′j , χ′)m−1 + qm−1

n if m = ns + 1,
(−1)m+1

nq

∑n−1
j=1 λ′j(i)λ′j(−1)G(λ′−j , χ′)m+1 + qm−1

n if m = ns− 1,

=





(−1)m+1qs

n

∑n−1
j=1 λ′j(i)λ′sj(−1)(J(λ′j , λ′j) · · ·J(λ′j , λ′(n−2)j))s + qm−1

n

if m = ns + 1,
(−1)m+1qs−1

n

∑n−1
j=1 λ′j(i)λ′−(s−1)j(−1)(J(λ′−j , λ′−j) · · ·J(λ′−j , λ′−(n−2)j))s + qm−1

n

if m = ns− 1.
(5.16)

Now we provide numerical results for n = 2 and 3.

(Case n = 2) We can assume that m = 2s + 1 and h = 1. By Exercise 5.39 in [76], it holds
that

J(λ′, . . . , λ′) = (−1)(m−1)(q−1)/4q(m−1)/2.

Then, by (5.15), we have

ki =
qm−1 + λ′(i)(−1)s(q−1)/2q(m−1)/2

2
,
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where λ′(i)(−1)s(q−1)/2 = 1 or −1. Hence, each ki with i 6= 0 of Theorem 5.2.2 is qm−1+q
m−1

2

2

or qm−1−q
m−1

2

2 .

(Case n = 3) When n = 3, it is known [64, 105] that J(λ′, λ′) and J(λ′2, λ′2) are written as
a + bζ3 and a + bζ2

3 , respectively, where ζ3 = e2πi/3 and a and b are integers determined by

q = pr = a2 − ab + b2, a ≡ −1 (mod 3), b ≡ 0 (mod 3),

where p is a prime such that

(i) if p ≡ 2 (mod 3), then r is even and a = ±pr/2 and b = 0,

(ii) if p ≡ 1 (mod 3), then q = a2 − ab + b2 is the unique representation of q such that
gcd (2a− b, p) = 1.

We can assume that m = 3s+1 (h = 1) or m = 3s− 1 (h = 2). In the former case, by (5.16),
we have

ki =
(−1)m+1qs

3
(λ′(i)λ′s(−1)J(λ′, λ′)s + λ′2(i)λ′2s(−1)J(λ′2, λ′2)s) +

qm−1

3

=
(−1)m+1qs

3
(λ′(i)(a + bζ3)s + λ′2(i)(a + bζ2

3 )s) +
qm−1

3

=





(−1)m+1qs

3 ((a + bζ3)s + (a + bζ2
3 )s) + qm−1

3 if λ′(i) = 1,
(−1)m+1qs

3 (ζ3(a + bζ3)s + ζ2
3 (a + bζ2

3 )s) + qm−1

3 if λ′(i) = ζ3,
(−1)m+1qs

3 (ζ2
3 (a + bζ3)s + ζ3(a + bζ2

3 )s) + qm−1

3 if λ′(i) = ζ2
3 ,

=





(−1)m+1qs

3 (2
∑

u≡0 (mod 3)

(
s
u

)
as−ubu −∑

u≡1,2 (mod 3)

(
s
u

)
as−ubu) + qm−1

3 if λ′(i) = 1,
(−1)m+1qs

3 (2
∑

u≡2 (mod 3)

(
s
u

)
as−ubu −∑

u≡0,1 (mod 3)

(
s
u

)
as−ubu) + qm−1

3 if λ′(i) = ζ3,
(−1)m+1qs

3 (2
∑

u≡1 (mod 3)

(
s
u

)
as−ubu −∑

u≡0,2 (mod 3)

(
s
u

)
as−ubu) + qm−1

3 if λ′(i) = ζ2
3 .

In the latter case, similar to the above, we have

ki =
(−1)m+1qs−1

3
(λ′(i)λ′−(s−1)(−1)J(λ′2, λ′2)s + λ′2(i)λ′−2(s−1)(−1)J(λ′, λ′)s) +

qm−1

3

=





(−1)m+1qs−1

3 (2
∑

u≡0 (mod 3)

(
s
u

)
as−ubu −∑

u≡1,2 (mod 3)

(
s
u

)
as−ubu) + qm−1

3 if λ′(i) = 1,
(−1)m+1qs−1

3 (2
∑

u≡1 (mod 3)

(
s
u

)
as−ubu −∑

u≡0,2 (mod 3)

(
s
u

)
as−ubu) + qm−1

3 if λ′(i) = ζ3,
(−1)m+1qs−1

3 (2
∑

u≡2 (mod 3)

(
s
u

)
as−ubu −∑

u≡0,1 (mod 3)

(
s
u

)
as−ubu) + qm−1

3 if λ′(i) = ζ2
3 .

For example, when m = 3 · 1− 1 = 2, we can see that each ki with i 6= 0 is q−(2a−b)
3 , q−(2b−a)

3 ,
or q+a+b

3 .

Remark 5.3.5. When n = 4, we can calculate the exact values of ki’s easily but tediously
similar to the case when n = 3 since there are only two possible cases of m = 4s + 1 and
m = 4s− 1 and the values of Jacobi sums have been already known (see [64, 115]).

82



5.4 New series of (v, k, 1, 1)-OOCs

In this section, we give a new series of optimal (v, k, 1, 1)-OOCs as a corollary of Theorem 5.2.2.

Let m = 2 in Theorem 5.2.2. Then, if q = en + 1 is a prime power for an odd integer n and a
positive integer e such that gcd (e, n) = 1, there exists a ( q2−1

n , q−1
n , {ki | 1 ≤ i ≤ n}, 1)-CDF

F = {Ei | 1 ≤ i ≤ n} satisfying the following properties:

(i) q−(n−1)
√

q
n ≤ ki ≤ q+(n−1)

√
q

n for any 1 ≤ i ≤ n,

(ii) ki =
q−Pn−1

j=1 λ′j(i)J(λ′hj ,λ′hj)

n ,

(iii)
∑

1≤i≤n ki = q

by using (5.8), (5.15), and Lemma 5.3.3. Now, we can get a (q2−1
n , k, 1, 1)-OOC with n

codewords, where k = min {ki |1 ≤ i ≤ n}, by removing arbitrary ki−k elements from Ei ∈ F
for every i, 1 ≤ i ≤ n. Since k ≥ d q−(n−1)

√
q

n e by Lemma 5.3.2, we have the following:

Corollary 5.4.1. Let q be a prime power and let n be an odd positive integer such that
n | q − 1 and gcd (n, q−1

n ) = 1. Then there exists a ( q2−1
n , k, 1, 1)-OOC with n codewords,

where k = d q−(n−1)
√

q
n e. In particular, if

n(q2 − n− 1)
q1/2(q1/2 + 1)(q1/2 − n)(q1/2 − n + 1)

< n + 1, (5.17)

the resultant OOC is optimal.

Proof: We can check that the number n of codewords attains the bound (1.9) as follows:

b v − 1
k(k − 1)

c ≤ b v − 1
k′(k′ − 1)

c ≤ v − 1
k′(k′ − 1)

=
n(q2 − n− 1)

q1/2(q1/2 + 1)(q1/2 − n)(q1/2 − n + 1)
< n + 1,

where k′ = q−(n−1)
√

q
n ∈ R. ¤

The bound (5.17) is always satisfied when n = 1 or q1/2 ≥ 2n2 − 2 for n ≥ 3. Furthermore,
it is remarkable that the new series obtained in Corollary 5.4.1 contains a well-known series
of (v, k, 1, 1)-OOCs with exactly one codeword whose parameters are v = q2 − 1 and k = q
(cyclic (q2 − 1, q− 1, q, 1) relative difference set), where q is a prime power, constructed from
points and a line of the affine plane AG(2, q) (see Table 1.1).

Furthermore, we can get further series of OOCs by applying the following recursive construc-
tion given by Yin [119].

Theorem 5.4.2. ([119]) Suppose that the following exist:

(i) an (nv, n, {ki | 1 ≤ i ≤ s}, 1)-CDF,

(ii) a (u, ki, 1)-CDM for every i, 1 ≤ i ≤ s,

(iii) an (nu, n, {k′i | 1 ≤ i ≤ s′}, 1)-CDF.

83



Then, there exists an (nuv, n,K1 ∪K2, 1)-CDF with

K1 = {ki,j | 1 ≤ i ≤ s; 1 ≤ j ≤ u} and K2 = {k′i | 1 ≤ i ≤ s′},

where ki,j = ki for all j.

Corollary 5.4.3. Put q = 2t and let n be an odd positive integer such that n | q − 1 and
gcd (n, q−1

n ) = 1. If gcd (q + 1, b q+(n−1)
√

q−n
n c!) = 1, then there exists a ( (q−1)(q+1)u

n , q−1
n ,K, 1)-

CDF with
K = {ki,j | 1 ≤ i ≤ n; 1 ≤ j ≤ ((q + 1)u − 1)/q},

where ki,j = ki for all j and

q − (n− 1)
√

q

n
≤ ki ≤

q + (n− 1)
√

q

n

for every i, 1 ≤ i ≤ n. In particular, there exists a ( (q−1)(q+1)u

n , k, 1, 1)-OOC with n((q+1)u−
1)/q codewords for any u ≥ 1, where k = d q−(n−1)

√
q

n e, which is optimal if

n((q + 1)u(q − 1)− n)
q1/2(q1/2 + 1)(q1/2 − n)(q1/2 − n + 1)

<
n((q + 1)u − 1)

q
+ 1. (5.18)

Proof: By using Theorem 1.2.5 and the assumption that gcd (q + 1, b q+(n−1)
√

q−n
n c!) = 1,

there is a (q+1, ki, 1)-CDM for every ki ≤ b q+(n−1)
√

q
n c. Apply Theorem 5.4.2 as g = g′ = q−1

n

and u = q + 1 to the ( q2−1
n , q−1

n , {ki | 1 ≤ i ≤ n}, 1)-CDF obtained in Theorem 5.2.2, then we

can get a ( (q−1)(q+1)2

n , q−1
n ,K2, 1)-CDF with

K2 = {ki,j | 1 ≤ i ≤ n; 1 ≤ j ≤ q + 2},

where ki,j = ki for all j. By continuing this process, we can obtain the desired ( (q−1)(q+1)u

n , q−1
n ,Ku, 1)-

CDF F with
Ku = {ki,j | 1 ≤ i ≤ n; 1 ≤ j ≤ ((q + 1)u − 1)/q},

where ki,j = ki for all j. Furthermore, removing arbitrary ki,j − k elements from each
block in F , we also get a ( (q−1)(q+1)u

n , k, 1, 1)-OOC. The optimality can be checked similar to
Corollary 5.4.1. ¤
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Chapter 6

Further researches and open
problems

In Chapter 2, we have discussed bounds and constructions of optimal (v, 4, 2, 1)-OOCs and
8-supp (v, 4)2-CDFs. In particular, we showed the existence of an 8-supp (np, n, 4)2-CDF for
a prime p ≡ 1 (mod 8/ gcd(n, 8)) when n = 1, 2 and 4. In the case of n = 8, we showed that
there exists an 8-supp (np, n, 4)2-CDF for p ≡ 1 (mod 4) but not for p ≡ 3 (mod 4). Here, we
have the following problem.

Problem 1. Establish whether there exist 8-supp (8p, 8, 4)2-CDFs for all primes p ≡ 3 (mod 4).

By the way, for existence problems of optimal (v, 4, 1, 1)-OOCs (maximal 12-supp (v, 4)1-
CDFs) it was shown in [28, 29, 55] that there exists an optimal (v, 4, 1, 1)-OOC with bv−1

12 c
codewords for every v ≡ 0, 6, 18 (mod 24) by introducing the concept of a cyclic n-regular
(nv, k, 1) difference matrix, which is a k× (nv−n) matrix M = [σi,j ] such that σi,j ∈ Znv and
for every pair (i, i′) ∈ Znv × Znv every element of Znv \ vZnv occurs exactly once among the
list {σi,j −σi′,j | 1 ≤ j ≤ nv−n} of differences. Now, we can define a similar concept, namely
a cyclic n-regular (nv, K, 1) difference matrix, where K = (a, a + b, 0)-(2a + b) is a good kite,
as a 4 × (nv − n) matrix with entries in Znv such that the list of differences between its ith
row and jth row cover all elements of Znv \ vZnv whenever (i, j) ∈ {(1, 2), (1, 3), (2, 3), (3, 4)}
with the form 



a1 a2 · · · anv−n

a1 + b1 a2 + b2 · · · anv−n + bnv−n

0 0 · · · 0
2a1 + b1 2a2 + b2 · · · 2anv−n + bnv−n




In order to get a similar result for the case when λa = 2, we need to solve the following
problems (see [28, 29, 55]).

Problem 2. Find cyclic n-regular (nv,K, 1) difference matrices, in particular, for the case
when n is a multiple of powers of 2 and 3.

Problem 3. Determine the existence of 8-supp (np, n, 4)2-CDFs for every n, in particular,
for the case when n is a multiple of powers of 2 and 3.
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Here are two additional open questions:

Problem 4. For general k, find a correspondence between |supp∆X| and the form of X ∈ (Zv

k

)
similar to Lemma 2.2.5 and provide upper bounds on M(v, k, 2, 1).

Problem 5. Generalize Theorems 2.3.5, 2.3.7, 2.3.9, 2.3.11, and 2.5.3 given in Chapter 2 for
general k.

In Chapter 3, we have treated perfect δ-supp (v, k)µ-CDFs for the case when (δ, µ) = (2(k −
1), k − 1) yielding (v, k, 1)-CACs or (v, k, k − 1, 1)-OOCs. We have mainly discussed about
the existence of perfects 2(k−1)-supp (p, k)k−1-CDFs for primes p and k = 3, 4, and 5, which
is strongly connected to a problem of perfect packings. The hard part in our arguments is
to establish whether the set of primes for which there exist perfect 2(k − 1)-supp (p, k)k−1-
CDFs is infinite. However, for the case when k is small a similar method used in Section 3.5
may be applicable. We give the following open problems related to perfect 2(k − 1)-supp
(p, k)k−1-CDFs.

Problem 6. Given a positive integer k ≥ 6, establish whether the set of primes p ≡
1 (mod 2k − 2) for which there exist perfect 2(k − 1)-support (p, k)k−1-CDFs is infinite or
not.

One may suspect that there are values of k for which the above set is empty. In fact, given
a “large” k, apart from the trivial case of p = 2k − 1 (see Lemma 3.2.3), the existence of
a perfect 2(k − 1)-supp (p, k)k−1-CDF seems to be rare. This can be observed from the
following results obtained by computer search. For each k such that 9 ≤ k ≤ 20, the first
prime p > 2k − 1 for which there exists a perfect 2(k − 1)-supp (p, k)k−1-CDF satisfying the
condition of Corollary 3.3.3 with s = 1 is computed as follows:

(k, p) = (9, 3617), (10, 27127), (11, 3181), (12, 56431), (13, ?), (14, 2578733), (15, 434029),
(16, 4147921), (17, 55903553), (18, 48611161), (19, 74431333), (20, 10134791).

For k = 13 and s = 1, it was checked by computer that there is no prime p < 109 for which
there exist a 2(k − 1)-supp (p, k)k−1-CDF. So, one may wonder whether each element of the
set {1, 2, . . . , 12} is never evenly distributed over the cosets of the 12th powers modulo a prime
p ≡ 1 (mod 24) similar to the case when k = 5 (see Example 3.5.13). We give three additional
open questions in Chapter 3:

Problem 7. Generalize Theorems 3.3.7, 3.3.8, and 3.3.11 for k ≥ 6, i.e., give necessary and
sufficient conditions for the existence of perfect 2(k− 1)-supp (p, k)k−1-CDFs for all primes p
and every interger k ≥ 6 in terms of cyclotomic conditions.

Problem 8. Determine the parameter v such that there exist perfect 8-supp (v, 5)4-CDFs
when 3 | v.

Problem 9. Provide constructions and existence theorems of 2(k−1)-supp (nv, n, k)k−1-CDF
for general n ≥ 2.

In Chapter 4, some existence and non-existence theorems for strong difference families and
difference covers have been presented. Furthermore, relations between these designs and
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relative difference families have been investigated. As stated in Theorems 4.5.7, 4.5.8, and
4.5.13, new difference covers and strong difference families give new infinite series of relative
difference families. In particular, in order to find a larger class of relative difference families, it
is important to find a strong difference family with smaller µ satisfying the congruence nµ ≡ 0
(mod k(k − 1)). Note that any difference cover always has minimum µ for given n and k. In
this sense, we could get many new and large infinite series of relative difference families and
optical orthogonal codes. Here is an open question about relative difference families.

Problem 10. Generalize Lemma 4.5.11 for general k ≥ 6, i.e., prove that if there is an
(N, k, µ)-SDF with µ = 2dλ, then there are an integer s and a prime power qk,d such that
there exists an (N ×Fq, N ×{0}, k, λ)-DF for any prime power q ≡ 1 (mod 2sd) with q ≥ qk,d

for any k.

In order to solve Problem 10, we have to find a method to systematically give tables similar
to Tables 4.1 and 4.2.

Problem 11. Determine the spectrum of (N, k, µ)’s for which (N, k, µ)-SDFs exist. In par-
ticular, for µ = 2 and N is cyclic, when does there exist an (n, k, 2)-CSDF?

It was shown in [9] that there does not exist any cyclic (n, k, 2) difference cover except for
(n, k) = (3, 3) and (6, 4), which solved Problem 11 for the case when the number of blocks of
an (n, k, µ)-CSDF is equal to 1.

Problem 12. Improve the lower bound on q of Lemma 4.5.11.

Moreover, we have the following problem related to Chapter 2.

Problem 13. Provide a similar theorem to Theorem 4.5.13 for 8-supp (np, n, 4)2-CDFs.

In Chapter 5, we constructed cyclic relative difference families with variable blocksize and
gave a new construction of optimal (v, k, 1, 1)-OOCs from a special case of such difference
families. In fact, we could obtain a large new class of optimal OOCs, whose parameters are
v = q2−1

n and k = d q−(n−1)
√

q
n e. Here are some open problems for this result.

Problem 14. Find further constructions of cyclic relative difference families with variable
blocksize so that the new series includes (qm−1, q−1, q, 1)-CDFs (optimal (qm−1, q, 1)-OOCs)
constructed from AG(m, q).

Problem 15. Give a tighter bound on blocksize ki’s of Lemma 5.3.2, or explicitly determine
the values of ki’s.

Obviously, we can see that the bound of Lemma 5.3.2 is tight when n = 1 since we have ki =
qm−1, i.e., the obtained family forms a (qm − 1, q − 1, qm−1, qm−2(q−1)

e )-CDF. However, when

n > 1, it seems that the bound (5.10) can be improved. Indeed, the values qm−1±(n−1)q
m−1

2

n
are not integers in general, for example, when m is even and q is square-free. However, in
order to solve Problem 15, we should calculate the values of Gaussian sums and Jacobi sums
and it seems to be difficult.

Here is an additional problem in Chapter 5.
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Problem 16. Find another good subset S ⊆ Fq such that {Ei | i ∈ S} forms a cyclic relative
difference family with variable blocksize in Theorem 5.2.2.

Note that in Theorem 5.2.2, we used S as the set of eth powers in Fq and we mean a “good”
subset in the above as a set S such that the value of

1
q2

∑

i∈S

qm−1
n

−1∑

a=0

∑

c∈Fq

∑

d∈Fq

χ(αna(c + dα−n`))χ′(−i(c + d))

can be calculated, where χ and χ′ are canonical additive characters of Fqm and Fq, respectively.
Problem 16 is naturally extended as follows:

Problem 17. Find a good (surjective) function f from Fqm to Fq and a good subset S ⊆ Fq

such that logαn{f−1(i)∩N | i ∈ S ⊆ Fq} forms a cyclic relative difference family with variable
blocksize, where α is a primitive root in Fqm and N is the set of nth powers.
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