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Errors of the measured data are discussed as the factors which

influence upon the a.ccuracy of reliability analysis of the structur-

al血ember. In the structural reliability analysis, failure proba-

bility is calculated by assuming probability density functions for

material strength and external force, and following two basic as-

sumptions have been employed as a matter of course; that is, (∋cbar-
acteristics of the measured data are reliable and are equal to the

characteristics of the population from which the measured data have

been extracted by chance; ①probabilitydensity functions are esti-

mated directly based on the frequency distributions of the measured

data･ The error due to the assumption ①-error of characteristics

-is
delemed a.s an error of the most likelihoodやStimation, and has
l

I.I.a strongi influ冶nce
on the estimation of failure probability ty reason

that sizle of ti血e measured data is usually very small. The error due

to the a'ssumption ①-error of distributions-チlso has a strong in-

fluence pn the estimation of failure probability■by reason that the-

oreticaユ endor5ement Of the assumed density function i5 not Obtained.
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First, the error of characteristics is mainly discussed血Chap-

ter 2,and the influence of the error on the estimation of failure

probabi.1ity is evaluated for norm･al distribution, gamma distribution

and lo貞-normal
distribution･ Then the definition of the usual fail-

ure
prdbabilit･y

is modified with regard to the error. On the con-

trary, ･error o･f distributions is considered unavoidable, and appli-

cation≡of the ;procedure
described in Chapter 2 is restricted to the

measure･d data whose frequency distribution is known in advance fol-

lowing to one of three distributions as a result of phenomenology

and/or properties of matter.

SecoTld, Pew approach to the reliability analysis without any

approximation of distributions for the measured data is proposed in
l

Cbapter≡ 5 from the standpoint that error of distributions is hardly

solved by extending the usual reliability theory. The content bears

no relation to the structural reliability, and describes the statis-

tical treatments of the measured data with the sole object of
intro-

ducing and demonstrating the new approach･ Practical upper bound

of population of the measured data is defined based onthe variation-

al method under the various restrictive conditions characterizing the

l



measured data.

Third, extreme procedure Of Chapter 3 is extended and

to the estimation of structural safety in Cbapter 4. Since

teristics introduced in Chapter 5 are unreliable to estimate

tremum, more reliable characteristics are newly introduced.

procedure realizes the structural deslgn Where the obtained

probability never exceed the expected one even at the worst,

applied

cbarac-

the ex-

The

failure

in other

words, where a sort of guarantee for the safety can lxobtained based

on the variational principle. In Cbapter 4, error of characteris-

tics is estimated approximately, and graphical estimation method of

extremum is developed.
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NOTATION

A = characteristic of the measured data･,

Ao =

parameter corresponding to the independent variation of

か and5';

As =

cross-sectional area of the chord member of truss bridge;

五 = mean of charaLCteristic A;

AL = lower bound of互･,

β
=

cbaracteristic of the measured data;

β○ =

parameter correspond･ing to the independent variation of

qi2' and 8s?';

B =

mean of characteristic B;

βL

C

lower bound of

cbaTaCteristic

舌;

of the measured data;

Co
=

parameteT COrreSPOnding to Ao+Bo for normal distribution

and gamma distribution, to Aoβo for log-normal distribu-

tion;

ご = mean of characteristic a;

cL
= lower bound ofご;

Coy(x,AX) =

covariance between x and AX;

β
= dummy characteristic, which is introduced in order to

modify x(F) compulsorily to a monotone increasing func-

tion;

dom
=

Parameter, an abbreviation of 'difference of meansT;

F, F(X)
=

Cumulative function of i(X);

∫

Fi

AFi

巧

巧

Fi

F-i

(x)

fAo

∫Bo

fco

don

∫R

fs

≡

i-th value of F;

error of Fi;

mean of Fi;

central value of Fi;

mode of Fi;

median of Fi;

probability

probability

probability

probability

probability

probability

probability

density

density

density

density

density

density

density

for x;

for Ao;

for βo;

for C-o ;

for don;

for a;

for β;

fs.v
=

probability density for
soy;

ft
=

probability density of t-distribution;
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fx2
=

Probability

fu =

probability

fus

fcr
2

fo;

probability

probability

probability

density of x2-distribution;

density for population mean;

densities for populaLtion means of R and s;

density for population variance;

densities for popula,tion variances of R and

β;

g(Fi)
-

Probability density of Fi-F(Xi);

gt, 5s
-

equations defined by Eqs･(3･2･3) and (3･2･4);

J = functional;

LR, = live load;

Ⅳ
=

size of samples newly taken imaglnatively from the popu-

1ation of the measured data;

n
=

number of the measured data, size of sample･,

nR, nS
=

number of the measllred data of R and s;

P =

occurrence probability;

Pf
= failure probability;

pP
≡

modified faiチureprobability
taking account of errors of

mean and varlanCe;

p
=

area of pulse part;

pR, PS
= area Of pulse part for R and s;

R =

material strength, resistance;

京 =

sample mean of a;

Rmin
=

minimum expected value for R',

β =
external force, member force, load;

吾 =

sample mean of s;

βmax =

maximum expected value for β;

8Fi =

Standard deviation of Fi;

82x =

variance of the measured data, sample variance;

82R,
8;

-

Sample variances of R and s;

82xreal I

real variance of x;

82AX =

Variance of the error caused by the difference between xi

and xi,real ;

sov= parameter, an abbreviation of 'sum
of variancesl;

T =

structural life;

AT = time interval of sampling of s;

士1′ヽ士3 = Sizes of upper and lower blocks in case of seven restric-

tive conditions;

士α/2
=

Value of t-distribution corresponding toupper probabili-

tyα/2;

ul
-

maximum (- xn);
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ut
=

mean of upper block of size七;

vl =

minimum (absolute value) (- -Xl);
vs = mean of lower block of size 8;

x =

normalized measured values',

x(F)
-

probability distribution function for F, unknown function･

a monotone increasing function;

xi =

Order statistics of xl i･e･1 i-th smaller value of x;

xi
-

reversed value of xi,1･e･, Xi- -xt>i'1',
xi,real

=

real value of Xi;

ア妄言訂- real mean of X;

AXi
=

errOr Of xi;

五官- mean of the error caused by the difference between Xi and

Xi,real'?

㌶ = measured values;

盃
=

mean Of the measured
data, sample mean;

y =

estimated value of deviation from the mean;

ymax
=

maximum of extremum fNE using graphical estimation method;

ymax,u
-

maximum of預′u using graphical estimation method;

xR, Bs -

Values of extremum要語for
R aLnd s',

fN,鞘- averaged maximum of samples of size N (averaged miniふum
is

also expressed as fN), and its extremum;

fNE,u
=

upper bound of fNE with regard to the variations of char-

acteristic means A～C;.

yp･ }pE = averaged maximum of pulse part with area p･ and its
ex-

tremum;

α
=

upper probability of t-distribution; shape parameter;

β
-

upper probability of x2-distribution; scale parameter;

β3 =

Skewness;

臥
= kurtosis;

β;
-

characteristic corresponding to skewness approximately;

βl
-

chaLraCteristic corresponding to kurtosis approximately;

yo
=

central safety factor;

yabs
=

absolute safety factor;

6x
=

coefficient of variation of the mrasured data;

6R, 6s
=

coefficients of variation of R and s･･

E = COefficient of dangerousness;

入1～入7 = Lagrange multipliers;

ux
= population mean;

リRIリS
=

population means of R and s;
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∈

ox2

oi, o3
◎

location parameter;

population variance;

population variance of R and s;

upper probability of normal distribution;

x2B/さ
-

value of x21distribution corresponding to upper proba-

bility β/2;

小(F)
= Dirac-s 6-function defined as 小(F)=1/p for 1-p≦F≦1;
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Chapter 1 Introduction

Since Fredenthal proposed the structural reliability analysュs in

1947 【25] by introducing probabilistic concept tothe engineering de-

cision problemタ numerOuS applications of lprobabilistic concepts† has

widely been discussed･ Tbe developments血this field up to date is

roughly divided into following four印bjects; that is,①rationaliza-
tion of the design code, ⑦applicationto the complex structure and

combined load, ⑦applicationto the prediction problem, ①nanagement
of the uncertainty.

subject (∋mainly aims at th早rational decision of the load fac-

tor based on the reliability analysis. Some specifications have

already been put to practical use such as IIAISE Specification for the

Design, Fabrication and Erection of StructuraLI Steel for BuildingsH

(1969), HAASHTO Interim Specifications for Bridges.' (1974), '1CIRIA

Guidance for the Drafting of Codes of Practice for Structural Safety''

(1968) and ‖CEB-FIP International Recommendations for theDesign and

construction of Concrete Structures･- (1970). Subject ① has been

studied most earnestly as a direct and embodied application of the

reliability theory to the structural deslgn･ CornellI Lin° et al･

regarded various collapse modes and dispersions of material strength

and external force as influence factors On the practical deslgnl and

evaluated them as the load factors [12,17,19,40,49,50,55,57]･

Legerer et all studied the economical design in which the optimum design

is performed by minimizing the total expected costタ tbat isl by bal-

ancing the Telationsbip between the initial cost for construction and

the failure cost for accidental structural collapse 【23,38,59,42,54]･

Furthermore, Smith analyzed a complicated structure by including mean

and variance of material strength 【56】 and Co也n et al. proposed a

plastic design Of frames taking account of the variations of materia･1

strength and external force 【16,29ト

subject ⑦ aims at the extension of reliability analysis, which

is initially defined for structural unit and unit load, to complex

framing and combined load. The structure ofreal state hasl in gen-

eral, complex framing and combined load, and subject ① is signifi-
cant for the practical use･ With respect tO COmbined loadsI

Haurylkiewicz et al. proposed a set tbeoTy 【15,33], where structural

reliability is defined as the distapce between failure reglOn and

l



mixed loads represented as a vector on a state space. Recently,

Blockley applied a concept of fuzzy sets to the estimation of struc-

ttlral reliability by using a loglCal analysis of various factors

concerning to structural failure 【14,61]. Lots of applications to

the repeated load problem, that is; fatigue problem, have been dis-

cussed by Ang, Moses, Shinozuka et al. [4,5,6,22,28,60ト

su?ject⑦ aims
at the time-dependent analysis ofstructural re-

liability covering a moderately varylng phenomenon during a long term

such as deterioration of material strength. Yang et al. managed

this problem as the first passage problem where Markov process is

effectively used 【59,62]. Although the first passage problem has

often been applied to spectrum analysis of seismic behaviorl Proposed

application is limited to a moderately vaTylng phenomenon.

Last, subject ① aims at the management of uncertainties con-

sisting of error of characteristics calculated.from the measured data,

error of dis~tributions estimated from frequency distribution of the

measured data, error of nominal size, of manufacture, of analysis and

other errors orlglnated by artificial factors. Cornell, Lin° et al.

proposed first-ordef probability [18,21,32], where mean and variance

of the measured data is derived with regard tothe first order error,

and safety index is calculated by assuming the distributions for ma-

terial strength and load. Rosenblueth, TurkstTa et al. applied

Bayesian decision theory to decide -bow the measured data should be

selected and employed- for getting a desired result 【20,52,58].

On the other hand, Ang et al. defined various uncertainties quanti-

tatively by introducing some assumptions land
discussed their influ-

ences on the reliability analysis [5,4,5,6]. Ang et al. also pro-

posed the extended reliability [1,2,5】 with the object of decreasing

the error caused by the assumption of distributions, which was orlgl-

nally posed by Jorgenson [55ト

In contrast tO reliability analysis, extreme pTOCeduTe Systema-

tized by Gumbel 【51】 has often been employed inthe aspect of statis-

tical management of the measured data. The procedure has been used

to presume the 100 years value and the ZOO years value of rainfall,

discharge, wind velocity, etc‥ As well as famous Gumbel-s method,

so-called extreme distributions such as the first, second and third

asymptotes [31] have been applied･directly to the measured data [26,
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27,45]. Gumbel, Plackett et al. derived extremum of the averaged

maximum based on the variational method [30,51,48】 and MoTiguti also

derived it based on Scbwarz-s inequality 【46], but these procedures

have. not been generally employed in the practical problems yet･

In this thesis, error of characteristics of the measured data

and error of distributions are discussed. First, Freudenthal-s

classical reliability theory is modified by taking account of the

errors of means and variances of the measured data in Cbapter 2.

Secondl estimation procedure of extremum based on the variational

method is introduced as a method without any assumption of distribu-

tions in Chapter 3･ Last,
t千eprocedure of Chapter 3 is extended

to the structural reliability叩alysis in Chapter 4･

l

The characteristics such as mean and variance calculated from the

measured data of size :10～60, at the most, are seldom consistent with

the characteristics of the populat丑on, and error o■f characteristics

of th･e measured data exerts considerable influence upon the estima-

tion of failure probability･ Tbe error of this type was also dis-

cussed by Ang et al. 【1,2,3,4,5,6], but the brror was treatedroughly

and the error was defined based on some ass叫Iptions expediently cre-

ated. On the contrary, herein, density fuhctions of the unknown

mean and variance of the population are derived analytically based on

the known mean aLnd variance of the雫meaSured data, and the modified re1

liability is defined by averaglng all events that will happen･

Error analysis is applied to three probability distributionsタ that

is, normal distribution, gamma distribution and log-normal distribu-

tion. When the measured data are concluded following toone oftbese
r

probability distributions as a result of phenomenologyand/or proper-

ties of matterl the pT･OCedure in Chapter 2 can be put in practice･

Error of distributions is巾ore seriou声 tban
error of character-

istics, for the estimation of population d∋istribution
based on the

l

measured data is difficult and unreliable; in general. Failure

probability calculated by using estimated distribution is quite un-

stable depending on the estimated distribution. The error has been

deemed unavoidable for the usual reliability theory. Only one trial

was proposed by Ang et al. [1,2,3] by defining the extended relia-

bility. In the extended reliability theory, several distributions

are employed to demonstrate the decrease of the error, but no guarantee

3



can be obtained for otbeT numerous distributions. Furtbermore, if

failure probability can be proposed being insensitive to the various

distributions, another indefinite approximation isneeded in order to

introduce insensibility. By these reasons, maximization procedure

of the averaged maximum proposed by Gumbel et al. 【30,51,48】 is adopted

herein for treating the problem of error of distributions in a new

aspect, and extended to the structural reliability problem. Tbe

procedure realizes the structural deslgn Where the obtained failure

probability never exceed the initially expected one even at the worst,

in other words, where a 50rt Of guarantee for the safety can be ob-

tained, based on the variational principle. The procedure also can

be applied to the unilateral estimation of upper bound of load and

lower bound of material strength, and especially tothe estimation of

the 100 years discharge, for instance, instead of the usual Gumbel-s

method, etc‥ Besides, a graphical estimation method ofextTemum is

developed for the practical purpose, and extremum can be estimated

simply and in bigh accuracy by using three characteristics calculated

from the measured data. Error of characteristics is also evaluated

approximately, and upper bound of extremum is estimated.
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Chapter 2 Modification of the Usual Reliabilit

sis with re ar° to Error of

Characteristics

In 1947 Freudenthal proposed classical reliability theory [25 ],

where the failure probability of the structure-structural unit-

is obtained by supposing material strength-shown as a henceforth-

and external force or load-shown as β henceforth-are random var-

iables. The distributions of R and s are approximated by using well-

known distributions such as normal distribution based on the test of

goodness of fitl and the failure probability is calculated by using

the approximated distributions･ Failure probability obtained as a

result becomes unreliable on account of the use of the appTOXimated

distributions and the error of characteristics.

2.1 Definition of Errors

Following two kinds of errors are included in the usual relia-

bility analysis.

① characteristics, that is･ mean and
vaTiance･

of the measured data

are so-called sample mean and sample varlanCel and are not equal to

population mean and population variance in the most case･ The error

is described as Terror
of cbaracteristicsl henceforth.

① probability density fdnctions of population are approximated by

using known distributions such as normal distribution･ The error is

described as terror
of distributionsl henceforth.

Error of characteristics is especially discussed herein from the

following reasons;

a) Number of the measured data is fairly small and amounts only to

20～60 at the most.

b) Mean and variance of the measured data differ from ones of the

population.

c) Difference
between the measured data and the population is sig-

nificant in case of variance. For instance, when a set ofsamples of

size 50 are extracted from population following to normal distribu-

tion with variance Z, the confidence interval for the population

variance with confidence 0.95 is calculated as 1.4かノ2.88 (the interval

5



is obtained as the range of ck2 in Eq･(2･2･2) by substituting n-50,

8x2-1, B-0.05).

a) Large difference between the measured data and the population causes

large differnce on the estimation of failure probability･

e) Difference between the measured data and the population, that is,

error of characteristicsタ Can be evaluated analytically by employlng

ト and x2-distributions in the case that the population follows to

normal distribution.

Errors of characteristicsand distributionsare treated in Cha･pter

2 as follows;

a) With respect to error of characteristics, the definition of血jlure

probability is modified so as not to underestimate the failure prob-

abilityl in other wordsl not tO provide a deslgnOndangerous side in

spite of the existence of the error.

b) With respect to error of distributions, th6 author takes the stand

that the error is unavoidable and cannot beevaluated byextending the

usual reliability analysis. Tbe error is expected to decrease in

consequence of the sampling process of the measured data as described

later in Section 2.5.

2.2 Error of Characteristics

In order tO define the failure probability taking account of

error of characteristicsl probability densities ofpopulation mean and

population variance must be calculated byemploylng mean and variance

of the measured data･ Altbougb population mean and population var-

iance are deterministic in substance andhave noprobability densities

at alll description such as lprobability densities ofpopulation mean

and popula-tion variancel is employed herein from aviewpoint that the

unknown population is estimated from the known measured data.

Tbe probability densities ofpopulation mean and population var-

iance can be derived by using t- and x2 -distributionsl respectively,

if the population follows to no叩al distribution･ In case of log-

normal distributionタ prObability density can be derived by performing

logarithm transformation for the variables ofト and ㌔-distributions.
In case of gamma distributionタ pTObability density can be also derived

approximately by performing square transformation･ α1 the contrary,
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in case of other distributions such as Weibull distribution and double

exponential distribution} probability densities cannot be derived be-

cause these distributions cannot be reduced tonormal distribution by

performing any transformation.

Supposing a set of samples of size n is obtained from a measure-

ment, let,sample mean be吾and sample variance be
8i･

And the esti-

mated values of population mean and population variance in this case

are shown as ux and o?x, respectively･

L･et probability distributions of population mean and population

vaLriance be derived in case of normal distribution to begin With･

when sample mean 5! is obtained from the measured data of size nl the

confidence interval for population meanリx With confidence α is ex-

pressed as;

育-fa/261/(n-1)1/2 ( px(盲+ta/20Ⅹ/ ( n-1 )1/2 (2.2.1 )

where七a/2 is a value of t-distribution corresponding to upper prob-

ability α/2, that
is,

α/2
- /two/2I,(†u)du

where Ftl is probability density for t-distribution･ On the contra-

ry, in Case of･variance> the confidence interval for population var-

iance
cri■withconfidence

β is expressed as follows by using sample

varlanCe
8圭･,

(A-i)s‡2/x21-P/2 ( dx2 ( (n-1)Sx2/x2p/2
】

(2.2.2)

where鳩/2
is a valtle Of i -distribution･ f好, COrreSPOnding to upper

probability β/Z, that is,

β/2-Ix=p/2 fx2 (u)du

The situation that population mean becomesリx Onthe occasion of

sample mean being云, is represented as,

p(( population mean)-Px l (sample mean)-育)-fFLI(px)dx
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where fux is probability density for population mean･ The relation-

ship between fux
land
ft is expressed as,

Ip:fib (ガ)加-/(=-1,1/2(pI_Ti,/8zft(u) du

fux is decided so as to satisfy above equation･ that is'･

fpェ(〟)-((nll)1/2/sI) ･ft((n-1)1/2(∬一石)/8ェ)
(2.2.8)

With respect to variance, probability density for population vari-

ance, fo2x, is connected with fx2aS,

I.dz2fQ…(罪)如-I(:-1,8ェ2/dz2
fx2 (u)du

and fo支is decided as follows;.

fdz2(〟)-((n-1)8Ⅰ2/x2)･fx2 ((n-1)sz2/形) (2.2.4 )

Eqs.(2.2.3) aLnd (2.2.4) are applicable only for the population

following to normal distribution. In case Qfgamma distribution and

log-normal distribution, the corresponding distributions of t- and
●

x2-distributions cannot be derived analytically, but they can be

estimated approximately. In case of gamma distribution, following

square transformation-the derivation is expressed in'Appendix l-

is employed to convert variable ㍑ following to normal distribution

into variable 士 following to gamma distribution, as a practical ap-

pTOXimation;

≠-2 (盲t)I/21(4す2-sz2 )1/2+育

Now, following assumption is introduced; that is, square transforma-

tion is also applicable and useful to define probability densities

for population mean and population variance for gamma distribution

based on Eqs･(2･2･5) and (2･2･4), respectively･ Thus fux and fQ2x

for gamma distribution are derived as follows by performing square

transformation for Eqs.(2.2.5) and (2.2.4);

fpェ(x)-((n-1)I/2/sI) ･fc[(n-.)I/2(2(融)V2-(4雷2-812)1/2)/sェ]･(育/x)1/2･････(
212･5 )

fQ,2(x)-[ ( n-1)8z2/ i2(初)1/2-(4雷2-sI2)I/2+育)2]

fx2[ (n-1)sI2/( 2(盲x)1/21(4有21812)1/2+官1]･(s12/∬)1/2 ･･････-･･････(2.2.6)
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In case of log-normal distributionl following logarithm trans-

formation

u-lJlt

is employed to convert variable ㍑ following to normal distribution

into variable七following to log-normal distribution･ Thus fux and

fo支in case of log-normal distribution are derived as follows by per-

forming logarithm transformation for Eqs･(2･Z･5) and (2･2･4) and by

substituting盃for ln5! and 82x for 6支;

fpz(I)-((n-1)I/2/8Ⅹ)･ft((n-1)I/2(lax-1皿5)/8Ⅹ)
･ (1/〟)

･･･････････････-･････ (2･2･7)

fdI2(罪)-((nll)8Ⅹ2/&2) ･fx2((n-1)畜26x2/x)I(1/雷2)
( 2.2.8 )

where 6x is coefficient of variation of the measured data･

2.3 Classical Reliability Theory

Basic definition of failure probability in the classical relia-

bility theory is described in this Section for the purpose Ofsetting

the proposed reliability analysis including the error of character-

istics against the classical reliability theory･

Let population means of material strengthI RIandload, S, beリR

and l七're･SPeCtively, and population variance be o2R and o2s, respec-

tively. Let sample means of R and s be頁and吾I reSPeCtively' sam-

ple variances be 82R and 82s, respectively, and they are calculated from

the measured data of size nR and nsl reSPeCtivelyl extracted from

populations of R and S･ Following suppo'sitions underlie theclassi-

cal reliability theory; that is,元-pR,S-p8, SR2-6R2, s82-d82. varia-

bles R･ and s will happen to take any combinationタtherefore occurence

probability of a certain set of R' and s' is expressed as,

p( (R'≦R≦R'+dR)∩(s'≦S≦S'+dS)) -fR(R')f8(S')dSdR
･･･-･･････････-･･ ( 2･8･1 )

in which right-superscript
～ means a certain realized value; fR and

fs are probability densities for R and s, respectively･ Since fail-

ure probability is defined as aL ratio of an event such as R'<S' a-

gainst whole eventI. failure probability is provided as follows by

integrating Eq.(2.3.1) on the region of R<S as shown in Fig･1-1;
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pf-P(R<S )-NR<SfR(R)f8 (S)dSdR
･･･････.･･････････-････-････････････-･-･････-･･･････････ ( 2･3･2 )

Eq･し2･3･2) is expressed simply asfollows if fR and fs are nomal dis-

tributions;

pf-¢( (万一雷)/(sR2+sB2 )1/2)
･･････････････････-･･-･･････････････-.･･････････････--･････････････-･･･- ( 2.3.8 )

in which ◎ is an upper probability of normal distribution, and is

described as follows;

¢(a)-lan(1/27T)exp(-が/2)dx

Last, central safety factor yo is defined as follows purporting

to an index for the practical deslgn;

r.-盃/育 (2.8.4)

Cornell et al･ connected Eq･(2･5.3) with Eq.(Z.5.4) througbtbe medi-

um of the coefficients of variation 6R and 6s [2,19]･ The modified

reliability analysis proposed herein also aims at deriving the rela-

tionship between yo and pf finally･

2･4 Reliability Analysis with regard to Errors of

Means and Variances

The modified failure probability is defined as follows so as to

take account of errors of means and variances byusing the probability

densities for population mean and population variance defined byEqs.

(2.2.5)～(2.2.8);

p/A-JmfpR(声■)fp8(雷･)fqR2 ( Sd･ )fo♂ ( s82･ )IIR<SfR (R)f8 (S)dSdRdS82dSR2d吾dR-

in which right-superscript = means a failure probability taking ac-

count of error of characteristics.

Numerical integration for numerous combinations of R*, 5*, 8R2*

and 8s2* are required in order to solve the above-mentioned quadruple

integral for each set of R and s･ For instance, the total combina-

tion becomes lO8 when each integral reglOn is divided into lO2 parts
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for Simpson's 1/3 rule. Now, parameter Ao
, which corresponds tothe

independent variation ofか and吾★, is newly introduced withthe sole

object of decreasing the total combination ofnumerical integrations,

and parameter βoク Wbicb corresponds to the independent variations of

8R2* and 8s2*I is also newly introduced･ Introducing these two para-

meters, total combinations decrease to loヰ.

Parameters are defined as the moved distance of the failure

boundary line from the orlgln, When the line-･--一っrlglnally represented

as R=S-一十mOVeS Parallel along R-axis as shown in Fig.1-2. That is,

parameter Ao corresponds to the parallel movement caused by error of

mean, parameter βo also corresponds to one caused by error of varト

ance. Tbe failure reglOn is represented as follows by using para-

meters Ao and Bo;

R<S+(A.+B.) (2.4.1 )

Further, the failure region is represented more simply tyintroducing

new parameter Co corresponding to Ao+Bo as,

R<S+C. (2.4.2)

Independencies between A. and i'I between 8R2' and 8s2' are not

lost by introducing parameters Ao , Bo and c. , because the parameters

are connected directly to the failure probability pf for the fixed

sets of B'and 5', of 8R2' and 8s2'･ The relations are expressed as

follows;

(certaiJIValue ofAo)-･(fixed sets of元''and雷')-(certain value of P/)

(certai皿Value of B.)-(fixed sets of SR2'and S82')-(certain value of Pf)

(certai血Valueof Co)-(fixed sets of
Ao
and
Bo )ー(certain value ofPf)

In the above arrow-descriptions, R* and 5*I 8R2* and 8s2* are employed

as intermedia connecting Ao and pf, Bo add pf･ respectively,and there

are one-by10ne COrreSPOndences between Ao and pf･ and between Bo and

Pf･

Finally, modified failure probability taking account of error of

characteristics･ pP,
is expressed as follows by using parameter Co ;

ll



pfX-Jfo. ( Co )IJR<S.C.fR(R)f8(S) dSdRdCo (2.4.3)

in which fco is probability density for parameter Col In this case･

total combinations of the numerical integrations decrease to lO2 at

the foregoing example.

The modified failure probability pfM is defined as Eq･(2･4･3)

herein, but other definitions as mentioned below may be considered;

a) pfu-NR<S+C.′fR(R)fB (S)dSdR , Provided that parameter Co'is de-

cided so as to satisfy following equation･･
e-Ic:,fc.

(Co)dCo･ where c

is coefficient of dangerousness and is selected as c-10~3 for inst-

ance.

b) P/H-NR<S+C."fR(R)f8(S)dSdR , provided that parameter Co" is de-

cided so as to maximize following integrals ; Jc;Jc.(Co)dCoJRQ.C."fR(R)L8(S)dSdR

In the definition (a), PP
is

coTsidered
as failure

proもability
where

upper probability of fc. is equivalent to a certain very small value

∈･ In other words, if the structure isdesigned
by?sing PP of

type

(a), 100(1-c) percent of the error which may occur lS already taken

account. In actuality, E is difficult to evaluate, and this is the

weak point of the definition (a). On the contrary,血tbe definition

(b),
pP
is considered as failure probability where the product of pf

and upper probability of fco is maximized･ The product may be in-

terpreted as a sort of an index corresponding to the economy of the

deslgn.

First･ probability densities forparameters Ao and Bo ･ fAo and

fBo ,
are derived in the case that populations of R and S follow to

normal distribution. The failure probabilities are expressed as

follows for arbitrary values of parameters Ao and βo , respectively,

based on Eq.(2.5.5);

p/-¢((R-一言IA.')/(SR2+ss2)1/2)

P/-¢ ((RT-s--B.')/(SR2 +ss2)1/21

(2.4.4)

where sample means豆and吾I Sample variance 8R2 and 8s2 are determin-

istic values, and parameters A♂ and BF are random variables. As a
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preliminary arrangement of connecting failure probability Pf With

parameters Aoand Bo through R･･ 5･,
qi2' and ss2',

following new para-

meters･ don and sov･ satisfying the condition pf=COnSt･･ are intro-

duced;

do仇*=-R+一言●

80V+-SR2++s82+

( 2.4,5 )

where don is an abbreviation of 'difference of means-, soy is an ab-

breviation of
-sum

of variances'. The group corresponding to 5'-5.

is extracted by using parameter dom'among whole combinations of arbi-

trary R'and i., and the group qi2''8s2'is extracted
byusing parameter

soy. among whole combinations of arbitrary pk2. and i52'･
since the

group i.-5･ and qf･･8sh correspond
to failure probability pf,

parame-

ters dom･and sov* can be connected with pf'･ Relationships between

parameter dome and R･15･, and between parameter sov' and 軒.中 are

shown in Figs･2-1･ 2-2･ Let probability densities fux and fo?x for

R be fリR and fo孟･ respectively, and for s be Pus and fo;I respect･ive~

1y, based on Eqs.(2.2.5) and (2.2.4). The probability densities for

parameters don and soy, fdom and fsov･ are expressed as follows by

using fuR, fus･ f頚and fQg'･

fdom (do仇')
=Idom･

fpR (万*)lps (RLdon･)dR-･

f8.V(80V') -Jsov･
jTdR2 ( SF)fdB2( sov'-SR2+) dSR2'

( 2.4.6 )

Now that failure probabilities pf corresponding toparameters dom*and

sov･ , respectively, are represented as follows with reference to

Eq.(2.5.3);

pf'-¢ ((don')/(sR2+s82)I/2)

P/-¢((171雷)/(sov')1/2 )

( 2.4.7 )

Parameters dom･ and sov･can be represented as follows by employing

parameters Ao' and Bo' based on Eqs.(2.4.4) and (2･4.7), respectively;

do仇●-万一s--A.'

80V'- (SR2 +s82)(a-S)2/ (万一s-1B.')2
( 2.4.8)

In consequence, imaginary Parameters Ao and Bo having no physical

meaning are connected with real parameters don and soy representing

13



frequencies of the errors included in克,ラ,
qf and

8s2･

Probability densities forparameters Ao and Bo , fAo and fB. , are

obtained by substituting Eq.(2.4.8) into Eq.(2.4.6), and probability

density for parameter co, fco , which is required finally, is repre-

sented as follows by using fAo and fBo
I,

fc.( Co) -IfA.(A.)fB.(Co-Ao)dAo
(2.4.9 )

Probability densities fA. , fB. and fc. are shown in Fig･3-1 in case

of nR=ns=151 6R=0･1 and 6s=0･2･

Tbe procedure can be extended as follows to gamma distribution

and log-normal distribution. Witb respect to gamma distribution,

expression such as Eq. (2.5.5) cannot beobtained bysubstituting gamma

distribution directly into Eq.(2.5.2), orby substituting normal dis-

tribution which
is transformed ty square approAXima,tion into Eq.(2.3.2).

Therefore, rough approximation such as,

(variable following to gamma distribution)

3% (variable following to normal distribution)

is introduced and Eq.(2.5.5) is employed without any modification

relative to the difference between gamma distribution and normal dis-

tribution. In that case, Eqs.(Z.4.4)～(2.4.8) also can be employed

as they are･ However, as for fuR, Pus, fo2R and fo2s in Eq･(2･4･6),

Eqs.(2.2.S) and (2.2.6) should be employed instead ofEqs.(2.2.3) and

(2･2･4), respectively･ Probability densities fA., fB.and fcoaTe Shown

in Fig.5-Z in the same case of normal distribution･

Witb respect to log-normal distribution, following expression is

employed approximately instead of Eq.(2.5.5);

Pf
-中l(1n万一1nS-)/(8R2+&2)1/2) (2.4.10 )

Parameters Ao and Bo are re-defined as follows; that is, parameters

Ao and Bo are expressed as tangent of the angle between S-axis and

failure boundary line R=S which moves round the orlgln aS Shown in

Fig.ト5. The failure reglOn is represented as follows by using pa-

rameters Ao and Bo;
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R<(A.+B.)･S (2.4.ll )

Since Eq.(2.4.ll) is represented more simply by using parameter Co=

Ao+βo as,

R<C.S

the modefied failure probability pP
is expressed as follows;

pix-JLc.( Co)JJR<C.S fR( R )f8(S)dSdRdCo

(2.4.12 )

( 2.4.13 )

Failure probabilities pf
are expressed as follows for parameters Ao'

and Bo' based on Eq.(2.4.10);

R/-申((1･1元一lA雷-1nA｡●)/(8R2+882 )1/2)

P/-¢ ((1n芳一1n雷- 1皿B.')/( 6R2+8s2 )I/2)

Parameters don and soy are introduced as,

do伽J-- lnR+- l皿S+

sov'- 6R2'+ 682'

(2.4.14 )

(2.4.15 )

Probability densities for parameters don and soy are expressed as

follows with reference to Eq.(2.4.6);

fdo- ( do仇')=Jdom･( 1/ R7hs-')fpR( 1n万')lps ( 1皿R-し4o7n') a ( 1皿R-')

fB.Y (80V')-Isov･( 1/元宮)foR2( 6R2')jTo82( sov●- 6R2●)d ( 8R2')
( 2.4.16 )

since failure probability p; corresponding
to parameters dom'and sov*

are represented as follows instead of Eq.(2.4.7);

pf'-中((don')/(8R2+882)1/2)

p/-¢((1皿R--1n雷)/ (sov')I/2 )
(2.4.17 )

parameters dom'and sov'can be represented as follows byusing parame-

ters Ao' and Bo';

don+- 1nR- lnS- 1nAo+

sov'- (6&2+ 682 ) ( 1n万一1n雷)2/( 1nR--1nS--1nBo')2

15

(2.4.18 )



probability densities for parameters Ao and βo are obtained by substi-

tuting Eq.(2.4.18) into Eq.(2.4.16), and probabil'ity density for pa-

rameter co is obtained based on Eq.(2.4.9). Probability densities

fAo, fBo and fco are shown in Fig･313 in the same cases ofnormal and

gamma distributions.

The

modifieチfailure
probability pF

taking account of the errors

of means aLnd variances Can be calculated by substituting fco into

Eq.(2.4.5)-in case of normal and gamma distributions-and into

Eq.(2.4.13)-in case of log-normal distribution. Tbree kinds of

pP
are calculated for central safety factor y., and shownin Fig･4 in

case of normal, gamma and log-normal distributions.

2･5 Relationship among Failure Level
pj of the

Structure, Structural Life T and Sampling

Process of the Measured Data for Load s

The structural life, T, is generally decided in advance at the

stage of making a plan froh an economical and/or political viewpoints.

Failure level
P;,
for which the structure is designed, acquires an

engineering meaning by connecting pf Obtained from the reliability

analysis with T decided in advance, because the relationship between

T and pi
is closely cpnnected with the sampling process of the meas-

ured data (of size ns)
for load s which have been measured continuous-

ly with respect to time･ Althoughpf'is only connected with ioad s

and without any relationship with R,
Pj
is used as the failure level

of the structural deslgn. It is explained as follows; value of R is

unknown, and therefore it must be satisfied inany case that value of

S exceeds the value of R only once-not more than twice-through

the whole periods numbering T/AT, where AT is the time interval of

sampling-that is, maximum loads are collected in each interval AT

and used as the measured data for s. In other words, the structure

which fails once during T is obtainable by using failure level
Pj

corresponding to AT/T. If the structural life T is, for instance,

supposed as 100 years･ following relationship between pf( and AT is

obtained;
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If the time interval AT of the sampling process is chosen according

to the above relationship, the structural life T=100 years is equally
l

.

expected independently whether pf lS Selected as 10-6 .r lO~叫･

l

However in practice･ the accuracy of pf undergoes a change according

to the selection of AT.

Error of distribution is caused by substituting approximately fR

and ∫s for the known distributions such as normal distribution, gamma

distribution and log-normal distribution as described previously.

Error of distributions has a tendency to decrease as

Pj
increases･

Adequency of the approximated distribution is substantiated generally

by using test of goodness of fit, where the goodness of fit is low at

the part distant from the mean, i.e., at the neighborhood of the ex-

tremum as compared with at the neigbborbood of the mean. The situ-

ation is explained as follows; if
p;
is selected small,goodness of

fit as a whole increases on account of the increase of sample size,

and goodness of fit at the neighborhood of the extremum decreases

l

relatively; if pf is selected small･ the main part of the integral

playing an important role in the calculation of pi
is restricted ･to

the neigbborbood of the extremum･ Going upon the comparative dis-

1

cussion as stated above･ it is presumed to be desired that pf is se-

lected in the order of 10-3～10-5, that is, the time interval of sam-

pling, AT, is selected large･ If pj: is selected too large in the

order of 10-2～10-3 , number of samples decreases, and goodness of fit

itself decreases as a whole.

On the contrary, error of characteristics has been already e-

valuated as shown in previous Sections. Tbat is, the influence of

the error on the estimation of failure probability is evaluated nu-

merically, and there is no necessity for discussing the decrease of

the error itself･ In this
case,キcan

be chosen without restraint

-as well large in the order of lO~2～10~3 or small in the order of

10-5～10~8-so long as minimum number of samples for the statistical

treatment is obtained.

By correlating error of characteristics and error of distribu-

tions, it is recommended that pj! is selectedinthe orderof lO13～10-5

in so far as number of samples between 15 and 100 is obtained.

2.6 Application to the Practical Deslgn Of Truss

Bridge
17



Means, variances and coefficients of variation for R and s are

calculated by using the measured data from the tests ofmaterials and

the measurements of loads, and the modified failure probability p 竿is
calculated by using Eq･(2･4･3) or Eq･(2･4･13)･ By calculating pP
for various values of

ce?tralsafety
factor yo (=B/吾), the yo-pP

curve

is drawn up. By employlng the curve, the structural member is de-

slgned, that is, the cross-sectional area of the member is decided.

The result is compared with the usual allowable stress deslgn based

on Design Specification for Welded Steel Highway Bridge of Japan, and

the absolute safety factor anticlpated in the allowable stress de-

slgn is obtained.

The simplest case only the tensile force acts on the structural

member composed by SM41B steel is considered as a numerical example･

Characteristics of SM41B steel is obtained frpm tbemeasured data for

yield strength tested by Society of Steel Construction of Japan in

1968 [54], and shown in Table 1.

Warren truss with parallel chords is chosen as a type of the

bridge structure as shown in Fig.5-1, and the cross-sectional area is

calculated for the lower chord member located at the end of the truss.

The truss bridge is supposed to be a two-lane highway bridge for one-

way traffic, whose cross-section as for slab is shown in Fig.5-2.

Influence lines employed in the allowable stress deslgn is also shown

in Figs.5-1, 5-2 concerning to the main truss and the slab, respec-

tively.

The measured data for s is prepared bycollecting maximum values

during each time interval AT when the traffic flow acts on the truss

bridge. The traffic flow model is substituted for the random series

of the axial forces generated by using computer on the basis of the

traffic volume census covering over 51 weeks. These records were

measured by Japan Highway public Corporation in 1968 at Tennozan Tunnel

of Meishin Highway [64]. Maximums of the tensile stress which occur

in the member per week are taken as a set of the measured data for β,

that_is, 1et △T be one week. The characteristics for s are shown in

Table 1.

Let the structural life T be 100 years. Since AT is chosen as

one week, the failure level
pl employed

in the design criterion is
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indicated as,

Pf′=△T/T-1 (week)/100 (y8arS)彩2× 10-4

Probability density for the population ofload β is estimated on

the basis of the frequency distribution of the measured data for s as

shown in Fig･6･ In this casel log-normal distribution is suitable

for the probability density for s, fs･ Probability densities fA. ,

fB. and fc. are calculated as shown in Fig.7
･when

R and s follo巾to
log-normal distributions with characteristics as shown in Table 1.-

probability density for R is assumed being equivalent to one for s,

because coefficient of variation of a is raLther smaller than one of s.

The modified failure probability pP
is calculated by using fc. based

on Eq･(2･4･13) and shown in Fig.8. The crossISeCtio丘al area of the

lower chord member> As? is determined as follows by employing the

yo

-pP
curve;

a) yo corresponding to

p;
is read in Fig･8 by setting

pP-p;･
Since

failure level of the member is pf'=2×101ヰ, yo is obtained as l･77･

b)頁is calculated by using yo. Since吾is･14.44(t) in Table 1,克

is obtained as 25･56(t) based on the relati･on豆-yo吾.

c) As is calculated as follows by using豆;

4s-育/(yield Strength of SM41B Steel)-25･56/2･752<10cⅢP

On the contrary, let the cross-sectional area of the same member

be calculated based on the usual allowable stress design for the first

class bridge. The concentrated load on the slab becomes 5×4.559=

22･80(t) and the total live load, L見, acting on the lower chord mem-

1

ber is obtained as follows with reference to Fig.ら-1;

Le- 22.80×0.4375+ 1.596× 17.5-37.9t

】

The required cross-sectional area As is determined as,

As- 37. 9/ 1.400<28czEP
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where 1.400 (t/cm2) is the allowable stress of SM41B steel.

In consequence, the absolute safety factor, yabs ,
including in

the allowable stress deslgn is estimated to be nearly

r&b8- 28/ 10-2･8

for the tension member under live load.

2.7 Conclusion

Following two kinds of errors including in也e usual reliability

analysis have been discussed herein;

(∋Error due to means and variances-Error of characteristics

(∋Error due to assumptions of distributions--Error of distributions

With respect to error of characteristics, modification of the usual

reliability analysis has been proposed not to evaluate the failure

probability on dangerous side even if the error will exist. Witb

respect to error of distributions, since the error is regarded as un-

avoidable in the reliability analysis, larger selection of time in-

terval AT has been recommended for the purpose of decreasing the in-

fluence of the error on the evaluation of failure probability.

Error analysis has been applied to normal distribution, gamma

distribution and log-normal! distribution. Therefore error of char-

acteristics can be analized only when the distribution of the meas-

ured data are assumed by one of these three distributions.

20



Cbapter 5 Estimation Procedure of Extrenum

Two kinds of error being accompanied with the usual reliability

analysis are discussed in Cbapter 2I and the error due to lapproxi-

mation of distributionst is not evaluated analytically. It was pro-

posed that influence of the error on the estimation of failure prob-

ability decreases by putting､ design criterion P;
in the order oflO-3～

10-5
･ If more strict solution is further

wanted,
some new

approよch

which has no use of approximation of distributions is needed. In

Chapter 5I aS an initial step to the purpose, a procedureis proposed

to estimate the extremum of the measured data without any approxima-

tion of distributions. The content has no immediate connection with

the failure probability and the structural deslgn yet. Only purpose

is to establish a variational procedure without any approximation of

distributions on the estimation oftbe extremum of the measured data.

5･1 Procedure without any Approximation of

Distributions

ヽl

Ceby;ev's inequality is one of well-known procedure without any

approximation of distributions. Although eeby圭ev･s inequality is

meaningful in theoryl it cannot be employed in practice on account of

too much extremum--deviation-being estimated. The deviation cor-

responding to occurrence probability 1/1000 is calculated as 31.6 in

case of normalized population with reference to following eeby圭ev-s

inequality;

p(lY-Ol≧t)≦1/t2-I/1000

The deviation is far too large as compared with normal distribution

whose deviation corresponding to 1/1000 is nearly 5.1.

Another and widely applicable procedure is the estimation pro-

cedure of extremum based on the variational method [30,31,48】, where

the distribution itself is taken as an unknown function. The proI

cedure is expressed as follows; first, cbaracteTistics such as mean

and variance are calculated from the measured data of size n, and are

called the restrictive conditions by which an unknown function is

characterized; secondl Sets Of samples of size N, which is N>n, are

supposed to be taken from the same population over and over; 1astl an
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unknown function is decided so as to maximize the average value of

maximums--described as the averaged maximum henceforth---of each set

of sample, and so as to satisfy various characteristics based on the

variational method. Tbe derivation of extremum in this case is de-

scribed in the following.

Tbe probability density for the population, from where themeas-

ured data has been extracted, is designated by i(X), and its cumula-

tive function by F(X). X is a normalized value of a measured value

∬, and is expressed as,

X-(罪-訂)/sェ

Although i(X) and F(X) are taken as functions for x in ordinary cases,

X is regarded as a function for F herein from a viewpoint that dis-

tribution itself is unknown. That is, expression such as x(F) is

employed. Using x(F), the restrictive conditions that mean is Oand

variance is 1 are expressed in the forms of following integrals;

I.1xdF- o

I.1x2dF- 1

(3.1.1)

(3.1.2)

The averaged maximum of samples of sizes 〟, 礼, is also expressed as

follows;

yIN

-I三xNF"-1
dF (3.1.3)

The unknown function X(F) is obtained by solving the variational

problem of maximizing yN Of Eq･(3･1･3) under the restrictions of Eqs･

(5･1･1) and (5･1･Z). First, introducing Lagrange multipliers入1 and

入2, functional ♂ is defined as 【31],

J-XNFNll
-i.x-}2X2

and function X(F) is expressed as follows by taking ∂'J/ax=0;

X-(1/2A2)(NFN-I-}l)

(3.1.4 )

(3.1.5)

Lagrange mutipliers 入1 and 入2 are determined by substituting Eq.(5.1.5)

into Eqs･(5･1.1) and (5.1.2), and by solving the simultaneos equations
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for 入1 and 入2 SuCh as,

1/2}2)(1-^l)-0

(1/2}2)(N2/(2N-1)-2}l-^21)

therefore

Al=1, 1/2^2-(A'NN)-V2

where

Akl-kl/(k+l-1), A左l-Ahl-1

(8.1.6)

Then the extremum of
fNI i･e･I PNE, is obtained as follows by substi-

tuting Eqs.(3.1.5) and (5.1.6) into Eq･(3･1･5);

yINE- (1/2A2)(4払+ト^l )-(AIM)th (8.1.7)

in which right-superscript E means being an extremum･ Value of iNE

is 22.5 in case of Ⅳ=1000-this is not equivalent to the occurrence

probability 1/1000.

lPJr一一･･-･ー.ー

_
Further, another distribution x(F) ha,s been derived by Plackett

[48] under the additional restriction of i(X) being symmetric, and

in that; cas占6itiehum~fNF~is represented approximately as,

1

y-NEL,(2(2N_.
,)I′l (3.1.8)

that is, fNE i亭15.8 for N=1000･ These values of亨NE for Eqs･(3･1･7)

and (5.1.8) are fairly large, but have a physical meaning as upper

bounds of the averaged maximum of the samples of size 〃･

5.2 Decrease of the Estimation Value of Extremum

%NE due to the Selection of Characteristics

The extremum of the averaged maximum, fNE,is still large so long

as two restrictive conditions for mean and variance are considered.

How
can輔be estimated lower? Decrease of extremum輔is realized

herein by increasing the number of restrictive conditions cbaracteT-

izipg the measured data･ Let demonstrate the results first of all･
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Various values of extremum?NE for N=1000, which are calculated by

using samples of sizes 50 extracted from the population following to

normal distribution, are shown in Table 2 witb respect to various

TeStTictive conditions descTibed later. The values show a tendency

to decrease as number of restrictive conditions increases. Although

the effect has not been proved until the actual results come out,

increase of the number of restrictive conditions is supposed fairly

effective for decreasing the extremum鞘.

What kinds of characteristics are adequate as restrictive con-

ditions in addition to mean and variance? Characteristics are ne-

cessary to.satisfy the following conditions;

a) ChaTa･Cteristics should be expressed h the forms of definite inter

grals for interval between 0 and 1.

b) Integrals should be?nalytically possible when X(F) is substituted

into restrictive conditions.

c) Integrands of characteristics should be monotone increasing func-

tions for interval between 0 and 1, because function x(F)-being

increasing function from the character of cummlative density function

-is
defined as a sum of the integrands.

d) Characteristics should represent the properties of the measured

data undoubtedly.

･e) Calculations of the characteristics from the measured data should

be simple so that englneerS may Calculate without being puzzled.

Based on these properties for characteristics, following six

kinds of characteristics are chosen as restrictive conditions herein;

that is, ①maximum,⑦minimum,⑦mean of upper blocks of size士, ①mean
of lower block of size

a,①skewness
and ①kurtosis･ Mean of up-

per block of size士, ut, is expressed as ut-(Xn一…+-+Xn)/t andmean

of lower block of size 8, -Vs, aS
-Vs-(Xl+･･･+Xs)/s

based on the or-

der statistics xl<X2<･･･<Xn which are obtained as the measured data

of size n･ The restrictive conditions with respect to six chara･c-

teTistics are expressed as follows after the expressions of Eqs･

(5.1.1) and (3.1.2);

① IolxnFn~ldF-Xn-ul

@ Iolxn( 1-F)a-･dF-Xl--Vl
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@ /.:i!.x

④
I.1iii.x

n!

(i-I)!(n-i)!

n!

(i-1)!(n-i)!

⑤ £x3dF-C3

⑥七x4dF-β.

Fn-i(1-F )i-IdF-/.xgt(F)dF -ii真空..
-ut

FI-1 ( 1rF)A-i dF-I.1xg-s(F) dF

-吉is.xi
--

Vs

(8.2.8 )

(8.2.4)

(3.2.5)

(S.2.6)

Since each integrand of characteristics ①し①is simple equation for

X, the equation concerning to the unknown function x(F), which is

obtained by taknig aJ/ax-0, is still a simple equation for x.

Therefore x(F) can be represented as easy as the derivation of Eq.

(5･1･5)･ On the other band, the integrandsofcharacteristics ① and
(9 are a cubic and a quartic equations, respectively, and the unkn.wn

function x(F) becomes a cubic equation when both characteristics are

employed･ The solution of cubic equation for xI Which is solved by

Ferrarils formula, becomes quite complicated and the integral becomes

analytically impossible when x(F) is substituted into. restrictive

conditions ① and ① in order to determine Lagrange multiplieTS.

That is, the characteristics ① and①
are not adequate as the re-

strictive conditions-the characteristics ① and ① are discu55ed in

Chapter 4 from a different standpoint･ Decrease of extremum軍弄is
realized herein by combinating restrictive conditions ①へ①･

3･3 Extremum PNE under Three and Four Restrictive

Conditions

Extremum fNE in case of three and four restrictive conditions are

derived and shown below in the same manner described in Section 5.1.

(∋case of three restrictive conditions for mean, variance and maxi_

mum;

X-(1/2A2) (NFN-I
-}l一人3nFn~.)

1/2^2 - ( A'nn -

u…
)1/2/ ( A'NNA'nn -A'Nn2)I/2

13-(A'Nn-212ul)/A'nn, }l-1-}3

YNB- (1/212) (ANN-Akn}3)
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⑦ case of three reヲtrictive
conditions for mean･ variance and mean

of upper block of sIZe 士;

x-(1/2A2) (NFN-I-}l-l3ge(F)

1/212 - ( UE,-u,2 )I/2/ ( A'NNOu -C;2 )I/2

}3-(C,I-2}2u,)/D,I,, }l-1-}3

yINE = ( 1/212) (A,NN-Ce, l3)

(8.3.3)

(8.8.4)

@ ca:eof
four restrictive conditions for mean･ variance･ maximum

and mlnimum;

X- (1/2A2) (NUN-l一人l-A3nFn~1-A.n(卜F)A-1)

1/2^2 -(
(A',.n2
1BL2･)-A'm(u21+巧) -2B'n.ulVl

)I/2/

(A'NN(A'.n2 -BL2
) -A'nn (Akn2+ Bkn2) +2A'N.BLnB'nn )1/2

}3 - ((AknA'nn
-BknBLn)-

2}2 (A'nnul
-Blnvl))/(A;n21B'nn2

)

}4 - ((BknA'nn -A'NnBLn
)- 2}2 (A'nnvl

-B(nnul))/(A'nn2-unn2
)

}l-1-l3-}4

y-NE - ( 1/2}2 ) (A,NN-ALn}3 1BJNn}.)

(8.3,5)

(-8.3.6 )

① case of four restrictive.conditions for mean, variance･ means of

upper and lower blocks of sIZeS 舌;

X- ( 1/2}2) (NFN-し}l-lag,(F)
-i.5e(F))

1/2}2 - ((DE',2-1LU)-D左(u,2 +vc2 )12年,u,vE)1/2/

(A'NN(D;2一万E'e2ト巧t( C,'2 +a;2 )+ 2C',e,I-D(,E)I/2

}3 - ((C,'DE'E-C-;D-'u )-2}2(UtEut一兎v,))/ (Dt,E2-D-;,2)
l4 - ( (C-,'DE't- C;D-'c,ト2}2( D'uv,一句fuE))/ (D,,,2-ZiE,e2)

}l-1-l3-l4

yNE- ( 1/212) (AkN-CE,}3 -e,E}4)

where

Bkl-(k!l!)/(k+l-1)!

Ck-
N･n!

k(N+nll)!

f. (N+n-i-1)
(n-i)!
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Dkl =

Dkl -

(n!)2 A l

∑∑
(2n-i-3') !(i+3'12) !

kl(2n-1)!畠,% (n-i)!(n-3')!(i-1)!(3'-1)!

(n!)2 岳i (n-i+3'11)!(n+i13'-1)!

kl(2n-1)!た1jfl (n-i)I(n13')!(i-1)!(3'11)!

ukl-Bull, Ck-Call, C左-Ck-1, Lh-Dklll, D&-Dkl-1

Extremums輔are calculated for these four cases by岳ubstituting

N=1000, n=50,士=5, ul=Vl=2.249, u5=V5=1.70S into Eqs.(3.3.2),(3.3.4),

(3.3.6) and (3.3.8) and shown in Table 2, where ul,Vl,u5 and v5 are

calculated based on the order statistics of normal distribution.

3･4 Extremum?NE under Seven Restrictive Conditions

It is concluded from the results of Sections.5 tbat extremum

descreases as the number of restrictive conditions increases, tbat

means of upper and lower blocks of sizes 七 are more effective than

maximum and minimum with regard to the decrease of輔.
standing on

these points, standard combination of restrictive conditions is de-

termined as seven restrictive conditions for mean, variance, means of

upper blocks of sizes 七1, t2 and 士3, means Of lower blocks of sizes

七2 and 士3, Where 舌1,七2 and 七3 are Selected as 七1=5,七2=10,七3=17 in

case of n=50, for instance.

In case of seven restrictive conditions, function x(F) is ex'-

pressed as follows by employing Eq.(3.2.5) for 舌=tl,t2,t3 and Eq.

(3.2.4) for 8=t2,七3 in addition to Eqs.(3.1.1) and (3.1.2);

x-( I/2^2) (NF"-1-}l -^39,I(F)-A.g,2(F卜^5gb(F)

-}6屯(F)-}7g72 (F)) (3.4.1 )

Substituting Eq.(5.4.1) into Eqs.(5.1.1),(3.2.5) and (3.2.4), follow-

ing simultaneous equations for 入1,入3～入7 are Set uP by leaving 入2 tO

be unknown;

[A4](i)-(C)-212fE)

where
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[M] -

DelE3 DcIE2

Dt2t3 DE2E2

DE3E3 Dt3E2

(i)T-(}l }3 }4 ^5 }6 }7)

(a)T-(1 C,I Ce2 CE3 eE,冒,,)

(E)T-(o u,I uE2 u,,-VE,-VE2 )

Solving Eq.(5.4.2), 入1,入3～入7 are expressed as,

(i)-[M]~1 (c卜2}2[M]-1(E) (3.4.8 )

Unknown multiplier 入2 is derived by substituting Eq.(5.4.5) into Eq･

(3.1.2) as,

1/2^2 -(1-(E)T[Mrl(E) )1′2/(ANN-†c)T[M]-1(a))1′2
････-･･-･･････････-･････.･･

( 3.4.4 )

and extremum of the averaged maximum, fNE, is expressed as follows by

substituting Eq.(5.4.4) into Eq.(5.1.3);

y-NE-(I-(E)T[Mrl (E))l'2(ANN-(C)T[M]-I(C))1′2+(a)T[Mrl (E)
-･･･-

(3.4.5)

Extremum耳NE is calculated in case of N-1000, n-50, u5-1.705, uユo-VIO-

1.372, u17=V17=1.060, and shown in Table 2,where u5 ,ulO,VIO,u17,V17
are

calculated based on the order statistics of normal distribution of

sizes 50.

3.5 Extremum of the Averaged Minimum

Equations concerning to the estimation of extremum %NE and re-

strictive conditions described previously are derived in order to

estimate the least upper bound of load, etc‥

On the contrary, it is necessary to calculate the extremum of
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the averaged minimum to estimate the great lower bound of material

strength, etc‥ In this case, the order statistics X:--Xn-1

(x,1≦X'2≦･･･≦XL) are newly defined by reversing the sign of xi ･ Then

chaLraCteristics such as ut and vs are calculated tyusing the new or-

der statistics Xill and extremum of the averaged maximum, YNE(I is cal-

culated by using Eq.(5.4.5). At the end, extremum of the averaged

minimuml yNEI is obtained by taking PNE =-?NE(･

3.6 Applications to Various Sorts of the Measured

Data

Extremums fNE are calculated for various sets of the measured

data･ With respect to material strengtbl the procedure is applied

for three sets of the measured data on steel tensile strength, steel

buckling strength and cement compressive strength･ Witb respect to

load, the procedure is applied to a set of axial force of the lower

chord member of truss bridge described in Section 2･6･ Block char-

acteriatics utl,ut2, ut3,Vt3,Vt2 are Calculated for these sets of the

measured data and shown in Table 5.

Tbe details of the measurememts are described in the following.

① Tensile strength of SM50B steel [54] ‥ The test.was carriedoutby

society of Steel Construction of Japan in 1968タ Slmilar to yield

strength of SM41B steel discussed in Section 2･6･

①Buckling strength of SS41 steel [7] : The test.was?arried
out by

Aoki and Fukumoto at the Department of Civil Englneerlng Of Nagoya

university in 1972. The test quoted hereinwasperformed for welded

H-column with the slenderness ratio of 100.

⑦ compressive strength of cement
m?rtar

[65] : The test was carried

out by Cement Association of Japan ln 1964･ Tbe test quoted herein

was performed for Z8 dayls compressive strength of unifo-ly controlled

portland cement.

(∋Axialforce of the lower chord of truss bridge [64いSee Section

2.6.

Extremums球for these sets of themeasured data are shown in Table 3･

Depending upon the selection of block sizes 七1I七2 and士3, the

part of (1-(E)T[Mrl(E)) in Eq.(3.4.5) becomes negative, that is,
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extremum PNE becomes an imaglnary number. And extremum軍NE changes

sensitively according to the selection of士1 I七2 and七3'eVen
if fNE is

a real number. The situation is well shown in Table 5. As a re-

sult, the procedure still unsuitable for practical use. Tbe defect

is caused by the selection of the restrictive conditions,and inCbap-

ter 4, more reliable characteristics will be introduced.

5.7 Conclusion

Maximization procedure of the averaged maximum based on the var-

iational method has been introduced and developed in Chapter 3. The

procedure has only applied to the estimations ofextremums of maximum

and minimum of the measured data, and has still not connected with

the failure probability.

The characteristics of the procedure are as follows;

a) Restrictive conditions---characteristics･･-････-･てalculated from the

measured data are assumed absolutely accurate based on the maximum

likelihood method.

ち) Extremum of the averaged maximum which can be expected by employ-

ing the measured data is obtained.

c) Distribution of x(F) has a finite value at F=1--･･づn the contrary,

normal distribution becomes infinite at F=1 as often commented-and

it is rational on the englneering.

d) A slight variation of the measured data has a considerable influ-

ence upon the estimation of extremum fNE･ There i-s no criterion in

the selection of block sizes 七1ウ士3
,

__?nd
the selectionニー古舌S-~ a large

influence upon the extremum fNE･

e) Although function x(F) must be a monotope incr_雪空至ingfunction I

this condition is often violated. And still worse,
ek-言蒜-?Nf of-

ten becomes an imaglnaTy number.

f) Extremum fNE gives sometimes an undyerestimat;--a value even --こOmPared

with the maximum of the measured data.

As indicated in (d)～(f),.extremum亨NE defined herein isunreliable.

These unfavorable results are caused by the unsuitable restrictive

conditions･ In other wordsタ there are much negative factors in the

procedure. Following improvements are required in order to correct

the defects.
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(∋Introduction of more reliable cbaTaCteristics.

⑦ Definition of the error of characteristics.
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Cbapter 4 Extension of the Estimation procedure

of Extremum to the Structural Safety

迦阜1ysis

Applying the estimaLtion procedure of extremum to material strength

and load at the same time, the safety analysis oftbe structural mem-

ber is proposed by connecting with maximization of the failure prob-

ability. Since maximum of the failure probability is defined-

granted that it is obtained approximately-, a sort of guarant.ee

can be obtained as follows; that is,when a certain value Al is chosen

as the design value, the probability that a certain value A2 (A2>Al)

will happen is never in excess of a certain small value ∈ at the worst･

In other wordsl an arbitrary reliability level of the structural de-

slgn Can be guaranteed at the
･lowest.

Tbe concept of this deslgn

procedure is considered to be superior to the usual reliability ana-

lysis in respect that the measured data is employed more effectively

and that the deslgn is performed covering the worst state predicted

from the measured data.

Three characteristics A, B and c are newly introduced as the re-

strictive conditions in addition to mean and variance herein. The

characteristics correspond to skewness, kurtosis, etc., and can be

represented as equations of low degrees for F--differing from maxi-

mum, mean of upper block, etc‥ Introduction of new characteristics

A～C, which is represented as equations of low degrees for F and as

simple equation for x, makes the maximization of failure probability

possible.

Further, following improvements are discussed herein in order to

develop the estimation procedure of extremum described in Cbapter 3;

a) Unknown function x(F) is modified compulsorily to be a monotone

increasing function. Dummy characteristic, 刀, is introduced for the

purpOSe･

b) Influence of error of characteristics on the estimation of extre-

mum輔is
discussed. To be concrete, upper bound of extremum fNE is

presumed by defining means of characteristics AJW and their lower

bounds.

c) Graphical estimation method ofextremum fNE based皿Characteristics

Abc is developed in order to widen the util_itv of the procedure･
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4.1 Definition of Characteristics A, β and c-

Tbe restrictive conditions that mean, variance, skewness and

kurtosis are 0, 1, β3 and βヽ, respectively, are expressed as follows

by employing X(F) after Eqs.(3.1.1),(3.1.2),(3.2.5) and (5･2･6);

I1.x dF-0

I.1x2dF- 1

I:x3dF-C3

I:x4dF-C.

(4.1.1 )

(4.1.2)

(4.1.3)

(4.1.4 )

The unknown function x(F) is obtained by solving the variational prob-

lem of maximizing the following averaged maximum yN;

yN -
J三xNF"~1

dF (4.1.5)

However, if functional ♂ is defined by employing Eqs.(4.1.5) and (4.1･4)

aS,

J-XNFNII
-}lX-^2X2 -}3X3 1}4X4

and taking ∂J/∂X=0, a cubic equation for x is obtained. The irra-

tional formula, which is obtained by solving the equation for X, is

analytically impossible to be integrated. Tberefore, as me血tioned

in Section 3.2, skewness and kurtosis cannot be treated as restric-

tive conditions directly. Instead, the author newly introduce the

following restrictive conditions, whose characteristics are similar

to skewness and kurtosis, and which can.be solved as a simple func-

tion for x;

/:x(F-0･5)2dF-C3'

∫.1x(F10･5)3dF-β;

(4.1.6)

(4.1.7)

These statistics are supposed to correspond to skewness and kurtosis,

respectively. They may not be conventional statistics compared with

the.usual ones such as mean, variance, etc., because they are defined

herein for the first time. These statistics are allowed to use as

the restrictive conditiones from the following viewpoints;
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a) Skewness and kurtosis are obtained by averaging the measured values

X
according to the weight of x2 and x3, respectively.

b) X can be averaged according to the weight of (F-0.5)2 instea･d of

x2 because F is a function for x. The weight of (F-0.5)3 can be

substituted for x3 in the same way.

c) (F-0.5)i and xi (i-1,2,･･･) have the same sign in the distance

from the neigbborbood of the mean (or mode) except that the conditions

of (F-0.5)>O for x>O and (F_0.5)<O for x<o are not always

satisfied.

If these types of restrictive conditions are allowable, integral

/吉x(F- 0･5) dF corresponding to variance and integral /芸x(F-0･5)-dF
corresponding to the weighted mean which is one degree bigber than

kurtosis can be settled in the same way. Since the weights are ex-

pressed as a quartic equation for F, following four restrictive con-

ditions are recommended after simplifying weighted means shown by

/去x(F- 0･5)idF (i-1,b4);

/:xF
dF-Jl

/:xF2dF
- B

J三xF9dF-
C

I:xF4dF-
D

(4.1.8)

(4.1.9)

(4.1.10)

(4.1.ll)

Eqs.(4.1.1),(4.1.2),(4.1.8)～(4.1.ll) are employed asrestrictive

conditions in Chapter 4, where Eq.(4.1.ll) is especially used as the

dummy condition for modifying x(F) to be a monotone increasing func-

tion.

4･2 Estimation of Extremum fNE and the Se.1ection of

Dummy Characteristic D

The extremum of the averaged maximum, fNE, is derived as follows

under the restrictions of Eqs.(4.1.1),(4.1.2),(4.1.8)～(4.1.ll).

First, functional ♂ is defined as follows in the same way as Eq.

(5.1.4);

J-XNFN~1
-}lX-}2X2 1}3XF-A.xF2 -^5XF3 1A6XF4

(4.2.1)

and the unknown function x(F) is expressed by taking ∂J/ax=O as,

x- (1/2}2)(NFN-llAl-l3F-^4F2 -}5F3 -l6F4)
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Substituting Eq.(4.2.2) into Eqs.(4.1.1),(4.1.8)～(4.1.ll), the fol-

lowing simultaneous equations for Lagrange multipliers 入1
,入3～入6

are

set up by. 1eaving 入2 tO be unknown;

[A(](A)-(c)12^2(E)

where

･M,-

｢8y
1/2 1/8

1/8 1/4

1/5

1/4 1/5

1/5 1/6

1/6 1/7

1/7 1/8

1/9

(i)T-り1 }3 A. A5 ^6)

(c)℡- (1 〟/(〟+1) 〟/(〟+2) 〟/(〟+3) 〟/(〟+4))

(E)T-(o A B C D)

(入) is solved as,

(A) -[M]-1 (c)-2}2[M]-I (E)

where

[M]
-I

5
- 60 210

960
13780

- 280 126

5376 - 2520

15876
-28520

35840
- 17640

8820

(4.2.3)

(4.2.4)

lJnknown multiplier 入2 is derived by substituting Eq.(4.2.4) into Eq.

(4.1.2) as,

1/2}2- (I-(E)T[M]~l (E))1′2/(ANN- (C)T[M]-1 (a))1′2
･･･-････････････････････････

( 4.2.5 )

Extremum PNE is expressed as follows by substituting Eq.(4.2.5) into

Eq.(4.1.5);

YNE- (卜(EIT[M]-1 (E))l′2(ANN-(a)T[M]~l(c))1'2+(c)T[M]-1 (E)
･--･･････ (4･2･6)
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Eqs.(4.Z.3)～(4.2.6) are similar to Eqs.(3.4.2)～(5.4.5), and only dif-

ference is in the elements of [M】, (C) and (E).

Function X(F) of Eq.(4.2.2) must be a monotone increasing func-

tion with the increase of F from 0 to 1. This demand needs to be

satisfied as much as possible because the inverse function of x(F) is

a cumurative density under the control of Lagrange multipliers 入1～入6

in Eq. (4.2.2). Among six multipliers,入6-COrTeSpOnding to dummy

characteristic D-is expected to make an unlque COntribution to keep

x(F) being a monotone increasing function.

If function x(F) is calculated without including Eq.(4.1.ll)

previously, there is a fair possibility that x(F) is not a monotone

increasing function. In this case, although function x(F) becomes

an unrealistic solution, x(F) is still a strict solution by reason of

being a solution of the variational problem･･ Extremum fNE calculated

by using this unrealistic solution x(F) can be used as a criterion

for safety, even though it is an overestimated extremum･

In order to avoid the unrealistic estimation, let x(F) be de-

rived by including Eq.(4.1.ll), that is, by including dummy cbarac-

teristic ∂. Dummy cbaracteristic ∂ is chosen adequately so that

function x(F) becomes a monotone increasing function, and so that

value of亨NE
for D becomes a maximum. That is to say, the range of

b where x(F) is monotonous is calculated, and a,fter that, the largest

value of fNE is found inithe range of D･ This value is the extremum

fNE satisfying the condition that x(F) is a monotone increasing func-

tion.

The range of dummy characteristic D can be derived as follows;

Since x'(F)-which is obtained by differentiating Eq.(4.2.2) with

respect to F--瑚ust be positive alwaysl following inequality is ob-

tained;

(1/2^2) (N(Nll)FN-2-ん-2^.F-3^5F2-4^6F3) >o

in which the coefficient of FN-2, l2, must be positive always on ac-

count of the exponent of F, N-2, being large enough, and other coef-

ficients including 入3～入6 muSt be positive as a whole･ Tberefore

following simultaneous inequalities are Obtained;
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}2>O

A3 +2^4F+8^5F2+4^6F3<o

(4.2.7)

The range of D is obtained by solving Eq.(4.2.7) with respect to D for

O∠Fil. First, Eq.(4.2.7) isrearranged as the simultaneous relative

equations by using ll～16 and without using F. Since ll～16 are ex-

pressed by employing D through Eqs. (4.2.4),(4.2.5), Eq･(4･2･7) is ex-

pressed as the simultaneous inequalities of bigb degrees for ∂･

And the range of D is obtained by solving those inequalities for D

under the conditions whether the inequalities are positive or negative

(See Appendix 2).

As for the calculation of extremum of the averaged minimum, the

same manner is recommended as mentioned in Section 5.5.

4.5 Correlation with the Maximization of Failure

Probability

A new quantity yp is defined below instead of iN;

-yp

-I:x¢(F)
dF (4.3.1 )

(¢(F)-1/p for 1-p≦F≦1, ¢(F)-0 for O≦F<1-p)1

New quantity yp implies the averaged value of the part corresponding

to the upper probability p･ The unknown.function x(F) in this case

is expressed as,

x- (1/2^2) i¢(F)-^l-^3F-A4F2 1}5F31}6F4 ) (4.3.2 )

Function x(F) is composed of pulse 寸J(F) and smooth functions of four

degrees for F at the most, therefore x(F) is represented as a combi-

nation of a pulse and a tail part (See Fig.9-1). Tbe shape of a

pulse part is not flat as result of the existence of F～F叫, but it is

still a monotone increasing function with smooth variations. Then

ths probability density i(X) =1/(dx/dF) may probably be shown as

Fig.9-2.

with respect to material strength･ extremum of予報for p=pR,

瑞, is calculated･ With respect to load, extremum of亨巧for p-

ps,鴫･
is calculated･ Since鴨and PBs

are normalized deviations
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from the normalized mean 0, real deviations become

Rain(pR)-ii'sR荒
and Smは(p8)-SIsBY-F5E respectively･ 鴫is a negative mmber and

pLfsis a positive number･ The state of Rmin(pR)-S皿&Ⅹ(p8)is shown in

Fig.9-3 imaglnatively. Since failure probability is defined as,

p/-/R<S fR(R)fs (S)dSdR

the failure probability corresponding to Rmin(pR)-Sm&Ⅹ(p8) is shown as

the shadowed portion in Fig･9-3, and evaluated approximately as pf=

稚ps/2･

Lower and upper bounds, Rmin (pR) and smax(ps)' are extremums in

which the pulse parts (See Fig.9-Z) corresponding to lower probability

pR and upper probability ps are kept as far as possible from their

means矛and吾･ The situation pf=PRPs/2 corresponding to Rmin(pR)-

Sn&Ⅹ(pB) represents an extreme state in which the difference between

豆and吾is taken as wider as possible. That is, if Rmin and smax

are employed as the deslgn Criterion, failure probability of the de-

sign is less than pRPs/2 at the worst･ In other words, the use of

鴫and鴫bas the same meaning oftbe maximization of failure prob-

ability.

Probabilities pR and ps 豆re determined as follows;

①pR is always equi;{11~さnt･
to
p畠; that

is, assumed as pR -ps -p･

① pR is not always equivalent.to ps; combination of pR and ps which

realizes the most safe deslgn lS Selected among the combinations of

pR and ps which s･atisfy pf=pRPs/2-const･･

process ① is iTltrOduced as the first approximation, though it cannot

be used except in case of pR-ps･ Process(∋
is introduced, on the

contrary, aS the approximation of safety-side, tbougb it cannot be

treated analytically. Following procedure is taken herein as a com-

promise between process ① and process ①;

⑦ Lower and upper bounds Rmin and smax are calculated by assuming

pR=Ps
=

P , and after that, Rmin and smax are modified by multiply-

ing the extra coefficients according to the coefficients of variation

6R and 6s of the measured data, where extra coefficients are previ-

ously calculated for every combination of 6R and 6s by taking the
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maximums of ratios of the design realized by supposing pf =鞄Ps/2
to

the design realized by supposing Pf -P2/2･
I)eslgn is performed by

employing the modified values for Rmin and Smax ･
Example of extra

coefficients are shown in Fig･10 in case of p-1/50 (Pf-1/2500)･

The difference between軍B and fNE
is discussed in the following･

substituting Eq. (4.3.2).into restrictive conditions Eqs･(4･1･1),(4･1･8)

～(4.1.ll), simultaneous equations for 入1
,入3～入6

are Set up aS,

[M](A)-(C′)-2}2(EI

where

(a/)T-(1
1-(1-p)2
2p

1-(1-p)3
8p

1-(Ilo)4 1-(llP)5
4p 5p

(4.8.3 )

The only difference is in matrix (C) comparing Eq･(4･2･5) with Eq･

(4.3.5). If let p be Z/〟, i.e., p-Z/〟, the difference isdescTibed

aS,

(c)-(c′)- (D)-(0(1/Ⅳ2))

where

(･D)℡-(0
1 8(〟-1 ) 5〃2-10Ⅳ+6

N(N+1) 3N2(N+2) N3(N+3)

8(5N3-15N2+18N-8)

5Ⅳ4(〟+4)

The difference is negligible small for 〃>10･

Further, fB is expressed as,

ypE-(1-(E)T[M]-1(E))1m(1/p-(C′)T[M]-I (c′))V2+(c′)T[M]-1(E)
･･･-.･･ (4･8･4)

The difference between YpE
and輔is also represented as follows with

regard to ANN =

N2/(2N-1) .空N/2
-

1/p;

-yNE-ypE-o ( l/N2 )

As a result, extremum亨pE and輔can
be employed in the same way for

〃>10.
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Strictly speaking･ PpE is employed for the estimation of failure

probability and PNE is employed for the estimation of extremum of the

averaged maximum itself-for the estimation of maximum discharge in

100 years, for instance･ The author propose to employ?NE in both

cases with the object of saving the trouble of keeplng proper use Of

頑and fpE, because fNE and YpE are equivalent approximately.

4.4 Means of Characteristics A, B and a and Their

Lower Bounds

Characteristcs A～C of Eqs.(4.1.8)～(4.1.ll) are recommended to

estimate in the form of云,舌and
-a---｣neans

of A, B and a-based on

the order statistics x1<X2<･･･<Xn of the measured data of size n･

Characteristic A, for instance, is expressed as,

A - I.1xFdF

and can be expressed in the form of arithmetic sum as follows;

n

A-(1/n)∑XiFl
`=l

Then mean of characteristic A, A, is expressed a,s,

A-= (1/n)∑XLFL - ( 1/n)∑葛考

Further characteristic mean五 can be expressed moresimply as follows

on account of the maximum likelihood estimator of gi being xi ;

A-- (1/n)∑Xi軍

Characteristic means 云 and
-a are also expressed as follows;

育- ( 1/n)∑XiFT2

ラ- (1/n)∑XiF?

(4.4.1 )

(4.4.2)

The probability density
g(Fi)

for Fi
-F(Xi) corresponding to the

i-th value of xi is defined as [31],
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n!

g(巧)- (n-i)!(i-1)!
I:All(1-ギ)A-`

(4.4.3)

since
FT;,F7 and F7

in Eqs･(4･4･1) and (4･4･2) are expressed as･

芸≡:ol(gil.E:,7i(芝;,i('n'.n2',:'E7-i(i.1 ,(i.2,/(n.1 ,(n.2,(…, チ.1････････ ( 4･4･4 ,

characteristic means A, B andごare expressed as follows by substi-

tuting Eq.(4.4.4) into Eqs.(4･4･1) and (4･4･2);

-A-(1/n(n+1 ))∑iXl

育-(1/n(n+I)(n+2))∑i(i+1)Xi

e-(1/n(n+1)(n+2)(n+3))∑i(i+1)(i+2)Xi

( 4.4.5)

with the exception of characteristic means ArbCI Other statistics

such as central values ArbC, modes A～ご, medians Z～己maybesupposed as
.A

-

the estimators.f characteristics A～C. Central value PI, mode F7

and median F7 of Fi
are expressed as [31],

監:;二::53',I,てJ～Li.=4',i-1'/(n-1''i≠1'n'〉(4.4.6)

where F7
is an intuitive estimator; F7 is inadequate estimator because

it cannot be defined at i=1,n. The second and third powers of Fi

are represented as follows for central values and medians;

牟-(E7)2,今-(E7)3

F7-(茸)2, R?-(ET)3
(4.4.7 )

when characteristics A～C are estimated byemploylng their means, cen-

tral values and medians, the smallest estimations of Abc are always

obtained by the means五･Jc･
Since PNE has a tendency to increase as

characteristics A～C decrease, characteristic means五rJc
are employed

henceforth as the estimators of characteristics ArbC from a standpoint

of the estimation on safety side.

Tbe measured data is a set of samples extracted from the popu-

lation, and characteristics Abc of the measured data are not in accord
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with characteristics A-a of the population---｣nean and variance are

always 0 and 1, respectively. In the estimation procedure of ex-

tremumI PNE is calculated by glVing full credit to the measured data･

The lower bounds of characteristics ArbC are defined in the following,

and the upper bound of?NE is also defined･

If there is the error of size AXi in the individual value xi Of

the meaLSured datal the real i-th value becomes xi +AXi ･ Mean and

variance of real x are expressed as,

x,e&l- (1/n)∑ (Xi+△XL)-雷+△x

sf,.A.-(1/(n-1 ))∑(Xi+△Xi)2-(x,e&l)2-sf+sAx2
+2Oov (X･ △X)

･･-･-･ (4.4.8)

That is, Teal mean and Teal variance bardly become 0 and 1, TeSpeC-

tivelyl and xi must be normalized again by using xreal and 82xreal ･

xreal and 82xreal are expressed as follows on account of夏-0 and 8蔓-
1 in Eq.(4.4.8);

X,e&l-△X･乳.&1-1+s△x2+2Cov(X･ △X)

If AXi is supposed to occur evenly in positive and negative range,

following approximations are obtained;

△g-cov(X, AX)疋O

Therefore xreal and 82xreal are expressed simply asI

X,e&l-0, Si,.,1
- I+SA王2 (4.4.9)

Re-normalized value of xi> Xi,reall is obtained as follows by using

Eq.(4.4.9);

Xl,real - (Xl -X,e&1)/Sx,.&1 -Xi/ (
1+sAx2 )1/2 (4.4.10)

The lower bounds of characteristic means A～C, i･e･, AL, BL andごL,

are calculated by substituting xi,real into Eq･(4･4･5) instead of xi･

variance 82AX in Eq･(4･4･10) is calculated approximately in the

following. Since AXi Cannot be evaluated directly, AXi is estimated

indirectly by using AFi･ Standard deviation of Fi, 8Fi ,
is defined

42



as aL COrreSPOndence of the absolute value of AFi? that isl

l△Fil-sFi

Standard deviation 8Fi is expressed as follows in the same manner for

㌔;

sFl-(I:g(E)E2dぞ-(E7)2)V2-(i(n-i･1)/(n･1)2(n+2))V2
･･･････････････

(4･4･11 )

The absolute value of △xi, J△xiI, is estimated by using 8Fi based on

the x-F Curve aS Shown in Fig.ll. In Fig.ll, the upper and lower

bounds of Fi With deviation 8Fi are Shown as a and b･ Further, the

upper and lower bounds for Fl～Fi-1? Fi.1～Fn are also plotted and

interpolated, a banana-shape curve is obtained as shown in I;ig.ll.

Deviation of xi, 1△xil, which corresponds to I△Fif, is shown as占苫/2
in the figure･ Variance of AXi, 82AX, is obtainedbycalculating the

variance of rAXil as,

s△Ⅹ2-(1/(n-1))∑l△Xil2

4.5 Application to Various Sorts of the Measured

Data

( 4.4.12 )

Characteristic means A, B and -cr are calculated aLnd the extremums

iNE are derived for various examples of the measured data in the field

of civil englneering･ Witb respect to material strengthl the meas-

ured data of tensile, buckling and compressive strengtbes described

in Sections 2.6 and 3.6 are discussed herein. With respect to

loadタ tbe measured data of rainfallsl discbaTgeS and wind velocities

are discussed herein in addition to the axial force Of truss bridge

described in Sections 2.6 and 3.6. Using the measured data, mean

ゑI Standard deviation 8xI coefficient ofvariation 6xI Characteristic

means B･tJ:n are calculated and shown in Table 4,and also A-～ご and their

lower bounds AL～eL are Shown in Table 5.

Tbe details of the measured data are described in the following.

① Tensile strength of steel 【34] : Yield and tensile stTengtbesof

SM41B steell yield and tensile strengthes of SM50B steel? are dis-
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cussed.

①Bucklin苧ヲtrengthof steel 【7] ‥ See Section 3･6･

⑦ comresslVe Strength of cement皿Ortar [65] : See Section 5･6･

①Axial force of chord member [64]
:苧ee

sections 2･6 and 3･6･

Axial force of the upper chord member lS also discussed.

G) Rainfall 【65] : Maximum daily rainfalls per year (unit:mm) observed

over 1899-1969 at Tsukecbi and over 1925-1969 at Ootaki in the water

area of Kiso, are discussed.

① Discharge [66] ‥ Maximum daily discharges per year (unit:m3/see) ob-

served over 1956-1973 at Inuyama in the water area of Kiso and at

Kamo in the water area of Yodo, are discussed.

① wind velocity 【67,68】 ‥ Maximum average wind velocities per year

(unit:m/see) observed over 1925-1974 at Nagoya, and maximum wind ve-

locities per second and average wind velocities per year observed over

28～55 years up to 1972 at Naba and at all-Okinawa Prefecture, are

discussed.

Extremums fNE are calculated for Ⅳ=100 and shown in Table 4 for

the above-mentioned 17 examples of seven kinds of measurements. Es-

pecially for

m?asuTements①, ⑦
and ①, which are connected with the

structural deslgn ln Section 4.7, the relationships between N
and軍NE

are shown in Fig.12. Further, extremum?NE is calculated for N=1000

based on the order statistics of normal distribution of size SO, and

shown in Table 2 by comparing it with various fNE calculated in Chap-

ter 3.

with respect to measurements ①, ㊨ and ⑦, extremum PNE is also

shown阜n Table 6 for N=100, 200. These extremums fNE corresponding

to so-called the 100 years values and the 200 years values being of-

ten employed in case of river englneering,etc‥ The estimated values

based on the usual Gumbel-s method, where double exponential distri-

bution is employed, are also shown in Table 6 in comparison with fNE

proposed herein. In Table 6, the 100 years value of rainfall at

Tsukecbi-258.4mm-is not so larger than maximum of the measured

data od size 71-2S5.7mm-, and the 100 years value of average wind

velocity at Nagoya-55.2m/sec-is evidently smaller than the maxi-

mum of the measured d叫a Of size 52-56.5m/sec. Gumbel-s method

has a possibility of estimating the extremum on dangerous side. On

the contrary, extremum fNE proposed herein never provide an estimation

on dangerous side so far as Table 6 is concerned, though it still has
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a tendency of overestimation.

4.6 Extension to the Structural Deslgn, and Criterion

of the Structural Safety

ln the preceding Sections, extremum %E (of Eq.(4.I.5)) is ex-

plained as the maximum extremum by which the failure probability can

be guaranteed not to exceed pf=P2/2=2/N2, when fNE are calculated

both for material strength and for load of the structural member.

Let yR be fNE for member strength, where lower probability is p' and

ys be fNE for member forceI Where upper probability is p･ If the

cross-sectional area? Asl is determined by employing YR and Ys so as

to satisfy the following inequality,

As (育+SRYR)≧S-+ S8Y8 (4.6.1)

the probability that the structural member h叩penS tO fail is expected

not to exceed

Pf-P2/2- 2/N2 (4.6.2)

at the worst･ This pro?edure is considered as a powerful standard

of judgment for deslgn On account Of making efficient use of the

measured data of limited supply, of including no direct supposition

for the distribution of the population of the measured data, and also

of creating the most dangerous situation for the structural failure

based on the variational method.

Let review the meaning of 〟 in detail. It is put in order as

follows;

a) Failure probability of the design realized by As(a +SRYR)≧宮+s8Y8

is guaranteed being less than pf -P2/2= 2/N2 based on the variational

principle.

b) If occurrence probability of the structural failure is defined as

I

pf, its return period T is expressed as T-1/Pj! and corresponds to

the structural life. Since the measured data for β is collected in

every one week, the unit of return period, AT, becomes one week.
1

Then
p; and

T can be connected as pf- (1 week)/(Tweeks)-1/(52xT)･

c) Based on (a) and (b), the structure which survives during T years
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is realized by setting pfJ-Pj-p2/2-2/N2･
Therefore N is deter-

mined as N-(2/P/I)1Je･

a) On the contrary, 〝=100 directly implies 100 years, for instance,

when this proc占dure is applied to estimate the 100 years value of

rainfall, etc‥

e) In conclusion, 〟 is managed separately for the structural design

and for the estimation of the 100 years value.

4.7 An Example of the Structural Deslgn

A calculating example of the member deslgn Of truss bridge is

provided by employlng the test results of yield strength of SM41B

steel and buckling strength of SS41 steel for the member strength,

and of the simulated member force of the lower and upper chords of

main truss for the member force. Tbe member deslgn is applied for

the end lower chord (tension) and the end upper chord (compression)

of the truss as shown in Fig.5-1 with thick. lines. Relationsbip

between N and fNE shown in Fig･12 is employed･ yR and ys are read

for the value of N (=2/p) corresponding to the structural life of

the members･ pf (=P2/2)･ Thus the crossISeCtional areas of the

members, As, are decided so as to satisfy Eq.(4.6.1).

Let the structural life be 100 years. In this case, 〟 is de-

termined as nearly 100 by reason of the samples of load being consist

of maximum measured values per one week, and byusing Eq.(4.6.Z), where

pf-( lweek)/(100year8)-P2/2-2/N2宍‖/5200 ･
N疋100

Values of yR and Bs for N=100 are read on Fig･13-･一っr Obtained from

Tables 4 and 5 ･directly-as
follows;

yield strength of SM41B steel YR-18･52 ( -5.08 )

buckling strength of SS41 steel YR-
-3･64 ( -4.08 )

axial forces of chord members
: Y8- 4.19 ( 4.78)

where numerical values in the parentheses imply the upper bounds of

yR and ys (See Table 5). These values are normalized ones, and tlhe

orlglnal values are obtained with reference to Table 4 as follows;

46



yield strength of SM41B steel

axial force of lower chord

buckling strength of SS41 steel

axial fわrce of upper chord

Therefore cross-Sectional areas

as follows;

育+8RYR-2･838 (2･158) t/c皿2

育+88Y8-22･61 (28･66)七

育+SRYR-0･688 (0･614) t/cn2

育+&8Y8-45･22 (47･83) I

As of the chord members are calculated

lower chord member : A8-22･61/2･388-10 (ll) cn2

upper chord member
: A8-45･22/0･688-67 (78) c皿2

Further, vaLlues of As are increased in proportion to the extra coef-

ficients with regard to the error due to the assumption pR
I

Ps -P･

The extra coefficients for As are read on Fig.10 as 1.15 for lower

chord and 1.6 for upper chord. Finally, cross-sectional areas As

are decided as follows;

lower chord member : A8-10×1･15- 12 ( 18) cn2

upper chord member : A8-67× 1･6-108 (125) c血2

On the contrary, let

hers be calculated based

spect to the lower chord

described in Section 2.6.

area As is calculated as

compressionl Oca= 1･300 -

the cross-sectional areas of the same mem-

on the allowable stress deslgn. With re-

member, area As is calculated as 28cm2 as

With respect to the upper chord member,

109cm2 based on the allowable stress for

0.00006×1002 =o.700 (t/cm2) and the live

load, L見=75.80(t), that is;

lower chord member : A8- 28 cD2

upper chord member : A8- 109 cn2

In consequencel absolute safety factorsナ Yabs
I
including in the

allowable stress deslgn are estimated as follows for the live load;

tension member rab8- 28/12 -2･8 (2･1 )

compression member : r&b8-109/108-1･0 (0･87)
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The tension member has much allowance for the structural failure as

compared with the compressive member･

The member deslgn according to the upper bound of extremum亨吉
-numerical values in the parenthese---creates an absolute safety

factor less than 1-0.87-for the compression member･ For practi-

cal use, so-called lsafel deslgn Will be realized sufficiently by

using?NE--一瑚ithout using the upper bound
of?NE,輔′u.

4.8 r,raphical Estimation Method of Extremum fNE for

characteristics A, B and a, and of the Upper

Bound of fNE

Characteristics A, B and a can be handily calculated from the

measured data, but a computer is required for the calculation of ex-

tremum fNE. The situation is inconvenient for the practical use'and

graphical estimation method of PNE is developed in this Section･

First, extremum %NE are calculated for the fixed combination of A

and B by taking a as a variable, and let the maximum of fNE be ymax･

ymax are calculated for various combinations of A and B, and the re-

lationships between' (A,B) and ymax are drawn in a gra･ph. Next, in

the same way, ymax are calculated for the combinations of (B,a) and

(a,A), and the relationships between (B,C) and ymax, between (a,A)

and ymax are obtained, respectively･ As a result? three graphes

corresponding to [(A,B)-Ymax], [(B,a)-Ymax] and [(a,A)-Ymax] are ob-

tained.

In case ofⅣ-100,200,400, i.e., p-1/50,1/100,1/20∩, the re-

lationships of [(A,B)-YmaLX], [(B,C)-Yma,x] and [(a,A)-YmaLX] are cal-

calated and shown in Figs.13-1ru13-3 (N-100), Figs.14-1～14-3 (N=200),

Figs.15-1～15-3 (N=400), respectively. Value of fNE is approximately

defined as the minimum among three ymax being obtained for (A,B),

(B,a) and (c,A) from Figs.13, 14 and 15. The graphical estimation

method is applied to characteristic means互rbごin Tables 4 and 5, and

estimated values of PNF are shown in Tables 5 and 7 for 〃=100. The

error of the method is less than 3% as shown in Table 7, and is suf-

ficiently small for practical use.

The variation of PNE caused by the error of characteristic means
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互～ごis convenient if it is discussed on the graphes. The ranges of

云～ごare expressed as,

AL≦A≦2A-AL ,
BL≦B≦2B-BL , CL≦C≦2C-CL

based on the lower bounds
ofれご,i･e･,AL～CL? defined in Section 4･4･

When characteristic means jhごvary between these reglOnS, rmax are

represented as fan-shape reglOnS On Figs･13～15, respectively･ For

instance, the region of ymax for (a,A) is shown in Fig.16 in case of

buckling strength of SS41 steel･ And the upper bound of ymax I

Ymax,u, is represented as the upper bound of the region aS Shown in

Fig･16･ In Fig･16? yma.x and ymax,u are read as 3･64 and 4･081 re-

spectively･ Finally'upper bound of extremum fNE, fNE,u , defined as

the minimum among three ymax,u, which are obtained for (A,B), (B,C)

and (a,A). Values
of輔′u

are calculated for五～ごin Table 5, and

shown in Table 5･ The
ratiosof鴇.u to予NE arealso shown in Table 5･

4.9 Conclusion

The extreme procedure withoutany approximation of distributions,

which was introduced in Chapter 5I has applied to the maximization of

failure probability and connected with the structural deslgn･

The characteristics of the procedure are described in the fol-

lowing.

a) New characteristics A, B and a corresponding approximately to skew-

ness, kurtosis, etc. have been defined. These are stable character-

istics, that is, a slight variation of the measured data hardly exert

an influence upon the estimation of extremum輔.
b) Unknown function x(F) has been modified compulsorily to a monotone

increasing function by introducing dummy characteristic D.

c) Even if dummy characteristic D is not considered and function x(F)
does not become a monotone increasing function, extremum fNE which is

obtained mechanically remains a kind of bound value for judging the

structural safety on safety side.

d) The procedure has been connected with the maximization of failure

probability･ And the deslgn is performed, where the obtained faiレ

ure probability of the structural member never exceed the initially

expected one even at the worst.
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e) The procedure has given a practical result when it was applied to

the practical deslgn aS Shown in Section 4.7. In Section 4.7, abso-

lute safety factor yabs including in the allowable stress deslgn has

been also evaluated conceptionally.

f) The influence of error of characteristics Abc on the estimation

of extremum fNE has been discussed. LTpper bound of extremum,靖′u,
has been defined approximately. This corresponds to error of char-

acteristics discussed in Chapter 2.

g) The graphical estimation method of extremum fNE has been developed,

and by using the method the extremum亨NE canbe estimated
briefly with

high accuracy for the practical use.

也) In case of the estimation of the 100 years values of rainfall,

discharge, etc., the procedure has been proposed to employ as a sub-

stitute for the usual Gumbelts method, etc‥ And the procedure is

expected not to underestimate these values.
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Chapter 5 Conclusion

Two kinds of errors---error of characteristics and error of dis-

tributions--｣1aVe been discussed as factors wbicb influence upon the

accuracy of the static reliability analysis･ Some procedures con-

cerning to the reliability analysis have been presented so as not to

evaluate a structural reliability on dangerous side even if the er-

rors exist.

In Cbapter 2I error Of characteristics has been discussed mainly.

The influence of the differences between population mean and mean of

the measured data and between population variance and variance of

the measured data on the estimation of the failure probabilityl have

been evaluated for normalタgamma and log-normal distributions. Then

the definition of the usual failure probability has been modified

with regard to the errors･ With respect to error of distributions,

larger selection of the time interval of the sampling for load
･s,
ATl

has been recommended for the purpose of decreasing the influence of

the error.

Maximization procedure of the averaged maximum based on the var-

iational method has been proposed as a course to the deslgn COnCept

without any approximation of distributions, which is difficult to

evaluate numerically in the usual reliability analysis･ In Chapter

31 aS an initial step to the purpose? estimation procedure of extremum

of the averaged maximum and minimum of the measured data has been

developed･ HoweveTタ aS a result, the procedure has been indicated

unsuitable for practical use on account of the unsuitable selection

of the characteristics.

In Cbapter 4, more reliable characteristics have been introduced,

and the application to the structural deslgn has been proposed by

connecting the procedure with the maximization of the failure proba-

bility･ Tbe procedure realizes the structural deslgn Where the ob-

tained failure probability never exceed the initially expected one

even at the woTStl in other wordsI Where a kind of guarantee for the

safety can be obtained. Besides, error of characteristics has been

evaluated approximatelyl and the graphical estimation method of ex-

tremum %NE has been developed for practical use.
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Tbe structural safety analysis based on the estimation method

of extremum will be expected to apply to the
･following

fields of

study in the future.

① Establishment of the safety criterion of the structure as a whole･

⑦ Application to the safety analysis of the structure subjected
to

dynamic loadings such as earthquake excitation･

The deslgn COnCept based on the course proposed herein is hoped

to be popularized thTOugb these extensions･
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Appendix 1

aS,

Derivation of the S uare Trams-

formation Formula

The probability density of gamma distribution, fg, is expressed

fg(i)dt-
r(α)βα

(i-E)a~1eg卜(i-E)/β1dt ( t≧E )
･･････････････････････････････

(Al.1 )

where

α : shape parameter

β : scale parameter

E : location parameter

Mean and variance of the distribution is represented as,

mean : αβ , variance : αβ2

Then α and β are estimated as follows byuslng Sample mean云 and sam-

ple variance 8孟
based on the moment method [69];

α-(育/sx)2 , β-s呈/訂

If Eq.(Al.1) is transformed by using following parameter 士',

t′-(i-E)/β

standard gamma distribution is obtained as,

fg(りdt′-下缶t′a-1exp(-tldt′ (t′≧0)

(Al.2)

(Al.8)

(Al.4)

Eq.(Al.4) can be transformed into x2-distribution with v degrees of

freedom by using the relationships as follows 【69];

y-2a , x2-2t′
-･･････-･･･---････････････-･･-･-
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fx2(x2)d(x2)

-万Fk7iT(i)u'2-I
exp

(-阜)d(x2) (Al.6)

x2-distribution is connected with normal distribution with the

aide of various approximate formulae, and Fisher-s approximate for-

mula 【69] is employed herein. Tbat is, by transforming variable x2

using following parameter ㍑',

u'-(2x2)I/2-(2J/ll)I/2 (Al.7)

variable u' follows to (0,i) normal distribution approximately in case

of ＼)>10.

Mean and variance of final normal distribution must be in accord

with ones of orlglnal gamma distribution. Therefore, variable u'

is transformed compulsorily as,

～- sxu′+育

aS,

(Al.8)

The relationship of the transformation is sh仙n in the same chart

normal distribution (〟)

Eq. (Al.8)

(0,1) nomal distribution (〟′)

Eq. (Al.7)

x2二distribution (x2 )

Eq. (Al.5)

standard gamma distribution (t')

Eqs. (Al.2), (Al.3)

gamma distribution (t)

u-s u′+盲Ⅹ

u′-(2x2)1/2
-

(2y-1 )1/2

x2-2t′ , y-2α

t′-(卜f)/β I

α-(i/sx)2 I β-(sx2/有)

In conclusion, variable 七 following to gamma distribution can be

transformed into variable ㍑ following to nomal distribution approxi-

mately based on the following formulae;
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～-sxu′ +育

-q[(2x2)1/21 Sx(2y-1)1/2+育

-sx(Al′)I/2
-

sx(4α-1)1/2+育

-2sx(i/β)1/2-㌔(4a-1)1/2+育

-

2Bx( t5/&x2)1/2- ㌔(4有2/sx2-1 )l/2+育

-2(首t)l/2-(好一さx2)1/2+盲
-･････-･･.

(Al.9)
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Appendix 2 e of Dumm Cbaracteristic ∂

Necessary condition for function X(F) being a monotone increasing

function is expressed as follows after Eq･(4･2･7);

:2'三'.=･A3'2A4F
'815F2'416F3'o

i
Eq.(A2.1) must be satisfied covering whole range of O<Fく1･

Eq.(A2.1) can be divided into two parts Such as

^3+2A.F+8A5F2 and 4^6F3

and expressed as follows separately;

A3+2}4F+3^5F2< o

(^2>0)
Ⅰ^l:,<:-h(1,<0Ⅰ^f<:Ⅰ…,,,<.oi:;;`1

~ h'b''o

(A2.1)

I-- (A2.2)

In addition to Combination (A2.2), following combination also satis-

fies Eq.(A2.1),

o<b<11h(b)<o

1<b
}6<0
-h(1)<

(}3<0)

A

(A2.8)

Inequality 入,･2入-F･3入5F2 < o in Combination (A2･2) is expressed as,

･3<OL^:::-{dd;<',;i-;.'<<aa:2
'a2'0

where al, a2, b, a, d' are following values;

al, a2 : real roots of quadratic equation ^3+2^4F+8A5F2
- o ;

al- (-}4+dl/2)/8}5 , a2-(-l4-dl/2)/8}5
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b : real root of quadratic equation }4+8^5F+6}6F2- o ;

b- (18^5-a′l/2)/12^6

d, d' :

d-}4218}3}5
, d′-9A52-24^4}6

Composing the above-mentioned Combinations (A2.2),(A2.5) and (A2.4),

following combinations are obtained;

(A2.5)

There are Z9 combinations in Combination (A2.S), and each of them cor-

responds to necessary condition for x(F) being a monotone increasing

function.

Range of dummy characteristic D can be obtained by expressing

al rbd', h(1), h(b) in Combination(A2.5) by means of multipliers 入,

and by expressing入by means of D･ Inequalities①～⑲
in Combina-

tion (A2･5) are expressed as follows by using 入;

-3^5<}3

^3<-3}5

① }5>0

^4<-(315+}3)/2

o<^4<(3}5+}3)/2

}4< (3}5+A3)/2

o<^4<-(3}5+}3)/2
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⑧ ^5<0-A.<-(8A3^5)1/2

⑧ ^5<

o<l4<(315(8^5+}3))1/2 , o<^4<-(3^5+^3)/2

14<-(3^5(3^5+^3))1/2 , A.<(3A5+^3)/2

-(8A5(3}5+^3))1/2
<^4<0

④ }5<0--(813^5)1/2<^.< (3^3^5)1/2

⑤ }3+2^4+3A5+4A6<0

⑥ 8}52-8A416>0

⑦ 8}52-8^.^6<0

⑧[
}5+4^6>O

A5+4A6<0-^4+3}5+6A6>0

⑨ ^5+4^6<0-A4+3}5+6^6<0

⑩ 72}3}62+9A53- 36^4^5}6+31/2(8^52-8^4^6)3/2<o

(A2.6)

Multipliers 入 are represented as follows based on Eqs.(4.2.4)

and (4.2.5);

(A)-[M]-I(c)- (
ANN- ‡CIT[Mrl (cl ＼1/2

1
1(E)T[M]-

(A2.7)

Dummy characteristic ∂ is included only in matrix (E), and another

matrices [叫 and (C) are treated as det_erministic; that is, by intro-

ducing following definitions,

c'-ANN- (C)T[M]-1 (c)

ic,/(I- (E)T[M]-1 (E))Il'2-1/(e2+D2･el'D･ e.*)1'2

([Mrl(cJ)T-(cl' c3' c.* c5* c6* I

([M]~1(EJ )T - (a.*D+bl'aID+b3'aID+b.'a5b+b5'a6*D+b6')
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matrix (入i)T=(入1入3 入一 入5入6) is expressed as a function for D

only as,

Ai-C;-
ai'D + bi+

(e2*D2 + el*D+
, e2'D2+el'D+e蒜>o

･････････-････････････････････-････････

(A2.8 )

Substituting Eq.(A2.8) into ll , l3～l6 in Combination (A2.5) and into

①､⑲ in Combination (A2･6), the simultaneous conditions for ∂ are

obtained.

For example, range of dummy characteristic D corresponding to

入5>O is derived in the following. 入5 >O is expressed as follows

by using Eq.(A2.8);

c5* -

a5+D + b5*

( e2*D2+ el+D+ eo+ )1/2
>0

This inequality is expressed as follows with regard to a5'<O and

e5'<0;

-( 2a5*b5*-e5+2el')-@( (2a5*b5*- C5'2e.8)2-4 (a5'2-c5'2e2')(
b5+2-c5*2eo.)ll/2

β>一旦a5+

2 (a5'21C5'2e2')

-
( 2a5*b5*- C5jel* ) +@f ( 2a5*b5*- C5#el* )2

-

4 (a5*21C5ee2*)(b5+ic5+2eo*)ll/2

2 (a5#15i2e2')

in wbicb

(2a5*b5'- C5'2el* )2 I 4 (a5'2-c5'2e2*)(b5*2-c5'2eo')≧ o

a5*2- c5*2e2* > 0

and if

a5+2- c5*2e2* < 0

the signs of parts ㊥ and ⑤ sbould be reversed･
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Fig. 1 Variation or Failure Region for Parameter ら.
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Fig. 5 Truss Bridgeand its Influence Lines.
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Fig･ 9 Relationship between Extermum iFpE and Maximization of Failure Probability･
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Fig･ ll Approximate Calculation of Deviation of Xi by using the X
- F Curve.
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MeasuredData
n 育 sx2 βⅩ 6x

SteelYieldStrength(sh41B)

(t/cぜ)

21 2.752 0.01414 0.1189 0.0432

TrussMemberForce

(t)

31 14.44 3.818 1.954 0.1353

Table 1 Characteristics or the Measured Data.



RestrictiVeConditions YNE

a,sX2 22.3

α,βⅩ2,symmetry 15.8

∬一βⅩ2,≠l 22.3

∬IβⅩ2,≠5 18.9

∬}βⅩ2,≠1,γ1 20.1

∬,βⅩ2,≠5タγ5 13.3

a,sX2,u5ナulOナu17〉V17一V10 6.5

育,sX2,A,B,C,(D) 7.8

Table 2 Comparison of Various YNE with respect to the Measured Data of Size 50 followlng
to Nomal Distribution.



MeasuredData n

£ meansofupper
blocks

meansoflower
blocks

y-NE

t1 £2 £3 utl ut2 ut3 Vt3 Vt2

SteelYieldStreng血(SM41B) 21 2 4 7 1.223 1.094 0.977 -1.238 -1.469
imaginarynumber

SteelTensileStrength(SM50B) 48 4 9 16 1.860 1.349 1.012 -0.997 -1.330 9.35

**** 48 4 ll 18 1.841 1.210 0.933 -0.913 -1.216 9.93

SteelBuckli喝Strength(SS41) 48 4 9 16 1.911 1.572 1.163 -1.061 -1.325
imaginarynuⅠー血er

**** 47 3 ll 18 1.891 1.383 1.049 -0.995 -1.230 2.36

CementCompressiVeStⅠ℃ngtb 56 5 10 17 2.030 1.584 1.195 -1.117 -1.334 imagirnrynumberL

**** 50 5 10 17 1.683 1.312 1.006 -1.141 -1.428 4.07

TrussMemberForce 31 3 6 10 1.998 1.480 1.124
-1.088 -1.288

imaginarynumber

Table3 Extremums -YNE for Various Sorts of the Measured
Data by uslng Means of Upper and Lower

Blocks.



MeasuredData unit n X Sx 8x A- B- c-
fNE

(〟-100)

SteelYieldStrength(sM41B) t/clrF21 2.752 0.119 0.043 0.2577 0.2467 0.2142 -3.52

**(sM50B) * 48 3.637 0.207 0.057 0.2238 0.2426 0.2343 -5.59

SteelTensileStrength(sM41B) * 21 4.321 0.143 o.o53 0.2573 0.2704 0.2502 -4.25

**(sM50B)
* 48 5.377 0.057 0.011 0.2565 0.2571 0.2361 -4.47

SteelBucklingStreng血(ss41) * 48 1.251 0.156 0.124 0.2758 0.2829 0.2608 -3.64

CementCompressiveStrengthp * 56 0.3905 0.0109 0.028 0.2746 0.2823
.0.2611 -3.71

TrussMemberForce(LoworCbord) t 31 14.44 1.95■ 0.135 0.2663 0.2736 0.2528 4.19

**(UpperChord)
* 31 28.88 3.91 0.135 * * * *

Rainfall(Ts止echi) mm 71 121.1 40.3 0.333 0.2615 0.2815 0.2688 4.16

*(Ootaki) * 47 117.6 33.3 0.284 0.2702 0.2797 0.2603 3.97

Discharge(Ⅰnuyama) m3Aec 18 4,386 1,516 0.346 0.2599 0.2643 0.2424 4.42

*(Kamo)
* 18 1,027 711 0.692 0.2463 0.2640 0.2497 4.89

WindⅥ!1ocityper10min.(Nagoya) mAec 52 18.6 4.8 0.257 0.2378 0.2664 0.2612 4.86

**(Okinawa)
* 33 40.4 8.2 0.202 0.2678 0.2702 0.2473 4.05

**(N血a)
* 33 32.9 8.5 0.257 0.2735 0.2759 0.2506 3.68

WindⅥ1∝itypersecond(Okinawa) * 30 57.0 ll.8 0.207 0.2656 0.2706 0.2497 4.19

**(Naba) * 28 46.8 12.7 0.272 0.2698 0.2715 0.2465 3.89

Table 4 Extremums fNE for Various Sorts of the Measured Data by uslng TT'ree Characteristics A, B and C･



MeasuredData A- B- 百 y-NE

lower

bound

ofA

lower

bound

ofβ

1oⅥ℃r

bound

ofβ

upperbound

of7NE

SteelYieldStreng血(SM41B) 0.2577 0.2467 0.2142 3.60 0.2423 0.2320 0.2014 5.03

**(sM50B) 0.2238 0.2426 0.2343 5.60 0.1810 0.1962 0.2343

SteelTensileStre喝th(sM41B) 0.2573 0.2704 0.2502 4.37 0.2378 0.2499 0.2312 5.25

**(SM50B) 0.2565 0.2571 0.2361 4.47 0.2294 0.2300 0.2537 5.48

steelBucklingStr;ngth(ss41) 0.2758 0.2829 0.2608 3.64 0.2682 0.2752 0.2537 4.08

CementCoⅠⅠpressiveStrength 0.2746 0.2823 0.2611 3.71 0.2681 0.2756 0.2549 4.09

TrussMemberForce 0.2663 0.2736 0.2528 4.19 0.2536 0.2605 0.2408 4.73

Rainfall(Tstikechi) 0.2615 0.2815 0.2688 4.19 0.2533 0.2726 0.2604 4.63

*(Ootaki) 0.2702 0.2797 0.2603 3.97 0.2599 0.2690 0.2503 4.48

Discharge(Ⅰnuyama) 0.2599 0.2643 0.2424 4.43 0.2434 0.2475 0.2269 5.09

*(Kamo) 0.2463 0.2640 0.2497 4.90 0.2177 0.2334 0.2208

WindVelocityper10min.(Nagoya) 0.2378 0.2664 0.2612 4.86 0.2264 0.2536 0.2486 5.34

**(Okinawa) 0.2678 0.2702 0.2473 4.05 0.2537 0.2560 0.2343 4.73

**(N血a) 0.2735 0.2759 0.2506 3.70 0.2637 0.2659 0.2415 4.31

WindVelocitypersecond(Okinawa) 0.2656 0.2706 0.2497 4.19 0.2510 0.2557~ 0.2360 4.84

**(Naha) 0.2698 0.2715 0.2465 3.90 0.2579 0.2595 0.2356 4.57

Table 5 Graphical Estimation Method of Extremum YNE･



MeasuredData

Data PropsedProcedure Gumhe1'sMethod

n rnaXlmum 100years 200years 100years
■.

200years

Rainfall(Ts止ecbi) 71 255.7 288.6 326.1 258.4 282.0

*(Ootaki) 47 213.4 250.0 282.3 234.5 254.6

Discharge(Ⅰnuyama) 18 7,064 ll,087 13,179 10,281 ll,286

*(Kamo) 18 2,926 4,504 5,577 3,792 4,263

WindVelocityper10min.(Nagoya) 52 36.5 41.8 47.5 35.2 38.0

**(Okinawa_) 33 6■0.8 73.4 82.7 69.9 75.0

**(Naha) 33 49.5 64.0 72.8 63.5 68.7

WindVelocityperseconq(Okinawa) 30 85.3 106.5 120.2 100.2 107.6

**(Naha) 28 73.6 96.2 110.7 93,6 101.6

Table 6 Comparison between Proposed Procedure and Gumbel's Method･



MeasuredData Iy-NEl

graphical

estlmat10n

ofly-NE1

estimation

error

(%)

孤
upperbound

ofJy-NEJ

ratioofly-NEl
andits

upperbound

SteelYieldStrengtb(sM41B) 3.52 3.60 2.3 21 5.03 1.40

**(sM50B) 5.59 5.60 0.2 48

SteelTensileStrength(sM41B) 4.25 4.37 2.8 21 5.25 1.20

**(SM50B) 4.47 4.47 0 48 5.48 1.25

SteelBucklingStrength(ss41) 3.64 3.64 0 i8 4.08 1.12

CementCompressiveStrength 3.71 3.71 0 56 4.09 1.10

TrussMe血berForce 4.19 4.19 0 31 4.73 1.13

Rainfall(Tsukechi) 4.16 4.19 0.7 71 4.63 1.ll

*(Ootaki) 3.97 3.97 0 47 4.48 1.13

Dischange(Ⅰnuyaqrla) 4.42 4.43 0.2 18 5.09 1.15

*(Kamo) 4.89' 4.90 0.2 18

WindVelocityper10min.(Nagoya) 4.86 4.86 0 52 5.34 1.10

**(Okinzwa) 4.05 4.05 0 33 4.73 1.17

**(Mla) 3.68 3.70 0.5 33 4.31 1.16

WindVelocitypersecond(Okinawa) 4.19 4.19 0 30 4.84 1.16

**(N血a) 3.89 3.90 0.3 28 4.57 1.17

Table 7 Estimation Errors or Graphical Estimation Method.


