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ABSTRACT '

Errors of the measured data are discussed as the factors which
influence upon the accuracy of reliability analysis of the structur-
al member,. In the structural reliability analysis, failure proba-
bility is calculated by assuming probability density functions for
material strength and external force, and following two basic as-
sumptions have been employed as a matter of course; that is, ()char-
acteristics of the measured data are reliable and are equal to the
characteristics of the population from which the measured data have
been extracted by chance; C)probability density functions are esti-
mated directly based on the frequency distributions of the measured
data. The error due to the assumption (:}——error of characteristics
—is deemed as an error of the most likelihood estimation, and has
.a strong influence on the estimation of failure probability by reason
that sizle of the measured data is usually very small. The error due
to the assumption (:}——error of distributions—-also has a strong in-
fluence on the estimation of failure probability by reason that the-
oretical endorsement of the assumed density function is not obtained.
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First, the error of characteristics is mainly discussed in Chap-
‘ter 2, and the influence of the error on the estimation of failure
probability is evaluated for normal distribution, gamma distribution
and loé-normal distribution. Then the definition of the usual fail-
ure prdbabilify is modified with regard to the error. On the con-
trary, error of distributions is considered unavoidable, and appli-
cationﬁof the procedure described in Chapter 2 is restricted to the
measured data whose frequency distribution is known in advance fol-
lowing to one of three distributions as a result of phenomenology
and/or properties of matter.

Second, new approach to the reliability analysis without any
approximation of distributions for the measured data is proposed in
Chapteﬂ 3 from the standpoint that error of distributions is hardly
solved by extending the usual reliability theory. The content bears
no relation to the structural reliability, and describes the statis-
tical treatments of the measured data with the sole object of intro-
ducing and demonstrating the new approach. Practical upper bound
of population of the measured data is defined based on the variation-
al method under the various restrictive conditions characterizing the



measured data.

Third, extreme procedure of Chapter 3 is extended and applied
to the estimation of structural safety in Chapter 4. Since charac-
teristics introduced in Chapter 3 are unreliable to estimate the ex-
tremum, more reliable characteristics are newly introduced. The
procedure realizes the structural design where the obtained failure
probability never exceed the expected one even at the worst, in other
words, where a sort of guarantee for the safety can be obtained based
on the variational principle. In Chapter 4, error of characteris-
tics is estimated approximately, and graphical estimation method of
extremum is developed.
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NOTATION

characteristic of the measured data;
parameter corresponding to the independent variation of
R* and 35*;

cross-sectional area of the chord member of truss bridge;
mean of characteristic 4;

lower bound of Z;

characteristic of the measured data;

parameter corresponding to the independent variation of
sg* and gd* ; '

mean of characteristic B;

lower bound of B;

characteristic of the measured data;

parameter corresponding to 4,+B, for normal distribution
and gamma distribution, to 4, B, for log-normal distribu-
tion;

mean of characteristic C;

lower bound of C;

covariance between X and AX;

introduced in order to

dummy characteristic, which is

modify x(F) compulsorily to a monotcne increasing func-
tion;

parameter, an abbreviation of 'difference of means';
cumulative function of f(X);

i-th value of F;

error of F;;

mean of Fj;

central value of F;;

mode of F; ;

median of F;;

probability density for X;

probability density for 4, ;

probability density for B ;

probability density for ¢, ;

probability density for dom;

probability density for R;

probability density for 5;

probability density for sov;

probability density of t-distribution;
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probability density of x%*-distribution;

probability density for population mean;

probability densities for population means of R and 5;
probability density for population variance;

probability densities for population variances of R and
55

probability density of F;=rF(X;);

equations defined by Eqs.(3.2.3) and (3.2.4);
functional;

live load;

size of samples newly taken imaginatively from the popu-
lation of the measured data;

number of the measured data, size of sample;

number of the measured data of R and §;

occurrence probability;

failure probability;

modified failure probability taking account of errors of
mean and variance;

area of pulse part;

area of pulse part for R and &5;

material strength, resistance;

sample mean of R;

minimum expected value for R;

external force, member force, load;

sample mean of 35;

maximum expected value for S;

standard deviation of F;;

variance of the measured data, sample variance;

sample variances of R and §;

real variance of X;

variance of the error caused by the difference between X;
and Xj,rea1s

parameter, an abbreviation of 'sum of variances';
structural life;

time interval of sampling of S;

sizes of upper and lower blocks in case of seven restric-
tive conditions; ,
value of t-distribution corresponding to upper probabili-
ty o/2;

maximum (= X,);
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B3
Bu

’

B3

Yo
Yabs

SR, 6s

A1 Vg
Hx
HR » HS

mean of upper block of size t;

minimum (absolute value) (= -X;);

mean of lower block of size s;

normalized measured values;

probability distribution function for F, unknown function,
a monotone increasing function;

order statistics of X, i.e., i-th smaller value of X;
reversed value of X;,i.e., Xi= -Xpi45

real value of X;;

real mean of X;

error of Xi;

mean of the error caused by the difference between X; and
Xi,reals;

measured values;

mean of the measured data, sample mean;

estimated value of deviation from the mean;

maximum of extremum ?ﬁ using graphical estimation method;
maximum of ?5,0 using graphical estimation method;
values of extremum YN for R and §;

averaged maximum of samples of size N (averaged minimumis
also expressed as ¥y), and its extremum;

upper bound of YE with regard to the variations of char-
acteristic means AnC;

averaged maximum of pulse part with area p, and its ex-

tremum;

upper probability of t-distribution; shape parameter;
upper probability of x?-distribution; scale parameter;
skewness;

kurtosis;

characteristic corresponding to skewness approximately;
characteristic corresponding to kurtosis approximately;
central safety factor;

absolute safety factor;

coefficient of variation of the mrasured data;
coefficients of variation of R and 5;

coefficient of dangerousness;

Lagrange multipliers;

population mean;

population means of R and S;
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£ = location parameter;
of = population variance;
of, oé = population variance of R and §;
® = upper probability of normal distribution;
X%/é = value of x?-distribution corresponding to upper proba-
‘ bility B8/2;
Y(F) = Dirac's &8-function defined as ¢(F)=1/p for 1-p<F<l;
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Chapter 1 Introduction

Since Fredenthal proposed the structural reliability analysis in
1947 [25] by introducing probabilistic concept to the engineering de-
cision problem, numerous applications of 'probabilistic concepts' has
widely been discussed. The developments in this field up to date is
roughly divided into following four subjects; that is,()rationaliza-
tion of the design code, C)application to the complex structure and
combined load, C)application to the prediction problenm, C)management
of the uncertainty.

Subject C) mainly aims at the rational decision of the load fac-
tor based on the reliability analysis. Some specifications have
already been put to practical use such as "AISE Specification for the
Design, Fabrication and Erection of Structural Steel for Buildings"
(1969), "AASHTO Interim Specifications for Bridges' (1974), "CIRIA
Guidance for the Drafting of Codes of Practice for Structural Safety"
(1968) and "CEB-FIP International Recommendations for the Design and
Construction of Concrete Structures'" (1970). Subject () has been
studied most earnestly as a direct and embodied application of the
reliability theory to the structural design. Cornell, Lind et al.
regarded various collapse modes and dispersions of material strength
and external force as influence factors on the practical design, and
evaluated them as the load factors [12,17,19,40,49,50,55,57].
Legerer et al. studied the economical design in which the optimum design
is performed by minimizing the total expected cost, that is, by bal-
ancing the relationship between the initial cost for construction and
the failure cost for accidental structural collapse [23,38,39,42,54].
Furthermore, Smith analyzed a complicated structure by including mean
and variance of material strength [56] and Cohn et al. proposed a
plastic design of frames taking account of the variations of material
strength and external force [16,29].

Subject C) aims at the extension of reliability analysis, which
is initially defined for structural unit and unit load, to complex
framing and combined load. The structure of real state has, in gen-
eral, complex framing and combined load, and subject (:)is signifi-
cant for the practical use. With respect to combined 1loads,
Haurylkiewicz et al. proposed a set theory [15,33], where structural
reliability is defined as the distance between failure region and
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mixed loads represented as a vector on a state space. Recently,
Blockley applied a concept of fuzzy sets to the estimation of struc-
tural reliability by using a logical analysis of various factors
concerning to structural failure [14,61]. Lots of applications to
the repeated load problem, that is, fatigue problem, have been dis-
cussed by Ang, Moses, Shinozuka et al. [4,5,6,22,28,60].

Subject () aims at the time-dependent analysis of structural re-
liability covering a moderately varying phenomenon during a long term
such as deterioration of material strength. Yang et al. managed
this problem as the first passage problem where Markov process 1is
effectively used [59,62]. Although the first passage problem has
often been applied to spectrum analysis of seismic behavior, proposed
application is limited to a moderately varying phenomenon.

Last, subject C) aims at the management of uncertainties con-

sisting of error of characteristics calculated-from the measured data,
error of distributions estimated from frequency distribution of the
measured data, error of nominal size, of manufacture, of analysis and
other errors originated by artificial factors. Cornell, Lind et al.
proposed first-order probability [18,21,32], where mean and variance
of the measured data is derived with regard to the first order error,
and safety index is calculated by assuming the distributions for ma-
terial strength and load. Rosenblueth, Turkstra et al. applied
Bayesian decision theory to decide 'how the measured data should be
selected and employed' for getting a desired result [20,52,58].
On the other hand, Ang et al. defined various uncertainties quanti-
tatively by introducing some assumptions -and discussed their influ-
ences on the reliability analysis [3,4,5,6]. Ang et al. also pro-
posed the extended reliability [1,2,3] with the object of decreasing
the error caused by the assumption of distributions, which was origi-
nally posed by Jorgenson [35].

In contrast to reliability analysis, extreme procedure systema-
tized by Gumbel [31] has often been employed inthe aspect of statis-
tical management of the measured data. The procedure has been used
to presume the 100 years value and the 200 years value of rainfall,
discharge, wind velocity, etc.. As well as famous Gumbel's method,
so-called extreme distributions such as the first, second and third
asymptotes [31] have been applied directly to the measured data [26,

2



27,45]. Gumbel, Plackett et al. derived extremum of the averaged
maximum based on the variational method [30,31,48] and Moriguti also
derived it based on Schwarz's inequality [46], but these procedures
have not been generally employed in the practical problems yet.

In this thesis, error of characteristics of the measured data
and error of distributions are discussed. First, Freudenthal's
classical reliability theory is modified by taking account of the
errors of means and variances of the measured data in Chapter 2.
Second, estimation procedure of extremum based on the variational
method is introduced as a method without any assumption of distribu-
tions in Chapter 3. Last, tbe procedure of Chapter 3 is extended
to the structural reliability analysis in Chapter 4.

The characteristics such as mean and variance calculated from the

measured data of size 1060, at the most, are seldom consistent with
the characteristics of the population, and error of characteristics
of the measured data exerts considerable influence upon the estima-
tion of failure probability. The error of this type was also dis-
cussed by Ang et al. [1,2,3,4,5,6], but the error was treated roughly
and the error was defined based on some assumptions expediently cre-
ated. On the contrary, herein, density fuhctions of the unknown
mean and variance of the population are derived analytically based on
the known mean and variance of the measured data, and the modified re-
liability is defined by averaging all events that will happen.
Error analysis is applied to three probability distributions, that
is, normal distribution, gamma distribution and log-normal distribu-
tion. When the measured data are concluded following to one of these
probability distributions as a result of phenomenology and/or proper-
ties of matter, the procedure in Chapter 2 can be put in practice.

Error of distributions is more serious than error of character-
istics, for the estimation of population dhstribution based on the
measured data is difficult and unreliable!in general. Failure
probability calculated by using estimated distribution 1is quite un-
stable depending on the estimated distribution. The error has been
deemed unavoidable for the usual reliability theory. Only one trial
was proposed by Ang et al. [1,2,3] by defining the extended relia-
bility. In the extended reliability theory, several distributions
are employed to demonstrate the decrease of the error, but no guarantee
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can be obtained for other numerous distributions. Furthermore, if
failure probability can be proposed being insensitive to the various
distributions, another indefinite approximation is needed in order to
introduce insensibility. By these reasons, maximization procedure
of the averaged maximum proposed by Gumbel et al. [30,31,48] is adopted
herein for treating the problem of error of distributions in a new
aspect, and extended to the structural reliability problem. The
procedure realizes the structural design where the obtained failure
probability never exceed the initially expected one even at the worst,
in other words, where a sort of guarantee for the safety can be ob-
tained based on the variational principle. The procedure also can
be applied to the unilateral estimation of upper bound of load and
lower bound of material strength, and especially to the estimation of
the 100 years discharge, for instance, instead of the usual Gumbel's
method, etc.. Besides, a graphical estimation method of extremum is
developed for the practical purpose, and extremum can be estimated
simply and in high accuracy by using three characteristics calculated
from the measured data. Error of characteristics is also evaluated
approximately, and upper bound of extremum is estimated.



Chapter 2 Modification of the Usual Reliability
Analysis with regard to Error of

Characteristics

In 1947 Freudenthal proposed classical reliability theory [25],
where the failure probability of the structure——structural unit—
is obtained by supposing material strength——shown as R henceforth—
and external force or load——shown as S henceforth——are random var-
iables. The distributions of R and S are approximated by using well-
known distributions such as normal distribution based on the test of
goodness of fit, and the failure probability is calculated by using
the approximated distributions. Failure probability obtained as a
result becomes unreliable on account of the use of the approximated
distributions and the error of characteristics.

2.1 Definition of Errors

Following two kinds of errors are included in the usual relia-
bility analysis.

() Characteristics, that is, mean and variance, of the measured data
are so-called sample mean and sample variance, and are not equal to
population mean and population variance in the most case. The error
is described as 'error of characteristics' henceforth.

C) Probability density functions of population are approximated by
using known distributions such as normal distribution. The error is
described as ‘'error of distributions' henceforth.

Error of characteristics is especially discussed herein from the
following reasons;

a) Number of the measured data is fairly small and amounts only to
20v60 at the most.

b) Mean and variance of the measured data differ from ones of the
population. '

c) Difference between the measured data and the population is sig-
nificant in case of variance. For instance, when a set of samples of
size 50 are extracted from population following to normal distribu-
tion with variance 2, the confidence interval for the population
variance with confidence 0.95 is calculated as 1.4002.88 (the interval



is obtained as the range of qf in Eq.(2.2.2) by substituting =n=50,
sy=1, B=0.05).

d) Large difference between the measured data and the population causes
large differnce on the estimation of failure probability.

e) Difference between the measured data and the population, that is,
error of characteristics, can be evaluated analytically by employing
t- and x%-distributions in the case that the population follows to
normal distribution.

Errors of characteristics and distributions are treated in Chapter
2 as follows;

a) With respect to error of characteristics, the definition of failure
probability is modified so as not to underestimate the failure prob-
ability, in other words, not to provide a design on dangerous side in
spite of the existence of the error.

b) With respect to error of distributions, thé author takes the stand
that the error is unavoidable and cannot be evaluated by extending the
usual reliability analysis. The error is expected to decrease in
consequence of the sampling process of the measured data as described
later in Section 2.5.

2.2 Error of Characteristics

In order to define the failure probability taking account of
error of characteristics, probability densities of population mean and
population variance must be calculated by employing mean and variance
of the measured data. Although population mean and population var-
iance are deterministic in substance and have no probability densities
at all, description such as 'probability densities of population mean
and population variance' is employed herein from a viewpoint that the
unknown population is estimated from the known measured data.

The probability densities of population mean and population var-
iance can be derived by using t- and ¥? -distributions, respectively,
if the population follows. to normal distribution. In case of log-
normal distribution, probability density can be derived by performing
logarithm transformation for the variables of t- and ¥ -distributions.
In case of gamma distribution, probability density can be also derived
approximately by performing square transformation. On the contrary,
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in case of other distributions such as Weibull distribution and double
exponential distribution, probability densities cannot be derived be-
cause these distributions cannot be reduced tonormal distribution by
performing any transformation.

Supposing a set of samples of size n is obtained from a measure-
ment, let sample mean be % and sample variance be si. And the esti-
mated values of population mean and population variance in this case

are shown as p, and o%, respectively.

Let probability distributions of population mean and population
variance be derived in case of normal distribution to begin with.
When sample mean Z is obtained from the measured data of size n, the
confidence interval for population mean p, with confidence o is ex-

pressed as;

z— ta/zax/("’_l)l/z My C E+ta/2o‘x/ (n—1)Y2 e (2.2.1)

where ta/2 is a value of t-distribution corresponding to upper prob-
ability a/2, that is,

a/e=[g, f,(wau

where f,: is probability density for t-distribution. On the contra-
ry, in case of variance, the confidence interval for population var-

iance Gi‘with confidence B is expressed as follows by using sample

variance & ;

| |

("—I,)sxz/xz;—p/z G e B I B (2.2.2)
i !

where XQIZ is a value of ¥ -distribution, fﬁ, corresponding to upper
probability B8/2, that is,

[?/2=f,;’;’ﬂ/2 Sy (u) du

The situation that population mean becomes p, on the occasion of
sample mean being %, is represented as,

P{ ( population mean)=g, | (sample mean) =%} = Ju, (uy)de



where f,, is probability density for population mean. The relation-
ship between ﬂ& ‘and ft is expressed as,

f.ax Sux (z)d= =-ﬂn-”l/2<ﬂx-5>/8x fi(u) du
ﬂ& is decided so as to satisfy above equation, that is;

f,u, () = { (n—1 )1/2/ 3 } - £ { (n—1)Y2(x—% )/SxI} (2.28)

With respect to variance, probability density for population vari-
ance, fc§, is connected with fxzas,

foa,a For (2) Az =[G )5,2/07 fr2 (w) du
and fc§ is decided as follows;
faf (z)= { (n—1)s,.2/ 22 } - f {(«n_l)st/x} ..................................................... (2.24)

Eqs.(2.2.3) and (2.2.4) are applicable only for the population
following to normal distribution. In case of gamma distribution and
log-normal distribution, the corresponding distributions of t- and
x? -distributions cannot be derived analytically, but they can be
estimated approximately. In case of gamma distribution, following
square transformation——the derivation is expressed in Appendix 1—
is employed to convert variable u following to normal distribution
into variable ¢ following to gamma distribution, as a practical ap-
proximation;

w=2 (%)= (472 —52) 2+

Now, following assumption is introduced; that is, square transforma-
tion is also applicable and useful to define probability densities
for population mean and population variance for gamma distribution
based on Eqs.(2.2.3) and (2.2.4), respectively. Thus Fux and fo§
for gamma distribution are derived as follows by performing square
transformation for Eqs.(2.2.3) and (2.2.4);

fﬂx(ac)={(n—l)‘/z/.«;,}-1;[(71—1)'/2 {z(fx)‘/z—(4'52-—3,2)‘/2}/sx:|-(f/x)‘/z ----- (2.25)
for(z)=[ (n—1)8,2/{2(Fe)/*~ (4F2~s2)"*+7 2]
feel (n—1 Ye:2/{ 2 (T2 )2 — (472 _8x2)l/2+?}] c(82/2)VE i (2.2.6)
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In case of log-normal distribution, following logarithm trans-

formation
= Int

is employed to convert variable u following to normal distribution
into variable ¢ following to log-normal distribution. Thus f,, and
fo2 in case of log-normal distribution are derived as follows by per-
forming logarithm transformation for Eqs.(2.2.3) and (2.2.4) and by

substituting % for 1nz and && for &;

fﬂx(x)z{(n—l)‘/z/gx}.ft{(n_1)‘/2(1nx_1n‘5)/5x} e (1/8) e (2.2.7)
fdxz(x)z{ ( n—1)3x2 /x? } S { (n—1)%2 6xz /m} NGV 1D BREE R (2.28)

where & is coefficient of variation of the measured data.
2.3 Classical Reliability Theory

Basic definition of failure probability in the classical relia-
bilify theory is described in this Section for the purpose of setting
the proposed reliability analysis including the error of character-
istics against the classical reliability theory.

Let population means of material strength, R,and load, S, be m
and 15 , respectively, and population variance be cﬁ and og, respec-
tively. Let sample means of R and S be B and 5, respectively, sam-
ple variances besﬁ and s%, respectively, and they are calculated from
the measured data of size ng and ng, respectively, extracted from
populations of R and S. Following suppositions underlie the classi-
cal reliability theory; that is, R=ug,S=ug, Sa’=0s% S?=0g’ Varia-
bles R and S will happen to take any combination, therefore occurence
probability of a certain set of R* and S* is expressed as,

P{ (R*gkgR‘+dR)n(S*§S§S‘+ dS)} =fR(R‘)fé(S*)deR crrrrvesneennesennnee (2.81)

in which right-superscript * means a certain realized value; fi and
fs are probability densities for R and S, respectively. Since fail-
ure probability is defined as a ratio of an event such as R*<S* a-
gainst whole event, failure probability is provided as follows by
integrating Eq.(2.3.1) on the region of R<S as shown in Fig.1l-1;
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Pf'=P(R<S)=fR<SfR(R)fs(S)deR ................................................................. (2.8.2)

Eq.(2.3.2) is expressed simply as follows if fr and fg are normal dis-
tributions;

Pf=d>{(ﬁ—§)/(832+882 IV2Y s (28.8)

in which ¢ is an upper probability of normal distribution, and is
described as follows;

@ (a)=f (1/2m) exp (—22/2)ds

Last, central safety factor vy, is defined as follows purporting
to an index for the practical design;

R IO DO g X T/ |

Cornell et al. connected Eq.(2.3.3) with Eq.(2.3.4) through the medi-
um of the coefficients of variation 6 and & [2,19]. The modified
reliability analysis proposed herein also aims at deriving the rela-
tionship between vy, and Pp finally.

2.4 Reliability Analysis with regard to Errors of
Means and Variances

The modified failure probability is defined as follows so as to
take account of errors of means and variances by using the probability
densities for population mean and population variance defined by Eqs.
(2.2.3)v(2.2.8);

B = 1SS fug (B*) fug (5*) Sy (8% ) fypp (55 Mfos fu (B)fs (8)dSaRASs?dsy? dSAR

in which right-superscript M means a failure probability taking ac-
count of error of characteristics.

Numerical integration for numerous combinations of FR*, 35*, sé*
and sg* are required in order to solve the above-mentioned quadruple
integral for each set of R and S. For instance, the total combina- -

tion becomes 10° when each integral region is divided into 102 parts
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for Simpson's 1/3 rule. Now, parameter 4, , which corresponds to the
independent variation of R* and 5*, is newly introduced with the sole
object of decreasing the total combination of numerical integrations,
and parameter B, , which corresponds to the independent variations of
sﬁ* and sg*, is also newly introduced. Introducing these two para-
meters, total combinations decrease to 10%.

Parameters are defined as the moved distance of the failure
boundary line from the origin, when the line—originally represented
as R=S——moves parallel along R-axis as shown in Fig.1l-2. That is,
parameter 4, corresponds to the parallel movement caused by error of
mean, parameter B, also corresponds to one caused by error of vari-
ance. The failure region is represented as follows by using para-
meters 4, and By ;

RS+ (AgHBg) weeemesmmrmrssmmsesssnisssssssesinesssmsissesssssssssssssessssssssssssssssssssssssssssssssessoncenss ((2.4,1)

Further, the failure region is represented more simply by introducing
new parameter (o, corresponding to 4,+By as,

Independencies between R* and 5*, between sﬁ* and sé* are not
lost by introducing parameters 4, , B, and C, , because the parameters
are connected directly to the failure probability Pr for the fixed
sets of R* and S5*, of g§* and sd*. The relations are expressed as
follows;

(certain value of A,)->(fixed sets of R* and S* )—(certain value of I})

(certain value of B,)—(fixed sets of Sg* and 8g2* )—( certain value of Py )
0 8 f

(certain value of C,)—(fixed sets of 45 and B, )—’(certain value of 1} )

In the above arrow-descriptions, R* and 5*, sﬁ* and s§* are employed
as intermedia connecting 4, and Pf’ By and ?f’ respectively, and there
are one-by-one correspondences between 4, and Pr, and between B, and

Pf‘

Finally, modified failure probability taking account of error of
characteristics, gy, is expressed as follows by using parameter (o ;

11



I‘,fM___ffco (Co )ffR<s+C°fB.(R)fS (S)deRdCo ...................................................... (2.4.8)

in which fbo is probability density for parameter C,. In this case,
total combinations of the numerical integrations decrease to 10% at
the foregoing example.

The modified failure probability gy is defined as Eq.(2.4.3)
herein, but other definitions as mentioned below may be considered;

M 3 ro3 -
a) B :ffx<s+co'fR(R)f8 (8S)dSdR » provided that parameter ¢/ is de
cided so as to satisfy following equation; e=£;uEJ(C0)dC0y where €

is coefficient of dangerousness and is selected as €=10"%® for inst-
ance.

b) PfM=ffR<S+CO,,fB(R)fs(S)deR , provided that parameter (' is de-

cided so as to maximize following integrals; Co,,_f;}o(co)dCostw:J;{(R)fg(S)deR

In the definition (a), Ey is considered as failure probability where
upper probability of fc, is equivalent to a certain very small value
€. In other words, if the structure is designed by using QP of type
(a), 100(1-¢) percent qf the error which may occur is already taken
account. In actuality, e is difficult to evaluate, and this is the
weak point of the definition (a). On the contrary, in the definition
(b)), 3¥ is considered as failure probability where the product of Pp
and upper probability of fbo is maximized. The product may be in-
terpreted as a sort of an index corresponding to the economy of the
design.

First, probability densities for parameters 4, and B , on and
fpy » are derived in the case that populations of R and S follow to
normal distribution. The failure probabilities are expressed as
follows for arbitrary values of parameters 4, and B, , respectively,
based on Eq.(2.3.3);

B_S—A* 2 g 2)V2
Ij o)/ (S +8gh)V?) (24.4)
E—S5—Bs*)/ (g +8g) "2}

where sample means R and §, sample variance s and s are determin-
istic values, and parameters A¢ and B are random variables. As a

12



preliminary arrangement of connecting failure probability Pf‘ with
parameters 4, and B, through R*, 5*, g* and sf*, following new para-
meters, dom and sov, satisfying the condition Pp=const., are intro-
duced;

dom*=R* — S* ( ,
2.4.5
s0v*=8g2*+ 842"

where dom is an abbreviation of 'difference of means', sov is an ab-
breviation of 'sum of variances'. The group corresponding to R*-3*
is extracted by using parameter dom* among whole combinations of arbi-
trary R* and 5*, and the group gf*+sd* is extracted by using parameter
sov* among whole combinations of arbitrary s§* and sf*. Since the
group R*-35* and gf*+sé* correspond to failure probability g;, parame-
ters dom* and sov* can be connected with 3%. Relationships between
parameter dom* and E*-3*, and between parameter sov* and gX+sf* are
shown in Figs.2-1, 2-2. Let probability densities f, ~and fd% for
R be fuR and fcﬁ’ respectively, and for S be fhs and foé, respective-
ly, based on Eqgs.(2.2.3) and (2.2.4). The probability densities for
parameters dom and sov, fyo,, @nd fg,, » are expressed as follows by
using fUR’ qu’ foﬁ and fcré;

Siom (dom®) = fdam" Jug (B*) Jug (R*—dom*)dR* }

Foov (8027) =Joon* fog ( 315')fasz( sov*— SgZ* ) dsg?*

Now that failure probabilities Ef corresponding to parameters dom* and
sov* , respectively, are represented as follows with reference to
Eq.(2.3.3);

1)3{*=¢{(dom*)/(saz+ssz)1/z}
E=0o{(E-8)/(s0v*)1/2}

Parameters dom* and sov* can be represented as follows by employing
parameters 4y and Bf based on Eqs.(2.4.4) and (2.4.7), respectively;

dom*=RE—S —A,*
80v*= (82 +82 )(E—S8)2/ (R—S —B,*)?

In consequence, imaginary parameters 4, and B, having no physical
meaning are connected with real parameters dom and sov representing
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frequencies of the errors included in R, §, g and s¢.

Probability densities for parameters 4, and B, , f,, and fy, , are
obtained by substituting Eq.(2.4.8) into Eq.(2.4.6), and probability
- density for parameter C,, fc, , which is required finally, is repre-
sented as follows by using fa, and fp, ;

fco(co):ff;;o(Ao)J;;o(Co‘Ao)dAo .................................................................. (2.49)

Probability densities fy, , fp, and fc, are shown in Fig.3-1 in case
of np=ng=15, 6g=0.1 and §g=0.2.

The procedure can be extended as follows to gamma distribution
and log-normal distribution. With respect to gamma distribution,
expression such as Eq.(2.3.3) cannot be obtained by substituting gamma
distribution directly into Eq.(2.3.2), or by substituting normal dis-
tribution which is transformed by square approximation into Eq.(2.3.2).
Therefore, rough approximation such as,

(variable following to gamma distribution)

~ (variable following to normal distribution)

is introduced and Eq.(2.3.3) is employed without any modification
relative to the difference between gamma distribution and normal dis-
tribution. In that case, Eqs.(2.4.4)7(2.4.8) also can be employed
as they are. However, as for fup, fug, fog and fo} in Eq.(2.4.6),
Eqs.(2.2.5) and (2.2.6) should be employed instead of Eqs. (2.2.3) and
(2.2.4), respectively. Probability densities fa,, fp, and fc, are shown
in Fig.3-2 in the same case of normal distribution.

With respect to log-normal distribution, following expression is
employed approximately instead of Eq.(2.3.3);

B =0 {(1nR— 105) /(02 + 02 )2} ot (2.4.10)

Parameters 4, and B, are re-defined as follows; that is, parameters
4, and B, are expressed as tangent of the angle between S-axis and
failure boundary line R=S which moves round the origin as shown in
Fig.1-3. The failure region is represented as follows by using pa-
rameters 4, and B, ;
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R<(A0+Bo)-S ................................................................................................... (2'4‘11)
Since Eq.(2.4.11) is represented more simply by using parameter (p=
Ao+ By as,

R<COS reereaeetesereteateenuaet et aeenatoeearn e rasisssenssetsbeenrerrsrsarrssrassettaanansorrresarssrseresserseverenssnens (D4 12 )
the modefied failure probability 3? is expressed as follows;

§M=fféo(c°)ff}i<cos fB(R)fs(S)deRdco ................................................... (2.4.13)

Failure probabilities P}‘- are expressed as follows for parameters Ag
and B based on Eq.(2.4.10);

F=0o{(lR— 1S~ 1ndo")/ (2 +d>"} | (2.4.14)
[}*:(D {(I.IIR~ lng—— lnBo*)/( 83'2 +632 )]/2}
Parameters dom and sov are introduced as,
dom*= 1nR* — InS*
................................................................................................ (2'4.15)

807)*: JRZ*'*' 682‘

Probability densities for parameters dom and sov are expressed as
follows with reference to Eq.(2.4.6);

Tiom (4om) = gye (1/ "8 4, (1aF®) £, (1aF*—dom™) d (1aR")
Frov (800%)=f l/ﬁg)f;Rz( 532').1",82 (80v*— gg?*)d (g*)

Since failure probability 3} corresponding to parameters dom* and sow*
are represented as follows instead of Eq.(2.4.7);

B*=® {(dom*)/ (852 + 8¢ )" ) }
.................................................................. (2'4.17)

I}"‘:CD{( InR— 1nS )/ (sov*)2 }

parameters dom* and sov* can be represented as follows by using parame-

ters Ay and By;

dom* = InR— InS — In4}*
................................. ( 2418 )

80v* = (0 + 02 ) (InE— 1nS)?/ (1nE — 108 — 1nB,*)?
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Probability densities for parameters 4, and B, are obtained by substi-
tuting Eq.(2.4.18) into Eq.(2.4.16), and probability density for pa-
rameter C, is obtained based on Eq.(2.4.9). Probability densities
fA,» fB, and fc, are shown in Fig.3-3 in the same cases of normal and
gamma distributions.

The modified failure probability Py taking account of the errors
of means and variances can be calculated by substituting fg, into
Eq.(2.4.3)——in case of normal and gamma distributions——and into
Eq.(2.4.13)—in case of log-normal distribution. Three kinds of
By are calculated for central safety factor y,, and shownin Fig.4 in
case of normal, gamma and log-normal distributions.

2.5 Relationship among Failure Level P# of the
Structure, Structural Life 7 and Sampling
Process of the Measured Data for Load §

The structural life, T, is generally decided in advance at the
stage of making a plan from an economical and/or political viewpoints.
Failure level 3%, for which the structure is designed, acquires an
engineering meaning by connecting Py obtained from the reliability
analysis with T decided in advance, because the relationship between
7 and 3# is closely connected with the sampling process of the meas-
ured data (of size ng) for load S which have been measured continuous-
ly with respect to time. Although Rf is only connected with load s
and without any relationship with R, Bf is used as the failure level
of the structural design. It is explained as follows; value of R is
unknown, and therefore it must be satisfied in any case that value of

S exceeds the value of R only once—mnot more than twice through
the whole periods numbering T/AT, where AT is the time interval of
sampling——that is, maximum loads are collected in each interval AT
and used as the measured data for S. In other words, the structure
which fails once during 7 is obtainable by using failure 1level E%
corresponding to AT/T. If the structural life T is, for instance,
supposed as 100 years, following relationship between Pf and AT is
obtained;

i

AT } 1 hour 10 hours 4 days 1 week

10-6 10-3 10-¢  2X10™*
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If the time interval AT of the sampling process is chosen according
to the above relationship, the structural life 7=100 years is equally
expected independently whether Pf is selected as 105 or 10°%.
However in practice, the accuracy of 3; undergoes a change according
to the selection of AT.

Error of distribution is caused by substituting approximately fp
and fg for the known distributions such as normal distribution, gamma
distribution and log-normal distribution as described previously.
Error of distributions has a tendency to decrease as 3f increases.
Adequency of the approximated distribution is substantiated generally
by using test of goodness of fit, where the goodness of fit is low at
the part distant from the mean, i.e., at the neighborhood of the ex-
tremum as compared with at the neighborhood of the mean. The situ-
ation is explained as follows; if 3% is selected small, goodness of
fit as a whole increases on account of the increase of sample size,
and goodness of fit at the neighborhood of the extremum decreases
relatively; if Rf is selected small, the main part of the integral
playing an important role in the calculation of 3% is restricted to
the neighborhood of the extremum. Going upon the comparative dis-
cussion as stated above, it is presumed to be desired that 3% is se-
lected in the order of 1073~10°%, that is, the time interval of sam-
pling, AT, is selected large. If R% is selected too large in the
order of 10-2~10-%, number of samples decreases, and goodness of fit
itself decreases as a whole.

On the contrary, error of characteristics has been already e-
valuated as shown in previous Sections. That is, the influence of
the error on the estimation of failure probability is evaluated nu-
merically, and there is no necessity for discussing the decrease of
the error itself. In this case, 3} can be chosen without restraint
—as well large in the order of 10724107 or small in the order of
1073410°® ——so long as minimum number of samples for the statistical
treatment is obtained.

By correlating error of characteristics and error of distribu-
tions, it is recommended that 3f is selected in the order of 10-3~107%
in so far as number of samples between 15 and 100 is obtained.

2.6 Application to the Practical Design of Truss

Bridge
17



Means, variances and coefficients of variation for R and S are
calculated by using the measured data from the tests of materials and
the measurements of loads, and the modified failure probability ﬁ?is
calculated by using Eq.(2.4.3) or Eq.(2.4.13). By calculating Ry
for various values of central safety factor vy, (=E/5), the 'n-Ry curve
is drawn up. By employing the curve, the structural member is de-
signed, that is, the cross-sectional area of the member is decided.
The result is compared with the usual allowable stress design based
on Design Specification for Welded Steel Highway Bridge of Japan, and
the absolute safety factor anticipated in the allowable stress de-
sign is obtained.

The simplest case only the tensile force acts on the structural
member composed by SM41B steel is considered as a numerical example.
Characteristics of SM41B steel is obtained from the measured data for
yield strength tested by Society of Steel Construction of Japan in
1968 [34], and §hown in Table 1. '

Warren truss with parallel chords is chosen as a type of the
bridge structure as shown in Fig.5-1, and the cross-sectional area is
calculated for the lower chord member located at the end of the truss.
The truss bridge is supposed to be a two-lane highway bridge for one-
way traffic, whose cross-section as for slab is shown in Fig.5-2.
Influence lines employed in the allowable stress design is also shown
in Figs.5-1, 5-2 concerning to the main truss and the slab, respec-
tively.

The measured data for S is prepared by collecting maximum values
during each time interval AT when the traffic flow acts on the truss
bridge. The traffic flow model is substituted for the random series
of the axial forces generated by using computer on the basis of the
traffic volume census covering over 31 weeks. These records were
measured by Japan Highway Public Corporation in 1968 at Tennozan Tunnel
of Meishin Highway [64]. Maximums of the tensile stress which occur
in the member per week are taken as a set of the measured data for s,
that is, let AT be one week. The characteristics for § are shown in
Table 1.

Let the structural life T be 100 years. Since AT is chosen as
one week, the failure level 3} employed in the design criterion is
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indicated as,

F/=AT/T=1 (week)/100 (yoars )~ 2 X 107

Probability density for the population of load S is estimated on
the basis of the frequency distribution of the measured data for S as
shown in Fig.6. In this case, log-normal distribution is suitable
for the probability density for 5, fg. Probability densities f,, ,
fB, and fc, are calculated as shown in Fig.7 when R and § follow to
log-normal distributions with characteristics as shown in Table 1—
probability density for R is assumed being equivalent to one for §,
because coefficient of variation of R is rather smaller than one of 5.
The modified failure probability 3# is calculated by using fc, based
on Eq.(2.4.13) and shown in Fig.8. The cross-sectional area of the
lower chord member, 4s, is determined as follows by employing the

Yo'?# curve;

a) y, corresponding to Ef is read in Fig.8 by setting 3¥=3f. Since
failure level of the member is 3f=2x10'“, Yo 1is obtained as 1.77.

b) R is calculated by using v, . Since § is 14.44(t) in Table 1, R
is obtained as 25.56(t) based on the relation R=v, 5.

C) As is calculated as follows by using R; .

Ag=FE/(yield strength of SM41B steel ) = 25.56/ 2.752 < 10 cx

On the contrary, let the cross-sectional area of the same member
be calculated based on the usual allowable stress design for the first
class bridge. The concentrated load on the slab becomes 5x4.559=
22.80(t) and the total live load, Ly, acting on the lower chord mem-
ber is obtained as follows with reference to Fig.5-1;

Ly=22.80X0.4875+ 1.596 X 17. 5= 87. 9t
The fequired cross-sectional area Ay is determined as,

Ag=387.9/1.400< 28 cr?
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where 1.400 (t/cm?) is the allowable stress of SM41B steel.

In consequence, the absolute safety factor, Yaps , including in
the allowable stress design is estimated to be nearly

Tops= 28/ 10=2.8

for the tension member under live load.
2.7 Conclusion

Following two kinds of errors including in the usual reliability

analysis have been discussed herein;

C) Error due to means and variances—Error of characteristics
C) Error due to assumptions of distributions——Error of distributions

With respect to error of characteristics, modification of the usual
reliability analysis has been proposed not to evaluate the failure
probability on dangerous side even if the error will exist. With
respect to error of distributions, since the error is regarded as un-
avoidable in the reliability analysis, larger selection of time in-
terval AT has been recommended for the purpose of decreasing the in-
fluence of the error on the evaluation of failure probability.

Error analysis has been applied to normal distribution, gamma
distribution and log-normal; distribution. Therefore error of char-
acteristics can be analized only when the distribution of the meas-
ured data are assumed by one of these three distributions.
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Chapter 3 Estimation Procedure of Extremum

Two kinds of error being accompanied with the usual reliability
analysis are discussed in Chapter 2, and the error due to 'approxi-
mation of distributions' is not evaluated analytically. It was pro-
posed that influence of the error on the estimation of failure prob-
ability decreases by putting design criterion R% in the order of 1073~
1075 ., If more strict solution is further wanted, some new approdch
which has no use of approximation of distributions is needed. In
Chapter 3, as an initial step to the purpose, a procedure is proposed
to estimate the extremum of the measured data without any approxima-
tion of distributions. The content has no immediate connection with
the failure probability and the structural design yet. Only purpose
is to establish a variational procedure without any approximation of
distributions on the estimation of the extremum of the measured data.

3.1 Procedure without any Approximation of
Distributions

éebyéev's inequality is one of well-known procedure without any
approximation of distributions. Although éebyéev's inequality is
meaningful in theory, it cannot be employed in practice on account of
too much extremum—-deviation—being estimated. The deviation cor-
responding to occurrence probability 1/1000 is calculated as 31.6 in
case of normalized population with reference to following Ceby%ev's
inequality;

P{lY—o0|=t}=<1/t2=1/1000

The deviation is far too large as compared with normal distribution
whose deviation corresponding to 1/1000 is nearly 3.1.

Another and widely applicable procedure is the estimation pro-
cedure of extremum based on the variational method [30,31,48], where
the distribution itself is taken as an unknown function. The pro-
cedure is expressed as follows; first, characteristics such as mean
and variance are calculated from the measured data of size n, and are
called the restrictive conditions by which an unknown function is
characterized; second, sets of samples of size N, which is ¥>n, are
supposed to be taken from the same population over and over; last, an
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unknown function is decided so as to maximize the average value of
maximums——described as the averaged maximum henceforth———ﬂf'each.set
of sample, and so as to satisfy various characteristics based on the
variational method. The derivation of extremum in this case is de-
scribed in the following.

The probability density for the population, from where the meas-
ured data has been extracted, is designated by f(X), and its cumula-
tive function by F(X). X is a normalized value of a measured value
x, and is expressed as,

X=(z—-%)/s

Although f(X) and F(X) are taken as functions for X¥ in ordinary cases,
X is regarded as a function for F herein from a viewpoint that dis-
tribution itself is unknown. That is, expression such as X(F) is
employed. Using x(F), the restrictive conditions that mean is 0 and
variance is 1 are expressed in the forms of following integrals;

ijdF::o .................................................................................................................. (81.1)
f;XZdF: 1 RN RPN & 1 1D

The averaged maximum of samples of sizes N, Yy, is also expressed as
follows;

— 1 N
YN=f0 xXNFN! AF (8.1.8)

The unknown function X(F) is obtained by solving the variational
problem of maximizing ¥, of Eq.(3.1.3) under the restrictions of Egs.
(3.1.1) and (3.1.2). First, introducing Lagrange multipliers A, and
A2 , functional J is defined as [31],

J:XNFN_]_XIX_XZXZ .................................................................................... (8.1.4)
and function X(F) is expressed as follows by taking 5J/8X =0}
Xz(l/zlz)(NFN—l_xl) .................................................................................... (3'1.5)

Lagrange mutipliers X1 and X2 are determined by substituting Eq.(3.1.5)
into Egs.(3.1.1) and (3.1.2), and by solving the simultaneos equations
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for A, and A2 such as,

(1/2A2)(1—41)=0
(1/242){N2z/(2N—1)— 24, — A1} =1

therefore

A=1, 1/2&:(4“,)—1/2 .................................................................................... (8.1.6)
where

Ay=ki/(k+1—1), Ay =Ay—1

Then the extremum of Yy, i.e., z@, is obtained as follows by substi-
tuting Eqs.(3.1.5) and (3.1.6) into Eq.(3.1.3);

sz=(1/212)(AJ'VN+1’"A1)=(A'NN)V2 ............................................................ (8.1.7)

in which right-superscript E means being an extremum. Value of Yﬁ
is 22.3 in case of N=1000——this is not equivalent to the occurrence
probability 1/1000.

Further, another distribution X(F) has been derived by Plackett
[48] under the additional restriction of f(X) being symmetric, and

in that case extremum ¥ is represented approximately as,

I_’;vE‘j—aN/{Z(zN—l)}‘/z ....................................................................................... (8.1.8)

that is, ?ﬁ is 15.8 for N=1000. These values of ?5 for Eqs.(3.1.7)
and (3.1.8) are fairly large, but have a physical meaning as wupper
bounds of the averaged maximum of the samples of size ~.

3.2 Decrease of the Estimation Value of Extremum
?ﬁ due to the Selection of Characteristics

The extremum of the averaged maximum, Z@,is still large so long
as two restrictive conditions for mean and variance are considered.
How can ¥§ be estimated lower? Decrease of extremum ¥f is realized
herein by increasing the number of restrictive conditions character-
izing the measured data. Let demonstrate the results first of all.
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Various values of extremum z% for ¥=1000, which are calculated by
using samples of sizes 50 extracted from the population following to
normal distribution, are shown in Table 2 with respect to various
restrictive conditions described later. The values show a tendency
to decrease as number of restrictive conditions increases. Although
the effect has not been proved until the actual results come out,
increase of the number of restrictive conditions is supposed fairly
effective for decreasing the extremum Y§.

What kinds of characteristics are adequate as restrictive con-
ditions in addition to mean and variance? Characteristics are ne-
cessary to satisfy the following conditions;

a) Characteristics should be expressed in the forms of definite inte-
grals for interval between 0 and 1.

b) Integrals should be analytically possible when X(F) is substituted
into restrictive conditions.

c) Integrands of characteristics should be monotone increasing func-
tions for interval between 0 and 1, because function X(F)—being
increasing function from the character of cumulative density function
——is defined as a sum of the integrands.

d) Characteristics should represent the properties of the measured
data undoubtedly.

¢) Calculations of the characteristics from the measured data should
be simple so that engineers may calculate without being puzzled.

Based on these properties for characteristics, following six
kinds of characteristics are chosen as restrictive conditions herein;
that is, (:)naximum, (:)minimum, (:)nean of upper blocks of size ¢, (:)nean
of lower block of size s, C)skewness and C)kurtosis. Mean of up-
per block of size ¢, u. , is expressed as w;=(Xp_,4 + +X,)/t and mean
of lower block of size s, -vg, as -4=(X+-+X;)/s based on the or-
der statistics X; <X, <+++<X, which are obtained as the measured data
of size n. The restrictive conditions with respect to six charac-
teristics are expressed as follows after the expressions of Egs.
(3.1.1) and (3.1.2);

@ f; XnF"“szXn Sy e s (3821)
® fol Xn ( l—F)"—ldF=X1 S e s (8.2.2)
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13 n! n=i o oniel o 13y =
® LR oo PR ar= fxa (M aF =15% =u,
....................... (3'2.3)
@ flli al Pt (1-F)aF = ['Xg (FyaF =15 x, =
080 (i—1)1(n—3 ) 1=F) f % ;g i T
(8.24)
® j:xde:Ba ......................................................................................................... (8.25)
J:X4dF:B4 ......................................................................................................... (8.2.6)

Since each integrand of characteristics @\.@ is simple equation for
X, the equation concerning to the unknown function x(F), which is
obtained by taknig 3J/3Xx=0, is still a simple equation for x.
Therefore X(F) can be represented as easy as the derivation of Eq.
(3.1.5). On the other hand, the integrands of characteristics @ and
@ are a cubic and a quartic equations, respectively, and the unknown
function X(F) becomes a cubic equation when both characteristics are
employed. The solution of cubic equation for X, which is solved by
Ferrari's formula, becomes quite complicated and the integral becomes
analytically impossible when Xx(F) is substituted into restrictive
conditions @ and@ in order to determine Lagrange multipliers.
That is, the characteristics @ and @ are not adequate as the re-
strictive conditions——the characteristics @ and @ are discussed in
Chapter 4 from a different standpoint. Decrease of extremum ¥§ is
realized herein by combinating restrictive conditions .

3.3 Extremum 25 under Three and Four Restrictive
Conditions

Extremum ?1;],3 in case of three and four restrictive conditions are

derived and shown below in the same manner described in Section 3.1.

@ Case of three restrictive conditions for mean, variance and maxi-

mum;
X=(1/2,{2)[NF”"—/11~,{3nF""} .................................................................. (8.3.1)
1/24: = (A, —uf )V ) (A A, — &y 2)V?
Ay = (A, 24w )/ 4,,, 11=1~—&
Yf:(l/glz)(gNN_Ajvnxa) .................................................................................... (8.8.2)
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C) Case of three restrictive conditions for mean, variance and mean

of upper block of size ¢;

X=(1/242) {NFVT' = 11 = A3 0:(F) oot snssns (8.33)
1/242 = (D, —u2 )2/ ( Ay Dy, —C2 )2
As=(C{—2Au)/ D}y, A =1—1s

TE = (1/242) (Ahy —Ci As)  wevevmemcssssssmessnsessss s e s ssssesssssssss e (8.3.4)

C) Case of four restrictive conditions for mean, variance, maximum

and minimum;

X=(1/242) {NF¥ ' = A1 —AsnF ™" ' =An (1=F )" '} s (8.8.5)
1/28 ={ (Ap? —Bpp2) =l (5 + %) — 2B pu101 } 2/
{A,NN (A2 —Bilmz )_A,nn (AIIVn2+BI<fu2 )+2A/Nn BI(InB;m }]/2

As = { (A& — By B, )~ 2 A0 (Aur —Bo00)} /(4,2 = B2 )
As={ (B}, A, — Ay Bl )— 242 (4, 01— B, u1) } /(4 2—B, 2 )
A =1-23—44
7N Q VL7 TS N O AU T NS D V) -3.3.6 )

() Case of four restrictive conditions for mean, variance, means of

upper and lower blocks of sizes ¢;

X=(1/212){NFN_'—Al—lsgg(F)—XJ;(F)} ......................................................... (8.8.7)
1/2: = {(D{2—D;2)—D,(w?2 +v2)—2Du,m, } 2/
{4ww(Dy? —D;2)—D;, (Ci2 +Ci2) +2C;T; Dy, } V2
As = {(C;D}, ~C, D'y )— 24 Djyu, — Dyyv,) } / ( D2 =D 2)
A= {(C; Dy —C{ D)~ 24 (Dyv,~Dpu,) } / (D2 —D2
Ai=1—4 -4

where

By=Ck111)/Ck+i—1)1

ol

N-nl

(N+n—i—1)! = N-n! (N+i—2)!
E(N+n—1)1 ¢ 2

T (n=i) 1 = T NTa—D 1A (D!

G =
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(n1)2 Kk d (2n—3—3) 1 (G+j—2)!

Du= a1 B 5 =) (=) 1G—1)1 (7=1)1
D, = (1) (amitim1)(ntii=1)!
H= Flen—D T AZ (=) =D 1G=1)1(—1)1

By=By—1, =G -1, C;=Cy—1, Dy=Dy—1, Dy=Dy—1

Extremums ?ﬁ are calculated for these four cases by substituting
N=1000, n=50, £=5, u =vy=2.249, us=v5=1.705 into Eqgs.(3.3.2),(3.3.4),
(3.3.6) and (3.3.8) and shown in Table 2, where u; ,v; ,us and vs are
calculated based on the order statistics of normal distribution.

3.4 Extremum 7% under Seven Restrictive Conditions

It is concluded from the results of Section 3.3 that extremum ?ﬁ
descreases as the number of restrictive conditions increases, that
means of upper and lower blocks of sizes t are more effective than
maximum and minimum with regard to the decrease of ¥§. Standing on
these points, standard combination of restrictive conditions is de-
termined as seven restrictive conditions for mean, variance, means of
upper blocks of sizes ¢, , t, and t;, means of lower blocks of sizes
t, and t;, where ¢,, t, and t; are selected as t,=5, t,=10, t3=17 in
case of n=50, for instance.

In case of seven restrictive conditions, function X(F) is ex-
pressed as follows by employing Eq.(3.2.3) for ¢=+¢, ,t ,t; and Eq.
(3.2.4) for s=1¢, ,t; in addition to Eqs.(3.1.1) and (3.1.2);

X=(1/22) (NF" "= A — 305, (F) — Aeey(F ) — As 04, (F)
—AEES(F)_A7Q_‘2 (F)} ......................................... (84.1)

Substituting Eq.(3.4.1) into Eqs.(3.1.1),(3.2.3) and (3.2.4), follow-

ing simultaneous equations for XA;, A3VA; are set up by leaving A, to
. be unknown;

[M]{,{]:{C}_z,{z{E} ............................................................................................. (8.4.2)

where
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1 1 1 1 1 1)
Dtltl Dtlzz Dtllg tit3 ity
D,, D,, D,, D
[M] _ 2ty [21£] T)z 3 l_)‘ztz
t3t3 3t3 t3tz
sym.
t3t3 Dta‘z
D
L 212 P

(AY={A A A s A A}
{c}'={1 ¢, ¢, c, T, C,J}

T
{E} ={o g Upy Upy “Vg~ Yy, }

Solving Eq.(3.4.2), X\, X3V}, are expressed as,

Unknown multiplier A, is derived by substituting Eq.(3.4.3) into Eq.
(3.1.2) as,

1724 = (1= {EY M {E}) 2/ (A= {C Y [M]™ {O2 o (3.4.4)

and extremum of the averaged maximum, ?ﬁ, is expressed as follows by
substituting Eq.(3.4.4) into Eq.(3.1.3);

Te= (1 (B} M) {ED™ (yy — (0} [M]" (CP e +{0 P [MT " (B) oo (3.45)

Extremum ?E is calculated in case of ¥=1000, n=50, us=1.705, wuig=vy =
1.372, uy7=v,7=1.060, and shown in Table 2, where us ,u10,v10 uU17,vV17 are
calculated based on the order statistics of normal distribution of
sizes 50.

3.5 Extremum of the Averaged Minimum

Equations concerning to the estimation of extremum Yﬁ and re-

strictive conditions described previously are derived in order to
estimate the least upper bound of load, etc..

On the contrary, it is necessary to calculate the extremum of
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the averaged minimum to estimate the great lower bound of material
strength, etc.. In this case, the order statistics Xi=—Xp in
(X;<X,<-=<X,) are newly defined by reversing the sign of xj. Then
characteristics such as u+ and vg are calculated by using the new or-
der statistics X;, and extremum of the averaged maximum, Z&',is cal-
culated by using Eq.(3.4.5). At the end, extremum of the averaged

minimum, Yg, is obtained by taking ¥E = -Z&'.

3.6 Applications to Various Sorts of the Measured
Data

Extremums y§ are calculated for various sets of the measured
data. With respect to material strength, the procedure is applied
for three sets of the measured data on steel tensile strength, steel
buckling strength and cement compressive strength. With respect to
load, the procedure is applied to a set of axial force of the lower
chord member of truss bridge described in Section 2.6. Block char-
acteriatics wgy, gy Uegr Viegs Ve, aT€ calculated for these sets of the
measured data and shown in Table 3.

The details of the measurememts are described in the following.

() Tensile strength of SM50B steel [34] : The test was carried out by
Society of Steel Construction of Japan in 1968, similar to yield
strength of SM41B steel discussed in Section 2.6.

C) Buckling strength of SS41 steel [7] : The test was carried out by
Aoki and Fukumoto at the Department of Civil Engineering of Nagoya
University in 1972. The test quoted herein was performed for welded
H-column with the slenderness ratio of 100.

C) Compressive strength of cement mortar [63] : The test was carried
out by Cement Association of Japan in 1964. The test quoted herein
was performed for 28 day's compressive strength of uniformly controlled
Portland cement.

C) Axial force of the lower chord of truss bridge [64] : See Section
2.6.

Extremums ¥§ for these sets of the measured data are shown in Table 3.

Depending upon the selection of block sizes t,, ¢, and t;, the
part of (1 - {E}T[M]™4E}) 1in Eq.(3.4.5) becomes negative, that is,
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=E . . -
extremum Yy becomes an imaginary number. And extremum Y; changes

sensitively according to the selection of ¢, ,¢, and t;, even if Zg is
a real number. The situation is well shown in Table 3. As a re-
sult, the procedure still unsuitable for practical use. The defect
is caused by the selection of the restrictive conditions, and in Chap-
ter 4, more reliable characteristics will be introduced.

3.7 Conclusion

Maximization procedure of the averaged maximum based on the var-
iational method has been introduced and developed in Chapter 3. The
procedure has only applied to the estimations of extremums of maximum
and minimum of the measured data, and has still not connected with
the failure probability.

The characteristics of the procedure are as follows;

a) Restrictive conditions——characteristics——calculated from the
measured data are assumed absolutely accurate based on the maximum
likelihood method.

b) Extremum of the averaged maximum which can be expected by employ-
ing the measured data is obtained.

c) Distribution of Xx(F) has a finite value at F=1-—on the contrary,
normal distribution becomes infinite at F=1 as often commented—and
it is rational on the engineering.

d) A slight variation of the measured data has a considerable influ-
ence upon the estimation of extremum 75%. There is no criterion in
the selection of block sizes ¢;vt;, and the selection has a large
influence upon the extremum ?5. '

e) Although function Xx(F) must be a monotone increasing function,
this condition is often violated. And still worse:«éki;gﬁﬁﬁmi§ of -
ten becomes an imaginary number.

f) Extremum ?5 gives sometimes an underestimated value even compared
with the maximum of the measured data.

As indicated in (d)~(f), extremum z& defined herein is unreliable.
These unfavorable results are caused by the unsuitable restrictive
conditions. In other words, there are much negative factors in the
procedure. Following improvements are required in order to correct
the defects.

30



@ Introduction of more reliable characteristics.
@ Definition of the error of characteristics.
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Chapter 4 Extension of the Estimation Procedure

of Extremum to the Structural Safety
Analysis

Applying the estimation procedure of extremum to material strength
and load at the same time, the safety analysis of the structural mem-
ber is proposed by connecting with maximization of the failure prob-

ability. Since maximum of the failure probability is defined

granted that it is obtained approximately , a sort of guarantee
can be obtained as follows; that is, when a certain value 4; is chosen
as the design value, the probability that a certain value 4, (4.>4;)
will happen is never in excess of a certain small value € at the worst.
In other words, an arbitrary reliability level of the structural de-
sign can be guaranteed at the lowest. The concept of this design
procedure is considered to be superior to the usual reliability ana-
lysis in respect that the measured data is employed more effectively
and that the design is performed covering the worst state predicted
from the measured data.

Three characteristics 4, B and C are newly introduced as the re-
strictive conditions in addition to mean and variance herein. The
characteristics correspond to skewness, kurtosis, etc., and can be
represented as equations of low degrees for F—differing from maxi-
mum, mean of upper block, etc.. Introduction of new characteristics
AnC, which is represented as equations of low degrees for F and as
simple equation for X, makes the maximization of failure probability
possible.

Further, following improvements are discussed herein in order to
develop the estimation procedure of extremum described in Chapter 3;

a) Unknown function X(F) is modified compulsorily to be a monotone
increasing function. Dummy characteristic, D, is introduced for the
purpose.

b) Influence of error of characteristics on the estimation of extre-
mum ¥§ is discussed. To be concrete, upper bound of extremum ¥y is
presumed by defining means of characteristics 4vC and their 1lower
bounds.

c) Graphical estimation method of extremum ?ﬁ based on characteristics
AnC is developed in order to widen the utility of the procedure.
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4.1 Definition of Characteristics 4, B and C

The restrictive conditions that mean, variance, skewness and
kurtosis are 0, 1, B; and B, , respectively, are expressed as follows
by employing X(F) after Eqs.(3.1.1),(3.1.2),(3.2.5) and (3.2.6);

fonon ................................................................................................................... (4.1.1)
fondF= ................................................................................................................... (4.1.2)
S, X3dF=f3s (4.1.3)
Jo X4dF =, (4.14)

The unknown function X(F) is obtained by solving the variational prob-
lem of maximizing the following averaged maximum ¥y ;

Ysz;XNFN_IdF .......................................................................................................... (4.1.5)

However, if functional J is defined by employing Eqgs.(4.1.3) and (4.1.4)
as,

J=XNFN¥' — 1 X — A X2 — A X3 — A X4

and taking 3J/9X=0, a cubic equation for X is obtained. The irra-
tional formula, which is obtained by solving the equation for X, is
analytically impossible to be integrated. Therefore, as mentioned
in Section 3.2, skewness and kurtosis cannot be treated as restric-
tive conditions directly. Instead, the author newly introduce the
following restrictive conditions, whose characteristics are similar
to skewness and kurtosis, and which can be solved as a simple func-
tion for X;

f;X(F—o.s YZAF =5 v s s et b (4.1.8)
f;X(F—0,5)3dF=B,; .................................................................................................. (4.1.7)

These statistics are supposed to correspond to skewness and kurtosis,
respectively. They may not be conventional statistics compared with
the usual ones such as mean, variance, etc., because they are defined
herein for the first time. These statistics are allowed to use as
the restrictive conditiones from the following viewpoints;
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a) Skewness and kurtosis are obtained by averaging the measured values
X according to the weight of X?> and X%, respectively.

b) X can be averaged according to the weight of (#-0.5)% instead of
X2 because F is a function for x. The weight of (7 - 0.5)% can be
substituted for ¥® in the same way.

¢) (F-0.5)1 and x¥ (i=1,2,.++) have the same sign in the distance
from the neighborhood of the mean (or mode) except that the conditions
of (F-0.5)>0 for x>0 and (F-0.5)<0 for x<0 are not always
satisfied.

If these types of restrictive conditions are allowable, integral
Jix(F-0.5)dF corresponding to variance and integral /! x(r-0.5)*drF
corresponding to the weighted mean which is one degrée higher than
kurtosis can be settled in the same way. Since the weights are ex-
pressed as a quartic equation for F, following four restrictive con-
ditions are recommended after simplifying weighted means shown by
SPx(F-0.5)1dFr (i=1n4);

‘ﬁXFszA .................................................................................................................. (4.1.8)
jiXT”dF5=B ........................ eevesueieeseenst syt b s ets e bt s eba e s eee A set et b aneeneee et eease e see st eentene (4.1.9)
f;XF3dF=C .................................................................................................................. (4.1.10 )
jiXF‘dF=l) e e sttt et et snenesenssessssassnnssnsossessassessessnsenenens ( 4.1.11 )

Eqs.(4.1.1),(4.1.2),(4.1.8)n(4.1.11) are employed as restrictive
conditions in Chapter 4, where Eq.(4.1.11) is especially used as the
dummy condition for modifying Xx(F) to be a monotone increasing func-
tion.

4.2 Estimation of Extremum ig and the Selection of
Dummy Characteristic D

The extremum of the averaged maximum, 'g, is derived as follows
under the restrictions of Eqs.(4.1.1),(4.1.2),(4.1.8)~(4.1.11).
First, functional J is defined as follows in the same way as Eq.
(3.1.4);

J=XNF¥ ' A X— A2 X2 —As XF — A XF2 —AsXF3 —Ag XF4  coorervennrccncciminnnecnnnns (4.2.1)

and the unknown function x(F) is expressed by taking 3J/3x=0 as,

X= (1/2]2)(NFN"—ll—laF—MFz —AsF3 — Qg F1) i (4.2.2)
34



Substituting Eq.(4.2.2) into Eqs.(4.1.1),(4.1.8)n(4.1.11), the fol-
lowing simultaneous equations for Lagrange multipliers A;, A3vis are
set up by leaving A, to be unknown;

[M]{l}={0}—2lz {E} ............................................................................................. (4.2.3)

where

(1 1/2 1/8 1/4 1/5)
1/3 1/4 1/5 1/6

M=
! ] 1/5 1/6 1/7
sym. 1/7 1/8
1/9

~N
{(A'={A A A A A}

{c}®={1 N/(N+1) N/(N+2) N/(N+3) N/(N+4)}
{E}’={0 A B C D}

{x} is solved as,

{l} = [M]'l {C} -2, [M]_l {E} crersnestsn st st ate e b e ensseasesssassensassssesaenssssssess (4.9 4 )
where
(5 — 60 210 - 280 126 )
o 960 — 3780 5376 — 2520
(M]™ =
15876 — 28520 11840
sym, 85840 — 17640
G 8820/

Unknown multiplier ), is derived by substituting Eq.(4.2.4) into Eq.
(4.1.2) as,

1/24:= (1— {E}T[M] -1 {E})”2 / (Ayy— {C}T[M] -1 {C} yv2 ( 4.2.5)

Extremum ?5 is expressed as follows by substituting Eq.(4.2.5) into
Eq. (4.1.5);
5=~ {B"[M]™ {ED " (4, — (O} [M]™ (o))" + (o} [M] T {E} oo (4.2.6)
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Eqs.(4.2.3)n(4.2.6) are similar to Egs.(3.4.2)~(3.4.5), and only dif-
ference is in the elements of [M], {C} and {E}.

Function X(F) of Eq.(4.2.2) must be a monotone increasing func-
tion with the increase of F from 0 to 1. This demand needs to be
satisfied as much as possible because the inverse function of x(F) is
a cumurative density under the control of Lagrange multipliers ;)
in Eq.(4.2.2). Among six multipliers, )A;———corresponding to dummy
characteristic D——is expected to make an unique contribution to keep
X(F) being a monotone increasing function.

If function X(F) is calculated without including Eq.(4.1.11)
previously, there is a fair possibility that Xx(F) is not a monotone
increasing function. In this case, although function X(F) becomes
an unrealistic solution, X(F) is still a strict solution by reason of
being a solution of the variational problem. - Extremum 75 calculated
by using this unrealistic solution X(F) can be used as a criterion
for safety, even though it is an overestimated extremum.

In order to avoid the unrealistic estimation, 1let X(F) be de-
rived by including Eq.(4.1.11), that is, by including dummy charac-
teristic D. Dummy characteristic D is chosen adequately so that
function X(F) becomes a monotone increasing function, and so that
value of ?5 for D becomes a maximum. That is to say, the range of
D where X(F) is monotonous is calculated, and after that, the largest
value of Yﬁ is found in:the range of D. This value is the extremum
?ﬁ satisfying the condition that X(F) is a monotone increasing func-

tion.

The range of dummy characteristic D can be derived as follows;
Since X'(F)—which is obtained by differentiating Eq.(4.2.2) with
respect to F—must be positive always, following inequality is ob-
tained;

(1/242) {N(N—=1)F"2—- 3 —2 A F—3AsF? —4AsF3} >0

in which the coefficient of F¥-2 | ), , must be positive always on ac-
count of the exponent of F, N¥-2, being large enough, and other coef-
ficients including A3nA¢ must be positive as a whole. Therefore
following simultaneous inequalities are obtained;
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A2>0
A3 +2A4F +8AsF2+44:F3 <0

The range of D is obtained by solving Eq.(4.2.7) with respect to D for
0<F<1. First, Eq.(4.2.7) is rearranged as the simultaneous relative
equations by using A VA and without using F. Since X, vlg are ex-
pressed by employing D through Eqs. (4.2.4), (4.2.5), Eq.(4.2.7) is ex-
pressed as the simultaneous inequalities of high degrees for D.
And the range of D is obtained by solving those inequalities for D
under the conditions whether the inequalities are positive or negative
(See Appendix 2).

As for the calculation of extremum of the averaged minimum, the
same manner is recommended as mentioned in Section 3.5.

4.3 Correlation with the Maximization of Failure
Probability

A new quantity ?p is defined below instead of ¥y;

—_— 1 M
}; - fo X(ﬁ (F)aF R A D)
(Y(F)=1/p for 1—p<F=<1, ¢F)=0 for 0=F<1—p)

New quantity Yp implies the averaged value of the part corresponding
to the upper probability p. The unknown function X(F) in this case
is expressed as, ’

X=(1/2) { @ F)—A1 — A F —AF2 —AsF3—AeF4 } o (4.3.2)

Function X(F) is composed of pulse y(F) and smooth functions of four
degrees for F at the most, therefore X(F) is represented as a combi-
nation of a pulse and a tail part (See Fig.9-1). The shape of a
pulse part is not flat as result of the existence of FvF*, but it is
still a monotone increasing function with smooth variations. Then
the probability density f£(Xx)=1/(dx/dF) may probably be shown as
Fig.9-2.

With respect to material strength, extremum of YpR for p=pgp>

YER, is calculated. With respect to load, extremum of yPS for p=

Ps » YBS, is calculated. Since YBR and ?ES are normalized deviations
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from the normalized mean 0, real deviations become Rmin(pR)=E+SB}—’p!;

and Smu(p8)=§+832,: respectively. Y;% is a negative number and
?zﬁs is a positive number. The. state of R, (pr)=Sp,, (pg)is shown in
Fig.9-3 imaginatively. Since failure probability is defined as,

B=[ _ fi(R)f;(S)dSaR

the failure probability corresponding to R,; (pg)=Sp,.,(pg) is shown as
the shadowed portion in Fig.9-3, and evaluated approximately as Pp=

PrRPs/2.

Lower and upper bounds, Rpmin (pg) and Smax (pg), are extremums in
which the pulse parts (See Fig.9-2) corresponding to lower probability
pr and upper probability pg are kept as far as possible from their
means F and 5. The situation Pp =pppg/2 corresponding to Ry, (m)=
Smax(Pg) Tepresents an extreme state in which the difference between
R and 5 is taken as wider as possible. That is, if Rpip and Spax
are employed as the design criterion, failure probability of the de-
sign is less than pppg/2 at the worst. In other words, the use of
Y;% and I’pES has the same meaning of the maximization of failure prob-
ability.

Probabilities py and pg are determined as follows;

@ pr is always equivéient' to ps; that is, assumed as pgp =pg =p.

@ pp is not always equivalent to pg; combination of PR and pg which
realizes the most safe design is selected among the combinations of
pr and pg which satisfy P =pppg/2=const..

Process @ is introduced as the first approximation, though it cannot
be used except in case of pp =pg. Process @ is introduced, on the
contrary, as the approximation of safety-side, though it cannot be
treated analytically. Following procedure is taken herein as a com-
promise between process @ and process @;

@ Lower and upper bounds Rpin and Smax are calculated by assuming
PR =Pg = P> and after that, Rmin and Smax are modified by multiply-
ing the extra coefficients according to the coefficients of variation
6r and &8s of the measured data, where extra coefficients are previ-
ously calculated for every combination of &6 and 65 by taking the
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maximums of ratios of the design realized by supposing Pp =ppps/2 to
the design realized by supposing Pr =p?/2. Design is performed by
employing the modified values for Rpjn, and Spax - Example of extra
coefficients are shown in Fig.10 in case of p=1/50 (PT =1/2500).

The difference between Yf and ?5 is discussed in the following.
Substituting Eq.(4.3.2) into restrictive conditions Eqs.(4.1.1),(4.1.8)
~(4.1.11), simultaneous equations for A; , X;vAs are set up as,

[M] {A}:{C’}—QAZ{E} ............................................................................................. (4.8.3)

where

AT_ 1—(1—p)? 1-(1—-p) 1—(1—p)* 1—(1—p)5
e} ={1 2p 37 ip 7 )

The only difference is in matrix {C} comparing Eq.(4.2.3) with Eq.

(4.3.3). If let p be 2/¥, i.e., p=2/N, the difference is described

as, '
{c}~-{c} = (p}={oC1/ND)]

where

(D}T={0 1 8(N—1) 5N2—10N+6  8(5N3—15N2+18N—8) }
N(N+1) 3NZ(N+2) N3(N+3) BN4(N+4)

The difference is negligible small for ~ > 10.

Further, ?g is expressed as,
7% = (1 (B} [M] 7 (B (1/p— (€)M {0 )" +{0)T[M] ™! (B) e (48.4)

The difference between Yg and Y§ is also represented as follows with
regard to Ayy = N%/(2N-1) = N/2 = 1/p;

% -% =0 (1/N?)

As a result, extremum ?E and 7f can be employed in the same way for
N >10.
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Strictly speaking, ¥f is employed for the estimation of failure
probability and ?ﬁ is employed for the estimation of extremum of the
averaged maximum itself—for the estimation of maximum discharge in
100 years, for instance. The author propose to employ ?ﬁ in both

cases with the object of saving the trouble of keeping proper use of

7% and 25, because ¥ and Yg are equivalent approximately.

4.4 Means of Characteristics 4, B and ¢ and Their
Lower Bounds

Characteristcs 4~nC of Eqs.(4.1.8)v(4.1.11) are recommended to
estimate in the form of 4, B and (—means of 4, B and ¢(—based on
the order statistics X, <X,<e+++<X, of the measured data of size n.

Characteristic 4, for instance, is expressed as,

1
A= [ XFaF
and can be expressed in the form of arithmetic sum as follows;
n
A= (1/n).ZIXzFL-
=
Then mean of characteristic 4, 4, is expressed as,
A= (U/mnXF =/ LXE

Further characteristic mean Z can be expressed more simply as follows
on account of the maximum likelihood estimator of X; being X;;

,T1=(1/n)ZXiFL. ............................................................................................................ (4.4.1)

Characteristic means B and T are also expressed as follows;

B=(1/n)} X, F?
C=(1/n)ELXF3

coeverenens (4.4.2)

The probability density g(F;) for F; = F(X;) corresponding to the
i-th value of x; is defined as [31],
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n! i-1 R=E  rreeieeeeeresesnraaearasaeeasarassesassesnesntnnrrinnannaes
g(Eﬁ=(n_i)Hi_1)!E (1-E) (4.4.3)

Since F_i, Z«Tf and l_«’f in Eqs.(4.4.1) and (4.4.2) are expressed as,

F=[ gB)Fdf; =i/ (n+1)

,;2= ’I;(’I:+1)/('ﬂ+l)(’n+2), E_§=Z(1,+1)(1,+2)/(n+1)(n+2)(n+3)

3

(4.4.4)

characteristic means A, B and C are expressed as follows by substi-
tuting Eq.(4.4.4) into Eqgs.(4.4.1) and (4.4.2);

A={1/n(n+1)} Y iX;
B={1/n(n+1)(nt2) } DG+ 1)X; e (4.4.5)
C={1/n(n+1)(n+2)(n+3) } Ti(i+1) (£ +2)X

With the exception of characteristic means AnC, other statistics
such as central values AnC, modes A~nl, medians AnC may be supposed as
the estimators of characteristics A~C. Central value F;, mode F;
and median 7; of F; are expressed as [31],

xi(

—0.3)/(n+0.4)

F=(i—05)/n, F,=(i=1)/(n—1) (i#1, n)

~ (1

where F; is an intuitive estimator; F; is inadequate estimator because
it cannot be defined at < =1,n. The second and third powers of F;
are represented as follows for central values and medians;

When characteristics AnC are estimated by employing their means, cen-
tral values and medians, the smallest estimations of AnC are always
obtained by the means ZnC. Since YA],S has a tendency to increase as
characteristics 4~nC decrease, characteristic means AnC are employed
henceforth as the estimators of characteristics 4~C from a standpoint

of the estimation on safety side.

The measured data is a set of samples extracted from the popu-
lation, and characteristics AnC of the measured data are not in accord
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with characteristics A~C of the population—-mean and variance are
always 0 and 1, respectively. In the estimation procedure of ex-
tremum, ?ﬁ is calculated by giving full credit to the measured data.
The lower bounds of characteristics A~nC are defined in the following,

and the upper bound of iﬁ is also defined.

If there is the error of size AX; in the individual value X; of
the measured data, the real i-th value becomes Xx; + AX; . Mean and
variance of real X are expressed as,

Xreal:'(l/”)Z(Xi‘*“AX,;):)_f-’-A_X Ciis)
Simﬂ= { 1/(n—1) }Z(Xi-‘_AXi)z_(Xreal )2 28)2:+3Ax2 +2Cov (X, AX)

That is, real mean and real variance hardly become 0 and 1, respec-
tively, and X; must be normalized again by using Xrea: and s§gea: -
Xreal and sareal are expressed as follows on account of X=0 and s§=
1 in Eq.(4.4.8);

Xreal =AX, 8 =1+48,7+ 2Cov(X, AX)

If Ax; is supposed to occur evenly in positive and negative range,
following approximations are obtained;

AX=Cov (X, AX )= 0

Therefore Xreal and Sareal are expressed simply as,

Xreal= 0 , s!%usl =1+ ssz ..................................................................................... ( 4.4.9 )

Re-normalized value of X;, X; res;, is obtained as follows by wusing
Eq.(4.4.9);

Xi'real = (Xi _m)/sxr“l =X;/ (1 +3Ax2 V2 ittt (4.4.10)

The lower bounds of characteristic means 4~C, i.e., 4y, By and Cp,
are calculated by substituting X; ,.,; into Eq.(4.4.5) instead of x;.

Variance szx in Eq.(4.4.10) is calculated approximately in the
following. Since AX; cannot be evaluated directly, AX; is estimated
indirectly by using AFi. Standard deviation of F;, SF; » is defined
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as a correspondence of the absolute value of AF;, that is,
| AF; | = sg;

Standard deviation 8F; is expressed as follows in the same manner for

Fi;

sFL.={f;g(FL?)I*?dI§ — (B2} 2={4i(n—i+1)/(n+1)2(n+2) JV2 oo (4.4.11)

The absolute value of AXi, |AXi|, is estimated by using 8F; based on
the X-F curve as shown in Fig.11. In Fig.11, the upper and lower
bounds of F; with deviation sp; are shown as a and b. Further, the
upper and lower bounds for Fm~F;_y, Fj+1VvFp are also plotted and
interpolated, a banana-shape curve 1is obtained as shown in Fig.1ll.
Deviation of X;, |AXi|, which corresponds to |AF;i|, is shown as &d/2
in the figure. Variance of AX;, SZX’ is obtained by calculating the
variance of |AX;| as,

Sax2 = {1/ (n—=1) } T | AX; |2 covemermmnnsssssest s (4.4.12)

4.5 Application to Various Sorts of the Measured
Data

Characteristic means 4, B and C are calculated and the extremums
'ﬁ are derived for various examples of the measured data in the field
of civil engineering. With respect to material strength, the meas-
ured data of tensile, buckling and compressive strengthes described
in Sections 2.6 and 3.6 are discussed herein. With respect to
load, the measured data of rainfalls, discharges and wind velocities
are discussed herein in addition to the axial force of truss bridge
described in Sections 2.6 and 3.6. Using the measured data, mean
%, standard deviation sy, coefficient of variation 6y, characteristic
means AnZ are calculated and shown in Table 4, and also Z~{ and their

lower bounds 4 ~nC are shown in Table 5.
The details of the measured data are described in the following.

C) Tensile strength of steel [34] : Yield and tensile strengthes of
SM41B steel, yield and tensile strengthes of SM50B steel, are dis-
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cussed.

C) Buckling strength of steel [7] : See Section 3.6.

C) Comressive strength of cement mortar [63] : See Section 3.6.

() Axial force of chord member [64] : See Sections 2.6 and 3.6.
Axial force of the upper chord member is also discussed.

C) Rainfall [65] : Maximum daily rainfalls per year (unit:mm) observed
over 1899-1969 at Tsukechi and over 1923-1969 at Ootaki in the water
area of Kiso, are discussed.

C) Discharge [66] : Maximum daily discharges per year (unit:m’/sec) ob-
served over 1956-1973 at Inuyama in the water area of Kiso and at
Kamo in the water area of Yodo, are discussed.

C) Wind velocity [67,68] : Maximum average wind velocities per year
(unit:m/sec) observed over 1923-1974 at Nagoya, and maximum wind ve-
locities per second and average wind velocities per year observed over
28133 years up to 1972 at Naha and at all-Okinawa Prefecture, are
discussed.

Extremums ?5 are calculated for ¥=100 and shown in Table 4 for
the above-mentioned 17 examples of seven kinds of measurements. Es-
pecially for measurements C), () and C), which are connected with the
structural design in Section 4.7, the relationships between ¥ and ?g
are shown in Fig.12. Further, extremum 75 is calculated for ~¥=1000
based on the order statistics of normal distribution of size 50, and
shown in Table 2 by comparing it with various 2& calculated in Chap-
ter 3.

With respect to measurements C), () and C), extremum Zg is also
shown in Table 6 for ~¥=100, 200. These extremums z& corresponding
to so-called the 100 years values and the 200 years values being of-
ten employed in case of river engineering,etc.. The estimated values
based on the usual Gumbel's method, where double exponential distri-
bution is employed, are also shown in Table 6 in comparison with Y§
proposed herein. In Table 6, the 100 years value of rainfall at
Tsukechi——258. 4mm
data od size 71——255.7mm——, and the 100 years value of average wind
velocity at Nagoya—-35.2m/sec——is evidently smaller than the maxi-
mum of the measured data of size 52—-36.5m/sec. Gumbel's method
has a possibility of estimating the extremum on dangerous side. On

is not so larger than maximum of the measured

the contrary, extremum ?ﬁ proposed herein never provide an estimation
on dangerous side so far as Table 6 is concerned, though it still has

44



a tendency of overestimation.

4.6 Extension to the Structural Design, and Criterion
of the Structural Safety

In the preceding Sections, extremum 25 {(of Eq.(4.1.5)) 1is ex-
plained as the maximum extremum by which the failure probability can
be guaranteed not to exceed 3f==p2/2= 2/n*, when ¥f are calculated
both for material strength and for load of the structural member.
Let ¥p be ?ﬁ for member strength, where lower probability is p, and
Ys be ?ﬁ for member force, where upper probability is p. If the
cross-sectional area, A5, is determined by employing Yp and Y5 so as
to satisfy the following inequality,

AB(R+SRYR)2§+SSYS .............................................................................................. (4.6.1)

the probability that the structural member happens to fail is expected
not to exceed

}} =p2/2 = 2/N2 eeeeebettasanetit et e et aa et aehont et oastatestas e bt abetsesntasnrtnaterasonttantitrononesanne ( 4.6.2 )

at the worst. This procedure is considered as a powerful standard
of judgment for design on account of making efficient use of the
measured data of limited supply, of including no direct supposition
for the distribution of the population of the measured data, and also
of creating the most dangerous situation for the structural failure
based on the variational method.

Let review the meaning of ¥ in detail. It is put in order as
follows;
a) Failure probability of the design realized by Ag(R + 8Y) 28 + 815

is guaranteed being less than Rf==p2/2= 2/N? based on the variational
principle.

b) If occurrence probability of the structural failure is defined as
Ré, its return period T is expressed as T = 1/3f and corresponds to
the structural life. Since the measured data for S is collected in
every one week, the unit of return period, AT, becomes one week.
Then 3% and T can be connected as Pf==(1 week)/ (T weeks) = 1/(52xT).
c) Based on (a) and (b), the structure which survives during T years
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is realized by setting P'=I}=p2/2=2/N2. Therefore N is deter-
mined as N=(2/F)¥%,

d) On the contrary, ¥=100 directly implies 100 years, for instance,
when this procedure is applied to estimate the 100 years value of
rainfall, etc..

e) In conclusion, ¥ is managed separately for the structural design
and for the estimation of the 100 years value.

4.7 An Example of the Structural Design

A calculating example of the member design of truss bridge is
provided by employing the test results of yield strength of SM41B
steel and buckling strength of SS41 steel for the member strength,
and of the simulated member force of the lower and upper chords of
main truss for the member force. The member design is applied for
the end lower chord (tension) and the end upper chord (compression)
of the truss as shown in Fig.5-1 with thick lines. Relationship
between ¥ and I/};' shown in Fig.12 is employed. Ygp and Yg are read
for the value of ¥ (=2/p) corresponding to the structural life of
the members, Pf (=p*/2). Thus the cross-sectional areas of the
members, Ag, are decided so as to satisfy Eq.(4.6.1).

Let the structural life be 100 years. In this case, N is de-
termined as nearly 100 by reason of the samples of load being consist
of maximum measured values per one week, and by using Eq.(4.6.2), where

I}=( 1week) / (100 years ) =p2/2=2/N2x~1/5200 , N=100

Values of yp and ¥s for ¥=100 are read on Fig.13—or obtained from
Tables 4 and 5 .directly—-as follows;

yield strength of SM41B steel ¥, =-852 (—5.08)
buckling strength of SS41 steel : Y, =-38.64 (—4.08)
axial forces of chord members : Yg= 4.19 ( 4.78)

where numerical values in the parentheses imply the upper bounds of
YR and Ygs (See Table 5). These values are normalized ones, and the
original values are obtained with reference to Table 4 as follows;
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yield strength of SM41B steel : R+38Y =288 (2.1588) t/cm?

Rl = 2
axial force of lower chord © S+sY, =2261 (28.66) t
buckling strength of SS41 steel : R +4¥% =0.688 (0.614) t/cn?
axial force of upper chord : S+ 8y, =45.22 (47.83) ¢

Therefore cross-sectional areas Ag of the chord members are calculated
as follows;

lower chord member : A; = 22.61/2.888=10 (11) cn?
upper chord member :  Ag = 45.22/0.683 = 67 (78) cn?

Further, values of As are increased in proportion to the extra coef-
ficients with regard to the error due to the assumption pg = pg =p .
The extra coefficients for 4s are read on Fig.10 as 1.15 for lower
chord and 1.6 for upper chord. Finally, cross-sectional areas A4g
are decided as follows;

lower chord member : Ag=10X115= 12 ( 18) cn?
upper chord member : A, =67X 1.6=108 (125) cm?

On the contrary, let the cross-sectional areas of the same mem-
bers be calculated based on the allowable stress design. With re-
spect to the lower chord member, area A; is calculated as 28 cm?® as
described in Section 2.6. With respect to the upper chord member,
area Ag is calculated as 109cm®> based on the allowable stress for
compression, og;=1.300 - 0.00006x100%> =0.700 (t/cm®) and the 1live
load, Ly =75.80 (t), that is;

lower chord member : Ag = 28 cm?

upper chord member :  Ag = 109 co’

In consequence, absolute safety factors, Yaps, including in the
allowable stress design are estimated as follows for the live load;

tension member D Twps= 28/12 =28 (2.1)
compression member : 7, =109/108=1.0 (0.87)
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The tension member has much allowance for the structural failure as
compared with the compressive member.

The member design according to the upper bound of extremum YE
——numerical values in the parenthese—-<creates an absolute safety
factor less than 1—0.87——for the compression member. For practi-
cal use, so-called 'safe' design will be realized sufficiently by
using ¥F——without using the upper bound of ¥, YS,U.

4.8 Graphical Estimation Method of Extremum ?5 for
characteristics 4, B and ¢, and of the Upper
Bound of Yg

Characteristics 4, B and ¢ can be handily calculated from the
measured data, but a computer is required for the calculation of ex-
tremum ?5. The situation is inconvenient for the practical use, and
graphical estimation method of 7§ is developed in this Section.

First, extremum Yg are calculated for the fixed combination of 4
and B by taking ¢ as a variable, and let the maximum of ?5 be Ypax -
Ymax are calculated for various combinations of 4 and B, and the re-
lationships between (4,B) and Ymax are drawn in a graph. Next, in
the same way, Ymax are calculated for the combinations of (B,C) and
(c,4), and the relationships between (B,C) and Yp,x, between (C,4)
and Ypax are obtained, respectively. As a result, three graphes
corresponding to [(4,B)-Ymax]1, [(B,C)-Ymax] and [(C,4)-Ypax] are ob-
tained.

In case of ¥=100,200,400, i.e., p=1/50, 1/100, 1/200, the re-
lationships of [(4,B)-Ymax], [(B,C)-Ymax] and [(C,4)-Ymax] are cal-
calated and shown in Figs.13-1~13-3 (¥=100), Figs.14-1~14-3 (¥=200),
Figs.15-1~15-3 (N=400), respectively. Value of ?ﬁ is approximately
defined as the minimum among three Ymax being obtained for (4,B),
(B,¢) and (¢,4) from Figs.13, 14 and 15. The graphical estimation
method is applied to characteristic means A~nC in Tables 4 and 5, and
estimated values of ZE are shown in Tables 5 and 7 for #¥=100. The
error of the method is less than 3% as shown in Table 7, and is suf-

ficiently small for practical use.

The variation of ?5 caused by the error of characteristic means
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is convenient if it is discussed on the graphes. The ranges of
are expressed as,

A, <A<24-4, , B <B<2B-B, , (,<C<2C-C,

based on the lower bounds of A~C,i.e., 4 ~Cp, defined in Section 4.4.
When characteristic means AT vary between these regions, Ypax are
represented as fan-shape regions on Figs.13v15, respectively. For
instance, the region of Ypax for (¢,4) is shown in Fig.16 in case of
buckling strength of SS41 steel. And the upper bound of Ypax ,
Ymax,U , is represented as the upper bound of the region as shown in
Fig.16. In Fig.16, Ymax and Ymax,v are read as 3.64 and 4.08, re-
spectively. Finally, upper bound of extremum ?ﬁ, ?ﬁ’u, defined as
the minimum among three Ypmax,v , which are obtained for (4,B), (B,C)
and (c,4). Values of ?E,U are calculated for 4~C in Table 5, and

shown in Table 5. The ratios of ?EIU to Y§ are also shown in Table 5.

4.9 Conclusion

The extreme procedure without any approximation of distributions,
which was introduced in Chapter 3, has applied to the maximization of
failure probability and connected with the structural design.

The characteristics of the procedure are described in the fol-
lowing.

a) New characteristics 4, B and ¢ corresponding approximately fo skew-
ness, kurtosis, etc. have been defined. These are stable character-
istics, that is, a slight variation of the measured data hardly exert
an influence upon the estimation of extremum ¥§.

b) Unknown function X(F) has been modified compulsorily to a monotone
increasing function by introducing dummy characteristic D.

c) Even if dummy characteristic D is not considered and function X (F)
does not become a monotone increasing function, extremum ?ﬁ which is
obtained mechanically remains a kind of bound value for judging the
structural safety on safety side.

d) The procedure has been connected with the maximization of failure
probability. And the design is performed, where the obtained fail-
ure probability of the structural member never exceed the initially
expected one even at the worst.
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e) The procedure has given a practical result when it was applied to
the practical design as shown in Section 4.7. In Section 4.7, abso-
lute safety factor y,,s including in the allowable stress design has
been also evaluated conceptionally.

f) The influence of error of characteristics 4nC on the estimation

of extremum ?ﬁ has been discussed. Upper bound of extremum, YE,U,
has been defined approximately. This corresponds to error of char-

acteristics discussed in Chapter 2.

g) The graphical estimation method of extremum 73 has been developed,
and by using the method the extremum Yﬁ can be estimated briefly with
high accuracy for the practical use.

h) In case of the estimation of the 100 years values of rainfall,
discharge, etc., the procedure has been proposed to employ as a sub-
stitute for the usual Gumbel's method, etc.. And the procedure is

expected not to underestimate these values.
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Chapter 5 Conclusion

Two kinds of errors—error of characteristics and error of dis-
tributions——have been discussed as factors which influence upon the
accuracy of the static reliability analysis. Some procedures con-
cerning to the reliability analysis have been presented so as not to
evaluate a structural reliability on dangerous side even if the er-
rors exist.

In Chapter 2, error of characteristics has been discussed mainly.
The influence of the differences between population mean and mean of
the measured data and between population variance and variance of
the measured data on the estimation of the failure probability, have
been evaluated for normal, gamma and log-normal distributions. Then
the definition of the usual failure probability has been modified
with regard to the errors. With respect to error of distributions,
larger selection of the time interval of the sampling for load 5, AT,
has been recommended for the purpose of decreasing the influence of
the error.

Maximization procedure of the averaged maximum based on the var-
iational method has been proposed as a course to the design concept
without any approximation of distributions, which is difficult to
evaluate numerically in the usual reliability analysis. In Chapter
3, as an initial step to the purpose, estimation procedure of extremum
of the averaged maximum and minimum of the measured data has been
developed. However, as a result, the procedure has been indicated
unsuitable for practical use on account of the unsuitable selection
of the characteristics.

In Chapter 4, more reliable characteristics have been introduced,
and the application to the structural design has been proposed by
connecting the procedure with the maximization of the failure proba-
bility. The procedure realizes the structural design where the ob-
tained failure probability never exceed the initially expected one
even at the worst, in other words, where a kind of guarantee for the
safety can be obtained. Besides, error of characteristics has been
evaluated approximately, and the graphical estimation method of ex-
tremum Yﬁ has been developed for practical use.
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The structural safety analysis based on the estimation method
of extremum will be expected to apply to the following fields of
study in the future.

C) Establishment of the safety criterion of the structure as a whole.
() Application to the safety analysis of the structure subjected to
dynamic loadings such as earthquake excitation.

The design concept based on the course proposed herein is hoped

to be popularized through these extensions.
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Appendix 1 Derivation of the Square Trans-

formation Formula

The probability density of gamma distribution, fg, is expressed

as,

fg(t)dt: (t—8) P exp {—(t—E€)/B)dt (EE) omecmmemsmniennnes (A1.1)

1
I'(a)B®

where

@ : shape parameter
B : scale parameter

£ : location parameter
Mean and variance of the distribution is represented as,

mean : af , variance : af?

Then o and B are estimated as follows by using sample mean % and sam-

ple variance 3,2( based on the moment method [69];

@=(F/8 2 , B=8L/T  oerresorrrrssmimr s (A1.2)
If Eq.(Al.1) is transformed by using following parameter ¢’,

£/ = (£ =& )/B  cvereerrereriesermsninnnint st e s et e bbb e s s r b s b s (A18)
standard gamma distribution is obtained as,

fé(tl)dt, :#a) t’a-1 exp(—t’)dt’ (2720 ) cevvvervrsmnssrmmnnicnnis e (A1.4)

Eq.(Al.4) can be transformed into x2-distribution with v degrees of
freedom by using the relationships as follows [69];

Thus
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j;z(xz)d(xz)=m(1;—)m‘lexp(—J%—z)d(xz) .......................................... (A1.8)

x? -distribution is connected with normal distribution with the
aide of various approximate formulae, and Fisher's approximate for-
mula [69] is employed herein. That is, by transforming variable ¥
using following parameter u’,

B = (2X2IV2 = (2 — 1) V2 ettt b s sr e et st (ALT)

variable u' follows to (0,1) normal distribution approximately in case
of v>10.

Mean and variance of final normal distribution must be in accord
with ones of original gamma distribution. Therefore, variable u’
is transformed compulsorily as,

The relationship of the transformation is shown in the same chart

as,
normal distribution (u)
Eq. (A1.8) .cererriiiieeeivreeereeeee u=su +7%
(0,1) normal distribution (')
Eq. (AL7) i, w=(2x2)V2 — (2y—1)/2
X2 -distribution (x?)
Eq. (AL.5) e, =2t , y=2a

standard gamma distribution (¢')
Egs. (A1.2), (A1.3) eorereiiiiicins
gamma distribution (¢)

In conclusion, variable ¢ following to gamma distribution can be
transformed into variable u following to normal distribution approxi-
mately based on the following formulae;
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u=su +%
=g (2222 — s (2y—1)2+%F
=g (412 — g (4a—1)2 +7
=2s8,(t/B)/? -8 (4a—1)V2+7F
=25 (t%/82)1/2— 3 (42/52—1)/2+F

=2(Tt)V2— (47— 82 W2 T cererenmernnsemssnnnett s s sessnssas st st sa s s s e s bt ann
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Appendix 2 Range of Dummy Characteristic D

Necessary condition for function X(F) being a monotone increasing
function is expressed as follows after Eq.(4.2.7);

R(F) = As+ 2A4F + 8AsF2+ 446F3<0

A2>0 .

Eq. (A2.1) must be satisfied covering whole range of 0<F<I1.

Eq. (A2.1) can be divided into two parts such as

As+ 2A4F + 8AsF2 and 446F3

and expressed as follows separately;

0<b<<1—h(b)<0

As>0

/ls>o—h(1)<0~[ ? df>o{

As+2AF+8AsF2< o{ /15<o{ 1<b e (A2.2)
(A:>0) A0 <o

In addition to Combination (A2.2), following combination also satis-
fies Eq.(A2.1),

0<b<<1—h(b)<0
| A >o{d/>°{ <b
1
Ae<o—h<1><o{ ? <0
(As<0) As<0

cvnieenens (A2.8)

Inequality A3 +2M\,F +3XsF> < 0 in Combination (A2.2) is expressed as,

As>0—d>0—1<a;: , 2:<0
A3<0 p Q<0 e e e s (A24)

where a;, a2, b, d, d' are following values;

@, @, : real roots of quadratic equation As+ 24.F +84sF2 =0;

1= (—A+dV2)/82s , a2=(—A4—d¥2)/82s
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b : real root of quadratic equation A4+ 84sF + 646F2=0 ;
b=(—84s—d""2) /122,
d, d:
d=A{—82sks , d'=9A5— AAls

Composing the above-mentioned Combinations (A2.2),(A2.3) and (A2.4),
following combinations are obtained;

A2>0 , A3<0

1s>0—d>0—1<a; , a< 0 —2
@
<0 — .~ |

d>0
oo [P @

As< 0 d<0
@
h(1)<0® As>0 —o
Ae<<0 ——1

® ©
P IRIUS SO
/15>0—|:d,<0@ 1<b

As<0—d’ >0 ————h(b)<0

There are 29 combinations in Combination (A2.5), and each of them cor-
responds to necessary condition for X(F) being a monotone increasing

function.

Range of dummy characteristic D can be obtained by expressing
ay vd', h(1), h(b) in Combination (A2.5) by means of multipliers A,
and by expressing A by means of D. Inequalities @«,@ in Combina-
tion (A2.5) are expressed as follows by using A;

3l<,{ {l4<—(315+l3)/2
P L o< i< (8054 4s)/ 2

Aec—3i {A4<(315+13)/2
TP Lol —(325+ 49) /2

® is>0
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® 1s<0 As<l— (823452

0<As<{8A:(8As+A3)} V2 , 0<A<—(84s+43)/2
® ls<0{34<—{3/{5(315+13)}1/2 , Ae<< (8As+A35)/2
—{84s(8As+ A}z <A< 0
As< 0 — — (84345 V2 < As < (84345 )V2
As+ 244+ 845+ 4460

34 — 8 446> 0

@ @ ® ®

3% — 8 A4de<< 0

®

[154- 446>0
As+426<0 — A4+ 845+ 646> 0

As+ 4460

Ad+ 345+ 6460

® 72346 + 945 — 86A4dsde+ 8Y2( 845 — 8A4As)¥2 <0

Multipliers A are represented as follows based on Eqgs.(4.2.4)
and (4.2.5);

(A} =[m1™ o) - (

Ayy—(CYT M) {C} )”2
1 —{E}'[(M]" (E}

Dummy characteristic D is included only in matrix {E}, and another
matrices [M] and {C} are treated as deterministic; that is, by intro-
ducing following definitions,

C'=Ay—{c) M]" {c}
{cr7ai— (B [M]" (B} )}1/2= 1/(efD?+ D+ ef)"*
(MIMHeDT={ e cFf cef ¢ e}

(IMIHE}) = { afD+b} asD+bF aD+b} asD+b agdD+bs)
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matrix {X; W ={A A A 2% A} is expressed as a function for D
only as,

= ¢* a"D +b*

K _ * D2 * ol S | TP
i (G;D2+81*D+60*)1/2 y eeD?*+ et D+ (7)) >0 (A2.8)

A

14

Substituting Eq. (A2.8) into A;, A3 v)s in Combination (A2.5) and into
@'v@ in Combination (A2.6), the simultaneous conditions for D are
obtained.

For example, range of dummy characteristic D corresponding to
As >0 is derived in the following. As >0 is expressed as follows
by using Eq. (AZ.8);

* *
* a5D+ bs
O (eiD?+ et D+ ed W2 >0

This inequality is expressed as follows with regard to af <0 and

es <0;
2 2
D < —(208bd—cde’) Pl(2a2bd—cXet—4(ad el e (X cXed))
2 2
. 2(as —cses)
D>-
as xR O ¥k a x *2 a2 k7 k2 a2
D> —(2a5hs— ¢s'e”) T1(2ashs~cs'er )2 — 4 (a5 —csTes ) bs—cs eo ) }1/2
2 (af=c¥ed)
in which

2 2 2 2 2
(208°bd— cfe™ ) — 4 (ad —cde))(bF—creHh =0

2 2
a —cer >0
and if
2 2
as —cses <0

the signs of parts (@ and ® should be reversed.
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Measured Data n xz sz Sy Ox
Steel Yield Strength (SM41B) ,
| 21 2. 752 0.01414 | 0.1189 | 0.0432
(t )
Truss Member Force
31 14. 44 3. 818 1. 954 0.1353

(t)

Table 1

Characteristics of the Measured Data.
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Restrictive  Conditions ?NE
T, 8 22. 3
T , 8’ , symmetry 15. 8
T, 8, wm ’ 22. 3
T, 8, Us 18. 9
T, S , U1, "N 20. 1
T, 82 , Us , Vs 13. 3
T, 8 , s , U0 , U7 , V17 , V10 6. 5
T, ,4,B,C, (D) 7.8

Table 2 Comparison of Various 1_’NE with respect to the Measured Data of Size 50 following
to Normal Distribution.




€6

; ll;nliz;rll{ss of upper Itr,lle:;:s of lower
Measured Data n Y"
b |tz | b3 | u, Uy, Uy, v, V,,

Steel Yield Strength (SM41B) | 21| 2 | 4| 7{1.223(1.094|0.977| —1.238| —1.469 | imaginary number
Steel Tensile Strength (SM50B) | 48| 4 | 9/16(1.860|1.349(1.012| —0.997| —1.330 9. 35

* * * * 48| 4 (11|18|1.841/1.210|0.933|—0.913| —1.216 9. 93
Steel Buckling Strength (SS41) | 48| 4 | 9(16(1.911{1.572{1.163|—1.061| —1. 325 | imaginary number

* * * * 47| 3 |11|181.891{1.383|1.049|—0.995| —1.230 2. 36
Cement Compressive Strength 96| 5 (10|17 (2.030{1.584|1.195|—1.117| —1. 334 | imaginary number

* * * * 50| 5 (1017 |1.683|1.312 1.006|—1.141| —1.428 4.‘ 07
Truss Member Force 31{3 | 6(10(1.998(1.480|1.124|—1.088| —1.288 | imaginary number

Table 3 Extremums )_’NE for Various Sorts of the Measured Data by using Means of Upper

Blocks.

and Lower
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KE

Measured Data unit | m | T Sy Oy A B C (N=100)
Steel Yield Strength  (SM41B) | t/mr|21|2.752 |0.119 | 0.043|0.2577 | 0.2467|0.2142| —3.52
* * (SM50B) * |48 (3.637 [0.207 | 0.057|0.2238|0.2426|0.2343| —5.59
Steel Tensile Strength (SM41B) * 1211(4.321 [0.143 | 0.033|0.2573|0.2704|0.2502| —4.25
* * (SM50B) * |48 (5.377 [0.057 | 0.011]0.2565|0.2571|0.2361| —4.47
Steel Buckling Strength (SS 41) * [481(1.251 [0.156 | 0.124|0.2758|0.2829|0.2608| —3.64
Cement Compressive Strength * 156(0.3905|0.0109 | 0.028|0.2746 | 0.2823|0.2611| —3.71
Truss Member Force (Lowor Chord) t [31| 14.44| 1.95|0.135/0.2663|0.2736|0.2528| 4.19
* *  (Upper Chord) *x (31| 28.88| 3.91|0.135| =* * * *
Rainfall ~ (Tsukechi) mm |71 (121.1 | 40.3 |0.333|/0.2615|0.2815|0.2688| 4.16
* (Ootaki ) x 147/117.6 | 33.3 |0.284|0.2702]0.2797| 0.2603| 3.97
Discharge ( Inuyama) mbec| 18| 4,386 | 1,516 | 0.346[0.2599 | 0.2643| 0.2424| 4.42
* (Kamo) * |18 1,027| 711 ]0.692|0.2463 | 0.2640|0.2497| 4.89
Wind Velocity per 10 min. (Nagoya) |[mfec|52| 18.6 4.8 |0.257/0.2378|0.2664|0.2612| 4.86
* % (Okinawa ) * |33 | 40.4 8.2 |0.202(0.2678|0.2702|0.2473| 4.05
* * (Naha) * (33| 329 8.5 |0.257/0.2735| 0.2759| 0.2506| 3.68
Wind Velocity per second (Okinawa ) * 30| 57.0 | 11.8 |0.207|0.2656|0.2706|0.2497| 4.19
* * (Naha) * |28| 46.8 | 12.7 |0.27210.2698] 0.2715| 0.2465| 3.89

Table 4 Extremums I—/NE for Various Sorts

of the Measured Data by using Three Characteristics A, B and C.
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lower

lower

lower

Measured  Data A B c Z,E bound | bound | bound | "Tbo ngEnd
, of A | of B | of B| °fF W
Steel Yield Strength (SM41B) ||0.2577[0.2467|0.2142 | 3.60 || 0.2423/0.2320/0.2014 | 5.03
* * (SM50B) (0.2238(0.2426|0.2343 | 5.60 (| 0.1810|0.1962|0.2343 —
Steel Tensile Strength (SM41B) ||0.2573|0.2704(0.2502 | 4.37 [[0.2378(0.2499/0.2312 | 5.25
* * (SM50B) (0.2565|0.2571|0.2361 | 4.47 | 0.2294|0.2300|0.2537 | 5.48
Steel Buckling Strength (SS41) |/0.27580.2829(0.2608 | 3.64 | 0.2682|0.2752|0.2537 | 4.08
Cement Compressive Strength 0.27460.2823|0.2611 | 3.71 | 0.2681|0.2756|0.2549 | 4.09
Truss Member Force 0.2663(0.2736(0.2528 | 4.19 [ 0.2536|0.2605|0.2408 |  4.73
Rainfall ~ (Tsukechi ) 0.2615|0.2815|0.2688 | 4.19 ||0.2533(0.2726|0.2604 | 4.63
*  (Ootaki) 0.270210.2797/0.2603 | 3.97 {0.2599(0.2690|0.2503 ||  4.48
Discharge ( Inuyama) 0.2599(0.2643|0.2424 | 4.43 [0.2434|0.2475/0.2269 | 5.09
*  (Kamo) 0.2463(0.2640(0.2497 | 4.90 {0.2177|0.2334|0.2208 —
Wind Velocity per 10 min. (Nagoya) 10.2378|0.2664|0.2612 | 4.86 [0.2264|0.2536(0.2486 | 5.34
* * (Okinawa )| 0.2678(0.2702|0.2473 | 4.05 [0.2537|0.2560|0.2343 | 4.73
* * (Naha) [0.2735(0.2759|0.2506 | 3.70 [0.2637|0.2659|0.2415 | 4.31
Wind Velocity per second (Okinawa)|(.2656|0.2706|0.2497 | 4.19 0.2510|0.2557|0.2360 4.84
* * (Naha) [0.2698(0.2715{0.2465 || 3.90 |0.2579|0.2595|0.2356 4.57

Table 5 Graphical

Estimation Method of Extremum )_’NE.
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Data Proposed  Procedure Gumbels Method
Measured Data
n | maximum | 100 years | 200 years | 100 years | 200 years
Rainfall ~ (Tsukechi) 71 | 255.7 288. 6 326.1 258. 4 282.0
* (Ootaki ) 47 | 213.4 250.0 282.3 234.5 254. 6
Discharge ( Inuyama ) 18 | 7,064 11,087 | 13,179 | 10,281 | 11,286
* (Kamo) 18 | 2,926 4, 504 5,577 3,792 4, 263
Wind Velocity per 10 min. (Nagoya ) 52 36.5 41.8 47.5 35.2 38.0
* * (Okinawa) | 33 60.8 73.4 82.7 69.9 75.0
* * (Naha ) 33 49.5 64.0 72.8 63.5 68.7
Wind Velocity per second (Okinawa) | 30 85.3 106.5 120. 2 100. 2 107. 6
* ok (Naha) 28 73.6 96. 2 110.7 93.6 101.6

Table 6 Comparison between Proposed Procedure and Gumbel’s Method.
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- al .. . —g
Measured Data N egsz:lrl:]l;lt(;in es:ellr:itrlon n | TP bde razr(l)dOf 1|t}s],v |
! of lf’I;El (%) of L upper bound
Steel Yield Strength (SM41B) 3.52 3.60 2.3 21 5.03 1.40
* * (SM50B) 5.59 5.60 0.2 48 — —
Steel Tensile Strength (SM41B) 4.25 4.37 2.8 21 5.25 1.20
* * (SM50B) 4.47 4.47 0 48 5.48 1.25
Steel Buckling Strength (SS41) 3.64 3.64 0 48 4.08 1.12
Cement Compressive Strength 3.71 3.71 0 56 4.09 1.10
Truss Member Force 4.19 4.19 0 31 4.73 1.13
Rainfall (Tsukechi ) 4.16 4.19 0.7 71 4.63 1.11
* (Ootaki ) 3.97 3.97 0 47 4.48 1.13
Dischange ( Inuyama ) 4.42 4.43 0.2 18 5.09 1.15
* (Kamo ) 4.89 4.90 0.2 18 — —
Wind Velocity per 10 min. (Nagoya ) 4.86 - 4.86 0 52 5.34 1.10
* * (Okinawa) | 4.05 4.05 0 33 4.73 1.17
* * (Naha) 3.68 3.70 0.5 33 4.31 1.16
Wind Velocity per second (Okinawa) | 4.19 4.19 0 30 4.84 1.16
* * (Naha) 3.89 3.90 0.3 28 4.57 1.17

Table 7 Estimation Errors of Graphical Estimation Method.




