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CHAPTER 1

INTRODUCTION

Japan is a well known seismic country.

At the rate of about one time in two years, destructive earthquakes
with more than 7.0 magnitude have attacked the Japanese Islands and the
regions adjacent to them these last decades. Since the Kwanto
Earthquake (Magnitude 7.9), by which many buildings in the gapital city
of Japan, Tokyo, were destroyed in 1923, aseismic design and construction
of buildings have been made obligatory to the all structural engineers.

‘Earthquake structural engineering with about a half century history
is now in progress through many researches on earthquakes, earthquake

structural damages and structural aseismic characteristics.

1-1. Outlines of Recent Architectural Buildings and Present Aseismic

Design

A great majority of the numbers of buildings is occupied by wooden
houses, which are forbidden to have more than two stories. A large part
of public buildings such as schools, hospitals, offices and so on is
constructed of reinforced concrete structures with rigid frames or with
shear walls. Such public buildings with more than 6«7 stories are
constructed of steel reinforced concrete structures or steel structures.
The height of these buildings had been forbidden to exceed 31 meters
before 1963, intending for rigid type structures with short natural

periods.



According to the progresses of modern city functions and aseismic
design and construction techniques of high rise buildings; the limitation
of heighﬁ in Japanese Building Law was abolished in 1963. Then,
recently, many high rise buildings with more than 40 stories or 100 meter
heighﬂ. have been constructed as flexible and soft type steel structures
with long natural periods. As a special case, even a reinforced concrete
building with 18 stories[ihas been constructed,

Usual type buildings with less than 31 meter height are designed
against the lateral loading of more than 0.2 times dead and live loads.
When every working stresses of structures subjected to such lateral
loading are under specified temporary allowable stresses, the buildings
are considered to have enough aseismic capacity. As for wooden houses
or wéll—type reinforced concrete buildings, the necessary minimum
quantities of wooden bracings or reinforced concrete shear walls are
given, so exact structural analyses are not needed.

Regarding high rise multi-story buildings, dynamic response
analysis is usually applied to aseismic design. Using ground
acceleration waves, vibrational models and restoring force functions of
buildings, relative story response deformations given by means of
numerical integration of motion-equations are adopted as an aseismic

safety criterion.

1-2. Recent Earthquake Damages of Buildings

The most remarkable features of recent earthquake damages of
buildings are the fractures of reinforced concrete buildings which have
been designed in accordance with modern aseismic codes. Fortunately,

steel reinforced concrete buildings and high rise steel buildings have



not yet experienced destructive earthquakes. So, in reality, their
aseismic capacity and safety have not yet verified. The causes of
earthquake damages of wooden houses are their old ages, landslips,

tsunamis and so on.

The typical fracture modes of reinforced concrete buildings were as

follows (1)(2)(3):

(A) Shear fractures of short columns through spandrels of reinforced
concrete schools, and excessive.torsional horizontal deformations of
reinforced concrete buildings with asymmetrically arranged shear walls
in plan at the Tokachi-Oki Earthquake (M. 7.9), 1968, Japan. |

(B) Excessive lateral deflection of a modern reinforced concrete
hospital at the San Fernando Earthquake (M.l6.6), 1971) USA.

(C) Crushing down of the base story of a reinforced concrete hotel with

few shear walls at the Ooita Earthquake (M. 6.4), 1975, Japan.

A fortunate and remarkable fact ,however, is that the reinforced
concrete buildings with sufficient shear walls have not suffered any

damages even by destructive earthquakes.

1-3. Recent Researches on Aseismic Characteristics of Reinforced

Concrete Structures

Earthquake structural Engineering is considered to consist of the
following main three kinds of field;

(A) Earthquake Excitations,

‘(B) Structural Response Characteristics.

(C) Aseismic Characteristics of Structures,



During earthquakes, buildings are subjected to earthquake
excitations and show responses in accordance with aseismic characteristics
of them. Finally, the degree of their damages and failures must
be estimated on the basis of their aseismic characteristics again.
Consequently, these three fields should be investigated and combined on
a common basis to establish a reasonable aseismic design method. ;
From the technological point of view, the knowledges about aseismic
behaviors of structures 'give the most important bases of the researches on
earthquake stru’clatural enginéering., Without thesé'knowledges, the all
investigations and discussions on the aseismic safety and capacity of
buildings produce only abstract infomations.!Inthis chapter, the outlines
of researches on the aseismic behaviors of reinforced concrete structurés
are mainly explained.

In advance to the researches on aseismic properties of structures,
there must be some assumptions of earthquake excitations and
structural responses. ' In Japan, according to the following two
main aseismic methods, that is, static seismic coefficient (0.2) method
and dynamic response analysis method, one way loaa;deformation behaviors
and restoring force functions under cyclic loading of structural members
and structures have been investigated. Especially, one way properties
until fractures are expected to be applicable to the ultimate strength
design method. Recently, some other type aseismic design method, that
is, ultimate aseismic design methods based on structural fractures are
proposed. Low cycle fatigue, energy dissipation capacity and fracture
criterion, therefore, are investigated as new aseismic factors of
str?ctures.

The outlines of researches on the aseismic behaviors of reinforced

concrete structural members and structures are described as follows.



Monotonic and Cyclic Behaviors Under Static Loads

Usual type- reinforced concrete buildings are composed of rigid
frames with the following main three kinds of aseismic elements, that is,
long columns, short columns and shear walls. In Japan, long columns
are designed for predominant bending moments and show flexural yielding
without buckling. Short columns and shear walls show predominant shear
deformations and shear fracture modes.

Monotonic elasto-plastic flexural mechaﬁics and load-deformation
behaviors of long célumns were already clarified experimentally and
analytically (4). Cyclic behaviors of them were also made clear from
the point of flexural mechanics, but many facts are yet left unknown in
regard to cyclic behaviors until fracture (5)(6)(7). Low cycle fatigue
and fracture criteria of them are partially clarified (8). As for beams,
cyclic tests and analyses had been already carried out by foreign
researchers (9). Very few systematic investigations, however, have been
performed especially taking into account the effects of axial loads in
foreign countries (10).

It had been pointed out by Dr. Yamada before the_Tokachioki
Earthquake that when a long column becomes shorter due to spandrels, its
flexural yielding mode is suddenly displaced by shear fracture mode (11)..
These warning data were verified by the damages of reinforced concrete
buildings at that Tokachioki Earthquake (12). Part of the effects of
shear span ratios, shear reinforcements and axial load levels on the monoto-
nic behaviors of short columns is already clarified. As for cyclic
behaviors of them, experimental data are now yet under the state of
collection. Low cycle fatigue and fracture criteria of them are

partially made clear experimentally (13). Generally speaking, there



6

still remaid{ many obscure parts about fundamental mechanics of shear

failure of reinforced concrete beams and columns (14).

The aseismic effectiveness of shear walls had been found and
researched by Naito before the Kwanto Earthquake, and this was verified
by that earthquake (15); The elastic behaviors of them, therefore,
have been already investigated since the early times. Recently,
there are many reinforced concrete buildings with a few or no shear walls
due to planning functions, and the damages of such buildings have been
always severe when subjected to destructive earthquake loadings.
Eﬁen the researches on monotonic properties until fracture of
shear walls have been begun with in these years (16), and very few are
yet known on cyclic behaviors (17).

As other aseismic problems of reinforced concrete structures,
: there are the behaviors of beams, beams with slabs and
connections between beams and columns and of bond mechanics between
concrete and-reinforcing bars. It was shown that only beéms with
rectangular cross sections have enough deformation ductility, but there
remain manyvunknown factors in regard to béams with slabs. The slipping
mechanics of cyclic bond behaviors are under researches (18).

A true aseismic capacity of a reinforced concrete building as an
entire structure composed of structural elements should be evaluated by
combining the aseismic properties of these aseismic elements, that is,
long columns, short columns, she;r walls and so on. Researches from

this point, however, are very few.

Cyclic Behaviors under Dynamic Loads

In accordance with the progresses of electronic digital computer ,

the numerical integration of equations of motion became easy, which



have enabled us to design high rise buildings.

'

AIn order to apply fhis dynamic response analysis method to E
reinforced concrete structures, their restoring force characteristics

must be made clear. From this point of view, dynamic tests and analyses
on reinforced concrete columns and rigid frames have been tried (19)(20).
Although well coincidences between experimental and computed results are

verified, these researches are not carried out untill ‘ultimate states

of structures, i.e., fracture phenomena.

1-4. Ultimate Aseismic Design of Structures

Ultimate aseismic design of structures is defined to consist in
controlling the ultimate states of structures, i.e. fractures. As
physical factors by which the ultimate states are controlled, the
followings are able to be considered; strength capacity, energy
absorption capacity and numbers of cyclic loading until fracture.

As for strength capacity, '"Seismic Coefficient Method' proposed by
Dr. Sano in 1916 is the origin. As for energy absorption capacity,
Dr. Tanabashi proposed "Velocity-Potential Energy Method" in
1935. The former is effective to rigid type structures with short
natural periods and poor ductility, and the latter to soft type
structures with long natural periods and sufficient ductility.
Furthermore, if earthquake excitations are able to be considered as one
pulse these two methods are very reasonable.

In reality, however, earthquake excitations continues with some
durations and nearly constant intensity amplitudes. Consequently,

fatigue characteristics of structures have to be taken into account.



"Resonance-Fatigue Method" proposed by Dr. Yamada and the author was
introduced to satisfy this demand. In "Resonance-Fatigue Method", a new
aseismic concept, ""RESONANCE CAPACITY" is adopted as a controlling fatigue
factor and as an aseismic criterion of structures under the idealized
uitimate vibrational state, i.e. steady-state resonance. Theoretical
and experimental bases are explained in Chapter 3.

Recently, "Dynamic Response Analysis'" is considered to be the
newest, the most general and of great promise (21)(22). This method
makes clear the deformation processes of structures in elastic and plastic
ranges, but this method never belongs to the category of ultimate aseismic

design.,

1-5. The Purpose and Composition of This Thesis

.The fact that reinforced concrete modern buildings always collapse
during destructive earthquakesiseems to be an evidence of our lack of
cognizance of the fracture phenomena of reinforced concrete structures.
There exist and will be constructed many and many reinforced concrete
structures in many countries as well as Japan, so it is the most important
and emergent subject for us to clarify aseismic behaviors and to
establish a reasonable ultimate aseismic design method of reinforced
concrete structures.

Consequently, the purpose of this paper is to investigate the
ultimate aseismic capacity of reinforced concrete structures based upon
the new %seismic concept, "Resonance Capacity" critefion.

In order to discuss and evaluate the ultimate aseismic capacity,
this thesis is composed as follows:

In Chapter 2, medium or low rise reinforced concrete structures



composed of three kinds of aseismic elements, i.e. long columns, short
columns and shear walls are divided into two aseismic types, rigid and
flexible ones based upon load-deformation relations. In Chapter 3, a
new fundamental concept "Resonance Capacity" criterion is proposed to
evaluate the aseismic capacity of reinforced concrete structures on the
basis of the hysteretic area of load-deformation loops and the fatigue
characteristics of the three-type aseismic elements. In Chapter 4,
based upon the new fundamental concept introduced in Chapter 3, the
aseismic capacity and safety are investigated regarding two types of
medium or low rise reinforced concrete structures, i.e. rigid ones with
shear walls and flexible ones without shear walls. In Chapters 5, 6,
the ultimate aseismic capacitiesof low-rise reinforced concrete buildings
with asymmetric shéar walls and multi-story buildings with and without
cantilever-type shear walls are evaluated, respectively.

This thesis is arranged and composed on the basis of the papers
reported by the author which were written under the guidanées of Prof.
Dr. Yamada as follows:

Chapter 2 ; from Refs. (23)(24),
Chapter 3 ; from Refs. (23)(25),
Chapter 4 ; from Refs. (24)(26),
Chapter 5 ; from Ref. (27),

Chapter 6 ; from Refs. (28)(29).
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CHAPTER 2

ASEISMIC CLASSIFICATION OF REINFORCED CONCRETE STRUCTURES

2-1. Introduction

Before the evaluation of aseismic capacity of reinforced concrete
structures, the outlines of aseismic characteristics of them should be
made clear. In order to comprehend such aseismic behaviors,
reinforced concrete structures are idealized into‘several categories
according to their behaviors as observed in real earthquakes and
laboratory experiments. It is proposed that reinforced concrete
structures are composed of three aseismic elements, i.e. long columns,
short columns and shear walls, the former shows flexural'yieldihg
type and the latter two show shear fracture type. ’ \
In accordance with the various combinations‘of these fhree aseismic
elements, each of which shows different load-deformation relationships,
the general characterization of reinforced concrete structures becomes

possible from the aseismic point of view.
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2-2. Classification of Reinforced Concrete Aseismic Elements

Fracture Modes of Reihfbrcéd Concfete Members

At the Tokachi-Oki-Earthquake, May 16, 1968, Japan, the shear
explosion failure of restrained short columns with small shear span
ratios was the most remarkable damage characteristics of reinforced
concrete school buildings (1)(2)(3)(4). At the San Fernando-
Earthquake in California, Feb. 9, 1971, U.S.A., the extreme deflections
of reinforced concrete loﬁg columns caused the heavy damage of the
Olive View Hospital (5). On the other hand, it is observed at any
earthquakes that symmetrically arranged reinforced concrete shear walls
with sufficient cross sectional area play frequently the most effective
role as stiffeners of buildings. These three typical phenomena imply
the essential and significant factors to characterize the behaviors of
reinforced concrete structures subjected to earthquake excitations.
Each of the three types of structural members, short columns, long
colums and shear walls, must have its own aseismié characteristics.

The fracture modes of reinforced concrete structural members are
able to be classified mainly into two types, i.e., shear failure and
flexural yielding (6). The former is often observed in the case of
panel members subjected to predominant shear force, and the latter in
the case of linear members subjected to predominant bending moment.

When the reinforced concrete structures composed of such linear element
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as columns and beams, and of panel elements such as slabs and shear
walls, undergo lateral forces such as earthquake excitation, shorf
columns and shear walls show shear failure mode and long columns show
flexural yielding. Here, in this study, the failure of beams is
neglected, because of their mechanical improvements due to beam-slab
interactions.

Typical fracture modes such as mentioned above are shown in Fig. 1
(1)(7)(8)(9). The names of test specimens in this figure, SW, SC and
LC, represent shear wall, short column and long column, respectively.
The ordinate, V, and the abscissa, R, represent story shear force and
relative story displacement angle, and the triangles, TC, SC and CC,
indicate the formation of tensile, shear and compressive cracks,
respectively. Fig. 1 shows that shear failure mode is characterized
by the diagonal cracks and shear compression collapse of diagonal
concrete elements of SW and SC specimens, and that flexural yielding
type is characterized by the‘tensile cracks at the tension side and the
compressive cracks at the compression side of LC specimen. Furthermore,
it is a remarkable feature that SW and SC are so grittle that the more
deformation capacity than 0,004 - 0,005 rad. is unable to be assumed,

while LC has sufficient ductility.

Three Kinds of Aseismic Elements: Shear Wall, Short and Long Column

According to the fracture modes shown in Fig. 1, reinforced
concrete structural members are able to be classified mainly into three
aseismic elements, i.e., SW, SC and LC. Reinforced concrete structures,

therefore, are considered to be composed of these three kinds of aseismic
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elements. These aseismic elements and their deformation modes are

shown schematically in Fig. 2, where SC element is given as LC with

walls in the lower part of story height.

Assumptions for the Deformation of Aseismic Elements

If the lateral load - displacement relationships of aseismic
elements, LC, SC and SW, are given, the total load - displacement
relationship of reinforced concrete structure composed of these
aseismic elements is able to be computed, and the classification of
reinforced concrete structures becomes possible on the basis of their
aseismic characteristics (10). In order to calculate the simplified
load - displacement relationships of aseismic elements, the followings

are assumed:

Assumptions for the deformation of LC and SC elements

The lateral story displacement of LC and SC elements, which are
restrained againstzrotationsai the both ends and subjected to story
shear force V, is given by the superposition of flexural and shear
deformations, each of which is calculated independentlyjonvthe basis of
the following assumptions (See Fig. 3) (11).

(A) As for the flexural deformation of LC and SC elements --

(1) The normal stress - strain relationship of concrete confined
with ties and of reinforcing steels are perfectly elasto-plastic (See

Fig. &) (7).
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(2) Cross section of reinforced concrete columns is idealized to be
composed of equivalent five concentrated mass points; i.e., three points
;f concrete at compressive, centroidal and tensile positions, and two
points of compressive and tensile reinforcing steels (See Fig. 5) (11)
(12)(13)(14).

(3) Stresses, strains and external forces, M and N of the idealized
reinforced concrete cross section in the case of flexural yielding are
distributed such as shown in Fig. 6.

(4) Moment - curvature relationship of the idealized cross section

- is assumed to be perfectly elasto-plastic (See Fig. 7).

(5) The effects of shear and P A effect are neglected.

(B) As for the shear deformation of LC and SC --

(1) The shear stress - strain relationship of concrete is perfectly
elasto-plastic when confined with sufficient shear reinforcement (fh>-
1%), and has no ductility when confined with poor  shear reinforcement
( $n = O%) (See Fig. 8-a) (1)(3)(15)(16).

(2) The fracture criterion of concrete under normal and shear
stresses is assumed to be elliptic (17) such as shown in Fig. 8-b, and

expressed by:

T £ ) + 0.01 = F(—r—) . (1)
(& (o4 Cc (&

2
Ty . 1/ -0.10(3-) + 0.09 (<

(3) The area of shear-resisting cross section is assumed to be:

_ 7
A = 3 bd,

cs (2)
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and the shear failure of reinforced concrete elements is caused by the
collapse of the concrete at the midspan of story height.

(4) The effects of bending moment and the dowel action of

longitudinal reinforcements are neglected.

Assumptions for the shear deformation of SW elements

(1) If reinforced concrete shear walls are confined with
sufficiently rigid beams and columns, tﬁey are able to be replaced by
equivalent compression braces of concrete (9). Here, SW element is
replaced by an equivalent compfessive concrete brace with effective
width R, such as shown in Fig. 9.

(2) The normal stress - strain relationship of the concrete brace

has no ductility such as shown in Fig. 10 (9).

Load - Displacement Relationships of Aseismic Elements

On the basis of the assumptions described above, the story shear
force V and the relative story displacement § relationships of aseismic
elements, LC, SC and SW, are shown in Fig. 11, and their critical values

of V and § are expressed by the following equations:

for LC element in which Vgé VS >
, il
- VB e = B S ¥
Viey * vy £1bh, SLC = ( Ry + Ry = ) H, (3)
y
for SC element in which VB ;;gﬁ 5
b4 y
. 7S
=P - By , g8y
Vs, =V, Eibh, boe = ( Ry F e ROHL
y

for SW element;
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= &3 sin 8 cos@)f'Lt o) =~.cgm—H. '(5)

vSWy SW sinf cosé

= B =S S . '
The characteristic values, V?, Ry’ Vy and R.y are given as follows:

B
v
—B
v, =f,%’ -1 {x + 201 + x)wi¥, (6)
c H
1- X
) X
where 0 < X< T D s (7)
s LH
R = -X—— ’ (8)
y 12 ET -
1 ¢y -
S {X+200 + XNwl W (0.3X +w
where ET = -2 { ( l ( : , (9)
X €, {0.3X + X + 201 + Y)w}
S
v A
=S _ 'y cs o, _
Yy T bR T Bh F(f' ) = i FOO
= %% V-o.lo(xf+ 0.09(X) + 0.01 (10)
f'
S c
Ry = 5 T . ‘ (11)
[

The Critical Shear - Story Height - Ratio

As the critical value of story height of columns, by which the
reinforced concrete columns are classified into two types, i.e., SC and
LC, the "Critical Shear Story Height Ratio ﬁcr" is derived from the

condition that

V? = Vi J (12)

as follows (3)(11):
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g -iXxr20 X)wd¥ (13)
cr 7, d
(@ 5 FX

Consequently, the clear spans of story height of LC and SC should

satisfy the following condition:
for LC, H = H , for SC, H' = H (14)
Zoning of SC and LC columns due to Eq. 13 is shown in Fig. 12.

2-3. Classification of Reinforced Concrete Structures

Total Load - Displacement Relationships of Reinforced Concrete Structures

~

With the consideration cof the deformation of beams adjacent to LC

28 is assumed as the

element, here in this paper, instead of SLC ’ LC

flexural yielding deflection of LC element. The beams adjacent to SC
element are usually so deep and rigid that their deformation may be
negligible. As for the usual types of medium or low rise reinforced
concrete structures, there is the following relation among the critical

relative story displacements of aseismic elements:

Ssc <é\sw <5LC» . (15)

Furthermore, in reinforced concrete structures with symmetrically

arranged shear walls in plan, the relative story displacement of all



elements have the same value through the rigid
slabs. Therefore, when a reinforced concrete

o pieces of LC element, B pieces of SC element
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panel action of floor
structure is composed of

and ¥ pieces of SW

element, its total V - § relationship is able to be illustrated such as

shown in Fig. 13,

where

VvV =

LC 0(VLCy (P VSCy) g
8sc )

Vv = XV SC (16)

sC wys . © FVscy * rvswwSW ’
O'sw ’

V., = ov, N

SW LyS,. CAVsey) + ’ Vswy

in which the value (vaCy) is able to be considered when SC elements
have sufficient shear reinforcement (fh > 1%) and the dotted lines in

the Fig. 13 correspond to such a case.

Fracture Modes of Reinforced Concrete Structures

According to the critical displacement corresponding to the maximum
V-value, reinforced concrete structures are classified into three types
such as shown in Fig. 14, where these types are nominated as follows:

LC Fracture Mode, when V > V v

LC SL? “sw?

\' (17)

> V

SC Fracture Mode, when VSC LC?

sw?

'

=V sc

SW Fracture Mode, when V LC?

SwW
These fracture modes are able to be zoned in the o0/ - B0 plane such

as shown in Fig.

15. Figs. 15(a) and (b) show the cases that SC elements

have poor and sufficient shear reinforcement, respectively. The

boundary lines A, B, C, between the fracture modes in Fig. 15 are easily
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given by the following equations:

= A,
VLC VSC for A,
Vee = sz for B, (18)
sz = VLC for C.

Rigid and Flexible Types of Reinforced Concrete Structures

Due to the facts that SC and SW elements have poor ductility and
that LC elements have sufficient ductility, reinforced concrete
structures are able to be classified into two types, i.e. rigid
structures and flexible structures such as shown in Fig. 16. That is,
SC and SW fracture modes belong to the former and LC fracture mode to the
latter. This classification will have very important significances for
the discussions on the aseismic capacity of reinforced concrete

structuresJ

2~-L, Concluding Remarks

Based upon the experimental reéults of the deformatioﬁ and. fracture
behaviérs of reinforced concrete structural members subjected to
monotonic loadings, the classification of reinforced concrete members
and structures are performed and their aseismic characteristics and
capacity are discussed on. As a result, the followings are clarified:

(1) Reinforced concrete structural members are able to be classified
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into three types of aseismic elements, i.e. Long Columns (LC), Short
Columns (SC) and Shear Walls (SW). LC element shows the flexural
yielding type and SC and SW elements show the shear fracture mode.

(2) Combining analytically the load - deflection relationships of the
aseismic elements, reinforced concrete structures are able to be
classified into three types which show LC, SC and SW fracture modes

(See Fig. 15). On the basis of the aseismiq characteristics, finally,
reinforced concrete structures are able to be classified into two types,

i.e. rigid structures and flexible structures (See Fig. 16).
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NOTATION

shear resisting cross sectional area of columns

width of cross section of columns

distance from extreme compression fiber to centroid

of tension reinforcement

distance from centroid of tension reinforcement to

the tensild face of columns

modulus of elasticity of concrete

flexural stiffeness of columns

EI/f'bh3
c .

function of fracture criterion of concrete under

combined normal and shear stresses

compressive strength of concrete

yield strength of reinforcement )

modulus of shear of concrete ( = Ec/z(l +v) )

story height of long columns and shear walls

story height oflshort columns

critical story height (minimum one to show flexural

yielding)

(H/h) story height ratio

critical story height fatia

total depth of cross section of :columns

span length

bending moment
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axial force

ultimate strength bf centrally loaded columns
(= (1 + 20) £'bh )

relative story disblaqement angle

flexural component ﬁf yielding R

shear component of yielding R

thickness of shear walls

story shear force

:V of structures when LC elements show flexural

yielding

V of structures when SC elements show shear

- yielding

- V of structures when SW elements show shear fracture

V/fébh of LC elements when they show flexural yielding

V/fébh of SC elements when they show shear yielding

= V/fébh of SW elements when they show shear fracture

yielding V of columns when they show flexural yielding

Vs/fébh

yielding V of columns when they show shear fracture

~

Vi/fébh

axial load ratio, (=N/No)

shear wall elements

short column elements

long cdlumn elements

number of pieces of LC elements

number of pieces of SC elements
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’
T = number of pieces of SW elements, shear strain, ratio

of distance center-to-center of reinforcement on

opposite|faces of columns to h

§ = relative story displacement
SLC = §at which LC e}emenfs show flexural yielding
6:3(: = §at which SC elelpents show shear yielding
55W = § at which SW elements show shear fracture
cfm = normal strain at the maximum stress of concrete
cey = idealized yield strain of concrete
say =’ yield strain of reinforcing steel
g =“diagona1 gradient angle of SW element , Y = Poisson's ratio

geometrical ratio of tensile reinforcement

<o
i

= geometrical ratio of compressive reinforcement
Joh = shear reinforcement of columns and shear walls
= normal stress

= shear stress

*gy = yield shear stress
<] = curvature

§Y = yielding curvature

X &/ Gy
w = tensile reinforcement index (= (fy/f(':)f) )
«’ = compressive reinforcement index (= (f.y/f(':)f )
Supplements
RCW : specimen mark of shear wall (9) ’
RC:C1B : specimen mark of long column (7)

RC:C1Q : specimen mark of short column (1,8)
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CHAPTER 3

RESONANCE CAPACITY CRITERION FOR EVALUATION OF THE ASEISMIC

CAPACITY OF REINFORCED CONCRETE STRUCTURES

3-1. Introduction

Recently, in the field of reinforced concrete structures as well as
other structures, allowable stress design method has been replaced by
ultimate strength or ultimate state design method. From the point of
view of aseismic design, however, such a new design method is not
sufficient to provide reinforced concrete structures with sufficient
resistances against such destructive alternately repeated ground motions
as earthquakes. In order to establish a reasonable aseismic désign
method, it is necessary not only to make clear the mechanical behaviors
of reinforced concrete structures subjected to cyclic loadings but to
also establish a reasonable method of estimating and applying their
cyclic behaviors until fracture.

In order to evaluate the aseismic capacity of reinforced concrete
structures, a fundaméntal new concept is needed for idealizing

earthquake motions and consequent structural responses. Therefore, in



37

this chapter, a "RESONANCE CAPACITY'" Criterion is proposed. That
"Criterion" is derived from the likely steady-state resonarice
characteristics of the structure. That criterion has an immediate
practical significance. It can be used to estimate directly.the
ultimate papacity of real structures subjected to destructive earthquakes.
Further the characteristics of the Criterion can be established directly
éﬁd simply from the fesults of experiments on real reinforced concrete

structures and members.

. 3-2. "Experimental Data on the Aseismic Characteristics of Reinforced

Concrete Aseismic Elements

Experimental Data on Load Bearing Capacity and Hysteretic Damping

Capacity

Earthquake forces act on the buildings dynamically as alternately
répeated loading. In order to establish reasonable concepts of
asgismic.characteristics and design guides of reinforced concrete
structures, it is necessary to investigate the deformation
‘and fracture behaviors of reinforced concrete members and structures
under cyclic loading. -

As b;sic data, in this paper, there are reported the experimental
results on the shear resisting capacity and hysteretic damping capacity
of reinforced concrete aseismic elements, i.e. shear walls, short

columns and long columns, subjected to alternately repeated loadings
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with constant and incremental lateral deflection amplitudes.
Generally, the load-displacement angle hysteresis loops of reinforced
concrete members at the first and the later cycles are able to be
illustrated as shown in Fig. 1 (a). The story shear force amplitude
Va is defined as that at the specified relative story displacement
angle amplitude Ra, and equivalent viscous damping coefficient heq is
given by the following equation (See Fig. 1 (b)):

h 1 Area of Hysteresis Loop
T 4t
eq &4 1y R ‘ . (1)
5 a a

Fig. 2 shows the experimental results on the variations of Va’ heq
and Vé heq to the number of cycles n_ in the case of reinforced
concrete shear walls, i.e. SW elemenq with three constant relative
story displacement angle amplitudes of Ra =1+0.001, +0.004, +0.015 (1).
Figs.2 (a), (b) and (c) show the V. - n , h -n and Vh - n

a c eq c a ' eq c
relationships, respectively. (The meanings and usefulness of the
value, V.h will be explained later.)

a eq

Figs. 3 (a), (b), (c) show the V,n.s b, -n_, Vh -n_ relationships

eq ¢ a eq
of reinforced concrete short columns, i.e. SC element with constant
displacement angle amplitudes of Ra :3t0.0047, +0.0050, +0.0103.
These cyclic tests of short columns were carried out by Yamada and
Yagi (2)(3)(4).
Figs. 4(a), (b), (c) show the V.-n , h _-n , V. h -n relationships of

a c¢ eq cC aeq €
reinforced concrete long columns, i.e. LC element with constant
displacement angle amplitudes of Ra = +0.0171, +0.0229, +0.0343, +0.0L43
(5)(6)(7).

As for short columns, incremental displacement amplitude tests are
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carried out, and the results, V. - R, h - R, and V h - R
a a’ “eq a a eq a
relationships are shown in Figs. 5 (a), (b), (c)/(4).
From the heq - n_ relationships in Fig. 2 (b), Fig. 3 (b) and
Fig. 4 (b), h,, - R, relationships of SW, SC, LC elements at the second
cycle are plotted in Fig. 6, in order to make clear the effects of Ra

upon heq'

Remarkable Aseismic Characteristics

Looking over Figs. 2, 3, 4, 5, 6, the following‘remarkable}and
significant aseismic characteristics of aseismic elements are observed:
(1) As for SW and SC elements characterized by shear failure mode, the
deterioration of heq within an earlier few cycles is very remarkable.
The decrease of Vaheq’ therefore, is more remarkable than that of heq'
This phenomenon is considered to be caused by the fact that diagonal
compressive bracing concrete begins at the second cycle to resist so
late due to the closing process of diagonal cracks, formed already at
the first cycle, that V - R hysteresis loops becomeﬁhardening type after
the first cycle. (Seel Figs. 2,3)

(2) On the other hand, as for LC element charactérized by flexural
yielding type, the decrease of Va, heq, Vaheq are not so remarkable as
those of the SW and SC elements. Such characteristics are caused by

the relatively stable hysteretic damping capacity of longitudinal
reinforcing steel of LC element under the comparatively low axial load

(N =1/6 NO) (See Fig. 4).

(3) Judging from; Fig. 5 (c), under a proper condition of incremental
deflection amplitudes, even such a SC element as shows shear failure
mode may show constant Vaheq characteristics to the abscissa Ra. The

same behavior is considered to occur even in the case of SW element.

(4) Fig. 6 shows that the hysteretic damping capacity of LC element
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increases with the increase of Ra and that, as for SW and SC elements,

it is relatively constanﬁ and smaller than that of the LC element.

3-3. Fundamental Concept of Aseismic Capacity

Equation of Aseismic Capacity

Generally, aseismic waves are random, so that in the earthquake
structural engineering the following two extreme approaches are of
temporal use, deterministic and stochastic ones (8). Comparing to the
analytical exactness, however, both of them have still many limitations.
Even in the results of their analytical operations there still remain
many uncertainty factors, so that complicated engineering judgements
are needed to apply them to ! aseismic design. It is the largest defect
of them that they are now too analytical to estimate the aseismic
characteristics of real structures and structural members directly and
experimentally by them.

In thiﬂ study , therefore, to évaluate the aseismic capacity of
real structural members in a simple and sure way, a new concept
"RESONANCE CAPACITY" is introduced. This physical quantity is'dérived
from an ultimate state of vibration, i.e. steady-state resonance. By
taking the ultimate states of both inputs and outputs, i.e. seismic
motions and structural responses into account, an ultimate equilibrium
state of energy transformation is able to be reached. "RESONANCE

CAPACITY" is directly related to the maximum and substantial ability of
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energy absorption of structures and structural members, and consequently,
its equation is derived as follows:

When one mass oscillation is subjected to sinusoidal acceleration
waves as shown in Fig. 7, the differential equation of motion is

expressed as

mX + cx + f(x,t) = -m cos(wgt + ¢ ) . (2)

Assuming that:

(1) the one mass system is to be on the condition of steady-state
resonance.

(2) the restoring force function f(x,t) of the system is given as a
steady hysteresis loop with constant displacement and story shear force

amplitudes, X and Va’ as shown in Fig. 8.

1
(3) the viscous damping coefficient c is neglected comparing to the

hysteretic damping capacity,

(4) the resonant response displacement x is approximately given by

X = choswot S (3)

and integrating the both sides of Eg. 2 over one cycle with respect to

X, Eq.>2 is reduced to
§f(x,t) dx = m(xaxln']sim,ﬂ s (4)

where

$f(x,t) dx

A (area of hysteresis loop), (5)

ISinslfl =1 . (6)

Because of steady-state resonance,
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K
w, = w =v °
07 e m ? (7)

which 1is considered to be a very rare but the worst case,

|siny| = 1 . . (8)
Then Eq. 4 becomes

Using equivalent viscous damping coefficient heq (See Eq. 1) and weight

of mass W, which are expressed as follows:

h _ 1 A (10)
eq 47T 1 g 10
2 Ja X1
W = mg ., (11)
finally, Eg. 4 is reduced to
Loy = 2y n . (12)
g a eq

Eq. 12 has the same physical meaning as the equation,.

(forced vibration level)
2 x (viscous damping coefficient)

= (response level)

in the case of the steady-state resonance of visco-elastic one-mass-
system subjected to sinusoidal forced vibration.

The left side of Eq. 12 indicates the acceleration level of forced
vibrations, and the right side of Eq. 12 is able to be regarded as the

critical response value of members and structures. From this point of
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view, here, Eq. 12 is proposed as a criterion equation of aseismic
capacity and safety of reinforced concrete members and structures.
Namely, thelvalue of 2Vaheq nominated here RESONANCE CAPACITY is used
as a Criterion of the aseismic capacity, and comparison of it with the
left hand side of Eq. 12 makes‘it possible to estimate the aseismic

safefy.

Earthquake Resisting Factors

Assuming that earthquake loading consists of such sinusoidal cyclic

forces with the maximum constant acceleration amplitude . and period

6}
TO as make an oscillator to resonate, the oscillator may response with
constant RESONANCE CAPACITY and the total number of cycles of oscillation
is nearly equal to that of the given cyclic forces. In such a case, the
deflection amplitude of LC element is considered to be approximately
constant, and that of SC and SW elements is incremental (See Figs. ' 4(c), .
5(c)). Therefore, when deflection angle amplitude Ra or the number of

cycles n_ of aseismic elements reaches a critical value, R or n the

aB B’
aseismic elements will collapse.

Consequently, when the earthquake-resisting factors of aseismic

and ng, are given experimentally (such as

elements, i.e. Vaheé’ RaB

shown in Figs. 2, 3, 4, 5, 6) or analytically, the maximum aseismic

capacity of them is able to be evaluated clearly.
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Response V - h - Te Interaction
a

€q

o
As for LC element, if the left side 59— W of Eq. 12 is constant,

the relation between Va and heq is given as follows:
1
oC —
Va h ? (13)
eq
and heq increases with the increase of R (See Figs. 4(b), 6).
As for SW and SC elements, even if Vaheq is considered to be

constant, Va also becomes nearly constant:

V_ 5 const., (14)

because the probable heq of SW and SC elements is so smaller than that
of LC elements (See Fig. 6) that it is able to be considered to be
constant from technological point of view.

Considering only resonant state, Va is independent of Te which is
the natural period of equivalent linear system and given by the following

expression:
]’W RaH
Te = 271: —g‘T— - (15)

Generally, real earthquakes with destructive acceleration amplitudés
are considered to have such a probability distribution to period as
shown in Fig. 9, so that, as response value, Va also has a distribution
analogous to it.

From these considerations described above, response Va - heq - Te

interaction is able to be illustrated simply as shown in Fig. 10, in
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which SW and SC elements belong to the range of heq from O to hCr and
LC element belongs to the range of.heq more than hcr’ and the maximum
possibility of the steady-state resonant vibration is considered to
occur in the range of Te from O to TCr and the possibility of steady-
state forced vibration in the range of Te more than Tcr’ where hCr and
TCr are critical values which should be decided on those bases of
engineering judgements.

Judging from the fracture modes of reinforced concrete structures
which are already explained in the previous chapter, the reinforced
concrete structures with SW and SC or LC fracture modes are able to be
considered to have the same aseismic characteristics of SW, SC or LC
element itself; so that the idea of Fig. 10 is valid not only for the
aseismic elements but also for reinforced concrete structures.
Consequently, rigid structures be;oné to the range 0 < heq<< hCr (See
Fig. 6), aﬁd flexible structures to the range hcr-< heq. That is,
the former resists against earthquakes through shear resisting capacity
and the lattef through hysteretic damping capacity.

As complemental data, the ratios fB of the maximum response
acceleration to the maximum ground acceleration of one-mass linear
system, subjected to several real earthquakes, are shown in Figs. 11 and
12 (9)(10), the abscissés of which are viscous damping coefficient h and
natural period T, réspectively. As fbr Fig. 11, the ordinate is the
maximum ratio f’max within all range of T. It is very interesting that
these figures show the same tendency as Fig. 10. Judging from these
figures, O.iS and 1.5 sec may be used as the critical values hcr and
Tcr’ respectively, and the maximum value of‘p may be about 10/3.

When earthquake resisting factors, Va’ heq, Te of reinforced.concrete

aseismic elements and/or structures are given, the estimation of the
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aseismic safety and the aseismic design of them may be easily performed
by relating the factors to the critical values of Eq. 12. The

application examples of these ideas to real structures iwill be discussed

1n the later chapters.

3-4. Concluding Remarks

In order to establish a fundamental new evaluation method for the
aseismic capacity of reinforced concrete structures with universal
validity in physical meanings,"RESONANCE CAPACITY" is proposed as ia
basis of estimation;cfiterion.

Based upon the experimental results of the Resonance Capacities and
fatigue behaviors.of reinforced concrete structural members subjected to
cyclic loadings, the aseismic characteristics of entire reinforced
concrete.structures are discussed on. As a result, the followings are
clarified:

(1) As for hysteretic damping capacity, SC and SW elements under cyclic
loadings show very remarkable deterioration after the first cycle. On
the other hand, LC element shows comparatively steady behavior even up
to the collapse (See Figs. 2, 3, 4). |
(2) When one-mass oscillator is subjected to sinusoidal forced
vibration and reacheé steady-state resonance, which may be the most
dangerous case of possible earthquakes, the criterion equation of
aseismic capacity is derived from the equilibrium of energy as indicated
by Eq. 12.

(3) Under the condition of constant RESONANCE CAPACITY 2vh_ ., LC
eq
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element responses with relatively constant Va, Ra’ and SC and SW elements
with relatively constant Va’ heq' Furthermore, considering the period

distribution of earthquakes, their response Va - h - Te interaction is

eq
able to be illustrated as shown in Fig. 10. Consequently, SC and SW
elements and rigid structures, i.e. (O <:heq<< hcr) resist against
earthquakes through Vé, and the resistance of LC element or flexible
structures, i.e. (h < h ) may increase with the increase of h .

cr eq €q
(,) The response acceleration spectra to natural period and viscous
damping coefficient are shown in Figs. 11, 12. The outlines of these

spectra are so analogous to:those of the Va - h - Te interaction that

cq
the fundamental concepts on the aseismic capacity and safety of

reinforced concrete structures may be clarified and made useful by the

comparison between them.
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NOTATION

A = area of hysteresis loop of restoring force
function f(x, t)
c = viscous damping coefficient

f(x,t)= restoring force function

hcr = criti;al viscous damping coefficient

heq = equivalent viscous damping coefficient

Ke = equivalent linear stiffeness

m = mass

N = axial force

N0 = ultimate strength of centrally loaded columns
(= (1 + 2w 'bh )

nC = pumber of cycles

ng = number of cycles until fracture

R = relative story displacement angle

Ra = amplitude of R

To = period of earthquakes

Te = equivalent natural period of members

t = time

TCr = critical period

vV = story shear force

Va = amplitude of V

W = aseismic weight of structures, weight of mass

X =

axial load ratio, (:N/No)
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displacement amplitude of hysteresis loops
lateral displacement of one-mass oscillator
acceleration of sinusoidal.ground motions
shear wall elements

short column elements

long column elements

acceleration amplitude of sinusoidal ground motions
amplification factor of response acceleration
relative story displacement

difference of phase angle
circulaTAfrequencygof earthquake waves

equivalent linear natural circular frequency

Supplements

RCW

%

specimen mark of shear wall (1)

RC:C1B : specimen mark of long column (6,6,7)

RC:C1Q : specimen mark of short column (2,3,4)
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CHAPTER 4

' REINFORCED CONCRETE STRUCTURES WITH AND WITHOUT SHEAR WALLS

4-1. Introduction

In Chapter 2, reinforced concrete structures were considered to be
composed of three kinds of aseismic elements, i.e., short columns, long
columns and shear walls, and then they were divided into two aseismic
types, i.e., rigid and flexible structures. Finally, on the basis of
the hysteretic damping capacity of such aseismic elements under cyclic
loading, fundamental concepts of the aseismic capacity of reinforced
concrete rigid and flexible structures were established. From the
technological point of view, only fundamental and abstract concepts are
of little use, so tﬁat it is necessary to indicate concrete and
quantitative applications to real reinforced concrete structures.

The purposes of this chapter are to show concrete procedures of the
application of such principles to real medium or low rise reinforced
concrete structures and to clarify the aseismic capacity and safety of
them quantatively. The method of case study may be the most effective

to attain these objects, so that calculations are carried out on the two
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types of reinforced concrete structures, i.e., rigid and flexible types.
Of course, the fundamental ideas on the aseismic capacity reported
in Chapter 3 are not necessarily detailed aseismic design guides. In
application of them to the estimation of the aseismic capacity and
safety of real reinforced concrete structures, therefore, many
assumptions and idealizations must be used. The main significance of
this} study is able to be considered to exist in the processes of the
applications and in the outlines of the aseismic capacity and safety of

reinforced concrete structures which are evaluated finally.

L-2., Aseismic Capacity of Rigid Structures

Case Study on The Classification of Standard-Type Reinforced

Concrete Structures

Aseismic units-- A reinforced concrete structure is considered to

be built as a combination of three aseismic units, LCu, SCu and SWu,
‘which correspond to the aseismic elements, long columns, short columns
and shear wallsdescribed in Chapter 2, respectively. These aseismic
units and their deférmation modes are shown in Fig. 1, where each
aseismic unit is assumed to carry a unit slab at its top end. The
applied values for this examples which are able to be considered to be
the most popular and general ones in Japan, are asvfollows (see Figs.

1 and 2):
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L=600cm(236in), H=300cm(118in), b x h=60cm x 60cm(23.6in x 23.6in)
As:As'=23.3cm2(3.6in2), t=20cm(7.9in), d'/h=ds/h=0.l, and
then P'= £=0.65%, H/h=5.
As for materials, fc' =2001<g/cm2(2840psi), fy:4000kg/cm2(57.,0ksi),
3

Cgmzz.mclo~ , X =b/3, rj/fé{ =0.25, and then w=w'=0.13,

G /T !=450.

Load-displacement relationships-- The story shear force (V) -

relative story displacement (&) relationships of the aseismic units are
able to be calculated by using the assumptions and equations in Chapter
2, and they are shown in Fig. 3. By summing the shear forces of the
aseismic units at the same displacement, V- § relationships of reinforced
concrete structures which are composed of ¢ -pieces of LCu,Jﬂ -pieces of

SCu and )“-pieces of SWu are able to be given by the following equations:

Vie = O‘VLCy + (ﬁvscy), (1-a)
Vse = ¥Vicy ( (TSC/[;\LC) *BVscy +rVSWy( gsc/ gsw), (1-b)
Vow = ¥ Vigy ¢ bs/Orc) + (/‘5 Vsey) * ¥ Vgyyo - (1-c)

where the value within parentheses is able to be taken into account,

when SCu has sufficient shear reinforcement.

Classification of fracture modes-- By means of the classification
method of fracture modes of reinforced concrete structures which are
composed of  -pieces of LCu, f?—pieces of SCu and ' -pieces of SWu,
the fracture modes are able to be zoned in the(X/}‘—fS/J‘ plane as shown
in Fig. L. When SCu has poor shear reinforcement (.9h % 0%), there
exist three regioﬁs of LC, SC and SW fracture modes (see Fig. La), and
when SCu has sufficient shear reinforcement ( 5)h:>l%)’ there exist’ two

regions of LC and SW fracture modes (see Fig. 4b). The boundary lines
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A, B and C are able to be drawn by the following expressions, VLC:VSC
)

- V. =V
Vo™V 29 Vo™ Viee

respectively.
Wall ratios-- When wall ratio is defined as the ratio of the cross
sectional area of shear walls to the area of floor, the wall ratio w of

the reinforced concrete structures composed of three kinds of aseismic

units is expressed by the following equation:

tLd _ 20x600
Flo+p+2)) 36 ((/3+ B/7 +2)

x107% . (2)

The wall ratios w, therefore, are drawn as contourlines in 09/5‘—/6//f
plane such as shown in Fig. 5.

Natural period--In order to calculate natural period T, the

followings are assumed:
(1) Reinforced concrete structures consist of one-story aseismic
elements and compose one-mass oscillators.
(2) The distributed weight of the mass wo is assumed to be 1 t/m2
(1.42psi).
(3) The rigidity K of the oscillator is given as the gradient of the
line between the origin and the maximum shear force point whose
displacement decides fracture mode.

Consequently, the natural period T is nearly expressed by the

following equatio

<]

T = , (3)

n:
1
5

where W is the weight of mass and is given by

W= WoLz(o(+lg+ 27, (&)
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and K is given by the following equations:

K = VLC/5LC’ for LC fracture mode,
K = Vsc/ﬁgc, for SC fracture mode, (5)

K = sz/ééw, for SW fracture mode.

The natural periods T, therefore, are able to be illustrated as
contourlines ingq/XVQ/f plane such as shown in Fig. 6. These

contourlines become, naturall&, discontinuous on the boundary lines

between fracture modes due to jumping of the characteristic values
of displacement, § ’6\ ,é‘ . In each region of fracture modes, T is

LC’ "SC’ "SW
limited within a range such as indicated in Fig. 6. As for structures

with several stories, their natural periods are able to be approximately
given by multiplying those of one-story structures by the number of
stories.

Critical number of stories~-~ As the most simplified example, when

reinforce@ concrete structures are composed of several stories of similar
aseismic units and subjected to lateral fofce, which is equal to the

dead load W, there must exist the critical number of stories n_ which
is given as follows:

VLC
ncr = §€T7§55127?)’ for LC fractufe mode,

A"
SC
Ny = 36T BT for SC fracture mode, (6)

VSW

cr  36( djﬁ+25‘)’

n for SW fracture mode.

the critical numbers of stories n__are also able to be illustrated by
means of such contourlines as shown in Fig.7. Although n_. is

continuous on the boundary lines of fracture modes, n_. is also limited
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within a range such as shown in Fig. 7.

Aseismic Characteristics of Reinforced Concrete Structures

In the case study mentioned above, fracture modes, wall ratios,
natural periods and the critical number of stories of reinforced
concrete structures are able Fo be illustrated simultaneously irlq/rufg/y
plane such as shown in Fig. 8.

According to the response V'a—he —Te interaction of reinforced

q
concrete structures and to the generalltendencies of acceleration

spectra shown in Chapter 3, the aseismic characteristics shown in Fig. 8
are effective and useful to estimate the aseismic capacity and to judge
the aseismic safety of medium or low rise reinforced concrete structures
with SC and SW fracture modes, i.e., rigid structures, because of the
following things:

(1) Before shear failure the natural period'of rigid struétures even
with about five stories is less than 1.0 sec. (see Fig. 6), so that the
base shear coefficient ag of such structures may become about 1.0 as

the product of the amplification factor of response acceleration Jﬂ
(=3.33, see Fig. 12 in Chapter 3) and the probable maximum ground
acceleration of earthquakes ™, (=0.3g; g is the acceleration of gravity).
(2) Such rigid structures have no deformation ductility after shear
fracture and have little damping coefficient (for example, heq is less
than 0.15 in Fig. 6 in Chapter 3), so that they have to resist against
earthquakes through story shear capacity (see Fig. 10 in Chapter 3).

Consequently, using Fig. 8, the aseismic design and the estimation

of the aseismic capacity and safety of medium or low rise reinforced
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concrete structures with shear walls become possible. Judging from
Fig. 8, wall ratio w is the most significant factor on which the aseismic

capacity and safety of such rigid structures depend.

Comparison with Real Cases of Damage

The significance of wall ratio w is also shown in Fig. 9 which was
reported by Prof. Shiga, et al (1). This figure presents the four-
ranked damage cases of 3-story reinforced concrete structures at the
Tokachi-Oki Earthquake (May 16, 1968, Japan). The ordinate and
abscissa in Fig. 9 indicate homogeneous story shear stress and wall
ratio, respectively. This figure shows that there exist little high or
middle grade cases of damages which is marked by X or e 1in the range
of w more than SOXIO—Q. The fact that the contour line ncr:3 in SW

4

fracture mode in Fig. 8-a lies within the values of w from 40x10 = to

60:{10—11r coincides with the tendency of the observed damages in Fig. 9.

4-3. Aseismic Capacity of Fleéxible Structures

Load-Displacement Hysteresis Loops of Reinforced Concrete Columns

In order to estimate the aseismic capacity of flexible reinforced
concrete structures which are composed predominantly of long columns

with flexural yielding mode and sufficient hysteretic damping capacity,



67

it is the most basic approach to calculate the steady-state hysteresis
loops of story shear force and relative story displacement of long columns
subjected std constant axial load and alternately repeated lateral
load as double curvature system (see Fig. 10).

Assumptions-- In order to calculate the simplified hysteresis loops
of story shear force and relative story displacement of long columns, the
followings are assumed:

(1) Hysteresis loops are in steady-state.

(2) Columns are subjected to a little constant axial load {(for example,
about (1/6)No; NO is the ultimate strength of centrally loaded columns).
(3) The displacement amplitudes of columns are sufficient large enough
to give sufficient hysteretic damping capacity.

(L) The elastic deflection of columns is calculated by Mohr's theorem,
and P A effect is neglected.

(5) The plastic deflection of columns is caused only by the plastic
hinges at the top and bottom ends of columns, so that the condition of
constant displacement amplitudestorrésponds nearly to that of constant
curvature amplitudes at the plastic hinges (2) (see Fig. 11).

(6) After the flexural yielding, both the compressive and tensile
reinforcements yield, .and the compression stress block of concrete is
rectangular (see Fig. 12).

(7) When the compressive reinforcement}yieldsbefore yielding of the
tensile reinforcement and closing of the crack of compressive concrete,
slipping phenomenon occurs in the hysteresis loops of bending moment
and curvature (see Fig. 13).

(8) The effects of the shear force are neglected, and the normal stress
distribution remains blane after bending.

Moment-curvature hysteresis loops-- According to the assumptions
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mentioned above, the moment-curvature hysteresis loops of the cross
section of reinforced concrete columns are able to be simplified and
idealized as shown in Fig. 13. The characteristic bending moments,

My and Ms and curvatures, h§y and h@; are given as follows:

M
y - Yo d ! Sl ' _
EZBEZ"'” 2(1 xnl)x.nl + w(l-d'/h ds/h) s (7-a)
2 €
_ sy -
hé} N (l—d’/h—ds/h) i (7-0)
where X 4= N/fébh, (8)
and
Ms l—d'/h—ds/h
o = (1-K") S , (9-a)
Cc
M .
h® =11§y Iy , (9-b)
where K' = xnl(l/u))—l. (10)

Load-displacement hysteresis loops~- According to the assumptions

mentioned above and to the simplified moment-curvature relationships,
the hysteresis loops of story shear force V and relative story
displacement § are able to be calculated as shown in Fig. 14. The

B B B .
characteristic values of V?, Vé, Sy_and 85 are given as follows:

b4 b4 ! §° - wlays . L

= / 1
£ bh fébhz’ h ? y 6 'y h ? (11)
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B
v M H B VB
S - —S bs = §B_s (12)
f'bh f'bh h ? s B~
c c v
y
Equivalent viscous damping coefficient-- Under cyclic loading, in

reality, reinforcing steels show Bauschinger effect, and concrete also
shows the similar phenomenon, so that V- ) hysteresis loop of Fig. 14 is
able to be idealized into such a figure as shown in Fig. 15. The
equivalentéviscousdamping coefficient heq of the V- & hysteresis loop

in Fig. 15 is expressed by the following equation (see Eq. 1 in Chapter

S 3):
5+9s 1 :
heq = 57 (1- ) ), (13)
where
B, B B
s = VS/Vy , Ma= (fa/o”y . (14)

Then heq is the function of ductility factor U, and increases with the

increase of 41 as shown in Fig. 16.

Fatigue Characteristics of Reinforced Concrete Columns

The aseismic criterion equation

of m

o
2h - Va’
eq

(15)  lor m& =2Vh o, (151)

which were introduced in Chapter 3,‘Shows that he and necessary V
; q a
‘are in reciprocal proportion. Considering Eqs. 13, 15, it is

concluded that the necessary Va decreases with the increase of /!a.'
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In reality, however, the increase of is limited by the number of
) /Ua

cycles until fracture n_ due to the fatigue characteristics of

B

reinforced concrete columns, i.e., /[ -n_ relationships.
a )

B
Assumptions--In order to obtain analytically the/ua—nB»relationships

of reinforced concrete columns, the followings are assumed:

(1) Such flexural mechanisms as we already assumed and idealized to

calculate M=& and V-& relationships are valid here, too.

(2) The stress and strain distributions of cross section at a curvature

amplitude are assumed as shown in Fig. 12, where _@‘; By -

(3) The compressive capacity of concrete stress block at the curvature

amplitude deteriorates with the increaée of the number of cycles as

shown in Fig. 17. The deterioration factor ¢ is expressed by the

following equation:

L

¢ =1-——7F log (16)

107c?
where nc is the number of cycles.
Eq. 16 is assumed from the experimental‘data of plain concrete subjected
to repeated loads with constant strain amplitudes shown in Fig. 18,
which were given by Yamada and Shimada (3).

(&) The deterioration of the compressive capacity of concrete stress

block makes xh and sé increase.

1
(5) When 5é reaches ceu’ the cross section of reinforced concrete
columns under cyclic bendingAmoments and constant axial loads collapse
due to buckling of compressive reinforcing steels, because the coluﬁns
no longer sustain the Specified axial loads.

(6) The longitudinal| zone of plastic hinges which produce the plastic

deflections of columns is equal to the total depth of their cross section

h.



71

(7) Columns under monotonic loading show flexural yielding on the
condition that the shear story height ratio H (=H/h) is more than the
|

critical story height ratio Hcr‘which was derived in the

precedingchapter(see Eq. 13 in Chapter 2), that is

- '{x+2(1+x)w} &
cr  (7/8)(a/h)F(X)?

(17)

H >

where

F(X) = \/—0.1X2+ 0.09X+0.01. - (18)

Relationships between curvature amplitude and the number of cycles

until fracture--Based upon the assumptions mentioned above and Figs. 12,

17, the relationship between the critical curvature amplitude h ﬁacr and

the number of cycles until fracture n_ is expressed by the following

B
equation:
cEu 7 cu
= = h
xnl/¢-ds/h 1 . N d /h g;cr » (19)
- 8 f'bh ~
1-(1/ )1oglonB .
and its tendency is shown in Fig. 19. Eq. 19 is naturally valid only

for the value of N/(fébh) which is so appropriately small that plastic
hinges occur at the top and bottom of columns and that the denominator
of the left two sides of it is positive.

Relationships between deflection amplitude and the number of cycles

until fracture--By means of plastic hinge method the deflection

amplitude 5; is given by the following equation:

§ =vn@-5)+ &8 . (20)
a a 'y Yy
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By substituting the left side of Eq. 19 for h@% of Eg. 20, the
relationship between deflection amplitude é; and the number of cycles
until fracture ng is able to be obtain. If one wants the relationship

between ductility factor amplitude /za and the number of cycles until

fracture n the following expression is able to be used instead of

B,
Eq. 20:

Hh(@ -3 )
My =br____a’y (21) -
5B
Yy
The comparison of the calculated results given by Eq. 19 with the
experimental results (5) is shown in Fig. 20. There is a little
quantitative difference but good qualitative agreement between them.

Figs.21 (a)(b) show ~the test specimen and raw data (4) from which

the test results in Fig. 20 were derived.

Estimation of Aseismic Capacity

If a critica; number of loading cycles of predominant waves of
earthquakes is given, makiﬁg it equal to the number of cycles until
fracture ng, a critical deflection amplitude 6;cr or a critical
ductility amplitﬁde /uacr is able to be derived from Egs. 19, 20 or
Egs. 19, 21. Consequently, a critical equivalent viscous damping

coefficient corresponding n_ is able to be calculated by using Eq. 13.

B
. . B . . . .
Finally, making Vy equal to Va’ the estimation of the aseismic capacity

of long columns becomes possible by means of the aseismic criterion

equation, i.e., Eg. 15. Even if the values of Vaheq of columns in a

story differ from each other, the summation of them, ZI(Vaheq)i, is
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able to be considered as the RESONANCE CAPACITY of this total story
under the condition that all the deflection amplitude of them is
identical, because Vaheq is the function only of load-deflection
hysteresis loop area and deflection amplitude.

In this| study, although column-yielding type is treated, if the
hysteretic damping capacity of beams with slabs is clarified, beam-
yielding type should be taken into account. Generally, the hysteretic

damping capacity of beams is more than that of columns, the treatment

in this study may be considered to be conservative.

Applications to Standard~Type Reinforced Concrete Structures

Assumed conditions--As an example, the aseismic capacity of 4-story

reinforced concrete structures without shear walls assumed to belong to
column-yielding type is calculated. In order to simplify the problem,
calculations are performed only for one column on the ground floor.
The sizes and other properties of this column and the mechanical
properties of materials used are assumed as follows:

H = 300cm(118in), H=H/h=5, bxh=60cmx60cm(23.6inx23.6in),

fé: 200kg,/ cnf(2840psi ), ngOOOkg/cnﬂ57000psi), sé§=2.0x10“3’

_ -3
Cgu_ Lx10

s d'/h=ds/h=0.1,

Reinforcing index w = 0.40, 0.35, 0.30, 0.25, 0.20, 0.15,

the weight of equivalent mass W = 14hton(317kips)(4 stories x 36
ton/story).

These values are so selected as to fit the most popular and standard

ones in Japan.
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Moo M relationships-- By using Egs. 16, 8, 19, 7, 11, 21, the

relationship between the critical ductility amplitude/uacr and the
number of cycles until fracture ny of the assumed column is able to be
calculated as shown in Table 1, and given by an approximate straight line
in log-log coordinates such as shown in Fig. 22. This relationship is
valid for-the all assumed columns with different reinforcing |indices

w , because hé& is assumed to be independent of w(see Eq. 7-b).

Critical ductility amplitude lacr-- If the critical number of

loading cycles of predominant earthquakes which the structure under
consideration undergoes in its life is about 200 cycles, Fig. 22 shows
that the critical ductility amplitude'/uacr is about "5" for the assumed
column. Judging from Fig. 20 which shows the comparison of the
experimental results with analytical values, the calculated value "5"
may be overestimated one. In thisi study, however, it is another
significant object to indicate the procedure and method for the
estimation of aseismic capacity, so that this value is used for the
following evaluationrprocedures.

Judgement of aseismic safety--By using the critical ductility

amplitude '"5'", the right side of the aseismic criterion equation (Eq.
15'), i.e., RESONANCE CAPACITY, 2.Vaheq of the assumed column is shown in
Table 2 which indicates the procedures of calculation with eqdation'
numbers applied. If the maximum acceleration amplitude ratio to that
of gravity of earthquakes, o%/g, is 0.3, the left side of Eq. 15', i.e.,
input level becomes 43.2 tons (95.2kips)(=0.3x1kktons). By means of
interpolation, Table 2 shows‘that the value of reinforcing index
more than about 0.24 is necessary to ensure the aseismic capacity of the

assumed column.
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The evaluation procedures mentioned above are valid only for the
case in which plastic hinges occur, that is, the assumed column should
belong to flexural yielding type. At the bottom of Table 2, therefore,
the critical shear story height ratios ﬁ;r are calculated in the case
that W =0.40~0.15. Judging from the values of E;r’ the columns with
the reinforced index @ less than 0.25 show the flexural yielding type.

Finally, it is able to be concluded that the column only with the
reinforcing index value @ of about 0.25 has sufficient aseismic
capacity. The base shear coefficient ag of the assumed L-story
reinforced concrete flexible structure must be assumed to be the value
from 0.5 to 0.6 for the aseismic design,%where ag is expressed as

follows:

ag = va/w = (O(o/g)/Zheq. . (22)

L-L. Concluding Remarks

Based upon the fundamental concepts of the aseismic capacity of
reinforced concrete structures proposed iniChapter 3,
the aseismic capacity and safety of the main two types of real medium
or low rise reinforced concrete structures, i.e., rigid and flexible
structures are investigated by calculations.

The most‘typical types 6f real reinforced concrete structures are
adopted as the objects of calculations, and as a result, the followings

are concluded.
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As for rigid structures which are assumed to be composed of a
large number of short column and shear wall units and a small number of
long column units, therefore which show shear fracture mode without
deformation ductility;
(1) The factors of aseismic characteristics, i.e., fracture modes, wall
ratios w and natural periods T are. able to be illustrated shown in
o Y- plane, where(x,js and J° are the numbers of pieces of long
column u., short column u. and shear wall u., respectively (see Figs. &,
5, 6, 8).
(2) Judging from the natural periods of medium or low rise structures
less than 1 sec. and from the general tendency of response spectrum(Chapt.S)
it is able to be considered that the lateral load at earthquakes is
nearly equal to the dead load of them.
(3) According to the aseismic concept that rigid structures with little
hfsteretic damping capacity should resist against earthquakes through
story shear force capacity, the maximum number of stories is able to be
illustrated by contourlines in(X/Jk-fi/f'plane, too (sée Figs. 7, 8).
(4) Wall ratio w proved to be the most significant factor against
earthquakes (see Figs. 5, 8) with the evidence of real damaged examples
(see Fig. 9).

As for flexible structures which are assumed to be composed only of
long column units which show flexural yielding type;
(1) Accordind to the aseismic criterion équation, Eq. 15', the aseismic
capacity of flexible structures by RESONANCE CAPACITY, 2Vaheq.
(2) Va’ i.e., relative story force amplitude is equal to relative story
flexural yielding force Vg and given as the function of reinforcing
index w (see Egs. 7, 11)..

(3) heq is given by the function of relative story displacement
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amplitude 5; (or ductility factor amplitude/ua) as expressed by Eq. 13.
(4) As fatigue characteristics of reinforced concrete long columns
subjected to cyclic lateral loading, the relationships between relative
story displacement amplitude 5; (or ductility factor amplitude/ya) and
the number of cycles until fracture ny are able to be given analytically
by Egs. 19, 20 (or Egs. 19, 21) (see Fig. 22).

(5) By applying the number of predominant waves of earthqﬁakes to such
relatidnships,»a critical ductility amplitude/aécr-is able to be decided.
(6) Finally, the limited value of equivalent viscous damping coefficient
heq is given by Eq. 13.

(7) As a result of the case study on 4-story reinforced concrete

structure which is assumed to show column-yielding type, the following

values are necessary to ensure sufficient aseismic capacity and safety:

S
i

0.24, for the columns on the ground floor,

= 0.540.6, for the base story.

Q
™
!
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NOTATION

area of tension reinforcement

area of compression reinforcement

width of cross section of columns

distance from centroid of tension reinforcement
to the tensile face of columns

distance from extreme compression fiber to
centroid of compression reinforcement
fracture criterion function of concrete under
combined normal and shear stresses

yield strength of reinforcement
compressive strength of concrete

modulus of shear of concrete

acceleration of gravity

story height

H/h

total depth of cross section of concrete
equivalent viscous damping coefficient
stiffeness of aseismic units

slipping factor (=N/fc'bh w-1)

span length

bending moment

yield moment

slipping moment
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mass
axial force

ultiméte strength of centrally loaded columns

the number of cycles until fracture

number of cycles

critical number of stories

base shear coefficient

slipping coefficient (=Ms/My, Vé/Vy)

natural period

thickness of shear walls

story shear force

V of structures—when LC elements show flexural yielding
V of structures when SC elements show shear yielding
V of structures when SW elements show shear fracture
V of LC elements when they show flexural yielding

V of SC elements when they show shear yielding

V of SW elements when they show shear fracture

V of columns when they show flexural yielding

V of columns when they show flexural slipping

story shear force amplitude

wall ratio

seismic weight

distributed seismic weight

N/N,

- lateral displacement of one mass system

ratio of distance from extreme compression fiber

'to neutral axis to the total depth of cross section

of columns
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long column unit

short column unit

shear.wall unit

number of pieces of LCu

acceleration amplitude of sinusoidal ground motion
number of pieces of SCu, amplification factor of resp.
accel.

rélative story displacement

amplitude of )

é‘at whiqh LCu shows flexural yielding

& at which SCu shows shear yielding

6‘at which SWu shows shear fracture

flexural component of 5; at which columns show flexural
yielding

shear component of 5; at which columns show shear
yielding

number of pieces of SWu, ratio of distance center-to-
center of reinforcement on opposite facesof columns to h
ultimate compressive strain of concrete

yielding compressive strain of concrete (idealized)
yielding strain of reinforcement

geometrical ratio of tensile reinforcement

geometrical ratio of compressive reinforcement
curvature amplitude

critical curvature amplitude

slipping curvature

deterioration factor of compressife stress block of

concrete
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ductility factor amplitude,

critical /ua
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Table 1. Critical Ductility Factor Amplitudes
ng cyc 10° 10! 102 103 10% 105 105 107 108 |Eq.
¢ 1.000 0.875 0.750 0.625 0.500 0.375 0.250 0.125 0.000}16
an ; 0.20 8
héacr x1073 | 40.0 31.10 24.00 18.18 13.33 9.23 5.71 2.67 0.00/19
hey x1073 | 5.00 | 7
s om 1.25 11
Moer 9.40 7.24 5.56 4.16 3.00 2.02 1.17 - - |21
Table 2. Estimation of Aseismic Capacity and Safety
w 0.40 0.35 0.30 0.25 0.20 0.15 Eq.
My/f(':bh2 0.400 0.360 0.320 0.280 0.240 0.200 7-a
Ng/fébhz 0.240 0.200 0.160 0.120 0.080 0.040 9-a
s 0.600 0.556 0.500 0.429 0.333 0.2001{11,12,14
Macr >0 -
eq 0.331 0.318 0.302 0.282 0.254 0.217 13
fébh ton 720
f£.bh? t-cm 43200
ME t-cm | 117280 15550 13820 12100 10370 8640 7-a
Vy ton | 115.2 103.7 92.1 80.7 69.1 57.6 11
ZV];heq ton| 76.3 66.0 55.6 45.5 351 25.0| —
aQW/g ton 43.2 -
Judgement 0] o) 0 0 X X 15"
No/fébh 1.8 1.7 1.6 1.5 1.4 1.3 —
X(=N/N6) 0.1111 0.1176 0.1250 0.1333 0.1429 0.1538 18
F(X) 0.1370 0.1386 0.1403 0.1422 0.1443 0.1465 18
ﬁér 7.42  6.60 5.79 5.00 4.22 3.47 17
real H 5.0 —
Frac. Modes S S S S,F F F 17
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CHAPTER 5

REINFORCED CONCRETE STRUCTURES WITH ASYMMETRIC SHEAR WALLS

5-1. Introduction

lIn Chapter 3, the fundamental concept of aseismic capacity that
reinforced concrete shear walls resist against earthquake loading
through their shear resisting capacity and long columns through their
hysteretic damping capacity was derived from the aseismic characteristics
of reinforced concrete structures and members. In Chapter &, this basic
idea was applied to the real types of reinforced concrete structures,
i.e., medium or low rise buildings with and without shear walls in order
to estimate the aseismic capacity and safety of them.

In thisichapter, furthermore, such evaluation methods of aseismic
capacity are applied to two types of reinforced concrete structures,
i.e., low rise buildings with' shear walls asymmetrically arranged
!in plan; ' The aseismic capacity of !this type
is estimated on the basis of the combination of the aseismic concepts

of rigid and flexible structures. When the shear rigidity and capacity

of asymmetric shear walls are sufficient, the structures resist against
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earthquakes through the story shear resisting capacity of the shear
walls at the center of torsional vibration and through the hysteretic
damping capacity of flexural members, i.e., long columns.

After the asymmetric shear wall collapses with shear fracture
modes, the resistance ! of it ' should be neglected in the process of

1

the evaluation of aseismic capacity.

5-2. Assumed Conditions

In order to simplify the estimation method of the aseismic capacity
and safety of reinforced concrete structures with asymmetrically
arranged shear walls in plan, the following idealized conditions are
assumed:

Assumed structure-- Reinforced concrete structure is assumed to be

composed of rigid frames with one-story and rectangular plans, which
contain only long columns and shear walls as aseismic elements. Long
columns exist on grid points and shear walls on grid lines asymmetrically
in plan. A typical plan and its notations are shown in Fig. 1, where

G is the center of gravity, E is the center of figidity, c and w
indicate the elements of long column and shear wall.

Critical states-- When such structures are subjected to sinusoidal

ground accelerations, they may reach the steady-state resonance of
predominant torsional vibration. According to the fundamental concepts
described in Chapter 3, such a state is able to be considered as the
critical state in which the aseismic capacity of the structures is

evaluated. In such a state, the followings are assumed as for
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structural members:

(1) The lateral displacemgnt amplitudes of shear walls are under the
criticalbnes at which the shear walls show the maximum shear resisting
capacity.

(2) The lateral displacement amplitudes of long columns exceed
yielding points.

(3) The long columns with the maximum excentricity from the center of
torsional vibrétion have the critical displacement (or ductility)

amplitudes.

Assumptions for analytical expressions--In order to express the
critical states and aseismic capacity of the structures analytically,
the followings are assumed:

(1) The loof slabs of the structures are rigid enough.

(2) The sinusoidal lateral forces act on the center of gravity.

(3) The structures show only torsional vibration around the center of
rigidity, which is assumed to coincide with the center of torsional
vibration.

(&) The center of rigidity resists against forced vibrations throughr
the shear resisting capacity of shear walls under the condition that
they have sufficient shear rigidity and capacity.

(5) The center of rigidity does not méve during vibrations.

(6) The torsional rigidity of shear walls is neglected.

(7) The effects of viscous dampingfare neglected and only the hysteretic
damping capacity of long columns is taken into account.

(8) In order to apply guantitatively the procedures mentioned above to
real structures, the load-displacement characteristics of shear walls
and long columns must be given as follows:

Shear walls--The load-displacement relationship of shear walls
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under one way monotonic loading is shown in Fig. 2, and wa and 5 are
wy
approximately given as follows (1):
1
\ —— f'A , (1-a)
wy L Tcw

I

8 3.

wy

Lx10 " H. (1-b)

Long columns--As for long columns subjected to cyclic bending in

the direction of the principal axis of column-section, the moment-
curvature hysteresis loop is the basic characteristic and shown in

Fig. 3, where the characteristic values are expressed as follows:

1 L2
M {5 Ox )%y +w¥'} £ o0, (2-a)
1 1o, 2
Moo= {1-(x_ = -1)}w S¥eion” (2-b)
258)', ) N
E& Y (2-¢) where X 1= fébh . (3)

Based upon the moment-curvature hysteresis loop and the
deterioration of rigidity of reinforcement due to the Bauschinger
effect, the hysteresis loop of shear force Vc and relative story
displacement of long columns is illustrated as shown in Fig. 4, where

the characteristic values are expressed as fTollows:

_ 1
4
\"2 = y VvV = S = = H.
cy H , sy H, gcy 6 2y

(&)
The relationship of torsional moment Mc and torsional angle 8 of

long columns around the torsional center of the structures is able to

be shown in Fig. 5, where

(SC
M =V e, 6= —. ' (5)
Ccy Cy cC ec
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(9) It must be noted that the long columns show flexural yielding type

under the condition that

_ {X{z(l+X.)cu}2“L
H=H_ = _g_% F(X) s (6)
where F(X) :']/r—o.lx2 +0.09X +0.01 . (7)

(10) The yielding condition of the long columns subjected to biaxial

bending is given by circular function such as shown in Fig. 6 (2).

Dynamic Idealization of Structures

According to the assumptions and Fig. 1, the structures with

asymmetric shear walls are able to be idealized as shown in Fig. 7.

The differential equation of motion for the dynamic model shown in

Fig. 7 is expressed by

6 + 8 z = -
IE %kecfc(wt, ) + (%:vewkw)e meGchos(wot +g)
®
where IE is the polar momenf of inertia of the mass around E, which
is given by
2
IE = me. + IG’ (9)

kec is the polar moment of kc of long column element c¢ around
E, which is given by
2
k = e k , (10)
c

fc(wt, 8 ) is the function of restoring force of long column

element ¢ shown in Fig. 5.
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In the case of steady-state resonance, by integrating the both

sides of Eq.8 with respect to & over one cycle, the left side becomes

§%kecfc(wt,8)d9, i.e., %Ac,

where Ac is the area of the Mc - @ hysteresis loop in Fig. 5, and the

right side becomes

: . -1 IT
meGdoea“n: , because Y = sin™ (-1) = - 7

On the other hand, the equivalent viscous damping coefficient of

the Mc - 6 hysteresis loop heq is expressed by

1 Ac
~h = L ———, (11)
eq 8
cy “a

N£~

Therefore, the left side of Eq. 8 becomes 278 Z(h M ).
a eq cy
Finally, as the equiribrium equation of energy in the steady-state
resonance of torsional vibration, the following expression is derived:
278 Z(h M =
a ( eq cy) meGogégjr, (12)

then

ZX(heqMcy) = mogeG. ' (13)

5-3. Aseismic Criterion Equations

Criterion Equations of Aseismic Safety

It is reasonable that Eq. 13 is similar to the criterion equation

of aseismic safety of long columns, m a; = 2hqua, which is derived in
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Chapter 3. Consequently, Eq. 13 is the criterion equation of the
aseismic safety of the reinfofced concrete structures with asymmetric.
shear walls, and then the right side of it, i.e., RESONANCE CAPACITY
corresponds to the aseismic capacity of them. In addition, according
to the assumptions that (1) the lateral displacement of shear walls are
alwa‘ysibelow Swy’ and (2) the center of rigidity is subjected to the
lateral load W, the following criterion equations of shear walls should

be satisfied:

. . . W

-d t H
in x-direction; f;,,‘kwx+ %kcx + acr(ewy)max = ghly > (14)
. . . W .
in y-direction;

Y ’ % kwy+ glkcy i Bcr(ewx)max = gwy s (15)

where ﬂcrgcy
ecr B (ec)max ] (16)

which is decided by the fatigue characteristics of the long columns with

the maximum e .
c

. . 5+9s 1 Lo
U = - —
sing the .equatlon heq 8713(1 /-‘gr for the slipping type of

hysteresis loop derived in Chapter 4, Eq. 13 becomes

549s 1
SO0 g0 Tmees - an

where : 8 g
- = = 18

HMer Bcr/ 0cy (5ca/ €c )/ cy/ ec) ca/é::y’ (18)

tand Sca and gcy are the critical deflection amplitude and yielding

deflection of the long columns with max. e.- Of course, in the case

that Moy = 1, heqc becomes zero.
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Fatigue Characteristics

On the application of Eq. 17 to real cases, the critical ductility
amplitude/uCr of the long columns with maX.eC must be given. Regarding
reinforced concrete square cross section subjected to uniaxial cyclic
bending moments (see Fig. 8), the relationship between curvature
amplitude and the number of cycles until fractufe was already derived

in Chapter 4 as follows:

08\1

i

' hi%cr'
1 XNo 4 (19)
l—(l/8)loglOnB fébh h

Then the critical ductility amplitude/jcr was expressed by

h(@ -2
Moy =17 s ) (20)
cy

On the other hand, the long columns in such structures as show
torsional vibration are subjected to bi-axial cyclic bending moments.
As an extremeAcase, let a square cross section be undergo diagonal
bending moment such as shown in Fig. 9. If the same assumptions for

fatigue collapse as those in Chapter 4 are applied, axial force N is

given by
N =XN = (x h;2f' (1- l-1og n_) (21)
o nl . “c 8 10 B”?
and curvature amplitude is given by
&
hg = e . (22)

a xnl-vgkd'/h)
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Consequently, hi%—n relationship for diagonal bending, the

B

following equation is given:

c8u
= h2. (23)
\/ XNp 7 Al @
h

.1
! - —
fcbh(l 8loglOnB)

Comparing huﬁéhin Egq. 19 with that in Eq. 23 under the conditions

that XNo/fébh =1/6, d'/h = 0.1, n, = 200 cycles, the deterioration

ratio becomes

XN
o

- —
£ bh(1 l/BloglOnB)

d!
hl 6,367,

\/., TN — . ' (24)
o _.VE-S

' -
fcbh(l l/810glonB)

Judging from the value of such a deterioration rafio, in order to
simplify the analytical expression, here, the critical ductility
amplitude of square cross section under bi-axial cyclic bending is |

proposed to be:

1
HMcro =My sin8 + cosf ?

(25)

such as shown in Fig. 10 as a diamond figure.

5-4. Application‘ to Real Structures With Asymmetric Shear Walls

Outlines of Assumed Structure
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At the Tokachi-Oki Earthquake in 1968, the Hachinohe City Library,
a one-story reinforced concrete structure with extremely asymmetric
shear walls, was damaged due to torsional deformations (3). As an
example, the aseismic éapacity and safety of a reinforced concrete
structure, which is similar to the Hachinohe City Library and is
simplified more than the proto type, are investigated. The outlines of
the assumed structure are as follows:

(1) The plan and section of it are shown in Fig. 11.

(2) The sections of beams, columns and shear walls are shown in Fig. 1l2.
The thickness of slabs is 13.5cm (5.3in).

(3) Concrete strength for design is fé=180kg/cm2(2560psi), and yielding
strength of reinforcement for design is fy=2400kg/cm2(34.lksi).

(4) Considering the effects of rigid pannel action of slabs, the parts
of rigid frames without shear walls show column-yielding type.

Judging from the proportion of the plan, the torsional vibration
due to horizontal force in x-direction is considered to be predominant,
which coincides with the real fracture mode of the Hachinohe City
Library, so that, here, the aseismic capacity of this kind of

deformation is discussed.

Load-Displacement Relationships of Shear Walls

As for the structure shown in Fig. 11, A 1is given as follows:
w

for |(5) axis; A = 12x(720x3-240-200) = 20600 cm?,

[N
[ .

for | (5) axis; A = 12x(720x2-100) = 16100 cmy
l w
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Then V is given as follows:

wy )
for‘(:> axis; wa = (l/lf)):180x‘20600x10"3 = 930 tons,
for?(:> axis; V= (1/4)x180x16100x10 > = 720 tons.
wy

The critical displacement Swy is given by

§ = Lx10°x420 = 1.68cm.
wy

Consequently, the load displacement characteristics of the shear
walls subjected to monotonic loading on}(Z) and!<:> axes in x-direction

are shown in Fig. 13.

Load—Displabement Relationships of' Long Columns

The characteristic values of the hysteresis loop of long column-
elements (including beam-elements) are given in accordance with flexural
equations described above as follows:

Ve, = 9-0 tons, 6;y = 2.5 cm, s = 0.2

And /jcr is assumed to be 4.0 because of relatively small axial forces.

The hysteresis loop and skeleton curve are shown in Fig. 14

The Center of Torsional Vibration

As the first approximation, the center of rigidity in the x-
direction assumed to be determined only by the rigidity of shear walls
and to be located on the position with 1.6m (=3.6mx430/980) distance
from§<:> axis to the right hand side (see Fig. 15). As the next step,
the position of the center of torsional vibration is calculated by

means of the corrected rigidity in the x-direction shown in Fig. 15,
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where the torsional deformation of the structure is shown around the
firstly assumed center of rigidity, which is limited by the critical
ductility, 4.0, of the columns with max.e_.

Finally, the position of the center of rigidity, which is assumed
to coincide with the center of torsional vibration, is given by the
distance fromi<:> axis to the right hand side,

O.9x4x0+1.2x4x7.2+l.7x4x14.4+3.1x4x21.6+3.6x4x36.0+

_ +550x28.8+430x32. 4 = 30.03 m
E 0.9xb+1.2xh+1. 7x4+3.1x4+3.6x4+550+430 - ) )

Examination of Shear Walls Deformation

Let the seismic weight of the structure be about 1000 tons (2200
kips). On thé other hand, the shear resisting capacity of the all
shear walls in the x-direction is 1650 tons (=930t+720t, see Fig. 13).
Therefore, the center of torsional vibration has sufficient static shear
resisting capacity. If it has poor shear resisting capacity, the
aseismic capacity of the structure should be estimated as a flexible
type.

By using Eq. 14 7; the examination of the deformation of% <:> axis

shear walls is able to be cafried out as follows:

W = 1000tons, Zk = 550t/cm+430t/cm (see Fig. 13),

%kﬁx = O.9x4+1.2x4+1.7x4+3.1x4%+3_6x4 =42.0 t/cm ,

By = Lx2.5cm/3003cm = 0.00333 rad.,

(ewy oy " 360cm~(3003cm-4x720cm) = 257cm, for%(:> axis,
then ' W s

———e—— + (e ) =1.0cm & = 1.68 cm.

‘%kwx£§kcx cr wy max wy
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|
Consequently, it is found that <:> axis shear walls will never

collapse beforei(i) axis columns fracture due to flexural fatigue.

Evaluation of Aseismic Capacity

In steady-state resonance of torsional vibration, the aseismic
capacity is estimated by the left side of Eq. 17. Considering the
lateral displacement in the x-direction, the critical ductility factor
must be corrected as follows:

W _ 1000 ~
Tk +3k T 550+430+42.0

W WX ¢ CX

0.98 cm ,

(Lx2.5-0.98)/2.5 = 3.6>3.5 .

I

then ‘ucr

Consequently, the aseismic capacity is calculated as follows:

5+9s . 1 5 + 9x0. 2
== /Ucrc)vcy(ec) ] = 2="x9x[4x(30.03+22. 83+

+15.63+8.43) - 35 ] = 838 tm. (26)

The judgement of aseismic safety is performed on the assumption

that o%/g = 0.3. The right side of Eq. 17 is given by

moe. = 1000xo.3x(30.o3——;—x36.o) = 3609 tm. (27)

Comparing the value of Eq. 26 with that of Eq. 27, the aseismic
safet& of the assumed structure against torsional vibration proved not
to be sufficient. In fact, the Hachinohe City Library was heavily
damaged due to the torsional deformation around the asymmeiric shear

walls (3).
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5-5. Concluding Remarks

The aseismic cabacity of low rise building with asymmetric shear -
walls is investigated quantitatively, on the basis of the aseismic.-
conceptsﬁescribedin Chapter 3. The analytical procedures and
equations used for the evaluation of aseismic capacity and the concrete
examples of application to real types of reinforced concrete structures
are shown.

As for low rise reinforced concrete structures with asymmetric
shear walls, the followings are concluded:

(1) When the shear capacity of asymmetric shear walls are enough to
resist against the lateral load equal to lseismic weight, the

aseismic capacit§ of structures is able to be estimated on the condition
of steady-state resonance of torsional vibration.

(2) The aseismic capacity of such structures is evaluated by the left
side of Eq. 13 or Eqg. 17, i.e., the hysteretic damping capacity of long
column elements.

(3) The aseismic safety is also examined by the aseismic criterion
equation, Eq. 13 or 17.

(4) As a result of application of Eq. 17 to a typical type of real
reinforced concrete structure (seevFigs. 11, 12), its aseismic safety
proved not to be sufficient.

(5) It is shown the aseismic capacity of structures with asymmetric

" shear walls is proportional to the hysteretic damping capacity of the
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columns | and to their distances  from the center of torsional vibration,
but is reciprocal of the distance between the center of gravity and that’

of rigidity, eg (see Eq. 17).
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NOTATION

cross sectional area of shear walls

area of Mc-B hysteresis loop of long column

element c

width of
notation
distance
centroid
distance
centroid

distance

cross section of columns

of long column element

from extreme compression fiber to
of tension reinforcement

from extreme compression fiber to
of compression reinforcement

from centroid of tension reinforcement

to the tensile face of columns

center of rigidity of structures

distance

from E to long column element ¢

maximum value of eC

distance
distance
fracture

combined

from E to G
from E to shear wall element w
criterion equation of concrete under

normal and shear stresses

compressive strength of concrete

yield strength of reinforcement

fc(aﬂ56) = resisting force function of MC

G =

g =

center of gravity of structures

acceleration of gravity
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H*

Ccr

=]

=

cr

story height of long columns and shear walls
story height of short columns

critical story height

H/h

Hcr/h

total depth of cross section of columns
equivalent damping coefficient

polar moment of inertia of mass around E
polar moment of inertia of mass around G
stiffeness of story of structures

polar moment of stiffeness k (=ei'kc)
stiffeness of long column element c
stiffeness of shear wall element w

torsional moment of long column element ¢ around E
(%eéVC)

slipping MC

slipping bending moment

yield bending moment

yielding Mc

mass

axial force

ultimate strength of centrally loaded columns
number of cycles

relative story displacement angle
amplitude of R

yvielding R

slipping coefficient (:Ms/My, :Mcs/Mc )

y

thickness of shear walls, time
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relative story shear force
yielding V

Vy of long column element c

'V of long column element c

slippingvVC

V of shear wall element w

Vy of shear wall element w

seismic weight of structures

notation of shear wall element

co-ordinate, suffix of direction

ratio of distance from extreme compreésive fiber to
neutral axis to the total depth of cross section of
columns

co-ordinate, suffix of direction

distance from end axis to E’of structure
acceleration of ground motion

acceleration amplitude of sinusoidal ground motioh
ratio of distance center-to-center of reinforcement
on opposite facesof columns to h

relative story displacement

8 of long column element c

amplitude of 5;

vielding 8;

5 of shear wall element w

= fracture 5
w

yield strain of reinforcement

(idealized) yield compressive strain of concrete
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= ductility factor of long column element c at B

113

= ultimate compressive strain of concrete
= curvature amplitude
= critical @
a
= yielding curvature
= torsional angle of structure

= critical torsional angle

= torsional angle amplitude (= 5;a/ec)

cr

= criticai ductility factor

:/ucr of cross section under § -direction cyclic bending

Il

(& &)

tensile reinforcing index, natural circular frequency

1l

compressive reinforcing index

= circular frequency of earthquake waves
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CHAPTER 6

MULTI-STORY REINFORCED CONCRETE STRUCTURES WITH

AND WITHOUT CANTILEVER-TYPE SHEAR WALLS

6-1. Introduction

In this Chapter, the evaluation method of aséismic capacity are
applieq to multi-story reinforced concrete buildings with and without
cantilever-type shear walls. The aseismic capacity of this type
building is evaluéted by the same way as applied to the flexible
structures@eséribedin Chapter 4. If the cantilever-type shear walls
in multi-story structures never collapse due to shear force and bending
moment, which should be aimed in design, such structures belong to
flexible type and the yielding phenomenon of it is caused by the flexural
yielding of beams and columns in the part of rigid frames and of beams
adjacent to shear walls. Therefore, this type of reinforced concrete
structures also resists against earthquakes through the hysteretic
damping capacity.

After the shear walls collapse with shear fracture mode, the
resistance of ghear walls should be neglected in the farther processes

of the evaluation of aseismic capacity.
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6-2. Assumed Conditions

The fundamental concept of aseismic capacitydescribed in Chapter 3
is able to be applied to multi-story reinforced concrete structures with
shear walls. The basic idea applied here, is that only the hysteretic
damping capacity of the plastic hinges of flexural members in structures
resists against earthquakes under the condition that shear walls never
collapse. The equétions used in the estimation procedures for
aseismic capacity are derived from the following assumptions on multi-
story structures:

(1) Multi-story reinforced concrete structures consist of rigid frames
including cantilever type shear walls (see Fig. l-a).

(2) The yielding of the structures subjected to lateral loads is

caused by the plastic hinges which occurs at the ends of beams and
columns in frames and at the ends of beams adjacent to shear walls.

(3) Cantilever type shear walls are designedineither to show flexural nor-
shear yielding before the yielding of beams and columns.

(4) As simulated and simplified waves of earthquakes, sinusoidal ground
acceleration EGzogkosug:is considered.

(5) The aseismic capacity of the structures is determined under the
condition of steady-state resonance, and input energy is absorbed only

by the hysteretic damping energy of flexural yielding beams and columns.

6-3. Aseismic Criterion Equations

Criterion Equations of Aseismic Safety
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A typical type of multi-story reinforced concrete structures with
cantilever type shear walls'is shown in Fig. 1 -a, and its mechanically
idealized model is shown in Fig. 1-b(1). There exists the following
relationship between the vector matrix {R} of relative story displacement

angle and {V} of story shear force:

[[KFl LN [KW]] {rR] = {v}, (1)

where EKFJ, [KB] and [Kw represent the stiffeness matrices of rigid
frames without shear walls, beams adjacent to shear walls and shear
walls, respectively.

According to the assumption (4), the right side of Eq. 1 is

expressed by
{v} + [M]{Y} = -[v] {1}'2'(; = —[Mﬂl} of COSWE (2)

where [M] is the mass matrix of the structure. By integrating with

respect to {R} over one cycle, Eq. 2 is expressed by
§[[K]+ (K] + (K (R} + (M] {Y) -d{R}T = -M) {1 dfr} T
gt N LRy = - [M) {1joufeosar-dfR} T . (3)
Assuming that {R} = gRacos&q¢+¢7} , (4)
and according to the assumptions (1)(2)(3)(5), Eq. 3 finally becomes

n Mo L
AFi + ABi = (ZW) ——nRai ’ (1=1,}“':n)3 (5)
J=1

where Wj is the weight of jth story, and AFi and ABi are the area of
V-R hysteresis loops of rigid frames and beams adjacent to shear walls
in ith story, respectively.

As an aseismic criterion equation, finally, the followingl

expression-is given:
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n
2X(V..h ) = ( 2 W, )—, (6)
yi eqi PR ¢

where Vyi and heqi are the yielding story shear force and the equivalent
viscous damping coefficient of V-R hysteresis loops of columns and beams

in rigid frames and beams adjacent to shear walls in i story. In

th
order to use Eq. 6 as an aseismic criterion equation .quantitatively, the

following aseismic characteristics are necessary.

V-R hysferesis loop--The moment M- curvature ® hysteresis loop of

reinforced concrete cross section was already given by Eq. 2 in Chapter
5 (see Fig. 13 in Chapter 4). The hysteresis loops of story shear
force V and relative story displacement angle R of beams and columns are
shown in Fig. 2, where Vy’ VS, Ry are determined according to the
deflection and yielding types of members such as shown in Fig. 3.

For column yielding type (see Fig. 3-a);

V. =2M /H, V_ =2M /H =1/6-% H .
y 2y/ o 25/,Ry 1/‘§y (7)

For beam yielding type (see Fig. 3-b);
= 2M *L/H* = 2M /H*, R = e L 8
\ry 2 y/L L/H*, v, s/ » Ry 1/6 §y s (8)

where H* is the distance from the inflection point of lower column to
that of upper column.

For beam, adjacent to shear walls, yielding type;

1 EEE 1 3LW

Vy - ﬁ;(l+4LF)My K Vs - ﬁ?4l+ZE;0Ms ! (9-a)
5 3Ly

Ry = §'§yLF/(l+4LF) , (9-b)
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where BLW/ALF is deriyed from the assumption that the zero deflection
point of beams adjacent to shear walls nearly coincides with the
inflection point indicated by the point A such as shown in Fig. 3-c.

The effects of slabs on the flexural characteristics of beams are
in this paper}neglected.

Equivalent viscous damping coefficient--From the V-R hysteresis

loop of Fig. 2, the equivalent viscous damping coefficient is derived by

_ 549s B 1
heq = T (1 jI;;) , (10)
where
s = Vs/vy v Mep T Ra/Ry . (11)

Other critical characteristics--The critical ductility factor/ucr

is expressed as the function of the number of cycles until fracture ng
such as presented already by Egs. 19, 20 in Chapter 5. The critical

span ratio ﬁ;r which was expressed by Eq. 6 in Chapter 5 also should be

examined in order to avoid shear fracture of flexural members.

6-L4. Application} to Real Multi-Story Reinforced Concrete Structures

With Shear Walls

The key plan of a structure which ié selected as a sample is shown
in Fig. 4, which is composed of rectangular rigid frames with 3.6m
(11.8ft) story height and 7.0m (23.0ft) span length and of cantilever
type shegr walls. The aseismic capacity of such a structure subjected
to earthquake loading in x-direction is investigated for the 9th story

counted from its top. The rigid frames in that story consist of the
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beams and columns such as shown in Fig. 5, whose sections are assumed
to be all the same in that story.

The various characteristic values of beams and columns and their
calculation processes are shown in Table 1, where the basic constants

are assumed as follows:

f(':.—.ZOOkg/cmz( 2840psi ), fy:li-OOOkg/cmz( 57.0ksi), cau:4x10”3 ,

3

SE&szlO_ ’ nB=2QOcyc1es, W=lt/m2x35mx2lmx9stn:750tx9stn,

N=750t/24pieces of column , d'/hzds/hzo.l .

The right hand side column in Table 1 showsthe equations, by means of
which calculations are performed. These values are so adopted as to
fit the most popular and standard ones in Japan.

The hysteresis damping capacity of beams and columns and of beams
adjacent to shear walls is computed as shown in Table 2, where 5.0 is
assumed as the value ofluér of all the members from the technological
point of view.

Finally, the aseismic capacity of the 9th story of the structure
is calculated and its aseismic safety is estimatea on thé assumption
that ab/g=0.3 as shown in Table 3, where the two cases of yielding
types, i.e., (a) columns in frames and beams adjacent to shear walls -
yielding type and (b) beamé in frames and beams adjacent to shear walls
- yielding type. Furthermore, as complementary cases, (c) columns -
and (d) beams - yielding types of the structure without shear walls are
also considered.

Judging from Table 3, multi-story reinforced concrete structures
seem to have the critical number of stories, from 8 to 9, independently

of the existence of shear walls. Although the assumptions that the
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steady-state resonance occurs and that as the value of seismic weight
the total weight of all stories is applied may be considered to cause
the overestimation of earthquake loading, such a conclusion as
achieved above is a result produced by comparing the maximum level of
input with the maximum level of response in a state as critical as

possible.

6-5. Concluding Remarks

The aseismic capacity of multi-story reinforced concrete buildings
with and without cantilever-type shear walls is evaluated quantitatively
in accordance with the aseismic conceptshescribed.in Chapter 3, and the
followings are concluded: ,

(1) If the cantilever type shear walls show neither shear fracture nor
flexural yielding, the yielding phenomenon of struqture is caused by
that.of beams and frames in rigid frames and beams adjacent to shear
walls.

(2) The aseismic capacity of such structures is able to be given by
the left side of Eq. 6, i.e., the hysteretic damping capacity of
flexural members.

(3) By the application of Eq. 6 to a real structure (see Figs. &, 5),
it is found that such a type of building has the critical number of
stories, about 8 - 9, independently of the existence of shear walls.

The evaluation method?ofﬂaseismic capacity and the estimation method
of aseismic safety presented in the preceding chapters and this;Chapter
are based upon the critical states and upon the maximum characteristic

values of reinforced concrete structures and structural members. In
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the aseismic design of real structures, of course, there are yet more
factors which should be taken into account. However, these concepts and
methodsﬂescribedhere should present the basis on {the aseismic |

design and planning of reinforced concrete structures.
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NOTATION

assumed inflection point of beams adjacent to shear walls
area of V-R hysteresis loop of beams adjacent to shear walls
area of V-R hystefesis loop of rigid frames

cross sectional area of shear walls

width of cross section of columns

distance from extreme compression fiber to centroid of
tension reinforcement

distance from extreme compression fiber to centroid of
compression reinforcement

distance from centroid of tension reinforcement to the
tensile face of columns

fracture criterion equation of concreéte under combined
normal and shear stresses

compressive strength of concrete

yield strength of reinforcement

accelerétipn of gravity

story height of long columns and shear walls

distance between the inflection points of lower and upper
critical story height ‘celumns
H/h

Hcr/h

total depth of cross section of columns

equivalent damping coefficient



number of stories

number of stories

stiffeness of story of structures

matrix of K of rigid frames

matric of K of beams adjacent to shear walls
matrix of K of shear walls

span length of beams adjacent to shear walls
span length of cantilever type shear walls
slipping bending moment

yield bending moment

matrix of lumped mass of structures

mass

axial force

ultimate strength of centrally loaded columns
number of qycles

relative story displacement angle

amplitude of R

yielding R,

vector matrix of R

slipping coefficient (=MS/My, :Mcs/Mcy)

thickness of shear walls, time
relative story shear force
yielding V

seismic weight of structures

W of jth story

co-ordinate, suffix of direction

ratio of distance from extreme compressive fiber to

129

neutral axis to the total depth of cross gection of columns
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y = co-ordinate, suffix of direction

EG = acceleration of ground motion

ub = acceleration amplitude of sinusoidal ground motion

T = ratio of distance center-to-center of reinforcement on

opposite facesof columns to h

8 = relative story displacement
SE& = yield strain of reinforcement
cﬁy = (idealized) yield compressive strain of concrete
cgh. = ultimate compressive strain of concrete
3, = curvature amplitude
Bacr = critical @;
@y = yielding curvature
M = ductility factor
/Uhr = critical ductilify factor
1 X - (sgy/ésy)
w = tensile reinforcing index
w’ = compressive reinforcing index
w, = circular frequency of earthquake waves
Supplement

{Y} = vector matrix of displacement acceleration relative to the ground



|
‘

Table 1.

Colum = Beam Eq.
bxh canxcm | 90x90  50x110 -
f(':bh ton 1940 — -
fébhz tm 1750 1452 | —
N ton 315 0 -
w 0.10 0.14 -
No/f(':bh 1.20 0.00 -
h@ac x1073| 31.40 - 19(Chap.
X1 0.162. - SFChap .
M y/f(':bhz 0.1470  0.1120 | 2-a(chap.
Ms/fébh2 0.0152 0.1120 | 2-b(Chap.
s 0.1028 1.00 38
h? x10°3 5.0 5.0 | 2-c(Chap.
X(=N)/,No) 0.135 0.00 7 (Chap.
F(X) 0.1426 0.10 7(Chap.
Hcr 2.60 2.84 6 (Chap.
Hcr ‘cm 234 312 —
real H cm 250 610 -
Frac. Mode F F 6 (Chap.

Characteristic Values of Beams and Columns

5)
5)
5)
5)

5)
5)
5)
5)

5)
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| Table 2. Resonance Capacity
Beam |
Colum Beam adjacent to| Eq.
Shear Walls
Ry x10-3 2.315 4.621 3.126 ||7, 8, 9
Mer 6.70 — - 19,20(Chap.5)
“ér 5.0 5.0 5.0 *assumed
‘heq 0.1866 0.446 0.446 —
Vy ton 207.0 103.6 89.0 17, 8, 9
' V.h_ton 39.0  46.2  39.7 —

y eq

E Table 3. Evaluation of Aseismic Capacity and Safety

' . Without

Type of Str. With Shear Walls Shear Walls
Yield.Typ. (a) () (c) (d)
Flexural - __|Beam adj. tq Beam adj.tq

Elements Column Shear Walls Beam Shear Wallg Column Beam
| Vv he'_ ton| 39.0] 39.7 ( - 46.2 ) 39.7 39.0 46.2

14+4x0.5

Number of

pieces 20 4 16 4 24 20

szyheqton 1918 1834 1872 1848

(ZWjao/g 2025 2025 2025 2025
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CHAPTER 7

?SUMMARY AND CONCLUSIONS

7-1. Summary

It is>proposed that the aseismic capacity of a rginforced concrete
structure is the steady-state resonance capacity for|an idealized one
mass model of that structure subjected to a sinusoidal forced vibration
(in Chapter 3). That resonance capacity is determined using'the known
characteristics of the hysteresis loops and the stability in gtrength
with cycling of typical reinforced concrete eléments. For this
evaluation reinforéed concrete members are élassified, according to their
modes of deformation and failure under monotonic loading, into three
types of aseismic elements: Long columns, short columns, and shear
walls (in Chapter 2). Structures are divided into two types: rigid
and flexible. A diagram is developed showing the interaction surface
in three dimensional space between shear force amplitude, equivalent
viscous damping and the natural period of vibration. The range of
aseismic characteristics for the different eleménts and structures are

shown on thét diagram. Response acceleration spectra for typical
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earthquake inputs are collated with the response indicated by that
diagram. ‘That interaction surface is shown to represent a reasonable
basis for estimating the aseismic safety of reinforced concrete
structures.

Based upon the fundamental concept of aseismic capacity of
classified reinforced concrete structures, the aseismic capacity and
safety are investigated regarding two types of reinforced concrete
strqctures, i.e., rigid structures with shear walls and flexible
structures without shear walls (in Chapter 4). First, the aseismic
characteristics of medium or low rise reinforced concrete structures,
i.e., wall ratios, natural periods and critical number of stories are
indicated as contourlines in»O(/ak—IB/]( plane, where O(,/S and {' show
the number of pieces of long columns, short columns and shear walls
composing the structures, respectively. As for rigid structﬁres which
should resist against earthquakes through story shear resisting capacity,
it is shown that wall ratio is the most significant factoﬁ for the
aseismic capacity and safety. As for flexible structures which should
resist against earthquakes through the hysteretic damping capacity,
analytical expressions of the hysteretic damping capacity and the
fatigue characteristics of flexural memberé composing the structures are
derived and aﬁplied to a L-story reinforced concrete structure with
column-yielding type in order to estimate its aseismic capacity and
safety.

In order to evaluate the asecismic capacity and safety, the
fundamental concepts and methods introduced in the precedingfchapter
are applied to two types of reinforced concrete structures, i.e., low
rise buildings with asymmetric shear walls (in Chapter 5) and multi-

story buildings with shear walls (in Chapter 6). As for the structures
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with asymmetric shear walls, their aseismic capacity is estimated by
means of hysteretic damping capacity at steady-state resonance of
torsional vibration. As for the multi-story structures with shear
walls, their aseismic capacity is evaluated by means of the hysteretic
dambing capacity of flexural members except shear walls, i.e., beams and
columns. By applying these principles to the real types of reinforced
concrete structures, the maximum and critical values of aseismic
capacity are simply given, and it is shown that these values are able

to become the basis for the aseismic design.
7-2. Conclusions

From the considerations in this paper, the following concluding
remarks were obtained:
(1) A reinforced concrete structure composed of three kinds of aseismic
elements, i.e. long columns, short columns and shear walls is able to be
classified into three kinds of fracture modes, i.e.|LC-, SC- and SW-
Fracture Modes, and furthermore into two kinds of aseismic_types, i.e.
rigid and flexible ones (Figs. 15, 16 in Chapter 2).
(2)‘ When steady-state resonance is adopted as an ultimate vibration
state of structures subjected to strong earthquakes, Resonance Capacity
2Vaheq is able to be introduced as an criterion for the evaluation of
the aseismic capacity of reinforced concrete structures and structural
members (Eq. 12 in Chapter 3).
(3) Based upon the Resonance Capacity criterion, the ultimate aseismic
capacity of reinforced concrete structures is made visible in Va—Te—h

space (Fig. 10 in Chapter 3). Fig. 10 in Chapter 3 shows that rigid
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and flexible type structures resist against earthquake inputs through
story shear capacity and hyéteretic energy absorption, respectively.

{4) Using three kinds of aseismic elements with standard and general
sizes and dimensions, the fracture modes, wall ratios, critical number
of stories anq natural periods of reinforced concrete structures are
shown and arranged in a common plane (Fig. 8 in Chapter 4).

(5) Rigid type structures are considered to be subjected to thel

dead loads as story shear force at destructive earthquakes. As for
flexible type structures, i.e. LC-fracture mode, the critical story
shear coefficient can be reduced to about 0.5-0.6 due to the hysteretic
energy absorption capacity and low cycle fatigue characteristics
(Chapter 4).

(6) Low rise reinforced concrete structures with asymmetrically arranged
shear walls are able to be regarded as laterally torsional oscillators
(Figs. 1, 7 in Chapter 5), and the evaluation method of aseismic capacity
is essentially analogous to the horizontal sway type structures\
‘without shear walls.

‘(7) Multi-story reinforced concrete buildings are able to be considered
as flexible type structures, énd the critical number of stories is'about
8«9, when the shear and flexural failures of cantilever type shear walls
in the structures are avoided (Fig. 1 in Chapter 6).

In this% study, reinforced concrete structures and structural
members with standard and general types and sizes were adopted as the
objects of investigations. From now on ideal reinforced concrete
structures wi£h optimum styles, sizes a@d dimensions should be researched
on the basis of the criteria pfoposed in this paper for the evaluation

of the ultimate aseismic capacity.
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