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The object‘ve of the present work is twofold, i.e.
one of straightening out the cluttering tdam of growth equa-
tions in search of the most potential one for the growth of
trees especially in stem radius, and of applying the theory
of growth equation to other important issues of mensuration
and forestry to reorganize them into a more rationally-
related and interwoven system.

In pursuii of the first o Sective, numerous growth
equations were reviewed in chapter II and classified into
four categories, i.e., the empiricals, the quasi-theoreticals,
the particular theoreticals and the general theoreticals.

In doing so discussion was made as to the superiorities of
the theoretical equations over the empirical ones, and of
the particular theoreticals over the general ones. However,
it was also found that as of today there is no particular
theoretical equation expressing the growth of individual
trees, and thus it was concluded that the available best

for describina the arowth of individual trees was the genral
theoretical eguation. In chanter III, the characteristics
of the three cgeneral theoretical equations thus chosen, i.e.,
the Mitscherlich, the logistic and the Gompertz were dis-
cussed from an a priori theoretical point of view.

In further pursuit of the most pnrospective growth

equations for trees, the three general theoreticals were



applied to the radial stem growth of 84 white spruce trees
in chapter IV. It turned out that although alil the equa-
tions did not work in application as satisfactorily as ex-
pected from the theory, the Mitscherlich revealed the least
theoretical discrepancy, while the logistic did the most.
The best graphical acreement with the observed growth was
attained by the Gompertz, followed by the Mitscherlich, then
by the logistic. The easiest to fit was the Mitscherlich,
followed by the logistic, then by the Gompertz.

A similar analysis as in chapter IV was conducted
with 349 individual growth records of jack pine in chapter
V. 211 the equations worked better with jack pine than with
white spruce in everycriterion employed. The most remarkable
improvement was achiev~d by the Mitscherlich. It revealed
the least theoretical discrepancy, while the logistic did
the most as with white spruce. The best graphical agree-
ment with the observed growth was achieved by the Mitscher-
lich followed by the Gompertz, then by the loagistic. The
easiest to fit was the Mitscherlich followed by the Gompertz,
then by the logistic. As an overall conclusion of chapters
IV and V, at the present state of knowledge the best growth
equation to describe the growth of trees in stem radius
would be the Mitscherlich.

The last two chavter of the present work is de-
voted to the second objective, i.e.. the application of the
theory of the growth equation to the other important subjects

of mensuration, i.e., the stem taper curve and the height-

ill



diameter curve. Assuming that the growth of individual
trees in stem diameter and height foliows the Mitscherlich
equation, a theoretical stem tapmer curve was derived mathe-
matically. Subsequently it was compared with 50 observed
stem taper curves and its theoretical compatibility was
discussed. The proposed stem taper curve was al;o compared
with other existing empirical stem taper curves in terms of
the goodness of fit to 50 observed taper curves. It turned
out that the ten equations compared were separated into five
groups sincificantly differing from each other, of which
the pronosed eguation fell into the second best group.
Again assuming that the growth of individual trees
in stem diameter and height folilows the Mitscherlich equa-
tion, a height-diameter curve for all-aged stands was de-
rived. Then based on a similar but slightly different
assumption, another height-diameter curve for even-aged
stand was derived. Both equations are identical in their
mathematical appearance but are different in what they

mean.
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CHAPTER I

INTRODUCTION

Mensuration, or forest biometrics as is recently
called, is a science of means which provides vital statistics
concerning the state and structure of trees for the most
essential discipline of fores' 'y, i.e., the management and
planning of forested lands. In spite of its time-~honored
history, most of the mensurational approaches have been
rather empirical than theoretical largly due to the comple-
xities and irregularities inevitably involved in any biologi-
cal phenomena. In other words the history of mensuration
was a series of efforts to find hidden uniformity and inte-
grity in what is seemingly random, irregular and arbitrary
outcome which individual trees as well as their aggregates
demonstrate.

It is generally said that remote sensing and
statistical methods are the two major breakthroughs achieved
in recent decades in forest biometrics. The former has
contributed to the search of uniformity and integrity by

providing a literally perspective view of the forested

lands, while the latter by providing rational means to
process what seems irregular and thus formidable and indi-
gestible data in a logical manner. Unfortunately, however,
neither the remote sensing nor the statistical methods

constitute the essential core ¢. mensuration. They are

simply the means of data collection and data processing

respectively that are nonessential to mensuration and can



be shared with other discipline of science. This leaves
the core still intact and most of the essential parts of
mensuration remain rather empirical as ever.

Though implicit in the maijor parts of the text,
the latent objective of the present work is to introduce
a theoretical and systematic approach into the mensuration
proper. TIor this purpose the theoretical growth equation
was chosen as the nucleus from which a systematic redeve-
lopment of mensuration is to be made. It will be shown in
the text that the issue of the growth equation, which has
been dealt with to date rather independently as one of the
other independent subjects of mensuration, constitute a
powerful foundation which binds what are seemingly unrelated
subjects of mensuration. Considering the fact that many
vital phenomena encountered in mensuration are brought about
by the growth of trees, there is no wonder why the subject
of growth equation is associated with some of other vital
issues of mensuration. 1In the present work, an extensive
and volumenous analysis is made in search of the most power-
ful growth equation, then its association with the s bjects
of stem taper curve and height-diameter curve is demonst-
rated by applyving the theory of growth equation to explain
why the tapering of tree stems and the height-diameter
relationship are shaped as they really are.

In chapter II existing growth equations are
reviewed critically so as not only to untangle the clutter-
ing abundance and complexity but aiso to narrow them down to

the most suitable ones for expressing the growth of trees



especially in stem fadius and diameter. In chapter II1I,
advantages and disadvantages of the three theoretical growth
equations chosen in the preceding chapter are discussed on
an a priori ground. Then these three eguations, i.e., the
Mitscherlich, the logistic and the Gompertz equations are
applied to the radial stem growth of white spruce [Picea
glauca (Moench) Voss] to check their feasibility from theo-
retical as well as from practical points of view. The rea-
son why the radial growth is taken up from among several
other measures of tree growth is that it is the only quan-
tity that renders itself to direct, accurate, yvet massive
measurements. The direct and nrecise measurement of the
other measures such as height, basal area, volume, etc. is
extremely difficult and time-consuming if not imnossible.
Almost similar analysis as in chapter III is conducted in
chapter IV with a different tree species, i.e., jack pine
(Pinus banksiana Lamb.). Jack pine is one of the represent-
ative shade-intolerant pioneer spvecies, while white spruce
represents shade-tolerant ones. Thus the analyses made in
chapters III and IV together give a nearly complete account
of the applicabilities of the Mitscherliich, the logistic
and the Gompertz equations to the growth of trees in general.
The last two chapters deal with the applications
of the growth equation to other subjects of mensuration.
In chapter V, assuming that the ¢rowth of trees both in
height and diameter follows the Mitscherlich equation,

which is judged as the most prospective of all in the pre-



ceding chapters, a mathematical expression describing the
tapering of the stem is derived theoretically. Subsequent-
ly, this taper curve is applied to a set of observed taper
curves to get a numerical account of the parameters as well
as to compare the calculated and the observed taper curves.
To check the practical applicability, the proposed taper
curve is also compared with various empirical taper curves
in terms of the goodness of fit to the observation. The
last chapter, i.e., chapter VI is devoted to another appli-
cation of the growth equation to the other major issue of
mensuration, i.e., height-diameter curve. Based on a simi-
lar assumption as in the directly preceding chapter, equa-
tions describing the height-diameter relationships for even-
aged stands and all-aged stands are derived, and then applied

to an observed set of height-hiameter relationship.



CHAPTER IT

EISTORICAL REVIEW OF THEORETICAL GROWTH EQUATIONS

Introduction

Mathematical expressions describing growth pheno-
mena, 1.e. the growth egquation, have liong been one of the
most important and interesting subijects not only in forestry
but also in other field of biological science such as demo-
graphy, vopulation biology, plant and animal physiology, etc.
Ns is often the case with application of mathematics in any
other discipline of science, the primary significance of the
growth eqguation in biological science exists in its opera-
tional convenience of putting unwieldy masses of numerical
data in a concise and perspective view. This condensing
function of the growth eguation is not only space saving but
it also enables us an easy and obj~ctive comparison i growth,
for example, among different individuals or among different
species. .n appreciation of these virtures, numerous mathe-
matical equations, both empirical and theoretical, have been
presented to date. (e.g. see Shinozaki, 1953; Prodan, 1961).
Ironically enough, however, this proliferation of growth
equations now makes it almost impossible for us to decide at
a glance which one to choose for a specific purpose, and
results often in promiscuous use.

The major objective of this chapter is thus to
review the existing growth equations to determine their
applicability to the growth of trees in stem diameter or

radius. Since the growth of trees is one of the most funda-



mental phenomena in forestry, an appropriate choice of an
equation or equations is vital. For examole, the growth
equation is directly anplicable to the forecast of growth and
yield which is the most essential objective of the forest
planninc and management. It also plays a princival role in
many stand growth models (e.g. Suzuki, 1966, 19672, 1967B,
1967C; Umemura & Suzuki, 1974). Once an appropriate growth
equation can be chosen, it can further be applied to such
growth-related issues as stem taper curves and height-diame-
ter curves as will be shown in the succeeding chapters.

As a matter of fact there exist literally count-
lessly many growth equations, and it would be impossible to
review them all. Thus the scope of the present work 1is
bounded within the domain of rational or theoretical equa-
tions. As a matter of fact the cluttering abundance of
growth equations is largely attributable to that of experi-
mental or empirical ones, and thus the introduction of
this simple criterion of counting those empiricals out
reduces drastically the number of equations to be examined.

Moreover, the theoretical equations have many
advantages over the ermpiricals, most of which stem from
the theoretical reasoning or the rationale which constitute
the basis of the former. First of all, the theoretical
reasoning make an equation appealing to our logical thought
and easy to comprehend. This applies not only to the
equation itself but also to the parameters involved in it.
Parameters apoearing in the empirical equation are nothing
more than mathematical constants, while those in the theore-

tical equation carry biological significance closely related
d C



to the subject. Secondly, the plausibility of the reasoning
behind a theoretical <Jjuation can be judged either by itself
or in comparison with a reality, which makes improvement of
the equation possible. Furthermore, the repeated imorovement
might well lead eventually to the %rue nature of the growth
phenomena, i.e. a law. On the other hand, empirical equa-
tions, as Watt (1962) mentioned, are useful for interpolation
but little else. Though this mention was made of the use of
mathematics in population ecolony, the same argument well
applies in forestry. Thus examined in the following s=2ctions,
with a special reference to the apvlicability to the growth
of trees are theoretical equations and those comparable to
them. The existing theoretical equations can be classified
into six classes by mathematical appearance. They are the
exponential, the Mitscherlich, c¢he logistic, the Gompertz,

the von Bertalanffy's and the c“hers.

The exponential equation

By far the simplest of all the theoretical growth
functions may be the exponential equation. It i1s based on the
assumption that the rate of growth dy/dt of a population
or an individual organism at anv given time ¢ is proportional
to the size y achieved by that time, 1i.e.

lizé:ky ' II-1

where k is the intrinsic rate of growth. Integration with
respect to time results in the exponential growth egquation
of the form:

y=y e ?, T1-2



where /s is the initial size. In some cases the exponential
curve shows a good agreement w.th observed cgrowth phenomena
so long as its application is limited up to a certain early
phase of an entire growth process. Iiowever, the exponential
curve has no upper limit of growth and thus increases infi-
nitely as time goes on, whereas any actual population or
individual organism including trees is regulated by either
internal or external or both growth-inhibiting mechanism

and doesn't grow infinitely large. This limited applicabi-
lity, alona with the obvious discrepancy from the reality,
is the reason why the exponential equation is regarded incom-
plete. Thus in this thesis as welil 1t is put aside from the

major stream of the discussion.

The Mitscherlich equation

This terminology follows the current practice

(Suzuki, 1971), but this equation is also known as that of
monomolecular chemical reaction. It is based on the assump-
tion that there exists a certain asymptotic limit of growth

M and that the rate of growth dy/dt at any given time t is
proportional to the difference between the limit ¥ and the
size y achieved by that time. In other words the proximity
of the size achieved to the limit is postulated as a sole
growth inhibitor. This assumption can be formulated in terms

of differential equation as follows:

di -
'a’%:zk (M=), T1-3
where % is the intrinsic rate of growth. Integrating Eq-.

JI-3 we get



y=M(l~ﬁi%Qe"kt)r 11-4

where 17, is the initial size. By substituting a single para-
meter [ for the factor (M-yeo)/M, Fg. II-4 can be simplified
as

y=M(1—Le”kt). I1-

[}

Assuming y,=0, this solution further reduces to

y=h(1-e """y, II-6
Since Fqg. II-5 is more general, it shall be the standard form
of the Mitscherlich equation hereafter in the present work.
The derivatives, convexity and other major charactericstics
of the Mitscherlich equation are tabulated in Table 1, while
the general shape of the curve is illustrated in Fig. 1.

As readily seen from the above reasoning, the
underlying assumption is of very general nature and ~onsequ-
ently the resultant Eg. II-5 or II-6 should be applicable to
any growth phenomena; either to the growth of indivicdaal
organism or to that of population; either to the growth in
linear dimensicn or to that in volumecric dimension.
Accordingly it has been applied to a wide variety of growth
phenomena as discussed in the following.

According to Yule (1925}, Verhulst proposed as
early as in 1847 a differential equation and its solution of
similar significance as II-3, II-4 respectively to descirbe
the growth of human population.

‘Mitscherlich (1919), to whom the present termino-
logy of the equation apparently owes, formulated an eguation

to describe plants' response to environmental growth factors,
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Figure 1. The Mitscherliich curve.
y = M(1 - Le*kt) : M= 1.0, L, = 1.0, kK = 0.04,

with the broken line denoting asymptote.
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which is presently known as the law of diminishing return.
The ecguation Mitscherlich originalily presented was of the foim:

y=A (1-eC17 1) (1-%2%2y ..., 1I-7
in which y denotes yield, and x;, xp, ... amounts of
factors controlling the growth. Apparently Mitscherlich's
original aim was to express plants' response to fertilizers,
but not to describe plant growth as a function of time.
However, if we consider time as a single most significant
growth factor, the above eguation reduces to Eg. II-6. It
should be noted that the yield or size y is given in weight
in this case.

In 1920 Putter proposed an egquation cf the same
significance as Eq. II-5 to descirbe the linear growth of
individual organisms (after Weymouth et al., 1931). Weymouth
(1923) applied this equation to describe the linear growth
in shell size of the pismo clam, but he later (Weymouth et
al., loc. cit.) turned it off claiming that the equation,
being devoid of inflection, had been unsatisfactory to des-
cribe at least the linear growth of the clam.

Based on his extensive coilection of growth data,
Brody (1923) claimed that the entire growth process of
animals could be broken up into a self-accelerating vhase
and a self-inhibiting one, and proposed the Mitscherlich
eguation for the latter. Then he (1245) successfully
applied the equation to the extrauterin growth in weight
of a large variety of animals ranging from such farm animals
as the cattle, horse, swine etc. to small experimental ani-

mals as the guinea pig, mouse, etc.
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The first mention concerning the appliication of the
Mitscherlich equation to tree growth was made by Meyer (1940).
He referred to the usage of the similar equation as II-6
in forestry to express the height ¢~ owth of trees as a func-
tion of time.

It is interesting to note that Khilmi (1957)
deriveda Mitscherlich equation for the volumetric growth
of forest stands through an entirely different line of
reasoning fram the one given earlier in this section. He
reasoned that the per-hectare volumetric growth of stands
consist of the difference between the solar energy input
and a part of it consumed for physiological maintenance.

As is readily envisaged, this assumption resulted in a
differential equation quite similar in formal appearance
to Eq. II-3, which yielded a solution almost identical with
II-4 or II-5. He applied this equation to the growth of
even—aged single-species stands of pine, spruce and oak.
Although he revorted a satisfactory agreement with the
observed growths, Khilmi's eguation doesn't apply to the
entire process of stand growth. The reasoning underlying
the equation logically makes it applicable only after the
crown closure.

The first application of the Mitscherlich equation
to the diameter growth of trees was made by Suzuki (.961).
lle found empirically that the mean diameter growth of
several individual trees results in a straight line on a
difference diagram, in which the mean diameter at age t+1 is

plotted against those at age t. Subsequently he showed this
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straight line relationship is mathematically equivalent to
the Mitscheriich eguation. Obviously in this case, the
equation descirbes arowth in linear dimension. The same
equation proposed by ¥hiimi {ibid.) gives volumetric growth
also in linear dimension, since it is given on per-hectare
basis. Takeuchi (197%) pointed out the significance of this
coincidence of different phenomena being expressed by the
same equation when reduced to the same dimension.

To check the descriptive and forecasting power
of the Mitcherlich equation, Nagumo and Sato (1965) applied
it to the growth of trees in stem height and diameter as
well as in stem volume converted into linear dimension by
taking its cubic root. Their conclusion: the fit was satis-
factory, but the prediction based on this equation reliable

only for several years ahead.

The logistic equation

The logistic equation is also known by several
other names as Verhulst's equation, Robertson's equation,
autocatalytic equation etc. It is based on a general
assumption that the rate of growth dy/dt at any given time
t is proportional not only to the difference between the
maximum achievable size (¢ and the current one y, but also
to the current size 1itself. In terms of differential equa-

tion, this assumption is equivalent to

,%‘%=Zy((7—g/), I1I-8

where [ is the intrinsic rate of growth. The solution of

the above equation is given by
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7 T1-9

where g and b are newly introduced parameters related to the
initial size y, and the rate constant [ respectively. The
exact mathematical relationship between these new parameters
and the original ones is given in Table 1 along with other
important characteristics of the equation. The general shape
of the logistic curve is shown in Fig. 2. The most marked
graphical difference from the Mitscherlich is that the
logistic has a inflection, while the former doesn't, appear-
ing exactly midway of the entire growth process. As with
the Mitscherlich equation, the notation and expression of
what is generally termed the logistic equation varies from
one author to another. IHowever, since ail the other forms
of mathematical expressions can be reduced to form II-9
through proper transformation, Eg. II-9 shall be the stan-
dard form henceforth in the present work unless otherwise
mentioned.

According to Yule (1925) the logistic equation
was first proposed by the same person who proposed the
Mitscherlich equation first. Namely, based on the similar
logic as the one given just above, Verhulst (1938, 1945)
proposed a differential equation along with its solntion,
each equivalent to I1I-8 and 1I-9 respectively, to descirbe
the human population growth. Not only he proposed it but
also applied it to the observed population growth of some
Buropean countries.

The fact that t e logistic equation is the best

known growth function today may be most attributable to



15

Size:y
%
T
0.5+ O
§
O L] [ 4 1] L ] L
49 80 Time:t
Figure 2. The logistic curve.
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Pearl and Reed (1920), who renewed the same logic and an
equation of similar signif.cance as Verhulst's, and then
applied it successfully to the observed mopulation growth of
the United States. Subsequently the senior author (1924)
applied the logistic equation to the population grow*h of
various countries all over the world, in which the equation
revealed a remarkably good agreement with the observations
as to make the author claim "the iogistic law of growth".
Apparently, this evoked an onset of applications of the
logistic to a great variety of phenomena ranging from popu-
lation growth of other species than human being to growth

of individual organisms. Just to mention a few, Gause (1934)
applied the logistic to the population growth of an infuso-
rian.

According to Lotka (1924) the first application of
the logistic equation to the growth of individuals was made
by Robertson (1908), who applied it to the growth in weight
of rats.

As an example of its application to individual
plant growth, it suffices to quote Reed and Holland (1919)
who fitted the equation to the growth in height of sunflower.
Unfortunately, however, the author couldn't find any example
of its application to the diameter or radial growth of trees.
lHowever, considering from the very general assumption under-
lying the lcgictic eguation, it is also difficult to find

a reason why not it is applicable to the growth of trees.

The Gompertz equation
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This equation, apparently named after the person
who first proposed it, is based on the assumption that the
rate of growth dy/dt at any given time t is proportional
to the current size y and the logarithmic difference bhetween
the maximum achievable size 4 and the current size, i.e. in

terms of differential equation:

%%=qy(ZnA~Zny), II-10

where ¢ is the intrinsic rate of growth. Upon integration,
Eg. II-10 results in a solution of the form:
p-qt

y=he ° , I1-11
where p is a newly introduced parameter related to the ini-
tial size y,. The exact parametric relationship is given in
Table 1 along with other mathematical characteristics of the
Gompertz equation. The general shape of the Gompertz curve
is shown in Fig. 3. Like the lcgistic, the Gompertz has an
inflection, but it appears at a different position, i.e.
approximately at the first one-third of the entire growth
process.

As with the lMitsherlich and the logistic, there
are several other expressions for the Gompertz equation.
Since most of them reduce to form II-11 when subjected to
suitable transformation, Eqg. II-11] shall be the standard
form for the Gompertz in the present work.

'As mentioned earlier this equation was first
provosed by Gompertz (1825, according to Winsor, 1932) for

a purpose other than the growth function, i.e. a mortality
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The Gompertz curve.

y = Aexp(-ep_qt) : A =1.0, p=1.2, q = 0.04,
with the circle denoting the point of inflec-

tion and the broken line asymptote.
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logistic and the Gompertz equations
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Major characteristics of the Mitscherlich, the

PROPERTY MITSHERLICH LOGISTIC GOMPERT?Z
Rate of growth propor- Rate of growth propor- Rate of growth propor-
tional to the stretch tional to the present tional to the present
Assumption from the present diam- diameter and its stretch diameter and the logarith-
eter to the maximum to the maximum achievable mic stretch from the present
achievable diameter. diameter. diameter to the maximum
achievable diameter.
Differential dy _ dy dy _
equation di = k(M - y) Y Iy(c - y) ar = qy(lnd - Ilny)
-qt
Growth - -kt - c -eP~ 1
function y = M1 - Le ™7) ¥ = S a-bt y = Ae
+ e
M-y ¢ -y
<0 70
L = —— a = ln— A
Nature Moo Yog p Z"flngg),
of Mo ZigﬁptOtlc diam- b= Cl, A : asymptotic diam-
e 0 . . . . eter,
parameters k : intrinsic rate of ¢ : asyr totic diam q : intrinsic rate of
growth, eter, growth
y,: initial diameter ! : intrinsic rate of i iesod
0 growth, Wy initial diameter
¥o¢ initial diameter
Range of original parameters original parameters original parameters
parameters
expected M>0, k>0, Yo > 0 c>0, 1>0, ¥y > 0 A>0, q>0, y,> 0
igggry derived parameters derived parameters derived parameters
0 <L <1 a>0, b>0 p>0
dy MLke'kt du bC,n'bt dy. p-qt -gP-at
dt i CEEES dt = Aae e
Derivatives - (1 + )2
2 ~ 2 9. a-bt, a-bt 2 - _pp-at -
a4 _ _yrrfe Kt d’y _ biCe bge = 1) dly _ pa2,P9t e (ePqt_1)
At dt? (e Pty 1)3 a2
y =0 y =0
Asymptotes y = M y = y o= A
. - a . C L LA A
Inflection nil t = b, i 3 t = . ¥ e 53
Max imum MLk (when t = 0) gg(when t =9 29 (when t = )
growth rate - 4 b e q
convex downward convex downward
convex upward all the (when t<£) (when t<§)
Convexity ) ’
way up convex upward convex upward
{when t*ai (when t>E)
b q
symmetric (with respect
Symmetry asymmetric to th - point of asymmetric

inflection)
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curve for human being. Its first theorization as a growth
equation was achieved by Wright (1926) in his criticism of
Pearl's logistic theory. He reasoned rather inductively
that "the average growth power as measured by the percentage
rate of increase tends to fall at a more or less uniform
percentage rate”". This assumption is slightly different
from the one given earlier but results in the same growth
function. The former was given so as to make a comparison
with the assumptions for the other equations easy and dis-
tinctive. It should be noted that the above mention by
Wright was aimed at the growth of individual organisms but
not at the growth of populations.

Accordingly Davidson (1928) applied the Gompertz
equation to the crowth in body weight of cow. Then Weymouth
et al. (loc. cit.) applied it to the linear growth in shell
size of the razor clam as well as to the growth of the
cockle (Weymouth and Thompson, 1931), reporting a satisfac-
tory agreement with the observations in both cases.

Though there 3re not many instances of the Gompertz
application to the growth of plants, Osumi (1977) mentioned
its apprlication to the growth of trees. 2s with the logistic,
considering from its general assumption, it seems that there
is no positive reason why shouldn't it be applicable to the

growth of plants.

Von Bertalanffy's equation

While all the growth equations discussed above are

composed on rather general reasonings, von Bertalanffy's
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equation is more specific and particular to the subject it
is aimed to describe, i.e. the growth of animals. According
to von Bertalanffy (1941, 1957, 1968), the growth of animals
in weight dw/dt results from the difference between the syn-
thesis [ (w) and degeneration f,(w) of body building mate-

rial, thus

w

7= Mw)- f2(w) .

&

|

Q.

Thuogh this assumption is very general as such, the synthesis
and degeneration functions were determined very specifically
as follows. According to Huxley's principle of allometry,
both the synthesis and degeneration term in the above equa-
tion can be repnlaced by power functions of the body mass

nresent, thus

0 n m
qaw - nw' - «w

dt ,

where n and k are the synthesis and degeneration rate con-
stants. Then reasoning from general physiological observa-
tions that the degeneration of brilding materials 1is nro-
portional to the body mass present, von Bertalanffy replaced
the degeneration expronent by unity, i.e., m=1. Tor the
synthesis term, he reasoned that the anabolic processes of
an animal is proportional to its enercy metabolism, and re-
placed for the size depvendence of animal that of metabolic

rate, i.e., n=0. Theus the egquation finally recuces to

, o .
S o= onw - KW , iI-12
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the solution of which is given by

- -(1-ayrt, 1 -0
(1-a), -0 a;%f] /(1) I7-13

- (2 - Weo ) &

This is what is generally known as von Bertalanffy's equa-
tion in which depending upon the metabolic type specific to
kinds of animals concerned, the exponent a takes on values

within the following clearly cefined range:
2/3 < a < 1,

The case of special interest is when o takes on the
smallest limiting value. According to Rubner's surface rule,
the methabolic rate in many animals, especially in homeotherms,

is pronortional not to body weight but to surface, thus
a = 2/3.

Replacing this in Eqs. IT-12 and II-13, we get

2 /3
%% = nw / - KW ) I11-14

and 1its solution

1/3

~kt/3, 3
~- W, je ]

Interestingly enough the cubic root of Eq. II-15 is equi-
valent to the Mitscherlich equation II-4 or II-5. This

means, from the dimensional-analysis point of view, that

any growth that follows von Bertalanffy's equation with

a = 2/3 in cither mass or volumetric dimension must in linear
dimension follow the Mitscherliich, and vice versa. In support

of his claim that the growth of trees in stem diameter follows
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the Mitscherlich equation, Suzuki (1979) reasoned, after von
Bertalanffy, for the volumetric growth of trees that the
photosynthesis is proportional to the surface area of a tree,
whereas the decomposition is proportional to the respiration
which further in turn proportional to the volumetric tree
biomass present. This premise results in a tree growth
which in volume follows von Bertalanffy's equation and thus
in linear dimension the Mitscherlich. Obviously this assump-
tion is more specific and particular to the subject of tree
growth than the assumption for the Mitscherlich given earlier
in this chapter. Thus, this premise, if proved physiologi-
cally, would certainly give a firmer ground to the presump-
tion that the diameter growth of trees follow the Mitscher-

Jich.

Other growth equations

Based on physiological laws and a volumenous
result of experiments, von Bertalanffy defined the numerical
range of his synthesis exponent o as mentioned earlier.
Richards (1959) proposed to liberate the parameter o from
this restriction and use on an empirical basis the von
Bertalanffy's equation for botanical studies as well. 1In
support of his view Osumi (1976, 19777, 1977B) advocated
its use in forestry and applied it to various growth pheno-
mena encountered in this field. Obviously this removal of
the parametric restriction adds another degree of freedom
to the original equation and improves the agreement with

observations so long as the apparent fit is concerned.
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Yoshida (1979) reported a more satisfactory fit with this
generalized von Bertalanffy's equation than with any of the
Mitscherlich, the logistic and the Gompertz for the observed
growth of sugi (Cryptomeric japonica). However, the libe-
lization of the parameter, which is equivalent to the incor-
poration of an additional parameter, deprives the original
equation of its important trait of theoretical compartibi-
lity. In its original equation the pesrameter o has a defi-
nite physiological meaning releva' it to the subject of animal
growth, and so does the equation itself. In its generalized
form, however, it is difficult to find any biologically
significant meaning for the newly incorporated parameter.
To make the matter worse the new parameter interferes
mathematically with the original parameters and deprives of
their authentic significance too. Accordingly the equation
itself also looses its original significance and deteriorates
to a mere empirical equation as Richards had envisaged from
the very beginning.

Exactly the same argument may well applies to the
generalization of the other theoretical equations. With the

generalized Mitscherlich equation by Prodan (loc. cit.):

we can undoubtedly exvpect a better fit to the observation
than with the original equation II-6. However, it would

be difficult to find any significant physical meaning in the
newly introduced exponent n. The exponent also affects other

parameters in such a way that they also loose their original
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physical meaning.
The most notorious deterioration of the theoretical
quality by introducing physically meaningless parameters is

seen in Peari's (loc. cit.) generalized logistic equation:

C

<
Il

1 .2 3 .
- y +a-t + +...
l+medlt ant ast .

It is a mathematical rule of thumb that the intro-
duction of additional parameters in an equation adds further
flexibility to the equation, which in turn improves the
goodness of fit in practical apwvlication, but it also dis-
possesses the original equation and its parameters of
their original theoretical meaning. In other words the
theoretical equation retrogrades to a mere empirical equa-

tion upon meaningless generalizatiomn.

Conclusion

According to the directly preceding review and the
accompanying discussions, growth equations were classified as
in Table 2 by their theoretical quality. The two extremes in
this classification are the empirical equations and the
theoretical ones. The former is those without any rational
reasoning r~hind them but have been adopted largely due to
their graphical resemblance to the observed course of growtii.
The latter are those constructed on at least some plausible
ground and with the pnarameters clearly defined in terms of
the relevant subjects. Between them both fall guasi-theore-

tical equations, which originally were constructed on
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rational ground but lost theoretical meaning by artificial
manipulation made just to improve the guality of fit or
something of the kind.

The theoretical equations are further broken down
into two sub-categories, the particular equations and the
general ones. The terms particular and general refer to the
way the differential equations leading to growth equations
are built. In particular equations, the differential equa-
tions are constructed on some a posteriori principles arrived
at by generalizing facts collected and observations made on
some particular subject the growth of which is at stake.

The best example would be von Bertalanffy's emuation which
is underlain by the principle of allometry, Rubner's surface
rule and other a posteriori physiological knowledge concern-
ing the growth of animal. Usually, in particular equations,
not only the subject of growth is clearly envisaged but also
the physical dimension in which the growth is to be consid-
ered is exactly defined as "the growth of animals in weight"
in von Bertalanffy's equation or "the volumetric growth of
even-aged stands" in Khilmi's eguation mentioned earlier.

On the other hand, the general equations are derived from
some general a priori assumptions formed by reason alone
without any particular reference to any specific subject of
growth. The examples of the general equations are the Mit-
scherlich, the logistic and the Gompertz.

It should be vointed out that the classification

made above is not absolute. An equation can be either theo-
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r~tical or empirical depending upon the user's standpoint,
viz., a theoretical equation is degraded to an empirical
one when used beyond .ts rational scope.

All the above discussion has brought’us to the
point where we can choose the best equation or eqguations for
the growth of trees at least from a priori point of view.

It has been already mentioned that the empirical equations
are far out of the question mainly because they are not ac-

companied by any propositions or assumntions which in some

way or another ex

3
28!
'

lain the mechanism of crowth. Trne similar
reasoning helps eliminate the particular theoreticai equa-
tions. If there were any particular equation for the radial
growth of trees reasoned by prhysiological principles of tree
growth, it would be undoubtedly the best of our choice.
Unfortunately, however, all the existing particular equa-
tions are for something else than the radial growth of trees.
Since these particular equations are firmly reasoned by
nrinciples obtained by generalizing the facts and observa-
tions concerning other particular organisms or their aggre-
gates, it will be readily noticed that the whole logical
structures which constitute these equations are crumbled
when they are used for the radial growth of trees. Thus at
least from logical point of view, the particular equations
cannot be used for the present purpose. If they are used
for the radial growth of trees, they are no more theoretical
but mere empirical equations. The above discussion will

give enough ground to discard the particular theoretical
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equations here.

As a matter of fact, the above argument is the one
according to which we have defined the quasi-theoretical
equations. Thus they are also disqualified.

Now, the above elimiantion of equations leaves the
general theoretical equations, i.e., the Mitscherlich, the
logistic and the Gompertz as the prospective equations for
describing the radial growth of trees. Since these eqgua-
tions are derived from general a priori assumptions which
specifies neither the subject of growth nor the dimension in
which the grwoth is to be defined, there is no positive
reason why they shouldn't be applicable to the radial growth
of trees. However, it 1s not clear, with the present state
of knowledge or from a priori considerations, which one of
the Mitscherlich, the logistic and the Gompertz is most
suitable for the growth of trees. This will be made clear
in the succeeding chapters by applying these equations to

the actual growth of trees.



CEAPTER III
APPLICATION OF THE MITSCHERLICH, THE LOGISTIC
AND THE GOMPERTZ EQUATIONS TO THE RADIAL

STEM GROWTH OF WHITE SPRUCE

Introduction

In view of the discussions made in the preceding
chapters, the three most prospective growth eguations, i.e.
the Mitscherlich, the logistic and the Gompertz equations,
were applied to the observed radial growth of white spruce
[Picea glauca (Moench) Voss], ané the problems associated
with the application were discussed from theoretical as
well as from practical points of view. The criteria
adopted here for the comparison of the equations were ease
of fitting, goodness of fit and whether or not the equa-
tions function as expected from the theory, i.e., theoreti-
cal consistency. Before entering the application and the
analysis, however, the Mitscherlich, the logistic and the
Gompertz equations were comvared on an a priori ground in
the following.

To begin with, a mention has to be made of the
plausibility of the assumption underlying each of these
three equations. It seems on an a priori ground that the
Mitscherlich assumption is as plausible as the logistic's.
Aside from the one given earlier, the assumption for the
latter can also be interpreted as follows: the percentage
rate of growth is inversely preonortional to the proximity
of the current diameter to the uvper asymptote. Thus the

point between the Mitscherlich and the logistic is whether

30
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it is the absolute rate of growth or the percentaqge rate
that is proportional to the proximity term. However, even
after this interpretation, it seews difficult to judge
which assumption, the logistic's or the Mitscherlich's is
more plausible. On the other hand, the assumption for the
Gompertz looks to be on a more feeble ground than those of
the other two, particulariy the portion "logarithmically
proportional to ...". But why logarithmically? It seems
not much appealing to our logic. However, putting the as-
sumpticn as Wright (loc. cit.) did saves a lot: the percen-
tage rate of change in the percentage rate of agrowth de-
creases 1n a constant manner, ..e.,

()

—udt = ~-q = const.

dy
(ydt)dt

This interpretation makes the Gompertz assumption as plau-
sible as those of *he Mitscherlich's and the logistic's.

As seen from I'ig. 1 through 3, the most remarkable
difference between the Mitscherlich and the rest is that
the former has no inflection, while the latter does. This
is one of the consequences arising from the assumptions.
Both in the logistic and the Gecmpertz, the rate of agrowth
is governed by two factors, romely the size-proportional
factor and the proximity factor, while it is only the pro-
ximity factor that controls the rate of growth in the Mit-
scherlich. To put it short, the existance of two competing

factors in an equation causes inflection. It is generally
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said that the diameter growth of trees follows a sigmoid
having a point of inflection (Bruce and Schumacher, 1950;
Iiusch et al., 1972). BApparently, this general observation
seems to be disadvantageous for the Mitscherlich which lacks
inflection. It should be noted that the iaflection of the
logistic and the Gompertz are fixed at certain definite
voints, i.e., just midway of the entire course of growth in
the former and approximately at one-third of the way in the
latter. This also looks somewhat unrealistic. From math-
ematical point of view alone, a point of inflection can be
introduced in the Mitscherlich, or it can be made mobile in
the logistic and the Gompertz by incorporating a new para-
meter. Then, however, it would be difficult to find a
proper physical meaning for the newly introduced parameter.
Moreover, the introduction of a physically meaningless
parameters degenerates the whole rational validity of a
theoretical equation as mention:d earlier.

The number of the growth~rate controllina factors
is also reflected in the asymptote. The Mitscherlich has
only one upper asymptote, while both the logistic and the
Gompertz curve have two, the upper and the lower ones. It
is a logical requirement that the uvper asymptotes be posi-
tive. However, this is not always the case when the eqgua-
tions are applied to the actual growth of the trees as will
be shown in the succeeding ana.ysis.

As for the sign of parameters, the intrinsic rates
of growth, k, 7 and g for the Mitscherlich, the logistic

and the Gompertz respectively must be positive in theory.
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But this again is not always the case in application as
will be shown later.

From operational point of view, the initial diam-
eter or radius Yp can either be zero or nositive in the Mit-
scherlich, while it musc aiways be positive in the logistic
and the Gompertz. If it is equal to zero in the latter two
equations, the growth cannot take off forever as wil” be
easily seen in their differential forms. Whether the actual
diameter of trees grows from zero or from some infinitesimal
but existent amount is a philosophical rather than a bio-
logical matter, but from operational point of view, re-
taining a flexibility in the initial size seems to be more
advantageous for the Mitscherlich. A more practical com-
parison of the three equations will be made in the follow-
ing in this chapter and the next chapter in association with

their application to the observed radial growth of trees.

Materials and methods

The data employed for the present analysis is the
growth records of 84 white spruce individuals collected in
1977 from the Northwest Territories, Canada by a joint sur-
vey team of Nagoya University, the University of New Bruns-
wick and the University of British Columbia (Sweda, 1979).
An increment core was taken at breast height (1.3 m above
ground) from each of the 84 wh e spruce trees randomly
chosen in a mixed stand of white spruce and balsam poplar
(Populus balsamifera L.) arowina on the west bank of the
Slave River in the vicinity of sort Smith (Sweda and

Yamamoto, 1978). Back in the laboratory, radius of each
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successive annual ring on every core was measured to a-
humdredth of a millimeter with an increment measuring device
equipped with a microscope, and the yearly radial growth was
restored for all the 34 trees sampled. The age of the trees
ranged from 42 to 96 vears old with a mean of 101 years and
standard deviation 26 years.

Then, the parameters of the Mitscherlich, the
logistic and the Gompertz equations were determined for each
of the 84 individual trees by fitting the equations to the
corresponding observed radial growth. To make a comparison
with the empirical equation, two typical empiricals of the

form:
y = atbt+et?, ITI-1

at+bt’+et’. I7I-2

i

4

were also applied, and their parameters were determined.
These eguations were termed temporarilv empirical I and II
respectively.

For fitting a total of these five growth functions
to the observed growth, Deming's (1943) method of least
squares was employed. The reason why this particular method
was used is twofold. TFirstly, since all the five ejuations
employed here are nonlinear, the ordinary method of 1inear
regression was not applicable as such. Secondly. although
proper Llransformation of variables may well reduce the fit-
ting to a.matter of simple linear regression, it usually

brings about in the result unnecessary bias the magnitude of



35

which varies depending on the tyve of transformation emplyed

(Sweda and Kurokawa, 1979). The:r~ consideration called for

the method of Deming which is powerful and unbiased for non-
I

linear curve fitting.

Theoretical consistency

The parameters of the Mitscherlich, the logistic,
the Gompertz, the empirical equations I and II determined
for each of the 84 trees are given in Table 3 through 7
along with their statistics. A few graphical examples of
the calculated growth as compared with the corresponding
observations are also given for each of the five equations
in Fig. 4. through 7. Judging from these graphical compari-
sons and the otheirs of the kind which could not be given
here for short of space, all the equations represent the
observed growth reasonably well. However, a closer review
of the above tables and figures revealed several discrepan-
cies as in the following.

The parameter ¥ of the Mitscherlich, ¢ of the
logistic and 4 of the Gompertz are all, in theory, supposed
to represent the asymptotic radius that a tree will ulti-
mately attain. A comparison among tables 3, 4 and 5 indi-
cates that this theoretical prerequisite is most satisfac-
torily fulfilled by the Mitscherlich so far as the .iean is
concerned. According to Sargent (1965) the empirically
observed asymptotic diameter for white spruce is some 2 ft.,
which in terms of radius is 1 ft. or approximately 30 cm.
Other authors of dendrology (e.g., lHosie, 1975; Collin<cwood

and Brush, 1978) also give similar figures. The mean
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Table 3. Parameters of the Mitscherlich equation as

applied to white spruce

Tree k I* M Tree k o M
No. (L/year) (cm) No. (1/year) (cm)
1 0.01183 1.060 27.50 43 0.01166 1.048 26.08
2 0.01925 1.044 21.49 44 0.00916 0.995 21.08
3 0.02103 1.097 20.68 45 0.01946 0.981 83.10
4 -0.01002 1.009 -11.17 46. -0.02227 1.060 -3.63
5 0.00865 1.027 27.41 47 0.01355 1.039 25.00
6 0.01484 1.065 21.18 48 0.00503 1.011 52.43
7 0.00221 1.007 96.84 49 -0.00481 0.993 -39.84
8 0.01957 1.125 16.72 50 0.01494 1.031 26.79
9 0.01079 1.080 15.27
10 0.02407 1.059 7.19 51 0.01690 1.033 19.13
52 0.02090 1.087 14.38
11 0.01594 1.080 10.29 53 0.00967 1.008 22.23
12 0.00699 1.098 23.70 54 0.02064 1.073 17.34
13 0.01139 1.097 18.92 55 0.00631 1.012 39.31
14 0.01146 1.003 13.68 56 0.01813 1.040 20.54
15 0.00242 0.994 41.58 57 0.01568 1.058 16.32
16 0.01555 1.060 14.86 58 0.00383 1.016 57.36
17 0.00016 1.000 966.79 59 0.02116 1.042 11.66
18 0.01305 1.084 21.84 60 0.00672 1.013 28.15
19 0.01514 1.005 6.96
20 0.00958 1.033 19.18 61 0.00493 1.008 31.78
62 -0.00215 1.004 =58.57
21 0.00935 1.102 22.21 63 0.01179 1.015 17.22
22 0.01505 1.071 13.08 64 0.02287 1.114 16.39
23 0.01288 1.051 15.11 65 -0.00881 1.865 -1.23
24 0.01583 1.014 20.53 66 0.00853 1.034 28.98
25 0.00126 ..003 103.44 67 0.00896 1.009 19.10
26 -0.01521 1.089 -1.21 68 -0.01310 1.040 -8.04
27 -0.02817 1.030 -0.19 €9 0.00293 1.014 €3.59
28 0.00490 1.029 30.76 70 0.01009 1.054 32.13
29 -0.00803 0.989 -8.76
30 -0.01486 1.037 -2.71 71 -0.00181 0.978 -62.71
72 0.01725 1.092 22.33
31 0.01409 1.051 35.00 73 0.01053 1.049 25.46
32 0.02213 1.061 16.49 74 0.02008 1.133 20.77
33 0.01484 1.034 21.74 75 0.02898 1.021 85.24
34 0.00829 1.018 31.36 76 0.01615 1.073 26.79
35 0.00842 1.026 36.48 77 0.01515 1.054 14.37
36 0.02043 1.106 24,83 78 -0.00400 0.984 -44.58
37 0.00815 1.027 33.14 79 -0.00069 0.998 -169.22
38 0.01165 1.056 25.89 80 0.01605 1.082 20.75
39 0.01627 1.101 23.26
40 0.01568 1.095 24.65 81 -0.00424 1.017 -18.75
32 0.00951 1.C.4 30.52
41 0.00543 1.021 58.85 83 0.01147 1.049 35.85
42 ~ -0.00699 0.990 -16.31 34 0.01848 1.076 21.67
Mean 0.00883 1.052 29.47
Standard Dev. 0.01078 0.097 108.88
Coef. of Var. 1.22 0.09 3.69

* dimensionless
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Table 4. Parameters of the logistic equation as
applied to white spruce
Tree o b ¢ Tree * b c
No. (1/year)  (cm) No. a (1/year) (cm)
1 2.984 0.08885 15.16 43 2.492 0.06488 16.50
2 2.210 0.07816 16.02 44 2.056 0.05991 11.17
3 2.551 0.08305 16.38 45 1.698 0.06798 6.29
4 2.783 0.05121 16.84 46  2.888 0.07404 11.34
5 2.528 0.07348 12.69 47  2.448 0.08228 14.73
6 2.173 0.08655 13.42 48 2.446 0.06230 17.45
7 2.600 0.06201 15.76 49 2.841 0.12116 8.93
8 3.008 0.09119 12.76 50 2.386 0.08136 17.12
9 2.607 0.05021 11.05
10 1.828 0.05808 6.67 51  2.215 0.07506 13.54
52 2.576 0.08916 10.93
11 2.327 0.05172 8.74 53 2.264 0.06860 11.53
12 1.839 0.03570 14.55 54  2.448 0.08386  13.37
13 2,841 0.05550 14.22 55 2.309 0.05320 17.62
14 2.600 0.05276 14.30 56 2.206 0.07183 15.60
15 2.108 0.02819 13.89 57 2.354 0.06496 12.30
16 2.444 0.06866 10.93 58 2.716 0.05765 17.10
17 2.380 0.03680 19.43 59 1.991 0.06709 9.68
18 2.735 0.05817 16.74 60  2.248 0.04954 13.84
19 1.906 0.04977 5.69
20 2.269 0.04920 12.39 61 2.252 0.04239 12.51
62 2.403 0.04239 15.81
21 2.834 0.04609 15.96 63 2.051 0.05273 11.77
22 2.130 0.04821 10.96 64 2.631 0.08455 13.71
23 2.255 0.05103 11.48 65 4.616 0.01145 139.52
24 1.815 0.04773 17.10 66 2.562 0.06292 15.09
25 2.502 0.03614 16.51 67 2.184 0.05921 10.19
26 3.187 0.03765 7.26 68 3.145 0.03608 36.99
27 4.662 0.03297 45.13 69 2.863 0.06033 14.78
28 2.781 0.04247 15.05 70  2.683 0.06467 18.92
29 2.887 0.04399 12.08
30 3.263 0.03587 16.33 71 3.516 0.05921 15.47
‘ 72 2.619 0.07328 17.19
31 2.508 0.08004 21.72 73 2.595 0.06392 15.03
32 2.337 0.08952 12.55 74  2.986 0.08777 16.38
33 2.207 0.06774 14.98 75 3.231 0.06378 19.93
34 2.418 0.07131 14.17 76 2.580 0.07090 19.02
35 2.497 0.07139 16.73 77 2.375 0.07015 10.08
36 2.732 0.08824 19.12 78 2.969 0.05403 20.47
37 2.616 0.06828 15.90 79 2.744 0.04998 12.31
38 2.762 0.07721 15.09 80 2.525 0.07043 15.30
39 2.968 0.08549 16.38
40 2.903 0.08222 17.22 81 2.315 0.04306 10.41
82 2.843 0.06921 16.83
41 2.681 0.06651 20.70 83 2.574 0.06499 22.80
42~ 2.801 0.06071 12.13 84 2.378 0.07257 15.61
Mean 2.580 0.06268 16.40
Standard Dev. 0.478 0.01786 14.64
Coef. of Var. 0.19 0.28 0.89

* dimensionless
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Table 5. Parameters of the Gompertz equation as
applied to white spruce
Tree * q A Tree * q A
No. p (1/year) (cm) No. p (1/year) (cm)
1 1.455 0.05240 16.38 43 1.219 0.03791 17.76
2 1.078 0.04967 17.01 44 0.968 0.03624 12.50
3 1.290 0.05391 17.07 45 1.811 0.04513 6.69
4 1.286 0.02117 26.35 46 1.354 0.02585 23.03
5 1.216 0.04272 14.12 47 1.292 0.04977 16.01
6 1.335 0.05257 14.39 48 1.162 0.03498 20.03
7 1.231 0.03368 18.46 49 1.304 0.05969 11.17
8 1.562 0.05884 13.24 50 —_ —_— —
9 1.315 0.03194 11.64
10 0.921 0.04167 6.80 51 1.107 0.04687 14.50
52 1.285 0.05669 11.47
11 1.133 0.03489 9.03 53 1.069 0.03995 12.84
12 0.854 0.02155 16.13 54 1.164 0.04165 14.03
13 1.432 0.03513 14.84 55 1.096 0.03067 19.87
14 1.214 0.02793 16.96 56 1.069 0.04573 16.51
15 0.989 0.01572 16.19 57 1.164 0.04165 12.95
16 1.206 0.04338 11.55 58 1.293 0.03220 19.41
17 1.115 0.01917 23.73 59 0.979 0.04499 10.10
18 1.360 0.03667 14.49 60 1.079 0.02933 15.41
19 0.909 0.03284 5.97
20 1.106 0.03043 13.38 61 1.074 0.02745 14.24
62 1.118 0.02052 20.04
21 1.456 0.02947 16.71 63 0.988 0.03315 12.69
22 1.080 0.03279 11.36 64 1.355 0.05581 14.14
23 1.109 0.03286 12.11 65 —_— — —
24 0.880 0.03240 17.85 66 1.231 0.03690 16.61
25 1.171 0.01925 19.59 67 1.041 0.03505 11.33
26 1.490 0.01156 19.08 68 — — —
27 —_— — — 69 1.359 0.03226 16.82
28 1.307 0.02410 16.58 70 1.315 0.03900 20.42
29 1.327 0.01896 17.87
30 1.512 0.01124 41.58 71 1.655 0.02421 18.18
72 1.324 0.04691 17.93
31 1.231 0.04899 23.42 73 1.269 0.03871 16.25
32 1.155 0.05737 13.22 74 1.548 0.04691 17.93
33 1.068 0.04226 16.10 75 1.573 0.03617 22.12
34 1.155 0.04121 15.89 76 1.282 0.04829 20.12
35 1.206 0.04178 18.60 77 1.174 0.04419 10.73
36 1.382 0.05641 19.97 78 1.369 0.02638 25.91
37 1.236 0.03907 17.65 79 1.275 0.02561 14.97
38 1.353 0.04634 16.28 80 1.269 0.04505 16.11
39 1.513 0.05388 17.17
40 1.468 0.05154 18.11 81 1.090 0.02021 14.25
82 1.39%4 0.04133 18.18
41 -1.278 0.03752 23.35 83 1.252 0.03955 24.49
42 1.290 0.02797 16.49 84 1.194 0.04717 16.36
Mean 1.240 0.03753 16.52
Standard Dev. 0.180 0.01154 4.99
Coef. of Var. 0.15 0.31 0.30

* dimensionless



39

Table 6. Parameters of the empirical equation I as

applied to white spruce

Tree a b c* Tree a b e*
No. (am) (an/year) (um/year?) No. (cm) (cm/year) (um/year?)

1 -1.695 0.3363 -14.53 43 ~1.104 0.2962 -11.27
2 =0.551 0.3710 -19.85 44 0.162 0.1836 -6.08
3  -1.500 0.3947 -21.24 45 0.345 0.1330 -6.98
4 0.299 0.0940 8.16 46 N.305 0.0675 17.31
5 -0.694 0.2365 -7179 47 -0.859 0.3304 -15.14
6 ~1.264 0.3103 -14.83 48 -0.566 0.3633 -5.53
7 -0.664 0.2151 -22.09 49  -0.264 0.1783 -5.52
8 -=1.900 0.3210 -17.14 50 ~0.747 0.3874 -19.20
9 -1.035 0.1567 -4.84
10 0.403 0.1074 -4.44 51 -0.404 0.2967 -~14.86
52 ~1.006 0.2808 -16.02
11 -0.379 0.1350 ~4.90 53 -0.148 0.2096 -7.56
12 0.687 0.1151 -3.57 54 ~0.981 0.3302 -18.58
13 -1.608 0.2186 -7.32 55 -0.419 0.2441 -5.93
14 -0.348 0.1576 -0.91 56 -0.522 0.3372 -17.1¢9
15 0.273 0.0982 -0.97 57 ~06.705 0.2356 -10.35
16 -0.712 0.2158 -9.61 58 -=0.965 0.2232 -3.81
17 0.035 0.1511 -0.12 59 -0.054 0.2015 -=10.25
18 -1.658 0.2735 -9.98 60 -0.290 0.1836 -4.51
19 1.148 0.0884 -3.49
20 ~0.435 0.1713 -5.07 61 -0.189 0.1533 -2.91
62 0.247 0.1261 1.51
21 -21007 0.2022 -5.41 63 -0.068 0.1864 -6.62
22 -0.303 0.1612 ~5.62 64 -1.266 0.3257 -17.29
23 -0.549 0.1776 ~0.40 65 -~1.062 0.0143 1.92
24 0.403 0.2617 -10.18 " 66 -0.959 0.2475 -7.81
25 ~0.356 0.1310 ~-0.78 67 -0.097 0.1639 -5.21
26 0.199 0.0107 3.47 68 0.641 0.0749 14.61
27 0.723 -0.0219 10.04 69 -0.924 0.1901 -2.66
28 -0.958 0.1457 ~3.05 70 -1.669 0.3258 -11.39
29 -0.041 0.0635 4.20
30 0.161 0.0308 6.13 71 -1.297 0.1079 1.29
72 -1.663 0.3588 -16.58
31 -1.610 0.4830 -22.40 73 -1.19% 0.2603 -9.21
32 -0.724 0.3333 -20.31 74 -2.487 0.4061 -21.53
33 -0.509 0.3001 -13.40 75 -1.881 0.2556 -3.65
34 -0.517 0.2578 -8.27 76  -1.691 0.4151 -19.79
35 -0.907 0.3059 ~-9.80 77 -0.587 0.2023 -9.95
36 2.217 0.4810 -26.38 78 -0.629 0.1691 4.61
37 -0.930 0.2746 -8.92 79  -0.390 0.1167 0.45
38 -~-1.427 0.3050 -12.41 80 -1.683 0.3364 -16.96
39 -2.223 0.7748 -18.38
40 -2.195 0.3847 -18.14 81 0.304 0.0816 1.81
82 -1.665 0.2974 -10.32
41 -1.263 0.3248 -7.56 83 -1.685 0.4082 -15.69
42 ~-1.318 0.1079 5.27 34 -1.105 0.3338 -16.15
Mean -0.678 0.2346 -7.81
Standard Dev. 0.838 0.1267 8.78
Coef. of Var. -1.24 0.54 -1.12

* micro—meter/year2
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Table 7. Parameters of the empirical equation II as

applied to white spruce

Tree a b* c** Tree a b* c**
No. (cm/year) (mn/yeafz)(nm/year3) No. (cm/year) (um/yearz)(nm/year3)

1 0.1153 5.035 ~-518.8 43 0.1983 1.050 -136.9
2 0.3393 -1.518 -17.5 44 0.2061 ~1.293 56.6
3 0.2759 0.387 ~-154.8 45 0.2042 -3.403 266.3
4 0.1242 0.228 50.8 46 0.1202 -0.553 280.1
5 0.1604 1.324 ~165.1 47 0.2377 1.099 -212.6
6 0.1763 2.095 -271.0 48 0.2072 0.882 105.2
7 0.1469 1.568 -133.9 49 0.9555 6.290 -927.1
8 0.1411 2.461 -271.7 50 0.2795 ~-1.504 -294.0
9 0.0995 0.333 -33.5
10 0.1499 -1.222 36.7 51 0.2664 ~0.852 -39.7
52 0.1835 0.828 =174.0
11 0.1244 -0.424 -0.5 53 0.1816 0.196 -83.3
12 0.2036 -1.321 49.2 54 0.2312 0.647 -179.3
13 0.1113 0.921 ~70.8 55 0.2115 0.090 -41.8
14 0.1044 1.360 -102.2 56 0.2868 -0.494 -84.4
15 0.1223 ~0.507 18.4 57 0.1794 0.109 -66.3
16 0.1558 0.311 ~76.6 58 0.1163 2.209 -169.5
17 0.1563 -0.132 7.0 59 0.2189 -1.683 52.6
18 0.1063 0.634 -41.2 60 0.1735 -0.398 3.1
19 0.0952 -0.456 5.0
20 0.1606 -0.509 6.3 61 0.1572 -0.623 30.6
62 0.1474 -0.315 29.2
21 0.1063 0.634 ~41.2 63 0.1952 -1.077 32.2
22 0.1601 -0.702 10.0 64 0.2398 -0.153 -85.1
23 0.1417 -0.037 -28.9 65 0.0797 -0.642 28.3
24 0.4165 -2.226 68.9 66 0.1488 1.615 -160.6
25 0.1040 0.389 -22.2 67 0.1639 -0.647 14.8
26 0.0275 -0.016 22.3 68 0.1427 0.115 99.0
27 0.0599 -1.033 137.2 69 0.0741 2.686 -199.1
28 0.0661 1.198 -66.1 70 0.1670 0.244 -223.1
29 0.0603 0.489 ~4.2
30 0.0623 -0.311 68.0 71 ~0.0052 2.153 -96.3
: 72 0.2309 0.871 -143.0
31 0.3104 2.476 -367.4 73 0.1460 1.100 -167.2
32 0.2587 ~0.019 ~156.9 74 0.1767 2.967 -319.1
33 0.2614 ~0.545 ~51.1 75 0.0346 4.860 -326.7
34 0.1963 0.974 -147.8 76 0.2593 1.661 -241.7
35 0.2119 1.540 -193.9 77 0.1635 ~0.181 -39.4
36 0.2762 2.175 -322.2 78 0.0780 2.931 ~117.5
37 0.1382 3.091 -306.7 79 0.0674 1.278 -81.2
38 0.1444 2.985 -306.7 80 0.2097 0.642 -118.4
39 0.1610 3.311 -340.6
40 0.1738 3.312 -322.2 81 0.1371 -1.686 162.7
82 0.1194 3.250 -280.6
41 0.1676 3.615 -330.2 33 0.2279 2.716 -276.4
42 0.0865 1.249 -64.7 84 0.2680 -0.473 -59.4
Mean 0.1744 0.710 -102.8
Standard Dev. 0.1113 1.702 173.0
Coef. of Var. 0.64 2.40 -1.68

* micro—meter/year2

** pano-meter/year3
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asymptotic radius of 28.47 cm for the Mitscheriich almost
exactly matches this figure, while the means of 16.40 cm
and 16.52 cm for the logistic and the Gompertz asymptotes
respectively seem unrealistically small. This indicates
that the asymptotes of the logistic and the Gomperiz didn't
function as satisfactorily as expected from the theory.

Not only the means but also the individual asymptotic

radii of the logistic and the Gompertz failed to comply with
their respective theoretical prerequisites. It sometimes
happened that the individual asymptotic radius was even
smaller than the corresponding observed final radius in
both cases as shown by Figs. 5(a) and 6(a). This result
casts a skepticism on the growth forecasting capability of
the logistic and the Gompertz equations.

The logistic and the Gompertz revealed another
discrepancy of similar nature in their parameters a and p
which are closely related to the initial radius y, as shown
in Table 1. The mean 2.58 cm of the parameter a's of the
logistic is equivalent to y,=C/14, which is too much for
the initial radius. 'his resulted in a considerable over-
estimation in the early stage of growth as typically seen
in Fig. 5(b). This consistent deviation in the early stage
of growth was often compensate Dby the deviation in the
opposite direction in a later stage as seen in the same
figure. This tendency of constant deviation revealed in
the present analysis also undermines the theoretical
credibility of the logistic equation. Though not as con-

spicuous as in the logistic, the Gompertz too showed a
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similar discrepancy. The mean 1,240 of the parameter p's
is equivalent to y,=4/30, which, though better than the
logistic, is still too large especially for a shade species
as white spruce. This resulted in a more or less consis-
tent overestimation in the inii al stage of growth as seen
in Fig. 6(a).

Although the parameters of the Mitscherlich

equation revealed the most satisfactory consistency with

their theoretical prerequisites on an average basis, an
examination of Table 3 revealed the following discrepancies.
The most striking ev dence found in Table 3 of
the Mitscherlich equation would be sporadic negative values
of the asymptote M and the rate constant kX, both of
which are supprosed to be positive according to the theory.
It will be readily noticed that the negative M's are always
associated with negative k's. Although this fact may look
strange and undoubtedly impairs the theoretical quality
of the Mitscherlich equation, it doesn't affect the credi-
bility of the equation as far as the agreement between the
observed and calculated growth is concerned as shown in Fig.
4(b). As seen from the same figure, this concurrent occur-
rence of negative wmarameters took place whenever the general
shape of the observed radial gronwth followed a course convex
downward. This never happened in the logistic and the
Gompertz. In these two equations, the calculated parameters
observed fhe sign expected from the theory.
Another discrepancy found in the Mitscherlich

was sroradic occurrence of unrealistically large values of
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the parameter M. A close examination of Table 3 shows that
they are associated with extremely small values of the rate
parameter k in a compensating manner, which nevertheless
again results in a reasonable agreement between the observed
and calculated growth. However, since M is supposedly the
radius ultimately attained in a long run, its extremely
large values are damaging to the theoretical credibiliity

of the Mitscherrich equation. That individual values of M
are rather fickle and not much reliable as the ultimate
radius is seen in its relatively large standard deviation
and coefficient of variation given at the bottom of Table
3. On the other hand the upper asymptotes ¢ and 4 of the
logistic and the Gompertz respectively are much less
variable as seen in Tables 4 and 5. 1In accordance with the
large variation in /M, the rate constant k is also more
variable than the corresponding parameters b and g of the
logistic and the Compertz.

Table 3 shows thalt the parameter [ is greater than
unity for most of the cases. This means that the calculated
initial diameters are negative, which in turn indicates the
equation underestimates the reality in the very early stage
of growth, but it is not to such an extent as the logistic
and the Gompertz overestimate. My experience shows that
putting the initial radius equal to zero, i.e. L=1, do
not deteriorate fit much. This suggests that the two-

parametered form

=t (1-e" Kty
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may be a more proper expression for the Mitscherlich equa-
tion than the three-parametered one employed here. Since
increased number of parameters progressively improves the
quality of fit for any equation, this indication of being
enough with only two parameters is a great advantage for the
Mitscherlich as a theoretical growth equation.

Judging from Figs. 4 through 6 and those that
couldn't be given here, it seemed that whether or not an
equation has an inflection doesn't really matter in appli-
cation. In other words, being devoid of it didn't seem to
have worked to the disadvantage of the Mitscherlich as
would have been foreseen. In Fig. 4 it seems as if the
observed growth is weaving its way about the Mitscherlich
which represents a hypothetical mean course of growth. On
the other hand, having an inflection didn't seem to have
any beneficial effect especially for the logistic. This
may, most probably, be due to the fact that irregularities
in actual growth process make it difficult to identify a
definite point of inflection in the observed growth.
However, the generally better agreement of the Compertz
with the observation than that of the logistic indicates
that the inflection in the actual growth, if any, appears
in earlier stage of growth tha: it does in the logistic.

Since the empiricals have no theoretical reference
base to be judged upon, there is not much to be said of
their parametric values. But it was found that the para-
meters were more variable than in the logistic and the

Gompertz but less so than in the Mitscherlich. A comparison
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between the observed and calculated radial growth for the
empirical equations is given in Tig. 7. Althoug the fit
itself is satisfactory, the calculated radius sometimes
decreases after a certain age even within the time range of
fitting as seen in Fig. 7{(b). There is no doubt that these
empirical equations take on illogical and unrealistic values
once beyond the range of fitting. This is one of the major
reasons why the empirical equation is rated inferior to the

theoretical in general.

Goodness of fit

Although the goodness of fit alone cannot consti-
tute any absolute basis (Feller, 1940), there is no doubt
that it is one of the important criteria for choosing the
best growth equation, if any, for the radial growth of trees.
Thus, the goodness of fit of each equation was calculated
for every tree and compared with each other. The goodness
of fit of any equation to the ith tree was evaluated by the
sum of squared deviations (55D) of the calculated yearly

radii from the corresponding observed radii, i.e.

n
550; = JZ; (g5 =up5) % ILI-3

where 05SD. : goodness of fit for theith tree,
Y;: : observed radius at age j,
calcualted radius at age [j,

tl

n  : total age of the 7 tree.

Thus the smaller is the 55D; value, the better is the fit.
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Since all the equations employed here have the same number
of parameters, i.e. the same degree of mathematical freedom,
this measure of the cuality of fit provides with a fair
basis of comparison among the eguations.

The results are given in Fig. 8 and Table 8. The
former shows the distribution of $SD for each of the five
equations compared, while the latter gives the statistics.
Judging from the mean of S$SD;, the Gompertz yielded the
least value, i.e. the best fit on an average basis, while
the logistic revealed the worst fit of all. Between them
both, ranked the empirical II, the empirical I and the
Mitscherlich in degrading order. The Gompertz is characte-
rized by small mean and standard deviation. The Mitscher-
lich has a smaller mean but greater standard deviation than
the logistic, which can also be seen graphically in Fig. 8.
It is interesting that the both empirical equations achieved
better fit than the logistic and the Mitscherlich.

For a more detailed comparison, a paired bilateral
t-test of significance on goodness of fit was conducted
between all the conceivable pairs of the five equations.

The test between any two competing equations (e.g., the

Mitscherlich vs. the logistic) was executed as follows:

1. Difference in goodness of 1it for the i th tree,

di=xi-yi,

where x7 and yi are the 575D values of two competing equations

for the ith tree.
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Table 8.

Statistics on goodness of fit

MIT. L.OG. GOMP.

No. of Samples 84 84 80
Mean 16.34 19.18 8.28
Standard Dev. 20.07 13.48 7.38

RS R T

EMP.I EMP.II
84 84
13.50 10.28
15.72 11.77

¢s
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2. Mean and standard deviation of the difference in goodness

of fit,

n
di = ° Zd{,,
=1
n
1 ]
5di = [-= Z (di-di)?

1=1 ’

Sk

where n is the number of trees used in comparison.

3. Calculated t-value,

to-: R

4. This calculated t¢-vaiue was checked against the tabu-
lated one to test a null hypothesis di= 0 against the

altenative diZ#0.

The results of tert is tabulated in Table 9.
Among the theoretical equations, it was found that there
was no significant difference in goodness of fit between the
Mitscherlich and the logistic, while the Gompertz revealed
a significantly better fit than these two. The two empiri-
cals showed significantly better fit than the Mitscherlich
and the logistic but significantly poorer fit than the

Gompertz.

Ease of fitting.
A mention has to be made on the technical diffi-

culties associated with the curve fitting as this will



Table 9. t-test of significance on goodness of fit among

the five competing equations

T — i e R ~ e gz s S A TSI PR PSP 8 A Y S i FR S T S5 P

MIT. LOG. GOMP . EMP.I EMP.II

MITSCHzRLICH 1.017 3.488 3.538 3.862
LOGISTIC n.s. 10.158 2.668 6.242
GOMPERY ** * ok 2.850 1.703
EMPIRICAL I * % * % * & 2.386

EMPIRICAL IT *% * % n.s, *

* % highly significant, i.e. significant at the 99
level of corfidence.

* sigr.ficant, i.e. significant at the 95% level of
confidence.

n.s. non-significant difference.

o\

%S
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certainly cast an impor! unt probliem in practical application
of these equations. As mentioned earlier Deming's method
of least squares is one of the best way for fitting complex
nonlinear functions. It is an itcvative method in which
initial estimates of the parameters have to be given prior
to the least squares calculation, which in turn gives a new
set of calculated parameters. These new parameters are fed
in again as the secondary estimates for the second round of
calculation, and the process is repeated on and on until the
parametric values converge, i.e. the newly calculated para-
meters become identical with those input as the directly
preceding estimates. The difficulty encountered in this
entire process of fitting is twofold, i.e. the one associated
with ¢iving the initial estimates and the other with itera-
tion time.

According to the present analysis, ease of fitting

was rated as follows:

easy = —-2 difficult

empiricals > Mitscherlich > logistic > Gompertz

)

With the empiricals, even what had seemed very far-off ini-
tial estimates converged easily in a few iteration times.
With the Gompertz on the other hand, even meticulously
chosen initial estimates sometimes took more than a score
of iteration times before converging, and in a few cases
never converged. The Mitscherlich and the logistic came
hetween these two extremes, but in general the former was

easier than the latter.
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Conclusion

It is a rather stunning finding 1i.. the present
analysis that ail of the three theoretical equations did not
work as expected from the theories, though the way and
extent those discrevancies appeared differ from one equation
to another. 1In spite of its sporadic extreme parametric
values, the indication of being enough with only two para-
meters would make the Mitscherlich the most prosvective of
all at least from theoretical point of view. The liability
to overestimate in early stage of growth and the accompany-
ing opposite liability in the late stage of growth was
shared by the logistic and the Gompertz, but it was more
pronounced in the former. This would make the Gompertz more
favourable than the logistic as a theoretical growth equa-
tion.

The best agreemtnt with the observed growth was
achieved by the Gompertz, followed by the Mitscherlich
with the logistic closing 11» the rear. The easiest to fit
was the Mitscherlich, followed by the logistic and then by
the Gompertz. Though this dependence of rank upon tiie cri-
terion makes it difficult to draw a clear-cut overall con-
clusion, the Mitscherlich would be the most promising of all
as a theoretical growth equation for the breast-height stem

radial growth of trees.



CHAPTER 1V
APPLICATION OF THE MITSCHERLICH, THE LOGISTIC
AND THE GOMPERTZ FQUATIONS TO THE RADIAL

STEM GROWTL OF JACY PINE

Introduction

In the preceding chapter, the Mitscherlich, the
logistic and the Gompertz equations were applied to the
growth of white spruce, one of the representative shade-
tolerant sj;ecies. In this chapter these equations were ap-
plied to the observed radial growth of jack pine (Pinus
banksiana Lamb.) a representative of shade~intolerant pio-
neer species, and the characteristics of each equation was
analvzed.

Although the methods of analysis employed in this
chapter is almost similar to those in the preceding chapter,
several minor improvements were made according to the expe-
rience learned and the recommendation made in the preceding
chapter. First of all, the number of growth data to be used
for the analysis was incre sedsignificantly, i.e. from appro-
ximately 85 trees to 350, to enhance the statistical credi-
bility of the analysis. Secondly, the Mitscherlich equation
was used in its two-parametered form instead of the three-
parametered one, while the other equations were left un-
chanaged. 1In accordance with the above alteration, the good-
ness of fit was evaluated by a slightly modified formula
which cnables us a comparison among growth equations of

different degrees of parametric freedom. Lastly, ease of
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fitting was analyzed in a more objective and statistically

reliable manner.

Materials and methods

The growth data emploved for the analysis is
individual growth records of 349 jack pine trees collected
in 1977 from the Northwest Territories, Canada by the joint
servey team mentioned in the vreceding chapter. A 0.882-
ha square samplie plot was established in an even-aged,
single~species jack pine stand regenerated after fire in
the vicinity of Forth Smith. Though an increment core was
taken at breast height from all the live trees present in
the plot, the removal of illegible cores resulting from
inner decay ended up with a total of 349 cores on which
the annual rings could be traced back to the very center of
the stem. The measurement of annual rings was made in
exactly the same manner as for the white spruce described
in the preceding chapter, i.e. with the increment measuring
device equipped with a microscope to the precision of 0.01
millimeter. The age of the trees counted at breast height
ranged from 94 to 136 years with a mean of 126.7 years and
standard deviation of 6.03 years. Tor a more detailed
account of the data collection and measurement as well
as the raw growth data, see Sweda and Umemura (1979).

As in the preceding chapter, a total of five
growth equations, i.e. the Mitscherlich, the logistic and
the Gompertz plus the empiricals I and II for reference,

was applied by the same Deming's method of least squares
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to each of the 349 jack pine growth records, and their para-
meters were determined. Considering one of the results
obtained in the preceding charter that only two parameters
would suffice for the !Mitscherlich, the two parametered

form was employed here instead of the three parametered one.
The rest of the equations were adoped unchanged. Just to
avoid confusion, the five growth equations used in this

chapter are renumbered and listed beliow:

Mitscherlich y=M(l~e-kt) V-1
, . C :
Logistic . S iv-2
I+e™ 77

_ep—qt
Gompertz y=de = iv-3
Empirical T y=a+bt+ct? V-4
Empirical II y=at+bt’+et? v-5

To obtain some guantitative measure of ease of
fittina, the least-squares calculation was conducted in the
following rather mechanical but systematic manner. TIirst
of all, the parameters of each yrowth equation were calcu-
lated for the first twenty individual trees, i.e. from stem
No. 1 to No. 20 inclusively, and the mean of these twenty
figures was obtained for each paramter. Then, with these
means as the common initial estimates, the least-squares
fitting was executed for all the 349 trees. In determining

a set of parameters of any equation for any individual
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tree, the least-squares calculation was repeated until two
successive estimates for every pnarameter involved became
identical within the prescribed precision of 1/1000, i.e.

until the inequality

{(A;=Az41) /A5 < 0.001,

4

where 4; : the i“h estimate of any parameter,
is reached. WNot to prolong the calculation, however, an
iteration alliowance of 10 times-per-tree was aiso set up.
In other words, the least-squaies calculation was terminated
as a "failure in fitting" when the estimate of any parameter
would not converge within the above prescribed precision
after ten repetition times. Then the number of the failures
was tallied for each equation as a measure of ease of fit-
ting. For those trees which succeeded in fitting, the ite-
ration times were tallied as arother measure of ease of

fitting.

Theoretical consistency

The parameters cof the above five equations deter-
mined for each of the 349 trees were so volumeneous that
they are given in Appendix I through V and only the final
statistics are given in Table 10. A few graphical examples
of the calculated growth as compared with the corresponding
observed one are also given for each equation in Figs. 9
through 13. Generally speaking it seemed that all the five
worked better with jack pine than with white spruce in

every criterion.



Table 10. Statistics on the parameters of the five growth equations
Mitscherlich Logistic Gompertz
Statistics** k M a* b %* q A
(1/vear) {cm) (1/year) (cm) (1/year) (cm)
x10° x10" x10" x10°
Mean 2.03 10.75 1.62 4,89 9.18 7.61 3.48 9.57
vVar. 0.19 14.90 0.05 1.37 3.51 1.41 0.89 4,41
S.D. 0.70 3.86 0.22 1.17 1.87 1.19 0.95 2.10
C.V. (%) 34.6 35.9 13.7 23.9 20.4 15.6 27.1 21.9
Empirical I Empirical ITI
Final
Statistics** a b ) a radius
(cm) (cm/year) (cm/year?) (cm/year) (cm/year?) (cm/year?3) (cm)
><10_1 ><10—1 xlO-q ><10-1 ><1(J-3 ><10-6
Mean 7.75 1.31 -5.11 2.00 -1.84 6.96 9.51
var. 16.41 0.10 4.03 0.21 0.56 10.07 3.50
S.D. 4,05 0.32 2.01 0.46 D.75 3.17 1.87
C.V. (%) 52.3 24.2 39.4 23.1 40.7 45.6 19.7
* dimensionless
** The statistical measures, Var.,S.D. and C.V. stand for variance, standard deviation and

coefficient of variation respectively.
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From Fig. 9, it seems that the Mitscherlich fits
jack pine better than it does white spruce. Though they
were spared here, the other graphical comparisons between
the calcualted Mitscherlich curve and the observations
revealed a similar trend. One of the major reasons for this
is most probably attributable to the adoption of the two-
parametered form. As has been discussed earlier, this cha-
racteristic of being enough with fewer parameters suggests,
to its great theoretical advantage, that the Mitscherlich
has a powerful potential capabilitv of being a growth curve
by itself with little aid of parameters. Another reason for
the improved agreement is considered to be attributable to
the specific characteristic of jack pine. Being a represen-
tative shade-intolerant pioneer species, jack pine shoots
rapidly in early stage of growth, gradually leveling off
through the maturity toward the :senescence. This growth
pattern might well have helped the Mitscherlich fit jack
pine better.

Figs. 10 and 11 confirm the inflexibility of the
logistic and the Gompertz suspected in the preceding chapter.
Here again, both of the curves overestimate the actual growth
in the early stage ancd underestimate in the old age. This
rather definite tendency of constant deviation undoubtedly
impairs the theoretical credibility of the logistic and
the Gompertz at least for the breast-height radial growth
of treces.

Table 10, which gives the statistics on the para-

meters of the five equations compnared, reveals the same
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characteristics as those pointed out in the preceding chapter.
Considering the fact that jack pine individuals of age
nearly 130 years old are at their senescence and do not

have much room to grow, the Mitscherlich's mean asymptotic
radius of 10.75 cm, as compared with the mean final radius
of 9.51, seems to be a reasonable figure. The logistic's

1

9.18 cm, which is even smaller than the mean final radius,
seems inappropriate as an asymptote. The same is true

for the Gompertz's 9.57 cm which is barely greater than the
mean final radius. However, the relatively large standard
deviation or the coefficient of variation of the Mitscher-
lich's asymptote indicates that individual asymptotes may
not be very reliable for forecasting future growth. In
spite of this fact, a thorough check through the individual
parameters of the Mitscherlich in Appendix I reveals no
peculiarly extreme values, i.e., neither negative nor
extremely large values as found in the preceding chapter.
Though it is not clear whether this is attributable to the
adoption of the two-parametered form, the specific growth
pattern of jack pine, or both, there is no doube it works
to the advantage of the Mitscherlich. The fact that the
means of parameters a's and p's of the logistic and the
Gompertz are egual to 1.62 (dimensionless) and 0.761 <{do.)
is synonymus with their calculated initial radius beina
1.52 and 1.13 cm respectively. Obviously they are too

much for the initial redius as are also seen in Figs. 10

and 11.
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Goodness of fit

As in the preceding chapter, the goodness of fit
of each equation was calculated for every tree. Unfortu-
nately, however, since the number of parameters involved
is not the same for all the equations compared, the previ-
ous measure of goodness of fit is no more applicable. Thus
to ensure a fair comparison, a new m~2asure which also
account for the number of parameters is introduced. It is

of the form:

123
1 \? N

J=1

where

th

MSSD; : goodness of fit for the 7 tree,
(mean squared sum of deviations)
Y;: : observed radius at age J,
Hij : calcualted radius at age j,
- .th
n : total age of the 7 tree,
f + number of parameters involved in an

equation concerned.

As in the previous case, the smaller is the M5SD; for an
equation, the better is the fit. The results of the MN55D;
calculation is given in Table 11, in wnich only the static-

tics are given rather than listing volumenous M:SD; values

calculated for every equation and every tree.



Tapble 11. Statistics on goodness of fit
MSSD, Mitscherlich Logistic Gompertz Empirical I Empirical II
Mearn 2.00 3.88 2.97 2.78 1.50
Maximum 6.14 7.27 6.183 6.34 7.08
Minimun 0.46 1.30 0.83 0.77 0.52
Variance 0.73 0.956 0.76 1.09 0.45
Standard -
Geviation 0.86 0.98 0.87 1.04 0.67
Coefficient
. . 4 4
of variation 13,0 25.3 29.3 37.4 44.7
No. of successful 3489 345 347 349 349
fitting
2

Note : The figures are given in hundredths({i.e., to be multiplied by 10

to get the exact values) except for the coefficient of variation

and the No.

of successful fitting.

0L
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Table 11 shows that among the theoreticals, the
Mitscherlich fitted the observation best, followed by the
Gompertz and then by the logistic. The most remarkable
difference from the white spruce case is the reverse of rank
between the Mitscherlich and the Gompertz in favour of the
former. This result may most probably be attributable to the
adoption of the two-parametereu Mitscherlich as well as
to the specific growth pattern of jack pine mentioned
earlier. It is interesting to note that the empirical II
scored best of all and the empirical I did better than the
logistic and the Gompert:z.

For a more statistically regorous comparison in
goodness of fit, a paired bilateral t-test of significance
was also conducted between the four neighbouring pairs of
competing equations in exactly the same manner as had been
done in the precedi: g chaoter. The test results are given
in Table 12, which shows that there was a highly significant
difference in goodness of fit between the every neighbouring

ranks.

Fase of fitting

The ease of fitting as measured in terms of the
failure count and statistics on the iteration times are
given in Table 13. 1In comparison with white spruce, jack
pine was easier to fit for all the equations. This may
largely be due to the rather simple growth pattern of jack
pine mentioned earlier. By far the easiest to fit was the

empiricals in which all the 349 trees were successful in



Table 12. The t-test of significance on goodness of fit

Empirical ITI Mitscherlich Empirical I Gompertz Logistic

Ranking in 4 -

goodness of fit . 2 3 ) 2
Statistics on

goodness of fit

Mean difference, dg 0.50 0.77 0.21 0.90

S.D. of the difference, Sd; 0.66 0.94 0.74 0.41

No. of comparisons, #u 348 348 347 345

Calculated value, t, 14.06%* 15.31%*%* 5.24%*% 42.32%%

** Highly significant difference detected, i.e., significantly different at the

99% level of confidence for which the critical value of ¢ is equal to 2.58.

L



[4 rs
Table 13. Statistics on ease of fitting
Mitscherlich Logistic Gompertz Empirical I Empirical II
Faillure count 1 4 2 0 0
Success count 348 345 347 349 249
Iteration time*
Mean 3.52 5.12 4,53 2.00 2.00
Var. 0.48 1.56 1.01 0.0 0.0
S.D. N.96 1.25 1.00 0.0 0.0
C.V. (%) 19.6 24.4 22.2 0.0 0.0
* The row sub-headings Var., S.D., and C.V. stand for variance, standard deviation

and coefficient of variation respectively of the iteration time for the successful

cases.

€L
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only and exactly two iteration times each. Among the theo-
reticals, the Mitscherlich scored best both in number of
successes and iteration times. Different from the white
spruce case, the Gompertz turned out to be easier to fit

than the logistic.

Conclusion

Generally speaking, all the theoreticals worked
better with jack pine than they had done with white spruce.
This may largely be due to the rather simple growth pattern
of jack pine. Of the three theoretical equations, the most
remarkable improvement was achieved by the Mitscherlich,
which ranked first in all the criteria, i.e. the theoretical
consistency, goodness of fit, and ease of fitting. As for
the theoretical consistency, both the logistic and the Gom-
pertz still maintained their proneness to constant deviation
which had been found in the preceding chapter. This would
undoubtedly impair their credibility as the theoretical
growth equations. The Gompertz scored better than the
logistic both in goodness of fit and ease of fit.

To facilitate the overall rating, the three theo-
retical equations were ranked by each category of cri‘erion
in Table 14, in which the equation scoring the first place
was given figure 1 and so on. % .us, the smaller is the
figure, the better is the equation. As seen from the botton
of the table, the Mitscherlich ranked first in the overall
rating, followed by the Gompertz, then by the logisti..

It should be noted that the above method of com-

parison may be objective, but it is just one of other



Table 14. Overall ranking of the Mitscherlich, the logistic
and the Gompertz equations

wravne: . £t e, SRR AN B 2 o s Akt g Sy ———.

PR e R R e AN TR AR e

Mitscherlich Looistic Gompertz
Theoretical 1 3 2
consistency ;
White coodness 2 3 1
of fit
spruce
Ease of "
fitting 1 2 3
Sub-total 4 8 6
I ical
Theoreﬁlca 1 3 5
consistency
Goodness .
Jack of fit 1 5 2
pine
Ease of
fitting 1 3 2
Sub-total 3 9 6

Ground Total 7 17 12

The figures in the main body of the table indicate the
ranking by each category of criterion.

SL
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thousands of objective methods of comparison. Iliowever, the
subjective judgement, which has been accumulated throughout
the entire course of the annual ring measurement, curve
fitting and analysis, also endorses the ranking given

above. Thus, with the present state of our knowledge, it
can be concluded that the Mitscherlich is the most powerful
and prospective growth equation for the breast-height radial
growth of trees, followed by the Gompertz, then by the

logistic.



CHAPTER 'V

A THEORETICAL STEM TAPER CURVE

Introduction

The subject of stem taper curve is not only inter-
esting, but it also constitutes one of the important bases
of mensuration and forest biometrics. However, most of the
works conducted to date on this subject were either experi-
mental or empirical. This chapter deals with the construc-
tion of a theoretical stem taper curve as one of further
applications of the theoretical growth equation for trees.
That 1is, based on the theory of tree growth discussed in the
preceding chapters, a theoretical equation expressing stem
taper curve was derived. In contrast with the empirical
or experimental ones currently used, the proposed equation
gives an account of what generates the stem form, and its
pararmeters convey biological meaning purtinent to the growth
of trees. The equation was also applied to 50 jack pine
stems to get numerical values of parameters involved.
Further more it was compared with some of the representative
empirical stem taper curves in terms of goodness of fi. to

actual data.

Literature review

Since stem taper curves constitute an important
basis for evaluating the trunk volume of trees which is the
ultimate objective of forestry, many authors have presented
numerous stem taver curves. According to Prodan (1965),

Hojer presei ted as early as 1903 a stem tatper curve of the

77
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form:

d=DClog-C+ Z—

_7;.._

’

where
d: stem diameter at ! meters below the tip,
D: diameter at ground,

¢, c¢: constants.

Prodan also mentioned a modification of this equation by
Tor Jonson.
One of the most often used formulas may be Behre's
of the form:
_x
Y a¥bz,
where
x: relative position on the stem as expressed in
terms of the percentage of the stem length
above the breast height,
y: relative diameter at relative height x as
expressed in the percentage of the normal
diameter, i.e. Dbreast height diameter,

a, b: constants.

Hada (1958) appliea this formula to sugi (Cryptomeria jopo-
nica, D. Don.) and obtained a reasonable agreement with his
observed data. A similar work also was conducted by Ueno and

Hasegawa (1970). TProdan modified Behre's formula to get



79

3‘2

1Y e
Y a+bx+cx?,

where the variables remain the same as in Behr's formula.
In this equation only the power of the denominator increased
by one as did the number of constants accordingly.

Osumi (1959) proposed the following third parial

sum of a power series as a relative stem taper curve:

y=ax+bx?+cx?,

where
x: relative position on the stem expressed in a
ratio relative to total stem length,
y: relative stem radius at position z expressed
in a ratio relative to the stem radius at 9/10
of total stem length from the tip,
a, b, ¢: constants.
He applied this equation to (. japonica and obtained a
satisfactory agreement with his observations. Osumi's
equation can be sophisticated by increasing the sum up to
the hicher powers of the series as suggested by Fries and
Matérn (1965) or by Kajihara (1973).
By far the most popular stem generatrix may be

Kunze's formula of the form:

m
y o o=axs,

where

y: stem radius at height =x,
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a: constant,

m: form exponent,
which generates stem taper curves of various convexity for
various integral values of parameter m.

It should be noted that all the stem curves guoted
above have their apexes at the origin of the coordinates
in which stem diameter (radius) and height (position on the
stem) are represented by the ordinate and abscissa respec-
tively.

This brief review of stem taper curves implies
that to date much effort has been made to find mathematical
expressions which resemble the actual stem tavexr curves as
well as to fit those mathematical expressions to observa-
tions to get a numerical account of the parameters involved.
However, 1t seems that even an equal amount of effort or
attention has not been paid to derive stem taper curves
underlain by theoretical reasonings. All the mathematical
expressions given above are simply experimental equations,
and they are not accompanied by any rational or theoretical
reasoning relevant to the subject. These equations may fit
well to the observed data as many authors have proven.

They may be useful in practice as concise expressions to
save a great deal of numerical data. But they have no bio-
logical meaning, nor do they explain why the stem of a tree

is shaped as it really is.

Derivation

It has been revealed ‘n the preceding chapters
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that the growth of individual trees in stem radius (diameter)
is most successfully represented by the Mitscherlich equa-
tion. Since the growth in diameter is of linear dimension,
it would be readily apprehended that the growth of trees in
height, which is also of linear dimension, follows the Mit-
scherlich equation as well. This expectation is supported by
Meyer (1940) in general terms as well as by Nagumo and Sato
(1965) experimentally. Thus, we assume here that the growth
of individual trees both in height and diameter follows the
Mitscherlich equation, i.e.

height x(t):U(l"G—kt), V-l

diameter y (t)=D(l-e-lt), vV -2
where
x(t), y(t): height and diameter respectively at
age ¢,
i, D: upper asymptotes,
k, l: intrinsic rates of growth,

¢: base of natural logarithm.

One of the assertions that Eg. V-1 implies is that
an individual tree has its own specific asymptote # and
intrinsic rate k for its height growth. The same argument
applies to diameter growth insofar as the height of obser-
vation is fixed, for example, at breast height. It has been
shown in the preceding chapters that these parameters vary
from one individual treec to another. IHowever, it is yet
unknown whether or not the upper asymptote D and intrinsic

rate [ for diameter growth vary with height even within an
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individual tree. Thus in this work it is assumed that both
the upper asymptotic diameter and the intrinsic rate of
growth are consistent for a given tree regardless of the
height at which the diameter growth is cnmnsidered. Tor
example, the diameter ¢growths at stump height and breast
height are supposed to have the same asymptote and intrinsic
rate of growth. This assumption nakes the derivation that
follows much more simple than might otherwise be assumed.
Suppose a tree which has attained a height % by
age ¢t as shown in Fig. 14 and consider its stem diameter
at any arbitrary height x<k. Then according to Eq. V -1

the relationship between heicht % and age t is given by
_ -kt A
h=H(1l- e ) . V-3

Also according to Eq. VI-1, the relationship
between height x and the time T taken to bring the tree

up to this height is given by

x=H(1—e_kT). vV -4
On the other hand, the diameter growth at height x took
place only when the tree had reached the height *, which
left the tree a growth period of lengh ¢-1 till it reached
present height . This delay in the start of diameter
growth increases toward the apex and causes the tapering
form of the stem. Thus according to Eqg. V -2 the stem

diameter at height & at age ¢ is given by

H:D{l_e—l(t—r)

1. v -

O3]



Figure 14.
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84

In words, the stem diameter at height x of a tree which has
attained height % by age ¢t is a function of time ¢ and 7.
It is now possible to rewrite inis equaiton in terms of
height # and x. Solving Egs. V-3 and V-4 for time ¢ and
T respectivoely and substituting the resultant equations in

VI-5 to eliminate the time parameters, we get

V-6

where
yth, x): stem diameter at height x of a tree of
total height £,
D, H: asymptotes for diameter and height
growths,
L, k: intrinsic rates of growth for diameter

and height.

Equation V -6 gives stem diameter y at any given height =z,

i.e. a stem taper curve.

Characteristics

From the view point of theoretical reasoning,
Eg. VI-6 may be the most appropriate expression with each
of its five parameters carrying a specific biological mean-
ing relevant to the subject. However, the following rear-
rangement will make the proposed stem taper curve easier to
handle for all practical purposes. Since both the numerator

7 and the denominator k in the exponent of Eg. V- 6 are
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constants the quotient 7/k can be replaced by another con-

stant, i.e.

V-7

3
il
X‘IN

r

which reduces the apparent number of parameters to four

yielding

y (h, x)=D[l—(§:ﬁwm]. v

The general shape of the proposed stem taper curve
V-6 or V-8 is shown in Figs. 15 and 16. It should be
noted that contrary to the aforementioned experimental
equations, this stem curve has its base attached to the
ordinate representing diameter or radius and the tip at the
far end of the abscissa representing tree height. Since the
derivative of stem diameter y with respect to height x is

negative, i.e.

, m
dy—'"mD (H-h) <30

dx (H—x)m+l

y 1s monotonously decreasing function of x, which can be
observed intuitively from Fig. 15. Since the second order

derivative is negative, i.e.

’ g
4’ =—m(m+1) Dh(ﬁ—ﬁ)—w <0
/]T.’I',‘? - m+2
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the stem curve is always convex upward. As seen from Figs.
15 and 16 the vroposed equation failed to express butt swell
properly, which may be the most apparent imperfection of the
model.

Figure 15 shows the effect of parameter H upon stem
form. It will be readily seen that the decreasein § results
in the increase in overall thickness as well as in the full-
ness of the stem. Figure 16 indicates a similar effect of
parameter m. The difference is that it works inversely,
i.e., it is an increase in m that corresponds to the increase
in both fullness and overall thickness. It is obvious from
Egs. V-6 and V- 8 that pmarameters # and D work in a less
sophisticated manner. The former just represents overall
height, while the latter is simply a multiplying factor, and
its increase causes vroportional stem thickening all along
the stem.

These four parameters can be determined from
observed data. Parameter h can be replaced directly by the
observed actual height. The remaining three, D, 7 and m can
be determined by the method of least-squares fitting as will

be mentioned in more detail in the succeeding section.

Application

The proposed stem taper curve was fittcd to the
actual stem curves of 50 jack pine trees ranging from 29 to
139 years‘of age (annual ring counts at stump height, i.e.,
20 cm above ground) to determine the numerical values of the

parameters appearing in the proposed eqguation.
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The data presented in this work had been collected
from even-aced jack pine stands in Norther Canada by the
joint survey team mentioned earlier. First, sample trees
were chosen randomly in numerous even-aged jack pine stands
of various ages, then felled for direct measurement of height
and diameter. The heicht measurement was made directly on
the stem with a tape to the nearest tenths of a meter. For
each stem, diameter was measured with a tree caliper at nine
successive points along the stem to the nearest tenths of a
centimeter and denoted by symbols dg.;, dg.2s --- + dg.9
from the tip downward to the base. The points of measurement
were placed alonc the stem at equal intervals of one tenth of
the total height. Thus as shown in Fig. 17 a total of ten
measurements, one for height and the remaining nine for di-
ameter, comprise a set for expressino the actual stem taper
curve. A total of 50 such sets wefe used for the present
analysis. It is worth mentioning that jack pine has a rather
straight and upricht stem in contrast to its rather crooked
Japnese domestic counterparts, as akamatsu and kuromatsu (P.
densiflora Sieb. et Zucc., P. Thunbergii Parl. respectively).

To determine the parameters the proposed theoreti-
cal stem taprer curve V-8 was fitted to these 50 sets of stem
measurements as follows. ©Cf the four varameters of Eq. V-8,
the total heicht A was replaced directly by the observations.
the remaining three were determined by Deming's method of
least-squares, 1n which errors were assumed only in diameter

measurement and not in the heicght measurements. The results
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of the fitting are shown in Table 15, in which numerical
values of varameters determined are given for each tree along
with such characteristics as tree age, total height, and di-
ameter at breast height (dbh).

According to the theory, the asymptotic diameters
D and heichts F are those that these jack pine trees are
supposed to attain ultimately in the long run. As seen in
Table 15 the calculated asymptotic heights seem of themselves
to be reasonable and realistic ficures as asyroptote. More-
over, they are alwavs greater than the corresmonding present
heights. Exactly the same is true for the diameter. These
facts indicates that the asymptotes D and I/ are nrimarily
functioning as expected from the theory.

However, a close examination of Table 15 reveals
a minor discrepancy as in the followina. BAccording to our
field observations, jack pine treés over about 130 years old
are close to their senescence and do not seem to have much
room left for both height and diameter growths. This expec-
tation seems to be satisfactory for the diameter since the
mean dbh for the individuals over 130 vears old is 19.39 cm
against the overall mean asymptote of 21.73 cm. On the other
hand, the mean height of 17.83 m for the same individuals
seems to be a little too short of the overall mean asymptote
26.72 m. Although there is a little possibility that this
discrepancy between the calculated asymototic height and the
observed near-asymptotic heiaht has resulted from some im-

perfection in the assumption which underlies the present



Table 15.

stem taper curve

Parameters of the proposed

92

S tem Stem sharacteristics*) Parameters 2)
Age3 D.B.H. Height D H _
No. (years) {cm) (m) (cm) (m) m=1/k
i 90 15.0 4.8 19.58 23.56 1.46
2 88 14.5 15.8 56.91 17.82 0.14
3 104 14.7 16.9 60.69 19.49 0.14
4 105 14.8 14.7 25.47 19.33 0.62
5 108 15.7 16.3 24.74 22.86 0.82
6 104 18.3 18.0 24,39 35.64 1.80
7 104 12.4 14.0 13.48 45,62 6.48
8 105 12.6 13.1 24,95 29.72 1.28
9 56 7.2 9.7 13.16 26.16 1.98
10 57 9.3 10.9 15.02 19.23 1.35
1 73 9.9 12.0 21.49 16.76 0.52
12 125 18.1 15.5 28.51 28.79 1.31
13 92 13.6 13.0 17.80 29.89 2.62
14 92 i7.2 14.7 20.58 30.65 2.40
15 32 3.4 6.3 4.84 12.06 1.98
16 36 30.4 12.3 41.67 16.45 0.22
17 37 12.4 i2.8 19.10 32.16 2.25
18 33 7.0 11.0 24.14 14.10 0.24
19 38 11.9 13.0 15.23 30.50 2.78
20 89 10.6 12.7 12.03 39.29 5.46
21 86 7.8 14.3 15.67 29.13 1.04
22 88 i7.5 i6.8 19.74 38.05 3.40
23 88 17.8 16.8 25.41 23.78 0.93
24 30 17.0 16.2 22.46 31.83 1.96
25 89 17.4 18.5 28.60 26.25 0.80
26 84 13.8 13.1 18.61 47.60 4,42
27 82 11.2 11.6 20.46 42,30 2.92
28 86 16.1 - 15.8 22.67 31.42 1.78
29 107 13.0 14.2 21.79 18.75 - 0.64
30 31 5.8 8.3 8.50 21.48 2.75
31 29 3.1 5.8 6.30 8.99 0.72
12 130 12.1 12.1 17.93 19.57 1.24
33 104 16.0 17.2 19.23 24.49 1.26
34 102 4.0 14.9 17.26 64.06 5.43
35 133 20.1 i18.2 29.62 26.74 0.91
36 47 5.5 7.5 8.83 15.71 1.65
37 51 8.9 11.0 13.84 27.23 2.22
38 51 10.6 1i.5 15.52 19.90 1.37
39 46 5.7 7.8 8.74 12.21 1.11
40 56 6.8 8.3 10.23 15.18 1.60
41 52 8.2 9.4 9.60 29.63 5.63
42 107 20.4 19.7 32.57 35.28 1.23
43 104 19.5 15.4 26.69 32.80 2.00
44 126 22.3 17.2 40.95 25.70 0.69
45 134 21..2 18.3 37.97 24.56 0.62
46 139 16.8 17.0 34.06 26.80 0.69
47 104 2i.0 20.0 31.52 58.62 2.72
48 36 4.6 5.3 9.79 7.97 0.74
49 33 5.0 6.2 8.22 14.06 1.96
50 108 12.0 14.4 19.80 25.70 1.20
Mean 81.8 12.80 13.41 21.73 26.72 1.83
s.n.4) 32.1 5.11 3.79  11.59 11.44 1.47
1) Observed.
2) Calculated, D, H and m=1/k are as in eguations

3) Annual ring count at stump height,

4)

V-6 and V-8 in the text.

above ground.
Standard deviation.

i.e.

20 cm
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stem taper curve, it most probably is simply a conseruence
of random fluctuation which sometimes results in what is
seemingly a rather extreme value, especially in such a small
sample as the present one.

Another problem with the present model may be that
the asymptotic height ancd diameter are rather variable even
among the individual trees of a species growinc under rather
similar conditions. To incdicate the magnitude of the vari-
ation, the asymptotic diameter D and height H were plotted
against age in Figs. lB_and 19 respectively for all the stems
examined. The following two features are obvious from these
figures. One is that both of the asymptotes have a large
variance, which is also numerically clear from Table 15.

The other is that both the asymptotic height and diameter
reveal a tendency to increase with age. Interestingly enough
these two features, especiaily the former, of the proposed
stem taper curve are also shared by the Mitscherlich equation
itself as applied to radial growth directly. According to
the direct application of the Mitscherlich equation in the
nreceding chapters, the asymptotic radius M showed a coeffi-
cient of variation of as much as nearly 370 percent for white
spruce (Table 3), and about 36 percent for jack pine (Table
10). In view of these ficgures, it will be readily noticed
that the rather drastic variation in the asymptotic diameter
of the proposed stem taper curve is a direct inheritance
from the Mitscherlich equation. Althouch the direct appli-

cation of the Mitscherlich equation to the heicht growth of
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trees are scurce, and thus we are short of hard evidence, it
is almost certain that the same agrument may well hold for
the asymptotic height # of the stem taper curve.

It was also shown in the preceding chaoters that in
spite of the drastic variation of the asymptotic parameter,
the Mitscherlich curve exhibits remarkable fit to observations
due to the counteraction of the rate narameter which works in
a compensating manner. This compensation mechanism is also
seen in Table 15, in which large values of asymptotic diameter
D are almost always associated with small m's, i.e., small 7's.
The same compensation is observed between the asymptotic height
H and its corresponding intrins ¢ rate of growth k. It is very
much likely that this compensation mechanism is also an inheri-
tance from the Mitscherlich equation which constitutes the
important basis of this stem ta 2r curve.

In the light of the large variance in the parameters,
our sample of size 50 would not have been enough tc cet exact
estimates of the parameters precisely matching the theory.
However, with the present state of knowledae it is difficult
to determine whether the deviation of the estimated parameters
is simply a result of random fluctuation or it results from
more serious cause related in some way or another to the basic
assumption of the present theory. TFurther case studies with
larce samples as well as with different tree svecies than jack
pine are necessary. Iven more important would be the investi-
gation to check the validity of the present assumption by some
other means than the one employed in the present work.

Considering the large variations of the estimated
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parameters, and slight deviations of their means from what
is expected from the theory, the following statements can be
made for sure. The estimates of the parameters obtained by
fitting the proposed stem taper curve are rather tentative
as are the parameters of the Mitscherlich equation. No
single example nor small sample is enough to draw any bio-
logically relevant conclusions of the numerically estimated

parameters of the proposed stem tatper curve.

Comparison with other stem taper curves

A theory or reasoning is one of the most important
factors for adopting a mathematical expression to let it
stand for an observed phenomenon, because it not only gives
a concise description of a complex outcome but it also
helps us to get into the mechanism which brings forth the
apparently complex outcome. Another important factor, but
over emphasized much too often, is\the goodness of fit to
the observations. However, a mathematical expression with
a nice theory but with poor agreement with reality is simply
a dead letter. Thus the proposed stem taper curve V- 8
was compared with representative existing stem taper curves
in terms of goodness of fit to observed data.

The same data as employed in the preceding section
was used for this analysis, i.e., observed stem taper curves
of 50 jack pine trees, each consisting of one height and
nine diameter measurements.

Two representative classes of stem taper curves

which are now in practical use were chosen for the compari-
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son, the power series and Kunze's formula mentioned in the
review of literature. However, they were changed so that the
base of the stem corresponded with the ordinate and the tip
came to the far end of the abscissa as is the proposed stem
taper curve V-6 or V- 8.

The first class consists of eight partial sums,

from the first up to the eighth, of a power series, i.e.,

y=a (h~-x),

y=a (h-x)+b (h-x)?2, V-9

y=a (h-z)+b (h-z) 2 +c (h-z) 3+.. . +g (h-z) 8,
where

y: stem diameter at height z,
h: total stem height as in Eq. V-6 or V-8,

a,b,...,g: parameters.

Of these eight equations generated from the same power

series, the third and fourth partial sums are the most popu-
lar in practice.
The second class is Kunze's formula changed as

follows:

y:u(h—x)r, VvV -10

where
y: stem diameter at height =z,
h: total stem height as in the preceding case,

a, r: parameters.
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As is widely acknowle iged, this equation yields
various stem curves as form exponent r varies. The revolu-
tion about the x axis generates a cylinder, paraboloid,
cone, and neiloid for r=0, 1/2, 2/2 and 3/2 respectively.
Usually the equation is applied to only a portion rather
than to the entire stem with the form exponent r fixed at the
most suitable of the numerical values given above. 1In this
analysis, however, Eq. V -10 was applied to the entire stem
with the form exponent r left free as a parameter to be
determined by the least-squares fitting.

It should be noted that notwithstanding their
extensive usage in practice and research, these two classes
of equations are just empirical or experimental ones and are
not accompanied by any theoretical derivation or reasoning
relevant and pertinent to the subject.

A total of nine of these empirical equations
were fitted to the observations exactly in the same manner
as had been done with the proposed theoretical equation.
More particular to the point, the total heicght %2 in Egs.
V-9 and V -10 was repiaced by the observed values, then the
rest of the parameters, i.e., a,b,...,9 in Eq. V- 9 and «a,

r in Eq. V -10 were determined by Deming's method of least-
squares. As in the preceding section errors assumed only in
diameter.

Once the numerical values of the parameters had
been determined, stem curves were calculated according to
each of the ten equations for each stem. FExamples of actual

and calculated stem curves are shown in Table 16 and Fig. 20.



Diameter
(cm) Stem No. 50 : Age 108(years), dbh 12.0(cm), Height 14.4(cm)
e >IN S |
........ P.S. 2
10 - P S, 3
e e e e KUNZE
ammmemmosmes - Py oposed EQ.
Observed
5 4
T T Al f ¥ ¥ i o ' - B
0

0.9 0.7 0.5 6.3 0.1
Relative height expressed in a ratio to the total height

Figure 20. Observed and calculated stem taper curves.

00T



Table 16. Observed and calculated stem taper curves (Stem No. 50)

Age 108 (years), D.B.H. 12.0 cm, Height 14.4 m

Stem Diameter (cm)

Eqgquations _____

Dy 1 Dy, 2 Dy, 3 Dy, Dy s Dy s Dqy, 7 Dy g Dy 9

(Observed) 2.8 4.3 6.7 7.7 9.0 9.3 10.7 11.4 11.8
P.S. 1 2) 1.53 3.06 4,58 6.11 7.64 9,17 10.69 12.22 13.75
P.S. 2 2.31 4.36 6.16 7.70 8.98 10.01 10.79 11.31 11.57
P.S. 3 2.58 4,68 6.38 7.75 8.85 9.75 10.52 11.21 11.91
P.S. 4 2.64 4.72 6.37 7.71 8.81 9.75 10.56 11.27 11.87
P.S. 5 2.52 4,73 6.47 7.75 8.76 9.65 10.55 11.39 11.82
P.S. 6 2.66 4,60 6.39 7.86 8.86 9.57 10.42 11.53 11.78
P.S., 7 2.78 4,39 6.49 7.99 8.72 9.47 10.63 11.42 11.80
P.S. 8 2.78 4,38 6.51 7.99 8.71 9.49 10.62 11.42 11.80
Kunze 3.18 4,87 6.24 7.44 8.53 9.54 10.48 11.38 12.23
Proposed Eg. 2.65 4,71 6.36 7.70 8.82 9,76 10.57 11.26 11.86

Legend 1) Abbreviated as in Fig. 17
2) Row headings "P.S. n" stand for the nth partial sum of the power
series, Eg. V -9

T0T
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Goodness of fit for each eguation was evaluated

by the mean deviation of the form

n

- ,
23 (X.-x.)
P T 1
g= vV -11
T’L—f 5
where Xi: observed diameter at the ith section, <=1,
2, ..., 9,

x.: calculated diameter at the ith section,

n: 9, i.e., number of sections,

f: degree of freedom of the equations concerned,

i.e., number of parameters involved.
It is a methematical rule of thumb that apparent coodness
of fit improves as the number of parameters involved in an
equation increases, and the calculated curve exactly coin-
cides with the observations when the number of parameters
matches the number of observations. The subtraction term
f in the denominator of Eg. V -11 counterbalances this bias
and provides a fair basis for a comparison of the mathema-
tical expressions with different numbers of varameters.
For every equation used the coodness of fit was calculated
for each of the 50 stems. Then such statistics as the mean,
variance, standard deviation, and range of the goodness of
fit were calculated for each equation and given in Table 17.
Judging from the mear in Table 17 the pronosed

equation reveals the third best fit to the observations,
exceeded only by the third and fourth parital sums of
the power series, and followed by the fifth partial
sum, then the sixth. The lower and the higher nower

series, as well as Kunze's formula, show obviously



Table 17. Statistics on goodness of fit

1)
P.s. 1 P.S. 2 P.S. 3 P.S. 4 P.S. 5 P.S. P.S. .S. Kunze ProPO;zd
Mean 0.595 0.193 0.123 0.135 0.146 0.160 0.180 .219 0.188  0.136
Standard .
GeodYe 0,067  0.010 0.004 0.006 0.006 0.008  0.018 .046  0.007  0.005
Variance 0.259 0.099 0.064 0.074 0.078 0.091 0.132 .214 0.085 0.072

Legend 1) Abbreviated as in Table 16.

€0T
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poorer degrees of fit. The variance, or standard deviation,
serves as the measure of consistency of the fit, 1i.e., the
smaller variance indicates a consistently similar degree of
fit to different‘ stems, while greater variance is more
fickle. Again in this measure the proposed equation, along
with the third and fourth partial sums, reveals superiority
over the others. But the order is reversed with the proposed
equation scoring better than the fourth parital sum.

To determine the exact and statistically signifi-
cant order in goodness of fit among the competing equations,
a paired bilateral t-test of significance was conducted and
is shown in Table 18. 1In this table the section below the
diagonal gives the calculated t-values, while the section
above gives the evaluation. Rearrangement of Table 18
results in the overall ranking in goodness of fit as given
in Table 19. The proposed stem taper curve shows a remarka-
bly good fit to the observations, exceeded only by the third

partial sum of the power series.

Conclusion

The most remarkable characteristics of the pro-
posed stem taper curve V -6 is that it has a theoretical back-
ground. As a result, each of the five parameters appearing
in Eq. V-6 carries a pcrtinent biological meaning associated
with tree growth which no doubt is the most significant
agent to shape up trees in the forms we actually see. It
was revealed by the analysié in the section on applica-

tion that these parameters, especially the asymptotes take



Table 18. The t-test of significance on the goodness of fit among the ten stem
taper curves
P.S. 1 P.S P.S P.S P.S. P.S P.S S. 8 Kunze PIOPOESd
P.Ss. 1 1) * % #3% % * 3% *% * % * % *# ##% 2)
P.S. 2 16.91 * % %% #% *3 n.s n.s. r 3. *#
P.S. 3 15.11 7.73 #% %% %% ® % %% * % ® %
P.S. 4 15.09 6.48 -4.,25 3% & %% %% *% # % S
P.S. 5 15.15 5.49 -4.77 -2.76 % & * % .S.
P.S. 6 15.06 3.27 -4.68 -3.53 -2.24 % % &% &%
P.S. 7 14.02 0.83 -3.74 -3.12 -2.48 -2.03 n.s n.s. 5%
P.S. 8 10.07 -0.94 ~-3.48 -3.06 -2.67 -2.28 -1.64 n.s. 4
15.32 0.94 -10.72 -8.20 -5.76 -3.06 -0.48 1.16 %
Pro?oggd 15.45 7.67 -4.90 -0.35 1.87 2.87 2.88 3.06 12.01
Legend 1) Abbreviated as in Table 16.
2) *x* highly significant, i.e. significant at the 1% level
* ; significant, i.e. significant at the 5% level
n.s. ; non-significant.

S0T



Table 19. Overall rating on goodness of fit

T TSRS . RS T T W TN ~ < o o & o - e

P.S.

pP.s. 7
4 Kunze

P.S. 3 ::::::>Proposed Eq.::::::>P.S. 6 ::::>P.S. 5 ::::)>P.S. 1
P.S. 5 p.S. 8

Legend 1) Eguation identities abbreviated as in Table 16.
2) —; siagnificant difference detected in favour of
the equation on the open side of the inequality.

90T
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on reasonable numerical values as expected from the theorv.
liowever, since the variations of the estimated varameters
are relatively large, it is dangerous to make any bioclogical
inference of the numerical values obtained from small sam-
ples. The comparison with existing empirical stem taper
curves showed a significantly better degrees of fit to the
actual observations than most of the others.

In spite of these virtues the proposed equation
has thre¢= drawbacks at its present stage of development.

One of them is that it does not a~count for the butt swell
of the stem. This could be overcome by introducing other
theoretical growth functions than the one used here.

The second one is that the asymptotic height turned
out to be somewhat different from the expected value. This
may just be a result of random variation, or it may be due
to more serious reason related to the assumption of the
theory. To make a clear-cut conclusion on this subiject,
further investigation has to be conducted at the following
two fronts. One of them is concerned with the statistical
credibility of the numerical results obtained in the present
analysis. This could be improved by further accumulation
of case studies with larger samples as well as with diffe-
rent species than jack pine. '“he other front consists of
splitting the assumption underliying the present theory into
two to check the validity of each independently. The part of
the assumption concerning the Mitscherlich growths of stem
height and diameter can be checkad through the direct appli-

cation of the equation to actual growth processes. The other
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part of the assumption that the asymptote D and the intrin-
sicsic rate of growth ! for the diameter do not vary with
height can be checked by stem analysis and subsequent
application of the Mitscherlich equation to the diameter
growth at various height of the stem. However, considering
the large variation 1in Mitscherlich's coefficients,
considerably large and uniform sample is inevitable for a
statistically significant conclusion.

The last one is the difficultyv associated with
fitting. Since the proposed equation is not linear with
respect to the parameters to be determined, the ordinary
method of least~squares is not applicable. Thus Deming's
method had to be emploved, but it is more complex than the
ordinary method. Differing from the ordinary method,
Demincg's method requires initial estimates for the parameters
to be determined. This is also rather difficult with the
proposed stem taper curve. Further research 1is necessary
to overcome these difficulties and make the propnosed stem

taper curve applicable to practical forest inventory work.



CHAPTER VI

I TIEORETICAL HEIGHT~-DIAMETER CURVE

Introduction

This chapter is devoted to another avplication of
the theoretical growth equation to what is seemingly unre-
lated to but is actually deep-rooted in the growth of trees,
i.e. the height-diameter curve. The relationship between
tree height and diameter has been one of the important topics
of mensuration largely due to its practical usefulness. Once
this relationship is established for a forest stand the time-
consuming and still inaccurate height measurement in the
field can be replaced bv an easy estimation from diameter
which is relatively easy and fast to determine.

Somewhat subjective but the simplest and most
commonly avplied method of estimating tree height from di-
ameter is the free-hand fitting of a height-diameter curve
to a set of observations. N more objective method is the
least-square fitting of mathematical equations which relate
stem diameter to height in some way or another, and for this
purpose numerous mathematical expressions have been presented
to date. Most of them give height as one of the following
functions of diameter, i.e. either parabolic or logarithmic

or exponential. For example

2

l=a+bD+ecD”, (Trorey, 1932)

- )
H=a+h (1-e" "y, (Meyer, 1940)

li=a+blogl, (Myers, 1966)

1069
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where [/: height,
I: diameter,

a,b,c: constants.

In addition to those there are literally countless modifi-
cations or applications (Nishizawa, 1972) so that now it
seems almost impossible to decide which one to choose for
a specific mensurational purpose. As a matter of fact all
those height~diameter curves are convex upward and show a
reasonable degree of fit to observations. No wonder why,
since the goodness of fit has lonog been the only criterion
for adovting new mathematical expressions popping up every-
where.

Now it seems to be the time for us to emphasize
another important but often unduly ignored criterion, i.e.
theoretical reasoning or logical derivation which lead us to
certain mathematical expressions. ‘As a matter of fact all
the above-mentioned heicht-diameter curves are simply empni-
rical or experimental equations with no theoretical reasoning
behind them. The only height~diameter curves that carry
any theoretical reasoning may be Ogawa's (1965) and its
sophistication by Cgino et al. (1267). Based on the assump-
tion that height and diameter satisfy the following modified

allometric relationship;

I-p
i _, 1 dn( "mae”"
nodt Dde\ T H )

ma.c
where f7: height,

D: diameter,
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HW : maximum heicght correspondino to DP=infinity,
max B - h

t: time, and

h: allometric coefficient,

Ogawa derived a height-diameter curve of the form;

1 1 1

—_— T e — + _— -

big ﬁDh Hmax
h
h 7 - )
where 1 ({max H0>[O

A H H

max 0

HO; minimun heiant corresponding to the minimun

diameter DO’

Ogino's modification consists of incorpc ating another

asymptotic factor;

where Dmar: maximum diameter,

in Ogawa's differential equation given above. This results

in a differential equation of the form;

H  -H
( mam__)
1dn _, 1dp \ "nax /
7dt "D dt D D
(,_"_Lax )

which upon integration vroduces a curve of the form;

) -
L_ 1 "maz” "\ n .
A R Y ) i

max max
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where
h
-
1 Thaw 50( oy
T -
A %meO Dmax DO/

As is often the case with any theoretical work
entirely different line of reasoning may well be possible.
The height-diameter relationship and its theoretical rea-
soning given in the following sections is one of them.
Beseides the underlying assumption and mathematical deriva-
tion, a discussion is also made on the applicability of the
proposed equations as well as on the mensurational signifi-

cance of the coefficients avpearing in the equations.

Height—diameter relationship for all-aged stand

As has been shown in the preceding chapter, the
growth of individual trees both in height and diameter is

most properly expressed by the Mitscherlich equation, i.e.,

height y=H(l~e'kt), VIi-1
diameter m=D(l—e—ht), vVIi- 2
where t: time,

y: height at time ¢,

x: diameter at time ¢,

H: upper asymptote for height,

D: upper asymptote for diameter,

k: intrinsic rate of height growth,
h: intrinsic rate of diameter growth,

c: base of natural logarithm.

This fact means that both the height and diameter growths
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are governed by the following differential equations;

diy

' o} hak A ] 3\ —

height = =k (H-y), VI -3
. . dx

diameter i =h(D-x). VI - 4

In other words Eqs. VI~ 1 and VI - 2 are the soliutions of
Egs. VI -3 and VI - 4 respectively.

It is now possible to derive a height-diameter
relationship from these equations. Dividing Eg. VI -3

by VI~ 4 to eliminate the time parameter, we get

3
i
IR

NN

ﬁ_ 4 -
) VI -5

For the boundary condidion we assume that

Y=y at =1 VI -6

OI

which in terms of tree growth means that the initial heicght

and diameter are equal to Yo and ro respectively at the very

beginning of individual tree growth. Separation of variables

and subsequent integration with Eq. VI- 5 result in

3 RS | _
k -y Y TR ) p-x

the solution of which is given by

- I/ h

Y :
~ Y0 s D-x ’
y o= f [l ~ ] (

7
: .5 VI -8
/ j_J—xO 4

This is the general soluiton for Fg. VI -5; general, since
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no specific mention has been made as to how or at which
portion of the stem the height and diameter are to be mea-
sured.

If it is the total heicght and the stem diameter

at ground level that is under consideration, then

g = 0 and x, = 0 VI -8

in solution VI - 7. Thus

r k/h
- D-x 1 VI -5
y =11 - (73 | VT -5
where y: total height,
x: diameter at ground,
results. This 1is the relationship between the total height

and diameter at ground.

In the ordinary practice of forestry, however, it
is the relationship between total height and diameter at
breast height (dbh) that is most commonly emnloyed and there-

fore sought after. To obtain this relationship w« put

= [ and x. =0 VI -10

where Hb: breast height,

i.e., the growth in dbh is initiated just when the tree

reaches breast heicht. Substituting VI -10 in VI -7 we get

- D 7(//7’7,—-
iy o= 1 []_ - /,(-;:-,;j:’_?> J VI -11
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where Hme

y: total height,

x: dbh.

It is worth mentioninc that the same result can
be obtained directly from Egs. VI -1 and VI - 2 throught
arithmetical manipulations. Or more precisely by solving
VI - 2 for time parameter ¢ and substituting in VI -1, the
height-diameter curves VI -7, VI-9, or VI -11 result with
an appropriate choice of boundary conditions.

Pccording to the reasoning given so far, Egs.
VI-7, VI-9 and VI -1l represent the relationship between
the height and diameter of an individual tree. However,
the following assumption or approximation makes these
equations also applicable to all-aged stands as their height-
diameter curves. Assume an all-aged stand in a steady state,
where trees of every developmental stage, or generation
exist and every generation is in a process of being replaced

by the directly succeeding one, i.e. schematically

seed supply

and die
germinaiton off
. . s seedling —» voung —» mature — senescent ., ., .. g

For this kind of stand, we can assume such a mean height
growth curve of form VI -3 and a mean diameter growth curve
of form VI -4 that represent the agrowth of trees in every

generation on an average basis. It is the 1. ocess already
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experienced by the dying trees as well as the course yet to
be followed by the seedlings coexistina in the stand. Then
as a logical consequence, equation VI-7, VI-9 and VI -11

represent the height~daimeter relationship of all-aged stands.

Height-diameter relationship for even-aged stands

Tree growth as a function of time is meant by the
Mitscherlich equations VI -1 and VI - 2. However, the
Mitscherlich equation was originally proposed to express
plants' response to fertilization, which usually referred to
as the law of diminishing return (Mitscherlich, 1919)

An application of this original reasoning for
the Mitscherlich equation leads us to individual trees'
response in height and diameter growths to their environmen-
tal conditions.

The Mitscherlich equation originally proposed

was of the form:

y o= A(l-e” 10y (1-e7%2%2) (1-0793% ) ..,
where y: yield,-
x1,%2,...: amount of factors affecting plant growth,
C1,C2,...% intrinsic response coefficients for individual

growth factors,
A: maximum vield attainable when every crowth
factor is available in good surplus, and

e: base of natural logarithm.

Tn this ecguation the effect of each growth factor is consi-

dered separately and then multiplicatively. However, for the
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height and diameter growths we consider a single site factor
which represents the combined effect of all the conceivable
growth factors such as nutrients, moisture, sunlight etc.
Then we get another set of the Mitscherlich equations which
in appearanc® are exactly the same as Egs. VI -1 and VI -2

but are different in meaning, i.e.

!
height v = H'(l-e k f), VI -12
1, 1
diameter x = D’(l-e—h f), VI -13
where y: height,

<

r: diameter,
H',D': maximum height and diameter attained during
a given time interval by an individual tree
when it is grown under the most favourable
conditions,
k',h': intrinsic response coefficients for height
and diameter,
f: site index, i.e. a combined effect of numerous
growth factors, accumulated for a fixed time

interval.

It should be noted that here th~ growth is considered in
alimental domain, while it was in time domain in Egs. VI- 1

and VI -2. Parks (1973) argued that growth of animal must

be considered in food-consumption domain rather than in time
domain since the former is more closely related to the growth

than the latter. The same argument may well apply to plant

growth. It sounds reasonable that the plant growth corres-
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ponds more closely with the amount of nutrients taken up and
the amount of material photosynthesized during a civen time
period than with the length of the time period itself. It
suffices to mention an often~quoted observation that spruce
seedlings suffering under canopv for decades show a rapid and
vigorous growth once they are exposed to full sunlight as
canopy species fall out.

For the derivation of the height-diamter relation-
ship, the same logic as to the preceding case applies. Thus

rewriting Eqs. VI - 12 and VI~ 13 in differential form

EZZJ% - k’(H'.-y), VI - 14
dz _ h'(D'-x) VI -15
af ’ '

and by dividing VI - 14 by VI - 15 we get

dy _ k'(H'-y)
de =~ h'(D'-x)

the general solution of which is given by

H'-

y k'/h'
Y0 ¢D'-x
. — 7t -
y = i [1 - (5 ) ] VI-17
0 :
where Yo is the initial heicht corresponding to the initial
diameter «,. From this equation, the relationship between

0

the total height and diameter at ¢round is given by

kK'/h'~

r_ }

yr—H'[l_(——DD,x-) | VI -18
where y: total height,

x: diameter at ground.

The relationship between the total height and dbh is civen by
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y = H'} L - L' —-—-’iﬁi) j VI-19
r

where L' =
H,: breast height,

¥ ¢ total height,

x : dbh.

Obviously, BEqs. VI - 17, VI~ 18 and VI - 19 repre-
sent the height-diameter relationship of an individual
tree. However, the similar logic as in the preceding section
makes these equations applicable as the height-diameter curves
for even—aged stands as follows. 2Assume that the growth up
to a certain definite age of an even-aged stand in which the
growth of every constituent tree is governed by Eq. VI - 12
in heicht and by VI - 13 in diameter. Here, apart form the
original meaning, these equations signify the mean growth
responses in height and diameter respectively for the stand
in guestion. It is unlikely that all the trees are governed
by exactly the same equations, but this assumption may hold
nearly true on an average basis.

Though all the trees grow under nearly similar
conditions, some enjoy more favourable conditions than the
others depending on the difference in individual site factor
and the competition with the surrounding trees. This diffe-
rence results in the difference in f values of Igs. VI -12
and VI - 13 received by individual trees. Tor a given f value,
there exist a definite and unique height determined by VI -12

and a definite and unique diameter determined by VI~ 13,
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which are interrelated with each other by Egs. VI -17, VI -18
or VI -19. This relationship holds true for any tree in the
stand regardless of the growing conditions it has been sub-
jected to and thus regardless of f values it has experienced.
Thus Fgs. VI -17, VI -18 and VI - 19 represent the height-
diameter relationship for even-aged stands.

In terms of the stand growth, the parameters F'
and p' represent the maximum height and diameter to be
attained in a specific time period by a few dominant indi-
viduals which have been exposed to the most favourable condi-
tions. The other individuals suffered under less favourable
conditions for the same veriod of time take on the values
smallexr than those, depending on the severity of individual

conditions.

Discussion

As has been noticed alféady the proposed height-
diameter curves VI -7, VI -9, VI -11 for all-aged stands
and VI ~-17, VI -18, VI -19 for even-aged stands do not differ
in appearance at all but they do in what they mean. In the
former set of equations, the variation in height and diameter
are supposed to be attributable to the variation in age among
the individual trees which constitute an all-aged stand.
Thus the asymptotic height # and diameter D are supprosed to
be reached by the oldest individuals in the stand, while
younger individuals are of the height somewhere between
zero and the asympntote // with the diameter between zero and

the asymptote ) demending upon their respective ages.
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Although in reality difference both in heicght and diameter
may well exist even among the individuals of the same age
class as well, it is assumed negligible when compared with the
difference among the age classes.

In the latter set of equations, however, the
variation in height and diameter are supposed to be attribu-
table to the difference in productivity of site on which
each tree grows. Since the asymptotic height H' and diamter
D' are the maxima attained by the best growing individuals
of an even-aged stand by the time the stand reaches a certain
age, they increase with the stand age. In other words they
are functions of time yet unknown. On the contrary the
asymptotes [ and D for ali-aged stands are independent of
time.

The above argument concerning the applicability
of the proposed equations and the corresponding difference
in the significance of the coefficients holds both for
NDgawa's and Ogino's height-diameter curves. Since both of
the equations were derived by eliminating time parameter,
they are good only for all-aged stands. Accordincly Qgawa
(1965) applied his equation to several types of forests, all
of which were at their climax stages of succession and thus
were all-aged presumably.

Though Ogawa's and Ogino's original equations are
thus limited to all-aged stands they can be easily modified
so that they would also apply to even-aged stands as in the
present work, i.e. just rewriting the original equations in

terms of site factor f instead of time ¢. It should be noted
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then the meaning of the coefficients undergoes respective
change.

A graphical representation of total-height vs.
diameter—-at-ground VI - 18 for even-aged stands is shown in
Fig. 21 for a hypothetical case of F’'=20 m, D'=40 cm and
k'/h'=1.2, 2,0, 3.0. Also an example of total height vs.
dbh VI - 19 for even-aged stands is shown in Fig. 22 for
another hypothetical case of #'=20 m, Hb’=l.2 m, D'=40 cm
and kx'/h'=1.2, 2.0, 3.0. It will be readilv seen that the
proposed height-diameter curves are convex upward in agree-
ment with general observations as well as with the most of
the empirical equations. It can be also noticed that the
convexity increases as k'/h’ ratio increases.

In forestry management and planning, tree height
at a certain age, say 50 years, is often used as in index
of site's productivity, i.e. site index. This common
practice is based on a silvicultural rule of thumb that tree
height responds more quickly and sensitively to site's
productivity than does diameter. This in terms of the
Mitscherlich equations VI -12 and VI -13 means that intrinsic
response coefficient k' for height growth is greater than
coefficient h' for diameter growth. Thus the ratio k'/h'
in equations VI =18 and VI -19 is usually greater than unity.
This results in the upward convexity of the proposed height~
diameter curves. The proposed eguations produce curves con-
vex downward if we put k'/h' ratio smaller than unity.

However, this is not likely the case in reality.



Height (m)

20 4 O____—__. :—:—-/—-,.-07-

10 4 o)

N
\

0
O 'y ¥ = ¥ - L]
10 20 30 40
Diameter at breast height(cm)
Figure 21. Total height acainst diameter at ground as exoressed by the

proposed equation VI - 18 for various values of k/# ratio
with the other parameters fixed.

€CT



Height {m)

!
E'=20 m, Hb=1.2 m, D'=40 cm

20 - Y . y—
R
K'/h' = 3.0
0/2.0 o o

~ C)/
//o lbz/

—
10 4 /
?O/O

0 - . ; .. IR — .
10 20 30 40
Diareter at breast height(cm)

Figure 22. Total height against diameter at breast height as expressed by
the proposed equation VI - 19 for various values of k/h' ratio
with the other parameters fixed.

721



125

The same arcument on the shape of the curve applies
to the height--diameter relationship vI-7, VI-9 and VI-11 for
all-aged stands. The cuicker resvonse of the height growth
to site's productivity than that of diameter is just another
manifestation of the fact that the height growth has a

greater intrinsic rate than the diameter growth, i.e.,

k > h.

Thus the ratio k/h is greater than unity, which eventually
ends up with upward convexity of the height-diameter curves
VI-7, VI-9 and VI-1l. It is interesting to note that k/h
ratio is nearly equal to unity for open growing individual
trees (Kobayashi, 19278). Although his sample is small,
being of size three, this fact sugoests a close relation-

ship between stands' stem density and the k/h ratio.

An example

Just to indicate how the vronosed height-diameter
curve renresents the observed height-diameter relationship,
an example is given in Fiqgure 23. The data used for this
example was collected in March 1977 from an even-aged hinoki
(Chamaecyparis obtusa Endlicher) stand of estimated age 80
years old. The stand is located on a mountain slope of
north~east aspect facing the MNaaura River in Inabu, Aichi
Prefecture, Japan and is the propeorty of Furuhashi Founda-
tion. For the application of Eq. VI-18 which represents the
relationship between the diameter at ground and total height

for even~aged stands, Deming's method of least-squares was
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adopted. Tt seems that the result is quite satisfactory as
far as the agreement with the observation is concerned.
However, some of the parameters deviate to a certain extent
from what are expected from the theory. It would also be
worth mentioning that fitting the proposed equation to the
observed height-diameter relationship is rather difficult.
Thus further research has to be concducted to solve these

practical problems.

Conclusion

In this chapter the emphasis was placed on the
derivation of a set of height-diameter curves as well as on
the theoretical reasoning underlying the derivation. Also,
a discussion was made on the applicability of the relultant
equations rather from theoretical point of view than from
practical one. For the proposed egquations to be functional
in practice, further research has to be continued on their
oractical characteristics and feasibility. Among them are:
i) technical research associated with fitting the proposed
equations to observations, 1i) an investigation in the
goodness of fit to observed data, esnecially in comparison
with the other existing height-diameter curves either emni-
rical or theoretical, iii) the determination of numerical
range of parameters, particularly k,/j ratio, and their re-

lationship with different types of forest stands.
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APPENDIX I

PARAMETERS OF THE MITSCHERLICH EQUATION
AS APPLIED TO THE RADIAL STEM GROWTH
OF JACK PINE
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Stem M k
No. (cm) (1/year)
x1072

1 10.66 2.016

2 16.39 1.244

3 8.11 3.123

4 6.52 3.063

5 11.42 2.013

6 12.52 1.188

7 792 3.177

8 11.39 1.385

9 13.17 1.562
10 6.64 2.307
11 11.43 1.587
12 851 2.283
13 7.480 1.829
14 9.67 2.032
15 10.53 1.516
16 8.71 2.256
17 10.54 1.999
18 8.09 2.392
19 14.83 1421
20 12.37 1.680
21 1246 1.3i3
22 9.55 2571
23 11.45 2.286
24 15.85 0.835
25 12.90 1.508
26 13.64 1.377
27 7.05 3.316
28 30.21 0.368
29 23.18 0.817
30 13.57 1.285
31 16.90 0956
32 7.06 1.435
33 12.33 1.301
34 8.70 2.341
35 7.27 3.047
36 8.79 3.444
37 9.88 2.007
38 9.63 2.483
39 10.39 2.082
40 14.37 1.468

Stem M k
No. (cm) (1/year)
x1072
41 1393 1.508
42 14.81 2.008
43 16.64 1.182
44 11.10 1.946
45 11.25 1.996
46 12.57 1.490
47 10.19 1.942
48 9.93 1.302
49 12.57 1.440
50 9.86 2.425
51 1149 1.390
52 13.29 1.492
53 12.75 1.134
54 10.99 2.255
55 13.14 1.541
56 8.98 2.624
57 16.79 1.601
58 11.35 2.079
59 10.57 1.820
60 11.57 2.550
61 10.69 0.863
62 14.73 0.733
63 5.17 2.487
64 14.13 1.374
65 9.15 2910
66 11.16 1.969
67 10.37 1.209
63 11.86 1.624
69 14.40 1.211
70 8.05 2.239
71 13.56 2.301
72 20.55 0.704
73 8.44 2.050
74 9.46 2.369
75 10.77 2.433
76 11.55 2.716
77 4.77 5.061
78 7.52 2.265
W9 14.53 1433
80 4.37 2.925




138

Stem M k
No. (cm) (1/year)
x1072
81 6.68 2483
82 7.14 2.560
83 10.03 3.129
84 12.04 2.283
85 7.17 2442
86 15.11 1.326
87 11.14 1.486
88 11.11 2.070
89 9.36 1.825
90 9.84 2.340
91 19.44 1.063
92 10.55 1.958
93 13.50 1.930
94 15.79 0.600
95 11.37 2.010
96 10.34 2.242
97 7.42 3.173
98 8.15 3.024
99 16.08 1.228
100 7.69 2.356
i01 8.29 2488
102 8.62 1.871
103 7.17 3016
104 10.47 0.962
105 827 2.275
106 8.52 1.525
107 7.02 2.312
108 7.62 1.541
109 9.62 1.643
110 11.83 1.177
111 3.35 3.708
112 11.13 0983
113 9.60 1.614
114 8.24 2.595
115 11,78 2.767
116 8.08 3.660
117 10.57 1.332
118 23.08 0414
119 10.51 1.803
120 9.65 1.823

Stem M k
No. (cm) (1/year)
x1072

121

122 12.41 1.349
123 8.12 1.976
124 12.10 1.438
125 9.74 2.594
126 8.54 2.220
127 8.31 1.926
128 9.92 1.516
129 9.41 2.254
130 9.72 1.488
131 8.10 3.302
132 18.74 0.972
133 11.37 1.565
134 10.57 1.683
135 9.39 2.447
136 14.33 1.300
137 7.25 3.233
138 8.46 1.838
139 10.15 2.008
140 9.15 1.724
141 6.54 2.234
142 8.66 2.167
143 6.48 2.855
144 8.94 2.208
145 12.56 1.893
146 13.79 1.874
147 3415 0.409
148 18.02 1.080
149 12.31 1.579
150 8.26 3.205
151 9.23 2.014
152 11.05 1.599
153 46.21 0.201
154 9.93 2.253
155 10.44 2.258
156 8.12 2.521
157 9.23 1.927
158 10.83 1.710
159 11.03 1.295
160 7.00 2.561
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Stem M k
No. (cm) (1/year)
x10~2
161 7.48 2.186
162 7.34 2.256
163 6.86 3.099
164 10.02 1.812
165 9.63 1.192
166 10.14 1.035
i67 9.83 1.339
168 6.47 2.378
169 11.41 1.641
170 6.05 3.118
171 10.00 1.518
172 7.55 2.200
173 11.04 1.167
174 10.63 1.560
175 8.29 3.008
176 11.40 3.049
177 9.80 2.530
178 11.12 1.647
179 9.49 2.834
180 7.58 1.588
181 8.42 1.869
182 9.42 2.247
183 7.35 2.465
184 8.54 1.822
185 10.54 1.515
186 8.31 2.870
187 10.90 1.627
188 8.90 1.085
189 13.39 1.332
190 6.51 2.056
191 6.55 2473
192 7.61 3.385
193 11.79 1.209
194 10.36 1.680
195 19.25 0412
196 11.15 3.254
197 6.36 1.673
198 9.86 1.619
199 9.65 2.954
200 7.50 3.586

Stem M k
No. (cm) ‘(1/year)
x1072

201 11.56 1.665
202 10.13 2.274
203 7.83 2.946
204 15.65 1.039
205 13.22 1.961
206 6.95 3.135
207 13.06 1.581
208 14.84 2.147
209 6.69 3.523
210 9.12 1.937
211 8.78 3.866
212 8.89 2.483
213 11.58 1.388
214 7.73 2.376
215 12.19 2.403
216 9.66 2.544
217 10.49 1.431
218 9.85 3.125
219 11.47 2.156
220 9.39 1.254
221 7.73 2.427
222 9.22 2.714
223 841 2.797
224 11.37 1.597
225 6.89 2,944
226 9.76 2.371
227 13.33 1.298
228 8.09 2.759
229 10.15 1.948
230 10.73 1.506
231 12.08 1.178
232 751 2.281
233 11.97 2.030
234 9.79 1.649
235 8.98 1.694
236 14.37 1.442
237 9.17 3.204
238 9.62 2.153
239 17.70 0.940
240 13.60 1.171




140

Stem M k
No. (cm) (1/year)
x1072

241 10.06 2.443
242 9.82 2.189
243 8.42 2.719
244 8.46 2.564
245 8.71 2.041
246 9.48 2.071
247 9.66 2.095
248 9.17 1.440
249 11.41 1.898
250 943 2.496
251 14.62 0.929
252 8.78 2.741
253 13.28 1.143
254 7.22 3.533
255 8.94 2.202
256 1145 1.607
257 10.74 1.658
258 7.72 3.073
259 12.77 1.658
260 7.60 2.129
261 10.83 2.351
262 10.78 2,717
263 991 1.503
264 11.13 2.210
265 11.93 1.568
266 993 3.170
267 11.54 1.455
268 8.60 2.081
269 8.89 2.244
270 13.05 1.496
271 993 1.213
272 7.20 2.046
273 8.37 1.993
274 12.00 1.647
275 11.04 1.530
276 12.57 1.364
277 8.35 2.084
278 7.02 3.089
279 10.74 1.837
280 10.96 1.642

Stem M k
No. (cm) (1/year)
) x1072

281 11.27 2.050
282 11.07 1.768
283 6.84 2.691
284 7.73 1.762
285 9.65 2.874
286 9.38 2.122
287 8.20 2.571
288 9.84 3.368
289 11.33 2.026
290 11.40 1.855
291 10.82 2.336
292 10.68 2.319
293 7.74 2.783
294 8.77 2.718
295 10.74 2.235
296 8.99 2.103
297 12.01 1.586
298 7.95 2.408
299 8.20 2.063
300 9.86 2.451
301 12.63 2.276
302 6.25 3.286
303 8.52 2.816
304 8.83 2.476
305 12.40 1.792
306 10.40 2.083
307 7.95 2.399
308 8.48 1.702
309 9.41 1.836
3i0 12.28 2.049
311 6.16 3.431
312 10.34 2.247
313 10.21 2.186
314 15.38 1.028
315 13.65 1.772
316 11.39 1.602
317 14.44 1.599
318 11.40 1.948
319 10.50 3.004
320 953 2.448
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Stem M k-
No. (em) (1/year)
N - ;10_2
321 8.89 2.503
322 7.88 2.327
323 12.21 2.206
324 7.25 2.261
325 10.27 3.195
326 9.29 1.626
327 10.24 1.909
328 8.10 2416
329 9.86 2.499
330 9.21 3.146
331 8.32 2.029
332 13.83 1.265
333 23.04 0.494
334 12.87 2.244
335 13.00 2.112
336 14.36 0.901
337 11.02 2.242
338 15.98 0.856
339 20.26 0.706
340 12.15 1.532
341 10.09 2.386
342 10.33 2.371
343 10.87 2.120
344 12.97 2.644
345 9.65 1.451
346 10.17 1.814
347 15.57 1.448
348 15.35 1.300
349 1596 1.396
Mean 10.75 2.026
Var. 14.90 0.493
S.D. 3.86 0.702
Max. 4621 5.061
Min. 3.35 0.368
n 348 348

C.V.(%) 359 34.6
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APPENDIX IT

PARAMETERS OF THE LOGISTIC EQUATION
AS APPLIED TC TEE RADIAL STEM
GROWTH OF JACK PINE
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Stem " b C Stem " b C
No. a (1/year) (cm) No. a (1/year) (cm)
o X102 x10~2 o
1 1.641 5.070 9.55 41 1.638 4.064 11.92
2 1914 4.488 12.73 42 1.756 5412 13.17
3 1.209 5.181 7.91 43 1.758 3.869 13.09
4 1.798 7.682 6.09 44 1.789 5.509 9.71
5 1.512 4.581 10.41 45 1.502 4.455 10.85
6 1.811 4.033 9.79 46 1.897 9.965 10.47
7 1.266 5.570 7.67 47 1914 5.844 8.88
8 1.649 3.861 9.58 48 2.018 5.049 7.64
9 1.845 4.866 11.00 49 1.665 4.035 10.60
10 1.640 5.526 6.09 50 1.975 7.135 8.88
11 1.907 5.093 9.55 51 1.820 4.487 9.31
12 1.619 5.408 7.81 52 1.685 4,453 11.00
13 1.570 4378 6.72 53 2.050 4.786 9.30
14 1.459 4.388 8.90 54 1.533 5.085 10.12
i5 1.640 4.056 9.05 55 1.668 4.128 11.25
16 1.467 4.826 8.10 56 1.599 6.028 8.35
17 1.513 4.474 9.65 57 1.705 4.469 14.36
18 1.577 5458 7.48 58 1.607 5.031 10.28
19 1.708 4227 12.53 59 1.846 5.382 9.13
20 1.873 5.103 10.54 60 1.367 4.992 10.95
21 1.862 4.530 9.83 61 1.833 3.499 7.43
22 1.494 5.486 8.96 62 1.948 3.994 8.53
23 1.641 5.598 10.42 63 1.286 4.408 5.00
24 1.879 3.494 10.94 64 1.825 4.872 10.78
25 1.477 3.346 11.74 65 1.290 5.243 8.79
26 1.587 3.541 11.80 66 1.627 5.160 9.67
27 1.219 5.524 6.89 67 1.731 3.935 8.09
28 2.176 3.514 12.02 68 1.802 5.332 9.68
29 2122 4.245 14.85 69 1.924 5.005 10.21
30 1.619 3.489 11.48 70 1.672 5.863 7.08
31 2.036 4.352 11.60 71 1.679 5.978 12.04
32 1.571 3.683 6.09 72 2.005 4.246 11.23
33 1.609 3.524 10.41 73 1.658 5.183 7.57
34 1.499 5.130 8.07 74 1.516 5202 8.79
35 1.623 6918 6.82 75 1.478 5.250 10.01
36 1.720 8.186 8.33 i 1.396 5.369 10.96
37 1.580 4.736 8.96 77 - - -
38 1.440 5.101 9.05 78 1.134 3.168 7.74
39 1.349 3.992 9.82 79 1.684 4.069 12.22
40 1.690 4.154 12.13 80 1.088 4.289 435

*Dimensionless
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Stem " b C Stem " b C
No. ¢ (1/year) (cm) No. a (1/year) (cm)
x10~2 x1072
81 1.121 3.630 6.70 121 — — -
82 1.403 5.065 6.77 122 1.813 4436 9.94
83 1.887 8.312 9.36 123 1.533 4,571 7.36
84 1.530 5.107 11.12 124 1.716 4242 10.06
85 1.326 4.585 6.82 125 1.534 5,753 9.08
86 1.898 4825 11.62 126 1.183 3.486 8.50
87 1.618 3.949 9.55 127 1.659 4975 7.37
88 1.730 5.518 9.88 128 1.662 4.145 8.48
89 1.563 4.410 8.36 129 1.526 5.081 8.65
90 1.403 4.712 9.25 130 1.494 3.371 8.77
91 1.772 3.680 14.84 131 0.926 3.956 8.33
92 1.721 5.219 9.34 132 1.828 3.659 13.72
93 1.799 5.503 11.76 133 1.598 4.620 9.88
94 1.925 2.266 12.20 134 1.321 2.901 10.49
95 1.949 6.132 992 135 1.158 3.790 9.29
96 1.316 4.130 9.88 136 1.741 4,033 11.62
97 1.623 7.183 7.01 137 1.500 6.791 6.90
98 - - — 138 1.641 4,055 7.45
99 1.773 3.985 12.85 139 1.643 5.032 9.11
100 1.633 5.648 7.04 140 1.392 3.471 8.55
101 1.518 5.502 7.70 141 1.358 4.354 6.17
102 1.488 4,222 7.82 142 1.534 4.860 7.99
103 1.652 7.003 6.71 143 1.559 6.146 6.14
104 2.398 5.193 6.87 144 1.458 4.702 8.30
105 1.326 4.297 7.85 145 1.505 4.301 11.42
106 1.451 3.463 7.7 146 1.446 4.025 12.66
107 1.428 4.765 6.57 147 2.367 4.268 13.55
108 1.521 3.652 6.77 148 1.859 3.986 13.52
109 1.611 4.366 8.35 149 1428 3.220 11.54
110 1.753 3.820 9.35 150 1.404 6.232 793
111 1.279 6.546 3.24 i51 1.577 4.804 8.34
112 3.547 1.787 8.28 15. 1.831 4963 9.24
113 1.364 2.952 9.36 153 2.257 3.501 11.06
114 1.301 4,782 7.87 154 1.546 5.148 9.12
115 1.261 4.842 11.39 155 1.721 5.839 943
116 1.586 8.069 7.72 156 1.478 5419 7.57
117 1.679 3.880 8.74 157 1.881 5.722 8.03
118 2.069 3.226 10.47 158 1.448 3.652 9.96
119 1414 3.756 9.72 159 1.777 4.133 8.88
120 1416 3.796 821 160 1.707 6.329 6.43

*Dimensionless
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Stem

b

Stem

b

»* C >
No. 4 (1/year) (cm) No. a (1/year)
o xi072 x1072
161 1.231 3.635 7.33 201 1.601 4.284
162 1.219 4.868 7.11 202 1.682 5.767
163 1.293 5.622 6.61 203 1.493 6.141
164 1.638 4.634 8.94 204 2.126 4759
165 1.794 3.641 8.11 205 1.721 5.164
166 1.693 3.208 8.08 206 1.269 5.522
167 1.482 2.758 9.48 207 1.610 4,084
168 1.397 4,732 6.10 208 1.357 4.160
169 1.557 4.007 10.09 200 1.070 5.134
170 1.819 7.902 5.67 210 1.417 3983
171 1.714 4,315 8.48 21 1.540 8.285
172 2.100 6.970 6.69 212 1.461 5.340
173 1.631 3.327 9.16 213 1.649 3.865
174 1.553 3.812 9.38 214 1.534 5.366
175 1.222 5.099 8.05 215 1.522 5.323
176 1716 7.346 10.69 216 1.587 5.835
177 1.442 5.196 9.23 217 1.801 4,539
178 1.579 4.142 9.75 218 2.077 9.302
179 1.274 5.023 9.17 219 1.600 5.220
180 1.730 4,528 6.45 220 1.494 2.713
181 1.700 4,969 7.42 221 1.685 5.962
182 1412 4.590 8.81 222 1.540 5959
183 1.725 6.144 6.75 223 1.689 6.706
184 1.429 3.854 7.87 224 1.744 4.620
185 1.528 3.619 9.34 225 1.686 6.878
186 1.554 6.273 7.83 226 1.393 4714
187 1.641 4315 9.44 227 1.637 3.613
188 1.663 3.266 7.16 228 1.619 6.316
189 1.557 3.350 11.63 229 1.422 4.049
190 1.492 4.550 598 230 1.606 3923
i91 1.692 6.126 6.01 231 1.720 3.710
192 1.657 7.797 7.20 232 1.827 6.306
193 1.666 3.556 9.64 333 1479 4.492
194 1.594 4.279 9.06 234 1.760 4751
195 — — — 235 1.552 4.090
196 1.842 8.290 10.49 236 1.576 3.718
197 1.344 3.016 6.20 237 1.576 7.050
198 1.451 3475 9.05 238 1.393 4.357
199 1.205 4981 9.37 239 1.875 3.825
200 1.283 6.310 7.30 240 1.577 4.259

8.41
8.28
9.75
7.13
11.28
8.96
8.56
9.12
10.38
7.83

7.10
8.65
7.83
9.64
6.57
9.20
11.17
7.57
941
9.27

9.63
6.73
10.96
8.37
7.98
12.39
8.66
8.99
12.49
12.01

*Dimensionless
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Stem " b C
No. a (1/year) B (cm)
x1072

241 2.032 7.208 9.09
242 1.566 5.105 8.96
243 1.606 6.233 7.86
244 1.628 5941 7.89
245 1.384 4,078 8.15
246 1.850 6.007 8.30
247 1.418 4,347 8.98
248 1.751 4431 7.52
249 1.377 3.760 10.70
250 1.435 5.209 8.88
251 1.708 2,94} 11.54
252 1.437 5.627 8.29
253 1.867 4.158 10.09
254 1.648 7.875 6.90
255 1.613 5.309 8.13
256 144 6.073 8.69
257 1.717 4.809 9.01
258 1.713 7.336 7.26
259 1.596 4.150 11.26
260 1.275 3.763 7.33
261 1.710 5914 9.88
262 1.321 5.044 10.31
263 1.704 4.269 8.39
264 1.550 5.066 10.19
265 1.866 5.078 9.79
266 1.465 6.459 9.47
267 1.542 3.528 10.18
268 1.550 4.822 7.83
269 1.540 5.098 8.16
270 1.639 4.025 11.18
271 1.665 3.582 8.10
272 1.724 5.518 6.33
273 1.533 4.606 7.60
274 2277 6.504 9.76
275 1.797 4.641 9.23
276 1.613 3.671 10.67
277 1.462 4.265 7.78
278 1.616 7.100 6.55
279 1.726 5.018 9.39
280 1.588 3.988 9.67

Stem a* b C
No. (1/year) (cm)
o x1072

281 1.444 4216 10.46
282 1.596 4362 9.85
283 1.310 5.001 6.62
284 1.348 3.320 7.38
285 1.384 5.730 9.23
286 1.419 4.391 8.71
287 1.270 4.560 7.90
288 1.550 7.229 9.46
289 1.304 3.658 10.90
290 1.738 5.164 9.92
291 1.358 4.512 10.24
292 1.637 5.660 9.19
293 1.334 5.315 7.36
294 1.382 5.262 8.36
295 1.725 5.749 9.71
296 1.394 4.221 842
297 1.653 4.223 1041
298 1.565 5.417 7.38
299 1.385 4.100 7.69
300 1.627 5.781 9.10
301 1.776 6.067 11.40
302 1.531 7.079 595
303 1.352 5481 8.09
304 1.503 5423 8.22
305 1.861 5418 10.62
306 1.576 4.959 9.44
307 1.637 5.736 7.32
308 1.363 3.206 8.13
309 1.582 4536 8.36
310 1.573 4851 11.14
311 1.285 6.120 5.97
312 1.592 5.301 9.46
313 1.426 4.528 951
314 1.800 3.668 11.58
315 1.761 5.323 11.36
3i6 1.499 3.698 10.23
317 1.653 4.287 12.46
318 1.617 4.808 10.22
319 1913 8.148 9.81
320 1.444 5.094 8.93

*Dimensionless
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Stem " b C
No a (1/year) {cm)
S x1072
321 1.307 4582 8.60
322 1.455 4911 7.34
323 1.721 5.712 10.98
324 1518 5.011 6.70
325 1.888 8.504 9.59
326 2.005 5.596 7.66
327 1.627 4.799 9.12
329 1.849 6.470 7.37
329 1.521 5.703 8.99
330 1.973 8.539 8.57
331 1.503 4.6%° 7.59
332 2.030 4.884 10.65
333 2.036 3.308 11.70
334 1.811 6.190 11.49
335 1.873 6.123 11.47
336 1.770 3.180 10.75
337 1.755 5.854 9.96
338 1.962 4.112 i1.16
339 1.892 3.185 13.28
340 1.826 4.803 10.04
341 1.513 5.223 9.38
342 1.526 5.271 9.58
343 1.654 5.320 9.79
344 1.785 6.887 11.90
345 1.574 3.727 8.34
346 1.653 4.692 8.98
347 1.801 4.531 12.80
348 1.715 3.927 12.55
349 1.876 4.703 12.81
Mean 1.616 4.889 9.18
Var, 0.0493 1.369 3.51
S.D. 0.222 1.170 1.87
Max. 2.398 9.302 14.84
Min, 0926 2.266 4.35
n 345 345 345
CV.(%) 137 23.9 204

*Dimensionless
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APPENDIX TIIT

PARAMETERS OF THE GOMPERTZ EQUATION
AS APPLIED TO THE RADIAL STEM
GROWTH OF JACK PINE
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Stem . q A
No. P (I/year)  (em)
o x107! x1072

B 8.008 3.619 9.82

2 9.317 2.993 13.36

3 5.377 3.840 8.12

4 8.971 5.542 6.18

5 7.224 3.287 10.72

6 8.616 2.637 10.39

7 5.955 4.288 7.78

8 7.782 2.593 10.11

9 8.930 3.300 11.45
10 8.022 4.001 6.22
11 9.340 3.472 9.90
12 7.800 3.873 8.00
i3 7.137 2.958 7.02
14 6.809 3.125 9.20
15 7.834 2.802 9.44
16 7.039 3.542 8.29
17 6.974 3.130 9.99
18 7.664 3.982 7.64
19 8.190 2.895 13.08
20 9.120 3.501 10.91
21 8.938 2981 10.37
22 7.092 3.993 9.15
23 8.150 4.077 10.65
24 8.833 2.149 12.00
25 6.664 2.203 12.54
26 7.210 2.284 12.66
27 5472 4.203 6.99
28 10.191 1.957 13.94
29 10.149 2.637 16.00
30 7.434 2.246 12.34
31 9.629 2.701 12.51
32 7.259 2.437 6.48
33 7.468 2.302 11.14
34 7.167 3.724 8.27
35 7.908 5.048 6.94
36 8.582 5959 8.44
37 7.452 3.340 9.24
38 6.848 3.766 9.24
39 6.271 2.933 10.09
40 8.100 2.848 12.67

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80

p* q A
(1/year) (cm)
x1071 x1072
7.821 2.798 12.46
8.718 3.857 13.50
8.350 2.533 13.95
8.934 3.905 9.97
7.053 3.167 11.20
9.279 3.365 1091
9.738 4.017 9.13
9.872 3.329 8.01
7.876 2.720 11.15
10.143 5.083 9.05
8.858 3.051 9.73
7.996 2.996 11.58
9.953 3.098 9.84
7.432 3.672 10.38
7.968 2.898 11.74
7.712 4.349 8.53
8.183 3.076 14.94
7.720 3.574 10.57
9.195 3.784 9.39
6.652 3.806 i1.14
8.495 1.906 .89
9.041 2218 10.00
5.643 3.075 5.23
8.576 3.101 11.58
5.736 3.778 9.07
7.622 3.501 10.13
7.990 2.410 8.92
8.678 3.589 10.14
8.916 3.039 11.17
8.025 4.095 7.32
8.253 4.270 12.37
9.305 2.370 13.05
8.139 3.717 7.77
7.276 3.792 8.99
7.089 3.838 10.25
6.556 3.965 11.19
6.416 7.152 4.70
4.782 2.305 8.01
7.932 2.722 12.87
4.546 3.225 4.45

*Dimensionless
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Stem

81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
110

i1l
112
113
114
115
116
117
118
119
120

p* q A Stem p* q A
(I/year)  (cm) No. (1/year) (cm)
x1071 x10 72 x10~1 x1072
4.842 2.732 6.87 i21 - - -
6.575 3.725 6.92 122 8.647 2.924 10.49
9.522 5.940 9.49 123 7.134 3.189 7.63
7.442 3.751 11.37 124 8.216 2.872 10.55
6.202 3.423 6.97 125 7357 4.188 9.28
9.042 3.122 12.33 126 5.072 2.482 8.87
7.711 2.718 9.99 127 8.066 3.519 7.60
8.668 3.978 10.12 128 7.755 2.768 8.93
7.347 3.067 8.69 129 7.346 3.684 2.87
6.608 3.462 9.48 130 6.965 2.335 9.19
8.206 2.277 16.19 131 3.778 3.187 8.42
8.290 3.635 9.63 132 8.665 2.325 14.81
8.741 3.799 12.15 133 7.674 2.822 10.27
9.096 1.111 16.10 134 5.729 1.853 11.36
9.728 4.265 10.18 135 5.093 2.837 9.54
5.902 2.994 10.18 136 8.202 2.756 11.94
8.071 5.309 7.11 137 7.263 5.030 7.00
7.626 4.987 7.78 138 7913 3.337 7.71
8.283 2.557 13.76 139 7.922 3.557 9.38
7.995 4.089 7.20 140 6.270 2.370 9.02
7.412 4.053 7.86 141 6.238 3.154 6.35
6.874 2931 8.15 142 7.100 3417 8.23
8.148 5.126 6.82 143 7.453 4.494 6.24
11.753 3.301 7.23 144 6.906 3.418 8.52
6.077 3.132 8.08 145 7.129 3.064 11.80
6.469 2.260 8.32 146 6.738 2.856 13.13
6.686 3.462 6.74 147 11.335 2.512 15.01
7.000 2461 7.15 148 8.729 2.519 14.55
7.617 3.006 8.70 149 6.471 2.186 12.20
8.226 2.461 10.01 150 6.699 4.684 8.05
5.826 4919 3.30 {51 7.569 3.429 8.58
8.380 2.216 9.02 152 8.966 3.404 9.59
6.077 1.989 9.95 153 11.041 1.784 13.67
6.105 3.600 8.03 154 7.404 3.703 9.36
5.733 3.634 11.61 155 8.446 4.146 9.66
7.673 5.868 7.82 156 7.017 3.928 7.75
7.847 2.542 9.30 156 9.293 3.976 8.26
9.593 1.721 12.58 158 6.580 2.483 10.50
6.379 2.571 10.21 159 8.404 2.713 9.40
6.653 2.741 9.22 160 8.394 4.558 6.56

*Dimensionless
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Stem " q A Stem * q A
No. r (1/year) (cm) No. p (1/year) (cm)
o X107t X102 0! x1072
161 5.458 2.647 7.57 201 7.642 2.875 10.50
162 5.542 3.669 7.26 202 8.393 4.139 941
163 5.994 4,227 6.73 203 7.146 4.527 7.65
164 7.876 3.256 9.24 204 10.329 3.056 11.67
165 8.486 2.337 8.72 205 8.373 3.641 12.11
166 7.782 1.962 8.93 206 5.960 4.237 6.82
167 6.665 1.712 10.48 207 7.550 2.781 11.90
168 6.437 3.432 6.27 208 6.208 3.003 14.45
169 7.347 2.785 10.52 209 4.610 4.001 6.73
170 9.236 5.745 5.74 210 6.502 2.822 8.80
171 8.002 2.868 8.92 211 7.423 6.051 8.53
172 10.675 4.862 6.82 212 7.023 3.915 8.47
173 7.530 2.103 9.91 213 7.832 2.621 10.25
174 7.189 2.587 9.26 214 7418 3.830 7.30
175 5.489 3.842 8.20 215 7.308 3.877 11.54
176 8.477 5.367 10.86 216 7.718 4.241 9.15
177 6.893 3.850 9.4] 217 8.796 3.103 8.93
178 7.397 2.832 10.2} 218 10.399° 6.395 9.27
179 5.925 3.823 9.32 219 7.742 3.728 10.67
180 8.308 3.104 6.72 220 6.708 1.613 8.88
181 8.150 3.445 7.68 221 8.350 4,325 7.24
182 6.635 3.351 9.05 222 7.502 4.385 8.81
183 8.543 4437 6.88 223 8.235 4834 7.98
184 6.521 2.678 8.22 224 8.408 3.167 10.04
185 7.067 2.451] 9.85 225 8.239 4.986 6.68
186 7.536 4.603 7.97 226 6.552 3.475 9.42
187 7.741 2.941 9.87 227 7.516 2.320 12.01
188 7.614 1.987 7.95 228 7.881 4.592 7.71
189 7.124 2.166 12.52 229 6.537 2.865 9.76
190 6.944 3.2i6 6.18 230 7.467 2.631 9.78
191 8.358 4.419 6.13 231 8.178 2.448 10.24
192 8.171 5.685 7.30 232 9.052 4.435 6.89
193 7.710 2.272 10.40 233 6.952 3.199 11.32
194 7.545 2.953 9.45 234 8.450 3.244 8.71
195 - - - 235 7.305 2.845 8.31
196 9.209 5.929 10.64 236 7.247 2441 13.21
197 5.991 2.062 6.55 237 7.740 5.212 8.79
198 6.591 2.357 9.56 238 6.394 3.114 9.29
199 5.568 3.822 9.53 239 8.843 2.378 13.60
200 5917 4.797 7.39 240 7.475 2.966 12.49

*Dimensionless
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Stem " q A Stem . q A
No. p (1/year) (cm) No. P (t/year) (cm)
x10~1 x1072 - x107! x1072

241 10.176 5.028 9.27 281 6.956 3.199 10.70
242 7.572 3.686 9.19 282 7.575 3.055 10.20
243 7.732 4.489 8.02 283 6.000 3.683 6.79
244 8.071 4.367 8.02 284 5.997 2.278 7.77
245 6.556 3.019 8.36 285 6.722 4.383 9.35
246 9.157 4.195 8.54 286 6.617 3.159 9.00
247 6.615 3.132 9.26 287 5.808 3.418 8.04
248 8.533 3.030 7.86 288 7.515 5328 9.60
249 6.232 2.683 11.10 289 5.812 2.598 11.32
250 6911 3.853 9.08 290 8.485 3.600 10.25
251 7.845 1.724 13.12 291 6.402 3.362 10.47
252 6.859 4,154 845 292 8.120 4.121 9.39
253 8.901 2.698 10.73 293 6.293 3.972 7.51
254 8.098 5.781 6.98 294 6.539 3.941 8.51
255 7.839 3.810 8.34 295 8.535 4.126 9.93
256 9.357 3.970 9.18 296 6.355 3.002 8.71
257 8.161 3.246 9.45 297 8.044 2.983 10.77
258 8.486 5.326 7.37 298 7.583 3.960 7.53
259 7.566 2.890 11.70 299 6.333 2931 7.96
260 5.571 2.663 7.62 300 8.037 4.231 9.28
261 8.449 4.254 10.09 301 8.762 4290 11.67
262 6.203 3.797 10.50 302 7.406 5.191 6.04
263 8.130 2.908 8.77 303 6.233 3.992 8.29
264 7.452 3.656 10.46 304 7.379 4.026 8.38
265 9.049 3.425 10.22 305 9.291 3.799 10.93
266 7.118 4.844 9.61 306 7.625 3.569 9.69
267 7.105 2.366 10.78 307 8.093 4.184 7.46
268 7.364 3432 8.07 308 6.156 2.229 8.53
269 7.350 3.663 8.38 309 7.523 3.171 8.67
270 7.640 2.692 11.78 310 7.634 3.502 11.44
271 7.714 2.286 8.75 o311 5.930 4.624 6.06
272 8.178 3.780 6.56 312 7.701 3.812 9.69
273 7.214 3.249 7.86 313 6.765 3.322 9.75
274 11.527 4.372 10.06 314 8.550 2.362 12.43
275 8.692 3.169 9.60 315 8.479 3.619 11.87
276 7.444 2.398 11.40 310 6.881 2.510 10.77
277 6.953 3.262 7.92 317 8.000 3.007 12.92
278 7.868 5.159 6.67 318 7.621 3.342 10.58
279 7973 3.231 9.83 319 9.615 5.768 9.97
280 7.709 2.852 9.94 320 6.792 3.704 9.14

*Dimensionless
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Stem » q A
No. P (1/year) (cm)
T T o
321 5.991 3.391 8.81
322 6.901 3.583 7.53
323 8.573 4.124 11.23
324 7.286 3.645 6.86
325 9.397 5.995 9.74
326 10.125 3.877 7.90
327 7.690 3.361 9.37
328 9.137 4.586 7.52
329 7.066 3.891 9.42
330 10.071 6.154 2.69
331 7.120 3.351 7.83
332 9971 3.245 11.14
333 9.446 1.816 13.75
334 9.041 4.397 11.76
335 9.431 4.336 11.75
336 8.275 1.971 11.80
337 8.668 4.175 10.19
338 9.402 2.616 11.97
339 8.855 1.895 14.88
340 9.007 3.332 12.41
341 7.259 3.808 9.59
342 7.354 3.840 9.80
343 8.151] 3.829 10.04
344 8.810 4.879 12.14
345 7.211 2.440 8.89
346 7.983 3.301 9.28
347 8.668 3.054 13.40
348 8.084 2.589 13.31
349 8.995 3114 13.45
Mean 7.611 3.484 9.57
Var, 1.414 0.893 4.41
S.D. 1.189 0.945 2.10
Max. 11.753 7.152 16.19
Min. 3.778 1.111 445
n 347 347 37
CV.(%) 156 27.1 21.9

* Dimensionless
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APPENDIX IV

PARAMETERS OF THE EMPIRICAL GROWTH
EQUATION I AS APPLIED TO THE
RADIAL STEM GROWTH OF JACK PINE
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Stem a b c Stem a b c
No. (cm) (cm/year) (cm/year?) No. (cm) (cm/year) (cm/year?)
S WW;IE):TAWT - :]f)Lf "*'“‘*"';'I(')”:I"“- o x]O"l x"]()"l x1074

1 7.175 1.465 -5.954 - 41 7.292 1.560 ~5.378
2 1.024 1.798 —6.293 42 6.722 2.150 -9.064
3 1.334 1.287 --6.287 43 5.813 1.579 —4.761
4 5.564 1.213 —6.349 44 4.452 1.590 —6.649
5 1.039 1.469 -5.663 45 10.533 1.540 —6.060
6 3.375 1.233 -2.906 46 1.137 1.641 —6.436
7 14.005 1.194 —5.518 47 2.274 1.529 —6.605
8 6.245 1.175 —3.732 48 0.008 1.160 —4.275
9 2.735 1.688 —6.604 49 6.476 . 1.358 —4.554
10 4.593 1.026 —4.612 50 3.883 1.667 -7.801
1 1.215 1.518 —-6.059 51 2.067 1.336 —4.847
12 6.603 1.277 —5.621 52 5.994 1.563 -5.772
13 5.960 0.943 —3.682 53 0.661 1.349 —4.703
14 3.036 1.238 -4.818 54 10.002 1.573 —6.700
15 5.259 1.191 —4.136 55 6.261 1.528 —5.464
16 9.290 1.180 —4.766 56 9.177 1.417 ~6.558
17 9.180 1.401 —5.692 57 6.790 2.072 —7.842
18 6.733 1.242 ~5.582 58 8.446 1.585 —6.583
19 5.619 1.715 —6.121 59 2.190 1.574 —6.365
20 1.662 1.718 —7.118 60 16.030 1.575 —6.420
21 2.834 1.364 -4.737 61 5.334 0.663 —0.833
22 11.270 1.418 -6.272 62 4.244 0.874 —1.402
23 8.708 1.700 —7.353 63 7.403 0.710 —2.969
24 3.558 1.131 —2.679 64 3.983 1.616 —6.008
25 12.534 1.250 —3.645 65 12.830 1.474 —7.469
26 10.009 1.322 —3.984 66 6.331 1.621 —17.299
27 13.207 1.090 —-5.234 67 5.061 0.953 ~-2.675
28 1.316 1.055 —1.388 68 2.896 1.640 —-7.076
29 —2.187 1.870 —5.447 69 3.540 1.492 -5.205
30 9.061 1.253 ~3.580 70 3.964 1.331 —6.625
3] 0.615 1.500 —-4.611 71 7.255 2.227 —10.799
32 5.377 0.700 -2.128 72 4.350 1.229 ~2.237
33 8.220 1.141 -3.209 73 5.235 1.208 —5.088
34 9.101 1.135 5228 74 9417 1.375 ~5.928
35 7.115 1.333 -7.064 75 12.120 1.541 —6.585
36 12.532 1.527 -7.720 76 15.895 1.708 -7.616
37 7.044 1.367 ~5.689 77 13.661 0.767 —4.105
38 10.463 1.433 ~6.373 78 13.933 0.805 —2.586
39 12.564 1.257 -4.599 79 6.840 1.592 —5.446

40 5.843 1.632 —5.726 80 8.860 0.581 —2.456
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Stem a b c Stem a b c
No. (cm) (cm/year) (cm/year?) No. (cm) (cm/year) (cm/year?)
- x107! x1071 x10™ x1071 x1071 x10 ™
81 12.575 0.771 —2.725 121 13.234 -0.103 5.387
82 8.600 1.063 -4.759 122 3.796 1.360 —4.721
83 10.620 1.760 —8.760 123 7.164 1.054 —4.167
84 10.921 1.729 -7.327 124 4.969 1.350 —4.682
85 9.737 0.964 -3.933 125 10.973 1.474 —6.598
86 2.532 1.746 -6.367 126 14.639 0.956 —3.260
87 6.355 1.206 -3.998 127 4962 1.130 —4.575
88 5.353 1.640 —~7.033 128 5.507 1.120 —-3.939
89 7.058 1.174 —-4.490 129 8.845 1.381 ~5.575
90 11.587 1.348 -5.559 130 8.069 0.958 —2.807
91 3.116 1.606 -4.215 131 20.390 0.996 —3.929
92 5.274 1.509 —6.415 132 4.886 1.523 —4.029
93 5.490 1.951 —-8.343 133 6.392 1.293 —4.479
94 9.389 0.598 0.161 134 15.212 0952 —2.400
95 2.139 1.785 —8.023 135 16917 1.096 —3.895
96 13.422 1.335 —~5.303 136 5.237 1.477 —4.783
97 9.423 1.266 -6.277 137 10.713 1.201 -5.915
98 11.828 1.262 ~5.810 138 5.006 1.110 —4.386
99 6.385 1.581 —-4.951 139 6.937 1.400 —5.745
100 5.782 1.129 -5.367 140 10.600 0.948 —-2.947
101 9.130 1.205 ~5.178 141 8.447 0.832 -3.221
102 8.272 1.039 -3.830 142 7.863 1.221 —5.200
103 6.673 1.309 —~6.859 143 7.294 1.074 —5.205
104 —4.338 1.062 -3.794 144 9.370 1.210 —-4.930
105 11.254 1.047 —4.042 145 11.357 1.537 —5.683
106 9.220 0.843 —2.535 146 13.631 1.629 —5.835
107 7.929 0.871 —4.060 147 -4.364 1.518 —3.233
108 6.334 0.790 -2.501 148 4.456 1.644 —4.933
109 0.217 1.153 -4.269 149 12.896 1.200 —3.435
110 4.827 1.102 ~3.280 150 13.461 1.305 —6.220
111 5.765 0.607 -3.387 151 6.649 1.267 --5.201
112 4.286 0.871 —2.165 152 2.560 1.426 —5.582
113 12.324 0.876 —2.256 153 3.569 0.810 —0.840
114 12.343 1.118 —4.601 154 9.119 1.471 —6.019
115 18.996 1.667 --7.260 155 6.997 1.585 —6.995
116 15.057 1.312 —06.4170 156 9.812 1.174 -5.091
117 5.538 1.062 —3.341 157 2.150 1.388 —6.071
118 4314 0.803 --6.641 158 10.650 1.182 —-3.913
119 11.674 1.163 ~-3.928 159 3.694 1.151 -3.816

120 9.836 1.088 -3.672 160 4.450 1.206 —-5.955
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Stem a b 4 Stem a b c
No.  (em) (cm/year) (cm/year?) ~No.  (em) (cm/year) (cm/year?)
x107! x107! x107* x10~1 x107! x107
161 11.674 0.851 —2.925 201 7.684 1.354 —4.821
162 12.794 1.021 —4.392 202 7.311 1.51 —6.544
163 12.654 0.986 —4.373 203 10.223 1.286 —6.175
164 6.436 1.285 —4.913 204 2411 1.590 —5.441
165 3.311 0.807 -2.479 205 6.245 1.894 —17.980
166 6.008 0.767 —-1.739 206 1.242 1.025 —4.649
i67 11.285 0.777 —1.541 207 8.056 1.497 —5.304
168 7.588 0916 —3.945 208 18.505 1.848 —7.017
169 8.230 1.299 —4.521 209 14.585 0.999 —4.766
170 5.834 1.086 —5.490 210 10.001 1.071 —3.852
171 4.456 1.177 —4.34] 211 17.986 1.417 ~7.051
172 0.463 1.296 —6.107 212 11.075 1.249 —5.250
173 7.603 0.908 —2.219 213 5.853 1.203 —3.862
174 8.091 1.150 —3.848 214 7.806 1.118 —4.798
175 15.160 1.185 -5.279 215 10.715 1.879 —8.594
176 12.807 1.358 —9.690 216 9.393 1.499 —6.821
177 11.434 1.440 —6.313 217 2417 1.286 —4.453
178 8.056 1.276 —4.494 218 10.779 1.693 —8.245
179 15.348 1.360 -5.960 219 9.340 1.613 —6.736
180 2.906 0.935 —3.532 220 9.915 0.604 —1.048
181 4.598 1.139 —4.613 221 5.751 1.218 —5.532
182 10.653 1.264 -5.123 222 10.998 1.410 —6.347
183 5.098 1.191 —5.522 223 8.573 1.381 —6.561
184 0.900 0.973 —3.391 224 4.278 1.407 -5.319
185 8.394 1.087 —3.429 225 7.117 1.211 —6.028
186 9.744 1.354 —6.472 226 11.935 1.330 —5.465
187 6.383 1.295 —4.734 227 8.678 1.252 —3.666
188 6.128 0.679 —1.516 228 8.297 1.327 —-6.320
189 10.899 1.206 —3.253 229 10.463 1.242 —4.651
190 6.271 0.854 —3.407 230 7.040 1.160 ~3.890
191 5.095 1.041 --4.777 231 4910 1.114 -3.221
192 10.471 1.336 —6.850 232 3.910 1.187 -5.377
193 7.002 1.050 —2.900 233 11.595 1.541 —6.003
194 7.048 1.225 —4.432 234 3.787 1.249 —4.849
195 12.705 0.368 —1.443 235 6.449 1.059 —3.821
196 12.699 1.990 —-1.008 236 11.012 1.435 —4.414
197 8.394 0.594 —1.577 237 10.798 1.644 -8.579
198 9.708 1018 -3.178 238 11.507 1.225 —4.764
199 18.642 1.283 -5.290 239 4.454 1.407 ~3.696

200 14.473 1.216 -6.093 240 9.393 1.634 -5.994
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Stem a b c
No. (cm) (cm/year) (cm/year?)
10t <1071 xi0™
241 3.010 1.783 -8.721
242 8.156 1.394 -5.877
243 9.035 1.351 -6.354
244 7.854 1.313 —-5.874
245 9.495 1.072 —3.968
246 2.963 1.490 -6.797
247 10.538 1.237 —4.841
248 3.284 1.031 -3.570
249 12.990 1.302 —4.491
250 12.176 1.314 ~5.446
251 9.363 0.953 —1.646
252 1.241 1.277 -5.576
253 2.394 1.307 -4.208
254 10.880 1.266 —6.508
255 7.071 1.286 -5.456
256 0.377 1.657 —7.783
257 4.257 1.394 —5.642
258 8.672 1.336 —6.649
259 7.835 1.519 —5.516
260 11.019 0.885 -3.270
261 7.341 1.690 --7.606
262 15.836 1.544 —6.704
263 4.097 1.152 —4.148
264 8.326 1.196 —6.803
265 2.095 1.561 —6.305
266 14.800 1.606 —-7.739
267 8.902 1.157 —3.560
268 6.933 1.191 —4.955
269 7.997 1.273 —5.435
270 7.527 1.444 —4.983
271 5.950 0.882 --2.416
276 3.609 1.093 --5.006
273 7.052 1.106 —4.423
274 ~3.683 1.816 -7.917
275 2.564 1.379 -5.296
276 8.419 1.230 -3.735
277 8.192 1.094 —4.332
278 7.055 1.299 —6.899
279 5.036 1.465 --5.983
280 6.435 1.310 —4.807

Stem a b c
No. (cm) (cmfyear) (cm/year®)
x10~1 x1071 x107*
281 10.308 1.495 —6.003
282 6.821 1.4G1 -5.391
283 10.393 0.983 —4.354
284 9.788 0.790 —-2.424
285 13.567 1.515 ~7.093
286 9.928 1.231 —4913
287 12.457 1.103 —4.524
288 14.057 1.744 —-9.023
289 15.188 1.299 —4.535
290 5.752 1.538 —6.187
291 13.366 1.449 ~5.856
292 7.760 1.521 —6.696
293 13.017 1.046 —4.309
294 11.625 1319 ~5.954
295 5.731 1.681 —7.588
296 10.053 1.154 —4.537
297 5.732 1.415 -5.050
298 6.480 1.212 -5.674
299 9.227 1.028 —-3.938
300 7.879 1.549 —7.046
301 8.031 1.935 —8.539
302 11.174 0.941] ~4.305
303 14.514 1.168 —4.898
304 9.871 1.270 ~5.401
305 2.424 1.767 —7.391
306 7.840 1.456 —-6.057
307 6.468 1.263 -5.396
308 10.286 0.839 —-2.414
309 7276 1.165 —4.357
310 9412 1.669 —6.732
311 12.317 0.928 —4.355
312 8.803 1.490 —-6.338
313 10.886 1.355 -5411
314 4.550 1.301 —3.549
315 4,110 1.940 -8.533
316 9.958 1.219 —~3.997
317 6.695 1.736 —6.363
318 7.868 1.549 —6.361
319 10.174 1.838 -9.024
320 11.528 1.346 ~5.718
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Stem a b c
No. (cm) (cmfyear) (cm/year?)
x1071 1071 x107
321 12.647 1.229 -5.127
322 8.560 1.104 —4.638
323 6.019 1912 —8.652
324 6.923 1.022 —4.282
325 11.828 1.294 —2.952
326 -0.719 1.317 —5.505
327 6.685 1.368 —5.489
328 3.290 1.401 —6.812
329 10.603 1.482 —6.642
330 6.043 1.830 ~9.962
331 7.620 1.112 —-4.476
332 —~1.199 1.610 —-5915
333 4.551 0.967 --1.177
334 5.764 2.065 —-8.500
335 3.980 2.045 -9.179
336 5.639 1.020 —2.235
337 5.688 1.736 —7.257
338 0.346 1.393 —4.130
339 4984 1.203 —2.280
340 1.579 1.556 —6.081
341 9979 1.479 -6.428
342 10.655 1.483 —6.313
343 7.206 1.56¢ -6.620
344 10.679 2.145 -10.167
345 7.576 0.966 ~2.388
346 5.737 1.328 -5.199
347 4.023 1.840 —-6.758
348 6.667 1.552 -4.941
349 2.826 1.285 ~7.014
Mean 7.749 1.310 -5.107
Var. 16.411 0.100 4,028
S.D. 4.051 0.317 2.007
Max. 20.390 2.150 5.387
Min. -—-4.364 -0.103 -10.799
n 349 349 349

CV.(%) 523 24.2 394
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APPENDIX V

PARAMETERS COF THE EMPIRICAL GROWTH
EQUATION II AS APPLIED TO THE
RADIAL STEM GROWTH OF JACK PINE
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Stem a b c Stem a b c
No.  (cm/fyear) (cm/year?) (cm/year®) No.  (cm/year) (cm/year?) (cm/year®)
ot x1073 x1076 TS <107 x107%

1 2.199 ~2.040 7.450 4] 2.271 —1.933 7.240

2 2.014 ~1.120 2.707 42 2.884 ~-2.364 7.480

3 2.655 —3.866 21.020 43 2.174 —1.669 6.277

4 1.808 —1.875 6.838 44 2.185 —-1.923 6.729

5 2.433 -2.410 9.373 45 2.386 —2.149 7.680

6 1.534 -0.962 2.904 46 1.856 —1.139 2.794

7 2.327 —2.653 10.688 47 1.909 —1.492 4492

8 1.736 —1.452 5.452 48 1.281 —0.742 1.832

9 1.966 —1.213 2.886 49 1.944 —1.578 5.758
10 1.439 —1.251 4.045 50 2.260 -2.060 6.875
11 1.717 —1.038 2.332 51 1.628 —1.116 3.442
12 §.845 —1.628 5.381 52 2.199 —1.962 8.021
13 1.295 -0.921 2.523 53 1.372 -0.571 0.674
14 2.027 —1.945 7.402 54 2.462 —-2.370 8.741
15 1.721 —1.458 5411 55 2.105 —1.653 5.653
16 2.018 —2.055 7.935 56 2.255 —2.284 8.473
17 2.006 —1.584 4.841 57 2.687 —1.969 6.114
18 1.842 —1.708 5919 58 2.341 —2.093 7.297
19 2.265 --1.687 5.544 59 1.872 —1.414 4.221
20 1.879 -1.025 1.610 60 3.049 -3.453 14.270
21 1.668 -1.091 3.269 61 1.166 —1.209 6.999
22 2.369 -2.396 8.900 62 1.246 —0.949 4933
23 2.612 —2.553 9.468 63 1.406 —1.864 9.809
24 1.448 —-0.872 3.087 64 2.027 —1.557 6.038
25 2.184 —2.035 8.314 65 2.685 —3.463 17.215
26 1.968 —1.463 5.025 66 2.247 —-2.171 9.133
27 2.101 —-2.372 9.377 67 —1.445 —-1.362 6.658
28 1.150 —0.305 0.804 68 2.031 —1.668 6.119
29 1.721 -0.295 1.184 69 1.661 ~0.731 0.712
30 1.898 —1.478 5.441 70 1.789 —1.768 7.114
31 1.486 -0.387 -0.516 71 3.146 —3.259 13.444
32 1.139 —1.030 4.160 72 1.555 —-0.874 3.784
33 1.876 —1.738 7.346 73 1.718 -1.521 5.285
34 2.041 -2.055 7.828 74 2.193 -2.130 7.772
35 2.007 -2.103 2.816 75 2.662 —2.844 11.393
36 2.697 -3.048 1.181 76 3.039 —3.264 12.806
37 1.898 —1.521 4,729 77 1.904 —2.6006 11.650
38 2.324 —2.338 8.840 78 1.887 -2.240 10.029
39 2.333 --2.488 10.019 79 2.169 —1.627 5514

40 2.228 —-1.758 6.195 80 1.218 -1.372 5.584
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Stem a b c Stem a b c
No.  (cm/year) (cm/year®) (cm/year’) No.  {cm/year) (cm/year?) (cm/year®)
o —W”_x-l(;"ll ><10_3 x 1 -6 ' x10~! ;10‘3 - x107
81 1.793 ~2.163 G.553 i21 0.621 —0.541 4,768
82 1.739 ~1.720 6.312 122 1.739 —1.229 3.956
83 2.909 ~3.212 12.383 123 1.619 —1.447 5.170
84 2.745 —2.688 10.006 124 1.853 —1.472 5.272
85 1.814 -2.025 8.469 125 2.466 —-2.571 9.860
86 1.975 ~1.162 2.965 126 2.043 —2.261 9.568
87 1.859 —1.695 6.726 127 1.631 —1.451 5.185
88 2.297 —2.073 7.318 128 1.517 —1.009 3.382
89 1.752 —1.526 5.483 129 2.160 —-2.179 8.422
90 2.322 -2.374 9.198 130 1.758 —1.857 8.201
91 2.198 —1.402 4.627 131 2.577 —-3.272 14.475
92 1.996 —1.589 4.936 132 2.052 —1.472 5.629
93 2.551 -2.074 6.672 133 1.987 —1.860 7.489
94 1.423 —1.572 8.253 134 2.155 —2.433 10.996
95 2.142 —1.599 4.400 135 2.525 —3.087 13.827
96 2.308 —2.249 8.488 136 2.015 —1.546 5.546
97 2.140 —2.332 8.886 137 2.158 —2.453 9.746
98 2.386 —2.793 11.584 138 1.608 —-1.431 5.236
99 2.000 —1.198 3.366 139 2.020 —1.745 5913
100 1.746 -1.635 5.765 140 1.797 —1.869 3.027
101 2.073 -2.199 8.634 141 1.532 —1.618 6.531
102 1.699 —1.596 6.106 142 1.763 —1.446 4.458
103 1.982 -2.104 7976 143 1.655 —1.581 5.305
104 0.714 —2.465 -3.060 144 1.986 —1.926 7.179
105 1.986 —2.157 8.904 145 2.500 -2.328 8.643
106 1.468 —1.326 5.218 146 2.804 —2.785 1.112
107 1.014 —1.593 5.998 147 1.177 -0.297 -3.103
108 1.308 —1.211 4.861 148 1.969 —1.066 2.815
109 1.689 —1.442 5.192 149 2.319 —2.476 10.991
110 1.470 -0.987 3.258 150 2.402 —-2.464 10.152
111 1.138 —1.494 6.941 151 1.873 —1.697 6.122
112 1.233 -0.892 3417 152 1.771 —-1.297 4012
113 1.901 —2.138 9.707 153 0.884 2.326 —0.640
114 2.235 —2.645 11.497 154 2.239 -2.181 8.140
115 3.092 —3.263 12.506 155 2.307 -2.142 7.550
116 2.638 -3.175 12.985 156 2.057 -2.214 8.843
117 1.522 -1.195 4.397 157 1.681 —1.235 3.413
118 1.044 -0.430 1.611 158 2.060 —2.085 9.020
119 2.078 —-2.073 8.521 159 1.468 —0.977 3.021

120 2.041 —2.242 9.785 160 1.660 —~1.540 5.212
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Stem a c
No.  (cm/year) (cm/year’) (cm/vear®)
x107! x10™3 x1076
161 1.828 —2.128 9.389
162 2.105 —2.536 11.100
163 2.050 —2.432 10.152
164 1.876 —1.601 5.529
165 1.228 —0.870 3.183
166 1.202 -0.930 3.671
167 1.697 —1.882 8.901
168 1.496 —1.452 5357
169 2.008 —-1.273 6.631
170 1.695 -1.771 6431
171 1.446 —0.863 1.983
172 1.517 —1.151 3.050
173 1.529 —-1.373 5.821
174 1.736 -1.403 4919
175 2.362 -2.671 10.781
176 3.190 -3.402 12.769
177 2.402 —2.426 9.077
178 1.959 —1.734 6.548
179 2.559 —2.757 10.694
180 1.198 -0.859 2.593
181 1.552 —1.246 3.894
182 2.164 —2.201 8.599
183 1.687 -1.522 4998
184 1.669 —1.594 6.229
185 1.776 -1.616 6.404
186 2.188 -2.220 8.031
187 1.828 —1.469 5.060
188 1.120 —-0.925 3.789
189 2.065 —1.894 7.873
190 1.344 -1.226 4.403
191 1.561 —1.518 5.469
192 2.321 —2.648 10.471
193 1.585 —1.251 4.760
194 1.862 —1.676 6.403
195 1.264 —1.408 7.566
196 3.225 —3.432 12.572
197 1308  —1.500 6.848
198 1.792 —1.244 7.216
199 2.838 —3.4006 14.436
200 2.367 -2.759 11.077

Stem

_No.

201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230

231
232
233
234
235
236
237
238
239
240

7w(gln/ayear) (cm/year?) (cm/;ear3)

x1071

2.108
2.282
2.140
1.472
2.476
2.023
2.137
3.325
2.104
1.846

2974
2.312
1.803
1.853
2.841
2.360
1.578
2.860
2.529
1.297

1.788
2.402
2.216
1.842
1.866
2.317
1.858
2.069
2.049
1.704

1.643
1.666
2.552
1.571
1.599
2.285
2.678
2.146
1.792
2.468

x1073

—1.966
—2.167
—2.221
~0.386
-1.912
-2.291
-1.703
—3.386
-2.512
~1.758

—3.669
~2.622
—1.575
-1914
=2.775
—2.347
—1.206
-3.159
—2.482
—1.303

-1.670
—2.514
—-2.298
—-1.397
—-1.875
—2.358
—1.408
—2.055
—1.930
—-1.369

—1.384
—1.540
—2.533
—1.085
—1.394
—1.986
—2.987
-2.169
—1.104
-2.193

x1078
7.707

7.723
8.198
—0.637
5.666
9.147
5.893
13.246
10477
6.763

15.265
10.999
6.200
7.454
1.329
8.609
4.155
12.129
9.460
5.823

5.269
9.512
8.560
4.515
6.626
9.020
5.033
7.327
7.357
4.865

5.551
5.377
9.967
3.022
5.149
7.758
11.778
8.524
3.806
8.192
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Stem a b c Stem a h c
No.  (cm/year) (cm/year®) (cm/year?) No.  (cm/year) (cmfyear®) (cm/year®)
X107 X103 X107 -~ x107! x103 X107
241 2.214 —1.809 5.114 281 2.293 —-2.042 7.164
242 2.168 —2.100 7.868 282 1.957 —-1.556 5.059
243 2.163 -2.202 8.127 283 1.872 -2.143 9.091
244 2.013 —1.871 6.270 284 1.537 —1.580 6.622
245 1.948 —2.094 8.785 285 2.667 —2.887 11.174
246 1.875 —1.524 4.736 286 2.017 —-1.936 7.299
247 2.113 —2.124 8.399 287 2.151 —2.426 10.106
248 1.469 —1.289 5.019 288 3.038 —3.502 14.091
249 2.408 —2.531 10.618 289 2.487 —2.624 10.937
250 2.439 -2.702 11.031 290 2.176 —-1.917 6.857
251 1.647 —1.398 6.098 291 2.603 —2.768 11.163
252 2.368 —2.616 10435 292 2.315 —2.259 8.359
253 1.519) —0.798 1.879 293 2.229 —2.700 11.645
254 2.228 —2.487 9435 294 2.251 -2.309 8.634
255 1917 —-1.856 6.735 295 2275 —1.952 6.289
256 1.787 —1.198 3.248 296 1.922 —1.857 7.115
257 1.795 ~1.411 4.866 297 2.015 —1.668 5.863
258 2.155 —2.266 8.348 298 1.785 —1.592 5.242
259 2.193 -1.807 6.297 299 1.749 -1.717 6.705
260 1.667 —1.679 6.408 300 2.296 -2.159 7.516
261 2.440 —2.244 7.701 301 2.813 —2.615 9.160
262 2.905 -3.270 13.456 302 1.905 —2.211 8.826
263 1.519 —1.115 3.585 303 2.474 -3.012 13.086
264 2.451 —2.343 8.653 304 2.201 —2.329 9.119
265 1.791 —1.116 2.689 305 2.168 -1.629 4872
266 2.866 —3.145 12.098 306 2.193 —2.042 7.458
267 1.845 -1.596 6.099 307 1.843 -1.755 6.219
268 1.771 --1.585 5.574 308 1.746 —~1.981 8.990
269 1.987 -1.919 7.128 309 1.851 ~1.761 6.796
270 2.008 —-1.510 5.044 310 2.580 -2.439 9.034
271 1.375 -1.158 4.649 311 1.979 —2.446 10454
272 1.383 —1.064 3.058 312 2.316 —2.229 8.176
273 1.690 -1.537 5.589 313 2.301 -2.327 9.090
274 1.796 -0.960 1.398 314 1.774 -1.290 4.832
275 1.636 —1.042 2.691 315 2.439 —~2.047 7.504
276 1 .861 —1.504 5.637 316 1.990 -1.804 7.060
277 1.792 -1.741 6.629 317 2427 -2.016 7.219
278 2.024 —-2.291 9.369 318 2.145 —1.705 5311
279 1.944 —1.536 4.881 319 2925 —3.082 11.380
280 1.872 —-1.554 5.539 320 2.324 -2.403 9.279




Stem a c
No.  (cm/year) (cm/year’) (cm/year®)
Cxa0t a0 x107
321 2.261 —2.441 9.874
322 1.840 —1.857 7.124
323 2.580 -2.250 7.469
324 1.627 —1.562 5.705
325 3.004 -3.318 12.748
326 1.446 -0.929 2,292
327 1.884 —1.743 6.183
328 1.757 —1.415 3.943
329 2.378 —-2.363 8.765
330 2.563 —2.600 9.055
331 1.809 —1.816 7.216
332 1.656 —0.777 1.192
333 1.237 —0.541 1.925
334 2.797 -2.529 8.705
335 2.654 —2.256 7.342
336 1.553 —1.238 5.105
337 2.326 ~1.964 6.168
338 1.563 -0.798 2.136
339 1.678  — 1.138 4617
340 1.871 -1.339 4.136
341 2.350 -2.291 8.395
342 2434 —-2.427 9.068
343 2.299 -2.111 7.515
344 3.279 -3.325 12.289
345 1.521 —1.280 4.834
346 1.865 —1.551 5.252
347 2.260 -1.522 4.464
348 2.134 —1.595 5.607
349 2.144 —1.207 2.650
Mean 2.001 —1.844 6.964
Var. 0.213 0.564 10.074
S.D. 0.462 0.751 3.174
Max. 3.325 —0.571 21.020
Min. 0.621 -3.669 --3.103
n 349 349 349
CV.(7) 231 40.7 45.6
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