選択的炭素求核剤を用いる

プロスタグランジン関連体の合成

.

森 田 靖

図・本館

選択的炭素求核剤を用いる プロスタグランジン関連体の合成

1989年

名古屋大学理学部

森田 靖

X.	志	层	大	学	図	書
30		1	04	10	6:	38

2227 7 報告番号甲第

序

プロスタグランジン(PG)類は、1930 年代のはじめヒト精液中での発見に端を発す る脂肪酸由来の強力な生理活性物質群であり、現在では、生体の恒常性維持に不可欠な オータコイド(局所ホルモン)として広く認識されている。また、プナグランジン (PUG) 類は、1984 年、Scheuer らがハワイ産八方サンゴより単離した海産プロスタノ イドであり、PUG3および4が有している強い細胞増殖抑制作用が注目を集めている。 これらの化合物は、いずれも C2o 不飽和脂肪酸より生合成されるが、天然採取の難し い微量成分であるため、その供給は有機化学を基盤とした化学合成法に依存している。 また、優れた薬理学的選択性および化学的安定性を有した類縁体の創製にむけて、柔軟 な化学合成法に基づく分子修飾が求められる。一般に、直截性および柔軟性を兼備した 効果的な化学合成法の確立には新しい有機合成化学的方法論の案出が欠かせないが、PG 合成においてはとくに、炭素骨格を選択的に構築する有効な方法の開拓が鍵を握る。著 者はこのような観点から、金属有機化学的新手法による炭素求核剤の反応性制御とそれ を活用する PG および関連化合物の効果的合成を企図した。具体的には、(1) 収束的合 成法に基づく PUG 類の効果的合成法の確立、(2) PUG 炭素骨格構築法の基盤となるべ き新しい炭素求核剤の案出、(3) PG 炭素骨格構築法の要となるエノラート種の反応性 制御法の開拓の3点について検討を行なった。

その結果、まず PUG 4 の化学合成にはじめて成功した。同時に、本合成によって、 Scheuer らにより最初に提出された立体構造が絶対配置をも含めて訂正された。さらに、 本合成研究で得られた PUG 立体異性体のすべてについて L1210 白血病培養細胞に対す る増殖抑制活性試験をおこない、活性発現が相対あるいは絶対立体化学の相違によらず、 いずれの立体異性体も天然 PUG 4 と同程度の活性を示すことがわかった。さらに進ん で化学合成法による PUG の構造修飾をおこない PUG 4 と同程度の活性を示す単純な PUG 類縁体を案出した。また、収束的 PUG 合成法の基点となる直接的ω側鎖導入法の 研究をおこない、選択的プロパルギル化を可能とする新しい炭素求核剤を案出した。本 反応剤と種々のカルボニル化合物との反応を研究し、選択性発現の機構を明らかにする とともに、アシルシランに対する高選択的なプロパルギル化反応を開発した。最後に、 有機亜鉛化合物を活用して、リチウムエノラートのアルキル化およびアシル化反応を高 選択的におこない得ることを見い出した。この選択的アルキル化法を、亜鉛アート錯体 によるエノン類への共役付加反応と組合せることにより、一段階で PG 骨格を構築する ことができた。

本研究は名古屋大学化学科反応有機研究室においてなされたものであり、本研究を遂 行するにあたり、熱心な御指導と適切な助言を頂きました野依良治教授および鈴木正昭 助教授に心から感謝いたします。さらに、PUG 類の合成研究における共同研究者である 柳澤章博士(現名古屋大学工学部助手)、および貴重な(7<u>E</u>)-および(7<u>2</u>)-PUG 4 を 提供していただいたハワイ大学 P.J.Scheuer 教授に感謝いたします。また、いろい ろと御助言、御協力をいただいた反応有機研究室ならびに名古屋大学化学測定機器セン ターの皆様に感謝いたします。また、測定機器類の使用を快く許して下さった山田静之 教授に感謝いたします。また、CD スペクトルの解釈にあたって貴重な御助言をいただ いた東北大学の原田宣之博士に深謝いたします。また、PUG 4 の立体構造について有益 な情報をいただいた東京薬科大学の山田泰司教授、PUG 4 およびその立体異性体の生理 活性試験をしていただいた愛知県がんセンター内科医長の福島雅典博士に心から感謝い たします。また、各種 PG 類の出発原料を提供していただいた帝人(株)生物医学研究 所に感謝いたします。

平成元年4月

森田 靖

•

<u>目次</u>

第1章	プナグランジン類の合成研究

第1節 緒言および背景-制がん性プロスタグランジン類の発見	1
第2節 プナグランジン類の単離、構造研究および細胞増殖抑制活性	5
第3節 プナグランジン 4 の合成計画	12
第4節 光学活性α側鎖単位アルデヒドの合成	15
第5節 ω側鎖直接的導入法による光学活性シクロペンテノン中間体の合成	19
第6節(7 <u>E</u>)-,(7 <u>Z</u>)-プナグランジン 4 およびその立体異性体の合成	22
第7節(7 <u>E</u>)-, (7 <u>Z</u>)-プナグランジン 4 およびその関連体の細胞増殖抑制活性	34
第2章 カルボニル化合物の選択的プロパルギル化反応	
第1節 緒言	78
第2節 1 位置換アレニルスズ化合物の合成	82
第3節 アレニル性スズ/アルキルリチウム混合反応剤とカルボニル化合物 との反応	84
第4節 有機金属求核剤の性質	91
第5節 プロパルギル化選択性の発現機構	92

第3章	リチウムエノラートの求核置換反応の新しい制御法とプロスタグ
	ランジン骨格一段階構築法

.

•

第1節 緒言	123
第2節 アルキル化反応の制御	125
第3節 アシル化およびオキシカルボニル化反応の制御	129
第4節 ジメチル亜鉛添加下におけるリチウム 2,6-ジメチルフェノキシドの ⁷ Li NMR の化学シフト	131
第5節 プロスタグランジン骨格一段階構築法への応用	134
第6節 アルデヒドおよびニトロオレフィンによる捕捉反応	138
論文リスト	150

.

第1章 プナグランジン類の合成研究

第1節 緒言および背景-制がん性プロスタグランジン類の発見

プロスタグランジン (PG) 類は、1930年代のはじめヒト精液中での発見に端を発する 脂肪酸由来の強力な生理活性物質群である。それらは主に循環器および消化器系の恒常 性の維持のために働くオータコイド (局所ホルモン)として広く認識されてきた。¹ 最 近になって、強い制がん活性をもつ PG が発見され、PG 科学は新たな展開を迎えてい る。²

PG とその抗腫瘍活性についての研究は 1970 代初期に始る。1972 年 Prasad らによ る PGE 類の神経芽細胞腫の分化誘導現象の観察が最初である。³ ホルモンとしての PG 作用を越えた抗腫瘍剤の開発を意図した研究は、1976 年の Jaffe, Santoro らの B16 メラノーマおよびフレンド白血病の動物実験系を用いた <u>in vivo</u> における PGE およ びそのメチルエステル体の抗腫瘍性効果の実証に始る。⁴ 1979 年、Honn らは PGA₁ お よび PGA₂ の細胞増殖抑制作用に注目し、その DNA 合成阻害作用を証明した。⁵ その 後、抗腫瘍性 PG 研究は、難題となっていた平滑筋収縮作用に代表されるホルモン活性 からの分離の問題へと向った。

1982年、早石、福島らは、不活性 PG と呼ばれその生理的意義はもちろん薬理的な応 用も進んでいなかった PGD₂(1)にヒト白血病培養細胞に対する強い抗腫瘍活性がある ことを初めて報告し、大きな注目を集めた。⁶ その程度はプレオマイシンに相当する (IC₅₀ 2-4 μg/mL)。さらに、早石らはその活性の本体の解明に関する研究を行ない、 PGD₂ から水溶液中加熱により化学的に生じた化合物が、もとの PGD₂ の 3 倍の活性を

- 1 -

もつことから、その本体は、PGD₂から脱水によって生じた分解生成物であると推定して、この物質を PGJ₂(2)と命名した(1図)。⁷この PGJ₂のホルモン活性は極めて小さく、ここにはじめて局所ホルモン活性を取除いた抗腫瘍性 PG が誕生した。さらに早石らは PGD₂の生体内変換における詳細な研究を進め、実際の活性物質が、PGJ₂からさらに二重結合の移動した Δ^{12} -PGJ₂(3)であることをつきとめた。⁸

上記 PGD₂ の抗腫瘍活性の研究と平衡して、愛知県がんセンターの福島らは、有機合 成化学者との連携によりデザインされた種々の PG 類縁体について構造-活性相関を行 なった。その結果、PG 炭素骨格および 5 員環回りの交叉共役ジェノン構造の存在が抗 腫瘍活性発現のために重要であることを強く示唆した。この構造一活性相関の研究から Δ^{12} -PGJ₂(3)様の強い抗腫瘍活性をもついくつかの 天然 PG および人工誘導体が見 出された。沖縄産軟体サンゴより単離されたクラブロン[®](あるいはクラビリデノン,¹⁰ IC₅₀ 0.2-0.4 μ g/mL)(4)および Δ^{7} -PGA₁(IC₅₀ 0.2-0.4 μ g/mL)(5)¹¹がその 代表化合物である(1 図)。 Δ^{7} -PGA₁は本研究室で開発された「3 成分連結 PG 合成法」 を機軸として、簡易かつ大量に合成できる(2 図)。¹² Δ^{7} -PGA₁は Δ^{12} -PGJ₂よりも 化学的に安定であるため取扱いが容易である。現在これら PG 類 を用いて細胞増殖抑 制機構に関する研究が活発に行なわれ、活性はサイクリック AMP の増減とは無関係な ルートで発現される、など PG 類特有の興味ある事実の観察が相次いでいる。¹³

- 2 -

 $\mathbf{3}, \Delta^{12}$ -PGJ₂

1図.抗腫瘍性プロスタノイド

- 3 -

2

2 図. 3成分連結法を用いた△⁷-PGA₁の簡便な合成法

1984 年、ハワイ大学 Scheuer 教授らはハワイ産八方サンゴである <u>Telesto riisei</u> からいくつかの海産エイコサノイドを単離し、それらをブナグランジン (PUG) と命名 した (3 図)。¹⁴ その平面炭素骨格は通常の PG 類と同じであり、PUG 1 および PUG 2 は C(7) 位アセトキシをもつ 7 個の炭素からなる α 側鎖および不飽和な二重結合を含 む 8 個の炭素からなる ω 側鎖を有し、C(10) 位が塩素化されたシクロベンテノン誘導 体である。また、PUG 3 および 4 は形式的にはそれぞれ PUG 1 および 2 から酢酸を 脱離して生成した Δ^7 -誘導体であり、交差共役ジエノン構造を有する。(7<u>E</u>)- および (7<u>Z</u>)-異性体はともに天然物であり、天然では、10:1 の割合で存在する。これら PUG のなかで、PUG 3 および PUG 4 は、L1210 白血病培養細胞に対して強い細胞増殖抑制 作用 (1C₅₀ 0.02 μ g/mL)を示すことから多大な注目を集めている。¹⁵ その活性強度 は、類似の非ハロゲン置換体であるクラプロン(あるいはクラビリデノン,4)、PGJ₂ (2)、 Δ^{12} -PGJ₂ (3)、あるいは Δ^7 -PGA₁ (5) の 10 から 15 倍にも達し、現在実用抗 がん剤となっているビンクリスチンおよびアドレアマイシンにも匹敵する。

これら PUG 類はいずれも油状化合物であり、それらの平面構造は 元素分析、質量ス ペクトル、赤外線および紫外線スペクトル、さらに 'H, ¹³C 核磁気共鳴スペクトル等 の解析により導かれた (4-1 図)。¹⁴ また、相対的な立体配置に関しては、以下の観察 にもとずいて推定されている。(1) 二つの側鎖がトランスの関係にあることは C(13) 位のメチレンプロトンと C(8) 位のメチンプロトン間に強い核オーバーハウザー効果 (NOE) が観測されることからわかる (2) PUG 1 および PUG 2 における三つのアセトキ シ基置換炭素鎖の立体関係は、岸らによる類似の化合物の相当する結合定数¹⁶ との比

- 5 -

(7*E*)-PUG 3: 17,18-unsaturated 6, (7*E*)-PUG 4: 17,18-saturated

(7*Z*)-PUG 3: 17,18-unsaturated **7**, (7*Z*)-PUG 4: 17,18-saturated

3 図. Scheuer らによって提唱されたプナグランジン類の構造

Gross structure: desorption-CI MS, combustion analysis IR, UV, ¹H and ¹³C NMR

Relative configuration:

strong NOE between $C(13)H_2$ and C(8)H

trans relationship of the side chains

4-1 図. Scheuer らによるプナグランジン類の構造解析(I)

較から、また(3)C(7)とC(8)間の立体関係は、4-2図に示した様に、観測された結 合定数 ($J_{H(7)-H(8)}$ = 4.2 Hz) を基にした立体配座解析 (4-2 図 の Newman 投影図) と、 PUG 1 および PUG 2 から ビリジン塩基による 相当する 7Z-体への優先的脱酢酸 ブロセスに基ずく考察からゴーシュであると推定された。この C(7) と C(8) 位間の立 体化学の帰属は 5 員環部と側鎖部間の連続した立体化学関係を決定する最も重要なボ イントであり、この立体化学の帰属に関する確証が、必然的に本研究標的化合物である Δ^7 -誘導体の C(5)-C(6)-C(12) の立体化学関係にも直結する。このような観点から、 われわれは、Scheuer らが提出した原論文の内容を詳細に再検討したところ、幾つかの 疑問点に遭遇した。4-2 図からわかるようにまず第一に、PUG 1 および 2 と 7E-体の C(5) および C(6) の立体化学と 7Z のそれとが一致せず、前者の化合物と 7Z-体であ る後者の化合物とはたがいにジアステレオマーと表示されていること。第二に、酢酸の 脱離に関して Scheuer らは 最も安定なコンホーマーからの速度論的支配下での E2 脱 離を考えているが、これらケトン誘導体では、一旦エノール化を経て反応が進行してい ることも考えられ、反応は、いわゆる ElcB プロセスを経て進行している可能性もある こと。従って、熱力学的により安定な(72)-異性体の優先的生成を速度論的支配下の生 成物と決めつけるには難がある。第三に、これら化合物の絶対配置を、すでに絶対構造 のわかっている沖縄産の海産エイコサノイドであるクラブロン(あるいはクラビリデノ ン,4)の C(12) 位炭素の不斉中心と同じであろうと推定しているが確証はない。

われわれは、このような背景をふまえて、(7<u>E</u>)-および(7<u>Z</u>)-PUG 4 の合成研究を行 なった。その結果、立体化学の確かな光学活性単位を用い、7<u>E</u>-および 7<u>Z</u>-体について すべての可能な立体異性体を合成することにより、Scheuer らによって提唱された構造 6 および 7 をそれぞれ立体構造 8 および 9 に訂正する (5 図)と同時に、その最初

- 8 -

の全合成に成功した。17以下、その詳細について報告する。

•

•

•

- 9 -

·

.

•

Absolute configuration: assumption based on the biosynthetic pathway of clavulones (claviridenones)

3

4-2 図. Scheuer らによるブナグランジン類の構造解析(II)

8, (7*E*)-PUG 4

9, (7*Z*)-PUG 4

5 図.本研究者らによって確定された (7<u>E</u>)- および (7<u>Z</u>)-PUG 4 の構造

著者らが合成基盤としたプナグランジン 4 の逆合成ルートを 6 図に示した。まず、 C(8) 位のエキソメチレン部分の切断により、ヒドロキシエノン誘導体およびα側鎖ア ルデヒド単位に分解することができる。さらに、アルデヒドは二つの酸素官能基導入の 手がかりをもつアリルアルコール誘導体に、また、5 員環ヒドロキシエノン部はジオー ル誘導体を経て最終的に塩素置換された 4-ヒドロキシ-2-シクロペンテノン誘導体およ びω側鎖単位へと分解することができる。はじめに立体化学の定まった光学活性 5 員 環エノンおよびα側鎖アルデヒドを用いて逆に分子を逐次構築してゆけば、プナグラン ジン 4 に対して考えられるすべての立体異性体を任意に合成することが出来ると考え られる。

出発とするキラルな 5 員環エノンおよび α 側鎖単位アルデヒドは光学的に純粋な形 で入手可能である (7 図)。まず、(4<u>R</u>)- および (4<u>S</u>)-シクロベンテノン、10 および 11、は Rickards らの方法により 2,4,6-トリクロロフェノールから光学分割を含む 4 段階の化学操作で合成できることがわかっている。¹⁸ また、2<u>R</u>,3<u>S</u>-、2<u>S</u>,3<u>R</u>-、2<u>S</u>,3<u>S</u>-、 および 2<u>R</u>,3<u>R</u>-立体配置を有する 5,6-ジアセトキシアルデヒド、12-15 については、 相当するアリルアルコール誘導体の Sharpless 不斉エボキシ化反応を機軸とした合成 法、¹⁹ あるいは、必要な不斉中心を有する糖質化合物からの構造変換法²⁰ による合成 法が考えられる。これらの光学活性合成単位を用いて、上記に述べた収束的な合成法に 従い分子を構築すれば (7<u>E</u>)- および (7<u>2</u>)-PUG 4 の可能なそれぞれ八つの立体異性体 を選択的に合成可能である。

- 12 -

.

2

6 図. (7<u>E</u>)- および (7<u>Z</u>)-プナグランジン 4 の逆合成

ŝ

11

.

7 図.光学活性塩素置換シクロペンテノンおよびα側鎖単位アルデヒド

(2R,3S)-α側鎖アルデヒド 12 の合成法を 8 図 に示した。12 の二つの隣接した立 体化学は相当するアリルアルコール誘導体の Sharpless 不斉エポキシ化¹⁹ とつづく隣 接基関与によるエポキシドの位置選択的開環反応を組合せることによる導入出来た。す なわち、1 当量のチタニウムテトライソプロポキシドおよび L-(+)-酒石酸ジエチルの 存在下 (Z)-アリルアルコール体 16²¹ を 2 当量の tert-プチルヒドロペルオキシドで 低温下(-50 - -20 ℃)処理するとエポキシド 17 が 57%の収率および 95%の鏡像 体過剰率で得られた。この化合物 17 の絶対構造は 2-デオキシ-D-リボースから誘導さ れた既知のエポキシアルコール22の旋光度の符号を比較することによって決定した。 つづいて、17 を 3,4-ジヒドロ-2H-ビランとビリジニウム p-トルエンスルホナート (PPTS) と処理して水酸基を保護し 94%収率で THP 化体 18 とした後、18 を 5:1 の 水-tert-ブチルアルコ-ル混合液中で、0.5 規定水酸化ナトリウムと処理した後、得 られたカルボン酸誘導体をさらにジアゾメタンで処理すると、ジオール体 19 が 82% の収率で得られた。この化合物の絶対構造は酸性条件下での脱 THP 化により得られた (2S,3S)-トリオール体の旋光度の符号を 2-デオキシ-D-リボースから誘導された既知の (2R,3R)-鏡像体22 のそれと比較することによって決定された。つづいて、ジオール体 19 を常法に従ってアセチル化することにより 96% 収率で 20 とした後、PPTS 存在下 メタノールで処理して THP 基を脱保護するとジアセトキシアルコール 21 が 90%の収 率で得られた。この化合物の鏡像体過剰率は、相当する MTPA エステル²³の 500-MHz ¹H NMR 分析により 94%と決定された。最後に、21 を Moffat 酸化すると 2R,3S-配置 を有するアルデヒド 12 が 75%の収率で得られた。なお、18 から 19 への変換におい

- 15 -

8 図. (2<u>R</u>,3<u>S</u>)-α側鎖単位アルデヒド 12 の合成

ł

て C(5) 位不斉中心の反転が極めて高い立体選択性(95% ee → 94% ee) でもって進 行していることは興味深い。この立体変換過程は、9 図で示した様に、エステル基のア ルカリ加水分解により系内で生じたカルボキシラートがエボキシドを求核的に攻撃し、 C(5) 位立体化学の反転したδ-ラクトン 23 を生成し、再びδ-ラクトン体がアルカリ 加水分解を受けて進行していると解釈される。²⁴ THP 保護されていないエボキシアル コール 17 を用いてこの変換反応を行なうと、鏡像体純度は 94%から 89%に低下した。 この事実は、24 から 25 への変換で示した一級アルコキシドによる分子内エボキシ環 開環反応(Payne 転移) がカルボキシラートによる開環反応と競争的に起こっているこ とを意味する (9 図)。²⁵

9 図.カルボキシラートによる分子内エボキシ開環反応とアルコキシド 関与の分子内エボキシ開環反応(Payne 転移)

PUG 4 の収束的合成を念頭に置き、8 炭素からなるω側鎖の直接的導入法に基ずく分 子構築を企図した(10 図)。光学的に純粋な(4R)-シクロペンテノン 10¹⁸ を同当量の アレニルスズ化合物 26 とメチルリチウムから調製した反応剤と処理して粗縮合体を得 た後、²⁶ つづいて、フッ化テトラブチルアンモニウムにより脱シリル化²⁷ を行なうと、 プロパルギル化体 27 が 42%の収率で融点 89-90 ℃ の結晶として得られた。同時に アレニル付加体が 22% 副生した。28 上記で得られた脱シリル化する前の粗縮合体を 無水酢酸-4-(ジメチルアミノ)ピリジンを用いてモノアセチル化体 28 とし、その希薄 (4.0 x 10⁻³ M) 四塩化炭素溶液の赤外吸収スペクトルを測定したところ、3520 cm⁻¹ に 0-H 伸縮振動が観察された。これは、0H とアセトキシル間での分子内水素結合の存 在を示す。このことは、ジオール 27 の二つの水酸基がシスの立体関係にあることを示 している。なお、化合物 27 で示した立体構造は最終的にこの化合物の X-線結晶構造 解析によって確証された(11 図)。ω側鎖に含まれる Z-構造は 27 の三重結合を Lindlar 触媒下部分水素化することにより達成した。27 から 98%の収率で得られた 29 の 2 級アルコールをピリジニウムジクロメートで酸化して 91%の収率でヒドロキシエノ ン体 30 を得た。これらの一連の操作により、化合物 10 の C(4) 位不斉中心を手がか りにして、化合物 30 の C(4) 位不斉中心が完全に制御された。最後に、30 をジイソ プロピルエチルアミン存在下トリメチルシリルトリフラートと処理して、シリル化体 31 を 86%の収率で得た。

î

10 図.エノン中間体 31 の立体選択的合成

- 20 -

-...

11 図.X線結晶構造解析によるジオール体 27 の構造

- 21

÷.,

シクロベンテノン体 31 と (2<u>R</u>,3<u>S</u>)-アルデヒド 12 とのアルドール縮合を行なうと PUG の全骨格が組みあがる (12 図)。すなわち、31 を THF 中、-78 ℃ でリチウムジ イソプロビルアミド (LDA) と処理し系内でリチウムエノラートを発生させた後、そこ へ 3 当量のアルデヒド 12 を添加すると縮合体 32 が 58%の収率で得られた。この収 率は 39%の出発エノンの回収を考慮して補正すると 95%になる。つづいて、アルドー ル体 32 を 4-(ジメチルアミノ)ビリジン共存下に無水酢酸と処理した後、6:3:1 の酢 酸ー水-THF 混合液により脱シリル化すると、5<u>S</u>,6<u>S</u>,12<u>R</u>-立体配置を有する 8 と 9 の 2:5 比の混合物が 41%の収率で得られた。これらの幾何異性体はシリカゲルカラムク ロマトグラフィーによって容易に分離することができた。純粋な <u>E</u> 体および <u>Z</u> 体のベ ンゼン溶液をそれぞれパイレックス管に入れ、20 ℃ で、25 W 蛍光燈を用いて光照射 するといずれの溶液からも <u>E/Z</u> 比が 7:3 の光平衡混合物が得られた (13 図)。化合物 8 および 9 のスペクトルデータ、クロマトグラフ上における挙動、および CD 曲線 (14 および 15 図) はそれぞれ天然から得られた (7<u>E</u>)- および (7<u>Z</u>)-PUG 4 のそれら と完全に一致した。

12 図. (7<u>E</u>)- および (7<u>Z</u>)-プナグランジン 4 の合成

- 23 -

13 図. (7<u>E</u>)- および (7<u>Z</u>)-ブナグランジン 4 の光平衡

ì

8, (7*E*)-PUG 4

2

natural

14 図.天然 (7<u>E</u>)-ブナグランジン 4 の絶対立体構造

15 図. 天然 (72)-ブナグランジン 4 の絶対立体構造

さらに、キラルな出発物質として 5 員環エノン 11、α側鎖アルデヒド 13 および 14 を用い、上記と同様なアルドール反応を経て、立体構造を比較するうえで重要な残 りの PUG 4 のジアステレオマーを合成した。化合物 12 の対掌体である $(2\underline{S},3\underline{R})$ -アル デヒド 13 の合成には、不斉エポキシ化反応の段階において、不斉源として D-(-)-酒 石酸ジエチルを用いた。また、 $(2\underline{S},3\underline{S})$ -アルデヒド 14 の合成は、化合物 33 から 4 段階の反応操作によって達成された(16 図)。すなわち、トリオール 33³² の 1 級ア ルコールを DMF 中イミダゾール存在下、塩化 <u>tert</u>-ブチルジフェニルシリルを用いて 選択的にシリル化³³ して 74%収率で 34 を得、つづいて、二つの水酸基を常法により アセチル化して 35 (63%収率) とした後、このものをアセトニトリル中フッ化水素-ビリジンで脱シリル化して 94%収率でジアセチルアルコール体 36 へと導いた。最後 に 36 を Moffat 酸化すると 2<u>S</u>,3<u>S</u>-配置を有するアルデヒド 14 が 66%の収率で得ら れた。なお、 $(2\underline{R},3\underline{R})$ -アルデヒド 15 は 37 を出発として 17 から 12 への変換に用い たと同様な方法を適用することによって合成することができる。³⁴

ここに、(7<u>E</u>)- および (7<u>Z</u>)-PUG 4 の C(5), C(6), および C(12) の相対的な立体配 置に関してそれぞれ四つの可能なすべてのジアステレオマーを合成することが出来た。 つづいて、これらの立体異性体および天然の (7<u>E</u>)- および (7<u>Z</u>)-PUG 4 の ¹H および ¹³C NMR スペクトルデータおよびクロマトグラフ上における挙動を注意深く比較した。 ¹H NMR は 500-MHz NMR 装置を用いて測定した。その結果を 1 表にまとめた。まず、 ¹H NMR によって観測された C(7)H および C(6)H の化学シフト、C(6)H-C(7)H および C(5)H-C(6)H の結合定数をみると、微妙であるが明らかに四種のジアステレオマーはこ のスペクトルデータによって識別できることがわかった。高速液体クロマトグラフィー (HPLC) 上の保持時間についてもそれぞれの立体および幾何異性体が異なった値を示す

- 27 -

 $SIR_3 = SI(C_6H_5)_2$ -tert- C_4H_9

2

16 図. (2<u>S</u>,3<u>S</u>)-α側鎖単位アルデヒド 14 の合成

37

- 28 -
| | | ¹ H N | IMR ^a | | | |
|--|-------|------------------|------------------|------------------|-----------------------------|----------------------|
| | 3 |) | <i>J</i> , I | -Iz ^b | CD
spectrum ^c | $HPLC^d$ |
| | C(7)H | C(6)H | 6-7 | 5-6 | 3Δ | t _R , min |
| CI- CAC COOCH ₃ natural | 6.37 | 6.04 | 9.2 | 4.3 | -5.0 | 17.34 |
| OH synthetic | 6.38 | 6.04 | 9.2 | 4.4 | -5.8 | 17.34 |
| 8, (7E)-PUG 4
5S, 6S, 12R
OAc $COOCH_3$
OAc OAc $COOCH_3$
OH
OAc OAc OH | 6.32 | 5.69 | 10.4 | 4.3 | | 17.86 |
| O, OO , OO , $120O$, OO , $OAcO, OOCH_3OH$ | 6.37 | 6.04 | 9.2 | 4.4 | +5.5 | 17.34 |

Table I. Spectral Data and Chromatographic Behavior of (7E)- and (7Z)-PUG 4and Their Stereoisomers

- 29 -

		¹ H N	MR^{a}			
	δ	δ		Hz ^b	CD spectrum ^c	ны С _q
	C(7)H	C(6)H	6-7	5-6	Δε	$t_{\rm R}$, min
OAc $CI-COOCH_3$ OAc OAC	6.53	6.24	9.5	2.6		17.57
	6.31	5.77	10.3	4.9		18.61

.

40, 5S, 6R, 12R

I

30 -

			¹ H N	MR^{a}			
		3	;	J, Hz ^b		CD cpostrum ^c	чы С _q
		C(7)H	C(6)H	6-7	5–6	Δε	$t_{\rm R}$, min
COOCH ₃							
OAc	natural	6.10	6.36	7.8	3.7	-4.8	32.04
CI-	synthetic	6.10	6.35	7.9	3.5	-5.4	32.04
9, (7 <i>2</i>)-PUG 4 5S, 6S, 12 <i>R</i> 							
OAc CI- CI- OH 41, 5S, 6S, 12S		6.07	6.62	7.9	4.4		33.74
OAc OAc CI		6.10	6.36	7.8	3.7	+4.1	32.04

.

1 31

- 32

^{*a*} Measured by a 500-MHz NMR machine. ^{*b*} Digital resolution was 0.3 Hz. ^{*c*} Values at 250 nm for 7*E* isomers and at 268 nm for 7*Z* isomers in methanol as solvent. ^{*d*} Conducted using Yamamura Chemical YMC packed columns, A-002-3 and A-003-3, connected in series with 1:1 hexane/ether as solvent; flow rate, 1.0 mL/min. Peaks were detected by UV (254 nm) lamp.

ことがわかった。最後に、絶対配置は対掌体どうしの CD スペクトルの比較により決定 できることもわかった。

このようにして著者らは (7E)- および (7Z)-PUG 4 が 8 および 9 で示したように いずれも 5<u>5</u>,6<u>5</u>,12<u>R</u>-配置を有していることを結論できた。³⁵ 17,18-デヒドロ誘導体で ある (7<u>E</u>)- および (7<u>Z</u>)-PUG 3 に関しても PUG 4 と同じ立体化学を有していると考え られる。³⁶ ここで注目されることは、PUG 3 および PUG 4 の C(12) 位の立体配置 (<u>R</u>-配置) が他の海産エイコサノイドであるクラブロン (あるいはクラビリデノン) の <u>S</u>-配置 (<u>ent</u>-プロスタノイド構造) とは逆であることである。最近クラプロンと同じサ ンゴから単離されたクロロプロンも 12<u>R</u>-配置を有していることがわかった。^{37, 38} こ のようなことから、10 位炭素上の塩素原子がこれらの化合物の生合成経路に何等かの 影響を与えていることが示唆される。また、PUG 3 および PUG 4 はそれぞれ PUG 1 お よび PUG 2 から酢酸の脱離により生成し、また PUG 1 および PUG 2 における二つの 側鎖がトランスの関係にあることから C(8) 位の立体配置は <u>R</u> であると結論できる。 しかし、PUG 1 および PUG 2 の残る C(7) の立体配置について 確固たる証明はまだな い。

本合成研究で得られた各種 PUG 4 の立体異性体の制がん活性試験の結果については 次章でのべる。 第7節 (7E)-, (7Z)-プナグランジン 4 およびその関連体の細胞増殖抑制活性

7-1. (7E)-および (7Z)-PUG 4 およびその立体異性体の細胞増殖抑制活性

合成した PUG 4 の立体異性体のすべてに対して L1210 白血病培養細胞に対する細胞 増殖抑制活性試験を行なった。その結果を、天然あるいはこれまでに化学合成された代 表的 PG 類および次節でその合成を述べる単純な構造を有する PUG 関連体とともに 2 表にまとめた。³⁹

PUG 構造とその活性の欄を見れば明らかなように、これら PUG 4 類の細胞増殖抑制 効果は、PUG 4 構造上の C(5), C(6), C(7), C(12) 位立体化学(絶対構造も含めて) の相違にそれほど影響を受けないことがわかった。しかし、この段階では、PUG 4 の強 い活性発現に C(5) および C(6) 位のアセトキシ基が関わっているか否かはわからない。 この点も含め、著者らは、活性増強の主因が交差共役ジェノン上の C(10) 位塩素基の 存在によるのではないかという仮定のもとに、PUG 4 の二つのアセトキシ基およびω側 鎖部の二重結合を取除いた類縁体の合成を企図し、PUG 4 に相当するレベルの活性を有 した最少単位化合物の創出に挑んだ。

7-2. 単純な構造を有する PUG 関連体の合成

合成標的として化合物 44 および 45 を選んだ。その骨格構築法としてはブナグラン ジン類の場合と同様な方法を用いた(17 図)。出発物質としてラセミ体のエノン体 46 を用い、これにエーテル中臭化オクチルマグネシウムを作用させ、つづいて、フッ化テ

- 34 -

2表. PUG 4 の立体異性体および関連プロスタノイド類の

L1210 白血病培養細胞に対する増殖抑制効果

トラプチルアンモニウム²⁷ で処理することによりジオール体 47 を収率 83%で得た。 47 をビリジニウムジクロメートを用いて酸化し 83%収率でヒドロキシエノン 48 に変 換した後、アミン存在下にトリメチルシリルトリフラートと処理して、3 級アルコール 部をシリル基で保護したエノン体 49 を 97%の収率で得た。つづいて、このエノン体 49 をジイソプロビルエチルアミン存在下、低温下にジプチルポリルトリフラート⁴⁰ と処理し系内にホウ素エノラートを発生させた後、1 当量のアルデヒド体を加えて望む 全骨格をもつアルドール体 50 を 36%の収率で得た。この反応では原料のケトン体が 約 50%回収された。また、このアルドール反応を LDA を用いたリチウムエノラート系 で行なうと、縮合生成物は全く得られず原料を回収するのみであった。つづいて、アル ドール体 50 をビリジン存在下塩化メタンスルホニルと処理した後、1,8-ジアザビシク ロ[5.4.0]ウンデカ-7-エン (DBU) を作用させると 64%収率でジェノン体 51 が得られ た。最後に、脱シリル化反応を行うと目的とするヒドロキシジエノン 44 および 45 が 2.6:1 の生成比で 97% 収率で得られた (17 図)。

ここで得られた交差共役ジェノン体の L1210 白血病培養細胞に対する増殖抑制効果 を先の 2 表に示した。³⁹ 化合物 44 および 45 は、PUG 4 およびその立体異性体と同 レベルの強い活性を示すことがわかり、制がん活性の観点から複雑な PUG 4 構造に代 って単純な構造 44 および 45 の設計に成功した。同時に、PUG 4 の強い活性発現が塩 素置換基を含む 5 員環回りの交差共役ジェノン構造に由来することが強く示唆された。

17 図.単純構造をもつ PUG 4 類縁体の合成

- 37 -

一般的事項

(a) 測定機器および装置

赤外(IR)吸収スペクトルは日本分光社(IASCO)製の IR-810 型分光光度計を使用 した。核磁気共鳴 (NMR) スペクトルは、¹H NMR では日本電子社 (JEOL) 製 FX-90Q (90 MHz)、GX-270(270 MHz)、または GX-500(500 MHz)型装置を用いた。¹³C NMR は FX-90Q (22.5 MHz) 型および GX-270 MHz (67.5 MHz) 装置を用いた。化学シフトは内 部標準物質としてテトラメチルシラン(TMS), δ = 0 または CHCl₃ の吸収ビーク('H NMR, δ = 7.26; ¹³C NMR, δ = 77.1) あるいは THF の吸収ビーク (¹H NMR, δ = 3.57; ¹³C NMR, 67.24) として測定し δ, ppm 値で表した。化学結合定数, J, は Hz で表し、シグナルの分裂様式は、一重線を s、二重線を d、三重線を t、四重線を q、 多重線を m、幅広線を br と略記した。質量分析(MS)スペクトルおよび高分解能質量 分析 (HRMS) スペクトルは、日本電子社製 TMS-DX 300 型を用い、イオン化電圧 70 eV で測定した。MS スペクトルは分子イオンピークと主なフラグメントピークを、HRMS は 分子イオンビークもしくはフラグメントビークの分子量を小数点以下 4 桁までの値で 記した。旋光度は、日本分光社製 DIP-181 型旋光計を用いて測定した。円二色性(CD) スペクトルは、日本分光社製 J-500E 型分光計を用いて測定した。高速液体クロマトグ ラフィー(HPLC)は島津社製 SPD-6A,LC-6A,および C-R3A 装置に山村化学社製 YMC カラム A-002-3 および A-003-3 カラムを連結し、溶媒に 1:1 ヘキサン-エーテル混合 液を用い、流速 1.0 mL/min、圧力 140 kg/cm²の条件下、紫外線(254 nm)で検出する

- 38 -

ことにより行なった。X-線結晶構造解析のデータの収集には、グラファイトで単色化した Cu Ka線(1.54051 Å)を用い、理学電気社製の自動4軸AFC-5回折計を使用して測定した。融点は柳本製作所製 Yanaco MP 融点測定装置を用いて測定した。簡易蒸留は、連結玉を用いて一方の玉に置いた混合物から他方の玉に減圧下目的物を蒸発により移動させることにより行なった。この蒸留法で行なった場合記載された温度はオーブンの温度であり正確な沸点ではない。元素分析は名古屋大学農学部元素分析室に依頼した。

(b) <u>クロマトグラフィー</u>

薄層クロマトグラフィー(TLC)における <u>R_f</u>値は、E. Merck 社製シリカゲル(Kieselgel 60 F₂₅₄)の分析用(0.25 mm) ブレートを用いた。そのブレートは 2% <u>p</u>-アニ スアルデヒドの 5%エタノール性硫酸溶液に浸した後、TLC 上でスポットが現れるまで 加熱した。カラムクロマトグラフィーには、E. Merck 社製シリカゲル(7734, 70-230 メッシュ)あるいは富士デヴィソン化学社製シリカゲル(BW-820 MH, 70-200 メッシ ュ)、半井化学社製フロリジル(M7P4145)を用いた。

(c) 溶媒

乾燥エーテル、THF、ペンタン、ベンゼン、およびトルエンはアルゴン雰囲気下ナト リウム-ベンゾフェノンケチル上で蒸留した。乾燥塩化メチレンは五酸化リン上で蒸留 した。乾燥 DMF、アセトニトリルは水素化カルシウム上で蒸留した。

(d) <u>基質および反応剤</u>

メチルリチウム(Aldrich 社製)、<u>n</u>-ブチルリチウム(三津和化学社製)および <u>tert</u>-ブチルリチウム(Aldrich 社製)は文献記載の方法により滴定⁴¹ したものを用いた。 臭化 <u>n</u>-オクチルマグネシウム(0.72 M THF 溶液)は臭化オクチルおよび削状マグネシ

ウムから合成した。42 Lindlar 触媒は日本エンゲルハルト社製(lot No. 29)を用い た。(R)- および (S)-3-クロロ-4-(tert-ブチルジメチルシロキシ)-2-シクロペンテノ ンは Rickards らの方法に従って合成した。¹⁸(Z)-7-ヒドロキシ-5-ヘプテン酸メチル は Martel の方法に従って合成した。²¹ (55,6R)-5,6,7-トリヒドロキシヘプタン酸メ チルは Rokach らの方法に従って合成した。22 ジアゾメタンはエーテル中 0 ℃ で N-ニトロソメチルウレア および 30%水酸化カリウム水溶液を混合することにより調製し た。塩化 (+)-α-メトキシ-α-(トリフルオロメチル)フェニルアセチル (塩化 MTPA) は Mosher の方法に従って合成した。23 フッ化水素 - ピリジン (Aldrich) およびフッ 化テトラブチルアンモニウム(1.0 M THF 溶液、Aldrich)は脱シリル化反応に使用し た。チタニウムテトライソプロポキシド (Aldrich) および tert-プチルヒドロペルオ キシド (TBHP, 2.89 M トルエン溶液)43 は Sharpless の不斉エポキシ化反応に使用し た。ピリジニウム p-トルエンスルホナート (PPTS) は Aldrich から購入した。pH 7.4 リン酸緩衝液(0.1 M 溶液、半井)は後処理に使用した。有機金属反応剤を用いた反応 はアルゴン雰囲気下で行なった。また、その反応に用いた器具(反応管、試験管、フラ スコ)は高真空下ヒートガンで熱した後アルゴンガスで満たした。リチウムジイソプロ ビルアミド(LDA)の THF 溶液は等量のジイソプロビルアミンおよび n-ブチルリチウ ムを 0 ℃で 2 時間混合することによって調製した。

<u>(5R,6S)-5,6-エポキシ-7-ヒドロキシヘブタン酸メチル (17)</u>.

乾燥塩化メチレン (150 mL) を 500-mL 丸底フラスコに入れ -50 ℃に冷却した。こ こヘチタニウムテトライソプロボキシド (5.28 mL, 1.8 x 10⁻² mol) および L-(+)-酒 石酸ジエチル (3.66 g, 1.8 x 10⁻² mol) の塩化メチレン (8 mL) 溶液を撹拌しながら 加えた。-50 ℃で 5 分撹拌した後 (2)-7-ヒドロキシ-5-ヘプテン酸メチル (2.81 g, 1.8 x 10⁻² mol)の乾燥塩化メチレン(8 mL)溶液および TBHP (12.5 mL, 3.6 x 10⁻² mol)を加えた。さらに -50 ℃で 30 分撹拌後反応混合物を -20 ℃に昇温しこの温度で 8 時間撹拌した。ジメチルスルフィド (5.6 mL, 7.6 x 10⁻² mol)を加えた後反応混合物を 5%のフッ化ナトリウム水溶液 (400 mL) に入れた。20 ℃で 10 分撹拌後混合物をセライトカラムを通しさらに有機層を分離した。水層は塩化メチレン (200 mL x 2) で抽出した。有機層を合せ無水硫酸ナトリウム上で乾燥させた後ろ過し滅圧濃縮した。得られた反応混合物をシリカゲルカラムクロマトグラフィー (300 g) に供し、1:1 のヘキサンー酢酸エチル混合溶媒で溶出すると、エボキシド体 17 (1.796 g, 57%, 1.0 x 10⁻² mol) が無色油状物として得られた。TLC <u>Rf</u> 0.14 (1:1 ヘキサン/酢酸エチル); IR (CHC1₃) 3600-3200, 2930, 1735 cm⁻¹; [α]¹⁴D -2.5° (C 1.74, CHC1₃); ¹H NMR (CDC1₃) δ 1.4-2.1 (m, 4, 2 CH₂), 2.23 (br s, 1, 0H), 2.41 (t, 2, j = 6.6 Hz, CH₂CO), 2.9-3.3 (m, 2, 2 CHO), 3.69 (s, 3, 0CH₃), 3.5-4.7 (m, 2, CH₂O); MS, <u>m/Z</u> 175 (M⁺ + H), 143, 125. HRMS, <u>m/Z</u> calcd for C₈H₁₅O₄ (M⁺ + H) 175.0970, found 175.0938.

17 の対掌体は D-(-)-酒石酸ジェチルをキラル源として使用して同様な反応で合成した: [α]²¹_D +2.5°(c 1.04, CHCl₃).

(5R,6S)-5,6-エポキシ-7-(テトラヒドロビラン-2-イルオキシ)ヘブタン酸メチル(18). エポキシアルコール体 17 (25.2 mg, 1.45 x 10⁻⁴ mol)を 5-mL 試験管に計り取り 乾燥塩化メチレン (1 mL) に溶解させた。0 ℃に冷却した後、3,4-ジヒドロ-2<u>H</u>-ビラン (0.13 mL, 1.45 x 10⁻³ mol) および PPTS (18.2 mg, 7.25 x 10⁻⁵ mol)を加えた。 反応混合物は 16 ℃で 14.5 時間撹拌後水 (2 mL) にあけ激しく振とうした。有機層を 分離した後水層は塩化メチレン (5 mL x 2) で抽出した。有機層を合せ無水硫酸ナトリ

- 41 --

ウム上で乾燥させた後ろ過し滅圧濃縮した。得られた反応混合物をシリカゲルカラムク ロマトグラフィー (4 g) に供し、10:1 から 5:1 のヘキサンー酢酸エチル混合溶媒で 溶出すると THP エーテル体 18 (35.3 mg, 94%, 1.73 x 10⁻⁴ mol) が無色油状物とし て得られた。TLC <u>R</u>f 0.52 (1:1 ヘキサン/酢酸エチル); IR (CHC1₃) 2920, 1735 cm⁻¹; [α]¹⁴_D -1.2° (<u>c</u> 1.77, CHC1₃); ¹H NMR (CDC1₃) & 1.4-2.0 (m, 10, 5 CH₂), 2.40 (t, 2, <u>j</u> = 6.8 Hz, CH₂CO), 2.9-3.3 (m, 2, 2 CHO), 3.67 (s, 3, 0CH₃), 3.4-4.0 (m, 4, 2 CH₂O), 4.66 (m, 1, 0CHO); MS, <u>m/2</u> 259 (M⁺ + H), 156, 143. HRMS, <u>m/2</u> calcd for C₁₃H₂₃O₅ (M⁺ + H) 259.1546, found 259.1547.

18 の対掌体は 17 の対掌体から同様な反応で合成した: [α]¹¹_D +1.0°(<u>c</u> 1.39, CHC1₃).

(5S,6S)-5,6,7-トリヒドロキシヘプタン酸メチル.

ジオール体 19 (97.3 mg, 3.52 x 10⁻⁴ mol) を 10-mL 丸底フラスコに計り取り、メ タノール (1 mL) に溶解させた後 1 N 塩酸溶液 (1 mL) を加えた。18 ℃で 2 時間撹 拌した後反応混合物を滅圧濃縮した。得られた油状物をメタノール (2 mL) に溶解させ た後ジアゾメタンのエーテル溶液を TLC 上で極性の高いスポットが消失するまで加え た後混合液を滅圧濃縮した。得られた油状物をシリカゲルカラムクロマトグラフィー (10 g) に供し、1:5 のメタノールー酢酸エチル混合溶媒で溶出するとトリオール体²² (51.2 mg, 76%, 2.66 x 10⁻⁴ mol) が無色油状物として得られた。TLC <u>R_f</u> 0.51 (1:5 CH₃OH/酢酸エチル); IR (CHCl₃) 3700-3100, 1730 cm⁻¹; $[\alpha]^{20}_{D}$ -10.7° (<u>c</u> 2.56, CDCl₃); ¹H NMR (CDCl₃) る 1.4-2.0 (m, 4, 2 CH₂), 2.38 (t, 2, <u>j</u> = 6.8 Hz, CH₂CO), 3.0-4.0 (m, 7, 2 CH0, CH₂0, and 3 OH), 3.68 (s, 3, 0CH₃); MS, <u>m/2</u> 193 (M⁺ + H), 175, 161, 143. HRMS, m/z calcd for C₈H₁₇O₅ (M⁺ + H) 193.1076,

- 42 -

found 193.1091.

これと同じトリオール体は 21 からも得られる。アルコール体 21 (11.2 mg, 4.05 x 10⁻⁵ mol)を 5-mL 試験管に計り取りメタノール (0.5 mL) に溶解させた。12 ℃に おいてこの中ヘナトリウムメトキシド/メタノール溶液 (0.2 mL, 5.00 x 10⁻⁴ mol) を加えた。12 ℃で 1.5 時間撹拌後反応混合物を減圧濃縮した。得られた油状物をシリ カゲルカラムクロマトグラフィー (1 g) に供し、1:5 のメタノールー酢酸エチル混合 溶媒で溶出すると、トリオール体 (2.1 mg, 27%, 1.09 x 10⁻⁵ mol) が無色油状物と して得られた。

エボキシアルコール体 17 を直接開環させても同じトリオール体が得られるが、生成 物の鏡像体純度はある程度(95 から 89% ee)低下した。エボキシアルコール体 17 (1.44 g, 8.26 x 10⁻³ mol)を 200-mL 丸底フラスコに計り取り、水酸化ナトリウム (2 g, 5.0 x 10⁻² mol)の 5:1 水-<u>tert</u>-ブチルアルコール混合液(100 mL)を加えた。 60 ℃で 13 時間撹拌した後反応混合物を 1 N 塩酸溶液(50 mL)で中和した。滅圧濃 縮した後、メタノール(50 mL)に溶解させジアゾメタンのエーテル溶液を TLC 上で極 性の高いスポットが消失するまで加えた。それから、混合液を滅圧濃縮した。得られた 油状物をシリカゲルカラムクロマトグラフィー(50 g)に供し、1:10 のメタノールー 酢酸エチル混合溶媒で溶出すると、トリオール体(1.04 g, 66%, 5.41 x 10⁻³ mol) が無色油状物として得られた。減少した光学純度(89% ee)の値は(5<u>5</u>,6<u>5</u>)-7-ヒドロ キシ-5,6-<u>0</u>-イソプロビリデン-5,6-ジヒドロキシへプタン酸メチル に 3 段階の操作で 変換後 Mosher の MTPA 法²³を適用して決定した: 1 級水酸基部の選択的シリル化反 $応^{33}$ (98%),アセトニドへの変換⁴⁴(73%),選択的脱シリル化反応²⁷(98%).

<u>(5S,6S)-5,6-ジヒドロキシ-7-(テトラヒドロピラン-2-イルオキシ)ヘプタン酸メチル</u>

(19).

エボキシド体 18 (515.5 mg, 2.00 x 10⁻³ mol) を 50-mL 丸底フラスコに計り取っ た。ここへ水酸化ナトリウム (400 mg, 1.00 x 10⁻² mol) の 5:1 水-<u>tert</u>-プチルア ルコール混合液 (20 mL) を加えた。60 °C で 40 分撹拌後反応混合液を 1 N 塩酸溶液 (10 mL) で中和した。それから減圧濃縮した。メタノール (10 mL) に溶解させた後ジ アゾメタンのエーテル溶液を TLC 上で極性の高いスポットが消失するまで加えた。そ れから混合液を減圧濃縮した。得られた油状物をシリカゲルカラムクロマトグラフィー (25 g) に供し、1:10 から 1:5 のメタノールー酢酸エチル混合溶媒で溶出すると、ジ オール体 19 (451.9 mg, 82%, 1.64 x 10⁻³ mol) が無色油状物として得られた。TLC R_f 0.66 (1:5 メタノール/酢酸エチル); IR (CHCl₃) 3600-3200, 1735 cm⁻¹; $[\alpha]^{14}_{p}$ -9.6° (<u>c</u> 0.78, CHCl₃); ¹H NMR (CDCl₃) る 1.4-2.1 (m, 12, 5 CH₂ and 2 0H), 2.37 (t, 2, \downarrow = 7.0 Hz, CH₂CO), 3.4-4.2 (m, 9, 2 CH0, 2 CH₂O, and 0CH₃), 4.55 (br s, 1, 0CHO); MS, <u>m/z</u> 277 (M⁺ + H), 215, 203, 193. HRMS, <u>m/z</u> calcd for C₁₃H₂₅O₆ (M⁺ + H) 277.1651, found 277.1655.

19 の鏡像体は 18 の鏡像体から同様な反応で合成した: [α]¹²_D +9.2°(<u>c</u> 0.22, CHCl₃).

<u>(5S,6S)-5,6-ジアセトキシ-7-(テトラヒドロビラン-2-イルオキシ)ヘブタン酸メチル</u> (20).

ジオール体 19 (129.1 mg, 4.67 x 10⁻⁴ mol)を 10-mL 丸底フラスコに計り取り、 乾燥塩化メチレン (2 mL) に溶解させた。0 ℃に冷却後無水酢酸 (0.114 mL, 1.17 x 10⁻³ mol) および 4-(ジメチルアミノ)ビリジン (DMAP) (171.2 mg, 1.40 x 10⁻³ mol) を加えた。冷却浴を除去後反応液を 18 ℃で 20 分撹拌した。反応混合液を飽和塩化

- 44 -

アンモニウム水溶液(20 mL)にあけ、有機層を分け水層は塩化メチレン (20 mL x 3) で抽出した。有機層を合せ無水硫酸ナトリウム上で乾燥させた後ろ過し減圧濃縮した。 得られた反応混合物をシリカゲルカラムクロマトグラフィー(12 g)に供し、5:1 のヘ キサンー酢酸エチル混合溶媒で溶出するとジアセチル化体 20(161.6 mg, 96%, 4.48 x 10⁻⁴ mol)が黄色油状物として得られた。TLC <u>R_f</u> 0.46(1:1 ヘキサン/酢酸エチル); IR (CHCl₃) 1740 cm⁻¹; $[\alpha]^{12}_{p}$ -15.4°(\underline{c} 0.36, CHCl₃); ¹H NMR (CDCl₃) & 1.4– 1.9 (m, 10, 5 CH₂), 2.07 (s, 3, CH₃CO), 2.10 (s, 3, CH₃CO), 2.2–2.4 (m, 2, CH₂CO), 3.4–4.0 (m, 4, 2 CH₂O), 3.66 (s, 3, 0CH₃), 4.58 (br s, 1, 0CHO), 5.16 (m, 2, 2 CHO); MS, <u>m/z</u> 361 (M⁺ + H), 329, 277, 259, 245, 217, 199. HRMS, <u>m/z</u> calcd for C₁₇H₂₉O₈ (M⁺ + H) 361.1862, found 361.1852.

20 の鏡像体は 19 の鏡像体から同様な反応で合成した: [α]¹²_D +14.1°(<u>c</u> 0.24, CHCl₃).

<u>(5S,6S)-5,6-ジアセトキシ-7-ヒドロキシヘプタン酸メチル(21)</u>.

ジアセチル化体 20 (116.5 mg, 3.23 x 10⁻⁴ mol)を 30-mL 丸底フラスコに計り取 り、メタノール (10 mL) に溶解させた。ここへ 50 ℃で PPTS (16.6 mg, 6.47 x 10⁻⁵ mol)を加えた後反応混合液を 50 ℃で 2.5 時間撹拌した。室温に冷却後反応混合液 を滅圧濃縮した。得られた反応混合物をシリカゲルカラムクロマトグラフィー (10 g) に供し、1:1 のヘキサンー酢酸エチル混合溶媒で溶出すると、アルコール体 21 (78.1 mg, 88%, 2.83 x 10⁻⁴ mol) が無色油状物として得られた。TLC <u>Rf</u> 0.20 (1:1 ヘキサ ン/酢酸エチル); IR (CHCl₃) 3700-3200, 1730 cm⁻¹; [α]¹⁴_D -26.3° (<u>c</u> 0.56, CHCl₃); ¹H NMR (CDCl₃) & 1.5-1.7 (m, 4, 2 CH₂), 2.11 (s, 6, 2 CH₃CO), 2.2-2.8 (m, 3, CH₂ and OH), 3.67 (s, 3, 0CH₃), 3.6-4.5 (m, 2, CH₂O), 4.9-5.3 (m,

- 45 -

2, 2 CHO); MS, $\underline{m}/\underline{z}$ 277 (M⁺ + H), 259, 245, 217. HRMS, $\underline{m}/\underline{z}$ calcd for $C_{12}H_{21}O_7$ (M⁺ + H) 277.1288, found 277.1260.

21 の鏡像体は 20 の鏡像体から同様な反応で合成した: [α]¹²_D +24.7°(<u>c</u> 0.32, CHCl₃).

(5S,6R)-5,6-ジアセトキシ-6-ホルミルヘキサン酸メチル (12).

アルコール 21 (385.2 mg, 1.39 × 10⁻³ mol)を 20-mL 丸底フラスコに計り取り、 乾燥ベンゼン (4 mL) に溶解させた。ここへ乾燥 DMSO (4.64 mL, 6.54 × 10⁻² mol), ビリジン (0.113 mL, 1.39 × 10⁻³ mol),トリフルオロ酢酸 (0.054 mL, 6.97 × 10⁻⁴ mol),および 1,3-ジシクロヘキシルカルボジイミド (863 mg, 4.18 × 10⁻³ mol)を順 次加えた。反応混合物は 22 ℃で 3 時間撹拌後ベンゼン (10 mL) を加えた。生成した ジシクロヘキシルウレアはろ過しベンゼンで洗い流した。ろ液を合せ水 (20 mL × 3) で洗った。有機層を分け水層はベンゼン (10 mL) で抽出した。有機層を合せ無水硫酸 ナトリウム上で乾燥させた後ろ過し減圧濃縮した。得られた反応混合物をフロリジルカ ラムクロマトグラフィー (80 g) に供し、2:1 のヘキサンー酢酸エチル混合溶媒で溶出 すると、アルデヒド体 12 (284.9 mg, 75%, 1.04 × 10⁻³ mol) が無色油状物として得 られた。TLC R_f 0.21 (1:1 ヘキサン/酢酸エチル); IR (CeHe) 2900, 1740 cm⁻¹; $[\alpha]^{23}_{D}$ -22.4° (c 0.36, CeHe); ¹H NMR (CDC1₃) る 1.4-2.5 (m, 12, 2 CH₂, 2 CH₃CO, and CH₂CO), 3.70 (s, 3, 0CH₃), 4.8-5.6 (m, 2, 2 CHO), 9.53 (s, 1, HCO); MS, <u>m/z</u> 275 (M⁺ + H), 243, 215, 201. HRMS, <u>m/z</u> calcd for C₁₂H₁₉O₇ (M⁺ + H) 275.1131, found 275.1125.

化合物 13 は 21 の鏡像体から同様な反応条件下合成した: [α]²²_D +21.8°(<u>c</u> 0.97, C_eH_e).

- 46 -

<u>(55,6R)-5,6-ジヒドロキシ-7-(tert-ブチルジフェニルシロキシ)ヘプタン酸メチル</u> (34).

トリオール 33 (276.1 mg, 1.44 x 10⁻³ mol)を 10-mL 試験管に計り取り、乾燥 DMF (4 mL) に溶解させた。0 ℃に冷却後イミダゾール (195.6 mg, 2.87 x 10⁻³ mol) および 塩化 <u>tert</u>-ブチルジフェニルシリル (0.381 mL, 1.44 x 10⁻³ mol)を加えた。 冷却浴を除去した後反応混合液を 15 ℃で 20 分撹拌し、それからそのままシリカゲル カラムクロマトグラフィー (30 g) に供し、2:1 のヘキサンー酢酸エチル混合溶媒で溶 出すると、モノシリルエーテル体 34 (460.9 mg, 74%, 1.07 x 10⁻³ mol) が無色油状 物として得られた。TLC <u>Rf</u> 0.45 (1:1 ヘキサン/酢酸エチル); IR (neat) 3600-3100, 1740 cm⁻¹; $[\alpha]^{13}_{\text{D}}$ -0.02° (c 1.32, CHCl₃); ¹H NMR (CDCl₃) δ 1.07 (s, 9, Si-<u>tert</u>-C₄H₀), 1.2-2.1 (m, 4, 2 CH₂), 2.34 (t, 2, \downarrow = 7.3 Hz, CH₂CO), 2.2-3.0 (m, 2, 2 OH), 3.65 (s, 3, 0CH₃), 3.5-3.9 (m, 4, 2 CH0 and CH₂O), 7.3-7.8 (m, 10, aromatic); MS, <u>m/2</u> 431 (M⁺ + H), 371, 355, 323. HRMS, <u>m/2</u> calcd for C₂₄H₃₅O₅Si (M⁺ + H) 431.2254, found 431.2203.

(5S,6R)-5,6-ジアセトキシ-7-(tert-ブチルジフェニルシロキシ)へブタン酸メチル
(35).

ジオール体 34 (289.6 mg, 6.73 x 10⁻⁴ mol)を 10-mL 試験管に計り取り、塩化メ チレン (3 mL) に溶解させた。0 ℃に冷却後無水酢酸 (0.165 mL, 1.68 x 10⁻³ mol) および DMAP (246.5 mg, 2.02 x 10⁻³ mol)を加えた。冷却浴を除去後反応液は 16 ℃ で 30 分撹拌した。反応混合液を飽和塩化アンモニウム水溶液 (5 mL) にあけ、有機層 を分け水層は塩化メチレン (5 mL x 3)で抽出した。有機層を合せ無水硫酸ナトリウム 上で乾燥させた後ろ過し減圧濃縮した。得られた反応混合物をシリカゲルカラムクロマ

- 47 -

トグラフィー (15 g) に供し、5:1 のヘキサンー酢酸エチル混合溶媒で溶出すると、ジ アセチル化体 35 (216.8 mg, 63%, 4.21 x 10⁻⁴ mol) が無色油状物として得られた。 TLC <u>R_f</u> 0.69 (1:1 ヘキサン/酢酸エチル); IR (CHCl₃) 1740 cm⁻¹; [α]¹⁴_D -8.9° (<u>c</u> 0.71, CHCl₃); ¹H NMR (CDCl₃) る 1.04 (s, 9, Si-<u>tert</u>-C₄H₉), 1.5-1.8 (m, 4, 2 CH₂), 1.99 (s, 3, COCH₃), 2.02 (s, 3, COCH₃), 2.32 (m, 2, 2 CHO), 3.65 (s, 3, 0CH₃), 3.74 (d, 2, \downarrow = 5.5 Hz, CH₂O), 5.18 (m, 2, 2 CHO), 7.4-7.8 (m, 10, aromatic); MS, <u>m/z</u> 515 (M⁺ + H), 483, 457, 395. HRMS, <u>m/z</u> calcd for C₂₈H₃₉O₇Si (M⁺ + H) 515.2465, found 515.2483.

<u>(5S,6R)-5,6-ジアセトキシ-7-ヒドロキシヘプタン酸メチル(36)</u>.

シリルエーテル体 35 (414.4 mg, 8.05 x 10⁻⁴ mol)を 50-mL 丸底フラスコに計り 取り、乾燥アセトニトリル (10 mL) に溶解させた。0 ℃に冷却後フッ化水素-ビリジ ン (2.5 mL)を加えた。冷却浴を除去後反応混合液を 20 ℃で 15.5 時間撹拌した。反 応混合液を飽和フッ化カリウム水溶液 (25 mL)、飽和炭酸水素ナトリウム水溶液 (50 mL)、およびエーテル (60 mL)の混合液にあけた。有機層を分け、水層はエーテル (50 mL x 3)で抽出した。有機層を合せ無水硫酸ナトリウム上で乾燥させた後ろ過し滅圧 濃縮した。得られた反応混合物をシリカゲルカラムクロマトグラフィー (40 g) に供し、 1:1 のヘキサンー酢酸エチル混合溶媒で溶出すると、アルコール体 36 (210.0 mg, 94 %, 7.60 x 10⁻⁴ mol) が無色油状物として得られた。TLC <u>R_f</u> 0.20 (1:1 ヘキサン/酢 酸エチル); IR (CHCl₃) 3680-3260, 1740 cm⁻¹; $[\alpha]^{14}_{\text{D}}$ -5.3° (<u>c</u> 1.03, CHCl₃); ¹H NMR (CDCl₃) & 1.6-2.5 (m, 3, CH₂CO and OH), 3.67 (s, 3, 0CH₃), 3.6-3.8 (m, 2, CH₂OH), 4.9-5.3 (m, 2, 2 CHO); MS, <u>m/2</u> 277 (M⁺ + H), 245, 201, 173. HRMS, <u>m/2</u> calcd for C₁₂H₂, 0₇ (M⁺ + H) 277.1287, found 277.1311.

- 48 -

(5S,6S)-5,6-ジアセトキシ-6-ホルミルヘキサン酸メチル(14).

アルコール 36 (95.3 mg, 3.45 x 10⁻⁴ mol)を 10-mL 試験管に計り取り乾燥ベンゼ ン (1 mL) に溶解させた。ここへ乾燥 DMSO (1.15 mL, 1.63 x 10⁻² mol), ビリジン (0.0279 mL, 3.45 x 10⁻⁴ mol),トリフルオロ酢酸 (0.0133 mL, 1.72 x 10⁻⁴ mol), および 1,3-ジシクロヘキシルカルボジイミド (213.5 mg, 1.03 x 10⁻³ mol)を順次加 えた。反応混合物は 25 ℃で 1 時間撹拌後ベンゼン (3 mL)を加えた。生成したジシ クロヘキシルウレアはろ過しベンゼンで洗い流した。ろ液を合せ水 (6 mL x 3) で洗っ た。有機層を分け、水層はベンゼン (5 mL) で抽出した。有機層を合せ無水硫酸ナトリ ウム上で乾燥させた後ろ過し減圧濃縮した。得られた反応混合物をフロリジルカラムク ロマトグラフィー (20 g) に供し、2:1 のヘキサンー酢酸エチル混合溶媒で溶出すると、 アルデヒド体 14 (62.7 mg, 66%, 2.29 x 10⁻⁴ mol) が無色油状物として得られた。 TLC <u>R</u>, 0.22 (1:1 ヘキサン/酢酸エチル); IR (CHCl₃) 1740 cm⁻¹; [α]²³_D -1.0° (<u>c</u> 0.81, C₆H₆); ¹H NMR (CDCl₃) δ 1.5-1.9 (m, 4, 2 CH₂), 2.07 (s, 3, COCH₃), 2.19 (s, 3, COCH₃), 2.2-2.5 (m, 2, CH₂CO), 3.67 (s, 3, OCH₃), 4.8-5.4 (m, 2, 2 CHO), 9.52 (s, 1, HCO); MS, <u>m/z</u> 275 (M⁺ + H), 245, 201, 173. HRMS, <u>m/z</u> calcd for C₁₂H₁₀O₇ (M⁺ + H) 275.1131, found 275.1147.

<u>3-トリメチルスタニル-1,2-オクタジエン(26)</u>.

シアン化第一銅 (4.7 mg, 0.52 x 10⁻⁴ mol) および乾燥 THF (6 mL) を 40-mL 反応 管に計り取った。-25 ℃に冷却後臭化 <u>n</u>-ベンチルマグネシウム (0.80 mL, 1.44 x 10⁻³ mol) を加え、反応混合液をこの温度で 10 分撹拌した。次に、-25 ℃でここへ 3-クロロ-1-(トリメチルスタニル)プロピン (341.9 mg, 1.44 x 10⁻³ mol) の THF (3 mL) 溶液を 5 分かけて滴下した。-25 から -18 ℃で 15分撹拌後、反応混合液を飽和塩化

- 49 -

アンモニウム水溶液(8 mL)にあけた。有機層を分け、水層はヘキサン(5 mL)で抽出 した。有機層を合せ無水硫酸ナトリウム上で乾燥させた後ろ過し減圧濃縮した。得られ た反応混合物を簡易蒸留(38-48 ℃/0.3 mmHg)に供すると 26(290.0 mg, 74%, 1.0 6 x 10⁻³ mol)が無色油状物として得られた。TLC <u>Rf</u> 0.66(ヘキサン); IR(CHC1₃) 1920 cm⁻¹; ¹H NMR(CDC1₃)る 0.18 (s, 9, ² j(¹¹⁷Sn-¹H) = 52.3 Hz, ² j(¹¹⁹Sn-¹H) = 54.9 Hz, Sn(CH₃)₃), 0.7-1.1 (br t, 3, CH₃), 1.1-1.6 (br, 6, 3 CH₂), 2.0-2.3 (br, 2, CH₂), 4.17 (t, 2, j = 3.0 Hz, allenyl); MS, <u>m/z</u> 274 (M⁺), 259, 165, 109. HRMS, <u>m/z</u> calcd for C₁₁H₂₂Sn 274.0744 (Sn = 119.9022), found 274.0744. (3S,5R)-1-クロロ-3,5-ジヒドロキシ-3-(2-オクチニル)シクロペンテン (27).

アレニルスズ体 26 (327.6 mg, 1.20 x 10⁻³ mol) を 40-mL 反応管に計り取り、乾 燥 THF (6 mL) に溶解させた。-78 ℃に冷却後メチルリチウム (1.11 mL, 1.20 x 10⁻³ mol) を加え、反応混合液 -78 ℃で 30 分撹拌した。ここへ -78 ℃でエノン体 10 (271 mg, 1.10 x 10⁻³ mol) のエーテル (5 mL) 溶液を 10 分かけて滴下した。-78 ℃ で 30 分撹拌後反応混合液を飽和塩化アンモニウム水溶液にあけ有機層を分け、水層は エーテル (15 mL x 2) で抽出した。有機層を合せ無水硫酸ナトリウム上で乾燥させた 後ろ過し滅圧濃縮した。得られた反応混合物 (TLC <u>Rf</u> 0.36, 5:1 ヘキサン/酢酸エチル) をシリカゲルカラムクロマトグラフィー (10 g) に供し、20:1 のヘキサンー酢酸エチ ル混合溶媒で溶出し、得られた粗生成物を乾燥 THF (8 mL) に溶解させ 0 ℃に冷却し た。ここへフッ化テトラブチルアンモニウム (1.0 M THF 溶液, 3.20 mL, 3.20 x 10⁻³ mol) を加え反応混合液を室温で 13 時間撹拌した。反応液を飽和食塩水にあけ、酢酸 エチル (15 mL x 2) で抽出した。有機層を合せ無水硫酸ナトリウム上で乾燥させた後 ろ過し滅圧濃縮した。得られた反応混合物をショートシリカゲルカラムクロマトグラ

- 50 -

フィーに供し、2:1 のヘキサンー酢酸エチル混合溶媒で溶出し得られた粗生成物をさら にシリカゲルカラムクロマトグラフィー(15g)に供し、5:1 のヘキサンー酢酸エチル 混合溶媒で溶出すると、アセチレン体 27 (112 mg, 42%, 4.61 x 10⁻⁴ mol、白色固体) およびアレニル異性体(58.7 mg, 22%, 2.42 x 10⁻⁴ mol, 油状)が得られた。アセ チレン体 27: mp 89-90 ℃; TLC Rf 0.35 (1:1 ヘキサン/酢酸エチル); IR (CHCls) 3600 - 3200, 1630 cm^{-1} ; $[\alpha]^{15}_{D} + 62.6^{\circ}$ (c 0.13, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 0.90 (t, 3, J = 6.9 Hz, CH₃), 1.2-1.7 (m, 6, 3 CH₂), 1.96 (dd, 1, J = 14.2 and 3.6 Hz, a proton of CH_2), 2.1-2.3 (m, 3, CH_2 and OH), 2.44 (s, 1, OH), 2.49 (t, 2, J = 1.8 Hz, CH₂), 2.65 (dd, 1, J = 13.9 and 7.3 Hz, a proton of CH₂), 4.5-4.6 (m, 1, CHO), 5.94 (s, 1, vinyl); MS, m/z 242 (M⁺), 225, 207, 189. HRMS, m/z calcd for $C_{13}H_{19}O_2CI$ 242.1074, found 242.1110. 27 OZ = DZ図は MULTAN78 プログラムシステム⁴⁵ 支援下 Monte Carlo 直接法⁴⁶ を用いた X-線結 晶構造解析によって決定した; 収集した 1042 点の反射を収集し解析的吸収補正による フルマトリックス最小二乗法を用いて精密化をはかった。|| 以外の原子は異方性の温度 因子により帰属した。すべての水素原子は D 合成によって帰属し、さらに結合してい る炭素原子と同じ等方性温度因子を用いることによって精密化をはかった。すべての計 算は名古屋大学大型計算機センターの FACOM M-382 コンピューターで行なった(3 お よび 4 表)。

27 の鏡像体は 11 から同様な方法で合成した: [α]¹¹_D -56.4°(<u>c</u> 0.14, CHC1₃). <u>(3S,5R)-1-クロロ-3-アセトキシ-5-ヒドロキシ-3-(2-オクチニル)シクロペンテン</u> (28).

(3<u>S</u>,5<u>R</u>)-1-クロロ-3-ヒドロキシ-5-(tert-ブチルジメチルシロキシ)-3-(2-オクチニ

Table III.	Experimental Details for Crystal Structure Determination

A. Cryst	al Data		
mol formula	$C_{13}H_{19}O_2Cl$		
mol wt	242.11		
crystal size, mm ³	$0.70 \ge 0.05 \ge 0.03$		
space group	$P2_1$		
cell dimens	16 010 (6)		
h Å	6 899 (2)		
c. Å	5.941(1)		
a, deg	89.96 (2)		
β, deg	88.21 (2)		
γ, deg	89.91 (3)		
vol, Å	692.7 (3)		
Z	2		
ρ _{obsd} , g cm ^{−3}	1.140		
ρ_{calcd} , g cm ⁻³	1.164		
	·		
B. Intensity M	Rigaky automated four-circles		
msuument	diffractometer, AFC-5		
radiation	CuKa (1.54051Å)		
monochromator	graphite crystal		
scan type	$\theta - 2\theta$		
scan speed, deg min ⁻¹	$0^\circ \le 2\theta \le 76^\circ 4(2\theta)$		
	$76^\circ \le 2\theta \le 102^\circ 2(2\theta)$		
	$102^{\circ} \le 2\theta \le 126^{\circ} \ 1(2\theta)$		
background	0° ≤ 2θ ≤ 76° 3 s		
	$7.6^\circ \le 2\theta \le 102^\circ 7 \text{ s}$		
	$102^\circ \le 2\theta \le 126^\circ 15 \text{ s}$		
2θ scan limit, deg	126		
"standard" reflections	3 every 100 reflections		
indices	(-3, -1, 1), (3, 2, 0), (-4, -1, -1)		
cryst stability	13.1–14.7% anisotropic decay		
total reflections scanned	2774		
unique reflections with	1042		
$I > \sigma(I)$			
- (-)			

- 52 -

3

cell	dimens	determination	20 reflections, AFC-5 diffractometer, $\lambda = 1.54051$ Å
			x = 1.04001 H, $25^{\circ} < 2\theta < 37^{\circ}$ $t = 20 \pm 2$ °C

C. Structure So absorptn correctn	lution and Refinement Katayama's method ^a
scattering factor source	(dispersion corrected)
function minimized by refinement	$\Sigma(F_0 - F_c)^2 / \Sigma F_0 ^2$
no. of reflections in refinement anal.	1042
R	0.082
R _w c	0.077

^{*a*} Katayama, C.; Sakabe, N.; Sakabe, K. *Acta Crystallogr., Sect. A* **1972**, *A28*, S207. ^{*b*} "International Tables for X-ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV, p 91–101, 149–150. ^{*c*} $R_w = {\Sigma(|F_0| - |F_c|)^2 / \Sigma |F_0|^2}^{1/2}$

Table IV. Selected Interatomic Distances (Å) and Angles (deg)

Bond Distances					
C(1)-C(2)	1.306 (14)	C(1) - C(5)	1.479 (15)		
C(1) - C1(16)	1.743 (11)	C(2) - C(3)	1.518 (17)		
C(2)-H(2)	0.970 (92)	C(3) - C(4)	1.540 (18)		
C(3) - C(6)	1.558 (18)	C(3) - O(14)	1.455 (17)		
C(4)-C(5)	1.543 (19)	C(4)-H(4A)	1.113 (119)		
C(4)-H(4B)	1.148 (115)	C(5)-O(15)	1.438 (16)		
C(5)-H(5)	0.905 (129)	C(6) - C(7)	1.487 (21)		
C(7)-C(8)	1.193 (24)	C(8)-C(9)	1.517 (26)		
C(9) - C(10)	1.539 (31)	C(10) - C(11)	1.445 (40)		
C(11)-C(12)	1.565 (39)	C(12) - C(13)	1.479 (40)		
O(14)-H(14)	1.346 (148)	O(15)-H(15)	0.737 (112)		

- 53 -

Bond Angles 116.3 (10) C(2

•

ł

119.1	(6)
129.0	(56)
104.4	(11)
110.0	(9)
112.0	(9)
106.4	(9)
127.0	(65)
109.2	(62)
102.5	(10)
100.1	(75)
114.7	(104)
111.0	(12)
177.0	(20)
109.9	(18)
118.1	(20)
86.6	(108)

gies	
C(2) - C(1) - C1(16)	124.5 (9)
C(1)-C(2)-C(3)	109.4 (11)
C(3)-C(2)-H(2)	121.5 (59)
C(2)-C(3)-C(6)	115.0 (9)
C(4)-C(3)-C(6)	113.0 (10)
C(6)-C(3)-O(14)	102.7 (11)
C(3)-C(4)-H(4A)	118.3 (77)
C(5)-C(4)-H(4A)	116.5 (73)
H(4A)-C(4)-H(4B)	77.9 (77)
C(1)-C(5)-O(15)	114.4 (9)
C(4)-C(5)-O(15)	109.7 (9)
O(15)-C(5)-H(5)	114.5 (98)
C(6)-C(7)-C(8)	177.2 (17)
C(8)-C(9)-C(10)	111.7 (15)
C(10)-C(11)-C(12)	110.5 (19)
C(3)-O(14)-H(14)	66.9 (61)

ル)シクロペンテン (8.7 mg, 2.44 x 10⁻⁵ mol、この化合物は プロパルギル化反応に よる 10 から 27 の合成の中間体)を 5-mL 試験管に計り取り乾燥塩化メチレン(0.5 mL) に溶解させた。0 ℃に冷却後無水酢酸(3.6 µL, 3.66 x 10⁻⁵ mol) および DMAP (8.9 mg, 7.31 x 10⁻⁵ mol)を加え 21 ℃で 10 日間撹拌した。反応混合液を塩化メチ レンで希釈後水を加えた。有機層は無水硫酸ナトリウム上で乾燥させた後ろ過し減圧濃 縮した。得られた反応混合物をシリカゲルカラムクロマトグラフィー(1g)に供し、 20:1 のヘキサン-酢酸エチル混合溶媒で溶出し得られた生成物(TLC R+ 0.53, 5:1 ヘ キサン/酢酸エチル)を 5-mL 丸底フラスコに入れ乾燥アセトニトリル(0.6 mL)に溶 解させた。0 ℃に冷却後フッ化水素-ビリジン(0.8 mL)を加えた。冷却浴を除去後反 応混合液を 16 ℃で 21 時間撹拌した。反応混合液を飽和フッ化カリウム水溶液(8 mL)、飽和炭酸水素ナトリウム水溶液(16 mL)、およびエーテル(20 mL)の混合液にあ けた。有機層を分け、水層はエーテル (10 mL x 3) で抽出した。有機層を合せ無水硫 酸ナトリウム上で乾燥させた後ろ過し減圧濃縮した。得られた反応混合物をシリカゲル カラムクロマトグラフィー(1g)に供し、1:1のヘキサンー酢酸エチル混合溶媒で溶 出すると、28(6.4 mg, 92%, 2.25 x 10⁻⁵ mol)が無色油状物として得られた。TLC R_f 0.27 (3:1 ヘキサン/酢酸エチル); |R (CCl₄) 3600, 3520, 1740, 1630 cm⁻¹; |R $(CC1_4, 4.0 \times 10^{-3} \text{ M})$ 3600, 3520 cm⁻¹; $[\alpha]^{11}_{p}$ -28.2° (c 0.25, CHC1₃); ¹H NMR (CDCl₃, 270 MHz) δ 0.90 (t, 3, J = 7.1 Hz, CH₃), 1.2-1.6 (m, 6, 3 CH₂), 2.03 $(s, 3, COCH_3), 2.1-2.9 (m, 6, 3 CH_2), 3.24 (d, 1, J = 9.2 Hz, 0H), 4.51 (ddd,$ 1, J = 9.2, 7.8, and 2.5 Hz, CHO), 5.96 (s, 1, vinyl); MS, m/z 224 (M⁺ - $C_2H_4O_2$), 206, 189. HRMS, m/z calcd for $C_{13}H_{17}OCI$ (M⁺ - $C_2H_4O_2$) 224.0969, found 224.0984.

- 55 -

(3S,5R)-1-クロロ-3,5-ジヒドロキシ-3-((Z)-2-オクテニル)シクロペンテン (29).

ジオール体 27 (22.9 mg, 9.43 x 10⁻⁵ mol)を 10-mL 丸底フラスコに計り取り、こ こへメタノール(1.5 mL)および Lindlar 触媒(5 mg)を入れた。反応混合物は水素 ガス雰囲気下(1 atm) 24 ℃で 72 時間撹拌した。反応液はショートセライトカラムを 通しエーテルで洗い流し、ろ液は減圧濃縮した。得られた反応混合物をシリカゲルカラ ムクロマトグラフィー(2g)に供し、3:1のヘキサンー酢酸エチル混合溶媒で溶出す ると、29(22.5 mg, 98%, 9.19 x 10⁻⁵ mol)が白色固体として得られた。Mp 44-45 ℃; TLC <u>R</u>f 0.37 (1:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200, 1630 cm⁻¹; $[\alpha]_{1}^{1} + 22.8^{\circ}$ (c 0.19, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 0.89 (t, 3, J = 6.8 Hz, CH₃), 1.15 - 1.45 (m, 6, 3 CH₂), 1.88 (dd, 1, J = 14.2 and 3.3 Hz, a proton of CH_2), 1.95-2.10 (m, 2, CH_2), 2.30-2.45 (m, 2, CH_2), 2.55 (dd, 1, J = 14.2 and 7.4 Hz, a proton of CH_2), 2.95-3.40 (br, 2, 2 OH), 4.35-4.55 (br, 1, CHO), 5.25-5.65 (m, 2, 2 vinyl), 5.87 (s, 1, vinyl); MS, m/z 244 (M⁺), 226, 208. HRMS, m/z calcd for $C_{13}H_{19}OC1$ (M⁺ - H₂O) 226.1124, found 226.1115. 29 の鏡像体は 27 の (3R,5S)-異性体を用いて同様な方法で合成した: $[\alpha]^{21}$ -23.0° (c 0.13, CHC1₃).

(4S)-2-クロロ-4-ヒドロキシ-4-((Z)-2-オクテニル)-2-シクロペンテノン (30).

ジオール体 29 (21.0 mg, 8.58 x 10⁻⁵ mol) を 10-mL 試験管に計り取り乾燥 DMF (2.5 mL) に溶解させた。0 ℃に冷却後ビリジニウムジクロメート (64 mg, 1.7 x 10⁻⁴ mol) を加え、反応混合液を 28 ℃で 24 時間撹拌した。反応液はショートセライトカ ラムを通しエーテルで洗い流し、ろ液は減圧濃縮した。得られた反応混合物をシリカゲ ルカラムクロマトグラフィー (4 g) に供し、10:1 のヘキサンー酢酸エチル混合溶媒で

- 56 -

溶出すると、ヒドロキシエノン体 30 (19.0 mg, 91%, 7.83 x 10⁻⁵ mol) が無色油状 物として得られた。TLC <u>R_f</u> 0.59 (1:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200, 1730, 1670 cm⁻¹; [α]¹⁵_D +59.9° (<u>c</u> 0.18, CHCl₃); ¹H NMR (CDCl₃) δ 0.7-1.1 (br t, 3, CH₃), 1.1-1.6 (m, 6, 3 CH₂), 1.9-2.3 (m, 3, CH₂ and 0H), 2.54 (d, 2, <u>J</u> = 7.0 Hz, CH₂), 2.54 (d, 1, <u>J</u> = 18.5 Hz, a proton of CH₂CO), 2.77 (d, 1, <u>J</u> = 18.5 Hz, a proton of CH₂CO), 5.2-5.9 (m, 2, vinyl), 7.34 (s, 1, vinyl); MS, <u>m/2</u> 242 (M⁺), 224, 203, 131. HRMS, <u>m/2</u> calcd for C₁₃H₁₇OC1 (M⁺ - H₂O) 224.0968, found 224.0961.

30 の鏡像体は 29 の (4<u>R</u>)-異性体を用いて同様な方法で合成した: [α]²⁵_D-57.6° (c 0.25, CHC1₃).

(4S)-2-クロロ-4-トリメチルシロキシ-4-((Z)-2-オクテニル)-2-シクロペンテノン (31).

アルコール 30 (118.0 mg, 4.86 x 10⁻⁴ mol)を 20-mL 丸底フラスコに計り取り、 乾燥塩化メチレン (8 mL) に溶解させた。0 ℃に冷却後ジイソプロビルエチルアミン (0.42 mL, 2.43 x 10⁻³ mol) およびトリメチルシリルトリフラート (0.12 mL, 6.21 x 10⁻⁴ mol) を順次加えた。0 ℃で 30 分撹拌後反応混合液を塩化メチレン (5 mL) で 希釈し水 (5 mL) を加えた。有機層を分け、水層は塩化メチレン (10 mL x 2) で抽出 した。有機層を合せ無水硫酸ナトリウム上で乾燥させた後ろ過し減圧濃縮した。得られ た反応混合物をシリカゲルカラムクロマトグラフィー (5 g) に供し、100:1 のヘキサ ンー酢酸エチル混合溶媒で溶出すると、シリルエーテル体 31 (131.0 mg, 86%, 4.16 x 10⁻⁴ mol) が無色油状物として得られた。TLC <u>R</u> 0.61 (5:1 ヘキサン/酢酸エチル); IR (CHC1₃) 1730, 1605 cm⁻¹; [α]¹²_D +23.7° (c 1.14, CHC1₃); ¹H NMR (CDC1₃) δ

- 57 -

0.13 (s, 9, Si(CH₃)₃), 0.7-1.1 (br t, 3, CH₃), 1.1-1.6 (m, 6, 3 CH₂), 1.8-2.2 (m, 2, CH₂), 2.50 (d, 2, \underline{J} = 6.4 Hz, CH₂), 2.50 (d, 1, \underline{J} = 18.5 Hz, a proton of CH₂CO), 2.73 (d, 1, \underline{J} = 18.5 Hz, a proton of CH₂CO), 5.2-5.9 (m, 2, viny1), 7.32 (s, 1, viny1); MS, <u>m/z</u> 314 (M⁺), 299, 260, 245, 225, 203. HRMS, <u>m/z</u> calcd for C₁₆H₂₇O₂ClSi 314.1469, found 314.1502.

31 の鏡像体は 30 の (4<u>R</u>)-異性体を用いて同様な方法で合成した: [α]²³_p-20.9° (<u>c</u> 0.31, CHCl₃).

(4S)-2-クロロ-4-トリメチルシロキシ-4-((Z)-2-オクテニル)-5-((2S,3S)-6-カルボ メトキシ-2,3-ジアセトキシ-1-ヒドロキシヘキシル)-2-シクロペンテノン (32).

エノン体 31 (22.5 mg, 7.14 x 10⁻⁵ mol)を 10-mL 反応管に計り取り、乾燥 THF (0.6 mL) に溶解させた。-78 ℃に冷却後 -78 ℃ で LDA (0.40 M THF 溶液, 0.18 mL, 7.0 x 10⁻⁵ mol)を加え 10 分撹拌した。次に、ここへアルデヒド 12 (56.5 mg, 2.06 x 10⁻⁴ mol)の THF (0.3 mL)溶液を -78 ℃で加えた。この温度で 20 分撹拌後 pH 7.4 リン酸緩衝液 (1.5 mL) にあけた。有機層を分け、水層はエーテル (10 mL x 2) で抽出した。有機層を合せ無水硫酸ナトリウム上で乾燥させた後ろ過し滅圧濃縮した。 得られた反応混合物をシリカゲルカラムクロマトグラフィー (3 g) に供し、20:1 から 5:1 のヘキサンー酢酸エチル混合溶媒で溶出すると、アルドール体 32 (24.2 mg, 58 %, 4.11 x 10⁻⁵ mol) が黄色油状物として得られ、同時に出発物質であるエノン 31 (8.7 mg, 39%, 2.76 x 10⁻⁵ mol) が回収された。TLC <u>R</u> 0.37 and 0.30 (2:1 ヘキサ ン/酢酸エチル); IR (CHCl₃) 3600-3200, 1735, 1605 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) る 0.04 and 0.20 (s each, 9, Si(CH₃)₃), 0.89 (t, 3, \downarrow = 6.9 Hz, CH₃), 1.1– 1.4 (m, 6, 3 CH₂), 1.5–1.8 (m, 4, 2 CH₂), 2.05, 2.08, 2.12, and 2.14 (s each,

- 58 -

6, 2 COCH₃), 1.9-2.0 (br, 2, CH₂), 2.2-2.9 (m, 6, 2 CH₂, CH, and OH), 3.65 and 3.66 (s each, 3, OCH₃), 4.1-4.3 (m, 1, CHO), 5.1-5.8 (m, 4, two viny) and 2 CHOCOCH₃), 7.29 and 7.31 (s each, 1, viny).

<u>(4R)-2-クロロ-4-トリメチルシロキシ-4-((Z)-2-オクテニル)-5-((2S,3S)-6-カルボ</u> メトキシ-2,3-ジアセトキシ-1-ヒドロキシヘキシル)-2-シクロペンテノン.

収率 51% および 32% の 31 の対掌体の回収。TLC <u>Rf</u> 0.36 and 0.29 (2:1 ヘキサン/酢酸エチル); ¹H NMR (CDCl₃, 270 MHz) & 0.12, 0.16, 0.20, and 0.22 (s each, 9, Si(CH₃)₃), 0.89 (t, 3, $\underline{J} = 6.9$ Hz, CH₃), 1.2-1.4 (m, 6, 3 CH₂), 1.5-1.8 (m, 4, 2 CH₂), 1.9-2.1 (m, 2, CH₂), 2.05, 2.09, 2.12, and 2.13 (s each, 6, 2 COCH₃), 2.3-3.2 (m, 6, 2 CH₂, CH, and OH), 3.66 (s, 3, OCH₃), 3.9-4.5 (m, 1, CHO), 5.0-5.9 (m, 4, two vinyl and 2 CHOCOCH₃), 7.30, 7.32, and 7.34 (s each, 1, vinyl).

<u>(4R)-2-クロロ-4-トリメチルシロキシ-4-((Z)-2-オクテニル)-5-((2R,3R)-6-カルボ</u> メトキシ-2,3-ジアセトキシ-1-ヒドロキシヘキシル)-2-シクロペンテノン.

収率 61% および 32% の 31 の対掌体の回収。TLC R₁ 0.37 and 0.30 (2:1 ヘキサン/酢酸エチル). TLC においてより低極性物質: ¹H NMR (CDCl₃, 500 MHz) & 0.05 and 0.21 (s each, 9, Si(CH₃)₃), 0.7-1.1 (br t, 3, CH₃), 1.1-1.5 (m, 6, 3 CH₂), 1.5-1.8 (m, 4, 2 CH₂), 2.06, 2.09, 2.13, and 2.15 (s each, 6, 2 COCH₃), 1.9 -2.0 (br, 2, CH₂), 2.2-2.8 (m, 6, 2 CH₂, CH, and OH), 3.67 (s, 3, OCH₃), 4.1 -4.4 (m, 1, CHO), 5.1-5.9 (m, 4, two vinyl and 2 CHOCOCH₃), 7.29 and 7.32 (s each, 1, vinyl). TLC においてより高極性物質: ¹H NMR (CDCl₃, 500 MHz) & 0.15 and 0.18 (s each, 9, Si(CH₃)₃), 0.7-1.1 (br t, 3, CH₃), 1.1-1.5 (m, 6, 3

- 59 -

CH₂), 1.5-1.9 (m, 4, 2 CH₂), 1.9-3.0 (m, 14, 2 COCH₃, 3 CH₂, CH, and OH), 3.66 (s, 3, OCH₃), 3.7-4.1 (br, 1,CHO), 4.8-5.8 (m, 4, two vinyl and 2 CHOCO CH₃), 7.31 (s, 1, vinyl).

(4R)-2-クロロ-4-トリメチルシロキシ-4-((Z)-2-オクテニル)-5-((2R,3S)-6-カルボ メトキシ-2,3-ジアセトキシ-1-ヒドロキシヘキシル)-2-シクロペンテノン.

収率 22% および 68% の 31 の対掌体の回収。TLC <u>R_f</u> 0.35 and 0.27 (2:1 ヘキサ ン/酢酸エチル); ¹H NMR (CDCl₃, 270 MHz) & 0.08, 0.14, 0.18, and 0.21 (s each, 9, Si(CH₃)₃), 0.89 (t, 3, <u>J</u> = 6.9 Hz, CH₃), 1.1-1.4 (m, 6, 3 CH₂), 1.5-1.8 (m, 4, 2 CH₂), 1.9-2.1 (m, 2, CH₂), 2.02, 2.04, 2.09, and 2.20 (s each, 6, 2 COCH₃), 2.3-3.3 (m, 6, 2 CH₂, CH, and OH), 3.66, 3.67, and 3.68 (s each, 3, 0CH₃), 3.9-4.4 (m, 1, CH0), 5.1-5.8 (m, 4, two vinyl and 2 CHOCOCH₃), 7.35, 7.36, and 7.45 (s each, 1, vinyl).

<u>(4S)-2-クロロ-4-トリメチルシロキシ-4-((Z)-2-オクテニル)-5-((2R,3S)-6-カルボ</u> <u>メトキシ-2,3-ジアセトキシ-1-ヒドロキシヘキシル)-2-シクロペンテノン.</u>

収率 44% および 41% の 31 の回収。TLC <u>R_f</u> 0.40 and 0.37 (2:1 ヘキサン/酢酸 エチル); ¹H NMR (CDC1₃) δ 0.12, 0.16, 0.23, and 0.26 (s each, 9, Si(CH₃)₃), 0.89 (t, 3, \downarrow = 5.5 Hz, CH₃), 1.1-1.5 (m, 6, 3 CH₂), 1.5-1.9 (m, 4, 2 CH₂), 2.01, 2.04, and 2.06 (s each, 6, 2 COCH₃), 1.9-3.0 (m, 8, 3 CH₂, CH, and OH), 3.67 (s, 3, OCH₃), 4.4-4.6 (m, 1, CHO), 5.1-5.8 (m, 4, two vinyl and 2 CHOC OCH₃), 7.29, 7.32, and 7.44 (s each, 1, vinyl).

<u>(7E)-PUG 4 (8)</u> および (7Z)-PUG 4 (9).

アルドール体 32 (19.8 mg, 3.36 x 10⁻⁵ mol)を 10-mL 丸底フラスコに計り取り、

乾燥塩化メチレン (1 mL) に溶解させた。0 ℃に冷却後無水酢酸 (0.034 mL, 3.36 x 10^{-4} mol) および DMAP (83.0 mg, 6.72 x 10^{-4} mol) を加えた。反応液を 4 ℃で 28 時間撹拌した。そして、塩化メチレン (2 mL) で希釈した後水 (2 mL) を加えた。有機 層を分け、水層は塩化メチレンで抽出した。有機層を合せ無水硫酸ナトリウム上で乾燥 させた後ろ過し滅圧濃縮した。得られた反応混合物をシリカゲルカラムクロマトグラフィー (5 g) に供し、10:1 のヘキサンー酢酸エチル混合溶媒で溶出すると脱水体 (8.3 mg, 43%, 1.45 x 10^{-5} mol) が無色油状物として得られた。TLC <u>R</u>f 0.53 (2:1 ヘキサン/酢酸エチル); ¹H NMR (CDCl₃) & 0.02 and 0.16 (s each, 9, Si(CH₃)₃), 0.7-1.1 (br t, 3, CH₃), 1.1-1.8 (m, 10, 5 CH₂), 1.8-2.1 (m, 2, CH₂), 2.04, 2.09, and 2.12 (s each, 6, 2 COCH₃), 2.1-3.0 (m, 4, 2 CH₂), 3.66 (s, 3, 0CH₃), 5.1 -5.8 (m, 3, CHO and two vinyl), 5.9-6.2 (m, 1, CHO and vinyl), 6.4-6.7 (m, 1, CHO and vinyl), 7.18 and 7.28 (s each, 1, vinyl).

上記した操作で得られた脱水体 (8.3 mg, 1.45 x 10⁻⁵ mol)を 10-mL 丸底フラスコ に計り取り 0 ℃で 酢酸-水-THF の 6:3:1 混合液 (0.5 mL)を加えた。16 ℃に昇温 後 6 時間撹拌した。反応液をエーテル (2 mL) で希釈し 0 ℃に冷却し、飽和炭酸水素 ナトリウム水溶液で中和した。有機層を分け、水層はエーテル (3 mL x 2) で抽出した。 有機層を合せ無水硫酸ナトリウム上で乾燥させた後ろ過し減圧濃縮した。得られた反応 混合物をシリカゲルカラムクロマトグラフィー (3 g) に供し、5:1 のヘキサンー酢酸 エチル混合溶媒で溶出すると、(7<u>E</u>)-PUG 4 (8) (2.0 mg, 28%, 4.01 x 10⁻⁶ mol) お よび (7<u>Z</u>)-PUG 4 (9) (4.9 mg, 68%, 9.82 x 10⁻⁶ mol) が無色油状物として得られた。 (7<u>E</u>)-PUG 4 (8): HPLC <u>t</u>_R 17.34 min; CD (CH₃OH) λ_{max} 250 nm ($\Delta \varepsilon$ -5.8); ¹H NMR (CDCl₃, 500 MHz) & 0.89 (t, 3, <u>j</u> = 7.0 Hz, CH₃), 1.20-1.40 (m, 6, 3 CH₂),

- 61 -

1.60-1.75 (m, 4, 2 CH₂), 1.97-2.02 (m, 2, C(16)H₂), 2.06 (s, 3, COCH₃), 2.13 (s, 3, COCH₃), 2.29-2.35 (m, 2, C(2)H₂), 2.68 (dd, 1, \underline{j} = 14.4 and 7.0 Hz, a proton of C(13)H₂), 3.01 (dd, 1, \underline{j} = 14.2 and 8.4 Hz, a proton of C(13)H₂), 3.66 (s, 3, OCH₃), 5.23-5.29 (m, 1, C(5)H), 5.29-5.32 (m, 1, C(14) H), 5.57 (dt, 1, \underline{j} = 11.0 and 7.0 Hz, C(15)H), 6.04 (dd, 1, \underline{j} = 9.0 and 4.4 Hz, C(6)H), 6.38 (d, 1, \underline{j} = 9.2 Hz, C(7)H), 7.29 (s, 1, C(11)H). HRMS, $\underline{m}/\underline{z}$ calcd for C₂₅H₃₅O₈C1 498.2020, found 498.2030.

天然 (7<u>E</u>)-PUG 4: CD (CH₃OH) λ_{max} 250 nm ($\Delta \varepsilon$ -5.0).

 $(7\underline{Z})$ -PUG 4 (9): HPLC \underline{t}_{R} 32.04 min; CD (CH₃OH) λ max 268 nm ($\Delta \varepsilon$ -5.4); ¹H NMR (CDCl₃, 500 MHz) δ 0.89 (t, 3, \underline{J} = 7.0 Hz, CH₃), 1.20-1.40 (m, 6, 3 CH₂), 1.60-1.75 (m, 4, 2 CH₂), 1.97-2.01 (m, 2, C(16)H₂), 2.05 (s, 3, COCH₃), 2.12 (s, 3, COCH₃), 2.35 (t, 2, \underline{J} = 6.7 Hz, C(2)H₂), 2.45 (dd, 1, \underline{J} = 14.4 and 7.3 Hz, a proton of C(13)H₂), 2.58 (dd, 1, \underline{J} = 14.6 and 7.9 Hz, a proton of C(13)H₂), 3.67 (s, 3, OCH₃), 5.20-5.24 (m, 1, C(5)H), 5.24-5.29 (m, 1, C(14) H), 5.60 (dt, 1, \underline{J} = 11.0 and 7.3 Hz, C(15)H), 6.10 (d, 1, \underline{J} = 7.9 Hz, C(7)H), 6.35 (dd, 1, \underline{J} = 7.8 and 3.5 Hz, C(6)H), 7.22 (s, 1, C(11)H). HRMS, <u>m/z</u> calcd for C₁₇H₂₀O₈Cl (M⁺ - C₈H₁₅) 387.0847, found 387.0824.

天然(7<u>Z</u>)-PUG 4: CD(CH₃OH) λ_{max} 268 nm($\Delta \varepsilon$ -4.8).

<u>12-epi-(7E)-PUG 4 (6)</u>.

対応するアルドール体からの総収率は 12%。HPLC <u>t_R</u> 17.86 min; 'H NMR (CDCl₃, 500 MHz) δ 0.90 (t, 3, <u>j</u> = 7.0 Hz, CH₃), 1.20-1.40 (m, 6, 3 CH₂), 1.60-1.80 (m, 4, 2 CH₂), 1.95-2.03 (m, 2, C(16)H₂), 2.11 (s, 6, 2 COCH₃), 2.34-2.36

- 62 -

(m, 2, C(2)H₂), 2.48 (dd, 1, \underline{J} = 14.3 and 7.3 Hz, a proton of C(13)H₂), 2.76 (dd, 1, \underline{J} = 14.3 and 7.3 Hz, a proton of C(13)H₂), 3.68 (s, 3, 0CH₃), 5.15-5.32 (m, 2, C(5)H and C(14)H), 5.57 (dt, 1, \underline{J} = 11.0 and 7.3 Hz, C(15)H), 5.69 (dd, 1, \underline{J} = 10.4 and 4.3 Hz, C(6)H), 6.32 (d, 1, \underline{J} = 10.4 Hz, C(7)H), 7.31 (s, 1, C(11)H). HRMS, <u>m/z</u> calcd for C₂₅H₃₅O₈Cl 498.2020, found 498.1989.

<u>12-epi-(7Z)-PUG 4 (41)</u>.

対応するアルドール体からの総収率は 26%。HPLC \underline{t}_R 33.74 min; ¹H NMR (CDCl₃, 500 MHz) & 0.90 (t, 3, \underline{j} = 7.0 Hz, CH₃), 1.20-1.40 (m, 6, 3 CH₂), 1.60-1.80 (m, 4, 2 CH₂), 1.95-2.02 (m, 2, C(16)H₂), 2.06 (s, 3, COCH₃), 2.11 (s, 3, COCH₃), 2.30-2.40 (m, 2, C(2)H₂), 2.53 (dd, 1, \underline{j} = 15.3 and 7.9 Hz, a proton of C(13)H₂), 2.66 (dd, 1, \underline{j} = 14.5 and 7.8 Hz, a proton of C(13)H₂), 3.64 (s, 3, OCH₃), 5.20-5.40 (m, 2, C(5)H and C(14)H), 5.55-5.67 (m, 1, C(15)H), 6.07 (d, 1, \underline{j} = 7.9 Hz, C(7)H), 6.62 (dd, 1, \underline{j} = 8.1 and 4.4 Hz, C(6)H), 7.23 (s, 1, C(11)H). HRMS, <u>m/z</u> calcd for C₂₅H₃₅O₈Cl 498.2020, found 498.2065.

<u>ent-(7E)-PUG 4 (38)</u>.

対応するアルドール体からの総収率は 8%。HPLC <u>t</u>_R 17.34 min; CD (CH₃OH) λ_{max} 250 nm ($\Delta \varepsilon$ +5.5); ¹H NMR (CDCl₃, 500 MHz) δ 0.9 (t, 3, <u>j</u> = 7.0 Hz, CH₃), 1.2-1.4 (m, 6, 3 CH₂), 1.6-1.7 (m, 4, 2 CH₂), 1.95-2.02 (m, 2, C(16)H₂), 2.05 (s, 3, COCH₃), 2.12 (s, 3, COCH₃), 2.27-2.30 (m, 2, C(2)H₂), 2.67 (dd, 1, <u>j</u> = 14.2 and 6.7 Hz, a proton of C(13)H₂), 3.01 (dd, 1, <u>j</u> = 14.0 and 8.6 Hz, a proton of C(13)H₂), 3.66 (s, 3, OCH₃), 5.26-5.35 (m, 2, C(5)H and C(14)H), 5.54-5.57 (dt, 1, C(15)H), 6.04 (dd, 1, <u>j</u> = 9.0 and 4.4 Hz, C(6)H), 6.37 (d,

- 63 -

1, <u>J</u> = 9.2 Hz, C(7)H), 7.28 (s, 1, C(11)H). HRMS, <u>m/z</u> calcd for $C_{25}H_{33}O_7C1$ (M⁺ - H₂O) 480.1915, found 480.1919.

ent-(72)-PUG 4 (7).

対応するアルドール体からの総収率は 22%。HPLC \underline{t}_R 32.04 min; CD (CH₃OH) λ_{max} 268 nm ($\Delta \varepsilon$ +4.1); ¹H NMR (CDCl₃, 500 MHz) & 0.89 (t, 3, \underline{j} = 7.0 Hz, CH₃), 1.20-1.35 (m, 6, 3 CH₂), 1.65-1.72 (m, 4, 2 CH₂), 1.99 (dt, 2, \underline{j} = 9.5 and 5.5 Hz, C(16)H₂), 2.05 (s, 3, COCH₃), 2.11 (s, 3, COCH₃), 2.35 (t, 2, \underline{j} = 7.0 Hz, C(2)H₂), 2.46 (dd, 1, \underline{j} = 14.3 and 7.3 Hz, a proton of C(13)H₂), 2.58 (dd, 1, \underline{j} = 14.5 and 7.8 Hz, a proton of C(13)H₂), 3.66 (s, 3, OCH₃), 5.20-5.24 (m, 1, C(5)H), 5.24-5.29 (m, 1, C(14)H), 5.60 (dt, 1, \underline{j} = 10.7 and 7.6 Hz, C (15)H), 6.10 (d, 1, \underline{j} = 7.8 Hz, C(7)H), 6.36 (dd, 1, \underline{j} = 7.8 and 3.7 Hz, C(6)H), 7.22 (s, 1, C(11)H). HRMS, <u>m/z</u> calcd for C₂₅H₃₅O₈Cl 498.2020, found 498.1985. <u>6-epi-12-epi-(7E)-PUG 4 (39).</u>

対応するアルドール体からの総収率は 10%。HPLC \underline{t}_R 17.57 min; 'H NMR (CDCl₃, 500 MHz) る 0.90 (t, 3, CH₃), 1.20-1.40 (m, 6, 3 CH₂), 1.60-1.70 (m, 4, 2 CH₂), 1.95-2.02 (m, 2, C(16)H₂), 2.08 (s, 3, COCH₃), 2.10 (s, 3, COCH₃), 2.27 -2.33 (m, 2, CH₂), 2.66 (dd, 1, \underline{j} = 13.9 and 8.0 Hz, a proton of C(13)H₂), 2.90 (dd, 1, \underline{j} = 13.9 and 9.0 Hz, a proton of C(13)H₂), 3.64 (s, 3, OCH₃), 5.30-5.48 (m, 2, C(5)H and C(14)H), 5.52-5.58 (dt, 1, C(15)H), 6.24 (dd, 1, \underline{j} = 9.5 and 2.6 Hz, C(6)H), 6.53 (d, 1, \underline{j} = 9.5 Hz, C(7)H), 7.30 (s, 1, C(11)H). HRMS, <u>m/z</u> calcd for C₂₅H₃₃O₇Cl (M⁺ - H₂O) 480.1915, found 480.1885. <u>6-epi-12-epi-(7Z)-PUG 4 (42)</u>.

- 64 -
対応するアルドール体からの総収率は 24%。HPLC <u>t</u>_R 29.29 min; 'H NMR (CDCl₃, 500 MHz) る 0.90 (t, 3, CH₃), 1.20-1.40 (m, 6, 3 CH₂), 1.60-1.70 (m, 4, 2 CH₂), 1.95-2.02 (m, 2, C(16)H₂), 2.03 (s, 3, COCH₃), 2.08 (s, 3, COCH₃), 2.27 -2.30 (m, 2, CH₂), 2.56 (dd, 1, <u>j</u> = 14.7 and 8.2 Hz, a proton of C(13)H₂), 2.63 (dd, 1, <u>j</u> = 13.9 and 7.8 Hz, a proton of C(13)H₂), 3.65 (s, 3, OCH₃), 5.25-5.45 (m, 2, C(5)H and C(14)H), 5.61 (dt, 1, <u>j</u> = 11.0 and 7.3 Hz, C(15)H), 6.18 (d, 1, <u>j</u> = 8.9 Hz, C(7)H), 6.48 (dd, 1, <u>j</u> = 8.9 and 3.5 Hz, C(6)H), 7.23 (s, 1, C(11)H). HRMS, <u>m/z</u> calcd for C₂₅H₃₅O₈Cl 498.2020, found 498.2078. <u>6</u>-epi-(7E)-PUG 4 (40).

対応するアルドール体からの総収率は 8%。HPLC \underline{t}_{R} 18.61 min; ¹H NMR (CDCl₃, 500 MHz) る 0.89 (t, 3, \underline{j} = 7.0 Hz, CH₃), 1.20-1.40 (m, 6, 3 CH₂), 1.50-1.70 (m, 4, 2 CH₂), 1.96-2.02 (m, 2, C(16)H₂), 2.08 (s, 3, COCH₃), 2.10 (s, 3, CO CH₃), 2.32-2.37 (m, 2, C(2)H₂), 2.57 (dd, 1, \underline{j} = 14.0 and 6.7 Hz, a proton of C(13)H₂), 2.88 (dd, 1, \underline{j} = 14.0 and 7.9 Hz, a proton of C(13)H₂), 3.68 (s, 3, 0CH₃), 5.08-5.12 (m, 1, C(5)H), 5.22-5.26 (m, 1, C(14)H), 5.54-5.57 (m, 1, C(15)H), 5.77 (dd, 1, \underline{j} = 10.3 and 4.9 Hz, C(6)H), 6.31 (d, 1, \underline{j} = 10.3 Hz, C(7)H), 7.33 (s, 1, C(11)H). HRMS, <u>m/2</u> calcd for C₂₅H₃₅O₈Cl 498.2020, found 498.1988.

<u>6-epi-(7Z)-PUG 4 (43)</u>.

対応するアルドール体からの総収率は 36%。HPLC <u>t</u>_R 30.09 min; ¹H NMR (CDCl₃, 500 MHz) る 0.89 (t, 3, <u>J</u> = 7.0 Hz, CH₃), 1.20-1.40 (m, 6, 3 CH₂), 1.60-1.80 (m, 4, 2 CH₂), 1.98-2.02 (m, 2, C(16)H₂), 2.06 (s, 3, COCH₃), 2.07 (s, 3,

- 65 -

COCH₃), 2.30-2.40 (m, 2, C(2)H₂), 2.57 (dd, 1, \underline{J} = 14.4 and 7.6 Hz, a proton of C(13)H₂), 2.70 (dd, 1, \underline{J} = 14.4 and 7.3 Hz, a proton of C(13)H₂), 3.67 (s, 3, OCH₃), 5.20-5.37 (m, 2, C(5)H and C(14)H), 5.66 (dt, 1, \underline{J} = 10.7 and 7.5 Hz, C(15)H), 6.23 (d, 1, \underline{J} = 9.2 Hz, C(7)H), 6.68 (dd, 1, \underline{J} = 9.2 and 4.0 Hz, C(6)H), 7.25 (s, 1, C(11)H). HRMS, $\underline{m}/\underline{z}$ calcd for C₂₅H₃₃O₇C1 (M⁺ - H₂O) 480.1915, found 480.1914.

<u>(7E)-PUG 4 (8) および (7Z)-PUG 4 (9) の光平衡</u>.

(7<u>E</u>)-PUG 4 (8) あるいは (7<u>Z</u>)-PUG 4 (9) (それぞれ 0.82 mg, 0.59 mg) のベンゼン溶液 (それぞれ 0.7 mL, 0.5 mL) をパイレックス製試験管に取り 25 W 蛍光燈を 20 ℃で照射した。それぞれ反応は HPLC 分析 (<u>t</u>_R 17.34 min for 8; <u>t</u>_R 32.04 min for 9) で追跡した。60 時間でそれぞれ光平衡混合物 (その比は 8/9 = 7:3) となった。

<u>1-クロロ-3,5-ジヒドロキシ-3-オクチルシクロペンテン(47).</u>

エノン体 46 (108 mg, 4.40 x 10⁻⁴ mol)を 40-mL 反応管に計り取りエーテル (4 mL) に溶解させた。これを -78 ℃に冷却後臭化 <u>n</u>-オクチルマグネシウム (0.72 M THF 溶液、0.79 mL, 5.7 x 10⁻⁴ mol)を加えた。この反応混合液を -78 ℃で 10 分間撹拌 した後 pH 7.4 リン酸緩衝液 (5 mL) にあけた。有機層を分け、水層はエーテル (6 mL) で 2 回抽出した。有機層を合せ無水硫酸ナトリウム上で乾燥させた後ろ過し滅圧濃縮 した。得られた反応混合物は THF (6 mL) に溶解させ 0 ℃に冷却した。ここへフッ化 テトラプチルアンモニウムの THF 溶液 (1.1 mL, 1.1 x 10⁻³ mol)を入れた後室温に 昇温させ 40 時間撹拌した。この反応混合液を飽和食塩水 (10 mL) にあけた。有機層 を分け、水層は酢酸エチル (10 mL) で 3 回抽出した。有機層を合せ無水硫酸ナトリウ ム上で乾燥させた後ろ過し滅圧濃縮した。得られた反応混合物をシリカゲルカラムクロ

- 66 -

マトグラフィー (14 g) に供し、3:1 から 1:1 のヘキサンー酢酸エチル混合溶媒で溶 出するとジオール体 47 (92 mg, 83%, 3.6:1 ジアステレオマーの混合物) が薄い黄色 固体として得られた。TLC <u>Rf</u> 0.43 and 0.37 (1:1 ヘキサン/酢酸エチル); IR (CHC1₃) 3600-3200, 1630 cm⁻¹; ¹H NMR (CDC1₃, 270 MHz) δ 0.88 (t, 3, <u>J</u> = 6.8 Hz, CH₃), 1.1-1.8 (m, 14, 6 CH₂ and 2 OH), 1.8-2.2 (m, 2, CH₂), 2.3-2.6 (m, 2, CH₂), 4.5-4.6 and 4.8-4.9 (m each, 1, CHO), 5.86 and 5.89 (s each, 1, vinyl); HRMS, <u>m/z</u> calcd for C₁₃H₂₁OC1 (M⁺ - H₂O) 228.1281, found 228.1283.

<u>2-クロロ-4-ヒドロキシ-4-オクチル-2-シクロペンテノン(48).</u>

ジオール体 47 (30.7 mg, 1.24 x 10⁻⁴ mol)を 10-mL 試験管に計り取り DMF (1.5 mL) に溶解させた。この溶液を 0 ℃に冷却後、ビリジニウムジクロメート (140 mg, 3.70 x 10⁻⁴ mol)を加え室温で 14 時間撹拌した。この反応混合物をセライトカラム に通し溶出液を飽和食塩水 (2 mL) にあけた。有機層を分け、水層はエーテル (10 mL) で 2 回抽出した。有機層を合せ無水硫酸マグネシウム上で乾燥させた後ろ過し減圧濃縮した。得られた反応混合物をシリカゲルカラムクロマトグラフィー (1 g) に供し、 6:1 のヘキサンー酢酸エチル混合溶媒で溶出すると、エノン体 48 (25.1 mg, 83%) が 無色油状物として得られた。TLC R_f 0.61 (1:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200, 1730, 1600 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.7-1.0 (br t, 3, CH₃), 1.1-2.0 (m, 15, 7 CH₂ and OH), 2.53 (d, 1, j = 18.7 Hz, a proton of CH₂), 7.33 (s, 1, vinyl); HRMS, <u>m/z</u> calcd for C₁₃H₂₁0₂Cl 244.1231, found 244.1256; Anal. Calcd for C₁₃H₂₁0₂Cl: C, 63.79; H, 8.65. Found: C, 63.78; H, 8.75.

2-クロロ-4-トリメチルシロキシ-4-オクチル-2-シクロペンテノン(49).

- 67 -

アルコール体 48 (418.5 mg, 1.71 x 10⁻³ mol) を 10-mL 丸底フラスコに計り取り 塩化メチレン (5 mL) に溶解させた。0 ℃に冷却した後、ジイソプロビルエチルアミン (1.52 mL, 8.70 x 10⁻³ mol) およびトリメチルシリルトリフラート (0.37 mL, 1.91 x 10⁻³ mol) を順次加えた。この反応混合液は 0 ℃で 10 分撹拌した後塩化メチレン (4 mL) で希釈した。有機層を分け、水層は塩化メチレン (6 mL) で 2 回抽出した。有 機層を合せ 水 (6 mL) で洗った後無水硫酸ナトリウム上で乾燥させた後ろ過し滅圧濃 縮した。得られた反応混合物をシリカゲルカラムクロマトグラフィー (10 g) に供し、 300:1 のヘキサンー酢酸エチル混合溶媒で溶出するとシリル化体 49 (526.0 mg, 97%) が無色油状物として得られた。TLC R₁ 0.70 (3:1 ヘキサン/酢酸エチル); IR (CHC1₃) 1730, 1600 cm⁻¹; ¹H NMR (CDC1₃, 270 MHz) δ 0.08 (s, 9, Si(CH₃)₃), 0.7-1.0 (br t, 3, CH₃), 1.1-1.9 (br, 14, 7 CH₂), 2.63 (s, 2, CH₂), 7.34 (s, 1, vinyl); HRMS, m/z calcd for C₁eH₂₉O₂ClSi 316.1626, found 316.1631.

<u>2-クロロ-4-トリメチルシロキシ-4-オクチル-5-(6-カルボメトキシ-1-ヒドロキシへ</u> <u>キシル)-2-シクロペンテノン (50).</u>

エノン体 49 (526 mg, 1.66 × 10⁻³ mol) を 100-mL 反応管に計り取り、エーテル (18 mL) に溶解させ -78 ℃に冷却した。ここへジイソプロビルエチルアミン (0.32 mL, 1.83 × 10⁻³ mol) およびジブチルボリルトリフラート (1.0 M 塩化メチレン溶液、 1.83 mL, 1.83 × 10⁻³ mol) をこの温度で順次加えた。30 分後ここへ 6-ホルミルヘキ サン酸メチル (330 mg, 2.08 × 10⁻³ mol) のエーテル (7 mL) 溶液を加えた。この反 応混合液を -78 ℃で 20 分撹拌した後飽和塩化アンモニウム水溶液 (25 mL) にあけた。 有機層を分け、水層はエーテル (20 mL) で 2 回抽出した。有機層を合わせ無水硫酸ナ トリウム上で乾燥させた後ろ過し減圧濃縮した。得られた反応混合物をシリカゲルカラ

- 68 -

ムクロマトグラフィー (40 g) に供し、30:1 から 5:1 のヘキサンー酢酸エチル混合溶 媒で溶出するとアルドール体 50 (284 mg, 36%) および出発原料のエノン体 49 (263 mg, 50%) が無色油状物として得られた。50: TLC <u>R_f</u> 0.34 and 0.25 (5:1 ヘキサン/ 酢酸エチル); IR (CHCl₃) 3600-3200, 1730, 1605 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.13 and 0.19 (s each, 9, Si(CH₃)₃), 0.7-1.0 (br t, 3, CH₃), 1.0-2.0 (m, 23, 11 CH₂ and 0H), 2.32 (t, 2, \underline{j} = 7.2 Hz, CH₂CO), 7.32 and 7.47 (s, 1, viny1); HRMS, m/z calcd for C₂₄H₄₃O₅ClSi 474.2569, found 474.2598.

<u>2-クロロ-4-トリメチルシロキシ-4-オクチル-5-(6-カルボメトキシ-1-ヘキシリデン)-</u> 2-シクロペンテノン (51).

アルドール体 50 (233 mg, 4.90 × 10⁻⁴ mol)を 40-mL 反応管に計り取り、ビリジ ン (6.0 mL) に溶解させた。0 ℃に冷却した後塩化メタンスルホニル (0.127 mL, 1.64 × 10⁻³ mol)をここへ加え 4 ℃で 26 時間撹拌した。反応混合液をエーテル (5 mL) で希釈した後 pH 7.4 リン酸緩衝液 (6 mL) にあけた。有機層を分け、水層はエーテル (10 mL) で抽出した。有機層を合わせ無水硫酸ナトリウム上で乾燥させた後ろ過し減 圧濃縮した。得られた反応混合物をトルエン (10 mL) に溶解させ -50 ℃に冷却した。 ここへ DBU (0.088 mL, 5.88 × 10⁻⁴ mol)を加えた。-40 ℃で 80 分撹拌後反応混合 液をエーテル (6 mL) で希釈した後 pH 7.4 リン酸緩衝液 (6 mL) にあけた。有機層を 分け、水層はエーテル (10 mL) で抽出した。有機層を合わせ無水硫酸ナトリウム上で 乾燥させた後ろ過し減圧濃縮した。得られた反応混合物をシリカゲルカラムクロマトグ ラフィー (15 g) に供し、15:1 から 8:1 のヘキサンー酢酸エチル混合溶媒で溶出する と <u>2</u>型のジェノン体 (39.5 mg, 18%) および <u>E</u>型のジェノン体 (103 mg, 46%) が 無色油状物として得られた。<u>7</u>体: TLC R_f 0.53 (4:1 ヘキサン/酢酸エチル); IR

- 69 -

(CHCl₃) 1730, 1710, 1655, 1595 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.01 (s, 9, Si (CH₃)₃), 0.87 (t, 3, <u>J</u> = 6.8 Hz, CH₃), 1.1-1.9 (m, 20, 10 CH₂), 2.31 (t, 2, <u>J</u> = 7.7 Hz, CH₂CO), 2.7-2.9 (m, 2, allyl), 3.66 (s, 3, COOCH₃), 6.27 (t, 1, <u>J</u> = 7.7 Hz, vinyl), 7.13 (s, 1, vinyl).

<u>E</u>体: TLC <u>Rf</u> 0.48 (4:1 ヘキサン/酢酸エチル); IR (CHCl₃) 1730, 1710, 1655, 1595 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) る 0.03 (s, 9, Si(CH₃)₃), 0.87 (t, 3, <u>J</u> = 6.6 Hz, CH₃), 1.1-2.0 (m, 20, 10 CH₂), 2.32 (t, 2, <u>J</u> = 7.4 Hz, CH₂CO), 2.3-2.5 (m, 2, allyl), 3.67 (s, 3, COOCH₃), 6.65 (dt, 1, <u>J</u> = 7.9 and 0.7 Hz, vinyl), 7.20 (d, 1, <u>J</u> = 0.7 Hz, vinyl).

<u>2-クロロ-4-ヒドロキシ-4-オクチル-5-((Z)-6-カルボメトキシ-1-ヘキシリデン)-2-</u> シクロペンテノン (45).

シリルエーテル体 (24.3 mg, 5.32 x 10⁻⁵ mol) を 10-mL 試験管に計り取り 0 ℃に 冷却した後酢酸-水-THF の 6:3:1 の混合液 (1 mL) を加えた。15 ℃に昇温した後こ の温度で 3 時間撹拌した。この反応混合液をエーテル (3 mL) で希釈した後 0 ℃に冷 却し飽和炭酸水素ナトリウム水溶液を加えて中和した。有機層を分け、水層はエーテル (10 mL) で抽出した。有機層を合わせ無水硫酸ナトリウム上で乾燥させた後ろ過し減 圧濃縮した。得られた反応混合物をシリカゲルカラムクロマトグラフィー (2 g) に供 し、15:1 から 5:1 のヘキサンー酢酸エチル混合溶媒で溶出すると脱保護体 45 (19.4 mg, 95%) が無色油状物として得られた。TLC <u>Rf</u> 0.42 (2:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200, 1710, 1655, 1595 cm⁻¹; ¹H NMR (CDCl₃, 270 MH2) δ 0.88 (t, 3, \underline{J} = 6.6 Hz, CH₃), 1.0-2.0 (m, 20, 10 CH₂), 2.2-2.4 (m, 3, CH₂CO and OH), 2.6-3.0 (m, 2, allyl), 3.65 (s, 3, CO0CH₃), 6.35 (dd 1, \underline{J} = 8.6 and 7.3

- 70 -

Hz, vinyl), 7.17 (s, 1, vinyl); HRMS, $\underline{m}/\underline{z}$ calcd for C₂₁H₃₃O₄Cl 384.2068, found 384.2064.

<u>2-クロロ-4-ヒドロキシ-4-オクチル-5-((E)-6-カルボメトキシ-1-ヘキシリデン)-2-</u> シクロペンテノン (44).

シリルエーテル体 (65.0 mg, 1.42 x 10⁻⁴ mol) を 10-mL 試験管に計り取り 0 ℃に 冷却した後酢酸-水-THF の 6:3:1 の混合液 (1 mL) を加えた。15 ℃に昇温した後こ の温度で 5 時間撹拌した。この反応混合液をエーテル (3 mL) で希釈した後 0 ℃に冷 却し飽和炭酸水素ナトリウム水溶液を加えて中和した。有機層を分け、水層はエーテル (10 mL) で抽出した。有機層を合わせ無水硫酸ナトリウム上で乾燥させた後ろ過し減 圧濃縮した。得られた反応混合物をシリカゲルカラムクロマトグラフィー (2 g) に供 し、15:1 から 5:1 のヘキサンー酢酸エチル混合溶媒で溶出すると脱保護体 44 (53.1 mg, 97%) が無色油状物として得られた。TLC <u>R_f</u> 0.42 (2:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200, 1715, 1660, 1590 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.87 (t, 3, \downarrow = 6.6 Hz, CH₃), 1.0-2.0 (m, 20, 10 CH₂), 2.2-2.8 (m, 5, CH₂CO, 0H, and allyl), 3.64 (s, 3, COOCH₃), 6.66 (dd 1, \downarrow = 9.2 and 5.9 Hz, vinyl), 7.25 (d, 1, \downarrow = 1.0 Hz, vinyl); HRMS, <u>m/z</u> calcd for C₂₁H₃₃O₄Cl 384.2068, found 384.2075. (1)解説書: (a) 鹿取信、山本尚三、佐藤和雄、「プロスタグランジン」、講談社
(1978). (b) 寺島孜郎、酒井浄、山本尚三、「プロスタグランジンと関連生理活性物
質」、講談社(1982). (c) 室田誠逸編、「プロスタグランジンの生化学」、東京化学
同人(1982). (d) 林正樹、「新しい生理活性物質プロスタグランジン」、海明社(19
83). (e) 特集「驚異の生理活性物質プロスタグランジン」、現代化学、1983年2月号.

(2)解説書: (a) 鹿取信、山本尚三、佐藤和雄、阿部圭志、「プロスタグランジン 最近の研究の進歩」、講談社(1987). (b) 多田道彦、「プロスタグランジン」、化学 同人(1988). (c) 鹿取信、室田誠逸、山本尚三、「講座プロスタグランジン 3 炎症 ・アレルギー・免疫・がん」、東京化学同人(1988). (d)山本尚三、室田誠逸、「講 座プロスタグランジン 7 医薬品」、東京化学同人(1988). (e) 室田誠逸、山本尚三、 「講座プロスタグランジン 8 PG をめぐる新物質」、東京化学同人(1988).

(3) Prasad, K. N. <u>Nature New Biol.</u> 1972, <u>236</u>, 49.

(4) Santoro, M. G.; Philpott, G. W.; Jaffe, B. M. Nature 1976, 263, 777.

(5) Honn, K. V.; Dunn, J. R. II; Morgan, L. R.; Bienkowski, M.; Marnett, L.

J. Biochem. Biophys. Res. Commun. 1979, 87, 795.

(6) (a) Fukushima, M.; Kato, T.; Ueda, R.; Ohta, K.; Narumiya, S.; Hayaishi,
0. <u>Biochem. Biophys. Res. Commun.</u> 1982, <u>105</u>, 956. (b) Fukushima, M.; Kato,
T.; Ohta, K.; Arai, Y.; Narumiya, S.; Hayaishi, O. Ibid. 1982, 109, 626. (c)
成宮周、加藤武俊、福島雅典、生化学、1985、57 (7)、578.

(7) Fukushima, M.; Kato, T.; Ohta, K.; Arai, Y.; Narumiya, S.; Hayaishi, O.

Biochem. Biophys. Res. Commun. 1982, 109, 626.

(8) (a) Fukushima, M.; Kato, T. <u>Icosanoids and Cancer</u>; Thaler-Dao, H.; de Paulet, A. C.; Paoletti, R.; Eds.; Raven Press: New York, 1984, p277. (b)
Kikawa, Y.; Narumiya, S.; Fukushima, M.; Wakatsuka, H.; Hayaishi, O. <u>Proc.</u>
<u>Natl. Acad. Sci. USA</u> 1984, <u>81</u>, 1317. (c) Kato, T.; Fukushima, M.; Kurozumi,
S.; Noyori, R. Cancer Res. 1986, 46, 3538.

(9) Kikuchi, H.; Tsukitani, Y.; Iguchi, K.; Yamada, Y. <u>Tetrahedron Lett.</u> 1982, <u>23</u>, 5171.

(10) Kobayashi, M.; Yasuzawa, T.; Yoshihara, M.; Akutsu, H.; Kyogoku, Y.;
 Kitagawa, I. <u>Tetrahedron Lett.</u> 1982, <u>23</u>, 5331.

(11) Sugiura, S.; Toru, T.; Tanaka, T.; Hazato, A.; Okamura, N.; Bannai, K.;
Manabe, K.; Kurozumi, S.; Suzuki, M.; Noyori, R. <u>Chem. Pharm. Bull.</u> 1984, <u>32</u>,
4658. 文献 8c を参照。

(12) (a) Suzuki, M.; Kawagishi, T.; Suzuki, T.; Noyori, R. <u>Tetrahedron Lett.</u>
1982, <u>23</u>, 4057. (b) Suzuki, M.; Kawagishi, T.; Noyori, R. <u>Ibid.</u> 1982, <u>23</u>,
5563. (c) Suzuki, M.; Yanagisawa, A.; Noyori, R. <u>Ibid.</u> 1984, <u>25</u>, 1383. (d)
Noyori, R.; Suzuki, M. <u>Angew. Chem., Int. Ed. Engl.</u> 1984, <u>23</u>, 847. (e) Suzuki,
M.; Kawagishi, T.; Yanagisawa, A.; Suzuki, T.; Okamura, N.; Noyori, R. <u>Bull.</u>
<u>Chem. Soc. Jpn.</u> 1988, <u>61</u>, 1299.

(13) Narumiya, S.; Ohno, K.; Fukushima, M.; Fujiwara, M. <u>Prostaglandins in</u>
 <u>Cancer Research</u>; Garaci, E.; Paoletti, R.; Santoro, M. G.; Eds.; Springer Verlag: New York, 1987; p 86.

- 73 -

(14) Baker, B. J.; Okuda, R. K.; Yu, P. T. K.; Scheuer, P. J. J. Am. Chem.
Soc. 1985, 107, 2976.

(15) Fukushima, M.; Kato, T. <u>Advances in Prostaglandin, Thromboxane, and</u> <u>Leukotriene Research</u>; Hayaishi, O.; Yamamoto, S.; Eds.; Raven Press: New York, 1985; Vol. 15, p 415.

(16) Kishi, Y. <u>Curr. Trends Org. Synth., Proc. Int. Conf., 4 th 1983</u>, 1984, 115.

(17)予備報告: Suzuki, M.; Morita, Y.; Yanagisawa, A.; Noyori, R.; Baker, B.
J.; Scheuer, P. J. J. <u>J. Am. Chem. Soc.</u> 1986, 108, 5021.

(18) (a) Gill, M.; Rickards, R. W. <u>Tetrahedron Lett.</u> 1979, 1539. (b) Gill,
M.; Rickards, R. W. <u>J. Chem. Soc., Chem. Commun.</u> 1979, 121.

(19) (a) Katsuki, T.; Sharpless, K. B. <u>J. Am. Chem. Soc.</u> 1980, <u>102</u>, 5974.

(b) Rossiter, B. E.; Katsuki, T.; Sharpless, K. B. <u>lbid.</u> 1981, <u>103</u>, 464. 参考 総説: Pfenninger, A. <u>Synthesis</u> 1986, 89.

(20) (a) Corey, E. J.; Goto, G. <u>Tetrahedron Lett.</u> 1980, <u>21</u>, 3463. (b) Morris,
J.; Wishka, D. G. <u>Ibid.</u> 1986, <u>27</u>, 803. 文献 22, 32, 34 も参照。

(21) Martel, J. Japanese Patent 46-28153; Japan Kokai 46-5625.

(22) (a) Rokach, J.; Zamboni, R.; Lau, C.-K.; Guindon, Y. <u>Tetrahedron Lett.</u>
1981, <u>22</u>, 2759. (b) Rokach, J.; Lau, C.-K.; Zamboni, R.; Guindon, Y. <u>Ibid.</u>
1981, <u>22</u>, 2763.

(23) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, <u>34</u>, 2543.
(24) エボキシ THP エーテル体の C(3) 位におけるヒドロキシドイオンの直接的な求

- 74 -

核置換反応の可能性は排除されない。しかし、18 から 19 への変換における鏡像体純度の高い保持(95%から 94% ee)という観点から考えればそのようなメカニズムは好ましくない。

(25) Katsuki, T.; Lee, A. W. M.; Ma, P.; Martin, V. S.; Masamune, S.; Sharpless, K. B.; Tuddenham, D.; Walker, F. J. J. Org. Chem. 1982, 47, 1373.

(26)アレニル性スズ化合物および 1 当量のメチルリチウムから調製した反応剤を用 いたプロパルギル化反応については第2章で詳しく述べる。

(27) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.

(28) ラセミ体の 3-クロロ-4-ヒドロキシ-2-シクロベンテノンと 1-プロモ-2-オクチ ンと活性亜鉛粉末²⁹ により調製した反応剤(5 当量)との反応はラセミ体の 27 (46%、 シスジオール体/トランスジオール体 = 10:1) およびアレニル縮合体(32%)を与え た。ラセミ体の 10 および同じ反応剤(2 当量)とを反応させ、フッ化テトラブチルア ンモニウムで処理するとラセミ体 27 (56%、シスジオール体/トランスジオール体 = 1.2:1) およびアレニル縮合体(29%)を与えた。また、3-ジメチルフェニルシリル-1,2-オクタジエン³⁰ は四塩化チタン存在下塩化メチレン中ラセミ体の 10 とは -78 か ら 25 ℃では反応しなかった。3-ジベンチルボリル-1,2-オクタジエン³¹ はラセミ体の 10 と反応し脱シリル化するとラセミ体の 27 およびアレニル化合物の 1:1 の混合物 を収率 20%で与えた。

(29) (a) Moreau, J.-L. <u>Bull. Soc. Chim. Fr.</u> 1975, 1248. (b) Daniels, R. G.;
Paquette, L. A. <u>Tetrahedron Lett.</u> 1981, <u>22</u>, 1579. その他の参考文献: (c)
Kosugi, H.; Konta, H.; Uda, H. <u>Abstr. Annu. Meet. Jpn. Chem. Soc. (Kyoto)</u>,
<u>52nd</u> 1986, 1073. (d) Watanabe, Y.; Kosugi, H.; Uda, H. <u>Abstr. Annu. Meet. Jpn.</u>

- 75 -

Chem. Soc. (Tokyo), 54th 1987, 1122.

(30) (a) Danheiser, R. L.; Carini, D. J.; Fink, D. M.; Basak, A. <u>Tetrahedron</u>
1983, <u>39</u>, 935. (b) Danheiser, R. L.; Carini, D. J.; Kwasigroch, C. A. <u>J. Org.</u>
<u>Chem.</u> 1986, <u>51</u>, 3870.

(31) Zweifel, G.; Backlund, S. J.; Leung, T. <u>J. Am. Chem. Soc.</u> 1978, <u>100</u>, 5561.

(32) Corey, E. J.; Marfat, A.; Munroe, J.; Kim, K. S.; Hopkins, P. B.; Brion,
F. <u>Tetrahedron Lett.</u> 1981, 22, 1077.

(33) Hanessian, S.; Lavallee, P. <u>Can. J. Chem.</u> 1975, <u>53</u>, 2975.

(34) (a) Corey, E. J.; Clark, D. A.; Goto, G.; Marfat, A.; Mioskowski, C.;
Samuelsson, B.; Hammarstrom, S. J. Am. Chem. Soc. 1980, <u>102</u>, 1436. (b) Cohen,
N.; Banner, B. L.; Lopresti, R. J.; Wong, F.; Rosenberger, M.; Liu, Y.-Y.;
Thom, E.; Liebman, A. A. <u>Ibid.</u> 1983, 105, 3661.

(35)山田(東京薬科大学)らは本著者らがこの合成法を発表したと同時期に(7<u>E</u>)-PUG 3 および(7<u>E</u>)-PUG 4 の合成を発表し、同様な結論を得ている。その合成法は、2-デオキシ-D-リボースからの官能基変換に基ずくα側鎖単位のアルデヒドの入手、また、 ω側鎖導入に関して逐次炭素延長法をとっている点において、本著者らの合成法と異な っている。^{36 a}

その後、現在までに柴崎^{36 b, o}、宇田^{36 d}、森^{36 e}らによってもプナグランジン合成に関 する論文が報告された。

(36) (a) Nagaoka, H.; Miyaoka, H.; Miyakoshi, T.; Yamada, Y. J. Am. Chem.
 <u>Soc.</u> 1986, <u>108</u>, 5019. (b) Sasai, H.; Shibasaki, M. <u>Tetrahedron Lett.</u> 1987, <u>28</u>,

- 76 -

333. (c) Iwasaki, G.; Sano, M.; Sodeoka, M.; Yoshida, K.; Shibasaki, M. J.
Org. Chem. 1988, <u>53</u>, 4864. (d) Watanabe, Y.; Kosugi, H.; Uda, H. <u>Abstr. Annu.</u>
<u>Meet. Jpn. Chem. Soc. (Sendai), 57th</u> 1988, 732. (e) Mori, K.; Takeuchi, T.
Tetrahedron 1988, 44, 333.

(37) Nagaoka, H.; Iguchi, K.; Miyakoshi, T.; Yamada, N.; Yamada, Y. <u>Tetrahed</u>-<u>ron Lett.</u> 1986, <u>27</u>, 223.

(38) これらの化合物の生合成経路については以下を参照: (a) Corey, E. J. <u>Exper</u>-<u>ientia</u> 1983, <u>39</u>, 1084. (b) Corey, E. J.; d'Alarcao, M.; Matsuda, S. P. T.; Lansbury, P. T. Jr. <u>J. Am. Chem. Soc.</u> 1987, <u>109</u>, 289.

(39) 生理活性試験は愛知県がんセンターの福島雅典博士が行なった。

(40) Inoue, T.; Mukaiyama, T. <u>Bull. Chem. Soc. Jpn.</u> 1980, <u>53</u>, 174.

(41) Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, <u>41</u>, 1879.

(42) Kharasch, M. S.; Reinmuth, O. <u>Grignard Reactions of Nonmetallic</u> <u>Substances</u>; Prentice-Hall: New York, 1954.

(43) (a) Sharpless, K. B.; Verhoeven, T. R. <u>Aldrichimica Acta</u> 1979, <u>12</u>, 63.
(b) Hill, J. G.; Sharpless, K. B.; Exon, C. M.; Regenye, R. <u>Org. Synth.</u> 1984, <u>63</u>, 66.

(44) Greene, T. W. <u>Protective Groups in Organic Synthesis</u>; John Wiley & Sons: New York, 1981.

(45) Main, P.; Hull, S. E.; Lessinger, L.; Germain, G.; Declercq, J. P.;
Woolfson, M. M. <u>MULTAN78</u> 1978, Univs. of York, England, and Louvain, Belguim.
(46) Furusaki, A. Acta Cryst. 1979, A35, 220.

- 77 -

第1節 緒言

カルボニル化合物の選択的アレニル化およびプロバルギル化は、炭素骨格の重要な合 成手法の一つである。これまで、この目的に対してとくに求核的な手法が研究されてき たが、今なお多くの問題点を残している。¹1 図で示したように求核剤であるアレニル 金属化合物 1 はアセチレン体 3 を、プロバルギル金属化合物 2 はアレン体 4 を与え ると考えられているが、それらの化合物は、溶液中で、多くの場合両者が、動的平衡状 態にあり、またそれぞれがカルボニル化合物に対して異なる反応性をもつため、生成物 の予測にはこれらの要素に対する配慮が欠かせない。¹ 総選択性は、原理的にこれら 2 種の金属化合物の平衡濃度、それらのカルボニル化合物に対する反応性および位置選択 性の総和として決定される。位置選択性は、反応条件と反応剤および基質の立体および 電子的性質に微妙に影響されるが、これらの効果を正確に見積もることは大変困難であ る。¹

2 図にはこれまでに検討されてきたプロパルギル化選択性を示す金属反応剤を列挙した。まず、最も単純な C₃H₃M で示される 5 の構造を持つ無置換化合物 6 の場合は、 適度なプロパルギル選択性を示すが、¹ 末端がケイ素置換された化合物では、非常に高 いプロパルギル選択性が見られる。² 一方、アルキル置換体の場合には、酸素官能基化 された化合物 7 および 有機亜鉛化合物 8 が、高レベルのプロパルギル化選択性を示 すことが知られている。³ 擬アレニル金属である 9 および 10 は、プロパルギル陰イ

- 78 -

2

1 図.アレニルおよびプロパルギル金属化合物とカルボニル化合物との反応

10, M = B(OR')₂, BR₂, SiR'₃

2 図. 選択的プロパルギル化のために従来用いられてきた金属反応剤

オン等価体として働き、ルイス酸の存在の是非にかかわらずアルデヒドと反応しアセチ レン性アルコールを与える。しかし、残念ながら、そのような平衡系を有しない化合物 はケトンに対する反応性に欠ける。⁴

著者らは、先に制がん性プナグランジンの合成計画を立案した(1章)が、その際、 ω側鎖の 2-オクテニル構造構築のためのアセチレン前駆体の合成に関して選択的プロ パルギル化が必要となった。⁵ この目的のために、上記に示した種々の反応剤を検討し たが、満足すべき結果は得られなかった。そこで、著者らは、独自に、プロパルギル選 択性を示す新しい反応剤の開発に関する研究を行ない、ここに、アレニル性スズ/アル キルリチウム混合反応剤を見出した。本章では、この反応剤と各種カルボニル化合物と の反応および反応機構に関する考察を述べる。 1 位アルキル置換アレニルスズ化合物の合成法は限られている。⁶ そこで、著者は まず本研究の出発原料とするこれらの化合物の効果的合成法を検討した。その結果、12 -14 の合成は、入手容易なプロビニルスズ化合物 15⁷ と有機銅-ホスフィン錯体⁸ を 用いて、さらに効果的には、触媒量のシアン化第一銅存在下グリニャール試薬を用いて 得ることができた(1 式)。⁹ 1 表にその結果を示した。

12a, R = $n - C_5 H_{11}$; R' = $n - C_4 H_9$ 12b, R = $n - C_5 H_{11}$; R' = $C H_3$ 13, R = $i - C_3 H_7$; R' = $C H_3$ 14, R = $tert - C_4 H_9$; R' = $C H_3$

			•			
		alladating	cond	litions		
R	R'	agent	solvent	temp, °C	product	% yield ^a
n-C ₅ H ₁₁ r	I-C ₄ H9	n-C ₅ H ₁₁ Li/CuI 2.6 P(n-C ₄ H ₉) ₃	ether	-78	12a	37b
n-C5H11	CH ₃	n-C5H11MgBr 3% CuCN	THF	-25	12b	74 ^b
i-C3H7	CH ₃	i-C ₃ H7MgCl 3% CuCN	THF	-25	13	85
<i>tert</i> -C ₄ H ₉	CH3	<i>tert</i> -C4H9MgCl 3% CuCN	THF	-25	14	89

 Table I. Synthesis of Allenylstannane Derivatives

^{*a*} Isolated yield. ^{*b*} See ref 5.

2

 $15b, R' = CH_3$

- 83 -

第3節 アレニル性スズ/アルキルリチウム混合反応剤とカルボニル化合物との反応

アレニルスズ 11-14 とアルキルリチウムを混合すると高い反応性をもつリチウム化 合物が生じ、このものは、各種カルボニル化合物と瞬時にして反応する。標準的反応操 作を以下に示した。アレニル性スズ化合物を、THF 中、-95 ℃でメチルあるいは <u>n</u>-ブ チルリチウム処理し、10 分後、ここに 同じ温度で、1 当量のカルボニル化合物を加え 20 分撹拌後、水で処理すると相当するアセチレンおよびアレン性アルコール体である 3 および 4 の混合物が得られる (2 式)。アレニルスズ 11、12b、および 14 を用い て得られた結果を 2 表にまとめた。活性な有機金属化合物は位置両性の求核剤として 振舞い、そして、アセチレン/アレン比は、カルボニル基質の性質に大きく影響するよ うに思われる。アレニル性スズ/アルキルリチウム混合反応剤は、アルデヒドよりもケ トン基質に対して高い 3/4 選択性を示す傾向があり、そして、立体的にこみ入ったケ トンは、首尾一貫して高いアセチレン選択性を示した。金属反応剤中の大きな置換基も また、アセチレンの生成を助長した。これら置換基どうしの典型的な協奏効果は、14/ メチルリチム混合反応剤とビナコロン、イソプロビルフェニルケトン、シクロへキサノ ン、あるいは、2-アダマンタノンとの反応で見られ、アセチレン性アルコールがほとん ど単一かつ 95%以上の収率で得られた。

上記で示したように、1 位置換アレニルスズを用いて直接的にアルデヒド類の高選択 的プロパルギル化を行なうことは難しい。著者らは、この問題がアルデヒド基質中のア ルデヒド水素をトリメチルシリル基に置き代えることにより解決されることを見い出し た。すなわち、アシルシラン 16¹⁰ に 12b/メチルリチウム混合反応剤を縮合させると、 39:1 のアセチレン/アレン比を有する 17 および 20 の混合物が、90%の収率で得ら

- 84 -

Table II. Reaction of Aldehydes and Ketones withAllenylstannane/Alkyllithium Mixed Agents^a

			allenylstannanes					
			11		12b		14	
entry	carbonyl compound	products (ratio) ^b	combined % yield ^c	products (ratio) ^b	combined % yield ^c	products (ratio) ^b	combined % yield ^c	
1	octanal	3a + 4a (6.6:1)	92	3f + 4f (2.2:1)	88	3s + 4s (5.3:1)	84	
2	pivalaldehyde	3b + 4b (7.0:1)	81	3g + 4g (4.5:1)	83	3t + 4t ^d (44:1)	90	
3	benzaldehyde			3h + 4h (1.5:1)	85	3u + 4u (6.0:1)	94	
4	(E)-cinnamaldehyde			3i + 4i (1.7:1)	87			
5	diethyl ketone			3j + 4j (4.7:1)	94			
6	diisopropyl ketone			3k + 4k (7.1:1)	97			
7	pinacolone	3c + 4c (5.9:1)	88	31 + 41 (14:1)	95	3 ▼ only	95	

.

- 86 -

	Table II (continued)								
8	<i>tert</i> -butyl heptyl ketone			3m + 4m (3.9:1)	93 ~				
9	isopropyl phenyl ketone			3n + 4n (2.9:1)	83	3w + 4w ^d (119:1)	98		
10	cyclohexanone	3d + 4d (5.2:1)	89	3o + 4o (8.1:1)	84	3x only	97		
11	2-cyclohexenone			3p + 4p (2.9:1)	91				
12	(1 <i>R</i>)-(+)-camphor			3q + 4q (9.2:1)	93				
13	2-adamantanone	3e + 4e (3.1:1)	98	3r + 4r (21:1)	94	3y only	98		
14	estrone 3- <i>O-tert-</i> butyldimethylsilyl ether					3z only	67 ^e		

^a Reaction conditions are given in a standard procedure in Experimental Section. ^b Determined by 270-MHz ¹H NMR analysis. ^c Unless otherwise stated, yield was determined by ¹H NMR using 1,1,2,2-tetrachloroethane (δ 5.96) as an internal standard. ^d The structure of the allenic product has not been proven. ^e Isolated yield. The starting carbonyl compound was recovered in 31% yield.

- 87 -

れた。同様に、よりかさ高い反応剤である 13 および 14 を用いるとアセチレン生成物 18 および 19 のみが、それぞれ 91%および 96%収率で得られた (3 式)。得られた 3 級アルコール体 17-19 を含水 THF 中、フッ化テトラブチルアンモニウム¹¹ で処理 すると、それぞれ高収率で 2 級アルコール体 3f、21、および 3s が得られた (4 式)。 この 3 式および 4 式で示したアシルシランからホモプロパルギルアルコールへの高選 択的変換は、形式的に直鎖アルデヒド類の高選択的プロパルギル化を達成したことを意 味するものである。さらに、得られた 3f のアセチレン結合を Lindlar 触媒下、部分 水素添加反応すると (2)-ホモアリルアルコール 22 が 98% の収率で得られ、一方、 還元剤として、リチウムプロンズを用いると <u>E</u> 型異性体 23 が 99%の収率で得られた (3 図)。^{12,13}

 $10, R = 1-C_3 R_7, 91\%, propargyr only$

ł

19, $R = tert-C_4H_9$, 96%, propargyl only

- 89 -

3 図.ホモプロパルギルアルコールの立体選択的部分水素化

•

著者らは、THF 中アレニル性スズおよびアルキルリチウムから発生する活性種はアレ ニルおよびプロパルギルリチウムの平衡混合物であると考えている。実際、THF-ds 中 -78 ℃で、13 およびメチルリチウムの反応を¹³C NMR で追跡すると、スズーリチウ ム金属交換反応はほとんど瞬間的に起こり、テトラメチルスズ(δ -9.3 ppm)を定量 的に生成することがわかった。このとき、他の炭素は δ 26.0 および 26.4 (イソプロ ビルメチル)、33、43、および 111 ppm に幅広いシグナルを与えたが、このことは新し く生成した有機リチウム化合物が fluxional な性質をもっていることを示唆する。¹⁶ しかし、このようにして発生させたリチウム化合物の化学的な挙動は 2-アルキンおよ び tert-プチルリチウムから調製した有機リチウム化合物とは異なっていることがわか った。これは、たぶん会合度の違いによるものと考えられる。実際、アレニル性スズノ アルキルリチウム混合反応剤のほうがより高い反応性および良好なプロパルギル/アレ ニル選択性を示す。例えば、ビバルアルデヒド、ビナコロン、シクロヘキサノン、およ び 2-シクロヘキセノンの反応において、12b/メチルリチウム反応剤がそれぞれ 83、 95、84、および 91%の収率およびそれぞれ 4.5:1、14:1、8.1:1、および 2.9:1 のア セチレン選択性を示すのに対して 2-オクチンノtert-ブチルリチウム反応剤は、相当す る縮合体をそれぞれ 70、84、77、および 78%の収率かつ それぞれ 3.2:1、9.0:1、 2.7:1、および 2.1:1 のアセチレン選択性で与えた。17

- 91 -

4 図に示したように、反応は環状遷移状態、24 および 25 を経て進行し、それぞれ アセチレンおよびアレン性生成物を与えると考えられる。¹ 平衡状態にある位置両性の 有機リチウム化合物の付加反応における位置選択性は、遷移状態 24 および 25 の相対 的安定性により速度論的に決ると考えられる。¹ これらの遷移状態の安定性には、電子 および立体的な二つの要因が大きく影響すると思われる。本反応は高い発熱反応である。 従って、これらの遷移状態は、出発とする有機リチウムとカルボニル基質の性質を強く 反映するはずである。¹⁸ アレニルリチウムの Li-C(sp²) 結合の極性は、プロバルギ ル異性体の Li-C(sp³) のそれより高いため、¹⁹ この電子的効果の差により 24 が 25 よりより安定化されると考えられる。また、電子供与性の R'基の導入は、有機リチ ウム化合物の求核性を高め、これら両遷移状態を幾分安定化するであろう。²⁰ 立体的 観点からは、24 は H/R エクリプス非結合性立体反発を受け、一方、25 は、ゴーシュ 型の R'/R 反発作用によって不安定化されると考えられる。これらの立体反発効果は、 かさ高い R' と R の間でとくに大きく発現するだろう。²¹ これらの一般的考察をふま えて、以下に実際の反応に対してその選択性発現の解釈を進めてゆきたい。

これまで著者らが検討した置換金属化合物とカルボニル化合物の 26 例の実験はいず れも例外なくアセチレン性アルコールを主生成物として与えた。また、単純なアレニル スズ 11 を用いた反応においてもたえずアセチレン選択性が観察された。これらの場合、 遷移状態 24 はエクリプス反発のために 25 より立体的に不利であると考えられること から、反応は電子的支配下に進行していることがわかる。²³5 図に図解したように立 体因子はアセチレン/アレン選択性の比率に大きく影響を及ぼすことがわかる。ここで

- 92 -

4 図.アレニルスズ/アルキルリチウム混合反応剤とカルボニル化合物との反応経路

ł

11 の反応において、アセチレン/アレン比が、カルボニルの置換基のかさ高さの増加 によりむしろ滅少するのは注目される。すなわち、カルボニル基質がオクタナール、シ クロヘキサノン、さらに、2-アダマンタノンと立体的に大きくなるにつれてアセチレン 選択性は、それぞれ、6.6:1、5.2:1、そして 3.1:1 へと滅少する。これは、遷移状態 24 において H/R エクリプス反発作用が増加する結果であると考えることが出来る。 一方、アルキル基どうしの作用により発現するゴーシュ立体反発は 25 を不安定化させ、 その結果、アセチレン位置選択性が増加する。たとえば、12b とジエチルケトン、シク ロヘキサノン、ビナコロン、そして 2-アダマンタノンとの反応では、これらの立体的 大きさの順に、アセチレン/アレン比がそれぞれ 4.7:1、8.1:1、14:1、および 21:1 へと増大した。このゴーシュ型立体反発作用は、R'が <u>tert</u>-プチル基の場合にとくに 顕著であり、たとえば 14 とシクロヘキサノン、ビナコロン、あるいは、2-アダマンタ ノンの反応では完全なアセチレン選択性が観察された。²⁴

また、本反応では金属反応剤に含まれるアルキル置換基や、カルボニル基質上の不飽 和結合、さらに、ヘテロ原子置換基の電子的効果が、位置選択性の大きさに影響を及ぼ す例がいくつか観察された。まず、12b とオクタナールの反応で単純なアレニルスズ 11 とオクタナールの反応よりもやや低いアセチレン/アレン比(2.2:1 対 6.6:1)が 観察された。これは、ペンチル基からの電子供与が 24 より 25 をより大きく安定化し、 その分だけ、無アルキル置換化合物にみられるアセチレン優先性が差引かれるためと考 えられる。²⁰ カルボニル基質としてオクタナールを用いた競争実験によりこの考えを 支持する金属反応剤間の相対的反応性(括弧内に示した)が得られた(5 式): 1-ペン チルアレニルリチウム(7.7)、アレニルリチウム(4.7)、2-オクチン-1-イルリチウム (2.7)、プロパルギルリチウム(1.0)。この場合、プロパルギルリチウムから 2-オクチ

- 94 -

5 図.アセチレン/アレン選択性におよぼす立体効果

2

ン-1-イルリチウムへの構造変化による反応性の増加(2.7 倍)は、アレニルリチウム から 1-ペンチルアレニルリチウムの構造変化に基ずく反応性の増加(1.7 倍)に比べ てより大きくなっていることがわかる。第二の例として、ベンズアルデヒド、(E)-シン ナムアルデヒド、あるいは、2-シクロヘキセノンとの反応では、相当する飽和なカルボ ニル基質に比べやや低いアセチレン選択性(1.5-2.9:1)が観察された。この選択性の 低下の理由を単純な立体モデルから説明するのは難しいが、その原因はたぶん反応が 25 において、基質と反応剤間の電子のより大きな非局在化により、R'/R ゴーシュ反 発をやわらげるようなゆるい遷移状態を経て進行しているためと解釈できよう。最後に 見い出した例は、高いアセチレン選択性がアシルシラン基質のトリメチルシリル基によ り発現されることである。すなわち、12b/メチルリチウム反応剤と 16 の反応では、 炭素類縁化合物である tert-ブチルヘプチルケトンに比べ 10 倍高いアセチレン選択性 (39:1 対 3.9:1)が観察された。トリメチルシリル基は、置換基全体の大きさから言 えば tert-ブチル基より大きいと考えられるが、²⁵ カルボニル基自身に及ぼす立体的 影響に関しては炭素-シリコン結合が炭素-炭素結合より長いために、tert-プチル基の それに比べてより小さい。従って、この顕著な選択性の増大はシリルおよび tert-ブチ ル基の電子的性質の違いによるものと考えられる。26 その解釈としては、電子的に陽 性であるシリル基により、反応遷移状態がより後方へ移動し、その結果、反応は強い R'/R 間の立体反発を発現するような基質と反応剤がより接近した堅固な遷移状態を経 て進行しているものと考えられる。

3a:4a:3f:4f:3s:4s = 5.2:1.1:8.6:3.0:11.3:1

一般的事項

(a) 測定機器および装置

ガスクロマトグラフィー (GLC) はインテグレーターとして 島津社製 C-R5A を装備 した GC-15A 装置を用いた。条件 1: 化学結合型 PEG-20M キャビラリーカラム (df 0. 15 μm, 0.25 mmø x 25 m, ガスクロ工業社製); ヘリウムキャリヤーガス、0.7 kg/cm²; スプリット比、1/117; カラム温度、180 ℃; インジェクション温度、200 ℃。 条件 2: 化学結合型 0V-1 キャビラリーカラム (df 0.30 μm, 0.25 mmø x 50 m, ガ スクロ工業社製); ヘリウムキャリヤーガス、0.7 kg/cm²; スプリット比、1/110; カラ ム温度、210 ℃; インジェクション温度、240 ℃。超音波照射はシャープ超音波クリー ナー UTB-152 (150W, 28 KHz) に反応管を浸すことにより行なった。エネルギー計算は Digital Equipment Corporation 社製の MicroVAX II システムを用いて行なった。そ の他の測定機器および装置は第1章の実験の部に記載したものを用いた。

(b) <u>クロマトグラフィー</u>

中圧シリカゲルカラムクロマトグラフィーには、ガラスカラムとボンプを装備した桐山製作所製カラムシステム ILC-PB 装置に、E. Merck 社製シリカゲル 60 (9385, 230 - 400 メッシュ)を充塡したものを用いた。

(c) 基質および反応剤

シアン化第一銅(Aldrich 社製)は100 ℃で数時間真空乾燥したものを用いた。塩化 イソプロビルマグネシウム (2.00 M エーテル溶液)、塩化 <u>tert</u>-ブチルマグネシウム

- 98 -

(2.00 M エーテル溶液) は Aldrich 社製のものをそのまま用いた。臭化 <u>n</u>-ペンチルマ グネシウム (1.80 M THF 溶液) は臭化ペンチルおよび削状マグネシウムから合成した。 リチウムワイヤー (合ナトリウム 0.01%) および亜鉛末 (純度 99.9%) はそれぞれ Aldrich、レアメタリック社製のものをそのまま用いた。3-クロロ-1-(トリメチルスタ ニル)プロビン、⁷ bp 50-60 ℃/0.3 mmHg (Kugelrohr)、は塩化プロパルギルをメチル リチウムで処理した後塩化トリメチルスズを加えることにより合成した。^{6h} 以下のカ ルボニル化合物は市販品を使用前に蒸留して用いた: オクタナール、ビバルアルデヒ ド、ベンズアルデヒド、(E)-シンナムアルデヒド、ジェチルケトン、ジイソプロビルケ トン、ビナロロン、イソプロビルフェニルケトン、シクロヘキサノン、2-シクロヘキセ ノン。2-アダマンタノン (Aldrich) および (1<u>R</u>)-(+)-カンファー (和光純薬) は市販 品をそのまま用いた。<u>tert</u>-プチルヘプチルケトン ²⁰ はオクタナールを <u>tert</u>-プチル リチウムで処理した後ビリジニウムクロロクロメート酸化することにより合成した。エ ストロン 3-<u>0</u>-tert-ブチルジメチルシリルエーテルは文献に従って合成した。³⁰ トリ メチル(オクタノイル)シラン (16) は文献に従って合成した。¹⁰ 乾燥 <u>tert</u>-プチルア ルコールはマグネシウム上で蒸留した。

<u>トリメチル(4-メチル-1,2-ペンタジェン-3-イル)スタナン(13).</u>

この化合物は 12b の合成と同様な方法によって合成した。15b (1025 mg, 4.32 x 10⁻³ mol),塩化イソプロビルマグネシウムエーテル溶液 (2.16 mL, 4.32 x 10⁻³ mol), およびシアン化第一銅 (11.6 mg, 1.30 x 10⁻⁴ mol)。簡易蒸留、45-50 ℃/7 mmHg、 収率 85%。TLC <u>Rf</u> 0.63 (ヘキサン); IR (CHC1₃) 1930 cm⁻¹; ¹H NMR (CDC1₃, 270 MHz) & 0.20 (s, 9, ²」(¹¹⁷Sn-¹H) = 52.4 Hz, ²」(¹¹⁹Sn-¹H) = 54.7 Hz, Sn(CH₃)₃), 1.05 (d, 6, J = 6.6 Hz, 2 CH₃), 2.25-2.50 (m, 1, CH), 4.13-4.31 (m, 2,

- 99 -

allenyl); Anal. Calcd for C₉H₁₈Sn: C, 44.13; H, 7.41. Found: C, 44.10; H, 7.60.

トリメチル(4,4-ジメチル-1,2-ペンタジエン-3-イル)スタナン(14).

この化合物は 12b の合成と同様な方法によって合成した。15b (1655.0 mg, 6.97 x 10⁻³ mol),塩化 <u>tert</u>-ブチルマグネシウムエーテル溶液 (3.49 mL, 6.97 x 10⁻³ mol), およびシアン化第一銅 (19.9 mg, 2.22 x 10⁻⁴ mol)。簡易蒸留、40-46 ℃/2 mmHg、 収率 89%。TLC <u>R</u>f 0.64 (ヘキサン); IR (CHCl₃) 1920 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.21 (s, 9, ²J(¹¹⁷Sn-¹H) = 52.1 Hz, ²J(¹¹⁹Sn-¹H) = 54.1 Hz, Sn(CH₃)₃), 1.08 (s, 9, <u>tert</u>-C₄H₉), 4.22 (s, 2, ⁴J(¹¹⁷Sn-¹H) = 40.2 Hz, ⁴J(¹¹⁹Sn-¹H) = 41.5 Hz, allenyl); Anal. Calcd for C₁₀H₂₀Sn: C, 46.37; H, 7.78. Found: C, 46.36; H, 7.76.

アレニル性スズ/アルキルリチウム混合反応剤を用いた標準的プロパルギル化法

アレニルスズ体 14 (94.7 mg, 3.66 x 10⁻⁴ mol)を 10-mL 試験管に計り取り THF (2 mL) に溶解させた。この溶液を -95 ℃に冷却した後メチルリチウム (0.290 mL, 3.66 x 10⁻⁴ mol)を加え 10 分撹拌した。次にここへビナコロン (0.0416 mL, 3.33 x 10⁻⁴ mol)を加えた。この反応混合液を -95 ℃で 20 分撹拌した後 pH 7.4 リン酸緩 衝液 (2 mL) にあけた。有機層を分け水層はエーテル (5 mL x 2) で抽出した。有機層 を合せ無水硫酸ナトリウム上で乾燥した後ろ過、減圧濃縮した。得られた混合物に 1,1, 2,2-テトラクロロエタン (NMR 内部標準物質、δ 5.96, 8.0 μL)を加え 270-MHz NMR 分析に供した。生成物の収率および異性体比は以下のようにして求めた: 生成物が 2 級アルコールの場合は水酸基化された炭素上の水素の積分比から、生成物が 3 級アル コールの場合はプロパルギルおよびアレニル炭素上の水素の積分比から求めた。

-100 -
2-アルキン/tert-プチルリチウム混合反応剤を用いた標準的プロパルギル化法

2-オクチン (0.29 mL, 2.00 x 10⁻³ mol)を 10-mL 試験管に計り取り THF (3 mL) に溶解させた。この溶液を -78 ℃に冷却した後 <u>tert</u>-ブチルリチウム (1.13 mL, 2.00 x 10⁻³ mol)を加え -78 ℃で 10 分撹拌した。そしてこの混合液を 0 ℃に昇温しこ の温度で 60 分撹拌し、再び -95 ℃に冷却した。ここへビナコロン (0.228 mL, 1.82 x 10⁻³ mol)をこの温度で加えさらに 20 分撹拌した。この反応混合液を pH 7.4 リン 酸緩衝液 (5 m)にあけた。有機層を分け水層はエーテル (4 mL x 2)で抽出した。有 機層を合せ無水硫酸ナトリウム上で乾燥した後ろ過、減圧濃縮した。得られた混合物に 1,1,2,2-テトラクロロエタン (8.0 µL)を加え 270-MH2 NMR 分析に供した。

1-プロモ-2-アルキン/亜鉛混合反応剤を用いた標準的プロパルギル化法

1-プロモ-4,4-ジメチル-2-ペンチン³¹ (109.5 mg, 6.25 x 10⁻⁴ mol) を 10-mL シュ レンク管に計り取り、THF (1.0 mL) に溶解させた。ここへ亜鉛末 (40.9 mg, 6.25 x 10⁻⁴ mol) および塩化水銀(11) (3.4 mg, 1.3 x 10⁻⁵ mol) を加え、この反応混合物を 20-22 ℃に制御した水槽に浸し 10 時間超音波照射した。その後 0 ℃に冷却してビ ナコロン (0.071 mL, 5.68 x 10⁻⁴ mol) を加えた。この反応混合液を 0 ℃で 30 分撹 拌した後 30 ℃に昇温し 3 時間撹拌した。次に、これを飽和塩化アンモニウム水溶液 (3 mL) にあけた。有機層を分け水層はエーテル (3 mL x 2) で抽出した。有機層を合 せ無水硫酸ナトリウム上で乾燥した後ろ過、滅圧濃縮した。得られた混合物に 1,1,2,2-テトラクロロエタン (8.0 μL) を加え 270-MHz NMR 分析に供した。

次に示した化合物は文献既知である: $3a^{32}$ 、 $4a^{32b}$, c、 $3b^{4b}$, d, 33、 $4b^{4b}$, d、 $3c^{34}$ 、 $4c^{34c}$, 35、 $3d^{4o}$, 32a, b, 34a, b, 36、 $4d^{32b}$, 37、 $3f^{38}$ 、 $4f^{38}$ 、 $3h^{39}$ 、 $4h^{39}$ 、 $3k^{38}$ 、 $4k^{38}$ 、 $3o^{38}$ 、 $4o^{32b}$, 38、 $4p^{32b}$ 、 $3t^{39}$ <u>2-(2-プロピニル)アダマンタン-2-オール (3e).</u>

Mp 51-52 ℃; TLC <u>R_f</u> 0.29 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200, 3300 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 1.50-1.90 (m, 12, 5 CH₂ and 2 CH), 2.02 (s, 1, 0H), 2.08 (t, 1, <u>j</u> = 2.6 Hz, CH), 2.20-2.30 (br d, 2, 2 CH), 2.62 (d, 2, <u>j</u> = 2.6 Hz, CH₂); HPMS, <u>m/z</u> calcd for C₁₃H₁₆ (M⁺ - H₂0) 172.1253, found 172.1252.

<u>2-アレニルアダマンタン-2-オール (4e).</u>

Mp 42-43 ℃; TLC <u>R_f</u> 0.29 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200, 1950 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 1.50-1.95 (m, 13, 5 CH₂, 2 CH, and 0H), 2.20-2.30 (br d, 2, 2 CH), 4.87 (d, 2, \underline{J} = 6.6 Hz, allenyl), 5.47 (t, 1, \underline{J} = 6.6 Hz, allenyl); HRMS, <u>m/z</u> calcd for C₁₃H₁₈O (M⁺) 190.1358, found 190.1377. 2,2-ジメチル-5-ウンデシン-3-オール (3g).

TLC <u>R_f</u> 0.39 (10:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3400 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.90 (t, 3, <u>J</u> = 7.3 Hz, CH₃), 0.91 (s, 9, <u>tert</u>-C₄H₉), 1.1 -1.7 (m, 6, 3 CH₂), 2.1-2.5 (m, 5, 2 CH₂ and OH), 3.36 (dd, 1, <u>J</u> = 3.0 and 9.9 Hz, CHO); HRMS, <u>m/z</u> calcd for C_{13H22} (M⁺ - H₂O) 178.1723, found 178.1695. <u>2,2-ジメチル-4-ビニリデンノナン-3-オール</u> (4g).

TLC <u>R_f</u> 0.30 (10:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3400, 1950 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.89 (t, 3, <u>J</u> = 7.0 Hz, CH₃), 0.94 (s, 9, <u>tert</u>-C₄H₉), 1.20-1.60 (m, 7, 3 CH₂ and OH), 1.86-2.14 (m, 2, CH₂), 3.55-3.68 (br, 1, CHO), 4.75-4.96 (m, 2, allenyl); HRMS, <u>m/z</u> calcd for C₁₃H₂₄O (M⁺) 196.1828, found 196.1856.

-102 -

(E)-1-フェニル-1-ウンデセン-5-イン-3-オール (3i).

TLC <u>R_f</u> 0.27 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.88 (t, 3, \downarrow = 7.1 Hz, CH₃), 1.20-1.60 (m, 6, 3 CH₂), 2.10-2.24 (m, 3, CH₂ and OH), 2.42-2.62 (m, 2, CH₂), 4.35-4.45 (m, 1, CHO), 6.27 (dd, 1, \downarrow = 6.3 and 15.5 Hz, vinyl), 6.65 (d, 1, \downarrow = 15.5 Hz, vinyl), 7.20-7.45 (m, 5, aromatic); HRMS, <u>m/z</u> calcd for C₁₇H₂₂O (M⁺) 242.1672, found 242.1649.

<u>(E)-1-フェニル-4-ビニリデン-1-ノネン-3-オール(4i)</u>.

TLC <u>R_f</u> 0.35 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300, 1960 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) & 0.88 (t, 3, <u>J</u> = 6.9 Hz, CH₃), 1.20-1.55 (m, 6, 3 CH₂), 1.90 (d, 1, <u>J</u> = 5.0 Hz, OH), 1.95-2.10 (m, 2, CH₂), 4.60-4.70 (br, 1, CHO), 4.90-5.00 (m, 2, allenyl), 6.21 (dd, 1, <u>J</u> = 6.9 and 15.8 Hz, vinyl), 6.63 (d, 1, <u>J</u> = 15.8 Hz, vinyl), 7.20-7.45 (m, 5, aromatic); HRMS, <u>m/2</u> calcd for $C_{1.7H_{22}O}$ (M⁺) 242.1672, found 242.1684.

<u>3-エチル-5-ウンデシン-3-オール (3j).</u>

TLC <u>R</u>_f 0.38 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.89 (t, 6, \downarrow = 7.6 Hz, 2 CH₃), 0.90 (t, 3, \downarrow = 6.9 Hz, CH₃), 1.20-1.70 (m, 11, 5 CH₂ and 0H), 2.17 (tt, 2, \downarrow = 7.1 and 2.5 Hz, CH₂), 2.31 (t, 2, \downarrow = 2.5 Hz, CH₂); HRMS, <u>m/z</u> calcd for C₁₁H₁₉0 (M⁺ - C₂H₅) 167.1437, found 167.1432.

<u>3-エチル-4-ビニリデンノナン-3-オール(4j)</u>.

TLC R_f 0.46 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300, 1950 cm⁻; ¹H

- 103 -

NMR (CDC1₃, 270 MHz) δ 0.75-0.95 (m, 9, 3 CH₃), 1.15-1.85 (m, 11, 5 CH₂ and OH), 2.10-2.25 (m, 2, CH₂), 4.93 (t, 2, <u>J</u> = 3.8 Hz, allenyl); HRMS, <u>m/z</u> calcd for C_{13H24}0 (M⁺) 196.1828, found 196.1816.

2,2,3-トリメチル-5-ウンデシン-3-オール (31).

TLC <u>R_f</u> 0.53 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3400 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) & 0.90 (t, 3, \downarrow = 7.1 Hz, CH₃), 0.96 (s, 9, <u>tert</u>-C₄H₉), 1.26 (s, 3, CH₃), 1.30-1.55 (m, 6, 3 CH₂), 1.90 (s, 1, 0H), 2.19 (tt, 2, \downarrow = 2.3 and 6.9 Hz, CH₂), 2.28 (dt, 1, \downarrow = 16.5 and 2.3 Hz, a proton of CH₂), 2.48-2.60 (m, 1, a proton of CH₂); HRMS, <u>m/z</u> calcd for C₁₀H₁₇0 (M⁺ - <u>tert</u>-C₄H₉) 153.1280, found 153.1304.

<u>2,2,3-トリメチル-4-ビニリデンノナン-3-オール(41).</u>

TLC <u>R</u>_f 0.53 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300, 1950 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.89 (t, 3, <u>J</u> = 6.6 Hz, CH₃), 0.96 (s, 9, <u>tert</u>-C₄H₉), 1.20-1.60 (m, 6, 3 CH₂), 1.32 (s, 3, CH₃), 1.76 (s, 1, 0H), 1.90-2.10 (m, 2, CH₂), 4.86 (dt, 2, <u>J</u> = 3.6 and 3.6 Hz, allenyl); HRMS, <u>m/z</u> calcd for C₁₃H₂₃0 (M⁺ - CH₃) 195.1750, found 195.1765.

<u>8-tert-ブチル-10-ヘキサデシン-8-オール (3m).</u>

TLC <u>R_f</u> 0.33 (10:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3650-3450 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.89 (t, 3, \downarrow = 7.0 Hz, CH₃), 0.90 (t, 3, \downarrow = 7.0 Hz, CH₃), 0.98 (s, 9, <u>tert</u>-C₄H₉), 1.20-1.70 (m, 18, 9 CH₂), 1.84 (s, 1, 0H), 2.15 (tt, 2, \downarrow = 7.2 and 2.4 Hz, CH₂), 2.40 (dt, 1, \downarrow = 16.8 and 2.4 Hz, a proton of CH₂), 2.46 (dt, 1, \downarrow = 16.8 and 2.4 Hz, a proton of CH₂); HRMS, <u>m/z</u> calcd for $C_{16}H_{29}O$ (M⁺ - tert-C₄H₉) 237.2220, found 237.2191.

<u>7-tert-ブチル-6-ビニリデンテトラデカン-7-オール(4m).</u>

TLC <u>R</u>_f 0.45 (10:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3650-3400, 1950 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.88 (t, 3, <u>J</u> = 7.0 Hz, CH₃), 0.89 (t, 3, <u>J</u> = 6.7 Hz, CH₃), 0.95 (s, 9, <u>tert</u>-C₄H₉), 1.20-1.73 (m, 19, 9 CH₂ and OH), 1.83-2.03 (m, 2, CH₂), 4.78-4.90 (m, 2, alienyl); HRMS, <u>m/z</u> calcd for C₁₉H₃₅0 (M⁺ - CH₃) 279.2690, found 279.2667.

<u>2-メチル-3-フェニル-5-ウンデシン-3-オール (3n).</u>

TLC <u>R_f</u> 0.50 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3400 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.80 (d, 3, <u>J</u> = 6.9 Hz, CH₃), 0.84 (t, 3, <u>J</u> = 6.8 Hz, CH₃), 0.89 (d, 3, <u>J</u> = 6.9 Hz, CH₃), 1.10-1.40 (m, 6, 3 CH₂), 2.00-2.20 (m, 3, CH₂ and CH), 2.37 (s, 1, 0H), 2.70-2.88 (m, 2, CH₂), 7.20-7.50 (m, 5, aromatic); HRMS, <u>m/z</u> calcd for C₁₅H₁₉0 (M⁺ - <u>i</u>-C₃H₇) 215.1437, found 215.1455.

<u>2-メチル-3-フェニル-4-ビニリデンノナン-3-オール (4n).</u>

TLC <u>R_f</u> 0.55 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3450, 1950 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) & 0.70 (d, 3, \downarrow = 6.6 Hz, CH₃), 0.80 (t, 3, \downarrow = 6.6 Hz, CH₃), 1.01 (d, 3, \downarrow = 6.9 Hz, CH₃), 1.06-1.35 (m, 6, 3 CH₂), 1.60-1.90 (m, 2, CH₂), 2.06 (s, 1, 0H), 2.40-2.53 (m, 1, CH), 4.93-5.07 (m, 2, allenyl), 7.20-7.50 (m, 5, aromatic); HRMS, <u>m/2</u> calcd for C₁₈H₂₆O (M⁺) 258.1985, found 258.2002.

<u>1-(2-オクチニル)-2-シクロヘキセノール (3p).</u>

TLC R_f 0.32 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200 cm⁻¹; ¹H NMR

- 105 -

(CDCl₃, 500 MHz) δ 0.90 (t, 3, \underline{J} = 7.0 Hz, CH₃), 1.25-1.85 (m, 10, 5 CH₂), 1.90-2.10 (m, 3, CH₂ and OH), 2.15-2.23 (m, 2, CH₂), 2.40 (t, 2, \underline{J} = 2.3 Hz, CH₂), 5.70 (d, 1, \underline{J} = 9.8 Hz, vinyl), 5.85 (dt, 1, \underline{J} = 9.8 and 3.7 Hz, vinyl); HRMS, $\underline{m/z}$ calcd for C₁₄H₂₀ (M⁺ - H₂O) 188.1566, found 188.1576.

(1R)-exo-(+)-2-(2-オクチニル)ボルネオール (3q).

TLC <u>Rf</u> 0.48 (10:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3400 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) & 0.85 (s, 3, CH₃), 0.90 (t, 3, \downarrow = 7.1 Hz, CH₃), 0.93 (s, 3, CH₃), 1.1 (s, 3, CH₃), 1.20-1.80 (m, 12, 6 CH₂), 1.95-2.10 (m, 1, CH), 2.17 (tt, 2, \downarrow = 6.9 and 2.3 Hz, CH₂), 2.36 (dt, 1, \downarrow = 16.2 and 2.3 Hz, a proton of CH₂), 2.37 (s, 1, OH), 2.47 (dt, 1, \downarrow = 16.2 and 2.3 Hz, a proton of CH₂).

<u>(1R)-exo-(+)-2-(1-ビニリデンヘキシル)ボルネオール (4q)</u>.

TLC <u>R_f</u> 0.44 (10:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3400, 1950 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) る 0.84 (s, 3, CH₃), 0.89 (t, 3, <u>J</u> = 6.8 Hz, CH₃), 0.97 (s, 3, CH₃), 1.12 (s, 3, CH₃), 1.20-1.74 (m, 12, 6 CH₂), 1.86-2.22 (m, 4, CH₂, CH, and OH), 4.74-4.86 (m, 2, allenyl).

<u>2-(2-オクチニル)アダマンタノール (3r).</u>

TLC <u>R</u>_f 0.31 (10:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3400 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.90 (t, 3, \downarrow = 7.1 Hz, CH₃), 1.2-2.1 (m, 20, 8 CH₂ and 4 CH), 2.18 (tt, 2, \downarrow = 2.3 and 7.1 Hz, CH₂), 2.2-2.3 (br, 1, 0H), 2.57 (t, 2, \downarrow = 2.3 Hz, CH₂); HRMS, <u>m/z</u> calcd for C₁₈H₂₆ (M⁺ - H₂0) 242.2036, found 242.2028.

<u>2-(1-ビニリデンヘキシル)アダマンタノール (4r).</u>

-106 -

Mp 60-62 °C; TLC <u>R_f</u> 0.29 (10:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300, 1950 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) る 0.89 (t, 3, <u>J</u> = 6.6 Hz, CH₃), 1.20-2.30 (m, 23, 9 CH₂, 4 CH, and OH), 4.79 (t, 2, J = 3.8 Hz, allenyl).

2,2-ジメチル-3-トリデシン-6-オール (3s).

TLC <u>R_f</u> 0.32 (8:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3620-3200 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.88 (t, 3, <u>J</u> = 6.6 Hz, CH₃), 1.21 (s, 9, <u>tert</u>-C₄H₉), 1.2 -1.8 (m, 13, 6 CH₂ and 0H), 2.25 (dd, 1, <u>J</u> = 16.5 and 6.9 Hz, a proton of CH₂), 2.39 (dd, 1, <u>J</u> = 16.5 and 4.6 Hz, a proton of CH₂), 3.5-3.7 (br, 1, CHO); HRMS, <u>m/z</u> calcd for C₁₅H₂₈0 (M⁺) 224.2141, found 224.2108.

<u>3-tert-ブチル-1,2-ウンデカジェン-4-オール (4s).</u>

TLC <u>R_f</u> 0.32 (8:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300, 1950 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.88 (t, 3, <u>J</u> = 6.9 Hz, CH₃), 1.10 (s, 9, <u>tert</u>-C₄H₉), 1.15-1.60 (m, 13, 6 CH₂ and OH), 4.05 (t, 1, <u>J</u> = 6.6 Hz, CHO), 4.86 (d, 1, <u>J</u> = 10.6 Hz, allenyl), 4.91 (d, 1, <u>J</u> = 10.6 Hz, allenyl); HRMS, <u>m/z</u> calcd for C₁₅H₂₈O (M⁺) 224.2141, found 224.2123.

<u>5,5-ジメチル-1-フェニル-3-ヘキシン-1-オール (3u).</u>

TLC <u>R_f</u> 0.30 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) る 1.20 (s, 9, <u>tert</u>-C₄H₉), 2.58 (d, 1, <u>J</u> = 7.3 Hz, a proton of CH₂), 2.59 (d, 1, <u>J</u> = 5.6 Hz, a proton of CH₂), 4.79 (dd, 1, <u>J</u> = 5.6 and 7.3 Hz,CHO); 7.2-7.4 (m, 5, aromatic); Anal. Calcd for C₁₄H₁₈O: C, 83.12; H, 8.97. Found: C, 83.13; H, 9.04.

<u>2-tert-プチル-1-フェニル-2,3-プタジェン-1-オール (4u).</u>

- 107 -

TLC <u>R</u>_f 0.30 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300, 1950 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) る 1.08 (s, 9, <u>tert</u>-C₄H₉), 1.20 (s, 1, 0H), 4.89 (dd, 1, $\underline{J} = 10.2$ and 1.7 Hz, allenyl), 4.99 (dd, 1, $\underline{J} = 10.2$ and 1.7 Hz, allenyl), 5.18-5.26 (br, 1, CHO), 7.20-7.50 (m, 5, aromatic); HRMS, <u>m/z</u> calcd for C₁₃H₁₅0 (M⁺ - CH₃) 187.1124, found 187.1135.

<u>2,2,3,7,7-ペンタメチル-5-オクチン-3-オール (3v).</u>

TLC <u>R_f</u> 0.54 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) & 0.96 (s, 9, <u>tert</u>-C₄H₉), 1.22 (s, 9, <u>tert</u>-C₄H₉), 1.25 (s, 3, CH₃), 1.6-2.0 (br, 1, 0H), 2.27 (d, 1, <u>J</u> = 16.2 Hz, a proton of CH₂), 2.53 (d, 1, <u>J</u> = 16.2 Hz, a proton of CH₂); Anal. Calcd for C₁₃H₂₄O: C, 79.53; H, 12.32. Found: C, 79.57; H, 12.13.

2,7,7-トリメチル-3-フェニル-5-オクチン-3-オール (3w).

TLC <u>R_f</u> 0.47 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.79 (d, 3, \downarrow = 6.9 Hz, CH₃), 0.92 (d, 3, \downarrow = 6.9 Hz, CH₃), 1.06 (s, 9, <u>tert</u>-C₄H₉), 2.14 (septet, 1, \downarrow = 6.9 Hz, CH), 2.2-2.4 (br, 1, 0H), 2.70 (d, 1, \downarrow = 16.5 Hz, a proton of CH₂), 2.77 (d, 1, \downarrow = 16.5 Hz, a proton of CH₂), 7.2-7.5 (m, 5, aromatic); HRMS, <u>m/z</u> calcd for C₁₇H₂₃ (M⁺ - 0H) 227.1801, Found 227.1808.

<u>1-(4,4-ジメチル-2-ペンチニル)シクロヘキサノール (3x).</u>

Mp 65-66 ℃; TLC <u>R</u>_f 0.38 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3150 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 1.22 (s, 9, <u>tert</u>-C₄H₉), 1.3-1.9 (m, 11, 5 CH₂ and OH), 2.30 (S, 2, CH₂); Anal. Calcd for C₁₃H₂₂O: C, 80.35; H, 11.41.

— 108 —

Found: C, 80.35; H, 11.52.

<u>2-(4,4-ジメチル-2-ペンチニル)アダマンタノール (3y).</u>

TLC <u>Rf</u> 0.50 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3400 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 1.21 (s, 9, <u>tert</u>-C₄H₉), 1.40-1.85 (m, 12, 5 CH₂ and 2 CH), 2.12 (s, 1, 0H), 2.18-2.30 (m, 2, 2 0H), 2.55 (S, 2, CH₂); HRMS, <u>m/z</u> calcd for C₁₇H₂₄ (M⁺ - H₂O) 228.1879, found 228.1864.

<u>17-(4,4-ジメチル-2-ペンチニル)-3-[(tert-ブチルジメチルシリル)オキシ]エストラ-</u> 1,3,5(10)-トリエン-17-オール (3z).

Mp 98-100 ℃; TLC <u>R_f</u> 0.40 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3400 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.18 (s, 6, Si(CH₃)₂), 0.94 (s, 3, CH₃), 0.97 (s, 9, Si-<u>tert</u>-C₄H₉), 1.22 (s, 9, <u>tert</u>-C₄H₉), 1.1-2.9 (m, 16, 6 CH₂, 3 CH, and OH), 2.36 (d, 1, \underline{J} = 16.2 Hz, a proton of CH₂), 2.54 (d, 1, \underline{J} = 16.2 Hz, a proton of CH₂), 6.5-6.7 (m, 2, aromatic), 7.12 (d, 1, \underline{J} = 8.2 Hz, aromatic); Anal. Calcd for C₃₁H₄₈O₂Si: C, 77.44; H, 10.06. Found: C, 77.42; H, 10.09. <u>8-トリメチルシリル-10-ヘキサデシン-8-オール (17).</u>

TLC <u>R_f</u> 0.49 (8:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.09 (s, 9, Si(CH₃)₃), 0.82-0.94 (m, 6, 2 CH₂), 1.17-1.70 (m, 19, 9 CH₂ and OH), 2.16 (tt, 2, \downarrow = 6.9 and 2.3 Hz, CH₂), 2.35 (dt, 1, \downarrow = 16.3 and 2.3 Hz, a proton of CH₂), 2.44 (dt, 1, \downarrow = 16.3 and 2.3 Hz, a proton of CH₂); HRMS, <u>m/z</u> calcd for C₁₉H₃₈OSi (M⁺) 310.2693, found 310.2719.

<u>2-メチル-6-トリメチルシリル-3-トリデシン-6-オール(18)</u>.

TLC <u>R</u>f 0.50 (8:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200 cm⁻¹; ¹H NMR

(CDC1₃, 270 MHz) δ 0.09 (s, 9, Si(CH₃)₃), 0.88 (t, 3, \underline{J} = 6.8 Hz, CH₃), 1.15 (d, 6, \underline{J} = 6.9 Hz, 2 CH₃), 1.20-1.70 (m, 13, 6 CH₂ and 0H), 2.35 (dd, 1, \underline{J} = 16.5 and 2.3 Hz, a proton of CH₂), 2.43 (dd, 1, \underline{J} = 16.5 and 2.3 Hz, a proton of CH₂), 2.45-2.63 (m, 1, CH); HRMS, $\underline{m}/\underline{z}$ calcd for C₁₇H₃₄OSi (M⁺) 282.2380, found 282.2346.

<u>2,2-ジメチル-6-トリメチルシリル-3-トリデシン-6-オール(19).</u>

TLC <u>R</u>_f 0.35 (10:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3300 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) & 0.09 (s, 9, Si(CH₃)₃), 0.89 (t, 3, <u>J</u> = 7.3 Hz, CH₃), 1.21 (s, 9, <u>tert</u>-C₄H₉), 1.1-1.7 (m, 13, 6 CH₂ and OH), 2.35 (d, 1, <u>J</u> = 16.3 Hz, a proton of CH₂), 2.43 (d, 1, <u>J</u> = 16.3 Hz, a proton of CH₂); HRMS, <u>m/z</u> calcd for C₁₈H₃₆OSi (M⁺) 296.2536, found 296.2558.

<u>10-ヘキサデシン-8-オール (3f).</u>

シリル体 17 (51.8 mg, 1.65 x 10⁻⁴ mol) を 10-mL 試験管に計り取り DMF (1.5 mL) に溶解させた。この溶液を 0 ℃に冷却後フッ化テトラブチルアンモニウム (1.00 mL, 1.00 x 10⁻³ mol) を加えた。この温度で 15 分撹拌した後 27 ℃に昇温しさらに 24 時間撹拌した。この反応混合液を 0 ℃に再び冷却しエーテル (2 mL) で希釈した後飽 和食塩水にあけた。有機層を分け、水層はエーテル (4 mL x 2) で抽出した。有機層を 合わせ無水硫酸ナトリウム上で乾燥させた後ろ過し減圧濃縮した。得られた反応混合物 をシリカゲルカラムクロマトグラフィー (0.6 g) に供し、40:1 のヘキサンー酢酸エチ ル混合溶媒で溶出すると脱シリル体 3f (38.6 mg, 98%) が無色油状物として得られた。 TLC <u>R</u>f 0.32 (8:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3650-3100 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.82-0.94 (m, 6, 2 CH₃), 1.15-1.60 (m, 18, 9 CH₂), 1.80 -2.05 (br, 1, 0H), 2.10-2.20 (m, 2, CH₂), 2.26 (ddt, 1, \underline{J} = 16.5, 6.9, and 2.3 Hz, a proton of CH₂), 2.40 (ddt, 1, \underline{J} = 16.5, 4.6, and 2.3 Hz, a proton of CH₂), 3.58-3.76 (m, 1, CHO).

<u>2-メチル-3-トリデシン-6-オール(21)および2,2-ジメチル-3-トリデシン-6-オール(3s).</u>

これらの 2 級アルコールは 18, 19 およびフッ化テトラブチルアンモニウムを用い て 3f の合成と同様な方法で合成した: 収率 21 (91%), 3s (97%) それぞれ無色油 状物として得られた。21: TLC <u>R_f</u> 0.42 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3650 -3300 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) & 0.88 (t, 3, \downarrow = 6.8 Hz, CH₃), 1.1-1.9 (m, 13, 6 CH₂ and 0H), 1.16 (d, 6, \downarrow = 6.9 Hz, 2 CH₃), 2.26 (ddd, 1, \downarrow = 16.5, 6.9, and 2.3 Hz, a proton of CH₂), 2.40 (ddd, 1, \downarrow = 16.5, 4.6, and 2.3 Hz, a proton of CH₂), 2.45-2.64 (m, 1, CH), 3.57-3.75 (m, 1, CHO); HRMS, <u>m/Z</u> calcd for C₁₄H₂₆O (M⁺) 210.1985, found 210.1984.

<u>(Z)-10-ヘキサデセン-8-オール (22).</u>

アセチレンアルコール体 3f (8.8 mg, 3.69 x 10⁻⁵ mol)を 5-mL 試験管に計り取り エーテル (0.5 mL) に溶解させた。ここへ Lindlar 触媒 (2.0 mg)を加え 1 気圧の水 素雰囲気下 16 ℃で 45 時間撹拌した。反応混合物をショートセライトカラムに流しエ ーテルで洗った。得られたろ液を減圧濃縮することにより無色の油状物が得られた (8.7 mg, 98%)。このものをキャピラリーガスクロマトグラフィーに供した (条件 1)。 保持時間 (<u>t</u>_R): 3f, 9.8 分; 22, 7.7 分; 23, 7.4 分。22 と 23 の生成比は 30.2:1 であった。22: TLC <u>R_f</u> 0.48 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3600-3200 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.7-1.0 (m, 6, 2 CH₃), 1.1-1.7 (m, 19, 9

- 111 -

CH₂ and OH), 2.05 (dt, 2, \underline{J} = 6.6 and 6.9 Hz, CH₂), 2.21 (dd, 2, \underline{J} = 6.4 and 6.6 Hz, CH₂), 3.50-3.70 (m, 1, CHO), 5.41 (dt, 1, \underline{J} = 10.7 and 6.4 Hz, vinyl), 5.58 (dt, 1, \underline{J} = 10.7 and 6.6 Hz, vinyl), HRMS, $\underline{m}/\underline{z}$ calcd for C₁₆H₃₂O (M⁺) 240.2454, found 240.2426.

(E)-10-ヘキサデセン-8-オール (23).

液体アンモニア (2 mL)を -78 ℃で 10-mL シュレンク管に集め、ここへリチウムワ イヤー (11.2 mg, 1.61 x 10⁻³ mol)を入れた。撹拌下この混合物を 0 ℃まで徐々に 昇温させリチウムプロンズを調製した後再び -78 ℃に冷却した。ここへアセチレンア ルコール体 3f (127.6 mg, 5.35 x 10⁻⁴ mol)のエーテル (0.2 mL)溶液および <u>tert</u>-プチルアルコール (0.101 mL, 1.07 x 10⁻³ mol)を加え、エーテル (0.8 mL) で洗っ た。この反応混合物を 16 ℃に昇温し 28 時間撹拌した後ここへエタノール (0.3 mL) および pH 7.4 リン酸緩衝液 (3 mL)をゆっくり加えた。有機層を分け、水層はエーデ ル (2 mL x 2)で抽出した。有機層を合わせ無水硫酸ナトリウム上で乾燥させた後ろ過 し減圧濃縮することにより無色油状物が得られた (128.0 mg, 99%)。このものをキャ ビラリーガスクロマトグラフィーに供した (条件 1)。3f、22、および 23 の生成比は 1:1.38:116 であった。23: TLC <u>R</u> 0.48 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 3650-3200 cm⁻¹; ³H NMR (CDCl₃, 270 MHz) δ 0.75-1.0 (m, 6, 2 CH₃), 1.1-1.6 (m, 19, 9 CH₂ and 0H), 1.95-2.34 (m, 4, 2 CH₂), 3.5-3.7 (m, 1, CH0), 5.40 (dt, 1, \downarrow = 15.5 and 6.6 Hz, vinyl), 5.55 (dt, 1, \downarrow = 15.5 and 6.6 Hz, vinyl); HRMS, m/z calcd for C_{1eHag} (M* - H₂0) 222.2349, found 222.2355.

<u>NMR による反応種の研究の一般的操作法</u>

NMR 研究に用いたサンプルは以下のようにして調製した: メチルリチウム (1.27 M

- 112 -

エーテル溶液、0.323 mL, 0.41 mmol)を 5-mm NMR 管に入れ減圧下溶媒を除いた。得 られた粉状のメチルリチウムの入った管を -95 ℃に冷却後ここへ THF-<u>d</u>s (0.2 mL)を 加えた。次にこの温度でアレニルスズ 13 (100 mg, 0.41 mmol)の THF-<u>d</u>s (0.3 mL) 溶液を加えた。この NMR 管を液体窒素に浸した後減圧下封管した。

<u>アレニルスズ 11,12b,14/n-ブチルリチウム反応剤とオクタナールとの競争実験</u>

20-mL 試験管にアレニルスズ化合物 11 (182.4 mg, 0.554 mmol)、12b (151.3 mg, 0.554 mmol)、14 (143.5 mg, 0.554 mmol) を計り取り THF (7 mL) に溶解させた。こ の混合液を -95 ℃に冷却後 <u>n</u>-プチルリチウム (1.48 M ヘキサン溶液、1.12 mL, 1.66 mmol)を加えた。この温度で 10 分撹拌した後ここへオクタナール (8.65 µL, 0.0554 mmol)を加えた。5 分後この混合液を pH 7.4 のリン酸緩衝液 (6 mL) にあけた。有 機層をガスクロマトグラフィーに供した (条件 2)。保持時間 (<u>t</u>_R): 3a, 12.4 分; 4a, 12.9 分; 3f, 27.1 分; 4f, 24.0 分; 3s, 16.7 分; 4s, 17.2 分。最も反応性が低か った 4,4-ジメチル-2-ペンチン-1-イルリチウムとの反応で生成した 4S を 1.0 とする と 3a、4a、3f、4f、3s、4s の生成比は 5.2:1.1:8.6:3.0:11.3:1.0 であった。 (1) 総説: (a) Klein, J. <u>The Chemistry of the Carbon-Carbon Triple Bond;</u>
Patai, S., Ed.; Wiley: New York, 1978; Part 1, Chapter 9. (b) Moreau, J.-L.
<u>The Chemistry of Ketenes, Allenes, and Related Compounds</u>; Patai, S., Ed.;
Wiley: New York, 1980; Part 1, Chapter 10. (c) Huntsman, W. D., in ref 1b,
Part 2, Chapter 15. (d) Epsztein, R. <u>Comprehensive Carbanion Chemistry;</u>
Buncel, E., Durst, T., Eds.; Elsevier: New York, 1984; Part B, Chapter 3. (e)
Smadja, W. Chem. Rev. 1983, 83, 263.

(2) Corey, E. J.; Rucker, C. <u>Tetrahedron Lett.</u> 1982, <u>23</u>, 719.

(3)酸素官能基化された化合物: (a) Mercier, F.; Epsztein, R.; Holand, S.
<u>Bull. Soc. Chim. Fr.</u> 1972, 690. (b) Chwastek, H.; Goff, N. L.; Epsztein, R.;
Baran-Marszak, M. <u>Tetrahedron</u> 1974, <u>30</u>, 603. (c) Mercier, F.; Epsztein, R. <u>J.</u>
<u>Organomet. Chem.</u> 1976, <u>108</u>, 165. (d) Peterson, P. E.; Leffew, R. L. B. <u>J.</u>
<u>Org. Chem.</u> 1986, <u>51</u>, 1948. 有機亜鉛化合物: (e) Moreau, J.-L. <u>Bull. Soc. Chim.</u>
<u>Fr.</u> 1975, 1248. (f) Daniels, R. G.; Paquette, L. A. <u>Tetrahedron Lett.</u> 1981,
<u>22</u>, 1579. (g) Gelin, R.; Gelin, S.; Albrand, M. <u>Bull. Soc. Chim. Fr.</u> 1971,
4546. (h) Gaudemar, M. <u>Ibid.</u> 1962, 974. (i) Gaudemar, M. <u>Ibid.</u> 1963, 1475.
(j) Hanzawa, Y.; Inazawa, K.; Kon, A.; Aoki, H.; Kobayashi, Y. <u>Tetrahedron</u>
<u>Lett.</u> 1987, <u>28</u>, 659. (k) Eiter, K.; Lieb, F.; Disselnkotter, H.; Oediger, H.
<u>Liebigs Ann. Chem.</u> 1978, 658. 次の総説も参照: (1) Miginiac, L. <u>The Chemistry</u>
<u>of the Metal-Carbon Bond</u>; Hartley, F. R.; Patai, S.; Eds.; John Wiley & Sons:

- 114 -

New York, 1985; Vol. 3, Chapter 2.

(4) アレニルスズ: (a) Lequan, M.; Guillerm, G. J. Organomet. Chem. 1973, 54, 153. (b) Boaretto, A.; Marton, D.; Tagliavini, G. Ibid. 1985, 286, 9. (c) Boaretto, A.; Marton, D.; Tagliavini, G, Ibid. 1985, 288, 283. (d) Boaretto, A.; Marton, D.; Tagliavini, G. Ibid. 1985, 297, 149. (e) Mukaiyama, T.; Harada, T. Chem. Lett. 1981, 621. (f) Nokami, J.; Tamaoka, T.; Koguchi, T.; Okawara, R. Ibid. 1984, 1939. (g) Takeda, T.; Ohshima, H.; Inoue, M.; Togo, A.; Fujiwara, T. Ibid. 1987, 1345. (h) Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier Scientific Publishing Company: Amsterdam, 1981; p 193. アレニルボラン: (i)Favre, E.; Gaudemar, M. J. Organomet. Chem. 1974, 76, 297. (j) Favre, E.; Gaudemar, M. Ibid. 1974, 76, (k) Favre, E.; Gaudemar, M. Ibid. 1975, 92, 17. (1) Blais, J.; L'Honore, 305. A.; Soulie, J.; Cadiot, P. <u>Ibid.</u> 1974, <u>78</u>, 323. (m) Zweifel, G.; Backlund, S. J.; Leung, T. J. Am. Chem. Soc. 1978, 100, 5561. (n) Zweifel, G.; Pearson, N. R. J. Org. Chem. 1981, <u>46</u>, 829. アレニルシラン: (o) Danheiser, R. L.; Carini, D. J. Ibid. 1980, 45, 3925. (p) Danheiser, R. L.; Carini, D. J.; Fink, D. M.; Basak, A. Tetrahedron 1983, 39, 935. (q) Danheiser, R. L.; Carini, D. J.; Kwasigroch, C. A. J. Org. Chem. 1986, 51, 3870.

(5) (a) Suzuki, M.; Morita, Y.; Yanagisawa, A.; Noyori, R.; Baker, B. J.;
Scheuer, P. J. J. Am. Chem. Soc. 1986, <u>108</u>, 5021. (b) Suzuki, M.; Morita, Y.;
Yanagisawa, A.; Baker, B. J.; Scheuer, P. J.; Noyori, R. <u>J. Org. Chem.</u> 1988, <u>53</u>, 286.

- 115 -

(6) (a) Lequan, M.; Guillerm, G. <u>C. R. Acad. Sci.</u> 1969, <u>268</u>, 1001. (b)
Lequan, M.; Cadot, P. <u>Bull. Soc. Chim. Fr.</u> 1965, 45. (c) Cochran, J. C.;
Kuivila, H. G. <u>Organometallics</u> 1982, <u>1</u>, 97. (d) Cherkasov, L. N.; Zavgorodnii,
V. S. <u>J. Gen. Chem. USSR</u> 1968, <u>38</u>, 2713. (e) Petrov, A. A.; Kormer, V. A.
<u>Dokl. Akad. Nauk SSSR</u> 1959, <u>125</u>, 1041. (f) Westmijze, H.; Kleijn, H.; Bos, H.
J. T.; Vermeer, P. <u>J. Organomet. Chem.</u> 1980, <u>199</u>, 293. (g) Ruitenberg, K.;
Westmijze, H.; Meijer, J.; Elsevier, C. J.; Vermeer, P. <u>Ibid.</u> 1983, <u>241</u>, 417.
(h) Ruitenberg, K.; Westmijze, H.; Kleijn, H.; Vermeer, P. <u>Ibid.</u> 1984, <u>277</u>,
227. (i) Ueno, Y.; Okawara, M. <u>J. Am. Chem. Soc.</u> 1979, <u>101</u>, 1893. (j) Vanderlinden, P.; Boue, S. <u>J. Organomet. Chem.</u> 1975, <u>87</u>. 183. (k) Reich, H. J.; Yelm,
K. E.; Reich, I. L. <u>J. Org. Chem.</u> 1984, <u>49</u>, 3438. (l) Vermeer, P.; Ruitenberg, K. Tetrahedron Lett. 1984, 25, 3019.

(7) トリブチルスズ体 15a: (a) Voronkov, M. G.; Mirskov, R. G.; Kuznetsov, A. L.; Ivanova, N. P.; Orgil'yanova, L. V.; Malkova, T. I.; Platonova, A. T. Biol. Akt. Soedin. Elem. IV B Gruppy 1977, 235. トリメチルスズ体 15b: (b)
Pestunovich, V. A.; Tsetlina, E. O.; Voronkov, M. G.; Liepins, E.; Bogoradovsk ii, E. T.; Zavgorodnii, V. S.; Maksimov, V. L.; Petrov, A. A. <u>Dokl. Akad. Nauk</u> <u>SSSR</u> 1978, <u>243</u>, 149. (c) Bogoradovskii, E. T.; Cherkasov, V. N.; Zavgorodnii, V. S.; Rogozev, B.I.; Petrov, A. A. <u>Zh. Obshch. Khim.</u> 1980, <u>50</u>, 2031. (d)
Razuvaev, G. A.; Egorochkin, A. N.; Skobeleva, S. E.; Kuznetsov. V. A.; Lopatin, M. A. <u>J. Organomet. Chem.</u> 1981, <u>222</u>, 55. ref 5b も参照。

(8) Suzuki, M.; Suzuki, T.; Kawagishi, T.; Morita, Y.; Noyori, R. Isr. J.

- 116 -

Chem. 1984, 24, 118.

(9) 総説: Kharasch, M. S.; Reinmuth. O. <u>Grignard Reactions of Nonmetallic</u> Substances; Prentice-Hall: New York, 1954.

(10) Miller, J. A.; Zweifel. G. Synthesis 1981, 288.

(11) Nakada, M.; Urano, Y.; Kobayashi, S.; Ohno, M. <u>J. Am. Chem. Soc.</u> 1988,
 <u>110</u>, 4826.

(12) (a) Mueller, R. H.; Gillick, J. G. <u>J. Org. Chem.</u> 1978, <u>43</u>, 4647. (b)
Doolittle, R. E. <u>Org. Prep. Proced. Int.</u> 1981, <u>13</u>, 179.

(13) THF 中 1-プロモ-2-アルキン、亜鉛末、および触媒量の塩化水銀(II) から超音 波照射¹⁴ によって調製した有機亜鉛化合物も高いプロパルギル選択性を示すことがわ かった。この手法はとくにアシルシラン 16 に有効であり、相当する亜鉛反応剤を用い て 17 および 19 が、それぞれ、86%(プロパルギル/アレニル = 25:1)および 90% (プロパルギル体のみ)の収率で得られた。しかし、上記亜鉛反応剤とアルデヒドおよ びケトンとの反応では副生成物の生成により収率が低下した。¹⁵

(14) 有機合成における超音波の利用: Suslick, K. S. Modern Synthetic Methods;
 Scheffold, R., Ed.; Springer-Verlag: New York, 1986; Vol. 4, p 1.

(15) 1-プロモ-2-オクチンノ亜鉛反応剤とジイソプロビルケトンおよび 2-アダマン タノンとの反応では 3k + 4k および 3r + 4r をそれぞれ 82% (7.4:1) および 85%
(76:1) 収率で与えた。1-プロモ-4,4-ジメチル-2-ペンチン/亜鉛反応剤とベンズアルデ ヒド、ビナコロン、およびシクロヘキサノンとの反応ではプロパルギル化体 3u, 3v,
3x のみがそれぞれ 80, 63, および 68%収率で得られた。臭化亜鉛およびカリウムか ら調製した亜鉛を用いた反応は次の文献を参照: (a) Kosugi, H.; Konta, H.; Uda, H.

- 117 -

<u>Abstr. Annu. Meet. Jpn. Chem. Soc. (Kyoto), 52nd</u> 1986, 1073. (b) Watanabe, Y.; Kosugi, H.; Uda, H. <u>Abstr. Annu. Meet. Jpn. Chem. Soc. (Tokyo), 54th</u> 1987, 1122. (c) Kosugi, H.; Watanabe, Y.; Konta, H.; Uda, H. <u>Abstr. Symp. Chem.</u> Natural Products (Sapporo, Jpn.), 29th 1987, 417.

(16) アレンおよび <u>n</u>-ブチルリチウムから調製したリチウム化合物の ¹³C NMR データは次の文献を参照: van Dongen, J. P. C. M.; van Dijkman, H. W. D.; de Bie, M. J. A. <u>Recl. Trav. Chim. Pays-Bas</u> 1974, <u>93</u>, 29. メチルリチウムを用いたビニル スズの金属交換反応ではスタナート錯体の生成は観察されていない。以下の文献参照:
(a) Mitchell, T. N.; Reimann, W. <u>J. Organomet. Chem.</u> 1987, <u>322</u>, 141. (b)
Mitchell, T. N.; Wickenkamp, R.; Amamria, A.; Dicke, R.; Schneider, U. <u>J. Org.</u>
<u>Chem.</u> 1987, <u>52</u>, 4868. Sawyer, J. S.; Kucerovy, A.; Macdonald, T. L.; McGarvey, G. J. <u>J. Am. Chem. Soc.</u> 1988, <u>110</u>, 842.

(17) 2-オクチンノ<u>tert</u>-ブチルリチウム反応剤にトリイソブチルアルミニウムあるい はトリ(<u>sec</u>-ブチル)ボランを加え、アルデヒドとの反応を行なうと相当するアレン体が 高い選択性で得られることが知られている。また、チタニウムテトライソプロボキシド の添加はアレン選択性を低下すると同時に、反応剤はケトン類に対して不活性となる。 これらのことに関しては以下の文献参照: (a) Ishiguro, M.; Ikeda, N.; Yamamoto, H. <u>J. Org. Chem.</u> 1982, <u>47</u>, 2225. (b) Furuta, K.; Ishiguro, M.; Haruta, R.; Ikeda, N.; Yamamoto, H. <u>Bull. Chem. Soc. Jpn.</u> 1984, <u>57</u>, 2768. (c) Pearson, N. R.; Hahn, G.; Zweifel, G. J. Org. Chem. 1982, 47, 3364.

(18) Hammond's postulate: Hammond, G. S. J. Am. Chem. Soc. 1955, <u>77</u>, 334.
(19) Hopkinson, A. C.; Lien, M. H. J. Chem. Phys. 1977, <u>67</u>, 517.

- 118 -

(20) 次の文献参照: (a) Mesnard, D.; Charpentier, J.-P.; Miginiac, L. <u>J.</u> <u>Organomet. Chem.</u> 1981, <u>214</u>, 15. (b) Mesnard, D.; Charpentier, J.-P.; Miginiac, L. Ibid. 1981, 214, 23.

(21) エクリプスおよびゴーシュの立体反発の相対的比較は、置換エタンを用いて計 算した値が参考になる。まづ、エタン自身に関する 1 個の H-H エクリプス反発は、 通常許容されている値としては 2.9 kcal/3 = 0.97 kcal/mol であり、プロパンの H-CH₃ 反発は、3.3 kcal - 2 x 0.97 kcal (2 個の H-H 反発) = 1.36 kcal/mol であ る。²² 著者らも Macro Model プログラム(コロンビア大学作成)を用いて MM2 計算 を行ない、それぞれ 0.92 (2.77 kcal/3) および 1.26 kcal/mol (3.10 kcal - 2 x 0.92 kcal) とほぼ同様な値を得た。つづいて、2,2-ジメチルプタンについて MM2 計算 を行なったところ H-tert-C₄H₉ 反発として 1.34 kcal/mol (3.18 kcal - 2 x 0.92 kcal)の値を得た。このことから、H-R エクリプス反発は、R が H からかさ高い tert-ブチル基へと変化すると、0.42 kcal/mol 大きくなることがわかる。一方、置換 エタンの R-R' ゴーシュ反発は、R = R' = CH_a の場合 0.86 kcal/mol であることが よく知られている。²² 著者らも MM2 計算を行ない、R = R' = CH₃ に対して 0.90 kcal/mol とほぼ同様な値を得た。つづいて、同じ計算法に従い R = CH₃, R' = C₂H₅、 および R = CH₃, R' = i-C₃H₇ に対して、それぞれ 0.94 および 0.69 kcal/mol を得 た。これらの値はエタンのエクリブス反発に比べやや小さい。次に、R = CH3 と R' = tert-C4Hgの場合を計算するとゴーシュ反発として、2.78 kcal/mol を得た。すなわち、 この組合せにおいてはじめて、R-R'ゴーシュ反発が、H-R のエクリブス反発に勝る ことが判った。

(22) (a) Eliel, E. L.; Allimger, N. L.; Angyal, S. J.; Morrison, G. A.

- 119 -

<u>Conformational Analysis</u>; the American Chemical Society: New York, 1981. (b) kagan, K. B. 有機立体化学; 小田順一 訳、化学同人 (1981). アルカンの回転異性体 のエネルギー計算についての最近の報告としては次の文献を参照: Wiberg, K. B.; Murcko, M. A. J. Am. Chem. Soc. 1988, <u>110</u>, 8029.

(23) 脚注 21 に記した置換エタンのエネルギー計算を参考にすれば、11/プチルリチ ウム混合反応剤とカルボニル化合物の反応は、立体的には、エクリプス反発支配下の環 境下にあると考えられる。にもかかわらず、上記反応剤を用いて行なった実験は、全て にアセチレン選択性を示した。この事実は、反応選択性の発現に、エクリプス型反発を 上回る電子効果が働いていることを意味している。

(24) 脚注 21 に記したエネルギー計算を参考にすると、14/メチルリチウム反応剤と ビバルアルデヒドあるいはケトンとの反応にみられる極めて高いアセチレン選択性は、 電子効果の上にさらにエクリブスに勝るゴーシュ立体反発効果が上乗せされた結果と解 釈できる。

(25) 炭素-炭素結合距離は 1.54 Å、炭素-ケイ素結合距離は 1.86 Åであることが 知られている。

(26) この化合物の電子的構造は n-π* 遷移の長波長シフト(化合物 16 では 382 nm)およびカルボニル伸縮振動の大きな長波長シフト(化合物 16 では 1635 cm⁻¹)に 反映している。²⁷ これらの現象は、ケイ素原子の電子陽性と Si(3<u>d</u>)-C(π^{*})間に働く逆電子供与によって説明されている。²⁸

(27) (a) Brook, A. G. <u>Adv. Organomet. Chem.</u> 1968, <u>7</u>, 95. (b) Agolini, F.;
Klemenko, S.; Csizmadia, I. G.; Yates, K. <u>Spectrochim. Acta</u> 1968, <u>24A</u>, 169.
(c) Dexheimer, E. M.; Buell, G. R.; Le Croix, C. <u>Spectrosc. Lett.</u> 1978, <u>11</u>,

-120 -

751. (d) Armitage, D. A. <u>Comprehensive Organometallic Chemistry</u>; Wilkinson,
G.; Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 2,
p 71.

(28) Bock, H.; Alt, H.; Seidl, H. J. Am. Chem. Soc. 1969, 91, 355.

(29) Cahiez, G.; Bernard, D.; Normant, J. F. Synthesis 1977, 130.

(30) Fevig, T. L.; Katzenellenbogen, J. A. J. Org. Chem. 1987, 52, 247.

(31) Bartlett, P. D.; Rosen, L. J. Am. Chem. Soc. 1942, 64, 543.

(32) (a) Läuger, P.; Prost, M.; Charlier, R. <u>Helv. Chim. Acta</u> 1959, <u>42</u>, 2379.
(b) Place, P.; Verniere, C.; Goré, J. <u>Tetrahedron</u> 1981, <u>37</u>, 1359. (c)
Souppe, J.; Namy, J. L.; Kagan, H. B. Tetrahedron Lett. 1982, <u>23</u>, 3497.

(33) Haruta, R.; Ishiguro, M.; Ikeda, N.; Yamamoto, H. <u>J. Am. Chem. Soc.</u> 1982, 104, 7667.

(34) (a) Gutmann, H.; Isler, O.; Ryser, G,; Zeller, P.; Pellmont, B. <u>Helv.</u> <u>Chim. Acta</u> 1959, <u>42</u>, 719.

(b) Plouin, D.; Glenat, R. <u>C. R. Hebd. Seances Acad. Sci., Ser C</u> 1967, <u>265</u>,
646. (c) Moreau, J.-L.; Gaudemar, M. <u>Bull. Soc. Chim. Fr.</u> 1970, 2175. (d)
Nobuhara, A. <u>Agr. Biol. Chem.</u> 1968, <u>32</u>, 1016.

(35) Beaulieu, P. L.; Morisset, V. M.; Garratt, D. G. <u>Tetrahedron Lett.</u> 1980,
21, 129.

(36) (a) Ziele, K.; Meyer, H. <u>Chem. Ber.</u> 1942, <u>75</u>, 356. (b) Bogentoft, C.; Olsson, L.-I.; Claesson, A. <u>Acta Chem. Scand., Ser. B</u> 1974, <u>28</u>, 163.

(37) Pornet, J. <u>Tetrahedron Lett.</u> 1981, <u>22</u>, 453.

- 121 -

(38) Place, P.; Delbecq, F.; Goré, J. <u>Tetrahedron Lett.</u> 1978, 3801.
(39) Visser, T.; Van Der Maas, J. H. <u>Spectrochim. Acta, Part A</u> 1985, <u>41</u>, 757.

第3章 リチウムエノラートの求核置換反応の新しい制御法とプロスタグ

ランジン骨格一段階構築法

第1節 緒言

リチウムエノラートと親電子剤との反応は有機合成を遂行する上で最も基本的かつ重 要な素反応の一つである。¹ しかしながらこの反応では、系内に存在する塩基とケトン 性生成物との間で起るブロトン交換のために目的とする生成物の収率および選択性が損 われることが少なくない。例えば、プロトン交換が起り易いことでよく知られるシクロ ペンタノンのリチウムエノラートをハロゲン化アルキルを用いてアルキル化すると、望 むモノアルキル化体のほかにかなりの多アルキル化体が副生する。^{1,2} また、リチウム エノラートとハロゲン化アシルとの反応では、生成物であるβ-ジケトン体が高い酸性 度を持つ水素原子を有しているために 50%以上の収率を獲得するのが困難である(1 図)。^{1 ** 3} 今回、著者はこのようなリチウムエノラートの合成化学的制約を克服するた めに、金属添加剤の効果を検討した。その結果、アルキル化およびアシル化反応におい て、ジメチル亜鉛による顕著な反応制御効果を見出した。特に、本研究で見出された効 果的アルキル化反応制御法は、プロスタグランジン(PG)骨格の一段階合成に直結した。

.

polyalkylation

?

low yield

1 図.リチウムエノラートのアルキル化およびアシル化反応の

プロトン交換に由来する合成化学的制約

リチウムエノラートとしてプロトン交換の起りやすいシクロペンタノンのリチウムエ ノラート 1 を選んだ。1 は、相当するエノールのトリメチルシリルエーテルとメチル リチウムを THF 中、室温下で混合することにより調製した。アルキル化反応は 5 当量 のヨウ化アルキルを用いて行なった。まず、シクロペンタノンリチウムエノラートに 0 ℃でヨウ化メチルを加え 3 時間反応を行なうと、79%の収率で目的とする 2-メチル シクロペンタノン(2a)を与えるが、同時に、多アルキル化体(2,2-, 2,5-シスおよび トランス,そして 2,2,5-)が 15% 副生した。上記エノラート系に 3 当量の HMPA を 加えメチル化反応を行なうと反応は加速され⁴-78 ℃、10 時間でモノメチル化体 2a および 2,2- と 2,5-ジメチル化体の混合物がそれぞれ 94% および 3.3% の収率で得 られた。同様な条件下に触媒量(0.2 当量)のジメチル亜鉛を加えメチル化反応を行な うと、望むモノメチル化体 2a の収率は 98%に向上し、ジメチル化体の副生が 0.5% に抑制された。1 当量のジメチル亜鉛存在下では、反応速度は半減するが目的とする 2a のみが 91%の収率で得られ、0- および多アルキル化体の副生はまったく観察され なかった(2図)。ブチル化に関しても同様なジメチル亜鉛の添加効果が観察された(1 式)。エノラート 1 をTHF 中、10当量の HMPA 存在下、ヨウ化プチルを用いて -60 ℃ で 10 時間反応を行なうと望むモノブチル化体 2b が 63%、ジおよびトリプチル化ケ トン体の混合物が 29%、それにシクロペンタノン由来と 2b 由来の 0-ブチル化体の混 合物が 1.1%生成した。同様な条件下に 1 当量のジメチル亜鉛を加えると、2b の収率 は 96%に向上し、トリブチル化体および 2b 由来の 0-ブチル化体の生成はまったく観 察されなかった。しかも、ジブチル化体の副生はわずか 0.6%に激減した(3 図)。上

- 125 -

.

		% yield				
additive	temp, °C	2-	2,2-	2,5-	others	
· <u></u>	-50	81	7.3	7.5	0	
З НМРА	-78	94	0.4	2.9	0	
3 HMPA 0.2 Zn(CH ₃) ₂	-78	98	0.2	0.3	0	
3 HMPA 1 Zn(CH ₃) ₂	-78	91	0	0	0	

2 図、シクロペンタノンリチウムエノラートのメチル化反応における

HMPA およびジメチル亜鉛の添加効果

記のシクロペンタノンリチウムエノラートの高選択的モノアルキル化の達成には、ジメ チル亜鉛と HMPA の両添加剤が必須であることがわかった。

その他、ヨウ化アルキルの量、HMPA 以外の添加剤、ジメチル亜鉛以外の金属添加剤 などについても検討を行なった。その結果、1 当量のヨウ化メチル/3 当量の HMPA/ 0.2 当量のジメチル亜鉛系を用いて -50 ℃,1 時間メチル化反応を行なうと、2a (91 %) およびジメチル化体 (2.1%) が得られ、1 当量のアルキル化剤の使用ではジメチ ル化体の副生を完全には抑えることができなかった。1,3-ジメチル-2-オキソヘキサヒ ドロビリミジン (DMPU)、<u>N</u>-メチル-2-ビロリドン、あるいは DMSO などの添加剤は、多 アルキル化体の生成を抑える効果があるが、その程度は HMPA に比べ低かった。メチル 化反応において、金属添加剤として塩化トリプチルスズ、塩化トリフェニルスズ、およ び塩化トリイソプロボキシチタニウムを触媒量 (0.2 当量) 使用した場合はジメチル亜 鉛と同様な多アルキル化抑制効果を示した。また、1 当量のジメチル亜鉛添加系と同様 な条件下で、ジエチル亜鉛を添加剤として用いると、多アルキル化体の生成は完全に抑 制されるが、エノラートの反応性は大きく低下し、モノアルキル化体はわずか 54%し か得られなかった。

\$		% yield						
additive	2-	2,2-	2,5-	2,2,5-	2,2,5,5-	O-butyl	C,O-dibutyl	
	63	8.5	18	3.0	0	0.6	0.5	
0.2 Zn(CH ₃) ₂	89	1.3	7.3	0.2	0.1	0.8	0	
1 Zn(CH ₃) ₂	96	0	0.6	0	0	0.7	0	

3 図.シクロペンタノンリチウムエノラートのプチル化反応における

ジメチル亜鉛の添加効果

シクロヘキサノンリチウムエノラート (3)5 と塩化オクタノイルとの反応を THF 中、 -78 ℃で、1 当量のジメチル亜鉛存在下に行なうと、β-ジケトン 4a および 0-アシ ル化体 5a がそれぞれ 88%および 8%の収率で得られた(1 式)。これまでに報告され ているリチウムエノラートの C-アシル化の最高収率は 65%である。⁶ この場合、エノ ラートを基質に加える逆添加法が用いられており、原理的な改良と言うより技術的改良 により 50%をわずかに越える収率を得たと言える。さらに、3⁵ とクロロギ酸オクチル との反応を同様に 1 当量のジメチル亜鉛存在下に行なうとケトエステル 4b と 0-オキ シカルボニル化体 5b がそれぞれ 85%および 8%の収率で得られた(1 式)。上記に示 したジメチル亜鉛を用いた新手法は、最近開発されたアシルニトリル7 およびシアノギ 酸エステル『を親電子剤として用いる方法に比べて遜色ないものである。むしろ本法は、 アシル化剤として塩化物を用いる点より直接的方法であるといえる。本法における 0-アシル化体 5a の生成割合は HMPA を添加すると増大する。すなわち、リチウムエノ ラートに 0.2-1 当量のジメチル亜鉛を添加した反応系では 4a/5a 比は 11:1 である が 1 当量のジメチル亜鉛と 3 当量の HMPA の共存系では 4a/5a 比が 1.4:1 になった。 このような、反応位置選択性に及ぼす HMPA の効果は、エノラートの構造と反応性の観 点から興味深い。

3

2

; ;

4a, R = *n*-C₇H₁₅ b, R = O-*n*-C₈H₁₇

5a, R = *n*-C₇H₁₅ b, R = O-*n*-C₈H₁₇

第4節 ジメチル亜鉛添加下におけるリチウム 2,6-ジメチルフェノキシドの ⁷Li NMR

の化学シフト

リチウムアルコキシド[®] とジアルキル亜鉛の混合系はリチウムアルコキシジアルキル ジンケートとの間で平衡系を形成していると考えられる(2 式)。実際、ジメチル亜鉛 の¹H および¹³C NMR 化学シフトは 1 当量のリチウム 2,6-ジメチルフェノキシド(6) を加えてもあまり変らないが、フェノキシドの⁷Li NMR の化学シフトは、ジメチル亜 鉛の添加量に比例して変化する(1 表)。このことは、二つの金属間に何らかの相互作 用が存在することを暗示する。具体的には、THF 中、低温下(-40 ℃) δ 0.09 ppm に 現れる 8 の⁷Li シグナルは 1 および 2 当量のジメチル亜鉛を加えると、それぞれ、 δ -0.42 および -0.67 ppm に移動した。3 当量の HMPA の存在下では、δ 0.18 ppm のシグナルは 1 および 2 当量のジメチル亜鉛を加えるとそれぞれ δ -0.75 と -0.85 ppm に移動した。この様に反応系は平衡系を形成していると考えられる。また、ジメ チル亜鉛の添加はリチウムエノラートのアルキル化反応の反応性を低下させていること から、Curtin-Hammett 原理にもとずきアルキル化の活性種は反応系内で最も反応性の 高いリチウムエノラート自身であり、リチウムエノラート/ジメチル亜鉛錯体ではない と考えられる。¹⁰

ボリアルキル化の原因は生成したアルキルケトンと反応系内に存在する塩基との間の プロトン交換にもとずくことは明らかである。一般に、この副反応を起こす塩基は出発 原料のエノラートであると考えられているが、シクロペンタノンリチウムエノラートの メチル化およびブチル化反応においてジメチル亜鉛を20%添加するだけで副反応がほと んど抑制されることから、このリチウムエノラートがプロトン交換を引起こしていると

- 131 -

は考えにくい。現在著者らは、ジメチル亜鉛が系内に共存する他の少量の塩基あるいは エノラート生成促進能を有するその他の化合物(例えば系内で生成するリチウム塩など) と反応ないし相互作用することにより副反応が抑えられていると考えている。

6

equiv						
lithium 2,6- dimethylphenoxide			concn	chemical shifts, δ		
	Zn(CH ₃) ₂	Zn(CH ₃) ₂ HMPA		ιH	13C	7 _{Li}
	1		1.1	-1.01	-11.41	
	1	3	0.50	-1.05	-9.37	
1			0.44			0.09
1		3	0.44			0.18
1	0.5		0.48	-1.06	-11.04	-0.22
1	1		0.50	-1.07	-10.57	-0.42
1	2		0.50	-1.07	-10.98	-0.67
1	0.5	3	0.49	-1.10	-8.51	-0.48
1	1	3	0.46	-1.10	-7.85	-0.75
1	2	3	0.50	-1.06	-8.53	-0.85

Table I. ¹H, ¹³C, and ⁷Li Chemical Shifts (δ, ppm) in Tetrahydrofuran-d₈ at -40 °C^a

 a Conditions for the NMR measurement are described in a general remark.

- 133 -

上記新アルキル化手法の合成化学的有用性は、以下に「PG 3 成分連結合成法」¹¹で 例示するように、有機亜鉛アート錯体の α , β -不飽和ケトン類への共役付加反応¹² と 組合せることによって大きく増大する。混合リチウムトリアルキル亜鉛アート錯体から sp² 炭素のエノンへの選択的移動はこれまで知られていなかった。¹³ そこで、著者は、 まずビニルスズ 7¹⁴ と n-ブチルリチウムから調製したビニルリチウム 8 とジメチル 亜鉛を THF 中、0 ℃で 1:1 に混合して調製したアート錯体とエノン 9 を -78 ℃で反 応させた。その結果、反応はビニル基の移動が選択的に起こった 3.4-トランス付加体 10 のみを高収率で与えることがわかった(4 図)。なお、10 の同定および立体化学的 純度は既知の方法で合成した資料と ¹³C NMR を比較することによって決定した。^{11,15} 上記したエノンへのω側鎖単位の共役付加反応後には、系内ではリチウムエノラート/ ジメチル亜鉛混合エノラート系が生成していると考えられる。この考えを念頭に置き、 つづいて、上記と同様にして亜鉛ア-ト錯体によるエノンへの共役付加操作を行なった 後、ここへ 10 当量の HMPA および 5 当量のヨウ化プロパルギル体 11 を -78 ℃で加 え、さらに -40 ℃で 24 時間反応させた。その結果、望む 3 成分連結体 12¹¹ が 71 %の収率(¹³C NMRで立体化学的に純粋)で得られた(5 図)。なお、12 は PGE1, PGE2, PGD₂, PGF₂α などの第一次 PG 類およびプロスタサイクリン (PGI₂) を含む PG 類一 般合成法の鍵中間体である。¹¹

本 PG 合成法は反応操作が容易であり、かつ反応処理後の粗生成物に PG 関係以外の 余分な化合物の混入がない。本 PG 合成プロセスの出現により、「PG 3 成分連結プロ セス」は、当研究室で先に開発した有機銅共役付加-スズ-アルキル化連結プロセスに

- 134 -

よる PG 合成法^{11 b.} ° に比べ、単離、精製操作の面においても一段と効率化が達成され たことになる。¹⁶

,

.

• •


```
SiR_3 = Si(CH_3)_2-tert-C<sub>4</sub>H<sub>9</sub>
```

4 図. 亜鉛アート型反応剤を用いた立体選択的共役付加反応

 $SiR_3 = Si(CH_3)_2$ -tert- C_4H_9

ĩ

5 図.プロスタグランジン骨格の一段階合成

6-1 アルデヒドによる捕捉

1 当量のジメチル亜鉛存在下リチウムエノラート 1⁵ とイソブチルアルデヒドとの反応を -78 ℃で行なうと、トレオ - とエリトロ-13^{17,18}の 17:1 混合物を 96%の収率 で与えた。なおトレオ/エリトロ比は、ジメチル亜鉛の添加量によって 23:1 (ジメチ ル亜鉛なし)から 13:1 (10当量のジメチル亜鉛添加)へと変化した (6 図)。このアル ドール体の熱力学的生成比は 32:68¹⁹ であり、トリス(ジエチルアミノ)スルホニウム (TAS) エノラートを用いた場合はエリトロ体のみが得られることが知られている。¹⁸

6-2 ニトロオレフィンによる捕捉

1 当量のジメチル亜鉛存在下、エノラート 3⁵ の 2-ニトロプロペンとの Michael 反応を THF 中 -78 ℃で行ない、1 N 塩酸で処理すると 1,4-ジケトン 14²⁰ が 85%の収率で得られた (3 式)。

エノラートのアルドール反応およびニトロオレフィンによる捕捉反応は、いずれも当 研究室でこれまで開発されてきた「PG 3 成分連結合成法」の一つである「アルドール 経路」および「ニトロオレフィン捕捉経路」実現のための重要な鍵反応となってい る。²¹ 上記新手法が、亜鉛アート錯体によるエノンへの共役付加反応と組合され PG 類合成の有効な方法となることが大いに期待される。

.

$Zn(CH_3)_2$, equiv	% yield	threo/erythro
0	97	23:1
0.2	97	19:1
1	96	17:1
10	93	13:1

6 図.トレオ選択的アルドール反応

- 139 -

.

14, 85%

3

一般的事項

(a) 測定機器および装置

⁷Li NMR は FX-900 型装置を用い、外部標準物質として 0.30 M の塩化リチウムの THF-<u>d</u>a 溶液を る = 0 とした。シリンジボンブは Suge Instruments 社製の Model 352 を用いた。低温槽は Neslab Instruments 社製の CryoCool CC-80f 型装置を用い た。その他の測定機器および装置は第1章の実験の部に記載したものを用いた。

(b) クロマトグラフィー

中圧シリカゲルカラムクロマトグラフィーには、ガラスカラムとボンプを装備した桐山製作所製カラムシステム ILC-PB 装置に、E. Merck 社製シリカゲル 60 (9385, 230 - 400 メッシュ)を充填したものを用いた。

(c) 基質および反応剤

ジアルキル亜鉛のストック溶液は、レクチャーボトルに入っている 99%のジメチル 亜鉛あるいは 99%のジェチル亜鉛(東洋ストウファーケミカル社製 Lot No. DMZ EK-01 および DEZ 932)をトルエンと混合することにより調製した。塩化トリイソプロボ キシチタニウム、塩化トリフェニルスズ、および塩化トリプチルスズは Aldrich 社製 のものをそのまま用いた。1-(トリメチルシロキシ)シクロペンテンおよび 1-(トリメチ ルシロキシ)シクロヘキセンは Aldrich 社製のものを蒸留して用いた。光学活性(<u>S</u>,<u>E</u>)-3-(<u>tert</u>-プチルジメチルシロキシ)-1-(トリプチルスタニル)-1-オクテン、[α]¹⁴_D -17.1°(<u>c</u> 1.0, CHC1₃)、は(<u>S</u>,<u>E</u>)-3-(<u>tert</u>-プチルジメチルシロキシ)-1-ヨード-1-オ

- 141 -

クテン、[α]²³_p -37.5°(<u>c</u> 0.97, CH₃OH)、をエーテル中 2 当量の <u>tert</u>-ブチルリチ ウムで処理した後塩化トリブチルスズを加えることにより 78%収率で合成した。(<u>S</u>,<u>E</u>)-3-(<u>tert</u>-ブチルジメチルシロキシ)-1-ヨード-1-オクテン および (<u>R</u>)-4-(<u>tert</u>-ブチル ジメチルシロキシ)-2-シクロペンテノン (9)、[α]²²_p +67.4°(<u>c</u> 0.4, CH₃OH) は帝人 (株)から提供されたものを用いた。7-ヨード-5-ヘプチン酸メチル (11) は文献記載の 方法により合成した。^{11°} 2,6-ジメチルフェノールは使用前に昇華したものを用いた。 ヨウ化メチルおよびヨウ化ブチルは五酸化リン上で蒸留した。乾燥 DMSO、HMPA、1,3-ジメチル-2-オキソヘキサヒドロビリミジン (DMPU)、および <u>N</u>-メチル-2-ピロリドンは 水素化カルシウム上で蒸留した。

シクロペンタノンリチウムエノラートのメチル化反応の一般的操作法.

1-(トリメチルシロキシ)シクロベンテン(0.363 mL, 2.0 mmol)を 20-mL 試験管に 計り取り乾燥 THF (4 mL) に溶解させ、0 ℃に冷却した。ここへ、メチルリチウム (1.61 M エーテル溶液、1.24 mL, 2.0 mmol)を加えた。この反応混合液を 30 ℃で 1 時間撹拌後 -78 ℃に冷却した。ここへジメチル亜鉛(2.46 M トルエン溶液、0.813 mL, 2.0 mmol) および HMPA (1.04 mL, 6.0 mmol)を順次加えた。-78 ℃で 15 分撹拌後 ヨウ化メチル (0.623 mL, 10.0 mmol)を加え、この反応混合液を -78 ℃で 10 時間撹 拌した。その後、反応混合液を飽和塩化アンモニウム水溶液にあけ、<u>n</u>-デカン(0.195 mL, 1.0 mmol, 内部標準物質)を加えた有機層をガスクロマトグラフィーに供した(窒 素キャリヤーガス、0.7 kg/cm²; スプリット比、1/120; カラム温度、100 ℃; インジ エクション温度、150 ℃)。保持時間(<u>t</u>_R): シクロベンタノン、10.0 分; (1-メトキ シ)シクロベンテン、10.3 分; 2-メチルシクロベンタノン、11.2 分; 2,2-ジメチルシ クロベンタノン、11.9 分; <u>cis</u>- および <u>trans</u>-2,5-ジメチルシクロベンタノン、12.6

- 142 -

および 12.8 分; 2,2,5-トリメチルシクロベンタノン、13.5 分; 2,2,5,5-テトラメチ ルシクロペンタノン、14.4 分; n-デカン、20.0 分。

ブチル化反応生成物のガスクロマトグラフィー分析.

分析条件: ヘリウムキャリヤーガス、0.7 kg/cm²; スプリット比、1/102; カラム温度、 度、80 ℃ (16 分),80 から 240 ℃ (4 分),および 240 ℃; インジェクション温度、 200 ℃。保持時間 (\underline{t}_{R}): シクロベンタノン、12.5 分; (1-プトキシ)シクロペンテン、 25.3 分; 2-ブチルシクロペンタノン、26.9 分; 1-プトキシ-2-プチルシクロペンテン (推定構造)、30.5 分; 2,2-ジブチルシクロペンタノン、31.3 分; <u>cis</u>- および <u>trans</u>-2,5-ジブチルシクロペンタノンの混合物、31.6 分; 2,2,5-トリブチルシクロペンタノ ン、35.9 分; <u>n</u>-デカン、23.0 分。

2-(オクタノイル)シクロヘキサノン(4a).

簡易蒸留、95-100 ℃/0.6 mmHg; TLC <u>R_f</u> 0.63 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 1610 and 1580 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.88 (t, 3, \downarrow = 6.9 Hz, CH₃), 1.2-2.0 (m, 15, 7 CH₂ and OH), 2.2-2.5 (m, 6, 3 CH₂); Anal. Calcd for C₁₄H₂₄O₂: C, 74.94; H, 10.78. Found: C, 74.87; H, 10.83.

この 1,3-ジカルボニル化合物は NMR 分析から判断すると多くはエノール型で存在し、 また 0-アシル化体を含んでいる。以下に 4a および 5a の総収率および 4a/5a の比を 示した: 0.2 当量のジメチル亜鉛を用いた場合、96%、11:1;1 当量のジメチル亜鉛 を用いた場合、96%、11:1;3 当量の HMPA および 1 当量のジメチル亜鉛を用いた場 合、85%、1.4:1。

<u>2-(オクチロキシカルボニル)シクロヘキサノン(4b).</u>

TLC <u>Rf</u> 0.47 (5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 1740 and 1650 cm⁻¹; ¹H NMR

(CDCl₃, 270 MHz) δ 0.88 (t, 3, <u>J</u> = 7.1 Hz, CH₃), 1.1-1.8 (m, 17, 8 CH₂ and 0H), 2.0-2.5 (m, 4, 2 CH₂), 4.0-4.2 (m, 2, CH₂); Anal. Calcd for C_{15H26}O₃: C, 70.82; H, 10.30. Found: C, 70.82; H, 10.48.

この 1,3-ジカルボニル化合物は NMR 分析から判断すると多くはエノール型で存在している。4b および 5b の総収率および 4b/5b の比は 93%、10:1。

NMR による反応種の研究の一般的操作.

NMR 研究に用いたサンプルは以下のようにして調製した: メチルリチウム (1.31 M エーテル溶液、0.267 mL, 0.35 mmol)を乾燥 5-mm NMR 管に入れ滅圧下溶媒を除いた。 得られた粉状のメチルリチウムの入った管を -78 ℃に冷却後 2,6-ジメチルフェノール (42.8 mg, 0.35 mmol)の THF-<u>d</u>s (0.52 mL)溶液を加えた。混合液を室温まで昇温後 再び -78 ℃に冷却した。ここへジメチル亜鉛 (0.024 mL, 0.35 mmol) および HMPA (0.183 mL, 1.05 mmol)を -78 ℃で加えた。そして減圧下 NMR 管を封管し、スペクト ルを測定するまでドライアイス-メタノール浴に浸しておいた。

1,4-付加体 10 の合成とその立体化学の確認.

この化合物は化合物 12 の合成に用いた方法と同様な方法によって収率 85%で合成 した。TLC <u>R_f</u> 0.40 (10:1 ヘキサンノ酢酸エチル); IR (CHCl₃) 1745 cm⁻¹; [α]¹⁴_D -32.9° (<u>c</u> 1.26, CHCl₃); ¹H NMR (CDCl₃) δ 0.01, 0.04, 0.07, and 0.09 (s each, 12, 2 Si(CH₃)₂), 0.8-1.1 (m, 21, CH₃ and 2 Si-<u>tert</u>-C₄H₉), 1.1-1.7 (m, 8, 4 CH₂), 1.9-3.0 (m, 5, 2 CH₂ and CH), 4.0-4.4 (m, 2, 2 CHO), 5.5-5.7 (m, 2, 2 vinyl); ¹³C NMR (CDCl₃, 22.5 MH₂) δ -4.7 (2C), -4.2 (2C), 14.0, 18.0, 18.2, 22.6, 25.0, 25.7 (3C), 25.9 (3C), 31.8, 38.3, 42.0, 46.8, 47.5, 73.0, 74.7, 128.8, 135.3, 215.3. この生成物は有機鋼反応剤を用いた共役付加によって得られた 標準物質と 1:1 に混合したものの ¹³C NMR 測定により立体化学を含めて単一であるこ とが判った。

5,6-ジデヒドロ-11,15-0-ビス(tert-ブチルジメチルシリル)PGE2 メチルエステル (12).

光学活性ビニルスズ化合物 7 (3965.1 mg, 7.46 mmol) を 150-mL 蛇管付反応管に計 り取り THF (16 mL) に溶解させた。この溶液を -78 ℃に冷却後 n-ブチルリチウム (1.46 M ヘキサン溶液、5.11 mL, 7.46 mmol)を加へ -78 ℃で 40 分撹拌した。そし てここへジメチル亜鉛(2.10 M トルエン溶液、3.55 mL, 7.46 mmol)を加え、この混 合液を 0 ℃に昇温した。15 分撹拌後再び -78 ℃に冷却した。ここへ (R)-4-(tert-ブ チルジメチルシロキシ)-2-シクロペンテノン(1543.9 mg, 7.27 mmol)の THF (16 mL) 溶液をシリンジボンプを用いて 40 分で加えた。この混合液を -78 ℃で 15 分撹拌し さらに HMPA(12.65 mL, 72.7 mmol)を加えた。-78 ℃で 5 分撹拌後 7-ヨード-5-ヘ プチン酸メチル(9711.6 mg, 36.5 mmol)を加え、THF(3 mL)で洗った。この反応管 を -40 ℃に設定したクライオクール層内に移した。ここで 24 時間撹拌後反応混合物 を飽和塩化アンモニウム水溶液(150 mL)にあけた。有機層を分け、水層はエーテル (30 mL)で 3 回抽出した。有機層を合せ無水硫酸マグネシウム上で乾燥後ろ過、減圧 濃縮した。得られた反応混合物を短経シリカゲルカラムクロマトグラフィー に供し、 20:1 のヘキサン-酢酸エチル混合溶媒で溶出し低極性のテトラブチルスズおよび高極 性の HMPA を除いた。それから化合物 12 および 11 の混合物を中圧シリカゲルカラム クロマトグラフィー(300 g)に供し、50:1 から 20:1 のヘキサンー酢酸エチル混合溶 媒で溶出すると純粋な 12 が無色油状物として得られた (2612 mg)。化合物 12 および 11 の混合物を含むフラクションはさらに同様な条件で中圧シリカゲルカラムクロマト

- 145 -

グラフィーに供した。12 の総収率は 71%(3049 mg)であった。未反応の 11 は 80% 収率(6220 mg)で回収された。12: TLC R_f 0.43(5:1 ヘキサン/酢酸エチル); IR (CHCl₃) 1745 cm⁻¹; [α]¹⁸_D -12.4°(<u>c</u> 0.62, CH₃0H); ¹H NMR (CDCl₃, 270 MHz) δ 0.01, 0.05, 0.06, and 0.07 (s each, 12, 2 Si(CH₃)₂), 0.88 and 0.89 (s each, 18, 2 Si-<u>tert</u>-C₄H₀), 0.85-0.92 (br, 3, CH₃), 1.20-1.85 (m, 10, 5 CH₂), 1.95-2.30 (m, 5, 2 CH₂ and CH), 2.40 (t, 2, <u>j</u> = 7.4 Hz, CH₂), 2.58-2.84 (m, 3, CH₂ and CH), 3.66 (s, 3, 0CH₃), 4.05-4.15 (m, 2, 2 CH0), 5.51 (dd, 1, <u>j</u> = 7.6 and 15.5 Hz, vinyl), 5.64 (dd, 1, <u>j</u> = 5.1 and 15.5 Hz, vinyl); ¹³C NMR (CDCl₃, 22.5 MHz) δ -4.7, -4.5 (2C), -4.2, 14.1 (2C), 16.8, 18.0, 18.2, 22.6, 24.2, 25.0, 25.8 (3C), 25.9 (3C), 31.8, 32.7, 38.5, 47.7, 51.4, 51.9, 52.9, 72.7, 73.1, 77.3, 80.7, 128.2, 136.8, 173.4, 213.4. これらのスペクトルデータおよび TLC 上の挙動はオーセンティックサンブルのものと一致した。 (1) 総説: (a) House, H. O. <u>Modern Synthetic Reactions</u>; 2nd Ed.; Benjamin:
 Menlo Park, CA, 1972; Chapters 9-11. (b) Augustine, R. L. <u>Carbon-Carbon Bond</u>
 Formation; Marcel Dekker: New York, 1979; Vol. 1.

(2) いくつかの例: (a) Tardella, P. A. <u>Tetrahedron Lett.</u> 1969, 1117. (b)
House, H. O.; Gall, M.; Olmstead, H. D. <u>J. Org. Chem.</u> 1971, <u>36</u>, 2361. (c)
Borowitz, I. J.; Casper, E. W. R.; Crouch, R. K.; Yee, K. C. <u>Ibid.</u> 1972, <u>37</u>, 3873. (d) Posner, G. H.; Sterling, J. J.; Whitten, C. E.; Lentz, C. M.;
Brunelle, D. J. <u>J. Am. Chem. Soc.</u> 1975, <u>97</u>, 107.

(3) 総説: Hauser, C. R.; Swamer, F. W.; Adams, J. T. <u>Org. React.</u> 1954, <u>8</u>,
 59.

(4) (a) Jackman, L. M.; Lange, B. C. <u>Tetrahedron</u> 1977, <u>33</u>, 2737. (b) Posner,
G. H.; Lentz, C. M. <u>J. Am. Chem. Soc.</u> 1979, <u>101</u>, 934. (c) Johnson, C. R.;
Penning, T. D. <u>Ibid.</u> 1988, <u>110</u>, 4726, およびそこに記載されている文献を参照。

(5) このリチウムエノラートは THF 中対応するエノールトリメチルシリルエーテル 体および等量のメチルリチウムから調製した。

(6) Beck, A. K.; Hoekstra, M. S.; Seebach, D. <u>Tetrahedron Lett.</u> 1977, 1187.
(7) Howard, A. S.; Meerholz, C. A.; Michael, J. P. <u>Tetrahedron Lett.</u> 1979, 1339.

(8) Mander, L. N.; Sethi, S. P. <u>Tetrahedron Lett.</u> 1983, <u>24</u>, 5425.

(9) リチウムエノラートの構造: Seebach, D. Angew. Chem., Int. Ed. Engl. 1988,

- 147 -

27, 1624.

(10) クロロ亜鉛エノラートの化学: (a) House, H. O.; Crumrine, D. S.; Teranishi, A. Y.; Olmstead, H. D. J. Am. Chem. Soc. 1973, <u>95</u>, 3310. (b) Heng, K.
K.; Smith, R. A. J. <u>Tetrahedron</u> 1979, <u>35</u>, 425. (c) Heathcock, C. H.; Buse, C.
T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. <u>J. Org. Chem.</u>
1980, <u>45</u>, 1066. アルキル亜鉛エノラートの化学: (d) Kataoka, K.; Tsuruta, T.
<u>Polym. J.</u> 1977, <u>9</u>, 595. (e) Hansen, M. M.; Bartlett, P. A.; Heathcock, C. H.

(11) (a) Noyori, R.; Suzuki, M. <u>Angew. Chem., Int. Ed. Engl.</u> 1984, <u>23</u>, 847.
(b) Suzuki, M.; Yanagisawa, A.; Noyori, R. <u>J. Am. Chem. Soc.</u> 1985, <u>107</u>, 3348.
(c) Suzuki, M.; Yanagisawa, A.; Noyori, R. Ibid. 1988, 110, 4718.

(12) (a) Isobe, M.; Kondo, S.; Nagasawa, N.; Goto, T. <u>Chem. Lett.</u> 1977, 679.
(b) Tückmantel, W.; Oshima, K.; Nozaki, H. <u>Chem. Ber.</u> 1986, <u>119</u>, 1581. (c)
Jansen, J. F. G. A.; Feringa, B. L. <u>Tetrahedron Lett.</u> 1988, <u>29</u>, 3593. (d)
Kjonaas, R. A.; Hoffer, R. K. <u>J. Org. Chem.</u> 1988, <u>53</u>, 4133, およびこれらの文献
に記載されている文献参照。

(13) ジメチル亜鉛/臭化ビニルマグネシウム混合反応剤を用いたα,β-不飽和カル ボニル化合物に対するビニル基の共役付加反応は参考文献 12b を参照。

(14) 化合物 7 の効果的な合成法: Kitano, Y.; Matsumoto, T.; Okamoto, S.; Shimazaki, T.; Kobayashi, Y.; Sato, F. <u>Chem. Lett.</u> 1987, 1523.

(15) この反応は原則的にはジメチル亜鉛触媒反応である。実際、8 および 9 の反応 において 10%のジメチル亜鉛を添加すると 10 が 37%収率で得られた。

- 148 -

(16) 生成物 12 は未反応の 11 と日本分析工業社 Model LC-09 高速液体分取クロマ トグラフを用いることにより効果的に分けることができた(カラム、JAIGEL AJ2H x 2; 展開液、クロロホルム; 流速、3.5 mL/min; 検出器、UV-254H および RI-2)。

(17) 2-(1-ヒドロキシ-2-メチルプロピル)シクロペンタノン: Dubois, J. E.;

Dubois, M. Bull. Soc. Chim. Fr. 1969, 10, 3553.

(18)トレオおよびエリトロの命名法は次の文献をもとにした: Noyori, R.; Nishida,

I.; Sakata, J. J. Am. Chem. Soc. 1983, 105, 1598.

(19) Dubois, J. E.; Dubois, M. J. Chem. Soc., Chem. Commun. 1968, 1567.

(20) 2-(2-オキソプロビル)シクロヘキサノン: (a) Baumgarten, H. E.; Creger, P.

L.; Villars, C. E. J. Am. Chem. Soc. 1958, 80, 6609. (b) Miyashita, M.;

Yanami, T.; Yoshikoshi, A. <u>Org. Synth.</u> 1981, <u>60</u>, 117.

(21) (a) Suzuki, M.; Kawagishi, T.; Yanagisawa, A.; Suzuki, T.; Okamura, N.;
Noyori, R. <u>Bull. Chem. Soc. Jpn.</u> 1988, <u>61</u>, 1299. (b) Tanaka, T.; Hazato, A.;
Bannai, K.; Okamura, N.; Sugiura, S.; Manabe, K.; Toru, T.; Kurozumi, S.;
Suzuki, M.; Kawagishi, T.; Noyori, R. <u>Tetrahedron</u> 1987, <u>43</u>, 813.

<u>論文リスト</u>

副論文

(1) Synthesis of (7<u>E</u>)- and (7<u>Z</u>)-Punaglandin 4. Structural Revision.
 Suzuki, M.; Morita, Y.; Yanagisawa, A.; Noyori, R.; Baker, B. J.;
 Scheuer, P. J.

J. Am. Chem. Soc. 1986, 108, 5021.

(2) Synthesis and Structural Revision of (7<u>E</u>) - and (7<u>Z</u>)-Punaglandin 4.
 Suzuki, M.; Morita, Y.; Yanagisawa, A.; Baker, B. J.; Scheuer, P. J.;
 Noyori, R.

J. Org. Chem. 1988, 53, 286.

(3) An Organozinc Aid in Alkylation and Acylation of Lithium Enolates. Morita, Y.; Suzuki, M.; Noyori, R.

<u>J. Org. Chem.</u> 印刷中.

参考論文

 (1) Conjugate Addition of Phosphine-Complexed Organocopper Reagents to α, β-Unsaturated Ketones. Suzuki, M.; Suzuki, T.; Kawagishi, T.; Morita, Y.; Noyori, R. <u>Isr. J. Chem.</u> 1984, <u>24</u>, 118.
 (2) Acyclic Stereoselection. 43. Stereoselective Synthesis of the C-8 to C-15 Moiety of Erythronolide A.

Hoagland, S.; Morita, Y.; Bai, D. L.; Märki, H.-P.; Kees, K.; Brown, L.; Heathcock, C. H.

J. Org. Chem. 1988, 53, 4730.