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We give general formulations of the multidimensional multicanonical algorithm, simulated
tempering, and replica-exchange method. We generalize the original potential energy function E0 by
adding any physical quantity V of interest as a new energy term. These multidimensional
generalized-ensemble algorithms then perform a random walk not only in E0 space but also in V
space. Among the three algorithms, the replica-exchange method is the easiest to perform because
the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the
multicanonical algorithm and simulated tempering are not a priori known. We give a simple
procedure for obtaining the weight factors for these two latter algorithms, which uses a short
replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of
applications of these algorithms, we have performed a two-dimensional replica-exchange simulation
and a two-dimensional simulated-tempering simulation using an �-helical peptide system. From
these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous
solution. © 2009 American Institute of Physics. �DOI: 10.1063/1.3127783�

I. INTRODUCTION

Canonical fixed-temperature simulations of complex
systems such as biopolymers are greatly hampered by the
multiple-minima problem. Because simulations at low tem-
peratures tend to get trapped in a few of a huge number of
local-minimum-energy states which are separated by high-
energy barriers, it is very difficult to obtain accurate canoni-
cal distributions at low temperatures by conventional Monte
Carlo �MC� and molecular dynamics �MD� simulations. One
way to overcome this multiple-minima problem is to perform
a simulation in a generalized ensemble where each state is
weighted by an artificial, non-Boltzmann probability weight
factor so that a random walk in potential energy space may
be realized �for reviews see, e.g., Refs. 1–5�. The random
walk allows the simulation to overcome any energy barrier
and to sample a much wider configurational space than by
conventional methods. Monitoring the energy in a single
simulation run, one can obtain not only the global-minimum-
energy state but also canonical-ensemble averages as func-
tions of temperature by the single-histogram6 and/or
multiple-histogram7,8 reweighting techniques �an extension
of the multiple-histogram method is also referred to as the
weighted histogram analysis method8 �WHAM��.

Three of well-known generalized-ensemble algorithms
are multicanonical algorithm �MUCA�,9,10 simulated temper-
ing �ST�,11,12 and replica-exchange method �REM�.13,14

MUCA is also referred to as adaptive umbrella sampling15 of
the potential energy.16 ST is also referred to as the method of
expanded ensemble11 and for a review, see, e.g., Ref. 17. The
REM is also referred to as multiple Markov chain method18

and parallel tempering.17 In MUCA, ST, and REM, random

walks in potential energy �MUCA� and temperature �ST and
REM� are realized.

MUCA was introduced to the chemical physics field in
Ref. 19, ST was in Refs. 11 and 20–22, and REM was in
Refs. 23–27. The MD version of MUCA was developed in
Refs. 28 and 29. The details of MD algorithm have also been
worked out for REM in Ref. 24 �it is referred to as Replica-
Exchange Molecular Dynamics �REMD��. This led to a wide
application of REM in the protein folding and related prob-
lems �see, e.g., Refs. 30–41�.

MUCA has been extended so that random walks in other
parameters instead of energy may be obtained.42–48 More-
over, two-dimensional �or two-component� extensions of
MUCA can be found in Refs. 44, 45, and 49–51. One is also
naturally led to a multidimensional �or multivariable� exten-
sion of REM, which we refer to as multidimensional replica-
exchange method �MREM�,52 where not only temperature
but also other parameters of the system is exchanged in the
replica-exchange process. An example of two-dimensional
REM is temperature-pressure replica exchange.3,53,54 A spe-
cial realization of MREM is replica-exchange umbrella
sampling52,55 and it is particularly useful in free energy cal-
culations �see also Ref. 56 for a similar idea�. MREM is also
referred to as generalized parallel sampling,57 Hamiltonian
REM,58 REM using the generalized effective potential,59 and
model hopping.60 The MREM formulation52 led to many ex-
tensions of REM where parameters in the potential energy
other than temperature �or special ensembles of the systems�
are exchanged �see, for instance, Refs. 2, 3, and 61–69�.
Finally, ST can be extended to a multidimensional version as
described below in detail.

In this article, we present general formulations of the
multidimensional generalized-ensemble algorithms such as
multidimensional MUCA, multidimensional ST, and MREM.
We generalize the original potential energy function E0 by
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adding any physical quantities of interest V� as a new energy
term with coupling constants ���� , ��=1, . . . ,L�. Preliminary
results have been reported elsewhere.70

While the REM simulation can be easily performed be-
cause no weight factor determination is necessary, the re-
quired number of replicas can become quite large and com-
putationally demanding. From previous works,5,62,63,65 it was
also shown that the random walks in the MUCA and ST
simulations are more enhanced than that in the REM simu-
lation. We thus prefer to use MUCA or ST, where only a
single replica is simulated, instead of REM. However, the
weight factors of MUCA and ST simulations are not known
a priori and we need to estimate them. It is very difficult to
obtain optimal weight factors for MUCA and ST. In the pre-
vious works,61–63,65,71 we proposed powerful methods to de-
termine these weight factors. Namely, we first perform a
short REM simulation and use the multiple-histogram re-
weighting techniques to determine the weight factors of
MUCA and ST. In the present article, we describe the
method to determine the weight factors for the multidimen-
sional MUCA and ST by employing the MREM and the
generalized multiple-histogram reweighting techniques.

As a test of the effectiveness of the methods, we have
performed the two-dimensional REM simulation and the
two-dimensional ST simulation of an �-helical peptide sys-
tem with a solvent model. The weight factor for the two-
dimensional ST simulation was obtained by the two-
dimensional REM simulation.

The present article is organized as follows. In Sec. II, we
describe the methods. In particular, in Sec. II A, we present
our generalized energy function. In Secs. II B, II C, and II D,
the multidimensional MUCA, the multidimensional ST, and
the multidimensional REM are described, respectively. In
Sec. II E, we explain the method to determine the weight
factors for the multidimensional MUCA and the multidimen-
sional ST by using the multidimensional REM and the
multiple-histogram reweighting techniques. Here, we gener-
alize the multiple-histogram reweighting techniques for the
multidimensional version. In Sec. II F, we describe the meth-
ods to calculate averages of physical quantities from these
simulations. In Sec. III, we give computational details of the
two-dimensional REM simulation and two-dimensional ST
simulation for a 17 residue �-helical peptide system with a
model solvent. In Sec. IV, we present the results. Especially,
in Secs. IV A, IV B, and IV C, we discuss the results of the
two-dimensional REM simulation, the two-dimensional ST
simulation, and detailed analysis of the solvent effects, re-
spectively. In Sec. V, we conclude the article.

II. METHODS

A. Generalized energy function

Let us consider a generalized potential energy function
E��x� of a system in state x, which depends on L parameters
�= ���1� , . . . ,��L��. Although E��x� can be any function of �,
we consider the following specific generalized potential en-
ergy function:

E��x� = E0�x� + �
�=1

L

����V��x� . �1�

Here, there are L+1 energy terms, E0�x�, and V��x���
=1, . . . ,L�, and ���� are the corresponding coupling constants
for V��x�.

After integrating out the momentum degrees of freedom,
the partition function of the system at fixed temperature T
and parameters � is given by

Z�T,�� =� dx exp�− �E��x��

=� dE0dV1, . . . ,dVLn�E0,V1, . . . ,VL�

�exp�− �E�� , �2�

where n�E0 ,V1 , ¯ ,VL� is the multidimensional density of
states:

n�E0,V1, . . . ,VL� =� dx��E0�x� − E0���V1�x� − V1�

. . .��VL�x� − VL� , �3�

�=1 /kBT, and kB is the Boltzmann constant. Here, the inte-
gration is replaced by a summation when x is discrete.

The expression in Eq. �1� is often used in simulations.
For instance, in simulations of spin systems, E0�x� and V1�x�
�here, L=1 and x= �S1 ,S2 , . . .� stand for spins� can be respec-
tively considered as the zero-field term and the magnetiza-
tion term coupled with the external field ��1�. �For Ising
model, E0=−J�	i,j
SiSj, V1=−�iSi, and ��1�=h, i.e., external
magnetic field.� In umbrella sampling72 in molecular simula-
tions, E0�x� and V��x� can be taken as the original potential
energy and the �biasing� umbrella potential energy, respec-
tively, with the coupling parameter ���� �here, x
= �q1 , . . . ,qN� where qi are the coordinate vectors of the ith
particle and N is the total number of particles�. For the mo-
lecular simulations in the isobaric-isothermal ensemble,
E0�x� and V1�x� �here, L=1� correspond to the potential en-
ergy U and the volume V coupled with the pressure P, re-
spectively. �Namely, we have x= �q1 , ¯ ,qN ,V�, E0=U, V1

=V, and ��1�=P, i.e., E� is the enthalpy without the kinetic
energy contributions.� For simulations in the grand canonical
ensemble with N particles, we have x= �q1 , . . . ,qN ,N�, and
E0�x� and V1�x� �here, L=1� correspond to the potential en-
ergy U and the total number of particles N coupled with the
chemical potential �, respectively. �Namely, we have E0

=U, V1=N, and ��1�=−�.� We remark that generalized-
ensemble algorithms in various ensembles are also discussed
in Refs. 73 and 74.

Moreover, going beyond the well-known ensembles dis-
cussed above, we can introduce any physical quantity of in-
terest �or its function� as the additional potential energy term
V�. For instance, V� can be an overlap with a reference con-
figuration in spin glass systems, an end-to-end distance, a
radius of gyration in molecular systems, etc. In such a case,
we have to carefully choose the range of ���� values so that
the new energy term ����V� will have roughly the same order
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of magnitude as the original energy term E0. We want to
perform a simulation where a random walk not only in the E0

space but also in the V� space is realized. As shown below,
this can be done by performing a multidimensional MUCA,
ST, or REM simulation.

B. Multidimensional multicanonical algorithm

The original MUCA can realize a one-dimensional ran-
dom walk in potential energy space. The MUCA algorithms
can be generalized to multidimensional ones. In this subsec-
tion, we describe the multidimensional MUCA simulation
which realizes a random walk in the �L+1�-dimensional
space of E0�x� and V��x���=1, . . . ,L�.

In the multidimensional MUCA ensemble, each state is
weighted by the MUCA weight factor WMU�E0 ,V1 , . . . ,VL�
so that a uniform energy distribution of E0, V1 , . . ., and VL

may be obtained:

PMU�E0,V1, . . . ,VL� � n�E0,V1, . . . ,VL�

�WMU�E0,V1, . . . ,VL� � const,

�4�

where n�E0 ,V1 , . . . ,VL� is the multidimensional density of
states. From this equation, we obtain

WMU�E0,V1, . . . ,VL� � exp�− �aEMU�E0,V1, . . . ,VL��

�
1

n�E0,V1, . . . ,VL�
, �5�

where we have introduced an arbitrary reference tempera-
ture, Ta=1 /kB�a, and wrote the weight factor in the
Boltzmann-like form. Here, the multicanonical potential en-
ergy is defined by

EMU�E0,V1, . . . ,VL� � kBTa ln n�E0,V1, . . . ,VL� . �6�

The multidimensional MUCA MC simulation can be per-
formed with the following Metropolis transition probability75

from state x with energy E�=E0+��=1
L ����V� to state x� with

energy E�� =E0�+��=1
L ����V��:

w�x → x�� = min�1,
WMU�E0�,V1�, . . . ,VL��
WMU�E0,V1, . . . ,VL�


�7�

=min�1,
n�E0,V1, . . . ,VL�
n�E0�,V1�, . . . ,VL�� .

A MD algorithm in the multidimensional MUCA ensemble
also naturally follows from Eq. �5�, in which a regular con-
stant temperature MD simulation �with T=Ta� is performed
by replacing the total potential energy E� by the multicanoni-
cal potential energy EMU in Newton’s equations for the kth
particle �k=1, . . . ,N� �see Refs. 28 and 29 for the one-
dimensional version�,

ṗk = −
�EMU�E0,V1, . . . ,VL�

�qk
. �8�

C. Multidimensional simulated tempering

We now consider a multidimensional ST simulation
which realizes a random walk both in temperature T and in
parameters �. The entire parameter set �= �T ,��
��T ,��1� , . . . ,��L�� becomes dynamical variables and both
the configuration and the parameter set are updated during
the simulation with a weight factor

WST��� � exp�− �E� + f���� , �9�

where the function f���= f�T ,�� is chosen so that the prob-
ability distribution of � is flat:

PST��� �� dE0dV1, . . . ,dVLn�E0,V1, . . . ,VL�

�exp�− �E� + f���� � const. �10�

This means that f��� is the dimensionless �“Helmholtz”�
free energy:

exp�− f���� =� dE0dV1, . . . ,dVLn�E0,V1, . . . ,VL�

�exp�− �E�� . �11�

In the numerical work we discretize the parameter set �
in M�=M0�M1� ¯ �ML� different values: �m

��Tm0
,�m���Tm0

,�m1

�1� , . . . ,�mL

�L��, where m0=1 , . . . ,M0 ,m�

=1, . . . ,M���=1, . . . ,L�. Without loss of generality we can
order the parameters so that T1�T2� ¯ �TM0

and �1
���

��2
���� ¯ ��M�

��� �for each �=1, . . . ,L�. The free energy

f��m� is now written as fm0,m1,. . .,mL
= f�Tm0

,�m1

�1� , . . . ,�mL

�L��.
Once the initial configuration and the initial parameter

set are chosen, the multidimensional ST is realized by alter-
nately performing the following two steps:

�1� A “canonical” MC or MD simulation at the fixed pa-
rameter set �m= �Tm0

,�m�= �Tm0
,�m1

�1� , . . . ,�mL

�L�� is
carried out for a certain steps with the weight factor
exp�−�m0

E�m
� �for fixed �m, f��m� in Eq. �9� does not

contribute�.
�2� We update the parameter set �m to a new parameter set

�m	1 in which one of the parameters in �m is changed
to a neighboring value with the configuration and the
other parameters fixed. The transition probability of
this parameter updating process is given by the follow-
ing Metropolis criterion:

w��m → �m	1� = min�1,
WST��m	1�
WST��m�


�12�

=min�1,exp�− 
�� .

Here, there are two possibilities for �m	1, namely, T- and
����-updates. For T-update, we have �m	1= �Tm0	1 ,�m� with


 = ��m0	1 − �m0
�E�m

− �fm0	1,m1,. . .,mL
− fm0,m1,. . .,mL

� .

�13�

For ����-update �for one of �=1, . . . ,L�, we have �m	1

= �Tm0
,�m�	1� with
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 = �m0
�E�m�	1

− E�m�

� − �fm0,. . .,m�	1,. . . − fm0,. . .,m�,. . .� ,

�14�

where �m�	1= �. . . ,�m�−1

��−1� ,�m�	1
��� ,�m�+1

��+1� , . . .� and �m�

= �. . . ,�m�−1

��−1� ,�m�

��� ,�m�+1

��+1� , . . .�. Note that for the case of the
function in Eq. �1�, Eq. �14� becomes


 = �m0
��m�	1

��� − �m�

����V� − �fm0,. . .,m�	1,. . . − fm0,. . .,m�,. . .� .

�15�

We remark that when MD simulations are performed in
step 1 above, we also have to deal with the momenta pk,
where pk is the momentum of atom k�k=1, . . . ,N�, and the
kinetic energy term should be included in the weight factor.
When temperature Tm0	1 is accepted for T-update in step 2,
we rescale the momenta in the same way as in REMD,24

pk� =�Tm0	1

Tm0

pk. �16�

The kinetic energy terms then cancel out in Eq. �13� and we
can use the same 
 �see Eqs. �13�–�15�� in the Metropolis
criterion in step 2 for both MC and MD simulations.

Moreover, we remark that the random walk in � and in
����� for the ST simulation corresponds to that in E0 and in
V� for the MUCA simulation,

E0 ↔ � ,

V� ↔ ����� �� = 1, . . . ,L� . �17�

They are in conjugate relation.

D. Multidimensional replica-exchange method

We now describe the MREM �Ref. 52�. The system for
the MREM consists of M noninteracting replicas of the origi-
nal system in the “canonical ensemble” with M�=M0�M1

� ¯ �ML� different parameter sets �m�m=1, . . . ,M�,
where �m= �Tm0

,�m1

�1� , . . . ,�mL

�L�� and m0=1 , . . . ,M0 ,m�

=1, . . . ,M���=1, . . . ,L�. Because the replicas are noninter-
acting, the weight factor is given by the product of
Boltzmann-like factors for each replica:

WMREM � �
m0=1

M0

�
m1=1

M1

¯ �
mL=1

ML

exp�− �m0
E�m

� . �18�

REM closely follows the ST procedures described
above. The multidimensional REM is realized by alternately
performing the following two steps:

�1� For each replica, a canonical MC or MD simulation at
the fixed parameter set is carried out simultaneously
and independently for a certain steps.

�2� We exchange a pair of replicas i and j which are at the
parameter sets �m and �m+1, respectively. The transi-
tion probability for this replica-exchange process is
given by

w��m ↔ �m+1� = min�1,exp�− 
�� , �19�

where we have


 = ��m0
− �m0+1��E�m

�q�j�� − E�m
�q�i��� �20�

for T-exchange, and


 = �m0
��E�m�+1

�q�j�� − E�m�+1
�q�i���

− �E�m�

�q�j�� − E�m�

�q�i���� �21�

for ����-exchange �for one of �=1, . . . ,L�. Here, q�i� and
q�j� stand for configuration variables for replicas i and j,
respectively, before the replica exchange. For the case
of the function in Eq. �1�, 
 in Eq. �21� is given by


 = �m0
��m�

��� − �m�+1
��� ��V��q�j�� − V��q�i��� . �22�

We remark that when MD simulations are performed in
step 1 above, we also have to deal with the momenta pk,
where pk is the momentum of atom k�k=1, . . . ,N�, and the
kinetic energy term should be included in the weight factor.
When the T-exchange between Tm0

of replica i and Tm0+1 of
replica j is accepted in step 2, we rescale the momenta as
follows:24

pk
�i�� =�Tm0+1

Tm0

pk
�i�,

�23�

pk
�j�� =� Tm0

Tm0+1
pk

�j�.

The kinetic energy terms then cancel out in Eq. �20� and we
can use the same 
 �see Eqs. �20�–�22�� in the Metropolis
criterion in step 2 for both MC and MD simulations.

Usually, M0 and M� are taken to be even integers. The
M0 /2 or M� /2 pairs of replicas corresponding to neighboring
T or ���� are simultaneously exchanged, and the pairing is
alternated between the two possible choices, i.e.,
��T1 ,T2� , �T3 ,T4� , . . .� and ��T2 ,T3� , �T4 ,T5� , . . .� or
���1

��� ,�2
���� , ��3

��� ,�4
���� , . . .� and ���2

��� ,�3
���� , ��4

��� ,�5
���� , . . .�,

respectively.
We also remark that we can easily generalize the �one-

dimensional� multicanonical replica-exchange method61–63

�MUCAREM� and simulated-tempering replica-exchange
method65 �STREM� to multidimensional ones. Here, MU-
CAREM is a REM where each replica corresponds to a
MUCA ensemble with a finite energy range. For replica ex-
changes to occur, the neighboring MUCA ensembles are cho-
sen so that they have overlapping energy distributions �for
details, see Refs. 61–63�. Likewise, STREM is a REM where
each replica corresponds to a ST ensemble with a finite tem-
perature range. For replica exchanges to occur, the neighbor-
ing ST ensembles are chosen so that they have overlapping
temperature distributions �for details, see Ref. 65�.

The multidimensional generalizations of MUCAREM
and STREM can naturally be obtained by considering the
following generalization:
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E → �E0,V1, . . . ,VL� ,

T → � = �T,��1�, . . . ,��L�� . �24�

MUCAREM can be introduced to each or some of E0 and
V���=1, . . . ,L� and STREM can be introduced to each or
some of T and ������=1, . . . ,L�. Namely, each replica of
MUCAREM corresponds to MUCA ensemble with finite
ranges of energy �chosen from E0 ,V1 , . . . ,VL� and each rep-
lica of STREM corresponds to ST ensemble with finite
ranges of parameters �chosen from T ,��1� , . . . ,��L��.

E. Weight factor determinations for multidimensional
MUCA and ST

Among the three algorithms described above, only
MREM can be performed without much preparation because

the weight factor for MREM is just a product of regular
Boltzmann-like factors. On the other hand, we do not know
the MUCA and ST weight factors a priori and need to esti-
mate them. We proposed a powerful method for the weight
factor determination in the one-dimensional MUCA and
ST.61,71,62,63,65 In this method, we use a short REM simula-
tion and the multiple-histogram reweighting techniques.
Here, we present our general formulation of the new method
for the multidimensional case �see also Refs. 4, 5, and 70�.

Suppose we have made a single run of a short multidi-
mensional REM simulation with M�=M0�M1� ¯ �ML�
replicas that correspond to M different parameter sets
�m�m=1, . . . ,M�. Let Nm0,m1,. . .,mL

�E0 ,V1 , . . . ,VL� and
nm0,m1,. . .,mL

be the �L+1�-dimensional potential energy histo-
gram and the total number of samples obtained for the m-th
parameter set �m= �Tm0

,�m1

�1� , . . . ,�mL

�L��, respectively. The gen-
eralized WHAM equations are then given by

n�E0,V1, . . . ,VL� =

�
m0,m1,. . .,mL

Nm0,m1,. . .,mL
�E0,V1, . . . ,VL�

�
m0,m1,. . .,mL

nm0,m1,. . .,mL
exp�fm0,m1,. . .,mL

− �m0
E�m

�
, �25�

and

exp�− fm0,m1,. . .,mL
� = �

E0,V1,. . .,VL

n�E0,V1, . . . ,VL�

�exp�− �m0
E�m

� . �26�

The density of states n�E0 ,V1 , . . . ,VL� and the dimensionless
free energy fm0,m1,. . .,mL

are obtained by solving Eqs. �25� and
�26� self-consistently by iteration. Namely, we can set all the
fm0,m1,. . .,mL

to, e.g., zero initially. We then use Eq. �25� to
obtain n�E0 ,V1 , . . . ,VL�, which is substituted into Eq. �26� to
obtain next values of fm0,m1,. . .,mL

, and so on. The weight fac-
tors for the multidimensional MUCA �see Eq. �5�� and the
multidimensional ST �see Eqs. �9� and �11�� are then ob-
tained from the generalized density of states
n�E0 ,V1 , . . . ,VL� and the dimensionless free energy
fm0,m1,. . .,mL

, respectively.
We remark that for complex systems, the MUCA or ST

simulation with the MUCA or ST weight factor obtained by
the above method is often insufficient. In such cases, we can
iterate the multidimensional MUCA or ST simulation in
which the estimate of the multidimensional MUCA or ST
weight factor is updated by the single- or multiple-histogram
reweighting techniques, respectively.63 To be more specific,
this iterative process can be summarized as follows. The
MUCA production run corresponds to a MUCA simulation
with the weight factor WMU�E0 ,V1 , . . . ,VL�. Let
NMU�E0 ,V1 , . . . ,VL� be the histogram of the distribution
PMU�E0 ,V1 , . . . ,VL� of E0 ,V1 , . . . ,VL, obtained by the pro-

duction run. The new estimate of the density of states
n�E0 ,V1 , . . . ,VL� can be given by the single-histogram re-
weighting techniques as follows �see Eq. �4��:

n�E0,V1, . . . ,VL� =
NMU�E0,V1, . . . ,VL�
WMU�E0,V1, . . . ,VL�

. �27�

On the other hand, the ST production run corresponds to a
ST simulation with the weight factor WST���. From this ST
production run, we obtain Nm0,m1,. . .,mL

�E0 ,V1 , . . . ,VL� and
nm0,m1,. . .,mL

in Eq. �25�. The improved dimensionless free en-
ergy can be obtained by the multiple-histogram reweighting
techniques of Eqs. �25� and �26�. The improved density of
states and the dimensionless free energy lead to a new
MUCA weight factor and a new ST weight factor. The results
of this production run may yield optimal MUCA and ST
weight factors that give sufficiently flat energy and parameter
distributions for the entire energy and parameter ranges of
interest, respectively. If not, we can repeat the above process
by obtaining the third estimate of the MUCA and ST weight
factors by a MUCA and ST production run, and so on.

Moreover, we can iterate the multidimensional
MUCAREM and STREM which were described at the end
of Sec. II D using the multiple-histogram reweighting tech-
niques, and obtain accurate multidimensional MUCA and ST
weight factors as in the case for the one-dimensional case.63

214105-5 Multidimensional generalized-ensemble J. Chem. Phys. 130, 214105 �2009�

Downloaded 19 Jan 2010 to 133.6.32.53. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



F. Averages of physical quantities

In this subsection, we present the equations to calculate
ensemble averages of physical quantities with any tempera-

ture T and any parameter � values. The expectation values of
a physical quantity A at any T�=1 /kB�� and any � is given
by

	A
T,� =

�
E0,V1,. . .,VL

A�E0,V1, . . . ,VL�n�E0,V1, . . . ,VL�exp�− �E��

�
E0,V1,. . .,VL

n�E0,V1, . . . ,VL�exp�− �E��
. �28�

For the multidimensional MUCA simulation with the weight
factor WMU�E0 , . . . ,VL�, the best estimate of the density of
states n�E0 ,V1 , . . . ,VL� can be given by the single-histogram
reweighting techniques �see Eq. �27��. By substituting this
quantity into Eq. �28�, one can calculate the ensemble aver-
age of the physical quantity A as functions of T and �. More-
over, the ensemble average of the physical quantity A �in-
cluding those that cannot be expressed as a function of E0

and V���=1, . . . ,L�� can be obtained as long as one stores
the “trajectory” xk from the production run, namely, we have

	A
T,� =

�
xk

A�xk�WMU
−1 �E0�xk�, . . . ,VL�xk��exp�− �E��xk��

�
xk

WMU
−1 �E0�xk�, . . . ,VL�xk��exp�− �E��xk��

.

�29�

Here, xk is the configuration at the kth MC �or MD� step.

For the multidimensional ST or REM simulation, an en-
semble average of the physical quantity A at any T and any �
is given by the multiple-histogram reweighting techniques as
follows. In the ST or the REM simulation, we first obtain
Nm0,m1,. . .,mL

�E0 ,V1 , . . . ,VL� and nm0,m1,. . .,mL
in Eq. �25�. The

density of states n�E0 ,V1 , . . . ,VL� and the dimensionless free
energy fm0,m1,. . .,mL

can then be obtained by solving Eqs. �25�
and �26� self-consistently by iteration. Substituting the ob-
tained density of states n�E0 ,V1 , . . . ,VL� into Eq. �28�, one
can calculate the ensemble average of the physical quantity A
at any T and any �.

Moreover, the ensemble average of the physical quantity
A �including those that cannot be expressed as functions
of E0 and V���=1, . . . ,L�� can be obtained from the trajec-
tory of configurations of the production run.62 Namely, we
first obtain fm0,m1,. . .,mL

for each �m0=1 , . . . ,M0 ,m1

=1 , . . . ,M1 , . . . ,mL=1, . . . ,ML� by solving Eqs. �25� and
�26� self-consistently, and then we have

	A
T,� =

�
m0=1

M0

. . . �
mL=1

ML

�
xm

A�xm�
exp�− �E��xm��

�
n0=1

M0

. . . �
nL=1

ML

nn0,. . .,nL
exp�fn0,. . .,nL

− �n0
E�n

�xm��

�
m0=1

M0

. . . �
mL=1

ML

�
xm

exp�− �E��xm��

�
n0=1

M0

. . . �
nL=1

ML

nn0,. . .,nL
exp�fn0,. . .nL

− �n0
E�n

�xm��

, �30�

where xm are the configurations obtained at �m= �Tm0
,�m�

= �Tm0
,�m1

�1� , ¯ ,�mL

�L��. Here, the trajectories xm are stored for
each �m separately.

III. COMPUTATIONAL DETAILS

We tested the effectiveness of the new algorithms by
using a system of a 17-residue fragment of ribonuclease T1.
It is known by experiments that this peptide fragment forms
�-helical conformations.76 The amino-acid sequence is SSD-

VSTAQIAAYKLHED, which is the part from residue Ser-13
through Asp-29 with the mutations A21I and G23A from the
native sequence.76 We have performed a two-dimensional
REM simulation and a two-dimensional ST simulation. In
these simulations, we used the following energy function:

E� = E0 + �Esol, �31�

where we set L=1, V1=Esol, and ��1�=� in Eq. �1�. Here, E0

is the potential energy of the solute and Esol is the solvation
free energy. The parameters in the conformational energy as
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well as the molecular geometry were taken from
ECEPP/2.77–79 The dielectric constant � was set equal to 2
according to the ECEPP prescription. The backbone was ter-
minated by a neutral NH2-group and a neutral-COOH group
at the N-terminus and at the C-terminus, respectively.

The solvation term Esol is given by the sum of terms that
are proportional to the solvent-accessible surface area of
heavy atoms of the solute,80

Esol = �
i

iSi, �32�

where the summation extends over all heavy atoms i �here,
the number of the heavy atoms is 129�, and Si is the corre-
sponding solvent-accessible surface area. For these area cal-
culations, the heavy atoms containing hydrogen atoms are
treated as “united atoms.” The constant of proportionality i

represents the contribution to the solvation free energy of
heavy atoms i per unit accessible surface area. In the present
work, we used the parameters of Ref. 80 �there are only six
different values of  for the heavy atoms�. The accessible
surface area Si is obtained by the surface area of fused
spheres centered at each united atom. The radius of the
sphere is Ri+Rw, where Rw is the effective radius of the
solvent molecule. Here, we set Ri to van der Waals radius
and Rw to 1.4 Å. For the calculation of solvent-accessible
surface area, we used the computer code NSOL.81

The computer code KONF90 �Refs. 82 and 83� was modi-
fied in order to accommodate the generalized-ensemble algo-
rithms. The peptide-bond dihedral angles � were fixed at the
value 180° for simplicity. The dihedral angles � and � in the
main chain and � in the side chains constituted the variables
to be updated in the simulations. The number of degrees of
freedom for the peptide is thus 80. One MC sweep consists
of updating all these angles once with Metropolis
evaluation75 for each update. The simulations were started
from randomly generated conformations. We prepared eight
temperatures �M0=8� which are distributed exponentially be-

tween T1=300 K and TM0
=700 K �i.e., 300.00, 338.60,

382.17, 431.36, 486.85, 549.49, 620.20, and 700.00 K� and
four equally spaced � values �M1=4� ranging from 0 to 1
�i.e., �1=0, �2=1 /3, �3=2 /3, and �4=1� in the two-
dimensional REM simulation and the two-dimensional ST
simulation. Simulations with �=0 �i.e., E�=E0� and with �
=1 �i.e., E�=E0+Esol� correspond to those in gas phase and
in aqueous solution, respectively.

In the present article, the canonical expectation value of
a physical quantity A at Tm0

and �m1
�m0=1 , . . . ,8 ;m1

=1 , . . . ,4� was calculated by the usual arithmetic mean as
follows:

	A
Tm0
,�m1

=
1

nm0,m1

�
k=1

nm0,m1

A�xm0,m1
�k�� , �33�

where xm0,m1
�k��k=1, . . . ,nm0,m1

� are the configurations ob-
tained at Tm0

and �m1
and nm0,m1

is the total number of mea-
surements made at Tm0

and �m1
. For the expectation values at

any other values of T and �, we can use the WHAM tech-
niques �namely, Eqs. �25�, �26�, and �30��.

IV. RESULTS AND DISCUSSION

A. Two-dimensional REM simulation

We first present the results of the two-dimensional REM
simulation. We used 32 replicas with the eight temperature
values and the four � values given above. Before taking the
data, we made the two-dimensional REM simulation of
100 000 MC sweeps with each replica for thermalization. We
then performed the two-dimensional REM simulation of
1 000 000 MC sweeps for each replica to determine the
weight factor for the two-dimensional ST simulation. At ev-
ery 20 MC sweeps, either T-exchange or �-exchange was
tried �the choice of T or � was made randomly�. In each case,
either set of pairs of replicas ��1,2� , . . . , �M −1,M�� or

TABLE I. Acceptance ratios of replica exchanges between pairs of temperatures, �Tm0
,Tm0+1�, �m0=1 , . . . ,8�,

with fixed �m1
�m1=1 , . . . ,4� from the two-dimensional REM simulation. In the case of m0=8, Tm0+1 is set to be

T1.

�T1 ,T2� �T2 ,T3� �T3 ,T4� �T4 ,T5� �T5 ,T6� �T6 ,T7� �T7 ,T8� �T8 ,T1�

�1 0.539 0.516 0.476 0.393 0.278 0.229 0.338 0.000
�2 0.457 0.443 0.436 0.422 0.290 0.206 0.355 0.000
�3 0.491 0.490 0.479 0.408 0.211 0.229 0.448 0.000
�4 0.495 0.478 0.450 0.306 0.177 0.339 0.496 0.000
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8
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m
0

MC sweeps (b)
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200000 600000 1e+06

m
1

MC sweeps (c)

400000
600000 1 2

34 5
6 7

8
1
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3
4

m1

MC sweeps
m0

FIG. 1. Time series of the labels of Tm0
, m0, �a� and �m1

, m1, �b� as functions of MC sweeps, and that of both Tm0
and �m1

for the region from 400 000 MC
sweeps to 700 000 MC sweeps �c�. The results were from one of the replicas �replica 1�. In �a� and �b�, MC sweeps start at 100 000 and end at 1 100 000
because the first 100 000 sweeps have been removed from the consideration for thermalization purpose.
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��2,3� , . . . , �M ,1�� was also chosen randomly, where M is
M0 and M1 for T-exchange and �-exchange, respectively.

In Table I, we list the acceptance ratios of replica ex-
changes between pairs of temperatures with fixed � in the
two-dimensional REM simulation. Although we tried
T-exchange between T8 and T1, they did not occur �see Table
I�. Except for this case, the acceptance ratios of replica ex-
changes ranged between 0.177 and 0.539 and T-exchanges
occurred frequently. The results suggest that the simulation
realized a random walk in temperature space. In Table II, we
list the acceptance ratios of replica exchanges between pairs
of � values with fixed temperatures. Although the acceptance
ratios of �-exchanges were not as uniform as in the
T-exchange case, they were all sufficiently large. The ran-
dom walk in � space was also realized in the simulation.

In Fig. 1 we show the time series of labels of Tm0
�i.e.,

m0� and �m1
�i.e., m1� for one of the replicas. The replica

realized a random walk not only in temperature space but
also in � space. The behavior of T and � for other replicas
was also similar �data not shown�. From Fig. 1, one finds that
the �-random walk is more frequent than the T-random walk.

We also show the time series of temperature T, total
energy Etot, conformational energy EC, solvation free energy
Esol, and end-to-end distance D for the same replica in Fig. 2.
Here, the end-to-end distance is defined as the distance be-
tween the nitrogen atom of backbone in N-terminus and the

oxygen atom of backbone in C-terminus. In the previous
REM simulation that covered the temperature range between
250 and 700 K in aqueous solution63 �which corresponds to
the present system with �=1�, the values of the total energy
ranged from about �190 to about �170 kcal/mol and from
about �115 to �70 kcal/mol at 294.15 and 700 K, respec-
tively. It was also shown that while the global-minimum-
energy conformation at 250 K was a complete �-helix struc-
ture �with total energy value �200 kcal/mol�, the
conformations at high temperatures were random coils. In
the present simulation, the total energy covered an energy
range from �200 to �10 kcal/mol �see Fig. 2�b��, which
covered a slightly wider energy range than that of the previ-
ous simulation.63 From Figs. 2�a� and 2�e�, we find that at
lower temperatures the end-to-end distance is about 8 Å,
which is the length of a fully �-helical conformation and that
at higher temperatures it fluctuates much for a range from 7
to 14 Å. It suggests that �-helix structures exist at low tem-
peratures and random-coil structures occur at high tempera-
tures. There are transitions from/to �-helix structures to/from
random coils during the simulation. It indicates that the REM
simulation avoided getting trapped in local-minimum-energy
states and sampled a wide configurational space.

We remark that the conformational energy tends to in-
crease and the solvation free energy tends to decrease as the
temperature increases �see Figs. 2�a�, 2�c�, and 2�d��. �The
behavior of the solvation free energy is not as clear as that of
the conformational energy, but it is more clearly shown in
Fig. 10 below.� At high temperatures, random-coil structures,
which have high conformational energy, were dominant be-

TABLE II. Acceptance ratios of replica exchanges between pairs of � pa-
rameters, ��m1

,�m1+1�, �m1=1 , . . . ,4�, with fixed temperatures Tm0
�m0

=1 , . . . ,8� from the two-dimensional REM simulation. In the case of m1

=4, �m1+1 is set to be �1.

��1 ,�2� ��2 ,�3� ��3 ,�4� ��4 ,�1�

T1 0.108 0.340 0.593 0.669
T2 0.114 0.391 0.548 0.616
T3 0.116 0.387 0.593 0.813
T4 0.139 0.468 0.759 0.958
T5 0.345 0.585 0.679 0.489
T6 0.396 0.541 0.624 0.489
T7 0.393 0.585 0.824 0.489
T8 0.475 0.749 0.971 0.492
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FIG. 2. Time series of the temperature T �a�, total energy Etot �b�, conformational energy EC �c�, solvation free energy Esol �d�, and end-to-end distance D �e�
for the same replica as in Fig. 1. The temperature is in K, the energy is in kcal/mol, and the end-to-end distance is in Å.
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FIG. 3. �Color� Contour curves and histograms of distributions of the total
energy Etot and the solvation free energy Esol ��a� and �b�� from the two-
dimensional REM simulation.
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cause of the conformational entropic effects. In addition,
these random structures had lower solvation free energy be-
cause the atoms in them were more exposed to solvent than
those in compact structures obtained at low temperatures.

The canonical probability distributions of Etot and Esol at
the 32 conditions obtained from the two-dimensional REM
simulation are shown in Fig. 3. For an optimal performance
of the REM simulation, there should be enough overlaps
between all pairs of neighboring distributions, which will
lead to sufficiently uniform and large acceptance ratios of
replica exchanges. There are indeed ample overlaps between
the neighboring distributions in Fig. 3.

The average total energy, average conformational en-
ergy, average solvation free energy multiplied by �, and av-
erage end-to-end distance as functions of temperature are
shown in Fig. 4. The average quantities were calculated by
Eq. �33�. The shapes of the total energy as a function of
temperature are sigmoidal. There exist helix-coil transitions
in the system.63 The transition temperature is obtained by the
peak in the specific heat or the derivative of the total energy.
From Fig. 4�a�, we find that the transition temperature is
about 530 K in aqueous solution as in the previous REM
simulation and about 580 K in gas phase. This implies that
the helical structures are unfolded more easily in aqueous
solution than in gas phase.84,85 We remark that these transi-
tion temperatures are unphysically high because our energy
functions are not accurate enough to give quantitative tem-
perature values. The average end-to-end distance also sug-
gests the existence of helix-coil transitions �see Fig. 4�d��.

B. Two-dimensional ST simulation

We now use the results of the two-dimensional REM
simulation to determine the weight factors for the two-
dimensional ST simulation by the multiple-histogram re-
weighting techniques. Namely, by solving the generalized
WHAM equations in Eqs. �25� and �26� with the obtained
histograms at the 32 conditions �see Fig. 3�, we obtained 32
values of the ST parameters fm0,m1

�m0=1 , . . . ,8 ;m1

=1 , . . . ,4�. In Fig. 5, we show the obtained fm0,m1
as func-

tions of the temperature label m0. With fixed m1 values, the
dimensionless free energy fm0,m1

monotonically increases as
a function of m0.

After obtaining the ST weight factors, WST

=exp�−�m0
�EC+�m1

Esol�+ fm0,m1
�, we carried out the two-

dimensional ST simulation of 1 000 000 MC sweeps for data
collection after 100 000 MC sweeps for thermalization. At
every 20 MC sweeps, either Tm0

or �m1
was updated to Tm0	1

or �m1	1, respectively �the choice of T or � update and the
choice of 	1 were made randomly�.

In Tables III and IV, we list the acceptance ratios of T-
and �-updates, respectively. Although we tried the T-updates
between T1 and T8, the trials were rejected. Except for this
case, the acceptance ratios for T-updates ranged from 0.28 to
0.66 and T-updates occurred frequently. The results suggest
that a T-random walk was realized in the simulation. In Table
IV, there were few �-updates between �1 and �4. Except for
this special case, the acceptance ratios for �-updates ranged
from 0.15 to 0.63. A random walk in � space was also real-
ized in the simulation.

In Fig. 6, we show the time series of the labels of Tm0
and �m1

�namely, m0 and m1�. A random walk not only in
temperature space but also in � space was realized in the
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FIG. 4. �Color� The average total energy �a�, average conformational energy
�b�, average of ��Esol �c�, and average end-to-end distance �d� with all the
� values as functions of temperature. The lines colored in red, green, blue,
and purple are for �1, �2, �3, and �4, respectively.
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FIG. 5. The dimensionless free energy fm0,m1
as a function of labels of

temperature, m0, obtained by the two-dimensional REM simulation. The
four curves correspond to m1=1 ,2 ,3, and 4 from top to bottom.

TABLE III. Acceptance ratios of T-updates, Tm0
→Tm0	1�m0=1 , . . . ,8�, with fixed �m1

�m1=1 , . . . ,4� in the two-dimensional ST simulation. In the cases of
m0=1 and 8, Tm0−1 and Tm0+1 are set to be T8 and T1, respectively.

Tm0
T1 T2 T3 T4 T5 T6 T7 T8

Tm0	1 T8 T2 T1 T3 T2 T4 T3 T5 T4 T6 T5 T7 T6 T8 T7 T1

�1 0.00 0.63 0.60 0.62 0.61 0.57 0.59 0.55 0.56 0.43 0.47 0.34 0.44 0.46 0.48 0.00
�2 0.00 0.59 0.66 0.57 0.65 0.56 0.62 0.56 0.58 0.43 0.51 0.36 0.37 0.54 0.54 0.00
�3 0.00 0.60 0.66 0.63 0.62 0.57 0.57 0.53 0.53 0.38 0.40 0.37 0.44 0.59 0.57 0.00
�4 0.00 0.58 0.64 0.62 0.60 0.57 0.57 0.43 0.49 0.28 0.32 0.45 0.46 0.61 0.58 0.00

214105-9 Multidimensional generalized-ensemble J. Chem. Phys. 130, 214105 �2009�

Downloaded 19 Jan 2010 to 133.6.32.53. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



simulation, as expected. We find that the �-random walk is
more frequent than the T-random walk �compare Figs. 6�a�
and 6�b��. In Fig. 7, the histogram of the distributions of m0

and m1 is shown. The histogram was flat for wide ranges of
both T and �. The two-dimensional ST simulation was thus
successful in the sense that the updates of T and � occurred
frequently and that all values of both T and � distributed
almost uniformly.

We show the time series of temperature T, total energy
Etot, conformational energy EC, solvation free energy Esol,
and end-to-end distance D from the two-dimensional ST
simulation in Fig. 8. The results are all similar to those from
the two-dimensional REM simulation in Fig. 2. The random
walk both in T space and in � space induced that both in
conformational energy space and in solvation free energy
space. From the results of the single two-dimensional ST
simulation run, we calculated average values of physical
quantities by Eq. �33�. We show the average total energy,
average conformational energy, average ��Esol, and average
end-to-end distance in Fig. 9. The results are in good agree-
ment with those of the REM simulation in Fig. 4.

We find that the results of the two-dimensional ST simu-
lation are in complete agreement with those of the two-
dimensional REM simulation for the average quantities. The
only difference between the two simulations is the number of
replicas. In the present simulation, while the REM simula-
tion used 32 replicas, the ST simulation used only one rep-
lica. Hence, we can save much computer power with ST.

C. Detailed analysis of the solvent effects

In this subsection, we discuss the results of the simula-
tions in detail with respect to the solvent effects. We found in

the previous subsections that the results of both REM and ST
simulations were essentially identical. Thus, in the following,
we describe only the results of the two-dimensional REM
simulation because it had 32 times more data than the ST
case. To investigate the dependence on the values of T and �,
we separately show the time series of the total energy Etot,
conformational energy EC, solvation free energy Esol with
two � values ��1 or �4�, and three T values �T1, T6, and T8� in
Fig. 10. Here, in gas phase, the solvation free energy Esol was
calculated only for the purpose of comparisons and does not
contribute to the total energy Etot �i.e., Etot=EC� �Etot in Fig.
10�a� has the same value as EC in Fig. 10�c��. The values of
the total energy at 300 and 700 K in aqueous solution �Fig.
10�b�� were around �180 and �90 kcal/mol, respectively.
The results agree with those in the previous �one-
dimensional� REM simulation in aqueous solution.63 The to-
tal energy in gas phase �Fig. 10�a�� also covered a wide
energy range from �140 to 0 kcal/mol. From Fig. 10, we
find that there are different behaviors of energy terms be-
tween in gas phase and in aqueous solution. For all the tem-
peratures, while the conformational energy EC in aqueous
solution �Fig. 10�d�� was slightly higher than that in gas
phase �Fig. 10�c��, the solvation free energy Esol in aqueous
solution �Fig. 10�f�� was lower than that in gas phase �Fig.
10�e��. In gas phase, the system is affected only by the con-
formational energy; on the other hand, in aqueous solution,
the system receives effects from both the conformational en-
ergy and the solvation free energy. There is a competition
between EC and Esol in aqueous solution. Thus, the confor-
mational energy in aqueous solution is slightly higher than
that in gas phase to adjust between EC and Esol.

We compare the conformations obtained with �=0 �in

TABLE IV. Acceptance ratios of �-updates, �m1
→�m1	1�m1=1 , . . . ,4�, with fixed Tm0

�m0=1 , . . . ,8� in the
two-dimensional ST simulation. In the cases of m1=1 and 4, �m1−1 and �m1+1 are set to be �4 and �1, respec-
tively.

�m1
�1 �2 �3 �4

�m1	1 �4 �2 �1 �3 �2 �4 �3 �1

T1 0.00 0.21 0.24 0.15 0.19 0.43 0.46 0.00
T2 0.00 0.29 0.28 0.19 0.27 0.45 0.46 0.00
T3 0.00 0.25 0.28 0.28 0.34 0.49 0.52 0.00
T4 0.01 0.32 0.32 0.36 0.41 0.54 0.54 0.01
T5 0.03 0.33 0.32 0.44 0.40 0.53 0.55 0.03
T6 0.01 0.38 0.38 0.41 0.43 0.43 0.52 0.01
T7 0.02 0.31 0.34 0.46 0.42 0.51 0.58 0.03
T8 0.04 0.37 0.39 0.57 0.52 0.63 0.62 0.05
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FIG. 6. Time series of the labels of Tm0
, i.e., m0 �a� and �m1

, i.e., m1 �b� as functions of MC sweeps, and those of both Tm0
and �m1

for the region from 350 000
MC sweeps to 550 000 MC sweeps �c�. In �a� and �b�, MC sweeps start at 100 000 and end at 1 100 000 because the first 100 000 sweeps have been removed
from the consideration for thermalization.
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gas phase� and those with �=1 �in aqueous solution� at the
lowest temperature �300 K�. Most conformations were com-
plete �-helix structures in both cases for all the MC sweeps
�data not shown�. In particular, we compare the lowest-total-
energy conformation in gas phase with that in aqueous solu-
tion. The total energy, conformational energy, and solvation
free energy of the lowest-total-energy conformation in gas
phase were �148.43, �148.43, and �44.93 kcal/mol, re-
spectively. On the other hand, the total energy, conforma-
tional energy, and solvation free energy of the lowest-total-
energy conformation in aqueous solution were �203.68,
�133.90, and �69.78 kcal/mol, respectively. We find that
the energy values of the two conformations are typical ones
at 300 K in Fig. 10. The results confirm the validity to use
both the lowest-total-energy conformations to clarify the dif-
ference between in gas phase and in aqueous solution at 300
K. The lowest-total-energy conformations are shown in Fig.
11. Both conformations were complete �-helix structures.
The backbones of the two conformations are essentially
identical. However, some side-chain conformations are dif-
ferent. We show the values of the “atomistic” solvation free
energy Esoli of heavy atoms i �here, Esoli=iSi in Eq. �32�� of
the two lowest-total-energy conformations in Fig. 12. There
were some heavy atoms with large differences in the atom-
istic solvation free energy between in gas phase and in aque-
ous solution. We list the values of the differences in the
atomistic solvent-accessible surface area �
Si=Si�sol�
−Si�gas�� and the atomistic solvation free energy �
Esoli

=Esoli�sol�−Esoli�gas�� of the nine heavy atoms of which the

absolute values of 
Esoli are larger than 1.2 kcal/mol in Table
V. The nine heavy atoms are the atoms of N in Ser1, OG in
Ser1, OG in Ser2, OD in Asp3, NE in Gln8, OH in Tyr12,
NZ in Lys13, OE in Glu16, and OD in Asp17. �The numbers
here correspond to the residue numbers in the peptide frag-
ment. For instance, Ser1 and Asp17 correspond to Ser-13 and
Asp-29 of the native sequence of ribonuclease T1.� We show
these heavy atoms with van der Waals representation in Fig.
11�c� �where the oxygen atoms are colored in red and the
nitrogen atoms are colored in blue�. The differences in the
total accessible surface area �
S=S�sol�−S�gas�� and the to-
tal solvation free energy �
Esol=Esol�sol�−Esol�gas�� of the
lowest-total-energy conformations between in gas phase and
in aqueous solution were 99.74 Å2 and �24.85 kcal/mol,
respectively. The atoms located on the side chains can make
hydrogen bonds with water molecules. The heavy atoms pre-
ferred to make interactions with water atoms because the
atomistic solvation free energy decreased as the accessible
surface area increased. The arrangements of side chains of
the heavy atoms occurred in aqueous solution so that their
accessible surface areas increased �i.e., to expose to water�. It
implies that at low temperatures, a random walk in � space
causes the change of side-chain structures because of the
solvent effects, while the backbone remains almost identical
��-helix structure�.

Moreover, we compare the conformations with �=0 �in
gas phase� and those with �=1 �in aqueous solution� at the
highest temperature T8. The snapshots of the conformations
at 200 000 MC sweeps, 600 000 MC sweeps, and 1 000 000
MC sweeps in gas phase and in aqueous solution are shown
in Fig. 13. The corresponding time series of the end-to-end
distance are also shown in Fig. 14. Although all structures
are extended and in random-coil state due to entropic effects,
there are different characteristics of the conformations in gas
phase and in aqueous solution. The conformations in gas
phase seem to be slightly more compact than those in aque-
ous solution. The end-to-end distance in gas phase was also
smaller than that in aqueous solution. In aqueous solution,
charged atoms prefer to make interactions with water mol-
ecules and thus there are less intrachain interactions. As a

1 2 3 4 5 6 7 8 1 2 3 4
-8
-6
-4
-2

m0 m1

ln P(m0,m1)

FIG. 7. Histogram of the distribution of the labels of Tm0
, m0, and �m1

, m1,
obtained by the two-dimensional ST simulation.

FIG. 8. Time series of the temperature �a�, total energy �b�, conformational energy �c�, solvation free energy �d�, and end-to-end distance D �e� for the
two-dimensional ST simulation.
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result, the conformations in aqueous solution are more ex-
tended than those in gas phase at the same temperature.
These results are also supported by the behavior of the sol-
vation free energy in Fig. 9�a� and the end-to-end distance in
Fig. 9�d�. At high temperatures, it implies that both structures
are random coils but a random walk of � space causes to
change structures from/to a slightly compact ones to/from
extended ones.

V. CONCLUSIONS

In this article we presented the general formulations of
the multidimensional MUCA, ST, and REM. We generalized
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FIG. 9. �Color� The average total energy �a�, average conformational energy
�b�, average of ��Esol �c�, and average end-to-end distance �d� with all the
� values as functions of temperature. The lines colored in red, green, blue,
and purple are for �1, �2, �3, and �4, respectively.

FIG. 10. �Color� Time series of the total energy ��a� and �b��, conforma-
tional energy ��c� and �d��, and solvation free energy ��e� and �f�� with �
=0 �in gas phase� and with �=1 �in aqueous solution�, respectively. The red,
green, and blue curves are for the fixed temperatures T1 �300 K�, T6 �549 K�,
and T8 �700 K�, respectively. In gas phase, the total energy of �a� is the same
as the conformational energy of �c�. The scales of the ordinate in �a� and �c�
are different from each other.

FIG. 11. �Color� The lowest-total-energy conformations obtained at the low-
est temperature T1 �300 K� with �=0 �in gas phase� �a� and �=1 �in aqueous
solution� �b�, and the two super imposed conformations �c�. VMD software
�Ref. 86� and RASTER 3D software �Ref. 87� were used to create the figures.
The solid spheres are the oxygen atoms �in red� and the nitrogen atoms �in
blue� in Table V.
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FIG. 12. The atomistic solvation free energy as a function of labels of heavy
atoms for the lowest-total-energy conformations obtained at the lowest tem-
perature T1 �300 K� with �=0 �in gas phase� and �=1 �in aqueous solution�.

FIG. 13. �Color� Snapshots at 200 000 MC sweeps ��a� and �d��, at 600 000
MC sweeps ��b� and �e��, and at 1 000 000 MC sweeps ��c� and �f�� at the
highest temperature T8. �a�–�c� correspond to �=0 �in gas phase� and �d�–�f�
to �=1 �in aqueous solution�. VMD software �Ref. 86� and RASTER 3D soft-
ware �Ref. 87� were used to create the figures.
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the original potential energy function E0 by adding any
physical quantities V� of interest as a new energy term with a
coupling constant ������=1, . . . ,L�. The simulation in multi-
dimensional MUCA algorithms realizes a random walk in
E0 ,V1 , . . . ,VL space. On the other hand, the simulations in
multidimensional ST algorithms and multidimensional REM
realize a random walk in temperature and ������=1, . . . ,L�
space.

While the multidimensional REM simulation can be eas-
ily performed because no weight factor determination is nec-
essary, the required number of replicas can be quite large and
computationally demanding. We thus prefer to use the mul-
tidimensional MUCA or ST, where only a single replica is
simulated, instead of REM. However, it is very difficult to
obtain optimal weight factors for the multidimensional
MUCA and ST. Here, we have proposed a powerful method
to determine these weight factors. Namely, we first perform a
short multidimensional REM simulation and use the
multiple-histogram reweighting techniques to determine the
weight factors for multidimensional MUCA and ST simula-
tions.

We presented the results of the two-dimensional REM
simulation and the two-dimensional ST simulation. The
weight factor for the ST simulation was easily obtained by
the two-dimensional REM simulation and the multiple-
histogram reweighing techniques. The simulations were suc-
cessful in the sense that the random walk in both temperature
space and � space were realized. As far as we know, this is
the first example of multidimensional ST simulations where
parameters of the system �as well as temperature� are up-
dated dynamically.

Among the three algorithms discussed in the present ar-
ticle, MUCA gives the most efficient sampling of configura-
tional space resulting in the most frequent random walk,
while ST gives slightly better sampling than REM.5,62,63,65

The implementations of ST and REM are, however, simpler

than MUCA because we have to change only the parameter
value T or ���� during the simulation. This allows one to
write a short Perl or shell script program to implement ST
and REM methods without extensive modifications of the
original, widely used program packages such as AMBER and
CHARMM. For instance, MMTSB �Ref. 88� is a Perl program
that incorporates REM into standard program packages.

There are many cases with the energy function such as
systems in umbrella sampling, in magnetization with an ex-
ternal field, and in isobaric-isothermal ensemble, etc. The
multidimensional generalized-ensemble algorithms that were
presented in the present article will be very useful for MC
and MD simulations of complex systems such as spin glass,
molecular, polymer, and biopolymer systems.
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