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General theory of the excitation energy transfer �EET� in the case of donor-mediator-acceptor
system was constructed by using generalized master equation �GME�. In this theory, we consider the
direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum
mechanical interference between the direct and indirect transitions automatically. Memory functions
in the GME were expressed by the overlap integrals among the time-dependent emission spectrum
of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the
mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions,
we obtained the rate of EET which consists of three terms due to the direct transition, the indirect
transition, and the interference between them. We found that the interference works effectively in
the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was
expressed by the convolution of the EET interaction and optical spectra. The interference effect
strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap
between the donor and the mediator molecules. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3117622�

I. INTRODUCTION

Excitation energy transfer �EET� among molecules is a
significant process for collecting the light energy in the pho-
tosynthetic antenna.1,2

In the weak limit of the excitation energy transfer inter-
action Uad between donor and acceptor molecules, the EET
rate was formulated by Förster.3 Förster’s rate formula is
expressed in terms of the overlap integral between the emis-
sion spectrum Ed�E� of the donor and the absorption spec-
trum Aa�E� of the acceptor as follows:

kFörster =
2�Uad

2

�
�

−�

�

dEEd�E�Aa�E� . �1�

In this formula, the interaction Uad may be expressed in two
ways which are determined by the distance between the do-
nor and acceptor molecules. In the long-distance limit, Uad

can be approximated as a dipole-dipole interaction between
transition dipole moments of the donor and acceptor mol-
ecules, which was described by Förster. In the short-distance
case, Uad largely depends on the overlap between molecular
orbitals of donor and acceptor, which was described by
Dexter.4

Recently, experimental analyses of the EET from the do-
nor molecule to the acceptor molecule mediated via the me-
diator molecule were made.5,6 The experimental study of the
EET in multichromophic arrays was also made.7,8 These
studies focused on the EET rate by the superexchange
mechanism as a function of the length of mediator molecules

as well as the configuration of the mediator molecules. In
such cases, Uad in Eq. �1� was phenomenologically estimated
as9,10

Uad��G�� = Uad
direct + Uam

1

�G� + i��m
Umd, �2�

where Uad
direct is the direct interaction of the EET from the

donor to the acceptor molecules, Umd is the EET interaction
between the donor and the mediator molecules, Uam is the
EET interaction between the mediator and the acceptor mol-
ecules, �G� is an estimate of the effective energy difference
�energy gap� between excited energies of donor and mediator
molecules, and ��m represents the energy broadening of the
excited state of the mediator. The second term on the right-
hand side in Eq. �2� is the coupling due to the superexchange
mechanism in which the excited state of the mediator mol-
ecule is virtually used. This term contributes to the indirect
interaction. The expression of Eq. �2� is applicable when the
true energy gap �G is much larger than the energy of the
vibrational fluctuation in each excited state.11 When the en-
ergy gap �G is comparable to the vibrational energy in each
excited state, the EET coupling is much affected by the dy-
namic property of vibrations in the excited state of the me-
diator. Such a case was treated in the electron transfer �ET�
theories11–13 in analogy with the resonance Raman
scattering.14,15 In the case when �G is very small, the exci-
tation can actually reside on the mediator. This case is
termed the sequential mechanism.

According to the general theory of ET by Sumi and
Kakitani12,13 for the donor-mediator-acceptor system, the
above two mechanisms �superexchange and sequential� were
treated in a unified way. They showed that the reorganization
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time of nuclear vibration �phonon� at the mediator molecule
in the intermediate state determines which mechanism is
dominant. Note that the above property of the ET will also
apply to the EET. Namely, we would formulate the EET
theory in parallel with the ET theory. However, one should
be reminded of the fact that the EET may take place coher-
ently when the coupling is strong, while it does not happen
in the ordinary ET. One should also notice that the direct
interaction will be weak in the ET reaction, while it is not
necessarily weak in the case of EET because the transition
dipole-dipole interaction between donor and acceptor is
long-range. Therefore, the direct interaction will work con-
siderably in the EET simultaneously with the superexchange
mechanism of the EET. In such a case, we expect that an
interference effect between the direct and the indirect EET
mechanisms would appear. So far, this interference effect of
the EET has not been investigated.

Recently, we constructed a general theory of EET in
dimers using generalized master equation �GME� method.16

The formalism of the GME includes forward and backward
reaction. It is important that the rate of EET can be defined
by the Förster mechanism when the dimer has little coher-
ency �Markovian limit�. When the excited state between do-
nor and acceptor has coherency �non-Markovian�, it is diffi-
cult to express analytically the experimentally observable
rate of EET. In such a case, we need to elucidate the time
profile of the probability in the GME.

In this article, we construct a general theory of the EET
in the donor-mediator-acceptor �D-M-A� system which in-
cludes both of direct and indirect interactions and also the
sequential and superexchange mechanisms systematically. To
do it, we first derive the GME using the projection operator
technique of Zwanzig17 as applied by Kenkre–Knox18 in
conjunction with the quantum Liouville equation in Sec. II.
In the obtained GME, we analyze the relation between the
memory function and optical spectra of each molecule in the
system in Sec. II. In Sec. III, we examine the rate of EET in
the limit of sequential and superexchange mechanisms. In
the discussion, we analyzed the properties of the interference
effect between the direct and indirect interaction in detail.

II. THEORY

We formulate the EET theory by taking into account the
dynamical properties of molecular excitation. Immediately
after photoabsorption by the donor molecule, the excited
state is in a nonequilibrium vibrational state. EET may hap-
pen from this nonequilibrium state in the donor molecule if
the EET coupling is strong. We adopt such a nonequilibrium
initial state in the present EET theory. �Note that the equilib-
rium initial state was assumed in the Sumi–Kakitani ET
theory12,13�. For this purpose, we define the following four
states as shown in Fig. 1. We choose the whole of three
molecules �D, M, and A� in the ground state plus a photon
before absorption as the state �p� �p state�, where thermal
equilibrium is attained. We define the three electronic �i�
states �i=d ,m ,a� where �d� is the excited donor state while
others are in the ground state, �m� is the excited mediator
state while others are in the ground state, and �a� is the ex-

cited acceptor state while others are in the ground state. In
this model, the donor molecule is excited initially �t=0�. We
can define the probability, ni�t� �i=d ,a�, that the excitation
energy is located at the ith molecule at time t. Using the
projection operator technique, we derive the GMEs which
are expressed by the closed equation with the probability at
�d� and �a� states.

A. Model Hamiltonian

In this subsection, we construct the vibrationally non-
equilibrium initial state according to Ref. 19. Under the
Condon approximation, we write the time-dependent
Hamiltonian H�t� as follows:

H�t� = H + V1�t� , �3�

H = H0 + V0, �4�

H0 = Hd�d��d� + Hm�m��m� + Ha�a��a� + �Hp + E��p��p� ,

�5�

V0 = Uad��a��d� + �d��a�� + Uam��a��m� + �m��a��

+ Umd��m��d� + �d��m�� , �6�

V1�t� = K�t���p��d� + �d��p�� , �7�

where V0 is the excitation energy transfer operator, Hp+E is
the phonon Hamiltonian in the �p� state, E is the energy of an
incident photon. We take an excitation energy plus vibra-
tional Hamiltonian as Hd in the �d� state, Hm in the �m� state,
and Ha in the �a� state, respectively, in the time-independent
Hamiltonian H. V1�t� is the excitation operator which excites
the donor molecule by a short light pulse. We define the
time-dependent interaction between �p� and �d� states as K�t�.
�d� and �m� states interacts with excitation energy transfer
interactions as Umd, and �a� and �m� states as Uam. We also
consider the direct excitation energy transfer interaction Uad

between �d� and �a�. Each interaction Uij generally includes
the Coulombic interaction and the exchange interaction be-
tween the two molecules. In the present study, we confine
ourselves to the EET interaction Uij as a transition dipole-
dipole interaction for simplicity. In the model Hamiltonian,
we assume that the operator Hi−Hp for i=d ,m ,a is commut-

Uam

Umd

Uad

FIG. 1. The model of EET from the electronically excited state �p� of the
donor molecule to the state �a� of the acceptor molecule via the state �m� of
the mediator molecule: Since the state �p� is the nonequilibrium state of the
state �d� of the donor molecule, this model of EET consists of the four states
of the three molecules D-M-A.
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able with each other. This implies that the vibrational modes
of phonons in the �p�, �d�, �m�, and �a� states are independent
of each other.

To construct the vibrationally nonequilibrium initial
state, we assume that the strength of the interaction �K�t��
between a photon and donor molecule is sufficiently weak,
and we adopt the perturbation method with respect to K�t�.

We set the density operator at t=0 as

��0� 	 �p��p�p� , �8�

where �p=e−��Hp+E� /Tr�e−��Hp+E��. The notation Tr�¯� rep-
resents the trace over the vibrational state. It is equivalent to
the density operator �p=e−�Hp /Tr�e−�Hp� of phonon field.
Then, the density operator at any time is written as follows:

��t� = exp+
−
i

�
�

0

t

H�t��dt��
	�p��p�p�exp−
 i

�
�

0

t

H�t��dt�� , �9�

where exp+�−��¯� is a positive �negative� time ordered expo-
nential. Hence, the probability at the ith state as a function of
t is given by

ni�t� = Tr��i���t��i�� . �10�

As shown in Appendix A, ni�t� can be rewritten as

ni�t� = Tr��i���t��i�� 	 Tr��i�e−iHt/��d��E�d�eiHt/��i�� , �11�

where �E is the following density operator:

�E =
1

2��
�

−�

�

d

e−iE
/�

Ad�E�
eiHd
/2�e−iHp
/��peiHd
/2�, �12�

and Ad�E� is the absorption spectrum of donor which is nor-
malized as �dEAd�E�=1.The variable 
 represents the time
after photoabsorption. The density operator �E represents the
nonequilibrium distribution of the phonon at donor molecule
immediately after a light pulse excitation.

B. Derivation of the GME

We now treat H0 as the nonperturbation term and V0 as
the perturbation term in Eq. �4�. Under the above total time-
independent Hamiltonian H, we assume that the initial state
of the system is under the vibrationally nonequilibrium �d�
state. The density matrix at the initial state is then redefined
as

��0� = �d��E�d� . �13�

Under the above initial condition, the density operator ��t� in
Eq. �11� satisfies the quantum Liouville equation as

i�
d��t�

dt
= �H,��t�� 	 L��t� . �14�

To easily derive GME using the perturbation method, we

take the interaction representation for any operator Ô as

i�
d�I�t�

dt
= �VI�t�,�I�t�� = LI�t��I�t� , �15�

where

�I�t� = eiL0t/���t� = eiL0t/�e−iLt/���0� , �16�

VI�t� = eiH0t/�V0e−iH0t/� = eiL0t/�V0, �17�

L0Ô = �H0,Ô�, LI�t�Ô = �VI�t�,Ô� . �18�

We use the projection operator technique which satisfies P2

= P and define it as follows:

�i�PÔ�j� = �ij�1 − �im��ETr��i�Ô�i��, for any i, j = d,m,a .

�19�

The projector P projects only to the diagonal part of the
density operator of �d� and �a� states because the information
we need is the probabilities of �d� and �a�. Using the projec-
tor P, and because PLI�t�P= �1− P��I�0�=0, Eq. �15� can be
expressed as follows:17

i�
dP�I�t�

dt
= −

i

�
�

0

t

dt1PLI�t�exp+−
i

�
�

t1

t

dt2QLI�t2��
	QLI�t1�P�I�t1� , �20�

where we defined Q	1− P. Taking the trace over the pho-
non states of the above equation and by the definition ni�t�
=Tr��ii ���t���, we can obtain the following GME:

dni�t�
dt

= �
k=d,a

�
0

t

dt1Mik�t,t1�nk�t1� , �21�

where i=d ,a. The memory function Mij�t , t1� is expressed as
follows:

Mij�t,t1� = −
1

�2Tr�ii�LI�t�exp+−
i

�
�

t1

t

dt2QLI�t2��
	QLI�t1��j j��E� . �22�

C. Memory function

We now expand the memory function Mad�t , t1� to the
fourth order of LI�t� as follows:

Mad�t,t1�

= −
1

�2 ��aa�LI�t�QLI�t1��dd��E

+
i

�3�
t1

t

dt2��aa�LI�t�QLI�t2�U�t2,t1�QLI�t1��dd��E

+
1

�4�
t1

t

dt2�
t1

t2

dt3��aa�LI�t�QLI�t2�QLI�t3�U�t3,t1�

	QLI�t1��dd��E, �23�

where �¯�E	Tr�¯�E�. We defined the operator U�t , t1� and
approximated it as follows:
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U�t,t1� 	 exp+−
1

�2�
t1

t

dt2�
t1

t2

dt3QLI�t2�QLI�t3��
� exp+−

1

�2�
t1

t

dt2�
t1

t2

dt3LI�t2�LI�t3�� . �24�

1. Second-order perturbation †First term
of Eq. „23…‡

The first, second, and third terms on the right-hand side
of Eq. �23� are obtained by the second, third, and fourth-
order perturbations, respectively, in Eq. �22�. Let us express
the first term of Eq. �23� in the Hilbert space as follows:20

Mad
�2��� + /2,� − /2� = 2Uad

2 Re�W�2��,���/�2, �25�

where the time correlation function W�2�� ,�� is defined as
follows:

W�2��,�� = �eiHdt/�e−iHp�t−t1�/�e−iHdt1/��E�eiHp�t−t1�/�e−iHa�t−t1�/��p

= �eiHd��+/2�/�e−iHp/�e−iHd��−/2�/��E�eiHp/�e−iHa/��p,

�26�

where = t− t1 and �= �t+ t1� /2. W�2�� ,�� is expressed with
diagrams as in Fig. 2�a�. Equation �25� represents a direct

transition from �d� to �a� states which is not affected by the
quantum effect of the �m� state. Applying the Fourier trans-
formation with  to the two-time correlation function of Eq.
�26�, we obtain the following convolution form:

� de−iE�/�W�2��,�� = 2��� dE�Ed�E,E�,��Aa�E� − E�� ,

�27�

where Ed�E ,E� ,�� in Eq. �27� is equivalent to the time-
dependent emission spectrum for donor as follows:14

Ed�E,E�,�� =
1

2��
�

−�

�

d�eiE��/�

	�eiHd��−�/2�/�eiHp�/�e−iHd��+�/2�/��E, �28�

where it satisfies the normalization condition
�dE�Ed�E ,E� ,��=1. Aa�E� is equivalent to the absorption
spectrum of acceptor molecule because we have

Aa�E� − E�� =
1

2��
�

−�

�

d
�e−i�E�−E��
�/��eiHa
�/�e−iHp
�/��p,

�29�

where it satisfies the normalization condition �d��Aa����
=1. Rearranging the relations about the above optical spec-
trum forms, we obtain

Mad
�2��� + /2,� − /2� =� dE�� d�Ed�E,E�,��

	Im
�2��E�,�;�Aa��� , �30�

where

Im
�2��E�,�;� 	

2Uad
2

�2 � d��E�cos��E/��

	��� − �E� − �E�� . �31�

2. Fourth-order perturbation †Third term
of Eq. „23…‡

The third term in Eq. �23� is expressed by the fourth-
order perturbation in the Hilbert space as follows:20

Mad
�4��t,t1� =

Umd
2 Uam

2

�4 �
t1

t

dt2�
t1

t2

dt3�W�4��t3 − t1,t2 − t;�t2 − t3�/2 + �t − t1�/2,��� + W�4��t1 − t3,t − t2;�t2 − t3�/2 + �t − t1�/2,���

+ W�4��t1 − t3,t2 − t;�t2 − t3�/2 + �t − t1�/2,��� + W�4��t3 − t1,t − t2;�t2 − t3�/2 + �t − t1�/2,���

+ W�4��t1 − t2,t3 − t;�t3 − t2�/2 + �t − t1�/2,��� + W�4��t2 − t1,t − t3;�t3 − t2�/2 + �t − t1�/2,���� , �32�

where ��	�t+ t2+ t3+ t1� /4 and we neglected the terms whose factors of the EET interactions are Uad
2 Umd

2 and Uad
2 Uam

2

τt1

t(a)

dt
{t=µ,σ|0<σ−µ<τ}

t

t2

t1(b)

d m a
ν

µ σ

|µ−σ| < 2τ’

τ’ν’

tt1

t3 t2

(c)

< 2τ

FIG. 2. The diagrams of the time correlation functions by �a� second-order
perturbation, �b� third-order perturbation, and �c� fourth-order perturbation.
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according to Sumi–Kakitani theory.12,13 This process of W�4��� ,
 ;� ,��� is expressed as a diagram in Fig. 2�c�. We then can
write

W�4���,
;�,��� = �eiHdt3/�eiHp�t1−t3�/�e−iHdt1/��E�eiHa�t2−t�/�e−iHp�t2−t�/��p�e−iHp�t1−t3�/�eiHm�t−t3�/�eiHp�t2−t�/�e−iHm�t2−t1�/��p

= �eiHd����−�/2�−�/2�/�eiHp�/�e−iHd����−�/2�+�/2�/��E�eiHa
/�e−iHp
/��p�e−iHp�/�eiHm��+��−
�/2�/�eiHp
/�e−iHm��−��−
�/2�/��p,

�33�

where �= t1− t3 is the transition time from the �d� state to the
�m� state, 
= t2− t is the transition time from the �m� state to
the �a� state, and �= �t2+ t� /2− �t1+ t3� /2 is the average ex-
istence time when the system is in the �m� state.

There are following relations about time variables �, 
,
and �:

�� − 
� � 2� � 2 , �34�

where = t− t1 in Eq. �22�. Equation �34� is the condition to
integrate over the region in Eq. �32� with � and 
. Thus far,
time variable  in the memory function has been constant.
We now assume that

� � , and �� − �/2 � � �35�

hold. We know that this assumption will change the time
profile of memory function to some extent, but the theory
will still be consistent because the rate constant becomes the
same as Sumi–Kakitani theory when we apply the Markov
approximation to the changed memory function. In this case,
Eq. �32� can be simplified as follows:

Mad
�4��� + /2,� − /2�

=
Umd

2 Uam
2

�4 � �
��−
��2

d�d
W�4���,
;,�� . �36�

Equation �36� means that an indirect process from �d� to �a�
states via �m� state works. Under the above perturbative
treatment, integrand W�4��� ,
 ; ,�� in the case of �m, �m

being the relaxation time of �m� state�, will converge to a
constant ��0� because in this time scale excitation energy is
trapped in the steady �m� state as mentioned in Sumi–
Kakitani theory.12,13 If we integrate Eq. �36� with  from 0 to
�, it diverges. They then introduced a damping term intu-
itively. After the Sumi–Kakitani theory was published, we
could derived the damping term in the intermediate state
using the Dyson equation.21 We found that the operator
U�t3 , t1� in the last term of Eq. �23� leads to the damping
term to prevent the divergence. In this article, we decouple
the integrand of the last term as follows:

��aa�LI�t�QLI�t2�QLI�t3�U�t3,t1�QLI�t1��dd��E

� ��aa�LI�t�QLI�t2�QLI�t3�QLI�t1��dd��E

	��mm�U�t3,t1��mm��p. �37�

We make an approximation that the decoupled term works as
the probability at the �m� state

��mm�U�t3,t1��mm��p � ��mm�U�,0��mm��p 	 nm�� .

�38�

As shown in Appendix B, we obtain the effective fourth-
order memory function as

Mad
�4��� + /2,� − /2�

=
Umd

2 Uam
2

�4 � �
��−
��2

d�d
W�4���,
;,��

	exp− 2�
0



�m���d�� , �39�

where 2�m��� is the damping factor defined in Eq. �B6�
Equation �39� is the general form of the memory func-

tion of the indirect EET in the D-M-A system.
Applying the Fourier transformation with � and 
 to the

four-time correlation function in Eq. �33�, we obtain the fol-
lowing convolution form:

�
−�

�

d
e−i��
/��
−�

�

d�eiE��/�W�4���,
;,��

= 4�2�2�
−�

�

dE��
−�

�

d��Ed�E,E�,��Am�E� − E�

	Em�E� − E�,�� − ��,��Aa���� , �40�

where Em��1 ,�2 , t� is the time-dependent emission spec-
trum for mediator. It is rewritten as follows:

Em��1,�2,�

=
1

�2���2Am��1��−�

�

d��e−i�1��/��
−�

�

d
�ei�2
�/�

	�e−iHp��/�eiHm�+���−
��/2�/�eiHp
�/�e−iHm�−���−
��/2�/��p,

�41�

where Em��1 ,�2 ,� satisfies the normalization condition
�Em��1 ,�2 ,�d�2=1. Rearranging the relations about the
above optical spectrum forms in Eq. �40�, we obtain

W�4���,
;,�� = �
−�

�

dE��
−�

�

d�Ed�E,E�,��

	Im�
�4��E�,�;
,�,�Aa��� , �42�

where
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Im�
�4��E,�;
,�,�

	 �
−�

�

d�����
−�

�

d��E�ei��
/�e−i�E�/�Am�E − �E�

	Em�E − �E,� − ��,� . �43�

Here, we introduce the following step function to simplify
the integration in the memory function:

��x + 2� − ��x − 2� =
1

�
�

−�

� sin�2��
�

ei�xd� . �44�

Using the above step function, and taking integrations by �
and 
 in Eq. �39�, we obtain the final form as follows:

Mad
�4��� + /2,� − /2�

= �
−�

�

dE��
−�

�

d�Ed�E,E�,��Im
�4��E�,�;�Aa��� , �45�

where

Im
�4��E�,�;� 	

2�Umd
2

�

2�Uam
2

�
�

−�

�

d��E�
sin�2�E/��

��E

	 Am�E� − �E�Em�E� − �E,� − �E,�

	exp− 2�
0



�m���d�� . �46�

3. Third-order perturbation †Second term
of Eq. „23…‡

Finally, let us express the second term by the third-order
perturbation in Eq. �23� with the Hilbert space as follows:20

Mad
�3��t,t1� =

2UadUamUmd

�3 �
t1

t

dt2 Im

	�W�3��t1 − t,t2 − t,�t + t1�/2�

+ W�3��t2 − t1,t − t1,�t2 + t1�/2�

+ W�3��t1 − t2,t − t2,�t2 + t1�/2�� , �47�

where W�3��� ,
 ,�� is defined as follows:

W�3���,
,�� = �eiHdt2/�eiHp�t1−t2�/�e−iHdt1/��E�e−iHp�t−t2�/�eiHa�t−t2�/��p�e−iHp�t1−t�/�eiHm�t1−t�/��p

= �eiHd��−�/2�/�eiHp�/�e−iHd��+�/2�/��E�e−iHp
/�eiHa
/��p�e−iHp��−
�/�eiHm��−
�/��p, �48�

with �= t1− t2, 
= t− t2, and �= �t1+ t2� /2. The region in the
integral of M�3��t , t1� is given by 0�
−�� t− t1	. The
above three integrals are expressed with diagrams as in Fig.
2�b�. Hence, Eq. �47� is expressed as follows:

Mad
�3��� + /2,� − /2�

=
2UadUamUmd

�3 �
�t=�,
�0�
−���

dt Im�W�3���,
,��� ,

�49�

where we assumed that the time variable � is constant as �
= �t+ t1� /2. We introduce the damping term instead of the
operator U�t2 , t1� in Eq. �23� as follows:

��aa�LI�t�QLI�t2�U�t2,t1�QLI�t1��dd��E

� ��aa�LI�t�QLI�t2�QLI�t1��dd��E

	��mm�U�t2 − t1,0��mm��p. �50�

We assume an average transition time t2− t1 from �d� to �a�
via �m� states by �
−�� /2. We then obtain the effective
third-order memory function:

Mad
�3��� + /2,� − /2�

=
2UadUamUmd

�3 �
�t=�,
�0�
−���

dt Im�W�3���,
,���

	exp− 2�
0

�
−��/2

�m���d�� . �51�

As is seen from the diagram in a Fig. 2�b�, Eq. �51� means a
term which arises from an interference of propagators by a
direct transition and an indirect transition. Applying Fourier
transformation with � and 
 to the three-time correlation
function, we obtain the following convolution form:

�
−�

�

d
e−i��
/��
−�

�

d�eiE��/�W�3���,
,��

= �2���2�
−�

�

dE��
−�

�

d��Ed�E,E�,��Aa����

	Am��� − ������E� − E�� − ��� − ���� . �52�

where Am���−��� is the absorption spectrum of mediator
molecule defined by

Am��� − ��� =
1

2��
�

−�

�

d
�e−i���−���
�/��eiHm
�/�e−iHp
�/��p,

�53�

and Am���� satisfies the normalization condition
�d��Am����=1. Rearranging the relations about the optical
spectrum forms in Eq. �52�, we obtain

Mad
�3��� + /2,� − /2� = �

−�

�

dE��
−�

�

d�Ed�E,E�,��

	Im
�3��E�,�;�Aa��� , �54�

where
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Im
�3��E�,�;� =

2UadUamUmd

�3 �
�t=�,
�0�
−���

dt� d��E�

	sin��� − �E� − �E��
/� − �E�/��

	Am�E� − �E�exp− 2�
0

�
−��/2

�m���d�� .

�55�

This is the first time that such an interference term was de-
rived using by the optical spectra. The properties of this term
are discussed in detail in Sec. IV.

4. Final formula

Using the above results, we summarize the total memory
function as follows:

Mad�� + /2,� − /2�

= �
−�

�

dE��
−�

�

d�Ed�E,E�,��Im�E�,�;�Aa��� , �56�

where Im�E� ,� ;� is defined as follows:

Im�E�,�;� 	 Im
�2��E�,�;� + Im

�3��E�,�;� + Im
�4��E�,�;� ,

�57�

and Im�E� ,� ;� is the probability at the �m� state when the
mediator molecule absorbs a virtual energy E� from the do-
nor molecule and emits a virtual energy � to the acceptor
molecule.

When the time scale of  in the intermediate state is
much shorter than the time scale of � of the whole reaction
of EET, the Markov approximation is applicable. In such a
case, Eq. �56� can be written as

Mad�� + /2,� − /2� � ����
0

�

d�Mad��,��

	 kad������ , �58�

and we obtain the time-dependent rate of the EET from �d� to
�a� as

kad��� = �
−�

�

dE��
−�

�

d�Ed�E,E�,���
0

�

dIm�E�,�;�Aa��� .

�59�

This is a generalized Sumi–Kakitani’s rate formula which is
re-expressed by the optical spectra of each molecule and in-
cludes the effect of the initial time-dependent relaxation from
nonequilibrium excited state immediately after the donor
molecule absorbed the photon.

When the thermalization time at the �d� state is much
larger than the lifetime of the �d� state, we can take the semi-
classical approximation for the time-dependent emission
spectrum of the donor molecule as Ed�E ,E� ,�����E−E��.
Equation �59� is then re-expressed as follows:

kad��� � �
−�

�

d��
0

�

dIm�E,�;�Aa��� . �60�

Obviously, in the case of slow thermalization of the �d� state,
the probability of the �m� state Im�E ,� ,� in Eq. �60� de-
pends on the energy of an incident photon E.

III. SEQUENTIAL AND SUPEREXCHANGE
MECHANISMS

In this section, we assume that the initial condition is the
vibrationally relaxed excited state. The time-dependent emis-
sion spectrum of the donor Ed�E� ,� ,�� can then be approxi-
mated by the relaxed emission spectrum as Ed���.

It is evident that the probability Im
�2��E� ,� ;� is indepen-

dent of the �m� state because of the direct transition from �d�
to �a� state. The  integration of Im

�2��E� ,� ;� is then ex-
pressed as follows:

�
0

�

dIm
�2��E�,�;� =

2�Uad
2

�
��E� − �� . �61�

Therefore, the rate by the direct transition is expressed as
follows:

kad
�2���� =

2�Uad
2

�
�

−�

�

dE�Ed�E,E�,��Aa�E�� . �62�

This is the extended form of the Förster formula including
the hot energy transfer mechanism. In the case of the fast
thermalization at �d� state, the above result gives the follow-
ing ordinary Förster formula:

kad
�2� =

2�Uad
2

�
�

−�

�

dE�Ed�E��Aa�E�� . �63�

We next consider the interference term. When we ap-

proximate �m�� by �̄m which depends on the relaxation time
m at the �m� state, we can perform � and 
 integrations in
Eq. �55� as follows:

�
0

�

dIm
�3��E�,��;� �

2�UadUamUmd

�
��E� − ���� d��E�

	
2�E

�E2 + �2�̄m
2

Am�E� − �E� . �64�

We first examine Eq. �59� in the limit of sequential
mechanism. This mechanism corresponds to the case that the
quantum mechanical uncertainty of the energy at �m� state
becomes small. According to the Sumi–Kakitani theory,12,13

the term �m�� can be approximated by �̄m�kam+kdm in this
case because the reorganization time m at the �m� state be-
comes much smaller than the quantum mechanical lifetime
of the �m� state. The time-dependent emission spectrum of
the mediator Em�E� ,� ,� can be approximated by the re-
laxed emission spectrum as Em���. The  integration of the
probability Im

�4��E� ,� ;� is then expressed as
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�
0

�

dIm
�4��E�,�;�

�
2�Umd

2

�

2�Uam
2

�
Am�E��Em���e−2�kam+kdm�, �65�

and the  integration of Im
�3��E� ,� ;� becomes zero as fol-

lows:

�
0

�

dIm
�3��E�,��;�

�
2�UadUamUmd

�
Am�E����E� − ���� d��E�

	
2�E

�E2 + �2�m
2 = 0. �66�

Hence, we obtain the following total rate in the limit of se-
quential mechanism as

kad
SQ � kad

�2� +
kamkmd

kam + kdm
= kad

�2� + 1/�kmd
−1 + �kame−��Gm�−1� ,

�67�

where

kam =
2�Uam

2

�
� dE�Em�E��Aa�E�� , �68�

kdm =
2�Umd

2

�
� dE�Em�E��Ad�E�� , �69�

kmd =
2�Umd

2

�
� dE�Ed�E��Am�E�� . �70�

Here, the rate constant is expressed by the sequential mecha-
nism including the direct transition as in Fig. 3.

We next examine Eq. �59� in which the superexchange
mechanism works. According to the Sumi–Kakitani

theory,12,13 the term �m�� can be approximated by �̄m

��m�0� when the reorganization time m at the �m� state is
much larger than the lifetime of the �m� as �kam+kmd�−1. Tak-
ing the semiclassical approximation for the time-dependent
emission spectrum of the mediator molecule as
Em�E ,E� ;����E−E��, we obtain the  integration of the
probability Im

�3��E� ,�� , ;� and Im
�4��E� ,�� , ;� as follows:

�
0

�

dIm
�4��E�,��;� �

2�Uam
2 Umd

2

�
��E� − ���� d��E�

	
1

�E2 + �2�m
2 Am�E� − �E� , �71�

�
0

�

dIm
�3��E�,��;� �

2�UadUamUmd

�
��E� − ���� d��E�

	
2�E

�E2 + �2�m
2 Am�E� − �E� . �72�

The perturbation terms of the EET rate are then re-expressed
as follows:

kad
SX�2� =� dE�Ed�E��Aa�E��� d��E�

2�Uad
2

�
Am�E� − �E� ,

�73�

kad
SX�3� =� dE�Ed�E��Aa�E��� d��E�

	
2�UadUamUmd

�

2�E

�E2 + �2�m
2 Am�E� − �E� , �74�

kad
SX�4� =� dE�Ed�E��Aa�E��� d��E�

	
2�Uam

2 Umd
2

�

1

�E2 + �2�m
2 Am�E� − �E� . �75�

By combining the three terms in Eqs. �73�–�75�, the total rate
constant kad in the case of superexchange limit is expressed
as the following convolution form:

kad
SX =

2�

�
� dE�Ed�E��Aa�E��� d��E�

	�Uad +
UamUmd

�E + i��m
�2

Am�E� − �E� . �76�

This is a general formula of EET in the superexchange
mechanism expressed by the optical spectra of each molecule
including the direct transition and interference effect.

IV. DISCUSSION

The formulas obtained in this article are summarized by
a flow chart in Fig. 4. If we can evaluate the integral of the
transient functions of Ed�E ,E� ,��Im�E� ,� ;�Aa��� in Eq.
�56�, we substitute the memory function in Eq. �56� into the
GME in Eq. �21� and we can obtain the probability nd�t� and
na�t� for the EET involving the coherent process. Applying
the Markov approximation to the intermediate state in Eq.
�56�, we obtain the time-dependent EET rate in Eq. �59�.
This is the generalization of the Sumi–Kakitani formula for
the ET rate.12,13 Applying the condition of the slow thermal-
ization limit at �d� state, we obtain Eq. �60�. Applying the
condition of the fast thermalization limit at �d� state, it re-
duces to the Sumi–Kakitani-like formula for EET rate in-
cluding direct process and interference effect. Under the fast
thermalization limit at the �d� state together with the fast
thermalization limit at the �m� state, we obtain the EET rate
of the ordinary sequential mechanism including the direct
process in Eq. �67�. Under the fast thermalization limit at the
�d� state together with the slow thermalization limit at the �m�

kam

kad
(2)

kdm

kmd
(D*MA) (DM*A) (DMA*)

FIG. 3. The scheme of sequential EET process in D-M-A system which
includes the direct transition from �d� to �a� states.
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state, we obtain the EET rate of the superexchange mecha-
nism including the direct process and the interference effect
as shown in Eq. �76�.

We next examine how much the interference effect
works. In the case of �Uad�� �UamUmd� / ���m�, the EET in
Eq. �76� takes place mostly by the direct transition. On the
other hand, in the case of �Uad��UamUmd / ���m�, the EET
mechanism in Eq. �76� takes place mostly by the indirect
transition. It is then obvious that the effect of the interference
term is important for the case of superexchange mechanism
when the system includes direct transition and the amplitude
of �Uad� is comparable to that of �UamUmd� / ���m�. For a
deeper understanding of the interference effects in the EET,
we analyzed the integrand for the �E integration in Eq. �76�.
We assume that the absorption spectrum of the mediator
molecule Am�E� is expressed as a Gaussian form:

Am��Gdm� =
1

�2�Dm
2

exp−
�Gdm

2

2Dm
2 � , �77�

where �Gdm is the energy gap between �d� and �m� states.
Namely, we shifted the main peak of Am�E� to zero. We then
define a rescaled function F�x� by Uad for �E integration in
Eq. �76� as follows:

F�x� 	 �
−�

�

dz�1 +
�

z + i�
�2 1

�2�y2
exp−

�x − z�2

2y2 � ,

�78�

where x	�Gdm /Uad, y	Dm /Uad, z	�E /Uad, �
	UamUmd /Uad

2 , and �	��m /Uad. To examine the function
F�x�, we approximated the EET interactions as U	Uad

=Uam=Umd. In addition, we assume ��m=U, namely �=1.
We plotted the function F�x� for some values of y in Fig. 5.

Obviously, in the case of �x���y��10, F�x� is asymmetrical
with respect to x: F�x� is positive for x�x0 and negative for
x�x0, where x0 is a certain negative value increasing with
the value of y. F�x� has a positive peak at the value a little
larger than x0 and has a negative peak at the value a little
smaller than x0. This asymmetric feature of F�x� arises from
the interference effect and its effect is large for smaller y �for
smaller Dm�. When �x��10 �namely, the energy gap between
�m� and �d� states �Gdm is much larger than the EET inter-
action U�, F�x� comes close to one. In this case, the interfer-
ence effect is weak. Consequently, we found that the quan-
tum interference effect works effectively when the width Dm

in the absorption spectrum of the mediator molecule and the
energy gap between the main peaks in the optical spectra of
donor and mediator molecules are small.

In order to visualize the role of the interference effect in
the kad

SX, we modeled three molecular systems as in Fig. 6
which consists of the three transition dipole moments �a,
�m, and �d. Each transition dipole moments exists in the yz
axial plane and is directed to the x axis, respectively. The
transition dipole moments of donor and acceptor molecules
fixed in the x axis. We move the transition dipole moment of
the mediator molecule to z axis as in Fig. 6 �distances be-
tween �d and �m and between �a and �m are R�. We assume
that the distance between donor and acceptor is fixed to R0,
and we set the direct interaction Uad as 100.0 cm−1. We as-
sume that each optical spectrum of �i� state �i=d ,m ,a� is
expressed as a Gaussian form

Quantum Liouville Equation: Eq. (15)

Projection operator technique

Generalized Master Equation: Eq. (21)

Memory function : Eq. (56)

Markov approximation

General Rate of EET : Eq (59)

Fast thermalization limit

at |d> state

Fast thermalization

limit at |m> state

Slow thermalization

limit at |m> state

Eq. (67) Eq. (76)

Slow thermalization

limit at |d> state

Eq. (60)

(Generalization of the Sumi-Kakitani formula)

(including non-thermal equilibrium at the |d> state

and expressed by the optical spectra)

FIG. 4. Flow chart of formulas obtained in this article.
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FIG. 5. Plot of function F�x� for y=1, 5, and 20.
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R
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FIG. 6. A model system of three transition dipole moments: The solid ar-
rows express the transition dipole moments. The donor and the acceptor are
located on the y axis. The mediator is located on the z axis. R0 is the distance
between the donor and the acceptor. R is the distance between the donor and
the mediator.
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Ei�E� =
1

�2�D2
exp−

�E − Gi + ��2

2D2 � , �79�

Ai�E� =
1

�2�D2
exp−

�E − Gi − ��2

2D2 � , �80�

where Gi−� is the emission peak of the ith molecule and
Gi+� is the absorption peak of the ith molecule. � is the
reorganization energy of each molecule. D is the homoge-
neous broadening D2=��̄� coth����̄ /2� where �̄ is the av-
erage frequency of the phonon and � is 1 /kBT. The other
parameters are assumed as Gd=Ga=0 cm−1, �=200 cm−1,
T=300 K, and ��̄=200 cm−1. In these parameters, D be-
comes 300 cm−1. For the case of Gm=0 cm−1, we plotted
the R /R0 dependence of kad

SX�2�, kad
SX�3�, kad

SX�4�, and kad
SX in Fig.

7. The EET rate kad
SX�2� due to the direct transition is constant.

In the region of R /R0�0.6, kad
SX�4� due to the indirect transi-

tion is almost the maximum. Both of the direct transition and
the indirect transition then works cooperatively. In the region
0.6�R /R0�0.9, kad

SX�3� decreases with the value of R /R0. At
the R /R0=0.7, kad

SX�3� becomes minimum. In this region, the
interference works mostly effectively to decrease the EET
rate. In the region 0.9�R /R0, �kad

SX�3�� and kad
SX�4� become

small. For R /R0�1.2, the total EET is dominated by the
direct transition. Consequently, the interference effect works
efficiently when the molecular system is positioned like at
the corners of a little flattened triangle.

Based on the above consideration, we numerically
analyzed Gm dependence at R /R0=0.7 �Umd=Uam

=282.8 cm−1� using the same parameter values above ��
=200 cm−1, D=300 cm−1�. We plotted the results of
kad

SX, kad
SX�2�, kad

SX�3�, kad
SX�4�, and kad

SQ at T=300 K in Fig. 8. In
the region Gm�−200 cm−1, kad

SX�3� is positive and has a
maximum at Gm=−800 cm−1. In the region Gm

�−200 cm−1, kad
SX�3� is negative and has a minimum at Gm

=600 cm−1. At Gm=−900 cm−1 and Gm=500 cm−1, kad
SX�4�

have maxima. Hence, kad
SX is asymmetrical as a function of

Gm. kad
SX has a large maximum at Gm=−900 cm−1 and has a

shallow minimum at Gm=1400.0 cm−1. In contrast to this,
kad

SQ is symmetrical with a maximum at Gm=−450 cm−1.

Note that the contribution to the EET of kad
SX�3� is consider-

ably larger than kad
SX�2� at around the maximum and minimum

of kad
SX�3�. We also investigated the case of larger values of �

and D ��=1000 cm−1, D=670.0 cm−1�, and kad
SX�3� as a func-

tion of Gm becomes much smaller than kad
SX. The result is

shown in Fig. 9. We find that the contribution of kad
SX�3� to kad

SX

is generally small except for the region 0�Gm

�1000 cm−1 although kad
SX becomes much small in this re-

gion.
In Fig. 8, we find that kad

SQ is larger than kad
SX for Gm

�−600 cm−1. We also find that kad
SQ is larger than kad

SX for
Gm�−2700 cm−1 in Fig. 9. This fact indicates that there
happened a switching between the superexchange mecha-
nism and sequential mechanism at the above Gm values.
When we consider the EET at such a twitching region of Gm,
the EET rate should be calculated using the general formula
in Eq. �56� or Eq. �59� instead of using the limiting formula
of the superexchange mechanism �Eq. �76�� or sequential
mechanism �Eq. �67��.

Finally, let us consider the relation between Eq. �2� and
Eq. �76�. The energy �E in Eq. �76� indicates the degree of
the energy fluctuation due to the quantum mechanical uncer-

-5

0

5

10

15

20

25

30

0.6 0.8 1 1.2 1.4

Ra
te

of
EE
T
(1
/p
s)

R/R0

kad
SX

kad
SX(4)

kad
SX(3)

kad
SX(2)

FIG. 7. Rate of EET of the superexchange mechanism by the distance
dependence R between the donor and the mediator: The curves express the
total rate of EET kad

SX, the term of direct transition kad
SX�2�, the term of inter-

ference effect kad
SX�3�, and the term of indirect transition kad

SX�4�.

-20

-10

0

10

20

30

40

50

60

70

80

90

-3000 -2000 -1000 0 1000 2000 3000

Ra
te

of
EE
T
(1
/p
s)

Gm (cm
-1)

kad
SX

kad
SX(4)

kad
SQ

kad
SX(2)

kad
SX(3)

FIG. 8. �Color online� Rate of EET as a function of Gm where �
=200 cm−1: The curves express the total rate of EET kad

SX, the term of direct
transition kad

SX�2�, the term of interference effect kad
SX�3�, the term of indirect

transition kad
SX�4� for superexchange mechanism, and the rate of EET kad

SQ for
sequential mechanism.

-5

0

5

10

15

20

25

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000

Ra
te

of
EE
T
(1
/p
s)

Gm (cm
-1)

kad
SX(4)

kad
SX(2)

kad
SX(3)

kad
SQ

kad
SX

FIG. 9. �Color online� Rate of EET as a function of Gm where �
=1000 cm−1: The curves express the total rate of EET kad

SX, the term of direct
transition kad

SX�2�, the term of interference effect kad
SX�3�, the term of indirect

transition kad
SX�4� for superexchange mechanism, and the rate of EET kad

SQ for
sequential mechanism.
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tainty at the intermediate state in the EET. The factor �m in
Eq. �76� indicates the damping factor at the intermediate
state which means the average rate of EET from the mediator
to the others without thermal relaxation and is expressed by
�m=�m�0� using Eq. �B11�. Namely, ��m represents the en-
ergy broadening of the excited state at the intermediate state.
When the energy difference �G� between the peak of the
emission spectrum of the donor and the peak of the absorp-
tion spectrum of the mediator molecule is much larger than
the width of each spectrum and ��m, effective energy �E
can be approximately estimated at �G�. In this case, substi-
tuting �G� for �E in the part of the EET interaction in Eq.
�76�, we can factorize it as Eq. �2�. Namely, Eq. �76� repro-
duces Eqs. �1� and �2�. Consequently, we find that Eq. �76� is
a general form of the EET by the superexchange mechanism
including the direct process and the interference effect.

V. CONCLUSIONS

We constructed a general theory of EET from the non-
equilibrium excited state of a donor-mediator-acceptor sys-
tem. The theory is formulated based on the GMEs which
include a memory function to determine the time profile of
the probability for each molecule in the excited state under
EET just after the donor is excited. The memory function
was approximated by a fourth-order perturbation about the
excitation energy transfer interaction. The higher-order terms
were renormalized to the third and fourth-order terms
through the damping term. These approximated memory
functions were connected with optical spectra of molecules.
Some of the molecular systems have not only a direct inter-
action term but also a nonequilibrium state about nuclear
vibration as the initial condition. The memory function in the
present theory includes not only a second-order perturbation
term �direct transfer�, and a fourth-order perturbation term
�indirect transfer� but also a third-order perturbation term
�interference effect�. Especially in the Markov limit of the
memory function, we obtain the generalized Sumi–Kakitani
formula of ET. In the case of slow thermalization limit at the
�m� sate, we obtain a general formula of EET in the super-
exchange mechanism including the direct transition and in-
terference effect which is expressed by the optical spectra of
each molecule. We found that the magnitude of the interfer-
ence effect depends largely on the position of the molecular
system together with the energy gap �Gmd between mediator
and donor molecules and the width of the optical spectra D.
When the molecular system has a little flattened triangle
form and �Gmd�0 holds, the interference effect increases
the rate of EET. Consequently, the present theory has a merit
to elucidate the EET mechanism in detail for the three mo-
lecular systems. The theory is useful for any kind of EET as
long as it is for the optical spectra of each molecule.
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APPENDIX A: DERIVATION OF EQS. „11… AND „12…

In this Appendix, we derive the formulas in Eqs. �11�
and �12�. Here, we use the second-order perturbation
method with respect to K�t� by assuming that �K�t�� is
sufficiently small. Thus, we first expand the propagator
exp+�−�i /���0

t H�t��dt�� with respect to V1�t��. Extracting the
nonvanishing ni�t� in the second-order term of V1�t��, we
obtain it as follows:19

ni�t� 	
1

�2�
0

t

d�
−2�t−�

2�t−�

d
 Tr��p�d�eiH
/2�eiH�t−�/��i�

	�i�e−iH�t−�/�eiH
/2��d�e−iHp
/����,
�e−iE
/�, �A1�

where we defined �� ,
�=K�+
 /2�K��−
 /2�, which is
the profile of the incident photon. We approximate �� ,
� as
�� ,0�	A�� /2�, eiH
/2� as eiHd
/2�, and 2�t−� in the up-
per limit of the integration as � since 
 is the short time
which is necessary for the photoabsorption of the donor. Be-
cause we consider the EET by the light pulse excitation, we
approximate the pulse profile by A��=�P0��−�� ��→+0

where P0 is the normalization factor. We then obtain the
probability ni�t� at the i state as follows:

ni�t� 	
P0

2��
�

−�

�

d
e−iE
/� Tr

	�eiHd
/2�e−iHp
/��peiHd
/2��d�eiHt/��i��i�e−iHt/��d�� .

�A2�

Thus, using the relations of �p��p�+�i�i��i�=1 and
�i�eiHt/��p�=0, we obtain

�
i

ni�t� =
P0

2��
�

−�

�

d
e−iE
/� Tr��peiHd
/�e−iHp
/��

= P0Ad�E� . �A3�

This is proportional to the absorption spectrum Ad�E� of do-
nor. In order that the total probability �ini�t� preserves 1 for
any energy of an initial photon, the normalization factor P0

in the case of Ad�E��0 can be expressed as P0=1 /Ad�E�.
Consequently, the probability ni�t� can be rewritten as fol-
lows:

ni�t� 	
1

2��
�

−�

�

d

e−iE
/�

Ad�E�
Tr

	��i�e−iHt/��d�eiHd
/2�e−iHp
/��peiHd
/2��d�eiHt/��i�� .

�A4�

APPENDIX B: DERIVATION OF THE DAMPING
TERM

In this Appendix, we derive the damping term in the
memory function. The term ��mm�U� ,0��mm��p satisfies the
following equation:
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d��mm�U�,0��mm��p

d

= −
1

�2�
0



d���mm�LI��LI���U��,0��mm��p, �B1�

where �¯�p	Tr��p¯�. To make the problem tractable, we
adopt a decoupling procedure for the above equation as fol-
lows:

d��mm�U�,0��mm��p

d

= −
1

�2�
0



d���mm�LI��LI����mm��p

	��mm�U��,0��mm��p. �B2�

Here, we introduce a memory function Mm� ,�� as follows:

Mm�,�� 	
1

�2 ��mm�LI��LI����mm��p

=
1

�2 ���m�VI�t�VI�t1��m��p + ��m�VI�t1�VI�t��m��p� .

�B3�

Equation �B2� is then expressed as follows:

dnm�t�
dt

= − �
0

t

dt1Mm�t,t1�nm�t1� . �B4�

We convert the time parameters  and � into �= �+�� /2
and �=−�. � is the quantum mechanical uncertainty for
the time transferring energy from �m� state to �a� or �d� states.
Because it is an effective transition time in the short time
scale, we take the Markov approximation for Mm��+� /2,�
−� /2� as follows:

Mm
Markov�� + �/2,� − �/2�

� �����
0

�

d�Mm�� + �/2,� − �/2�

= ����2�m��� , �B5�

where

2�m��� = �
i=d,a

Uim
2

�2 �
−�

�

d��eiHm��−�/2�/�eiHi�/�e−iHm��+�/2�/��p.

�B6�

According to the definition of �, it is the average time of the
EET from �m� to �a� or �d� states. So, approximating � as ,
and inserting Eq. �B3� into Eq. �B4�, we obtain

dnm��
d

= − 2�m��nm�� . �B7�

Consequently, solving the above equation, we have

nm�� = exp− 2�
0



�m���d�� . �B8�

This is the damping term at the �m� state.
2�m�t� in the damping term can be expressed by the

optical spectra. Using the absorption spectrum Ai�E� �for i
=d or a� of the donor or acceptor molecule, we can re-
express 2�m�t� as

2�m�t� = �
i=d,a

Uim
2

�2 �
−�

�

dE�Ai�E���
−�

�

d�

	�eiHm�t−�/2�/�ei�Hp+E���/�e−iHm�t+�/2�/��p. �B9�

Using Eq. �41�, we can express the above � integration as

2���
−�

�

dE�Am�E��Em�E�,E�,t� 	 2��Em� �E�,t� . �B10�

Finally, we obtain

2�m�t� = �
i=d,a

2�Uim
2

�
�

−�

�

dE�Ai�E��Em� �E�,t� . �B11�
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