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The perturbation by a spherical rotating shell is investigated in a closed homogeneous and isotropic
cosmological model of the Brans-Dicke theory to first order in an angular velocity of the shell. This model
has a negative coupling parameter of the scalar field and satisfies the relation G(t)M/c’a(t) = m. The
inertial frame at the origin is dragged completely with the same angular velocity when the rotating shell
covers the whole universe. By a similar perturbation method, the distance dependence of the contribution
from matter to the scalar field at the origin is obtained in this model. The contribution from nearby matter
is negative because of the negative coupling constant, but the contribution from the whole universe is
positive. The gravitational “constant” is almost determined by matter in the distant region.

I. INTRODUCTION

Since general relatively appeared, it has been
discussed to what extent Mach’s principle is con~
tained in this theory. The interpretation of Mach’s
principle still remains controversial and contenti-
ous, but it is well known that the inertial frame
(in which the Coriolis force does not appear) is
dragged partially by the rotating body in the frame-

" work of general relativity or the modified theory
of gravitation, _

The investigation of this dragging effect on the
inertial frame is mainly classified into the follow-
ing three types: ,

(1) Thirring, Bass and Pirani, Okamura et al.
(Refs. 1-3). They investigated what forces appear
in the vicinity of a spherical infinitely thin shell
in empty space (Minkowski space) when the shell
rotates with a small constant angular velocity w
by means of the weak-field approximation of Ein-
stein’s field equations. Thirring' calculated up
to the Gw? term, and indicated that the Gw term
represents the Coriolis force if GM/Rc*=%, where
R and M are the radius and the mass of the shell,
respectively. Bass and Pirani® indicated that the
Go® term vanishes and is not the centrifugal force,
introducing the elastic stress and the particular
distribution of density. Okamura ef al.® calculated
up to the G*w® term and indicated that the G%w?
term represents the centrifugal force if the con-
tradictory condition GM/Rc®=1260/3737 still
exists. So general relativity does not involve
Mach’s principle automatically.

These discussions are unsatisfactory because of
the weak-field approximation and asymptotic flat-
ness, but they suggest that the degree of dragging
of the inertial frame is closely connected with
the value of GM/Rc?.

(2) Brill, Cohen, Lindblom (Refs. 4=T). They

discussed this rotating-shell problem in a strong
field. They used the Schwarzschild solution as
the base metric and calculated the perturbation
due to the rotation of the shell up to first order in
w. They indicated that the induced rotation rate
of the inertial frame approaches the shell rotation
rate, as the radius of the shell equal to its
Schwarzschild radius. In this limit the inertial
properties of space inside the shell no longer de-
pend on the inertial frames at infinity, but are
completely determined by the shell itself (Brill
and Cohen?),

The Schwarzschild metric has the asymptotically
flat region, which is non-Machian, They, however,
emphasize that this asymptotically flat region is
essential in the definition of frame dragging. They
also discussed inertial effects in the gravitational
collapse of a rotating shell.

(3) Honl and Soergel-Fabricius, A. Lausberg
(Refs. 8 and 9). Lausberg® investigated what per-
turbation appears in the metric tensor in the first
order of an angular velocity when a spherical
shell, with the same density as the remaining part
of the universe, rotates uniformly in the Einstein
universe. He indicated that the dragging coeffi-
cient of the inertial frame increases as the rota-
ting shell becomes thicker and reaches unity when
the shell covers the whole universe. In his dis-
cussion the framework of matter is given first.
The Einstein universe is closed and has no asymp-
totically flat region.

In the present paper we will investigate the drag-
ging effect on the inertial frame in a closed cos-
mological model'®*! of the Brans-Dicke theory,?
This is the extension of discussions (3) in a time-
varying case. In this cosmological model, the uni-
verse expands forever linearly, but the relation
G(¢)M/c*a(t) =ris always satisfied. (Inthe Einstein

universe with zero pressure the relation GM/Rc?

2861 © 1979 The American Physical Society



2862 A. MIYAZAKI & : 19

=71/2 is satisfied.) The dragging coefficient of the
inertial frame reaches unity when the rotating
shell covers the whole universe.

In Sec. III the distance dependence of the contri-
bution from matter to the gravitational “constant”
is investigated in this closed cosmological model
by means of a similar perturbation method. Ac-
cording to Brans and Dicke'? the coupling parame-
ter n of the scalar field must be positive if the
contribution to the inertial reaction from nearby
matter is to be positive. However, in this model,
the coupling parameter is negative (n<-2). When
3+21<0, the contribution to the scalar field from
nearby matter is negative, but the scalar field is
determined by the contribution from the whole
universe, and is surely positive in the cosmologi-
cal solution,

II. COSMOLOGICAL SOLUTION

The field equations of the Brans-Dicke theory*?
are written in our sign convention as
Guy=Ry, - 3Ry,

8 D
=g Tuv="g7 @0, = 380,016

-%(¢,u;u_gﬂym¢) ) (13)
87
O¢ “Brane T, (1b)

where T, is the energy-momentum tensor, which
has for the perfect fluid the form

Tuyz—pg}ly_ (p '*'P/Cz)uuuy; (2)

in which p is the density in comoving coordinates,
p is the pressure, and «* is the four-velocity
dx* /dr (7 is the proper time). The symbol O de-
notes the generally covariant d’Alembertian Cl¢p
=g .u» and the letter 7 is the coupling parameter
between the scalar field ¢ and the contracted
energy-momentum tensor 7.,

For the closed homogeneous and isotropic uni-
verse the metric form will be written as

ds®=—dt® +d®(t ) [dx? + sin®x (d6® + sin6d¢?)]. (3)

The interaction between galaxies in the universe
is negligible, so we can setp =0 in the energy-
momentum tensor (a dust model). In the present
problem the nonvanishing components of the en-
ergy-momentum tensor are T,,=—pc’, and the con-
tracted energy-momentum tensor is T=pc?.

So the independent field equations for the metric
(3) are

2 2
woe2 oo af@V 81 dp
2ad+a°+1= sha <¢) W_({b ) (43.)

3. *é 7_715_ 2 167(1+1n) p

2= () Gy, @
v oo 8w

¢+3;¢_(3+277)02p b (4C)

where a dot denotes the usual partial derivative
with respect to /. We can obtain from the field
equations the conservation law of the energy-mo-
mentum 77, =0, that is,

27%a% =M= const , (5)

where M is an integral constant and can be re-
garded as the mass of the whole universe. We can
use Eq. (5) as the independent equation instead of
Eq. (4a).

According to Mach’s ideas the relation GM/R¢?
~1is satisfied, and the degree of dragging of the
inertial frame is connected with the value of
GM/Rc?, so we expect the existence of a solution
in which the relation GM/c*q = const is satisfied.

Let us write

a(t)p(t)=D=const. . (6)

After substitution of Eqs. (5) and (6) into Eq. (4c)
and integration we obtain

2 aM 2
a —-—W(t-—tc) +A, (7

where A and ¢ are integral constants. From Eqs.
(4b), (4c), (5), and (6), we obtain

bt =1-g ®
Equation (8) indicates that a(¢) must be a linear
function of .- On account of this and the initial
condition ¢=0 at £ =0, we must set two integral
constants #,, A in Eq. (7) equal to zero. If the
conditions :

aM
(3+2n)D<0, n(l—m>>0,
| ©)
N _, 3rc*D
3+2n °7 2M

are satisfied, Eqs. (6), (7), and (8) are not contra-
dictory to each other and are solutions of the field
equations. These conditions are reduced to

n<=2, G@EM/ca(t)=7, k (10)

where G=(4+2n)/(3+2n)¢. Therefore, a solution
satisfying GM/c?a =const can exist only when the
value of GM/c*a is 7. ’

Thus, the Brans-Dicke theory has a cosmological
solution for the closed homogeneous and isotropic
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universe:
Calt)=[-2/@+m) 2t =at
2n%a*(t )p(t) =M,
¢ (t)=-[87/(3+2n)c]p(t)t?,

(11)

with <=2,

III. THE DRAGGING EFFECT ON THE INERTIAL FRAME

In this section we discuss the dragging effect on
the inertial frame in this closed cosmological mod-
el in the framework of the Brans-Dicke theory.
The situation is almost the same as that of Laus-
berg’s arguments® applied to the static Einstein
universe. e

Let us consider in this universe a shell, the vol-
ume of which is restricted by the two hypersur-
faces x =y, and x =x,, with O0<y,<x; <7. The den-
sity of the shell is assumed to be the same as the
remaining part of the universe. This shell is now
considered to be slowly rotating as a rigid body
around the axis #=0, with an angular velocity w,
=c(de/dt) e relative to the remaining part of the
universe. S

The metric form in the whole universe will be
perturbed on analogy of Lausberg’s arguments as

ds?=—dt?+d?(t)
x{dx? + sin®x[d6? + sin®6(de — wdt /c)?]} .

(12)
Owing to the slow rate of rotation we have c*
> a®(t)w? > a?(¢)w?, and hence it is sufficient to
calculate up to the first order of an angular veloc-
ity w. So we have the perturbed metric form as

ds® = —dt? +a®(t ) [dx® + sin®x(d6? + sin®6d ¢?)]

~2w(x, 8, t)a?(t) sin®sin®6dedt/c . (13)

From now on the calculations are limited to first
order in w and wg.

The nonvanishing components of the Ricci tensor
associated with this metric are written as

;2 2
co .2 1o Lo 2f/@\ _ 8m ap
G:I—Zaa+a +1 sNa (¢> W e

G,, = Gy, sin’y = [the right-hand side of Eq. (18a)]xsin%,

2863
R, =-ai-2a*-2,
Ry, =Ry, sin’y
Ry3=Ry, sin®y sin®g ,
Ry, =3i/a, (14)

Ry3=Rg = =(1/2¢)a” sin’y sin*0[8,& + 3(@/a)8,w],
Ry3=Ry, = =(1/2¢)a® sin®y sin®0[5 o0 + 3(@ /)8 g0 ] ,
R3o=R 3= (w/c) sin®y sin®6(ai + 347)
—(1/2c) sin?y sin’0(a,,%w + 4 cotxd,w — 4w)
~(1/2¢) sin®*0(8 o7w + 3 cot 6 yw) ,

where the symbols 8, and 8, denote the usual par-
tial derivatives with respect to x and 6, respective-
ly. The scalar curvature is

R==(6/a®)(ad+&% +1). (15)

In the present problem the nonvanishing compo-
nents of the energy-momentum tensor (2) (p =0)
are
TOO = _pcz ) (16)

o —pcwa?® sin®y sin®d (outside of the shell),
Tyo=To3= ’

—pclw = w,)a® sin’y sin?f
(inside volume of the shell),
and the contracted energy-momentum tensor is
T=p02° .
In general ¢ is a function of y, 6, and ¢, so the

generally covariant d’Alembertian is written in
the metric form (13) as '

. g1
O¢p=—¢ — 3§-¢ +73 (85, +2 cotxd, )

1 2
+a2 sin'y (9959 +cOtpd0) .

)
This perturbed generally covariant d’Alembertian
and the contracted energy-momentum tensor is the
same as the unperturbed. So ¢ will be a function
of only ¢ up to the first order of w. Therefore the
field equations are

(18a)

Gy3= Gy, sin’y sin’6 = [the right-hand side of Eq. (18a)]xsin?y sin6 ,

B2 b n/pV 161(1+n) p
Goo——az(a2+1)"—¢ "2(¢> "v (3‘+2n)c2¢ ’

Gy3= Gy == (1/2¢)d® sin’y sin®0[8,& + 3(a/a)d,w]=0,
G,3= Gy =—(1/2¢)a? sin’y sin®0[8 & + 3(2/a)d,w] =0,

(18b)

(18¢)
(18d)
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Gso = Go3 = —(w/) sin’y sin*0(2ad + 3) — (1/2c¢) sin’y sin®6(8,,°w +4 cotydw — 4w)

- (1/2c) sin?0(8 ;2w +3cotdd w)
00 )

_[&n @ 10 2P\ W .0

—[cz(w—w)¢ +2ca(¢> P
o i Br
P30 " Grane P

$+ (3+2n)c® ¢

2

12:]sinz)( sin®d (w,=0 outside the shell), (18e)

(18f)

‘Equations (18a), (18b), and (18f) are the same as the unperturbed equations, and determine functions
a(t), p(t), and ¢(¢) completely, that is, cosmological solution (11). The inertial property is determined
by Eq. (18e). Using Egs. (18a), (18b), (18f), and (5) we can reduce Eq. (18e) to

16 b
inv|3 — P WWus-Y 55
w sin’ x[3 3rCad na <¢

Using Eqgs. (6) and (7) (¢ ,=A =0), the inside of the
middle brackets of the first term in the left-hand
side of Eq. (19) becomes

16M | L/P\
“3nctap 6 <-¢:) “2-

and the homogeneous equation of Eq. (19) admits
a variable separation with respect to x, 6, and ¢.
A particular solution of the inhomogeneous equa-
‘tion (19) is obviously w,.

The time dependence of w is determined by Egs.
(18c) and (18d), and we can write

W(X, 99t)=X(X)®(9)/aa(t)o (21)

Denoting by S the separation constant, two equa-
tions arise from the homogeneous equation of Eq.
(19):

a4M
D" const, (20)

2
é(%@?+30 tef; )— =S, (22a)
4M \ sin’y (d:X >
.2 M s x a4
2 sin’ X(Z nczD>+ e (d 5 +4cotx d 4x

(22Db)

Equation (22a) has a regular solution for =0 and
7 only when S=(n+2)(r - 1), where % is an integer,
and which is the first derivative of the Legendre
polynorhials P,(cosf). As the particular solution
does not involve the variable 6, ©(6) must be con-
stant in order that the solution w(y, 6,¢) can con-
nect smoothly at y=y, and x=x,. Therefore n=1
and S=0.

If we use a variable z defined by 2z =cosy +1,
Eq. (22b) reduces to

a’x dx 8M
2(l-2) 75 +(3 - 52) 7 ——55 X=0, (23)

This equation is nothing but the hypergeometric
differential equation. The independent solutions in

) :|+ i sinzx(axxzw +4 cotyd,w — 4w) +3(3 95w + 3 cot gw)

=—w, sin’ D G (ws=0 outside the shell). (19)

M
‘ag

r

the vicinity of z =0 are the hypergeometric func-
tions

F(a; B,'}/;Z) )
2@ -y+1,8-v+1,2-y;2), [z]<1

29

and in the vicinity of 2 =1

F(a36ay+.8-7+1;1_z);
(l—z)y—a—BF(a_ﬁ,V"‘I’Y_a_B+1§1—z) ’

[1-z|<1 - (25)
where
a+B=4, aB=—55, v=3. (26)

The function w must be regular at y=0 and y =7.
Thus, the complete solution w(y, 6,¢) is

w,(x,t) = s(,) X,(x) 0sx<xo),

wy(x,?) 2;13_(;) [B, X%, (X) + B X () ]+ w5 (xo<SX<x1),

p 27
wc(x,t)=a—a(;7Xc(x) (xﬁxéﬂ),»
where
X,(x)=F(a,B,a+B~y+1; (1-cosy)/2),
X, () = X.(x) =F(a, B,7; (1+cosx)/2),
(28)

1+cosy \'"? :
X2 (X) =(—-2-—l> Fla-y+1,8-v+1,2-y;

(l;cosx)/Z),

and A, B,, B,, and C are arbitrary constants.
These constants are determined by means of the
conditions that w,, w,, and w, must connect smooth-
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ly at x=x, and x =X,, that is,
wa(Xo, t)=wb(Xo,t) s

wb(XI’ t) = wc(XU t) ’ (29)
axwa(XO’ t)= awa(Xo’ t), "

awa(Xu t)= ach(Xu t).

In order that Eq. (29) is satisfied at all times,
the particular solution w; must have the form
Q/a%(t) (2 =const).

Now we are interested in the metric form in the
vicinity of the origin, so it is enough to determine '
only the value of A. By solving simultaneously
Eqgs. (29) we have

A=Q(Xo, Xl)/P(XO, X1 » (30)
where
| XKalo) =%, (xo) =X,(x) O
P(Xoy Xy) = 0 "Xbl(X1) “sz()ﬁ) X (1) ,
Xz (xo) 'thl(Xo) —Xéz()(o) 0
0 =X; () -X5,(x) Xilx)
(31)
Q "Xbl(Xo) ‘sz(Xo) 0
Q(Xos Xa) = Q ‘Xbl()h) "sz(Xl) X:(x1) ’
0 "Xgl(Xo) -X£2(Xo) 0
0 —XI;I(X1) -Xi;z()ﬁ) X{:(X1)

and a prime denotes 3,.
The solution inside the shell is

wa(Xm X15 X,-t) = [Q(Xo, Xl)/P(x07 X1)a3(t)]
XF(a,B,a+B-y+1;(1-cosx)/2).
(32)

At the origin

WolXos X132) =lim Wq
X0

=Q(Xo, Xl)/[P(Xu: xl)a3(t)] . (33)

This is the induced angular velocity of the inertial
frame at the origin by the rotating shell with the
angular velocity w,=Q/a® restricted by two hyper-
surfaces y=yx, and x =x;.

In order to find the induced angular velocity w,
when the shell covers the whole universe, we need
to investigate the asymptotic behavior of the hyper-
geometric function at x =0 and x =#. After simple
calculations, we find that the value of Q/P conver-
ges to 2 when the shell covers the whole universe
(xo—0 and x, -~ 7). Therefore, the dragging coef-
ficient of the inertial frame becomes unity:

wo/w,=1. (34)

IV. CONTRIBUTION OF MATTER TO THE
GRAVITATIONAL “CONSTANT”

Now let us consider in that universe the same
shell, the volume of which is restricted by the two
hypersurfaces x =y, and x =x,, with O<y,<x,<7.
How will the scalar field ¢ be perturbed when only

the density of this shell changes to p + Ap, and the

remaining part of the universe is the same? In
general the perturbation will depend on x and ¢,
and will be written as ¢(¢) + A¢(x, t).

Therefore the perturbed term A¢(x,¢) of the
scalar field obeys the partial differential equation
if the perturbation is small and the change of the
metric is negligible:

(A9) + 3% (&¢) —ga[f?(Aqb) +2 cotx% (A¢)]
=13‘j§2n—n')';§Ap‘ (Ap =0 outside the shell). (35)

The homogeneous equation of Eq. (35) admits
the separation with respect to the variables y and
t; let us write

Ap(x,t)=X(x)T(¢). (36)

Denoting by S the separation constant, two equa-
tions arise:

a‘x dx _

W-‘-z COtxd—x—sX—O, (373)

%‘m%% —%T—-—O. (37b)

A general solution of Eq. (37a) is
X(x) =[C, cos(1 = S)*?y + C, sin(1 = S)?x | sin~y,
(38)

where C; and C, are integral constants. On ac-
count of Eq. (11), Eq. (3'Tb) reduces to
a:T dT S

FTE +3t-c'E—EFT=0. ' (39)

t2

A general solution of Eq. (39) is
CitF-14+Cyt~#-, for p=2(1+5/0?+0
t~Y(C,+C,1nt), for u=0. (40)

T(t)=

Taking the equation Apt®=Ap.t,®into account,
we obtain as a particular solution of the inhomo-
geneous equation (35)

87Ap,t,° 1
Ag,= __Z’_P_;u_?, (41)

TT(B3+2p)c?
where an index 0 denotes a present value. As sca-
lar fields in each region must be connected with
each other smoothly for all ¢ at the hypersurfaces
X = Xo and x =x,, the time dependence of the gener-
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al solution of the homogeneous equation must be
the same as that of the particular solution. There-
fore T(¢) must vary with time as ¢!, So the con-
stant u is equal to zero, and the separation con-
stant S is —a®.

A solution must be regular at x=0 or y=7, so a
complete solution of the perturbed term A¢(x, ¢)
will be written as

A sinky

A0, =% G 0sx<x0), (42a)
Ady(x, ) =_} (Bl cosk:i:fz sinkX ;>

e} Gesx<x), (42
20,001 =5 HEU=T <y <n), a20)

where k= (1+a??, and A, B,, B,, and C are inte-
gral constants, which are determined by the condi-
tion that solutions in each region must be connec-
ted with.each other smoothly at x =x, and x =x;.

As we are interested in the contribution of mat-
ter to the origin, it is enough to determine only
a value of A. We obtain as the perturbed scalar
field at the origin

Ad’o(t) =lim A¢a(X: t)
X0

_ 8T Apt?

= - m —sm [k siny COSk(x - 7r)

— cosy sink(x — m) ])’fg .
(43)

This equation determines the contribution to the
scalar field at the origin by the density increase
Ap of the shell restricted by the two hypersurfaces
X =Xo and x =Y, in the background metric (3). If

we set x,=0 and x, =7, then we obtain

A¢0(t)=4m%FApt2, ‘ (44)

which we also obtain by replacing p withp +Ap in
the cosmological solution (11).

In order to evaluate the distance dependence of
the contribution, taking the derivative of the ex-
pression between the brackets in Eq. (43), it is
possible to write Eq. (43) in an integral form

8rApt? 1-F (™

B+2n)c* sinkr Jy siny sink(x — 7)dy .

A¢o(t) =
(45)
The mass of the shell with density Ap is

X;
M,=474pa® f " siny dy . (46)
%

Using a theorem of mean value, when the thickness
of the shell is not too large, we obtain
2M, sink(x* - )
(3+2n)c*at sinkwsiny* ’

A¢o(t) = (47)
where y* is some mean value between y, and .
This equation determines the contribution of the
mass M at the point y =x* to the scalar field at
the origin. :

As 0<a <1/7, the value of = (1+a?)"? is larger
than unity, and is very near to unity. On this con-
dition the contribution to A¢,(¢) evaluated by Eq.
(47) from the region inside of x,=(1 - 1/F)7 is
negative, and the contribution from the region out-
side of x. is positive when 3+2n <0, The contribu-
tion from the whole universe is given by integra-

‘ting Eq. (47), that is, Eq. (44). Therefcre, when

3+2n<0, the contribution from the whole universe
is positive.
When x* is much smaller than 7, we obtain

Apo(t) ==2x1072%1,/r* (48)

where 7* =g siny*, and we used the value 1 =-56
which we evaluated from the perihelion rotation of
Mercury.

Let us suppose that the mass of the Galaxy M,
=3x10* g is concentrated in its center. As the
distance from our solar system to it is »*=2.5
x10°%* cm, the contribution of the Galaxy to the
scalar field is A¢,/¢p ==2%x10"%, where ¢ =1/G
=1,5x10" dyn~* em~2g?, We, however, cannot mea-
sure this decrease because the Galaxy really al-
ways exists. We can measure only a spatial change
of the scalar field by the contribution of the Gal-
axy. For example, to the change of the position of
the Earth by revolution around the Sun, as the
diameter of revolution trajectory of the Earth is
3x10" cm, the scalar field changes in A(A¢,)/¢
=2%10"'7, The change of the gravitational “con-
stant” has the opposite sign.

V. DISCUSSIONS

In this particular cosmological model of the
Brans-Dicke theory, as well as in the Einstein
universe of general relativity, the dragging coef-
ficient of the inertial frame, that is, the ratio be-
tween the angular velocity of the inertial frame at
the origin and that of the rotating shell approaches
unity when the rotating shell covers the whole uni-
verse. This means the complete dragging of the
inertial frame. The inertial frame at the origin
is completely determined by the rotating shell
(matter of the whole universe). First the inertial
frame at the origin in this model is at rest, rela-
tive to the matter of the universe. As the rotating
shell becomes much thicker and more massive,
the inertial frame is dragged by the shell more



19 DRAGGING EFFECT ON THE INERTIAL FRAME AND... 2867

closely. Calculations are limited up to first order
in the angular velocity, that is, to the Coriolis
force. In this approximation it is indicated that
this particular model satisfies Mach’s ideas.

The inertial properties of the universe, in this
spherical rotating-shell problem, are determined
by the (3,0) component of the field equations. The
angular velocity of the inertial frame is connected
with a particular solution of this inhomogeneous
equation. The particular solution must be the an-
gular velocity of the shell in order that the drag-
ging coefficient becomes unity. The relation
G(t)M/c®a(t) =const and the linearity of the expan-
sion are essential in this aim and a variable sep-
aration of the homogeneous equation in this model.

As the universe expands, the shell restricted by
the two hypersurfaces y =y, and y =y, also expands.
For consistency of discussion, the angular velocity
w, of the shell must vary in time as a~%(t) which
corresponds to the conservation of the angular: mo-
mentum. The angular velocity w, of the inertial
frame at the origin also varies in time as a~3(¢).
So there is no time delay between the angular ve-
locity of the shell and that of the inertial frame.”
In this model, it is determined whether the particle
horizon of the universe does or does not exist, by
the value of the coupling parameter 7. Even if the
horizon exists, when the shell covers the whole
universe, the complete dragging of the inertial
frame is realized. This means that the Machian
inertial interaction propagates beyond the causally
related region. -

When the rotating shell covers the whole uni-
verse, both of the coefficients B, and B, in Eq. (27)
also converge to zero, and only the particular so-
lution w, remains. So the metric becomes the
same as that obtained by the coordinate transfor-
mation, .

The present discussions of the dragging effect
on the inertial frame are based on the Robertson-
Walker metric for the closed homogeneous and iso-
tropic universe. This universe has no asymptoti-
cally flat region, which is necessary to define

frame dragging, according to Brill et al.>” It is
surely difficult to define frame dragging in closed
models, but we are interested only in a particular
observer at the origin of the closed universe. For
the observer at the origin it is a fascinating prob-
lem how his inertial frame depends on matter. We
investigated this problem by calculating the per-
turbation of the metric due to the spherical rota-
ting shell in comoving coordinates. It is princi-
pally possible for the observer at the origin to
measure the angular velocity of the inertial frame
at the origin w, and of the shell wg, relative to the
remaining part of the universe.

This cosmological model has the negative cou-
pling parameter of the scalar field contrary to
Brans and Dicke. The coupling parameter 7 must
be smaller than -2 in order that the physical quan-
tities are real. In this result, the contribution of
matter to the scalar field from nearby matter is
negative. However, the contribution from distant
matter is positive, and the contribution from the
whole universe is also positive, In the flat space,
the distance dependence of the contribution to the
scalar field is always —r~', However, in the
curved (closed) space, this is right only in the
neighborhood. The sign of the contribution be-
comes inverse at a point [y,=(1 - 1/E)7] in the
closed space, and the summation of the contribu-
tion becomes positive. The distant matter is more
dominant than nearby matter in determining the
scalar field. The contribution to the gravitational
“constant” has the opposite sign to that of the sca-
lar field. The nearby mass increases the gravi-
tational constant, and the distant mass decreases
it. The gravitational constant is almost deter-
mined by matter in the distant region.
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