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THE NON-CLOSED-SHELL SYMMETRY ADAPTED CLUSTER (SAC) THEORY.

THE OPEN-SHELL SAC THEORY AND MULTI-REFERENCE SAC THEORY

K.HIRAO

Department of Chemistry, College of General Education,
Nagoya University, Nagoya, Japan

and

Institute for Molecular Science, Okazaki, Japan

ABSTRACT

The non-closed-shell version of the symmetry-adapted-cluster (SAC)
theory is presented. We classified the total correlation effects into
two groups, the dynamical (transferable) or specific (non-transferable)
correlation effects. The specific correlation effects consist of
near-degeneracies, the internal and semi-internal correlation and the
spin polarization. Once specific correlation effects are included, the
remaining effects are just like those in closed-shells. We started with
the RHF/CASSCF orbitals but re-defined the reference function which
includes the state-specific correlation effects. Specific correlation
effects are expressed in the form of the linear operator and the
dynamical correlation is treated by means of the exponential operator.
The present theory is exact and does not include the non-commutative
algebra. There is a very close parallel between the standard single
reference SAC theory and its non-closed-shell version. We have discussed
the open-shell (excited state) SAC theory and the SAC theory based on a
multi-reference function (MRSAC). The theory provides low-lying excited

state solutions as well as the ground state solution.
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I. Introduction

There are three approaches to the electron correlation problems of
molecules. The first method is based on the variational principle. The
most commonly used variational method is the method of CI.l The CI has
conceptual simplicity and generality. However, it suffers from the slow
convergenece of the wavefunction. The second approach is the many-body
perturbation theory.2 It is a size-consistent theory. The introduction
of diagrammatic analysis is a powerful way of handling and summing
various types of terms in a perturbation expansion. However, the use of
diagrams is only an aid. It does not alter the fact that we are doing
the CI calculation, whose convergence is also slow. There is an approach
which is neither variational nor perturbational. The theory is based on
the cluster expansion of an exact wavefunction.s—13 It is a
size-extensive theory and the convergence of the wavefunction is much

faster than that of the CI expansion.

The cluster expansion method is based on the ansatz3
Y = exp( T )|0> (1)

where |0> is the Hartree-Fock single determinantal reference function and

T is a sum of one- to N-particle excitation operators

T = T(l)+ T(2)+ e 4 T(N) (2)

We have proposed the symmetry adapted cluster (SAC) theory.5 The SAC



method, originally designed for closed-shell systems, has been extended

to include open-shell systems. It is based on the ansatz
P = Qexp( S )|0> (3)

where S is a sum of symmetry adapted single to N-ple excitation operators

(1), ¢(2) (N)

S =8 S (4)
and Q is a symmetry projector which applies only to the disconnected
clusters of the expansion. For singlet closed-shells, Q is not necessary.
The Schrodinger equation for closed-shells 1is given by

e SHeS o> = E,l0> (5)
where Eg is the ground state energy. By now the SAC approach has
been well tested for numerous closed-shell ground states. The single and
double SAC method, which is equivalent to the coupled-cluster method with
single and double excitations (CCSD) of Bartlett,4 recovers about 98% of
the total correlation energy of a given basis set.6

For open-shell excited states, the SAC-CI method has been proposed.7
The idea behind the SAC-CI theory is that the majority of the electron
correlation in the closed-shell ground state will be transferable to the
excited states since the excitation of interest involves only one and/or
two electrons. We can express the correlated excited state wavefunction

in terms of the SAC function using the excitation operator T



Y = TTg = Texp( S )]0o> (8)

The T and S operators commute each other since both are defined in the
same restriction. The expression of eq.(8) is also exact if T includes
all excitations. From the Schrodinger equation, we have the SAC-CI

equation
e StH, T1eS]0> = (E,- E,)T|0> (7)

where Ee is the energy of the excited state. The SAC-CI wavefunction can
be obtained only by a single diagonalization of the nonsymmetric matrix.
There is no iteration involved. It is well tested that the SAC-CI with
single and double excitations reproduces electronic excitation energies,
ionization potentials and electron affinities within the error of 2%.8

The single reference cluster approach, however, breaks down when
applied to the states where the restricted Hartree-Fock (RHF) function is
not a good starting wavefunction. Such cases occur in many actual systems
particularly at non-equilibrium geometries when the chemical bonds are
broken. In such situations, the low-lying excited configurations are
likely to penetrate into the range of the reference configuration
energies and act as intruder states. They also occur, when we study open
shells and excited states.

While the single reference cluster expansion approach has been
successfully exploited during the past two decades, the extension of this
formalism to non-closed-shells cannot be considered to be fully
understood even today, despite siginificant theoretical progress made in

recent years.g_18 This is undoubtedly due to the inherent complexity of
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the problem involved as well as to our lack of understanding of the
cluster structure of general non-closed-shell wavefunctions.

In non-closed-shell systems, there are three, about equally
important types of correlation effects. The exact wavefunction is

expressed as

int X(semi—int + polariz) T Xall-ext (8)

where mre is the reference function with including quasidegeneracies.

f
The internal correlation X5int comes from the mixing of the configurations
that can be made from the occupled orbitals. Semi-internal correlation

X .. comes from the configurations involving the open-shell orbitals.
semi-int

When two electrons collide, for instance, one electron goes into the

virtual space while the other remains in the occupied space. Moreover
the occupied orbitals in non-closed-shells are individually polarized in
excited states other than the singlet state. The one-electron

polarization effect is much smaller than the other correlation effects

involving pairs of electrons. The polarization effects x are

polariz
coupled by symmetry to the semi-internal correlation. Both the internal
and semi-internal correlation effects are very specific in their

- magnitudes to each other. They depend strongly on the symmetry of the
state, on the total number of electrons, etc. It is expected that once
.these specific correlation effects are calculated, the remaining effects
become just like those in closed-shells. That is, the remaining are the
all-external correlation effects x .
all-ext

The another difficulty of the non-closed-shell theory lies on the

validity of the commutation property of the excitation operators.
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Non-commutative algebra makes the theory very complicated and loses its
conceptual simplicity. In order to retain the commutative property of all
the operators, the fermion creation and annihilation operators should be
defined in the same restriction. 1In non-closed-shells, however, there
are three separate orbital spaces, the closed—shell (core), the
open-shell (active) and virtual orbital spaces. The problem is what to
treat the open-shell orbitals.

A general formalism of the non-closed-shell/multi-reference cluster

expansion theory was given by Mukherjee et al,9 by Jeziorski and

Monkhorst,lo by Nakatsuji,l1 and by others.lz_13 Mukher jee's theory9 is
based on the ansatz,
¥ o=exp( THoy 5 @ =3 Civy (9)

and wi are N-electron determinants. T is an excitation operator given by

a_+ 1
T = tiaaa. + o

i ab a+a+a‘aj + ... (10)

tij abi

The theory is a straightforward generalization of the single reference
theory. However, the theory involves non-commutative algebra for the
operators and T is not unique unless some additional conditions are
imposed. Jeziorski and MonkhorstlO proposed a genuine multi-reference
coupled cluster theory which is free from sﬁch difficulties. They
started from the ansatz

¥, =3 C,,,eXDP( T o, (11)

1l



where Qu span a complete reference space within the valence orbitals.

T™ jis a sum of one- to N-particle excitation operators as given by eq.(10)
and is different for each reference determinant. The theory is unique
and does not include the non-commutative algebra bacause of the
completeness of the reference space. However, from a practical point of
view, the theory seems to be too difficult to be applied, except when
some drastic approximations are introduced. Nakatsuji11 has proposed the

following ansatz,
v _ v+ Vot
L | > b, M, 1 exp( > C{s, ) | 0> (12)

where |0> is the closed-shell single determinant. The M;

symmetry adapted operators and defined by the excitations from the

and S; are both

occupied orbitals to the virtual orbitals. The %O is an artificial
operator and deletes the coefficient bg in the disconnected terms to
avoid the possible divergence in the case of bg being close to zero. He
divided the orbital space into two parts, occupied or virtual and
defined the excitation operators. Therefore, all the excitation operators
can be chosen as to ensure the commutation relation. However, some
important internal correlation effect cannot be included.

In this paper we will present the non-closed-shell version of the
SAC theory. The theory is required to be exact. It is also required
that the excitation operators can be defined uniquely and the theory does
not involve any non-commutative algebra. In the next section, we will
first present the open-shell (excited state) SAC theory. Then, the
multi-reference SAC theory will be discussed in Sec.III. In the final

section, some conclusions will be summarized.



I1. The open-shell SAC theory
First, we will consider the open-shell system with a high spin state
repesented by only a single determinantal RHF function ®O

¢, = 4(@ o ) = I(platplB...(,oqa(qu(p(Q+l)a...(p ol (13)

closed open p

where ¢ and ¢ are the closed-shell and open-shell parts of mo

closed open
and 4 is an antisymmetrizer. Thus, the system has 2s unpaired « spins,
namely, s=(p-q)/2. In such a case, the RHF wavefunction provides a good
zeroth order representation and the open-shell system affords similar
simplicity as the closed-shell system.

We will classify the correlation effects into two groups, the
dynamical (transferable) correlation or the specific (non-transferable)
correlation. The essential characteristic of the present approach is to
re-define the reference function composed of RHF orbitals. Our
open-shell SAC wavefunction is given by

Y = exp( R )0 ]

= Td (14)

ref ° ref closed

The eR represents the dynamical correlation and the linear operator T
describes the specific non-dynamical correlation. Intermediate

normalization is assumed

¥ > = 1 (15)



Here, ¢ = To

is the newly defined reference function which
ref closed

includes the state-specific correlation effects. Thus, T operator
generates the open-shell part mopen when operated on mclosed and also
describes the internal/semi-internal correlation effect and spin

polarization effect. The T operator is expressed as a sum of one- to

N-particle symmetry adapted excitation operators

2), (N)

T =3 cT) - (1), 7l A\ (186)

Thus T generates the 2s-electron attached state when applied to mclosed

with the simultaneous spin eigenfunctions of 82 and SZ

STo = s(s+1)0

ref , S_&o = so

z ref (17)

ref ref

Although T depends on the system, T is defined uniquely if the system is
given. The R operator describes all-external excitations from the
closed-shell to virtual orbitals, which is more or less transferable
among different states of the system

R = 3 cry = P g2 gV

(18)
Thus, T} and R} operators are defined exclusively and they commute each
other. The theofy is exact since any excitation operator can be included
in the present formalism. A symmetry projector Q is unnecessary since T
is linear and R is a sum of singlet-type excitation operators.

In practical applications we will introduce some approximations. In

the present work we consider only one- and two-body parts of T and R,

- 9 -



ie. T=T % 7(2) 4ng r=r(P) s g(2),

Let us consider first the T
operator. The T operator depends on the systems of interest. Retaining

up to double excitation, we have

T =3 CTy =T, +3 ct T? £ 3 c; T, o+ 3 Pct Pl
ma ..ma p~ma p..ma ab ,.ab p~ab p..ab
+ 203y Tyy * 2765y TTyy * 20 Tip * 2 Cip Tip (19)

where C? are the cluster amplitudes to be determined and T? are the
symmetry adapted excitation operators (represented by generic symbols CI

and T} , respectively) defined in terms of the fermion creation and

annihilation operators. In eq.(19) and throughout we follow the
convention that the subscripts (superscripts) 1i,jJ refer to the
closed-shell orbitals, m, n to open-shell orbitals and a, b to virtual

orbitals. The TO operator reproduces the RHF wavefunction ®O when

a

applied to o The TT , TIIl and pT? are single excitation operators

closed’

and others are double excitation operators involving the open-shell

orbitals
T0 = aZQ+l)a...a;a...a;a (20a)
T? = a2q+l)a"’a;a"'a;aa;BaiB (20Db)
Ta = %(qeD)a* Paa  Ppa (20c)
pT? = [1/25(s+l)]l/2 [s (a;aaia - a;BaiB)azq+l)a'"a;a"'a;a



+ +
a, s lB 2 (q+1)a "amB"'apa] (204)

+

T?? = (a;aaia + a;BaiB)an+l)a"’a;a'"a;aa;BajB//z (20e)
PT?? = [1/2s(s+1)]l/2 [ s (aaa fa " a;BaiB)a;&a;B azq+l)a"'a;aaj8
a;aaiBa;aa;B E o azq+1)a"'a;aaj8 ] (20f)
T?g = (a;aaia + a;BaiB)azq+l)a°"aga"‘a;a //2 (20g)
pT?g = [l/25(s+l)]1/2 [s (aaa ia a;BaiB)a;q+l)a"'aga"'a;a
Lac®ip E I9p 2 q+l)a "aga"'a;a] (20h)

The creation operators are defined in the open-shell and virtual orbital
spaces and annihilation operators are defined in the closed-shell orbital

space. Thus, T! are commutative for each other. The 9, in eqs.(20f) and

1
(20h) is the spin-flip operator to change the spin of a;a to a. ng’ namely
ona;a = a;B. The T are the usual singlet-type excitation operators while

the PT are the spin polarization excitation operators which include real
excitations and spin—flips.‘ Among them, the single excitation operators
pT? play the most important role in the spin correlation problems.14 As
to the double excitation, there are (2s+1) independent spin

eigenfunctions corresponding to the excitation from (wi, wj) to (@a, ¢b).

Two types of spin eigenfunctions corresponding to the all-external

excitations will be considered in the R operator. The remaining (2s-1)

- 11 -



spin eigenfunctions are neglected in the present approximation since they
are expected to make a small contribution to the energy. Then, the

reference function in the present approximation becomes as

Pror = T 0geq = 9008 - .. wqquﬁw(Q+l)a...wma...mpal
m
- 2C) lojae 8 ... wqawq8¢ma¢m8w(q+l)a...mia...mpal
a
+ 3 lewlamlﬁ e ¢pa¢p8¢(q+l)a...waa...wpal

l/2|

+

p~a
> Ci[1/2s(s+1)] .¢a¢iw(Q+l)...wp{s(aB+Ba)a...a

- o 2 ox...8...0} |
m

+

am
S cijl...mmamewawi(aB—Ba)//Z w(Q+l)a..-mpaI

1/2|

+ > pC??[l/ZS(S+l)] ...wmamm3¢awi¢(Q+l)...¢p{s(a6+6a)a...a

- oot 3 A...B.. .0} |

n
+ 2 C?gl... wawi(aB—Ba)//Z Q(Q+1)a...¢ba...¢pal
+ 3 pc?g[1/25(5+1)]1/2|...mami@(Q+l)...wb...mp{s(aB+Ba)a...a...a
- a0 2 %...B8...a} | (21)
n



Thus, Qref consists of singly and doubly excited configurations involving
the open-shell orbitals relative to mo in addition to mo itself.
Namely, mref includes the semi-internal and spin polarization effects
which are specific to the state of interest.

Let us consider next the R operator. Once the state-specific
cofrelation effects are included, the remaining effects are just like
those in closed-shells. The R} operators represent the all-external

excitation operators defined by the excitation from the closed-shell

orbitals to the virtual orbitals. The RY operators do not involve any

J
open-shell orbital. Thus, the R} operators commute each other and also
commute with the T; operators since both are chosen exclusively. The R

operator is formally identical with the corresponding operator of the

(1)

single reference SAC approach. The explicit expressions for the R and
R(z) are
- + a ,a (1).ab (1), ab (2).ab (2),ab
R =73 CJRJ = > Ci Ri + 2 Cij Rij + cij Rij (22)
with
a _ + +
Ri = (aaaaia + aaBaiB)/JZ (23a)
(1),ab _ a.b a_b
+ + + + + + + +
= (862102p8258 * 2a8?18%ba?ja * Zbolic®as®is T 2bs?isPacje’ /4
(23b)
(2),ab _ a,b _ La,b
Rij = (RiRj RjRi)/2

- 18 -



= (2a+ a. a. a, + 2a'_.a.,a a., + a _a. a ,a., + a'.a. a+ a.
ac i " ba“jo aB“iB"bB " jB ax  ix"bB " jB ag i " bo jo

+ + + +
T %olinlasis " 4h82i8%a0?jo ) /443 (23¢c)

The R generates the following excited configurations when operating on ®O

—_— a -—
Rog, = 3¢y |... o0 (aB-Ba)//2... |
(1) .ab _ _
+ 3 Cijl. 000,06y (aB-Bor) (xB-Bet) /4. .. |
(2) .ab
+ S Cijl' 03¢0,y (200B8+2BBocr-BorB-BBo-BoceB-BeeBer) /V12. . . |
(24)
The exponential operator eR produces triply, quadruply,... excited
configurations in addition to the singly and doubly excited
configurations.
The total wavefunction is given by
B + ; +_+
¥ = (1 + 2CRy + 5 33 CyCuRR + VO er
J J K
B ' + + ' +,..+
=0 % C1T1%10sed * 2 CgRy; @9 + 2 2 CyCoRIT @y 0oy

J IJ

1 +_+
g § % CyCxRyRy @5 + ... (25)

Here summation is done over all orbitals and 2 indicates that the terms

involving TO are excluded from the summation. The second terms on the

- 14 -



r.h.s. of eq.(25) represent the specific correlation effects and the
third terms describe the dynamical correlation effect. The coupling of
the all-external excitation with the semi-internal and spin polarization
excitations are also included through the disconnected terms in the form
of the products of R; and T; operators. The fifth terms correspond to

the disconnected clusters of the all-external excitations.

Let us turn now the Schrodinger equation

_ _ R _ _ R _
(H - E)¥Y = (H E)e Qref = (H E)e T®closed 0 (26)
Left-multiplying eq.(26) by e_R, we have
R, R )
e H e L E¢ref (27)

Eq.(27) is then projected against a sufficient set of excited functions

to generate a series of equations

< Ry eRl® > = E<o (28a)

closedTIIe ref closedTIMref>

-R.. R _
<d, RJIe He | > =0 (28b)

where (T;)* = T; and (R})* = Rj. Eq.(28a) are a set of linear equations

+

for TI while eq.(28b) are a set of nonlinear coupled equations for RT.

J
resultant set of equations are equal in number to the number of symmetry

The

adapted excitation operators to be determined. Eq.(28b) are formally
identical to the corresponding closed-shell SAC equations and eq.(28a) to

the SAC-CI equations. The eq.(28a) are reduced to an eigenvalue problem

- 15 -



of the nonsymmetric matrix while eq.(28b) to a system of linear equations.
The solution is performed iteratively until the self-consistent is
achieved. That is, mref is also determined through the optimization
process. This is actually possible and quite straightforward. The total
energy 1is given by projecting the Schrodinger equation onto the RHF

function ¢0

Ie‘R le > = E (29)

H e ref

<w0
Thus, the non-closed-shell SAC theory can be obtained with a slight
modification of the closed-shell SAC theory.

Now let us examine the relation to the SAC-CI theory. For the sake

of simplicity, we will consider the doublet state

¢ = d(mclosed¢m) (30)
The SAC equation for the closed-shell o is reduced to
closed
-S S _
e He mclosed N Egmclosed (31)

where Eg is the energy of esm Also the SAC-CI equation for the

closed”
electron attached states is given by

e Stu, T1e50 (E, - E,)To (32)

closed e closed

where (Ee— Eg) gives the electron affinity. If the difference between R

and S is defined by S' (S'=R-S), then eq.(27) leads to
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-S S'. 1.8 . . S
e "[H, e” Tle mclosed - (Ee Eg)e T(bclosed (33)

We see that the T in the SAC-CI equation of eq.(32) is replaced by eS T.
This means that the present theory takes account of the reorganization
effect of the electron correlation due to the excitation. The frozen
correlation approximation in the SAC-CI theory is now relaxed in the
present open-shell SAC theory. When S' is small, i.e. dynamical
correlations are transferable, the SAC-CI method becomes a good
approximation. Thus, the present theory is a straightforward

generalization of the SAC-CI theory for the excited states.

ITII. Multi-reference SAC theory
We now turn to discuss the multi-reference SAC theory (MRSAC). The
idea behind the open-shell SAC theory can easily be applied to the

multi-reference cases. We will start with the multi-configurational

function
v v
by = > Ay O; (34)

Here, v denotes a state under consideration. The theory is required to be
rather immune to intruders, allowing flexibility in choosing the

reference space. Thus, quasidegeneracies are fully considered in Qg. We
assume that ¢g is obtained by the CASSCF theory15 and QI span a complete
space among the active orbitals. But this restriction is not serious.

We may start with the conventional MCSCF wavefunction. The configuration

- 17 -



coefficients A¥ will be reoptimized but we will keep the norm of the

corresponding function throughout the calculation

v opt,.v opt

v v _ _ . v opt v
<@ Icpo > = <o |m0 >=1; o = 3 C10; (35)
where mg opt is the corresponding optimized function in the final stage.

Note here that we only need the CASSCF orbitals.

In this case, orbitals are classified as core (closed-shell),
valence (active) or virtual. The core orbitals are always occupied and
all possible distributions of the remaining electrons in the valence

orbitals give rise to mg. Then the MRSAC wavefunction is defined as

v o v R v _ v
¥7 = exp( R )mref ' mref T mcore (36)
. v . . . .
Again, the mref is a newly defined reference function and the mcore is

the doubly occupied part of ¢g. Intermediate normalization is also

assumed
<o¥ J¢Y > = 1 (37)

Thus, the Tv operator generates all the configurations appeared in the
starting function @3 and also includes the internal and semi-internal
correlation effects. The R operator represents the dynamical correlation
as before. The Tv and R can be chosen uniquely and they commute each
other. The wavefunction given by eq.(36) is unique and exact. Of
course, the theory is reduced to the single reference SAC theory in the

absence of near-degeneracies.



For the resulting simplicity we will consider the singlet state with
two active orbitals. It gives useful insight on the structure of the
MRSAC method. The indices m and n are used to refer to specific active

orbitals. The CASSCF wavefunction is given by
v o v R
b, = S Apd; = AOI...¢ia¢iB...¢ma¢mBl
1% v
+ ALl 0008 .0 0 (B Bo)/v2] + Agl.. .0 00 B.. .0 0o B] (38)
Two configurations are sufficient to span the complete space but we will

start with the general expression given by eq.(38). If we truncate the

excitation operators after double excitation, T is given by

v_ Vot n,.n nn ,.nn m ,.m mn ..mn
T™V= 3 CiTy = CyTy + C T+ Coo T+ > cy Ty + > cij Tij
P~a pPa a ..a ab ,.ab ma .ma ab ,.ab
+ 2 Ci Ti 2 Cm Tm + 2 Cmn Tmn v 2 Cij Tij + 2 cim Tim

(39)
Since all cluster amplitudes considered here correspond to C¥, we can
drop the lable v without ambiguity. The explicit expressions of these

excitation operators are

+  +

TO =‘amaam8 (40a)
n + + + +

Tm (amaanB B amlianoz)/"/2 (40D)

™R - % ot (40c¢)
mm ne np
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m + o+
T, =

+ +
i amaamB(anaaia+ anBaiB)/Z (404)

mn _ + + + + B
Tij = amaamBanaanB(aiBaja aianB)/Jz (40e)

a _ + + + +
Tn = (aaaanB aaBancx)‘/2 - (40%)

ab _ + + + +

T n (aadabB aaBaba)/JZ (40g)
P~a _ B + + + + + + _ + + + + +
Ti = | zaaaaiBamﬁan + zaaBaiaamaana aaaaiaamaanB + aaBaiBamBana

+ + + + + +
aaaaiaamBana + aaBaiBamaanB Y/J/12 (40h)

Tam = (2 + + . 2 + a~+ . + + N + a '1+ a
ij — aaaaiBanBaJa 2a8?ic nanB aaaaiaanaaja 2282i82ng JjB
+ + + + + + .
- aaaaiaanBajB - aaBaiBanana )amaamB /J/12 (401)
Tab - (2 + + 9 + + v at + B a+ a a+ a
im ~ ‘“%a0®i8%ng?bp %ag?ia?ne®be ¥ Pac®ia®na®bb ag?i8%ng?bu

+ + + + .
Y CanPia®ng®ba T 2ap?ip?nelps ) /V12 (40J)
The creation operators are defined in valence and active orbital spaces
while annihilation operators defined in the core orbital space. The first

three operators on the r.h.s. of eq.(39) reproduce the CASSCF

configurations in ¢g. Then the mzef is given by

vV o _ v _ n _
e =T bre = COI...@ma¢nBI + le...@m¢n(a8 Bat) /2| +
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+ ngl...wnawnBI + C? |...wmamemnwi(aB—Ba)//2l
+ 3 P 0.0, (xB-Bax)/V/2 ¢_ot¢ Bo_oe B |

ijttttovivy m - m 'n °'n
£ 3C® .. .00 (aB-B)/V2 | + 3 2P, o 0 (aB-Ba)//2]

m " Tatn Tt TOAYE L 4 mn' " "Ta’b
+ S Pc? |0, 0 0,0 (20088+28Bau-aBus-BuBa-0bBu-Buaad)//12]
- c?? |...¢a¢i¢n¢j(2aa88+263aa—a8a8—BaBa—aBBa—BaaB)//12|
.S C?; |...0,0,0,0 (20088+28Boct-ciBerB-BarBor-auf Bo-Boeef) / /12|

(41)
The mref includes CASSCF configurations and configurations corresponding
to the single and double excitations involving the active orbitals. The
R operator is a sum of all-external excitation operators and takes the
same form as given by eqs.(22) and (23). The commutation relation of

all the excitation operators is satisfied. The total wavefunction is

given by
v o_ v+ 1 V.Vt + v
Y o= (1 + § CJRJ + 5 § % CJCKRJRK + ... )oref
v opt 'Vt v+ v opt
= ¥ + 2 CyTp 0. * 2 C3Ry Bg
I J
v+ 'Vt 1 V.V +o+ Y opt
* § CjRy ( % CiTy ®eore) * 3 g % CsCkRiRx P *

(42)

The second terms on the r.h.s. of eq.(42) represent the internal and
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semi-internal correlation effects and the third terms all-external
correlation effects. The fourth terms are the coupling between the
all-external and internal/semi-internal correlation effects.

The solution of the MRSAC approach given here is very similar to
the previous case. The Schrodinger equation is projected against a

sufficient set of excited functions to generate a series of equations

-R

<(DcoreTlle H eRICI)ref> - E<(bcoreTII(bref> (43a)

<o¥ PR JeRu eRjo_ > = 0 (43b)
The total electronic energy 1s also given by

0¥ OPYe Ry oRig -k (44)

0 ref

Since the T operator is linear, eq.(43a) leads to an eigenvalue
problem of the nonsymmetric matrix. The solution with the lowest
eigenvalue corresponds to the ground state. The other solutions
correspond to the excited states involving the active orbitals. The
situation is similar to the case of the conventional CI method. This
will provide a good approximation since the dynamical correlation effect
represented by eR is more or less transferable from the ground state to
the excited states. Thus, the MRSAC theory presented so far can give the
low-1lying excited state solutions as well as the groﬁnd state solution.

The present approach can also be applied to the majority of
open-shell ground states and molecular excited states having more than

a single . reference configuration or determinantal function.
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IV. Summary

We have presented the non-closed-shell version of the SAC theory.
We started with the RHF/CASSCF orbitals but re-defined the reference
function which includes the state-specific correlation effects. The
transferable dynamical correlation effect is expressed through the
exponential operator eR and the linear operator T is used to represent
the state-specific correlation effects such as quasidegeneracies,
internal and semi-internal correlation effects, the spin-polarization
effect, etc. The R and T operators can be chosen uniquely and they are
defined exclusively. The non-closed-shell SAC theory can be obtained
with a slight modification of the SAC theory for closed-shells. The
theory is exact since any excitation can be included in the present
formalism. In addition, the theory does not involve any non-commutative
algebra. Furthermore, the present theory gives the low-lying excited
state solutions as well as the ground state solution.

We would like to stress a very close parallel between the standard
single reference closed-shell SAC and its non-closed-shell version. The
present theory has practical and conceptual simplicity. This approach is
particularly suitable for the evaiuation of potential energy surfaces,
the excited states and open-shell systemé, where allowance for mixing of
electronic configurationé is often necessary. Applications are now being
investigated in order to check the generality and the accuracy of the

present theory.
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Abstract

The accuracy of the SAC-CI (symmetry adapted
cluster-configuration interaction) method is examined for
the singlet and triplet excited states of H20 by comparing
with the full CI results for the [4s2p] basis set. The
SAC-CI results for the excitation energy agree to within

1.4 % of the full CI results.



The SAC (symmetry adapted cluster)[1] and SAC-CI [2] methods were
proposed for calculations of the ground and excited states, ionized states
and electron attached states of a molecule. Through many applications,
the SAC/SAC-CI method has been proved to be very useful for reliable and
effective calculations of the ground, excited, and ionized states of
molecules[a].

Some years ago, the accuracy of the SAC/SAC-CI method has been
examined for the ground state[4] and the triplet excited, ionized and
electron attached states[5] of Hx0 by comparing with the full CI results.
The basis set was [4s2p] set of Huzinaga[B] and Dunning[7]. The
purpose of this paper is to examine the accuracy of the singlet excited
states of HxO calculated by the SAC-CI method, since this examination
was missing in the previous paper [5]. We carry out comparative full CI
calculations and compare their total energies and excitation energies
with the SAC-CI results. Some additional results are also reported for
the triplet excited states.

The ground state of Hx0 is calculated by the SAC method. The
Hartree-Fock (HF) orbitals are calculated by the program GAMESS [8] and
used as the reference orbitals in the SAC/SAC-CI calculations. Linked
terms in SAC include all single (S;) and double (S;) excitation operators
and the unlinked terms include quadruple excitation operators as products
of double excitation operators (S2S2).

The excited states are calculated by the SAC-CI theory. Linked terms
in SAC-CI include all single (R;) and double (Rz) excitation operators.
For unlinked terms, we use two different approximations. The first one,
called SAC-CI(A), includes only RiS; operators and the second one, called
SAC-CI(B), includes both RiSz and R:S; operators. No configuration

selection is performed in both SAC and SAC-CI calculations. We used the



program package SAC85 [9].

The full CI. calculations for the singlet and triplet excited states
of HX are carried out with the use of the modified version of the
determinant integer full CI program of Handy[10].

The total energy of the ground state is -76.1956254 hartree by SAC
and ~76.157866 hartree by full CI. These are the same as those reported
previously [5]. The energy difference is only 1.6x1073 hartree-Ei:O
kcal/mol), so that the SAC method is proved to be very reliable.

The results for the singlet ground and excited states of HyO are
summarized in table 1. The dimensions of the matrices involved 1in
SAC/SAC-CI are the same as those of SDCI and are three-orders-of-magnitude
smaller than those of full CI. The excitation energies of both SAC-CI(A)
and SAC-CI(B) are in good agreement with those of full CI. The
differences are to within 1.2 %. There is a trend that SAC-CI(A) gives
larger excitation energies and, in contrast, SAC-CI(B) gives smaller ones
in comparison with full CI. Refined unlinked terms in SAC-CI(B) lower
the energies of the excited states and give smaller excitation energies.
Total energies of SAC-CI are also in very good agreement with those of
£3ll CI. However, we note that the SAC-CI(B) results sometimes overshoot
the exact fuil*CI energies, though the differences are less than
2.1x107° hartree. This arises from the non-variational nature in the
solution of SAC-CI. Variational solution always gives an upper bound
for full CI, but it is very difficult to obtain it for the SAC/SAC-CI
expansion[2]. For the 'A; and B, symmetries, we also give the results
for the second excited states. Both total energies and excitation
energies of SAC-CI (especially, SAC-CI(B)) compare very well with those
of full CI. We list the timing data in table 1. The CPU time for SAC-CI

is much shorter than that for full CI.



The results of the triplet excited states of H2O are shown in table
2. Here we also show the previous result of SAC-CI by Hirao and Hatano
[5]. We call it SAC-CI(H). The dimensions of SAC-CI(H) are smaller than
those of SAC-CI(A) and SAC-CI(B), because SAC-CI(H) does not include spin
polarization type double excitation operators for triplet excited states.
We also show the results of the second excited states for the 3A; and 3B
states.~ Total energies and excitation energies of SAC-CI(A) and SAC-CI(B)
are in very good agreement with those of full CI. The SAC-CI excitation
energies differ from the full-CI ones only to within 1.4 %, though the
dimensions of SAC-CI are much less than those of full CI. Results of
SAC-CI(H) are also comparable and agree well with those of full CI.

In conclusion, the SAC-CI method is confirmed to be quite accurate
for the singlet and triplet excited states of Ho0. The excitation
energies calculated by the SAC-CI method agree to within 1.4 % with those
of full CI, though the dimensions of SAC-CI are three-orders-of-magnitude
smaller than those of full CI. The CPU time for SAC-CI is also much
shorter than that for full CI. The total energies of SAC-CI(B) sometimes
overshoot the full CI energies because of the non-variational nature of
the solution, though the energy differences between SAC-CI(B) and full
CI are very small. We conclude that the SAC/SAC-CI method is quite

reliable and effective for the study of ground, excited and ionized states

of molecules.
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Table 1. Total energies and the excitation energies for the singlet ground and

excited states of Hx0 calculated by the full CI and SAC/SAC-CI methods.

State Orbital

Dimension Total Excitation Error from CPU
picture energy energy full CI time®
(au) (eV) (%) (min)
A ground state SAC 361 -76.156254 0.0 0.002 1.8
Full-CI 266474 -76.157888 0.0 55
3a;(n) —~4a SAC-CI(A) 360 -75.754848 10.9229 0.8 0.6
SAC-CI(B) 360 -75.761163 10.7511 -0.8 2.0b
Full CI 286474 -75.759512 10.8399 190°
1bz(0)~2bz  SAC-CI(A) 360 -75.450371 19.2082 0.8
SAC-CI(B) 360 -75.454417 19.0981 0.2
Full CI 266474 -75.457584 19.0558
A2 1by(r)—2b,  SAC-CI(A) 192 -75.756082 10.8893 0.8 0.1
SAC-CI(B) 192 -75.761966 10.72%2 -0.6 0.6
Full CI 245000 -75.761050 10.7380 &
'B, 1by (1) ~4a SAC-CI(A) 216 -75.833910 8.7715 0.9 0.2
SAC-CI (B) 216 -75.840435 8.5840 -1.2 0.8
Full CI 245776 -75.838288 8.6062 8
'By 3aj(n)—~2bz  SAC-CI(A) 312 -75.684680 13.3765 0.8 0.4
SAC-CI(B) 312 -75.670341 13.2225 -0.4 1.6b
Full CI 254752 -75.670141 13.2718 Blecy
1b2(0) »4a SAC-CI(A) 312 -75.564611 16.099%6 0.9
SAC-CI(B) 312 -75.568583 15.9913 0.2
Full CI 254752 -75.571512 15.9556

“Due to FACOM M780 computer.

his timing data is for the two excited-state solutions belonging to the same
symmetry.



Table 2. Total energies and excitation energies for the triplet excited states of

H20 calculated by the full CI and SAC-CI methods.

State Orbital Dimension Total Excitation Error from CPU
picture energy  energy full CI time?
(au) (eV) (%) (min)
3a 3ai(n)—~4a; SAC-CI(A) 417 -T75.794396 9.8467 0.8 1.1b
SAC-CI (B) 417  -75.799083. 9.7192 -1.0 4.0
SAC-CI (H) 315 -75.791190 9.934 1.2
Full CI 440475  -T75.797174 9.8150 246P
1b2(0)~2b2 SAC-CI(A) 417 -75.566185 16.0567 0.3
SAC-CI (B) 417 -75.568723 15.9877 -0.1
Full CI 440475  -75.569523 16.0098
3po 1bi(n)~2b2 SAC-CI(A) 274  -T5.775095 10.3720 0.9 0.3
SAC-CI (B) 274  -75.780262 10.2314 -0.5 1.8
SAC-CI (H) 192 -75.776939 10.322 0.4
Full CI 437840 -T5.779926 10.2844 114
3B, 1by(n)—~4a; SAC-CI(A) 294 -75.864292 7.9448 0.6 0.4
SAC-CI (B) 234 -T75.860963 T7.7904 -1.4 2.1
SAC-CI (H) 216 -75.868314 7.835  -0.8
Full CI 437520 -75.867507 7.9011 113
3B, 3ai(n)—2bz SAC-CI(A) 410 -75.718219 11.9198 0.4 0.9
SAC-CI (B) 410 -75.722134 11.8131 -0.5 3.7
SAC-CI (H) 312  -75.711568 12.101 1.9
Full CI 441120 -75.721626 11.8708 o69b
1bz(0)—~4a; SAC-CI(A) 410 -75.631970 14.26688 0.4
SAC-CI (B) 410 -75.634932 14.1844 -0.2
Full CI 441120 -75.835841 14.2151

“Due to FACOM M780 computer.

This timing data is for the two solutions belonging to the

same symmetry.



THE SCF ORBITAL THEORY

THE CLUSTER EXPANSION OF A WAVEFUNCTION FORMALISM
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1. INTRODUCTION

In the simplest possible description of an N-electron
systems, one-electron function is associated with each electron
and the N-electron wavefunction is a Slater determinant built up
from these one-electron functions. This independent particle
model, which has been developéd in forms of the SCF scheme,
constitutes the basis upon which the language of quantum chemistry
is founded. This review is intended to form a framework for the
SCF orbital theory. Our approach is to start with the expression
for the N-electron wavefunction in the one-particle cluster
expansion of a wavefunction.

Let us consider a wavefunction of the form

| o> exp| T1]|¢O>

1. 1
(1 + T, + 570" + 370+ - | o> [11

where the reference function |®O> is an antisymmetrized product of

N one-electron functions and T1 is the one-particle linked cluster

generator



+ 4+ +
|¢0> = aja,. .aN|>
+
Ti = fibiai [2]

The ket |> denotes a vacuum state, a; and a; are creation and
annihilation operators for single-particle states, b; are the
normalized one-particle cluster generators and the coefficients fi
are complex. Thouless' theorem1 states that the cluster expansion
given by [1] corresponds to a transformation of a single Slater
determinant |®0> to another determinantal function

+ S
|d> = y (a;+ fibi)|> [3]

As a reference function, we choose a restricted single

determinant given by

n
[d,> = > al a., |>
0 k=1 ka 'k
= u@lml...@kmk...@nwnﬂ [4]
for 2n-electron closed-shell systems. Here I...I denotes the

normalized determinant. A bar above a spin orbital indicates that
it is associated with B8 spin. For open-shell states, the

reference function is given by

l®>=[% a’ a’ ][% a 1>
0 ko1 ko kB m=q+1 me



H¢l¢1--.wkwk---wqw @0l [5]

a®q+1 p

We define the number of unpaired spins in the system by s

s =p - 4q
We assume that the |®O> or |0> in shorter version is an
eigenfunction of the spin operators 82 and SZ with eigenvalues
s/2(s/2+1) and s/2, respectively. We will denote the simultaneous

spin eigenfunctions of 52 and Sz by BgM (4=1,2,...1)

207 . J J - mad

The index j runs over the independent spin eigenfunctions
belonging to the same eigenvalues of 52 and Sz’ the number of
which is denoted by f. We will construct the spin eigenfunctions
through the genealogical scheme,2 in which a particular N spin
eigenfunction is specified in terms of the eigenfunctions of all
smaller numbers of spins from which it has been constructed. The
bagis of the scheme is that an N spin eigenfunction can be
ocbtained by combining a single spin eigenfunction with an (N-1)
spin eigenfunction. The possible routes to N spin eigenfunctions
are conveniently summarized on a branching diagram.

Throughout the paper, indices k,f refer to the closed-shell
orbitals, m,n to open-shell orbitals and i,j to general orbitals.
For the sake of convenience, we will separate the spin index and
employ the two-component operators. The a; and bi are then

represented by column matrices,



4 o D
a. = b, = [7]

aip Dig

The one-particle cluster generator T1 is written as

where TC and TO are the one-particle cluster generators for
closed-shell and open-shell manifolds, respectively. These are

expressed in terms of the excitation operators as

+ +
T, = E [ fo,kso,k + X ft,ksr,k] , (vt = x,y,2)
T
. _ + +
lo - i [ fO,mSO,m * fx,m X,m ] (8]

The closed-shell excitation operators are defined as

+ +
0k = /2 bk 9o Ay > Sr,k = /2 bk I (t=x,y,2z) [9]

and the open-shell excitation operators are given by
[10]

Here % and o.c (t=x,y,z) represent 2+#2 unit and Pauli matrices,
respectively. The f in [8] are complex and their real part is
referred to as g and imaginary part to as h, namely f=g+ih.

The Sa,k is called the singlet excitétion operator since it

generates a singlet-type excited configuration when operating on

the reference function |[0>



Sg 110> = loy@y ... x0 (@B-Bo) /V2. ... [11]

where Xy is the spatial orbital created by b;. Similarly S;,k is
named as the triplet excitation operator since it gives a
triplet-type excited configuration when operating on the
closed-shell referencé function, which is an eigenfunction of the
operator corresponding to t component of the total spin angular

momentum,

+

S, k10> = lojo, ... x, 0 (aB+Ba) /V2. . .0 0. [12]

However, when the reference functlon |0> is an open-shell
determinant as in [5], three triplet excitation operators generate
the spin contaminating excited states, while the singlet
excitation operators preserve the spin symmetry. For instance,
the S;,k operator for open-shell systems can be expressed as a sum

of spin-adapted excitation operators,

+ s 1 2 sg/2.+ 2 12 (s+42)/2.+
Sz,k = s+2 ) Sp,k v sS+2 ) Sl,k [13]
where
sS/2.+ _ -tz Nt —_— .+ +
Spok = (5720 1V8/2(byaygm bygayg)t V2/S Digdyg T apgan,]

(s+2)/2.+
S1.k

+

-1 2 .
= (s+2) [Py Pk = Pkp2kp™ P

+ +
kaakB i amBama]

[14]



The S/ng Kk and (s+ 2)/2 Kk generate singly excited states of spin
eigenfunctions,
s/2 + _ p
Sy 10> = Ixy@ @ g e 0p @80 5 ol
(s+2)/2 +, - 7
10> = Ix @ @0 0 0pe 0 8o 1y g/al [15]
where
P -1 2 -
) = (s+2) [/s/2 (aB+Ba)et...ot...0t-/2/s ot = X...8...¢]
s/2 s/2 o
7 -1 2
8(s/2+1) s/2° (8%2) [(oxB+Bat)ot. ..o, ..ot + oot % . ..B...cl
[16]
Note here that the 8p is a linear combination of the spin
eigenfunctions constructed by the genealogical scheme
p _ s+2 F-1 s f
85/2 s/2 ~ [2(s+l)] 8s/2 s/2 [2(s+1)] 8s/2 s/2 [17]

These operators in [14] are essentially single excitation
operators, although they involve two simultaneous elementary

excitations, real excitation and spin flip in the last term, due

s/2.+
Sp,k

important role in the spin correlation problem and is called as

to the spin-symmetry requirement. The operator makes an
the spin polarization excitation operator.

The+SX Kk and+Sy Kk excitation operators also generate the spin
contaminating excited states when operating on the open-shell
reference function.

¥
Let S be the Hermitian conjugate of S+, S=(S+) . From the



definition of the excitation operators, we see
s|o> =0 <0|st =0 [17]

They satisfy quasiboson commutation relations

+

+ +
\ [SI, SJ] [sJ, sI] =0, <o|[sl, sJ]|0> = 813 [18]
. +,2 +,3
The unlinked clusters (S )©, (S )",... generate doubly,
triply,... excited states, repectively. The (Sg k)2 and (S: k)2

give the same doubly excited state with a difference of a sign

+ +

2 o 2 _ — -
(Sg 1) o> = (Sz,k) jo> = H¢1w1-..xkxk---wqwq...n [19]

2. DETERMINANTAL FUNCTIONS

Let us now examine how the determinantal wavefunction can be
expressed in terms of these excitation operators. For simplicity
we will consider only the closed-shell case, but the discussion
can easily be extended to the open-shell case. Any other Slater

determinant, not actually orthogonal to |¢O> , can be expressed

[d> = expl iFY ]|®O> ;

F =L " - f
tx

ot
y y. Koy, K = F (v = 0,x,y,2) [20]

*

S
7,K Y,k) Y
The exponential operator e1‘F is unitary due to the Hermitian
property of F. Thus, the wavefunction |®> can be obtained from
the wavefunction |®O> by a unitary transformation. If we define a

new fermion operator by



d = ey a; e ¥ [21]

then we can rewrite the |®¢> as a determinantal form

at 51> [22]

+
dv,ka Y,k

|d> = @

k

These operators satisfy thé fermion anticommutation relations.
An alternative prescription may be used to obtain the

determinantal wavefunction. Thouless' theorem can be written in

terms of the excitation operators as

[d> = N exp[ X fY ks; k]I0> [23]
k ’ ’

The factor RN assures the normalization. It is apparent that the

|b> takes a determinantal form

+ +

y koCy, k8!

|o> = [24]

m
k
where

B + , + ' a1 2
ey = (ag + Ty bro ) /(1 « £ [2) [25]

Here we denote f' by f//2.
The Hartree-Fock (HF) wavefunction is the optimized one
within the space spanned by the determinantal functions generated

by the real singlet excitation operators

+ + +
0> = % expl ffgo,kso,k”o> B o, ka0,k8 !> [26]

where



1 2
Co i = (ap + &) b/l 1+ (g) ()2 [27]

The double occupancy of orbitals is preserved. The variational
cluster expansion of the wavefunction given by [26] or that of the

form

i

= exol i | v
|d> = expl iG, 1> ; Gy = 3 E gO,k(SO,k SO,k) [28]

is the HF wavefunction for the closed-shell systems. Thus, the
self-consistency effects can be expressed in the cluster expansion
of a wavefunction formalism.

We wish to go further beyond the HF approximation within the
framework of the orbital model, that is, within the space spanned
by the determinantal functions. However, even if we extend the
variational space by introducing the remaining excitation
operators, we cannot reach beyond the HF approximation in case the
HF solution is stable. This paradox is called the "stability
dilemma." It is clearly concerned with the problems of the
symmetry dilemma proposed by Lowdin.3 The stability dilemma can
be resolved by projecting the determinantal function onto the
correct symmetry space. We can go beyond the HF approximation
only when the stability dilemma is resolved. In the next, we will
consider the stability condition for the closed-shell HF theory
and then discuss the orbital theory including the electron

correlation.4’5

3. STABILITY CONDITION FOR HARTREE-FOCK SOLUTION



A general condition for the stability problems of the HF
state was first formulated by Thouless.1 Cizek and Paldu56 and
Fukutome7 have shown that the stability of a closed-shell HF
solution involves four different types of stability. We will
review the stability condition for the HF solution in terms of the
excitation operators.

Consider a small displacement of the HF wavefunction, given

by the unitary transformation,

[6> = exp[ iF ]|HF> :
_ 1 : o o - -
F =3 § f (f%ks},'k fy,ksy,k) = F (y=0,x,y,2) [29]

where |HF> is the HF wavefunction. In this case, the excitation
operators are defined by the HF orbitals as a basis. The energy

expectation is given by

;2
E = Eyp *+ ¢<HF|[H,F]|HF> + %T <HF|[[H,F]1,F]|HF> + ... [30]

where EHF is the HF energy. Due to the Brillouin theorem, we
have

<HF | [H,F]|HF> = 0 [31]

This leads to a simple criterion that the energy corresponding to
|HF> should be stationary with respect to the type of variation

given by [29]. The energy is stable if

P2
'%T <HF|[[H,F],F1|HF> > 0 [32]
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This inequality is known as the stability condition for the HF

state. Expanding [32] we obtain the stabilty condition

3 t
1 fo AO B0 f R 1 5 ft At Bt ft -
2 * * * * 2 * * * * -
f0 BO AO fO T ft Bt At ft

[33]
for all coefficients f. Here the fO and ft are the column vectors
formed by fo K and ft K’ respectively. The supermatrices A and B

are defined as

+
(A = <HF|[S HS - EHFIHF>'

O)kt 0,k770,¢

(B <HF|s H|HF>,

0)ke = 0.k%0, ¢

+
(At)k{ = <HFlsT HS - EHFIHF>,

K 7t, L

(Bt)k{ = <HF|st SI,LHIHF> (t=x,y,2) [34]

Kk

From the definition we see that A are Hermitian matrices while B
are not, since B*=B*. However, the supermatrices in [33] are
again Hermitian. The three identical supermatrices correspond to
the triplet-type excitations and the remaining supermatrix is
associated with the the singlet-type excitations. Two types of
independent stability conditions are called as singlet and triplet
(nonsinglet) stability conditions. When the matrices A and B are
real matrices, the stability conditions may further be simplified.
First consider the singlet stability condition. The singlet

stability condition may be factored into two subproblems

- 11 -



0 't
80(Ay + Bylgy + hy(Ay = By)h, > 0 [35]

where 8o and h0 are column vectors of real and imaginary parts of
the complex column vector fo(=go+£ho). The matrices (Ap B,) are
symmetric under the assumption that AO and BO are real, so unitary

matrices (U, V) may be found by which the matrices (AO + BO) are

diagonalized,
't +
U (AO + BO)U = DO
v’ B.)V = D 36
(AO - 0) = Dy [386]

Here D are the diagonal matrices. If we further define the

unitary transformed excitation operators

+ + + +

Yo T XS0k 0 Qo k T Z 50,1V [37]
together with

g - U'sy . Ky = V', [38]
Then, we have from [35] that

Z (8,10 2 (Dg) g + Z (Fy ) 2Dy > 0 [39]
where

(D) e = <HF|P0,kHP5’k - Eyp + Py Py (HIHF>

Do)y = <HFIQ, yHQy \ - Egp + Qg Qo (H[HF> (401
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Thus the singlet stability condition can be classified into real

and imaginary conditions,

+

(a) (DO)kk > 0, for all k
real singlet stability condition
(b) (Dy)yy > 0, for all k

imaginary singlet stability condition

In the same manner, each triplet stability condition is
factored into real and imaginary conditions when At and Bt
matrices are real. Using the diagonal transformations, we can
define the new sets of triplet excitation operators P; and Q; and

coefficients §t and Hr . Then we have

+ +
() D)y = <HF|Pt HP - E4yn + P_ P _kH|HF> > 0

K T,k HF T,k T
for all k, real triplet stability condition

- +
(d) (D) = <HFIQ (HQ o - Epp + Q ,Q (HIHF> > 0

for all k, imaginary triplet stability condition

These stability conditions ensure that the HF single determinantal
wavefunction represents a tfue minimum of the energy functional
within the space spanned by all determinantal functions. As
derived above the general variational space is separated into
independent subspaces generated by the excitation operators and
hence, we obtain an independent stability condition for each
subspace. This factorization leads to a useful classification of
the orbital theories. We now discuss the instability conditions of
the HF solution, suggested by the form of the above stability

conditions. For the sake of resulting formal simplicity, we
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employ the uncoupled approximation. That is, the unitary
transformed excitation operator P+, Q+ are replaced by the
primitive excitation operators S+' The uncoupled approximation

simplifies the instability conditions to the following forms

(a) Ej o - Egp + Ky

real singlet instability condition,

*# < 0, for all k

(b) EO,k - EHF - Kkk* < 0, for all k

imaginary singlet instability condition,

(c) E E - K .,.* < 0, for all k

t,k  THF kk
real triplet instability condition,

(d) Et,k - EHF + Kkk* < 0, for all k

imaginary triplet instability condition

where EO K and Et K are energies of the singlet and triplet
excited states respectively and Kkk* is the usual exchange

integral due to the relation of [19]

+
Eo’k = <HFISO’kHSO,k|HF>
+
Et’k = <HF|Sr’kHSr'kIHF>
Kip* = <HFISO,kSO,kHIHF> = - <HF|Sr’kSt’kHIHF> [41]

If these instability conditions are satisfied in the HF solution,
it means that it does not represent a true minimum with respect to

the corresponding fluctuation and that another solution, having
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the lower energy than the HF solution, must exist.

In case of the singlet instability problems, the new
solutions preserve the double occupancy of the orbitals and
therefore preserve the spin symmetry but they violate the space

symmetry. The real instability condition is rewritten as

E - E > K

HF 0,k ~ Kyx* 20 (42]

This implies that the singlet excited state has lower energy than
the ground state. Comparing to the real and imaginary singlet
instability conditions, we see that the imaginary singlet
instability may procede the real singlet instability. 1In case of
the triplet instability problems, the double occupancy, and
therefore the singlet character of the HF wavefunction, is not
preserved and unrestricted HF (UHF) solutions appear. From the
imaginary triplet instability condition we see that the triplet

excited state has lower energy than the ground state

E - E > K, % >0 [43]

kk

when the HF solution is imaginary triplet unstable.
We start from the reference determinant |[HF> built from the
HF orbitals. By adding the variational subspace generated by one

of the real triplet excitation operators, we have the function

|d> = exp{ iG, 1 |HF> ;

c =L1x
1T

z - S

[44]

+
gz,k(sz,k z,k)

where g, ;. are real quantities. The energy for |®o> is
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; 2
= { 1=
E = Egp + i<HF|[H,G ][HF> + =5 <HF|[[H,G,1,6,][1F> + ... [45]

First order correction to the energy vanishes due to the spin
symmetry indicating that the energy be stationary. Thus, the
subspace added does work as the variational space only if the HF

solution is real triplet unstable, namely if

_1:2
2!

<HFI[[H,GZ],GZ]IHF> = gz*(At + Bt)gz <0 [46]
Even if we extend the variational space by introducing the
excitation operators, we cannot reach beyond the HF approximation
in case the HF solution is stable. This paradox is called the
stability dilemma. When the HF solution is unstable, another
solution, having lower energy than the HF energy, must exist.
Unfortunately the corresponding wavefunction is no longer
symmetry-adapted. In this case, the spin-symmetry is not
preserved. The release from the stability dilemma results in the
symmetry paradox.

Now consider the wavefunction by projecting out the component

with the correct symmetry
[p'> = OS|¢> = 0g expl iGZ]IHF> [47]

where GS is the spin projection operator which selects the singlet
spin eigenfunctions. We see that the first order energy shift for

|®'> vanishes and the stability condition is reduced to
TB 0
§, b8, 2 [48]

due to the projection operator. The stability condition [48] is
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equivalent to requiring that the Bt matrix be positive definite.

Since the trace of the Bt matrix is nonpositive,

Tr(B.) = X <HF|S_ ,S_,H|HF> = - £ K ,* < O [49]
K z,k"z,k K

Kz kk

there always exists at least one negative eigenvalue of the Bt' If
the Bt has any negative eigenvalue, it is possible to construct an
anti-Hermitian operator iGZ which violates the stability condition
[48]. Thus, we can go beyond the HF approximation. The
spin-symmetry is also restored. The projection operator
introduced preserves the symmetry property by projecting the
symmetry adapted components and also resolves the stability
dilemma by violating the stability condition.

Noting the sign of the trace of the B0 and Bt matrices

defined by [41],

Kkk* >0

1]

Tr(BO) T <HF|S HF |HF> = X
k

0,50,k

> <HF|S -3 0 [50]

k

Tr(By) HF |HF>

t, k5t k Kpks 2

we see that the imaginary singlet and real triplet stability
dilemmas can be resolved by applying the appropriate projection
operators. That is, the imaginary singlet and three real triplet
excitation operators generate the variational space for the
improvement of the HF theory.

In general, the closed-shell orbital theories including the

electron correlation can be defined as
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|d> = ? exp[ iF ]|0> [51]

where the F is the excitation operator to give the variational
space and ? is the projection operator to resolve the stability
dilemma. By appropriate choice of the excitation operator and the
projection operator, we can obtain the various orbital theories
proposed so far for improving upon the HF approximation.

For the open-shell systems, we can also derive the stability
conditions for the restricted HF (RHF) solution in the same mannar
as done in the closed-shell systems. Unlike the closed-shell
systems, the UHF wavefunction for open-shell states always leads
to lower energy than the RIF wavefunction. The UHF orbitals can
be crecated by making use of the S;,k excitation operators.

Consider the infinitesimal unitary transformation given by

| o>

1l

expl LFCZ]IRHF> :

+

z,ksz,k [52]

F = % S (f .
K

*
CZ z,ksz,k)

In this case, the open-shell reference function is a RHF

wavefunction. The energy for |d> is
E = Epyp + i<RHF|[H, F , JIRHF> + ... [53]

The relation [13] reduces the first order energy shift to

+

2
i<RHF | [H,F__J|RHF> = (=25) ‘st  <ruF|H S/2s* _|RHF> + C.C.
CZ S+ K p,k

z,k
[54]

The first order correction to the energy does not vanish, implying
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that the RHF solution is not stationary to the variation described
by [52]. Thus the open-shell UHF wavefunction always leads to the
lower energy than the RHF wavefunction.

The open-shell orbital theory including the electron

correlation can be defined as
|®> = 9 exp[ iF_ + iF_ 1]0> [55]

where FC and FO are the closed-shell and open-shell excitation
operators respectively. By making use of the imaginary singlet
and two types of real triplet (S; and S;) excitation operators,
we can construct the various open-shell orbital theories including

the electron correlation.

4. ANALYSIS OF THE ORBITAL THEORY

Now we will analyze the orbital theories including the
electron correlation. First, we will consider the alternant
molecular orbitals (AMO) for closed-shell systems proposed by
Lowdin8 and examine why one can remove a large part of the
correlation error simply by permitting so-called different
orbitals for different spins (DODS). The DODS idea is used in the

UHF9 and spin extended HF (SEHF) theories10

for open-shell states.
However, they are poor for both the electron correlation and spin
correlation. The SEHF is a good example to understand the
importance of resolving the stability paradox. The generalized

valence bond (GVB) method11 and complex molecular orbital (CMO)

method12 will also be discussed.



(a) The DODS Type Wavefunction for Closed-Shell States
We start with the unprojected form of the DODS type
wavefunction,

+ +
|d> = % expl g €. x50,k * E &, 15, k! |o> [56]

When we start from the arbitrary determinant, not from the HF
wavefunction, the real singlet excitation operators (SS k) are
necessary to generate the HF orbitals. If we define the new

fermion operators by making a canonical transformation,

Cok = (A * gy \bO/IL v (g )21 2

c = (b - g @) /1 + (gy )]t 2 [57]

the above wavefunction can be rewritten as

+ o+
[0> = E ckaCkBl> [58]
where
c; = 5k°5,k + nkcg’k*oz [59]
with
= ' 211 2 — ' 2711 2
g, = 1/[1 + (gz,k) ] boomy gz,k/[l + (gz’k) ] [60]

Let us introduce the spatial orbitals for ca Kk and ca K

+

+
co’kl> = (g, x8) CO,k*|> = (v, v, 8) [61]

The kk and v, are spatially orthogonal to each other and the
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reduced density matrix for |9> becomes diagonal

p(1]2) = £ 2 gﬁ A (D)2 (2) + 202 nﬁ v (1)vy (2) [62]
k k

These functions lk’ vk are therefore the natural orbitals. Due to
the relation that &ﬁ + nﬁ = -1,- the gﬁ is the fractional
occupation probability for the natural orbital lk and nﬁ is that

for the Uk' In terms of these natural orbitals, we have

|(D> =||§01a(P2a- . -‘Pna‘Plb@Zb . -(Pnb " [63]

where

Pra = Bty t MYy

kb = Ek*k T MYk [64]

The new orbitals ¢ have the property that their spatial overlap
integral is diagonal and are called the corresponding orbitals.
This expression suggests that the optimized clﬁster expansion of
the wavefunction of the form of [58] is the UHF wavefunction for
closed-shell systems.

Since the M are small numbers, we can expand |¢> in terms of

the natural orbitals
|d> = crflwrf> + cl|¢1> + czl¢2> + ... [65]

in the form of the limited CI. Here the mrf is the normalized

restricted function with doubly occupied orbitals

- 21 -



[® > = (PO

of Aka...k 2l [66]

1

with the coefficient given by

Cop =T (£)72 [67]
rf Kk k”

The reference function I@rf> is approximated as the HF determinant
but, of course, they will not be identical. The functions |®l>,

|®2>, ... are singly, doubly,... excited configurations,

C.|ld,> = E J2 Crf(nk/&k) Hxlxl...vkxk(a8+3a)//2...Anxnu

= - 2 N Y N
02|®2> E Crf(nk/&k) Hklkl...vkuk...x P!

+ E Crf(”k/gk)("e/gt)ullzl"'Vk*kv{lg(a5+3a)(d3+5“)/2---"

[68]

The higher order terms are written in the same manner as above.
Note here that the singly and doubly excited configurations
include the nonsinglet spinbstates. The closed-shell UHF theory
may exist only when the HF solution is real triplet unstable,
which is a striking contrast to the open-shell case. In case the
HF state is stable, the coefficients N, are all zero due to the
stability dilemma.

Now we consider the wavefunction by applying the projection
operator and selecting the component of the singlet spin

eigenfunction
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|o'> = GS|®> [69]

The variational cluster expansion of [69] is the AMO
wavefunction.8 It is called SEHF wavefunction by Kaldorlo and GF
function by Goddard.'® As the projection operator acts only on

the spin part of the wavefunction, we can rewrite |d'> as
[d'> = Crflmrf> + 02|®2> + ... [70]

The singly excited configurations vanish due to the projection
operator. The leading excited configurations are the doubly
excited ones. This is the reason why we can cover a large part of

the correlation effect simply by permitting the DODS in

closed-shell case. The doubly excited configurations take the
form
= - 2 3 v Y
Cz|¢2> E Cop(n /802 Ixgxy vy oa 2l
— 2 —
- E(l//s)crf("k/gk)("i/gt)nllll‘"Vk*k”{*{GOO"'*n*n"
[71]
where
85, = {(20B-oBa-Boor) B- (BB+BuB-28Bc) ot} / V12 [72]
f

The spin coupling appeared in the AMO wavefunction is 900 (f=2)
associated with the standard tableaux Sl' This type of spin
coupling is not keeping our intuitive idea such as electron-pair

bond.
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(b) The DODS Type Wavefunction for Open-Shell States

Let us consider the DODS type wavefunction for open-shell
systems represented by

+

+ S +
|0> = R expl E gO,kSO,k * E gz,ksz,k * i gO,msO,m 110> [73]

Here |0> is the open-shell reference function as in [5]. The above

wavefunction is expressed as a determinantal function

+

&> = [ We, ci, 1l mer 1> [74]
K ko kB m me
where
_ + . +
Cx = ExCo.x * M0 kx%

p = (ag + gy b/I1 + (g )2]0 2 [75]

Now let us define the spatial orbital lm for c;. Then the reduced

density matrix for |®> becomes

P(1]2) = 2 282 2 ()X (2) + T 202 v, (1)w (2) + T 2_(1)2_(2)
k k m
[76]

The ’\k’ vk and '\m are also natural orbitals. If these natural

orbitals are replaced by

Pra T Bkt MYk
Prb T ERAx T MYk
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) = 2 [77]

then we obtain the expression for |&>

"¢1a¢2a'"wpa?;pw2b"'wqb" [78]

| o> =

Since the M, are small numbers, we can expand |[®> by means of

the natural orbitals as in the closed-shell case
o> = crflwrf> + cl|m1> + czl®2> + L. [79]

For open-shell case, the singly excited configuration |¢l> is not a

spin eigenfunction and can be expressed as

B s 1 2 s/2,.p 2 12 (s+2)/2,.1
o> = (357 X o> + (557 Z lo,>  [80]
k k
where
S/2 .0 _ p
I®k> = Hvkxk...AQ+1...xm...Ap85/2 s/2"
(s+2)/2,.1_ _ 1
lcbk> - |Ivklk"'lq+l"'lm'"lpe(S/Z"‘l) S/2" [81]

This result is a consequence of the relation given by [13]. Thus

the (s+2)/2

|®é> are the main spin-contaminating configurations of
the UHF wavefunction.9 For example, taking 3-electron doublet

spin state (s=1);

s/2gp _1/2,2 ) i
8s/z s/2 ° 91/2 1/2 = (aBa+Boo-200t8) //6
(s+2)/2,1 _3/2,1
8(s/201) s/2 = 83/ 172 = (@BurBacroad) /3 [82]
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Thus, the open-shell UHF solution always exists due to the

configuration of S/2|tbp>.

10,13

Now consider the SEHF (GF) method. The SEHF

wavefunction is the optimized one of the form

SEHF. - _ UHF

K 0.0 [83]

S

SEHF

Expanding |® > in terms of the natural orbitals, we obtain,

instead of [79], that

SEHF>

| b = crflmrf> + closlml> + 02@S|¢2> + .. [84]

In the closed-shell SEHF wavefunction, the singly excited
configurations vanish due to the projection operator. In open
shell case, however, the singly excited configurations still
remain even if we apply the projection operator. The singly

excited configurations in open-shell SEHF wavefunction become

_ s 1 2 _s/2,.p
Ogl®,> = ( s+ ) E | &> [85]

The improvement from the RHF energy originates from the singly
excited configurations, not from the doubly excited configurations.
The open-shell SEHF theory takes the orbital correction into
account but it does not involve the electron pair correlation
through the two-body interactions. We should note that the
closed-shell and open-shell SEHF theories are constructed on a
quite different approximation.

The S;,k operators which give the DODS orbitals are a sum of

the spin-adapted excitation operators as shown in [13]. If the



S; K operators are replaced by spin polarization operators s/ZS; K

in the SEHF method, the resultant wavefunction constitutes our

pseudo-orbital theory,14

= + S/2.+ +
|0> = 0% expl Z gy 1 So  * Z &, ) Sy * T8 pSo p 110>
) k k m
_ S/2.+
= @Sﬂ exp[ X g, x Sp,k]lRHF> [86]

k

Then the first order correction vanishes to the expectation value
of one-electron spin dependent operators. Therefore, the
psuedo-orbital theory involves the spin correlation correctly and
gives the reasonably accurate spin density within orbital

theoretic approach.l4

(s+2) /2%

On the other hand, if the 1 K

operators are

considered instead of the S; K’ we have

_ + (s+2)/2.+ +
|o> = 0g% expl E 8o, k50,k * E g, .k $1 .k i 8y mSo,ml 0>

(87]

The unprojected wavefunction of [87] has the stability dilemma,
unlike the SEHF one, and the projection operator resolves the

dilemma. Thus, the electron correlation can be included through

the unlinked clusters of (S+2)/ZSI = When the two excitation

S/2.+ (s+2)/2.+
sp,k and Sl,k’

both the spin and electron correlations can be described correctly.

operators, are treated independently,

However, when these two operators are combined to yield the S; K

operator like in UHF and SEHF theories, two effects interfere each

other and the method becomes poor for the description of the
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energy and the spin density. 1In the UHF theory, the stability

dilemma does not occur due to the existence of the spin

polarization operators, s/2S; K and the self-consistency effects
(unlinked terms) of the spin polarization operators should be
distorted by the unlinked terms of the (S+2)/2SI i operators. The

pseudo-orbital theory is free from these theoretical defects. A
proper inclusion of the (unlinked) self-consistency effect is
quite important and the pseudo-orbital theory realizes this

requirement in a simple orbital framework.

(c) Complex Molecular Orbitals
Next we consider the complex molecular orbitals (CMO) for

closed-shell states described by

SO,k]lO> [88]

[d> = oRm exp| E fO,k

The fo K are complex and the unprojected form of [88] leads to the

complex HF theory.lz

The OR is the projection operator which
selects out the real part of the wavefunction. This operator
recovers the space symmetry violated by the imaginary singlet

excitation operators. It is apparent that

+ o+
lo> = op I ko Ckp |

[89]

where

- + Pt + ' 2711 2
€y (CO,k + thO,kCO,k*)/[l + (ho,k) ] [90]

The ¢ and ¢ . have the same form as defined by [57]. 1In a
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similar manner, we can define the coefficients Ek and Ny by
_ ' 2711 2 = h' ' 2711 2

respectively.

and spatial orbitals A, and Vi for cg K and c+

k 0,k °’
__Then, A and v, are again the natural orbitals of the unprojected
wavefunction of [88]. The CMO wavefunction can be expanded in the

limited CI based on its natural orbitals

1]
(=]

| o> pll oo (B igkvk)(gkik + inka) R

= Crflmrf> + Czlm2> + ... [92]

The reference function is again a restricted wavefunction with
doubly occupied orbitals. The singly excited configurations
vanish due to their pure imaginary property. The doubly excited

configurations have the form

= -3 2 3 .
C,lo,> E Crp(M /8, )2 I X v v P 2

o+ z Crp (N /8 ) (N, 78D IX AL - v X v 3, (@B-Ber) (B-Bat) /2. . . |
[93]

The CMO wavefunction involves the choice of the singlet type spin

j. The singlet spin coupling may cause

couplings represented by 8
the lower energy than the corresponding spin polarization type
spin coupling appeared in SEHF wavefunction since the former might

be thought as representing covalent bonds but the latter is not in

keeping our intuitive idea such as electron pair bond. Thus the
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CMO theory gives the lower energy than the SEHF theory.

Now we define the wavefunction expressed as

o> = % expl E goyksg'k + % E (iho’;so i) 110> [94]

Then we can rewrite the above wavefunction as

i

o> = E C;k | > [95]

where C;k is the two-particle creation operator

= + + - ' 20t + ' 4 11 2
°kx = 1%, ka,k8” (Po,k) "C0,keaC0,kupl/ [T + (Bg 1 )% ]
[96]

Note here that the (ih )2 are the unlinked terms of the

+
0,k°0,k
imaginary singlet excitation operators but they generate

two-particle cluster functions. If we further define

g = /L1 + (hy 21V 2, = hy /[0 + (hy ()2]1 2 [97]
and the spatial orbitals Xy and vy for cg.k and ca,k* , we have

|0>=ll¢; 0 (B-Bc)/V2 ... @ ¢ . («B-Bat)/V/2 | [98]
where

%ka = Sk*k Y MYk 0 %kb T Btk T MYk [99]

The Pya and Psb satisfy the strong orthogonality condition that
the orbitals are orthogonal each other unless they are singlet

paired,
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G lOpp> # 0 . <o le,> =0 [100]

Therefore the optimized |®&> in [94] is the GVB wavefunction11

proposed by Goddard. This type of wavefunction was first
suggested by Hurley et al.15 under the name of the padired-electron
approximation. ThesGVB wavefunction is also expanded as a limited
CI based on its own natural orbitals. The expansion is analogous
to those of the SEHF and CMO wavefunctions. However, the GVB

wavefunction only includes the paired-type doubly excited

configurations;
Hxlxl...vkvk...xnlnu

The CMO wavefunction for open-shell systems is also defined
in a similar manner as in [88]. The wavefunction involves the
singlet type spin couplings 81 associated with the standard
tableux Sf . For example, the spin coupling appeared in the

doubly excited configurations for doublet spin state is

9{/2 1y = (aB-Bo) (cB-Bo)a/2 [101]

The spin polarization type spin coupling represented by Qp does
not appear in the CMO method. Thus the CMO is not suitable for

the calculation of the spin dependent properties.

(4) Complex DODS Wavefunction

Next consider the wavefunction defined by

|0> = 0,09 expl E fo’ksg,k + 3 gz,ks;,k 110> [102]
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The |®> can be written in the following determinantal form

[d> = 0,0, T

+ +
r%s T ckack8|> [103]

where

+ + : + : +
% 7 80,152, 1%,k M5 x5k V€ 0, ke %2t t(0g 1/ 0 1) €0, ka

"o,k 80,1 (5 k/Eg V€0 k9, 1 [103]

The and N, ¥ have the same form as defined

Eo,x Mok * 82,k
previously. In terms of the natural orbitals kk’ Vi for cg Kk and

+

€o,kx

we can expand the wavefunction as
[d> = crflmrf> + czlm2> + o [104]

mhe reference function is again the restricted wavefunction with
64ubly occupied orbitals. The doubly excited configurations contain

possible two independent spin eigenfunctions 87 and Bf (f=2)

Hvkxkvtkt(aB—Ba)(aB~Ba)/2H

Hvkikvcxt(ZaaB—aBa—Baa)B—(aBB+Ba8-2BBq)a//l2H.

The complex DODS method leads to lower energy than the other
orbital theories discussed above.
For open-shell systems, the complex general spin orbital

(GSO) theory defined by the following cluster expansion

> = 2 % expl E fo,ksO Kk * Z g S + 3 f S

- 32 -



+
x,mSO,m 110> [105]

+ 2 g
m
corresponds to the complex DODS theory for closed-shell systems.
The projection operator ?, which resolves the stability dilemma,
takes the form P = GRGSGM. The GM selects out the spin symmetry
adapted components of éz operator characterized by M. We see that
doubly excited configurations of |®> involve the two types of
independent spin eigenfunctions, that is, the singlet type 91 and
the spin polarization type Bf.
We have shown that the stability of the HF solution leads to
a concept called stability dilemma. Only when the stability
dilemma is resolved, the electron correlation effect can be taken
into account through the unlinked terms of the one-electron linked
clusters (excitation operators) within the framework of the
orbital theory. The stability and symmetry paradox can be resolved
by projecting the determinantal wavefunction onto thé correct
symmetry space. The various orbital theories can be obtained by
the appropriate choice of the excitation operators.

The limited CI in terms of natural orbitals can be used to

study the internal relationship of various orbital theories.

TABLE 1
The doubly excited configurations in the limited CI based on the
natural orbitals of GVB, AMO(SEHF), CMO and Complex DODS

wavefunctions for closed-shell states.
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GVB HvkvkaBH

AMO (SEHF) HvkvkaBH

Hvklkvﬁxz{(2aa8—a8a—8aa)B—(aBB+BaB—ZBBa)a}//12H

CMO ‘ HvkvkaBH

valkvtkt(aB—Ba)(aB—Ba)/ZH

Complex DODS HvkvkaBH

Hvkxkvtxt(aB—Ba)(aB—Ba)/ZH

Hvkkkvtkz{(2aa8—a8a—8aa)B—(aBB+BaB—ZBBa)a}//12H

TABLE 2
The leading excited configurations in the limited CI based on the
natural orbitals of UHF, SEHF, GVB, CMO and Complex GSO

open-shell wavefunctions for doublet spin states.

singly excited configurations

UHF Hvkxkxm(a8+8a)a/J2H

SEHF Ivy a ax (aBo+Baa-20a8) / /6l
doubly excited configurations

GVB HvkvkxmaBaH
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CMO HvkvkxmaBaH

Hvkxkv£1£xm(a8~8a)(aB-Ba)a/ZM

Complex GSO Ty v x ool

Ivp X v o2 o2 (B-Bat) (xB-Bar) /21l
kxkvtx{xm{(ZaaB—aBa—Baa)B—(aBB+BaB—zBBa)a}a/J12H
v 2 vy, (aB-Bo) o/ V21

v

The leading excited configurations are most important since the
higher order terms arise just from the self-consistency effects.
In TABLE 1 and 2, we summarized the leading excited configurations

appeared in the limited CI expansion. From these we can expcct

E

E < Ecmo = Eamo = Egys

Complex DODS — “CMO

for closed-shell states

Ecomplex Gso < Ecmo = Egv << Esgur < Eunr

for open-shell states

We assumed that natural orbitals defined in each orbital theory
are not identical but similar and that the singlet type spin
coupling may cause the lower energy than the corresponding spin

polarization type spin coupling.

5. BRUECKNER ORBITALS
The HF wavefunction is a best energy wavefunction among all
possible determinantal functions. Then the first order correction

to the energy vanishes due to the Brillouin theorem and also
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vanishing are the first order corrections to the electron density
and to the expectation value of the spin-free one-electron
operators. Another criteiron of goodness is that of maximum
overlap with the exact wavefunction. The best-overlap
wavefunction is the determinant with least mean-square deviation
from the exact wavéfunction. It can be shown that the
best-overlap orbitals are identical with Lowdin's exact SCF
orbitals.16 The best-overlap determinant has the very interesting
property that if we expand the wavefunction in terms of the
best-overlap orbitals to a complete basis, then no singly excited
configurations appear in the expansion. The orbitals are also
called as the Brueckner orbitals.17
The Brueckner orbitals can easily be obtained if one uses a

cluster expansion of the wavefunction. Consider the cluster

expansion of the wavefunction

|o6> = exp[ S 1]|0> ;

S =0C,S, + C,S, + ...+ C..S [1086]
with

<¢Ol¢ <m0|m> =1 [107]

0>
Here Si is a linked cluster operator which produces i-fold

symmetry-adapted excited configurations when operating on |0> and

Ci is an expansion coefficient. The Schrodinger equation

(H-E)|o> = (H - E)e°|o> = 0 [108]
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is then projected against a sufficient set of the excited

functions to generate a series of nonlinear coupled equations
<s; le™He®[0> = 0 [109]

The total energy is given by projecting of the Schrodinger

i

equation onto the reference state,

S

<0]e Hesl0> = E [110]

This is our symmetry-adapted-cluster (SAC) theory for the ground

state.18 Now let us choose single, double and triple excitailons

as the linked cluster,

|d> = exp[C;S,+C |o> [111]

155135%C1 3151 5k

Here we used a brief notation that the repeated index implies a

summation

CiS. = X C.,Ss, , C,.S etc
i

154 13515 © fJ Ci5515
Then we have

1 2
<s; [H[0> + <s, |H EICJSJ> + <si|H|cjksjk+ 27(C;8%>

C.C, ,S.S

1 3. _
+ <8 IHIC L Sy et C5CkSjSke * 37(C;S;)7> = 0 [112]

If we use the Thouless' theorem, we get

o> = explC, .S

15515 cijksijk]|o > [113]

Here |0'> is again a determinantal wavefunction. Thus, a stepwise
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optimization of [113] is possible by first guessing Ci’ then
obtaining a new |[0'> which can then be the starting point for the
calculation of a new Ci with [112], etc. When the iteration is
completed, we can always choose orbitals such that all Ci vanish
identically. Note that the corresponding variational principle for_

"the HF wavefunction
|d> = expl C;S; 110> [114]

leads to the Brillioun condition
<Si|H|O> =0 [115]

Now, imposing Ci= 0, we get from [112]

<si|H|o> + <SiIHlC > <silnlc 0 [116]

3k5 3k JkeS ke
This is called as the Brillouin-Brueckner condition and is
actually a condition for |d> to be the Slater determinant that has
maximum overlap with the exact wavefunction.

The Brueckner orbitals are useful in nuclear theory. But in
atomic and molecular problems the Brueckner orbitals have any
noteworthy advantage and it is believed that the Brueckner
orbitals for closed-shell state do not usually differ much from
the HF orbitals. In order to examine this, we have calculated
Brueckner orbitals for HZO' The calculations were performed with a
double zeta quality basis, the same as that used in the earlier
full CI calculations.19 These calculations are reported at three
C2V geometries, corresponding to stretching of the OH bonds to Re'

l.S*Re and 2.0*Re. Results are summarized in TABLE 3. For



equilibrium geometry, Re, two sets of orbitals resemble each other.
The energy difference is only 0.0007 au and the overlap integral
between Brueckner and HF determinants is 0.9997. However, when a
single determinantal expression is not a good approximation, the
best-energy and best-overlap orbitals differ considerably. For
2.0*Re, the energies differ by 0.022 au and the overlap between
two wavefunctions is 0.9782. TABLE 3 also includes the
correlation energies calculated by the SAC theory based on the
Brueckner orbitals. The best-overlap determinant includes no
singly excited configurations in the expansion of [106]. This

leads to considerable simplification in the SAC theory.

TABLE 3

Comparison of HF orbitals and Brueckner orbitals for HZO

R 1.5%R 2.0%R

e e e

Edartree-Fock -76.009842 -75.809774 -75.595188
Eprueckner -76.009102 -75.797353 -75.573106
<®HF|®Brueckner> 0.999679 0.995653 . 0.978160

Correlation energy (au) based on the Brueckner orbitals

SAC with 82 -0.146240 -0.205402 -0.300733
SAC with 82 and 83 -0.147391 -0.209178 -0.311659
full CI (ref.19) -0.147030 -0.210992 ~-0.310067




8. SUMMARY

We have discussed the SCF orbital theory with the formalism
of the cluster expansion of the wavefunction. Especially we
stressed on analyzing the structure of the SCF orbital theory
including the correlation effect. The stability and symmetry
paradox may always be resolved by applying the appropriate
projection operator to the determinantal function. The best
results obtained if the variational parameters are revaried after
projecting out the component of the trial wavefunction with the
correct symmetry properties, lead to the various SCF orbital
theories proposed previously. However, the procedure is sometimes
difficult from the computational point of view.

Although the orbital theory constitutes the basis upon which

the language of quantum chemistry is founded, it is certainly

~
.

"necessary to go further and perform a study of postcorrelation if
more accurate information is required. The very promising
approach to the correlation problem is the theory based on the
cluster expansion of the wavefunction. As shown above, the
one-particle cluster expansion which corresponds to the HF theory,
gives the 99% of the total energy. The orbital theory including
correlation effects takes into account the two-particle

interaction through the unlinked terms of the one-particle cluster.
Thus, the next step for improving upon HF theory is to consider

two-particle linked cluster explicitly. This is our SACl-8 and
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SAC—CI20 theories. If we consider one- and two-particle clusters

at a time, then we can recover 98% of the correlation error.
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ABSTRACT

‘The electrostatic calculation for molecules using approximate
wavefunctions leads to well-known difficulties connected with the
application of the Hellmann-Feynman theorem. This is due to the
basis set inadequaﬁies in the underlying SCF/MCSCF calculations.
This defect can easily be remedied by floating functions whose centers
are optimized in space. We can keep almost everything of the
traditional wavefunction with nuclear fixed basis set, but we apply
single floating to ensure the Hellmann-Feynman theorem. Then one can
obtain a wavefunction obeying the Hellmann-Feynman theorem. This provide:
a great conceptual simplification and may lead to practical advantages.
The single floating scheme which retains one expansion center per nucleus
is successfully applied to a series of small molecules using SCF and

CASSCF wavefunctions with sufficiently polarized basis sets.
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I. INTRODUCTION

The derivatives of the potential energy hypersurface are of
fundamantal importance in studying molecular geometries, vibrations,
chemical reactions and dynamics. The analytical calculations of
energy derivatives has received much attention in the past

1,2) First and second derivatives can now be calculated

decade.
analytically for a variety of wavefunctions by direct differentiation
of an expectation value of the Hamiltonian. The gradient of total

molecular energy with respect to nuclear coordinates, Xu is given by

<

9E 9
Ay = av <PIHIPY> = <¥|
axa | 9Xa

P> + <§$ IHI¥Y> + <T|H|8W

dH ay
8X X,

5§a (1)
The negative gradient equals to the force acting on nucleus a and it
is called as the Born-Oppenheimer force.

The Hellmann-Feynman theorems) offers an attractive alternative
to the direct differentiation. Theorem states that the force holding
the nuclei together in a molecule could be given an entirely
classical interpretation once the electron density has been computed
by quantum mechanics. This electrostatic theorem results in the
simple formula for the force on nucleus a

9H

fa = - <T|5ialw> (2)



if ¥ and E are exact eigenfunction and eigenvalue of H. This seems a
very simplification since the derivative of the Hamiltonian,
involving only one-electron operators, is much simpler than the
derivative of the expectation value of the Hamiltonian. The so-
called Hellmann-Feynman force obtained in this way will agree with
the energy derivative.

The Hellmann-Feynman theorem is apparently valid even for
optimal variational wavefunctions. However, the application of (2)
leads to well-known difficulties connected with the application of

4-8) The error in the Hellmann-Feynman

the Hellmann-Feynman theorem.
theorem arises essentially from the basis set inadequacies in the
underlying calculations. The Hellmann-Feynman force is extremely
sensitive to the small error in the wavefunction, particularly ncar
the nuclei of interest. This small error is enough to vitiate any
force calculation. In spite of its great theoretical significance,
the Hellmann-Feynman theorem has been of surprisingly little value
for practical calculations and its value has been largely conceptual.
The validity of the Hellmann-Feynman theorem requires some
condition when LCAO approximate wavefunctions are employed. Hurleyg)
showed that the Hellmann-Feynman theorem is satisfied by the
wavefunction built from floating functions, whose centers are
optimized in space. Nakatsujilo) showed that a sufficient condition
for the Hellmann-Feynman theorem is that the basis set includes the
derivatives for every basis function. Floating corresponds to the
addition of derivative functions. In other words, the addition of the

derivative AO gives the freedom of floating to the parent AO. The

different point is that the addition of derivative A0 gives lower energy
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than the floating functions since the basis set space due to the addition
of derivative A0 becomes much wider than that of floating.

Floating functions make the optimization of wavefunctions more
complicated since a new set of variational parameters is introduced.
However, the optimization of orbital centers is now trivial with
recent developments in second-order technique for optimization of

11) Clearly, the Hellmann-Feynman theorem is very nice

geometries.
theorem, lending itself to a clear-cut conceptual picture.
Furthermore the theorem leads to a considerable reduction of
computational work for the higher energy derivatives. In view of
these, we decided to reexamine floating functions obeying the
Ilellmann-Feynman theorem.

Since the introduction of floating functions by Hurley,g) the
calculations of molecular wavefunctions and properties using floating
functions have been reported by several authors. Frostlz)introduced
floating spherical gaussians in 1967 and Huberls) has studied the
floating orbital geometry optimization method. Nakatsuji and
coworkersl4) have carried out the force-theoretical studies. More

15) calculated properties using floating

recently, Helgaker and Almlof
gaussian drbitals. They used floating for an alternative to adding
polarization functions. Hurley reinvestigated the subject and stressed
the usefulness of the Hellmann-Feynman theorem.ls)

The floating functions are translationally invariant and satisfy the
Hellmann-Feynman theorem but the orbitals may have their cusps off the

nuclei.l7)

The floating seems simply and conveniently to include the
major portion of polarization effects but at the same time floating

introduces the less desirable characteristics in the wavefunction, the
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discontinuities in the wavefunction in the vicinity of the nuclei. The
floating reduces the electron density at the nuclei, as discussed

18) Thus, floating produces only minor

earlier by Shell and Ebbing.
changes in the energy improvement. Indeed, floating is less effective
than adding polarization functions. Other properties, especially in
which polarization effects play an important role; are often
significantly improved.ls)
The method proposed in this paper is related to the floating
functions, but it is presented in a different philosophy. If one
wants to satisfy the Hellmann-Feynman theorem, one is inevitably led
to floating of basis functions. Having realized this, we want to
keep the spirit and logistic of the standard SCF/MCSCF as long as
possible. These days we are using the fully polarized basis sets.
The conventional SCF or correlated wavefunction with nuclear fixed
basis is, on the whole, not really bad, it only has difficulties to
represent the electron density in the neighborhood of nuclei and this
region is very critical for the electrostatic theorem. We can remedy
this by floating a wavefunction._ If polarization and related effects
due to floating are included sufficiently in advance by other features
in the wavefunction, the displacement of the orbital positions from the
nucleus and the energy improvement can be expected to approach zero in
order to minimize the effect of the discontinuities. The key idea is
that we can keep almost everything of the traditional wavefunction with
nuclear fixed basis set, but we do apply floating in order to satisfy
the Hellmann-Feynman theorem. The floating is carried out only for the

Hellmann-Feynman theorem, not for the energy improvement.

We first calculate the equilibrium geometry of a molecule



through the usual geometry optimization procedure according to the
criterion that the gradients are zero. Then we detach the expansion
centers and optimize the positions, keeping the nuclear positions

fixed. Floating makes the wavefunction obey the Hellmann-Feynman
theorem, but the wavefunction is improved accordingly and the equilibrium
geometry will shift from that before floating. However, if floating has
little effect, that is, the improvement due to floating is limited to
remedy the wavefunction near the nuclei, the deviation is expected to be
small enough that the Hellmann-Feynman force remains in the acceptable
error. Then, we can go into the next step, for instance, the calculation
of higher energy derivatives.

The main message of this paper is that onc can obtain a wavefunction
obeying the Hellmann-Feynman theorem simply by floating. This provides a
great conceptual simplification and may lead to practical advantages.

The main interest of this paper is not in the numerical results but in
their analysis and in the conclusions drawn from this analysis.

In Sec.II we present and discuss the results of our calculations on
a series of test molecules. In Sec.III some general conclusions are

summarized.

II. Results and Discussions

The floating functions required for the Hellmann-Feynman theorem
may be obtained by detaching the basis functions from the nuclei and
transferring them to new expansion centers. The total energy is
minimized with respect to variations of all the expansion centers of

basis functions.



In many cases diffuse functions would go wide of their parent atom,
often breaking symmetry of the molecule and occasionally coming to rest
close to another atomic center. Such behavior is not acceptable and it
is often used to attach diffuse orbitals to the same floating center of
the less diffuse orbitals. Whenever the expansion centers of orbitals
with angular momentum higher than zero are optimized, a combined floating
center for all components of the shell should be used in order to
preserve the rotational invariance of the shell. The important point is
that all the expansion centers whichever they are independent or
combined, should be optimized so as to satisfy the Hellmann-Feynman
theorem. Although floating of innermost orbitals has a negligible effect
on the calculated properties, their positions must be treated as a
variational parameter in view of the Hellmann-Feynman theorem. When the
bond functions are used, their positions must also be determined
variationally.

The standard computer programs for geometry optimization of a
molecule can well be adapted to yield‘floating functions. The basis
functions are put on dummy nuclei with zero nuclear charge and bare
nuclei with the appropriate nuclear charge at the nuclear positions. The
positions of the expansion centers are optimized in the same manner as
nuclear positions are optimized in geometry calculations. The
Hellmann-Feynman force is véry sensitive to the displacement from the
nuclei. A convergence criterion of 10_7 atomic units was adopted for the
gradients.

The Hellmann-Feynman forces were calculated with different basis
sets. For each basis set we carried out one calculation with the

fixed basis set and one calculation in which the positions of the
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orbital centers were variationally optimized. For the first row

19) and triple

atoms we used the Huzinaga-Dunning double zeta [4s2p]
zeta [533p]20) basis sets. For hydrogen we used the
Huzinaga-Dunning [2s] and [3s] basis with the scale factor of 1.2.

21) and the

Single polarization function is taken from the literature
exponents of double polarization functions are basically composed of

the second and third outermost primitive gaussians of their valence basis
functions. All calculations were performed using HONDO7 program

system.zz)

A. FFloating Schemes

We utilized the floating procedure just for the validity of the
Hellmann-Feynman theorem. We don't want to improve the whole
wavefunction. We do want to remedy only a poor description of the
wavefunction near the nuclei. For this purpose, the single floating
scheme is expected to be the most appropriate. To illustrate this we
calculated H2 and CO molecules using various floating schemes at the
SCF level.

Table I gives the H2 results. First we optimized the H-H
distance (RHH) with the fixed TZ2p basis set. The gradient becomes
less than lO_7 au at RHH=1.368658 au. Then at this nuclear
separation, we calculated floating functions by Varioué schemes. The
single floating means that each atom gives rise to one floating
center. This is denoted by {3s2p}; three s orbitals and two p
orbitals are combined on each hydrogen atom to the same floating

center. In the double floating, {3s,2p}, three s valence basis

functions were placed on one floating center and two p polarization



functions on a second floating center. The most flexible scheme is
to employ the different expansion centers for different orbitals of
an atom, {l1s,1s,1s,1p,1p}. We can see from Table I that for the
fixed basis, the Hellmann-Feynman force at the minimum energy point
is quite large, fH=O.OOllgjl au, implying that the fixed basis set
fails in obtaining reliable Hellmann-Feynman force. Floating
described above ensures the Hellmann-Feynman theorem. However, at
the same time floating introduces a new set of variational parameters
which leads to the improvement of the wavefunction. The minimum
point on the energy hypersurface will shift a little from that with
the fixed basis. The Hellmann-Feynman force computed with floating
functions is accurate since it obeys the Hellmann-Feynman theorem.
The non-zero Hellmann-Feynman force arises from the deviation from
the true energy minimum point. Therefore we must reoptimize the
molecular geometry to reach the true minimum energy point of the
floating functions. The magnitude of the Hellmann-Feynman force
computed with the floating function indicates the degree of deviation
from the energy minimum point. The floating function which employs
different expansion centers for the different orbitals gives the lowest
energy and therefore does the largest Hellmann-Feynman force. The
decrease of E is 4.65*10_4 au. This floating scheme is quite an
effective way to describe polarization of the basis functions although
it is less effective than adding explicit polarization functions. On
the other hand, the energy decrease due to single floating is only
0.2%10"° au (0.001 kcal/mol). This implies that the single floating

function is very close to that with the fixed basis except the region

near the nuclei. . It is convenient for the present purpose that floating



is used just for validity of the Hellmann-Feynman theorem. The computed
Hellmann-Feynman force is fH=O.28*10—4 au. The magnitude is negligibly
small. For reference, we obtained the true minimum energy point by
applying the energy gradient to the expansion centers and the
Hellmann-Feynman forces to the nuclei simultaneously. Optimal single
floating function gives the energy minimum at RHH=1.368600 au. The
deviation is only 0.58*10_4 au and no energy improvement is gained with
8-digit accuracy through reoptimization. The difference is so small that
we believe that it will not influence any further calculations. It is
worth mentioning that the magnitude of the energy lowering due to
floating is in the same order of that of the Hellmann-Feynman force
remained with floating functions.

Table II gives results on CO calculated by various floating
schemes with DZp basis set. All calculations were done at RCO:
2.111673 au optimized with the fixed basis set. At this nuclear
distance, the gradients with fixed basis are less than 10_7 au.
However, the computed Hellmann-Feynman forces are fC=O.3087 au and
fo=—0.7584 au which indicates the complete breakdown of the
Hellmann-Feynman theorem. Here the direction from C to O is taken to
be a positive sign. The Hellmann-Feynman force calculated with
floating functions shows the degree of deviation of the energy minimum
from that with the fixed basis. The better the calculated energy is,
the larger the Hellmann-Feynman force remains. The decrease of E due
to single floating is 0.46*10_4 au (0.029 kcal/mol) and the remaining
Hellmann-Feynman force is fC=—fO=O.19*lO*4au. Again the effect of single

floating is negligibly small. The true minimum internuclear distance with

the single floating wavefunction is 2.111686 au. So the discrepancy is
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only 0.18*10—4 au. The displacements of the floating centers from C and

0 nuclei are 1.054%10 % and ~0.7870%10" % au, respectively. The
displacements are very small but they are completely enough to ensure the
Hellmann-Feynman theorem.

The energy lowering and the magnitude of the Hellmann-Feynman
force increase as the number of expansion centers. When more flexible
floating schemes are used, the newly introduced variational parameters
work as to improve not only the region near the nuclei but also other
parts of the wavefunction. This can readily be seen also from the
computed dipole moment. The calculated dipole moment with single
floating wavefunction is -0.07051 au (C+0_), which is very close to
-0.07053 au calculated with the fixed basis. On the other hand, more
flexible floating schemes give quite different values. Note here
that the sign of the SCF computed dipole moment has the opposite sign
(c'07) to that of experiment (C~O+).27)

These examples allow us to feel with some confidence that single
floating is the most appropriate scheme for our purpose. So we employ
the single floating scheme hereafter and all functions on each atom are
expanded on the same floating center. With such a scheme, the usual

geometry optimization has very good convergence properties to achieve

less than 10_7 au in gradients.

B. Basis Sets

Now let us examine the effects of the basis sets. All floating
functions were obtained by a single floating scheme at the SCF level.
Calculated results with the fixed and floating functions for CO,

organized according to the types of the basis sets are summarized in

- 11 -



Table III. For each basis set, fixed (upper row) and floating (lower
row) results are listed together for comparison. The basis set generally
improves from top to bottom. For each basis set, we first optimized the
CO distance and then the expansion centers were variationally determined
at the same nuclear_separation. The largest basis set employed was

23) to

obtained by contracting Huzinaga's (14s9p) basis set
(10,10,1,1,1,1/5,1,1,1,1) set supplemented by three sets of d
polarization functions (EBS). The most accurate computation of the

24) They used five s-,

ground state of CO is by McLean and Yoshinime.
four p-, one d- and one f-type STO functions. They obtained an energy
E=-112.78911 au at RCO=2.132 au, which is 0.00088 au lower than that by
the present EBS calculation. i
The optimized CO distance gencrally diminishes as the basis set
improves. First consider the Hellmann-Feynman force calculated with
the fixed basis sets. As expected unpolarized basis sets such as DZ
and TZ give the largest Hellmann-Feynman forces. Adding polarization
functions decreases the error but fairly large Hellmann;Feynman
forces still remain. Of course, the error decreases as the basis set
improves. However, even with EBS, we have fC=—O.0574 and fo=—0.1310 au.
This shows that the best available approximate wavefunction with fixed
basis is too inaccurate to be of much use for the electrostatic
calculation. Floating changes the picture of -the Hellmann-Feynman force
dramatically although the decrease in total energy 1s quite small. The
non-zero Hellmann-Feynman forces with floating functions do not arise
from the failure of the Hellmann-Feynman theorem but from the slight

deviation from the true minimum energy point. Thus the magnitude of

the Hellmann-Feynman force reflects the effect of floating. The larger
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the Hellmann-Feynman force is, the greater effect floating has.
Floating with unpolarized basis set has considerable effects on the
energy and geometry. On the other hand, floating with the sufficiently
polarized basis has little effects on both. The energy improvement due to
floating with TZ2p and EBS is less than 1.0*10_4 au and the
Hellmann-Feynman forces calculated are fairly close tb zero. Values of
dipole moment of CO are presented in Table IV. The difference between
fixed and floating functions is also very small, less than 1.0*10~4 au.
This also supports that single floating does not affect the wavefunction
except in the vicinity of the nuclei.

From these results we conclude that a single floating
scheme with sufficiently polarized basis set, at least as large as
DZp seems to be adequate for the present purpose. A single floating
scheme makes the wavefunction obey the Hellmann-Feynman theorem. Due
to the improvement of the wavefunction, we will have the non-zero
Hellmann-Feynman force at the equilibrium geometry determined with the
fixed basis set. However, the Hellmann-Feynman force still remains
within the acceptable error.

The displacement of hydrogen must be the largest when optimized
through floating. It can easily be understood since the exponent of
hydrogen is the smallest (The displacement from the nucleus is

1/2 where o is an exponent of the

approximately proportional to the 1/«
gaussian function). Thus, the most Qifficulty of the present application
may be found in a system which has a polar bond involving hydrogen. We

used HF as an example. Results are summarized in Table V. The direction

from H to F is assumed to be positive. All the computations were

performed at the HF internuclear distance optimized with each basis set.
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Very accurate SCF calculations on HF have been made by Cade and Huo using

STO basis.22)

Their energy is -100.07030 au at the experimental
RHF(=1.7328 au), which is only 0.0008 au lower than that by the present
EBS. The general trend is similar to that found in CO. But the effect of
floating is more significant than that of CO. Particularly the

displacement of expansion center of hydrogen is of the order of 10—2 éu,

2~1O3 times larger than that of a heavy atom. Consequently

which is by 10
the Hellmann-Feynman force appeared is fairly large even with DZp basis
set. This implies deficiency of the polarization functions, which leads
to a relatively large geometry change. That is, the DZp basis is not
flexible enough to describe such a polar bond.

Two approaches will be suggested to overcome this difficulty. One
may insist that the true energy minimum is searched by reoptimization of
the geometry. The true minimum point in a DZp floating function is at
RHF=1'7058 au. However, no energy improvement was gained through
reoptimization, indicating the energy hypersurface is rather flat with
respect to stretching of such a polar bond. The difference of the bond
distance between fixed and floating functions is 1.5*10_3 au.
Alternatively, one may add the polarization functions to reach a better
polarization of hydrogen. If one adds an additional p set to the DZp
basis set, which is denoted by the DZp' (double polarization on H),
floating yields the Hellmann-Feynman force of the order of 10—4 au, which
is nontheless tolerable. With floating DZp' we also reoptimized the
geometry and found that the deviation from the true minimum is 1.6%10_4
au, ten times smaller than that of DZp basis. Thus, the DZp' provides

sufficient flexibility to polarize the s basis functions of hydrogen.

With this basis .set one obtains good results with respect to the
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Hellmann-Feynman force. Of course if more flexible basis sets such as
TZ2p and EBS are used, the Hellmann-Feynman force remains within the
acceptable error.

The calculated dipole moments of HF are summarized in Table VI. The
fixed as well as floating basis sets give dipole moments which are too

28) Polarization functions reduce their

large compared to the experiment.
values. We also see that the dipole moments computed with sufficiently
polarized basis sets (DZp', TZ2p, EBS) are indeed close to those with the
corresponding fixed basis sets.

We also calculated CH4, CZHG' C2H4, CZHZ’ NH3, HZO and HZCO
molecules and results are listed in Tables VII and VIII. These test
calculations confirm the above conclusions. In general, a single
floating scheme works well if used with sufficiently polarized basis
sets. For hydrocarbons, the single floating DZp basis gives

excellent results. For a system involving polar hydrogens a single

floating with DZp' gives reasonably good results.

C. Geometry Changes

Energies and forces acting on C at various internuclear distances
for CO computed with DZp basis are listed in Table IX. The force computed
with fixed functions is takenbfrom the negative gradient (Born-Oppenheimer
force). The fixed basis gives the energy minimum at RCO=2.111678 au
while the floating function at RCO=2.111686 au. Both functions give very
close energies and forces. Energy lowering due to single floating is
almost constant over a wide range of internuclear distance, ca. 5*10_5au

(0.03 kcal/mol). Computed forces show the similar tendency as the total

energies. The difference between fixed and floating functions lies
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within the range of 4.0*10~5 au. Thus, the potential curve is not

affeccted by floating.

Table X shows results on HF molecule with DZp' basis. The
similar trend can be found as the case of CO. The energy lowering
due to floating is almost constant in the region of RHF=1.5~3.O au.
However, it increases considerabiy at RHF=4.O~5.O au. At this
region, the charge transfer occurs from H to F. Inconsistent effect
of floating indicates that the present basis set is still not sufficient
enough to describe the whole HF potential curve at the same level of
accuracy. Thus, single floating can be used to check the adequacy of the

basis set, especially the sufficiency of the polarization functions.

D. Correlation Effects
The electron correlation effect is also examined using the

26)

complete active space SCF (CASSCF) wavefunction. The Hurley's

9)

condition is satisfied by any variationally optimized wavefunction.
So the floating MCSCF wavefunction obeys the Hellmann-Feynman theorem.
The CI wavefunction satisfies, in principle, the Hellmann-Feynman
theorem. However, if one truncates the expansion of the
configurations to some order, the Hellmann-Feynman theorem is not
satisfied. 1In a CI treatment, configuration expansion coefficients
are determined variationally but orbitals are left unoptimized.
Variation of orbitals introduces singly excited configurations
relative to the parent CI configurations. For example, triply
excited configurations are necessary for the usual single and double

CI wavefunction with respect to the Hellmann-Feynman theorem. Thus,

we employed here the CASSCF wavefunction to examine the correlation
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effect on floating.

Results on H2 with TZ2p basis are given in Table XI. The 2 and 3
active orbital CASSCF include valence configurations arising from ¢
bonding and o antibonding MO, while 5 active orbital CASSCF includes
configurations arising from three ¢ and two m orbitals. We optimized
first the H-H distance in each fixed CASSCF theory and fhen a single
floating scheme is applied. Correlation effects increase the H-H bond
distance relative to the SCF one. As to single floating, however, the
trends as found with the CASSCF theory are the same as found with the SCF
theory. That is, the energy difference between fixed and floating
CASSCF is very small and the remaining Hellmann-Feynman force of
floating wavefunction is also negligible small. In the 5 active
orbital CASSCF theory, we allowed excitations from ¢ to m orbitals.

The slight increase of the magnitude of the Hellmann-Feynman force may
arise from the disregarding the d function in the present calculations.
Of course, it will be improved if we employ the basis set which ensures
the d polarization. This is numerically verified by the calculation
with the basis set supplemented by d functions (see the final row of
Table XI).

Results on CO are given in Table XII. The 2 and 3 active orbital
CASSCF include valence configurations arising from excitations from
CO o bonding to ¢ antibonding MO. In the 6 active orbital CASSCF,
the six electfons are distributed within the two active ¢ and four
active m orbitals. The effect of floating is again very similar to
that of the SCF case. Table XII also lists the calculated dipole
moment. Fixed and floating CASSCF produce a very close dipole moment.

Only the 6 active orbital CASSCF gives a dipole moment of 0.12749 au,
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7)

of the correct sign with the experiment (C_O+).2 This also supports

that the correct result could not be obtained except by including
excitations involving n MO.29)

The single floating scheme can also be applied successfully to
the MCSCF wavefunction. It is noted that the error in the

Hellmann-Feynman theorem arises essentially from the basis set

inadequacies, not from the accuracies of the variational wavefunction.

III. Conclusions

We have systematically investigated the importance of floating
functions which satisfy the Hellmann-Feynman theorem. It is
demonstrated that the error resulting from the use of the
Hellmann-Feynman theorem can be made negligible small by a single
floating scheme if used with a sufficiently polarized basis set. In many
cases, it is reasonably well described even at the DZp level, although
in some cases hydrogen requires double polarization. The current
methods for the analytical calculation of energy gradients can be
well adapted to yield floating functions. The computation required
only about twice of the computing times of conventional geometry
optimization and can be performed just as routinely. The floating
functions satisfies the electrostatic (Hellmann-Feynman) theorem,
which provides a great conceptual simplification and may lead to
practical advantages. If we have a wavefunction obeying the
Hellmann-Feynman theorem for a molecule, we may talk about
geometries, vibrations, chemical reactions, etc, in the language of

clear-cut conceptual picture. The simplicity of the Hellmann-Feynman
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theorem is appealing. In adiition we can calculate the higher energy
derivatives based on the Hellmann-Feynman theorem. The Hurley's
condition can be used to obtain approximations to the first-order
wavefunction, from which the second, third and fourth energy derivatives
can be obtained, leading to quadratic, cubic and quartic force constants.
There are several significant advantages over the direct anal?tic
derivative method. The expressions of these higher energy derivatives
are much simpler than those of the wave-mechanical method. The
electrostatic calculation involves only one-electron integrals. No
integrals appear involving derivatives of the basis functions. There is
no need of solving the coupled perturbed Hartree-Fock equations to obtain
the wavefunction derivatives. One only needs solutions of linear
equations. There is no iteration involved. The calculation of the forcec
constants baed on the Hellmann-Feynman theorem will be reported

elsewhere.SO
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Table I
Total energies and Hellmann-Feynman forces acting on H nucleus of H2

molecule (R 1.368658)a) calculated with fixed and floating TZ2p

HH ~

basis set (a.u.)

Expansion center per nucleus l "Energy HF force
fixed -1.128416 0.0011271
floating
(3s2p) ) -1.128418 0.0000256
{3s,2p} ¢) -1.128509 0.0000378
{1s,2s,2p} d) -1.128567 0.0001081
{1s,1s,1s,1p,1p} e) -1.128881 0.0002986

a) The Born-Oppenheimer force is less than 10_7 au at this
internuclear distance.

b) Single floating ; one expansion center per nucleus.

¢) Double floating; the valénce basis functions were placed on one
floating center and polarization functions on a sccend.

d) Triple floating; the Innermost orbital is placed on one floating
center, the remaining two s functions on a second and polarization

functions on a third.

e) Quintuple floating; different expansion center for the different

orbitals.



Table 11

Total energies and Hellmann-Feynman forces acting on C nucleus of CO

molecule (R = 2.111673)a) calculated with fixed and floating DZp

CO

basis set (a.u.)

Expansion center‘per nucleus Energy HF force

Tixed -112.759377 0.3087334

{loating

{4s2p1d} b) -112.759423 0.0000189
{1s,3s2p1d} ¢) —1i2.760056 0.0008548
{1s,3s,2pld} d) -112.762330 0.0073079
{1s,3s2p,1d} c) -112.762503 0.0108202
{1s,3s,2p,1d} ) -112.764590 0.0164709

a)

b)

¢)

d)

d)

r)

The Born-Oppenheimer force is less than 10_7 au at this
internuclear distance.

Single (loating ; onec cxpansion center per nucleus.

Double [loating; the innermost function is placed on one

floating center and the remaining functions on a secend.

Triple floating; the innermost orbital is placed on one floating
center, the remaining three s functions on a second and two p and
one d functions on a third.

Triple floating; the innermost orbital is placed on one floating
center, the remaining three s and two p functions on a second and
polarization functions on a third.

Quadruple floating; the innermost orbital, remaining three s, two

P and polarizations are placed on the different expansion centers.



Table II11

Energies and Hellmann-Feynman forces of CO by various basis sets at

the internuclear distance optimized with fixed basis (a.u.)

Hellmann-Feynman Force

Basis R Energy
Co c 0
DZ fixéd 2.150313 -112.685311 -1.070930 2.300725
floating -112.685774 -0.000333 0.000333
TZ fixed 2.123982 -112.707937 -0.967949 2.094532
floating -112.708320 -0.000389 0.000388
DZp fixed 2.111873 -112.759377 0.308733 -0.758350
floating ~-112.759423 -0.000019 0.000019
DZp+ a) fixed 2.107483 -112.762850 0.299029 -0.760322
floating -112.762850 0.000014 -0.000014
DZ2p fixed 2.103270 -112.766560 0.246179 -0.416335
floating -112.766579 0.000039 -0.000039
TZ2p fixed 2.092277 -112.778534 0.323223 -0.504481
floating -112.778565 0.000002 -0.000002
EBS b) fixed 2.085026 -112.788226 0.057448 -0.130950
floating -112.788227 0.000002 -0.000002
a) DZp plus diffuse functions
b) Extended basis set; (10,10,1,1,1,1/5,1,1,1,1/1,1,1). Ref.23.



Table 1V
Calculated dipole moment of CO by various basis sets at

the CO distance optimized with the fixed basis (a.u.)

Diple moment

Basis

fixed floating
D7 -0.11407 -0.11418
T7 -0.09091 -0.09097
DZp -0.07053 ~0.07051
Dzpe &) -0.06693 -0.06692
DZ2p -0.06150 -0.06154
TZ2p -0.05892 -0.05897
Eps P) -0.05549 -0.05549
Exptl ¢ 0.0441+0.0020

a) DZp plus diffuse functions
b) Extended basls sect; (10,10.1,1,1,1/5.1,1,1,1/1,1,1).

c) Ref.27.

Ref.23.



Table V

Energies and Hellmann-Feynman forces of HF by various basis sets at

the internuclear distance optimized with fixed basis (a.u.)

Hellmann-Feynman Force
Basis RHF Energy
| H F
D7 fixed 1.737861 -100.021980 -0.112725 2.186379
floating ~-100.027628 0.006160 -0.006160
TZ fixed 1.737918 -100.036872 -0.107144 1.808263
floating -100.042256 0.006099 -0.006099
DZp fixed 1.708794 -100.047932 -0.016942 0.973120
floating -100.048188 0.001145 -0.001145
DZp’ a) fixed 1.704032 -100.048724 -0.006338 0.999229
floating -100.048809 0.000114 -0.000114
D7Z2p fixed 1.702171 -100.050186 -0.007233 0.975888
{loating -100.050284 0.000143 -0.000143
TZ2p fixed "1.696589 -100.063476 -0.008407 0.614806
floating -100.063551 0.000104 -0.000104
EBS b) fixed 1.695666 -100.069497 -0.008354 0.141422
floating -100.069565 0.000065 -0.000065

a) Double polarization on H

b) Extended basis set; F(10,10,1,1,1,1/5,1,1,1,1/1,1,1)

H(5,1,1,1,1/1,1,1,1). See Ref.23.



Table VI
Calculated dipole moment of HF by various basis sets at

the HF distance optimized with the fixed basis (a.u.)

Diple moment

Basis

Tixed floating
D7 -0.88236 -0.88653
TZ -0.93753 -0.93279
DZp -0.77797 -0.77916
pzp' &) -0.77770 -0.77780
DZ2p -0.73168 -0.73171
TZ2p -0.77069 -0.77092
Eps ) -0.74383 -0.74389
Exptl © ~0.719

a) Double polarization on Ii.

b) Extended basis set.

c) Ref.28.



Table VII
Energies and forces acting on C at various internuclear distances for

CO molecule calculated with DZp basis set (a.u.)

Energies Forces a)
RCO fixed floating fixed floating
-(E+112.)
1.8 0.649799 0.649845 ‘ -0.848409 -0.848370
2.0 0.748490 0.748540 ~-0.208468 ~0.208477
2.1 0.759272 0.759318 -0.018173 -0.018192
2.111673 0.759377 0.759423 0.0 -0.000019
2.111686 0.759377 0.759423 0.000021 0.0
2.12 0.759325 0.759371 0.012510 0.012490
2.2 0.754015 0.754063 0.115227 0.115206
2.5 0.684845  0.684898 0.305807 0.305801
3.0 0.520183 0.520230 0.317951 0.317983

a) The direction from C to 0 is positive in sign. Forces in fixed
basis are negative gradients and those of floating-are Hellmann-

Feynman forces.



Table VIIIX
Energies and forces acting on H at various internuclear distances for

HE molecule calculated with DZp' basis set (a.u.)

‘ Energies Forces a)
Ryr fixed floating fixed floating
-(E+100.)

1.5 0.028831 0.0289861 -0.223372 -0.223052
1.6 0.044222 0.044324 -0.092624 -0.092398
1.703876 0.048724 0.048809 | -0.000114 0.0

1.704032 0.048724 0.048809 0.0 0.000114
1.8 0.045736 0.045836 0.058199 0.058243
2.0 0.026359 0.026433 0.126347 0.126359
3.0 -0.123682 -0.123622 0.136026 0.135959
4.0 -0.233889 -0.233603 0.086692 0.086312
5.0 -0.302811 -0.302115 0.053664 0.053391
10.0 -0.401496 -0.401492 0.005985 0.005988

a) The direction from H to F is positive in sign. Forces in fixed
basis are negative gradients and those of floating are Hellmann-

Feynman forces.



Table IX

Energies and Hellmann-Feynman forces of CH4, C,H

at the geometry optimized with fixed basis (a.u.)

276’

CZH4

a,b)

and C2H2

Basis

Energy Hellmann-Feynman Force
CH4
DZ fixed -40.185613 fH =fH —fH =0.04212
X y Z
floating -40.193598 fH =fH =fH =0.00006
X y z
DZp fixed -40.207594 fH =fH =fu =0.00562
X y Z
floating -40.207860 fH =fH =fH =-0.00004
X y z
TZ2p fixed -40.212172 fH =fH =fH =0.00194
X y z
floating -40.212212 fH =fH =fH =-0.00001
X y Z
Collg _
DZ fixed "-79.206408 fc =-0.01445, fH = 0.02756, = 0.06955
z z :
floating -79.218869 fC = 0.00119, fH =-0.00011, =-0.00012
z Z
DZp fixed -79.249242 fC = 0.01041, fH = 0.00366, = 0.00912
Z z
floating -79.249644 fc = 0.00007, fH =-0.00002, =-0.000086
Z Z
TZ2p fixed -79.257119 fC = 0.00556, fH = 0.00100, = 0.00312
Z Z
floating -79.257159 fC = 0.00001, fH =-0.00000, =-0.00000
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DZ fixed -78.011990 fc = 0.05708, fH = 0.03934, fH = 0.06531
Z Z ) X
floating -78.020649 fC = 0.00209, fH =-0.00016, fH =-0.00020
Z A X
DZp fixed -78.050575 fC =-0.065451 fH = 0.00500, fH = 0.00827
z z X
floating -78.058374 fc = 0.00007, fH =-0.00003, fH =-0.00006
Z Z X
TZ2p fixed -78.061954 fC =-0.02796, fH = 0.00189, fH = 0.00359
z z X
floating -78.082012 fC = 0.00002, fH =-0.00001, fH =-0.00001
7z Z X
(32112
DZ fixed -76.799232 fC = 0.12977, fH = 0.07389
floating -76.8038606 fc = 0.00151, fH =-0.00032
DZp fixed -76.832544 fC =-0.11310, fH = 0.00960
floating -76.8326886 fC = 0.00018, fH =-0.00012
TZ2p fixed -76.848167 fc =-0.03391, fH = 0.00460
floating -76.848207 fC = 0.00004, fH =-0.00002

a) The direction from each nucleus to the center of mass is taken to be
be a positive sign.

b) Molecular geometry
CH4 (Td); the x, y and z are all S4 axes.

C2H6 (DZd)’ C2H4 (Dzh) ; 2-fold axis is z and oV plane is x=z.



Table X

Energies and Hellmann-Feynman forces of NH3, HZO' and H.,CO

2
at the geometry optimized with fixed basis (a.u.) a,b)
Basis Energy Hellmann-Feynman Force
NH3
DZ fixed -56.180540 fN =-0.69904, fH =0.00524, fH =0.08514
z z X
floating -56.189200 fN =-0.00217, fH =0.00072, fH =-0.00129
z V4 X
DZp fixed -56.209682 fN =-0.47138, fH =0.00331, fn =0.01476
z Z X
floating -56.210195 fN =-0.00047, fH =-0.00016, fH =-0.00037
Z z X
DZp' fixed -56.210892 fN =-0.46139, fH =0.00301, fH =0.00353
Z z X
floating -56.210961 fN =-0.00006, fH =0.00002} fH =0.00003
Z z X
TZ?p fixed -56.219257 fN =-0.36410, fH =0.00148, fH =0.004086
z v/ X
floating -56.219318 fN = 0.000086, fH =0.00001, fH =0.00003
. VA Z X
HZO
DZ fixed -76.011020 fO = 1.90398, fH =-0.04031, fH =-0.09526
V/ VA X
floating -76.019883 fo =-0.00191, fH = 0.00096, fH = 0.00374
z Z X
DZp fixed -76.046951 fO = 0.82209, fH =-0.00781, fH =-0.01488
z Z X
floating -76.047405 fo =-0.00113, fH = 0.00057, fH = 0.00061

VA Z X



DZp'

TZ2p

H,CO

DZ

DZp

TZ2p

fixed

floating

fixed

floating

fixed

floating

fixed

floating

fixed

floating

-76.

-76.

-76.

-76.

-113.

-113.

-113.

-113.

-113.

-113.

048501 fO = 0.
Z
048613 fo =-0.
Z
060362 fo = 0.
Z
060447 fo =-0.
VA
830712 fc =-0.
Z
836354 fC = 0.
VA
895328 fC =-0.
V4
895507 fC =-0.
V4
910966 fc =-0.
V4
911014 fC =-0.
VA

82369, f, =-0.

00002, f, = 0.

60174, £, =-0.

00007, £, = 0.

30027, £, = 2.

00007, £, = 0.

0
Z

10490, fo = 0.
Z

00006, fO = 0.
Z

07209, fO = 0.
Z

00002, fOZ= 0.

00142, £, =-0.00519

H
X
00001, fy = 0.00000
X
00295, fy =-0.00545" -
X
00003, fy = 0.00005
X

O7853,|fHI=O.O8629

00004,|fH|=O.OOOll

82985,IFHI=O.01021

00001, If,1=0.00003

H

54429,IfHI=O.OO424

OOOOl,lfHI=O.00002

a) The direction from

a positive sign.

b) Molecular geometry

each nucleus to

NH3; 3-fold axis is z and oV plane

H,0, H,CO

2

2 ; 2-fold axis is z and ¢
v

the center of

is xz.

plane is yz.

mass is taken to be



Table XI

Energies and Hellmann-Feynman forces of H2 by fixed and floating

CASSCF theory with TZ2p basis set (a.u.)

Hellmann-Feynman

T'heory RHH Energy Force
SCF fixed 1.368658 -1.128416 .001127
floating -1.128418 .000026
CASSCF
Z-act[vea) fixed 1.408933 -1.147313 .000172
floating -1.147313 .000009
3-activeb) fixed 1.396635 -1.153941 .000351
floating -1.153942 .000009
5—actheC) fixed 1.383846 -1.163418 .001230
floating -1.163433 .000048
5—activec'd) fixed 1.386399 -1.164591 .003125
floating -1.164594 .000027

a) CASSCF with two ¢ orbitals as active.

b) CASSCF with three ¢ orbitals as active.

¢) CASSCF with three o orbitals and two m orbitals as active.

d) TZ2p plus d functions (da=1.0).



Table XII

Energies and Hellmann-Feynman forces of CO by fixed and floating

CASSCF theory with D

Zp basis set (a.u.)

Hellmann-Feynman Dipole
Theory RCO Energy Force on C Moment
SCF fixed 2.111673 -112.759377 0.308733 -0.07053
floating -112.759423 0.000019 -0.07051

CASSCF
2-active® fixed 2.112269 ~112.768249 0.305935 -0.06809
floating -112.768295 ~0.000017 -0.06808
3-active?) fixed 2.112163 -112.771064 0.304618 -0.06541
floating -112.771109 -0.000018 -0.06539
6-active®) fixed 2.168402 -112.880197 0.320136 0.12752
floating -112.880240 -0.000016 0.12749

d)
Exptl 0.0441+0.0020

a) CASSCF with two ¢
b) CASSCF with three
¢) CASSCF with two o

d) Ref.28.

orbitals as active.

o orbitals as active.

orbitals and four m orbitals as active.
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ABSTRACT

General formulae for the second, third and fourth derivatives of the
energy with respect to the nuclear coordinates of a molecule are derived
from the Hellmann-Feynman theorem. The Hurley's condition can be used to
obtain approximations to the first-order wavefunction, from which the
second, third and fourth energies can be obtained, leading to quadratic,
cubic and quaftic force constants. The procedure is equivalent to derive
higher energy derivatives by the perturbation variation method. There ar
several signifiqant advantages over the direct analytic derivative method
The expressions of these higher energy derivatives are much simpler than
those of the direct analytic derivative method. The electrostatic
calcﬁlation involves only one-electron integrals. No integrals are
necessary involving derivatives of the basis functions. There is no need
of solving the coupled perturbed Hartree-Fcok equations to obtain the
wavefunction derivatives. One only needs solutions of linear equations.

There is no iteration involved. There are intuitive physical pictures



associated with these higher derivatives as the Hellmann-Feynman force

picture associated with the first derivatives.

I. Introduction

Many important molecular properties are directly defined as the
derivatives of an electronic energy. Electric moments and
polarizabilities are property defined as the derivatives of the energy
with respect to the applied electric fields. Magnetic properties such as
diamagnetic susceptibilities and nuclear magnetic resonance chemical
shifts are related to energy derivatives with respect to external and
nuclear magnetic fields. Differentiation of the energy with respect to
nuclear coordinates corresponds to the calculations of forces and force
constants. These nuclear displacement energy derivatives are very
important in the exploration of potential surfaces.

The first derivatives of the energy with respect to nuclear
coordinates give the force acting on the nucleus and are used to find the
stationary points such as equilibrium structures and transition
structures. The second derivatives are related to the harmonic force
constants as well as the nature of the stationary point. The third and
fourth derivatives aré related to the cubic and quartic force constants,
respectively. The knowledge of these derivatives yields anharmonic
spectroscopic constants.

There are two general approaches to the calculation of analytic
energy derivatives. The first method is the direct analytic

differentiation of the expectation value of the Hamiltonian. The



procedure has been the most commonly used and procedure doing this has
been the forcus of many investigations in recent years. The underlying
idea behind the direct analytical derivative method is just rigorously
differentiating the true quantum mechanical energy. Generally this
involves solving a type of eigenfunction equations or a simultaneous
system of linear equations. Consequently n differentiations are
necessary to reach n-th energy derivatives.

Direct analytic first derivatives of the SCF energy were first

1 It is now relatively straightforward to calculate the

derived by Pulay.
first derivatives with respect to nuclear coordinates for any method.
Pople and coworker32 presented the analytical method for the evaluation o:
SCF second derivatives. To obtain second derivatives it is necessary to
solve the coupled perturbed Hartree-Fock equations of Gerratt and Mills.3
The most severe bottleneck in this approach is the drastic increase of
the number of basis molecular integrals to be computed. In spite of
this, such second derivative approach is used rather routinely for SCF
and some MC-SCF schemes. The formulation of the SCF third derivatives
were first given by Gaw, Yamaguchi and Schaefer.4 Some simplifications
in the formula were given by Gaw and Handy.5 ‘The fourth derivatives were
presented by Handy and coworkers.6 This needs the solution of the second
order coupled perturbed‘Hartree~Fock equations.

Alternativé method is possible based on the use of the

Hellmann-Feynman theorem.7'8

The Hellmann-Feynman theorem gives the
first derivatives of the energy with respect to the nuclear coordinates
as a simple expectation value. Consequently, n-1 differentiations are

required to reach the n-th derivatives of the energy. In addition we

have the so-called Hurley's condition9 for the optimal variational

- 3 -



wavefunction, which serves as an auxiliary condition. Thus, the
Hellmann-Feynman approach seems to be much superior to the direct
differentiation method. However, although there have been isolated

10,11 thus far there is no

successes of the Hellmann-Feynman approach,
general theoretical understanding of the situation. This is mainly due
to the unreliability of the Hellmann-Feynman method for evaluating forces
on nuclei. Although the Hellmann-Feynman theorem is valid for true
Hartree-Fock wavefunctions, it is found to be of little value for the
finite basis sets typically used in molecular calculations. Thus, the
error in the Hellmann-Feynman theorem arises essentially from the basis
set inadequacies in the underlying calculations. The Hellmann-Feynman
forces are extremely sensitive to the small error in the wavefunction
particularly near the nuclei of interest. The validity of the
Hellmann-Feynman theorem requires some additional condition when the
finite basis sets are employed.

Hurley showed that the Hellmann-Feynman theorem is satisfied by the
wavefunction built from floating functions, whose centers are éptimized
in space.9 The floating functions are translationally invariant and
satisfy the Hellmann-Feynman theorem but the orbitals may have their
cusps off the nuclei. The conventional SCF or correlated wavefunction
with nuclear fixed basis is, on the whole, not really bad, it only has
difficulties to repreéent the electron density in the neighborhood of
nuclei and this region is very critical for the Hellmann-Feynman theorem.
As shown in the previous paper.lz this defect can easily be remedied by a
single floating scheme and we can obtain the wavefunction obeying the
Hellmann-Feynman theorem.

13

Nakatsuji and coworkers have proposed the basis functions fTor the

- 4 -



validity of the Hellmann-Feynman theorem. A sufficient condition for the
Hellmann-Feynman theorem is that the basis sets include derivative basis
functions for every basis function.

The Hellmann-Feynman theorem provides a great conceptual
simplification and leads to practical advantages. We will develop here
the analytic derivative theory based on the Hellmann-Feynman theorem.

In Sec.II some properties of the Hellmann-Feynman theorem and the
sufficient conditions for the Hellmann-Feynman theorem will be reexamined.
In Sec.III the second, third and fourth energy derivatives for a diatomic
molecule will be derived from the Hellmann-Feynman theorem. In Sec.IV
general analytic expressions for these higher energy derivatives will be

given. In the final section some conclusion will be summarized.

II. The Hellmann-Feynman Theorem
Let ¥ be a normalized optimal variational wavefunction and E the

corresponding energy
<Y|H-E[¥> = 0 (1)

By differentiating eq.(1) with respect to a nuclear coordinate i we

obtain

EY = <yintivs + <9l H-E1Ys + <y 1H-E19is (2)

Here the derivatives of operators and wavefunctions are designated as



The variational condition ensures that
1 1
<YT|H-EI¥Y> + <¥Y[H-EI¥Y. > = 0 (3)

whence we have the Hellmann-Feynman theorem

gl - <WIH1|W> (4)

The negative energy gradient is called as the Hellmann-Feynman force.
Such a condition as eq.(3) was first given by Hurley9 and is called as the
Hurley's condition. True Hartree-Fock approximations (as distinct from
the SCF approximations), be they restricted, unrestricted, open-shell,
closed-shell, multi-configurational, or whatever, satisfy the
Hellmann-Feynman theorem.

For simplicity we will consider the 2n electron closed-shell systems

in this paper. The wavefunction is expressed as a Slater determinant
y =Hmla@16 - mia@ie | (5)

The Hartree-Fock orbitals $y---0, are eigenfunctions of the Fock

operator, the corresponding eigenvalues being 81"'8n
Fo, = E;0; (6)
Orbital labels i,j,k ... denote occupied orbitals, a,b,c... denote



virtual orbitals and p,q,r... denote general orbitals. The
Hellmann-Feynman theorem is satisfied if the Hurley's condition of eq. (3)

is fulfilled. The wavefunction derivative is given by

1 nocc 1
y- = f ﬂmia@lﬁ...@i¢i(a6—6a)...n : (7)
Taking account of the one electron property of Hl, we assume that the

derivative of the orbital can be expressed as a linear combination of the

other orbitals

1 _
@] = wpUpi//Z (8)

where p=1i is excluded from the orthogonality condition of orbitals. We
used Einstein summation notation for repeated indices. Substituting

eq.(8) into eq.(7), we have
Y- = U_.¥ (9)
with
Yo = lejae,B...0 ¢, (aB-Bot)/v/2 ...

al

The Wai are singly excited configurations. Thus the Hurley's condition

of eq.(3) is equivalent to the Brillouin theorem

<TailH—ElW> + <WlH—EIWai> = 0 (10)



As known well, the Hellmann-Feynman theorem is satisfied for the optimal
wavefunction as a consequence of the variational principle.
The differentiation of the Fock equations <¢le—ei|wi> =0

leads to

1 1 1.
<wle —silwi> + (8j—8i)<wjlwi> =0 (11)

In the case of i=j we have the Hellmann-Feynman theorem with respect to

the orbital energy
1 1
gy = <¢1IF Iwi> (12)

Let us now consider the SCF approximation. The molecular orbitals
are defined in terms of the finite basis functions Xl"'xm

0, = x C . = XC, (13)

The X and CI are the row and column vectors of xa and Cai’ respectively.

The derivative of wi with respect to A is given by
ot = xtc, + xct (14)

in a matrix representation. The first term on the r.h.s of eq.(14)
arises from the fact that the basis functions will generally be defined
in such a way that they move with the nucleus. The second term arises

from the fact that the coefficients may also depend on x. The Hurley's



condition is fulfilled if

FCi = eiSCi (15a)
and o
(1) _ (1)
F Ci = eiS Ci (15b)
where
(1) 1 (1) !

Eq.(15a) are the Fock equations and hold for any SCF orbital. But
eq.(15b) are not fulfilled in general. Thus the Hellmann-Feynman theorem
is not necessarily satisfied for the SCF wavefunctions with the finite
basis sets. The error in the Hellmann-Feynman theorem arises essentially
from the basis functions. The Hellmann-Feynman theorem-error in the SCF

approximation can be estimated by

- to-(1) (1) '
A= 4 Y Ci(F .eiS )Ci (18)

13 Note here that the Hurley's condition

This is called és the AO error.
is inequivalent to the Brillouin theorem in the case of the SCF
approximations.

Two approaches have been suggested to overcome this difficulty. One

way is to employ the basis set which is invariant to the changes of Xx.

Evidently the floating functions will do the job. In the floating

- 9 -



functions the individual orbitals are not fixed on the nuclei a priori.
Rather the centers are allowed to float, the variational method then
determining the optimal centering. If the floating functions are used,

the derivative of @i is given by
(17)

and the Hurley's condition becomes identical to the Brillouin theorem.
One can easily obtain the wavefunction obeying the Hellmann-Feynman
theorem by a single floating scheme if used with the sufficiently
polarized basis sets.12
The other approach, the use of fixed basis functions, is also

applicable. The first method is to describe a molecule by one-center

basis sets. Although application is limited, its usefulness is

4 1

discussed.l The second is to employ the basis sets X = {x, x,

xz,...}, where xn denotes the n-th derivatives of x. It is necessary to
include the derivative basis functions for every basis function. Then
eq. (15b) are fulfilled and the SCF wavefunction obeys the

13 If these basis sets are used, the space

Hellmann-Feynman theorem.
spanned by derivative basis functions is included in the original basis
function space. Thus we can expand the derivativé basis functions Xl in
terms of the originai basis functions X such as Xl = XB. Then it is
possible to represent @5 in the form of

1

_ . ol
@7 = X(BC; + C7) (18)

From-eq. (15b) we see that XBCi lies on the virtual manifold. Thus,

- 10 -



the Brillouin theorem is also sufficient to satisfy the Hurley's
condition.

In any case if the wavefunction obeys the Hellmann-Feynman theorem,
the derivative of the wavefunction can be defined in terms of only the
original basis functions. On the other hand, in the usual basis sets
used in the molecular calculations, the wavéfunction derivative are
defined in terms of both X and Xl. This implies that the basis set
function space is not flexible enough to cover the space spanned by the
derivative basis functions. The introduction of Xl yields integrals
involving basis function derivatives and the iterative coupled perturbed
Hartree-Fock equations which constitutes a heavy part of the computations
in the calculation of the higher energy derivatives.

The above consideration implies the sufficient condition for the
fixed basis functions to satisfy the Hellmann-Feynman theorem is that the
space spanned by the derivative basis functions constitutes a partial
space of the original basis function space. This suggests the new method
to obtain the wavefunction obeying the Hellmann-Feynman theorem. But

this is not the subject of this paper and we will not go further on this

point.

III. Analytic Ehergy Derivatives of a Diatomic Molecule

In this section we shall derive the second, third and fourth energy
derivatives based on the Hellmann-Feynman theorem. For a sake of
resulting formal simplicity, we will first consider the 2Zn-electron
closed-shell SCF wavefunction for a diatomic molecule. The electronic

energy is given by



<YIH-EI¥> = 0 (1)

The nuclear coordinates are understood to have been written in terms of
the internuclear distance. R. Thus only R appears as a parameter.

Differentiation of eq. (1) results in the Hellmann-Feynman theorem
El = <WIHlIW> (4)

if the Hurley's condition is fulfilled

<Y H-Elys + <y iH-E[¥ls

0 (3)

Here we used the notation

and analogous notation for Tn and En. We observe that R is real so that
the derivative wavefunctions are assumed to be real. This is not a
serious restriction. The normalization condition of the wavefunction

requires

<liys - o (19)

(a) Second derivative



Differentiation of the Hellmann-Feynman theorem with respect to R
yvields

E2 = <Y |HZ|¥> + 2<¥T|HT|¥> (20)

The second derivative of the energy requires the knowledge oftthe first
derivative of the wavefunction. The essential difficulty in calculating
higher energy derivatives lies in finding a good approximation to the
first derivative of the wavefunction. By differentiating the Hurley's

condition we have the first-order Hurley's condition
< arys + <l iE-Elts ¢ <92 IE-ElY> = 0 (21)

Eq.(21) is the equation to determine the first derivative of the
wavefunction. As shown later, finding Wl based on the use of eq.(21) is
equivalent to finding the optimal Wl by the perturbation Variation

method.la Based on the discussion in Sec.Il, we assume that Wl can be

expanded in terms of the singly excited configurations

1 _ (1)
- = Uai Saiw (22)
Here U(l) are expansion coefficients, namely the first-order variational

ai

parameters and S;i are the single excitation operators defined by

st = (af

+
pq 3503 qu apBan)//Z (23)

+
The ap and aq are the creation and destruction operators which satisfy

_13_



Fermion anticommutation relation. From the orthogonality relations of

orbitals, we have

(1) , (1) _
qu qu 0 (24)

The S;i generates a singlet singly excited configuration when operating

on ¥
STy = st > = /2 I (25)
ai¥ =5 ; = cpaqoi(a{i Bo)
Eq.(21) involves the second derivative of the wavefunction Wz. So we

must eliminate Wz. The WZ can be written in general in terms of the

excitation operators as

2 U(1)

p2 (1)S+ +

pq UrS pqSrsl> (28)

The orbital pairs pq, rs run over all orbitals. Thus Wz consists of the

ground, singly and doubly excited configurations

_ (2) (2) o+ (2) oot
¥ = [ U + Uai S + U

ai ai,bj SaiSpy 11° (27)

The ground state compdnent comes from the excitations S, S+

. > i
ia alI and singly

excited configurations arise from s’ > and S~ S+ |>. The ?2 can be

+
abSbi ji“aj
expressed in terms of the first-order parameters as
y2 . [ U(l)U(l) oot (L) (1) o+ o+ . U(l)U(l) t gt

ia “ai “iaSai * Yab Ubi SapSp; ji Yaj SjiSaj



(1) (1) ot o+
+ Uai Ubj Saisbj 11> (28)

Comparing eq.(28) and eq.(27) we have

y(2) - —IU;i)IZ | (29a)

ul2) = gDyl Ugi)Ué}) (29b)

RN LG
The U(Z) can be obtained also from the second-order normalization
condition

<W2IW> + <?llwl> =0 (30)

Returning to eq.(21), we see that the last term requires only the
knowledge of the doubly excited configurations of WZ. Using the

relation given by eq.(29c), we can rewrite eq.(21) as

1 eyt (1) _
<IS HT 1>+ [ <IS j(H-E)Sp (1> + <IS ;S JHI> JU S" = 0 (31)

These are a set of linear equations, which are sufficient for finding

g1

ai We only need solutions of eq.(31) to obtain Wl. There is no

iteration involved. Eq.(31) are known as the coupled perturbed

6

Hartree-Fock equations as discussed by Stevens et al.l Note here that

once the first-order wavefunction has been determined, the second-order

(2)- (2)

wavefunction Wz can be obtained except Uai The Uai requires the

- 15 -



(1) g oD

knowledge of Uab i1 which cannot be fixed from the first-order

wavefunction.

Finally, the second energy derivative can be written in terms of the

excitation operators as

(LDoys wts (32)

2
Uai ai

E =<IH2|>+2

Eq.(32) can be formulated in another way. Let us consider the

general expression of E2 obtained by double differentiation of eq. (1)

\e)

EZ = <y u?1ys + a<vliutiys + 2«9l - 19ts + 2<9Z i H-E|1Y> (33)

It can be shown17 for any approximate Wl, say $l that

<piaZiys v oa<iliat s+ 28BS ¢ 282 H-ElYs = B2 5> B2 (34)

Thus we may choose an arbitrary trial function with variable parameters
and optimize it by minimizing EZ. If @l contains only linear parameters
and $2 can be writtes as eq.(27), it is easy to show that the optimized

trial function Wép satisfies

t

1 1 1 2 -
<Wopt|HlW> + <WoptlH~ElWopt> + <Wopt|H—EIW> =0 (35)

This implies that the Wépt satisfies eq.(21) derived from the Hurley's

condition. Also we have the expression of E2 for the optimal Wépt

2 2 1 1
ET = <¥IHT1¥> + 2<¥_  IH I¥> (36)



which takes the same form as given by eq.(20). Thus, finding approximate
Wl from the Hurley's condition of eq.(21) 1s equivalent to optimizing wl
using the perturbation variation technique.15 Namely, the analytic energ:
derivatives derived from the Hellmann-Feynman theorem is satisfied for
the optimal wavefunction derivative determined by the Hurley's condition.
It must be emphasized that the variational perturbation method will lead
to successful results only for the wavefunction obeying the

Hellmann-Feynman theorem.

Eq.(32) can be expressed in a simple matrix form
b+ (A+ B)U=2 (37)

The b and U are the column vectors of <lSaiHll> and first-order

(1)

variational parameters Uai , respectively. The A and B matrices are
defined by
+
(A)ai,bj <|Sai(H—E)SbJI> (38a)
(B)ai,bj =_<|Saisij‘> (38b)

Since we are dealing with closed-shell systems, all the integrals can be
chosen as real. So the A and B matrices are symmetric. Now let us
consider the unitary transformation among singly excited configurations

which diagonalizes (A+B) matrix

0T(A + B)O = d (39)



Here 0 is the unitary matrix and d is a diagonal matrix. If we further

define the unitary transformed excitation operators by

+ +

Rai = 5p3%j, a1 (40)
together with
(1) _ (1) .
Tai” 7 %3, ai%; (41)
Then we have
1 (1), +
¢ = Pai Rail> (42)
and
D _ C R HYs / aE (43)
ai ai ai
with
+
AEai = <]Rai(H—E)Rai|> + <|RaiRaiHl> (44)

Finally, the second energy derivative can be written as

2

E° = <|H%|> - 2 |<|R_.H'
al

2
[>] /AEai (45)

Eq.(45) is derived without any approximation in spite of its simplicity.

_18._



Namely by choosing 0 as diagonalizing the matrix (A+B), the second energy
derivative can be expressed in the similar form as a simple

18 The similar procedure has been

sum-over-state perturbation method.
used to analyze the second-order perturbation energy of the coupled
Hartree-Foch theory and the unlinked terms of the SCF effect of
orbitals.19 Note ﬁeré that AEai is not really the excitation energy, it
includes the additional term originated from the B matrix. It is called
as the generalized exchange integral19 since <lsaisaiH|> equals to the
usual exchange integral (ailai). The generalized exchange integral
represents the SCF effect of the change in the orbitals due to the
displacement of the internuclear distance.

The first term of r.h.s. of eq.(45) is the classical formula for the
force constant and corresponds to moving the nuclei while holding the
electrons fixed. It is positive. The second terms are often referred to
as the relaxation terms since they represent the effect of the changes in
charge distribution due to the movement of the nuclei. As can be seen

from eq.(45), the relaxation terms are negative. This holds for

optimized variational functions as well as for the exact wavefunction.zo

(¢) Third derivative
The third energy derivative is obtained by further differentiating

eq.(20) with respect to R

ES = <w S 1y> + a<ylinZ-EZ 19> + 2<ptiulogliyls o 2<vZit-Eliys  (46)

This expression of the third energy derivative contains the second

derivative of the wavefunction Wz. The unknown quantities of Wz are the
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(2)

ai for the singly excited configurations. So it is

parameters U
necessary to look at the second-order Hurley's condition obtained by

differentiating eq. (21)
<3 IH-EIY> + 2<¥? Hi-E1Ys + 3<v?H-EIYls

o<yt a2y oot ptoglels - o (47)
However, eq.(47) includes the third derivative of the wavefunction, ?3.
Therefore, we shall try to eliminate the third-order wavefunction. This

is possible. The general form of W3 is

3 (3) (3) g+ (3) o+ o (3) ot
Vo LU U780t Uaib5aiShy * Vaibg,ekSaiShjSek 11> (48)
However, we can express U(S), U(3) and U(B) in terms of the lower

ai ai,bj’ ai,bj,ck

order parameters by analyzing the excitations,

u(3) o _gp(2)y(1) (49a)
al al
(3) _ (2)..(1)
Yai,bj = Yai Upj (49b)
ul3) - u Dy Mg g0

ai,bj,ck ai "bj “ck

The relation of eq.(4%a) can be derived directly from the third-order

normalization condition of the wavefunction

<3 1ys + 3ep?yls - g (50)
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Note here that only the doubly excited configurations of WB can

contribute to the first term of eq.(47). Thus, eq.(47) contains only

(2) ¢ y(L)

unknown parameters U ai are known. Expressing eq.(47) in terms

of U(z) and U(l), we have the following relations
\

5(2) (1) 2 1 1yer (1)
Upgi SIS qHI> = U 371 <IS jHYI> + 2<IS 3 (HP-ET)S) s 1>U 5

(l) g

+
+ (L 2<1S ;S HS 1>+ <18y Sy HSa1 1> UL Uy ] (51)

Thus, the Uéf) can be expressed explicitly in terms of the first-order

parameters. The third energy derivative is now rewritten as
3 _ (1 ) (1) (1) 11, o+
E™ = <IH |> + 6U <IS H > + 6U ai bJ <|S ai(H E )Sbj |>

R 8U(l)U(l)U(l) IS

+
bj Yek <!'SaiSpjHSci!> (52)

The formula is much simpler than that of the direct analytic derivative
method. Note here that the final expression of E3 contains only the
first-order variational parameters. The explicit knowledge of Wz is not
necessary. This point will be discussed later.

If we use fhe unitary transformed excitation operators, the above
expression can be expressed in the form of the sum-over-state

perturbation method

E° = <|H3|> - 6 <|H1R+.|><IR .H2I> / AE_.
ai ai ai



1,+ 1 1,5+ 1
+ B<|H Rai|><IRai(H E )ij|><|ijH |>/(AEaiAEbj)

1.+ 1.+ + 1
- B6<|H Rail><IH ijl><|RainjHRckl><chkH I>/(AEaiAEbjAEck) (53)
This equation is also exact. There is no approximation employed.

Now let us consider the general analytic expression of E3 derived
by successive differentiations of eq. (1)

3

ES = <y u3|

y> + 6<¢l1HZ-E2 19> + e<vliaroEY 19ls ¢ g<w?pl gl |ys
v 8<¥21H-EIYL> + 2<¥3|H-EIy> (54)

Expanding the wavefunction derivatives in terms of the excitation

operators as before and minimizing E8 with respect to the unknown

(2)

parametetér Uai , we have
G <Is_ HLI> + [ <IS_ . (H-E)S'.I> + <Is_.s, .HI> 10¢Y) - o0 (55)
8U(2) ai ai bj ai“bj bj
ai
Eq.(55) hold automatically if Wl is chosen optimal, that is if U;i)

satisfy eq.(31). The E3 expression for the optimal TZ takes the same form
as given by eq.(48). ' Thus, the first-order wavefunction suffices to
determine the third energy derivatives. This property is also utilized

to derive the third energy derivatives of the direct analytic method.4

(c) Fourth derivative

The fourth derivative is obtained by differentiating eq.(46) again
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with respect to R

4 o cprativs + e<ylE31ys + 6<9Z1H2-EZ1ys + s<¥lHZ-EZ1wl>

v oe<¥2iptoEt1wls + 2<9d Ht-EN 1w, (56)

The last term on the r.h.s. of eq.(56) involves the third derivative of
the wavefunction. We need the singly excited components of WS to

evaluate this term due to the one-electron property of Hl. To determine
the unknown quantities, we start with the third-order Hurley's condition

wtioeiys + 3<vd -l iys + a<edn-miels + 3<w?HZ-EZ |y

voocvZiutogt1els 4 s<p?imoE 1w« NS iys ¢ a<vtiu?-E?iels - o
(57)
Again the above condition contains the fourth derivative of the
wavefunction. However, the required quantities to evaluate the first
term of eq.(57) are only the doubly excited configurations of W4. From

the analysis of the excitation operators, we see that

vl g st o auPyll) L ogu2)gl2) et g

ai,bj Sai®pj ai Ubj ai Ybj 5aiSpj (58)

(3)

Thus we can find the unknown parameters Uai

from eq.(57). The final

expression of U;?) becomes

(3) 1,0 _ (1) 3 2 2\ % (1)
Uai <|SaiH > = Uai { <|SaiH [> + 3<|Sai(H E )Sbj|>Ubj
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1.+ (1) (1)
+ 9<|sal bJH SkCI>UbJ ko o+ 1 3<lSaISbJ(H E)s’

|> +

ck dl

> D Doy L@y Dos il

* 4<IS Uek Ua1 ai ai

ai bJ ck dl

(2) 2 1 o1y o+ (1)
+ 80T L <IS BT 1>+ B<IS, { (H-ED)Sy 515Uy

+ (2)
+ | <lSai(H—E)Sbjl> + <ISaiS Hi> }U

(1) (1) ]

+ 2{ 2<]|S8 bj ck

+
Sck|> + <ISbJS I> U (59)

ai bJ ck

Note here it is not necessary to solve the second-order coupled perturbed

Hartree-FFock equations for the calculation of the third-order parameters.

(3)

It is also possible to represent U

(1)

parameters U
ai

in terms of the first-order
if we utilize the relations given by eq.(51).
The fourth energy derivative can be expressed in terms of the

excitation operators

E* = <>« sulP s w13 v su'P s w2+ 602 uZ-E?)s
al al al al
+ euéi)uéi) ISai(HZ—EZ)ngI> + sul?y ;l)<|s BIEEES
. euéf)uéi) ai(H?—El)sgj|>
+ sulDy éﬁ)uéi)<|saisbJHls;k|> N 2Ué§)<lsaiHll> (60)
Utilizing the relations given in eq.(59) we can eliminate Uéi) and have
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g4 - <uds « sugi)<|s 31> + 120 B (L)

2 2, .*
ai ai bJ ai(H -E )Sbjl>

(DM g g wls* s

+ 24U U Uy <15,45p 51 Sek

(1) (1 (D (1) g

ai "bj ck dl (H E)S

+ 6U ekSd1 — -

ai bJ

8U(1)U(1)U(1)U(l) IS

+
ai Ypj Uok Va1 <!SaiSpjSck Sa1!”

(2) (2) _mye?
+ 6Ual U { <IS (H E)Sbjl> + <|Saisijl> }

(2) 2 (1) 1 .1, .+
12Uai [ <lSaiH > + 2Ubj <]Sai(H E )Sb3|>

(LD (61)

+
+ { 2<|S_.S .Hsckl> + <|S HS | > }U ck

ai " bj bj ck

Since according to the relations of eq.(51), the last four terms on the

r.h.s. of the above equation is

12082 <ls_ 205 4 2U(l) s . ur-glys
al l al

(L)1)

1> }UbJ ck

+
+ | 2<'Sa15ijSck'> + <|s HsbJ Ck

12|U(2)| S |>/U(l) (62)

provided that U;1)¢ 0. If we further use the relations given by eq.(51)

(1)

we can express E in terms of only the first-order parameters Ual

Although the formula looks complicated, it consists only of

straightforward combinations of known quantities. There are no algebraic
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problems.
The fourth energy derivatives can be expressed in terms of the

unitary transformed excitation operators as

4 _ 4, 1,+ 3
E° = <IH I> 8 <IH Rai|><RaiH I> / AEai~~ )
1.+ 2 2.+
+ 12<]|H Rail><|Rai(H -E )ij|><|ijH I> / (AE AEbJ)
B 1 1
24< | H R |><|H R I><IRa1RbJH R k|><lR H 1> / (AgaiAEbJAECk)
1 1
+ 6<|H R l><IH R I><IR R (H E)R |> /

ok dll><|R H I><|Rle

(AEaiAEbjAE AEdl)
¢ 8<IH'R JI><i'r) I><lHR L I><IR_ R R HRY I><IRy HY 1> /
i"bj ckdl dl
(AE AEbJAE kAEdl)
GIT(Z) 2AE . (63)
al

Here, Téi) are the transformed second-order parameters

(2) _ -1 2 _ 1 1 o+ 1
T 77 = (AEai? [ <|RaiH | > 2<1Rai(H E )ijl><|ijH I>/AEbJ

+ + + 1 1
+ {2<|RainjHRckl> + <|RaiHR .Rckl>}<|ijH I><|RckH ]>/(AEbJAE

bj ck) ]

(64)



Eq.(63) is also an exact equation.
Let us again consider the general formula for E4 obtained by

successive differentiations of eq. (1)

4 - cpiudiys + s<vtES s ¢ 12<¥Z HZ-EZ 19> + 12<vliHZ-EZ |y

s

v 24<v2iut-gl 1yl + s<¥3inl-El1ws « <92 H-E 92>

v 8<¥OH-EI1¥Y> + 2<¥?|H-E|¥> (65)

(3)

Taking account of eq.(58), we minimize E4 with respect to Uai This
yields
oEY | <is . m >« [ <Is. . (H-E)S' 1> + <Is_.s_.HI> Jult) <0 (66)
aU(S) ai ai bj ai®bj bj
ai

This is also satisfied if Wl is chosen optimal and the E4 for the optimal
TS becomes identical to that in eq.(56). Thus, the optimal Wl is
sufficient to evaluate the derivatives of the energy up to fourth-order.
Analogous results for ES, EG,... may be derived. The only difficulty is

that these lower-order wavefunctions must be known exactly.

IV. General Formulae for the Second, Third and Fourth Energy Derivatives
In this section we shall give the general formulae for the second,

third and fourth energy derivatives based on the Hellmann-Feynman theorem
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We will start with the energy expression given by eq.(1). By
differentiating eq.(1) with respect to a nuclear coordinate x, we obtain

the Hellmann-Feynman theorem

Ao <y iHN 9> (67)

E
and the Hurley's condition

<Y H-EIY> + <YIH-EI$*> = 0 (68)
We assume the wavefunction is normalized to unity and have

<YM ys o+ <Y IYrs = 0 (69)

Second energy derivatives can be obtained by differentiating eq. (67)

with respect to u

A e EMM s o+ o<y 1 HM Y (70)

E

Here we used the relations, assuming that all the functions are real,
<P EM s = <M EN s (71)

The second derivatives require the first derivative wavefunctions WA. By

differentiating eq.(68) with respect to p we have the first-order

Hurley's condition



WM HEA Y > o+ <YM H-EIYRS ¢ <PHIH-EIY> = 0 (72)

As shown in the previous section, Wl may be expanded in terms of the

singly excited configurations
> (73)

Then Wl“ can be expressed as

1 +  _+

pYTIE A 2 AN ot X
Y8 = L SHU 1T UGy Sas * UiV SaiSpy 112 (74)
Eq.(72) with x=u gives
<1S .H*I> + [ <IS_.(H-E)S).I> + <IS_.S, .HI> JUX. = 0 (75)
ai ai bj aibj bj

By solving a set of linear equations we can obtain Wl and then EA“,
EM - < aM s ¢ 20t <rs_ HY > (76)
ai ai

The third energy derivatives are derived by further differentiating
eq.(70) with respect to v. ‘It is not symmetrized with respect to x, u,
v. It can be recast in a symmetrical form. The third energy derivatives

are given by

EAMY Ly gAY s s % Pi3)<W*|H“v—E“vIW> N % Pé3)<W*“IHV—EV1W>
. % Pé3)<TAIH”—E“le> : (77)
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The notation P(B) P(B), P(s) means the permutation of the superscripts

2 3
pi3) = () (aw) + () (va) + (v) (an)
Pés) = (Aap)(v) + (pv) () + (va)(w)
P2 = D) ) () () )

(3)

This implies there are three terms from each P The third energy

derivatives require the second-order parameters, Ug?- The second-order
Hurley's condition is given by
<V iEeErys + 2 I Y pY s o p B g Vs
+ Lp (3) MERV-ERY [ys 2 p(B) X R Vs - g (78)
3 3 3
Using the relations
vV = el gl (79)

ai,bj ai "bj

we can express U;? in terms of U;i from eq.(78) as

1 5(3),u Vi, = 1L p03)y ny
3 P2 U <|saiH |> = 3 1 al<lS CHT T >
2 5(3) 2 Mok ot 1% (8) A + JTRY
+ 3 Pglug <Is  (HY-E )Sbj|>Ubj + P, Uai<lsaisijSck|>Ubchk (80)

In the case of x=u=v, eq.(80) are reduced to



AX

+ X _ X AX
Uai<lsaiH 1> = Uai[ <ISa1H 1> = 2<|Sai( -E* )S UbJ
)\
{ 2<18,48p;H Sy l> * <18, HSy S0y 1> }U Uck (81)

Also we have the following relations by putting A=V in eq. (80)
2UM < s _HM> + UM<s  HM > =
ai ai ai ai

Al u A X X X
i<|saiH > + Uai<|saiH > + 4Uai<lsai(H E )S |>UbJ

b} Bl ot X X n

+ 207 <18, (HM-ER) ST 1>UD 5+ UL <18, S JHS I>UbJUCk
X . TR

+ GUai<|SaiSbJHSC 1>Up Uy (82)

So once U;; have been determined by eq.(81), the remaining U;? can be
obtained from eq.(82). Now the third energy derivatives given in

eq.(77) can be rewritten in terms of the excitation operators as

ARV pYTRY (3) uy
E = <|H I> + 2 Pl ai<|sa'H | >

(3)yr M V LV ot
« 2 PgPuY up <is  (V-EV) S5 1>

‘2 P(g)Ul Ut uY <

L L | > (83)

+
aisijSck

Thus, we only need solutions of linear equations of eq.(75) to evaluate

the third energy derivatives.

The fourth energy derivatives are given in a symmetrical expression
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by

EMVE = itV s o 3 p (g gtV s p () (R gk pYE g,
v <y ERVoERY RS %{<Tl“IHv~EVIWKzW+~<Wl“IHK—EKIWv>}]
¢ 2 P AV R K s (84)
with
Pi4) = (X)) (uvk) + (p)(vkx) + (v)(kap) + (k) (xuw)
PLY = ) (o) ¢ () (k) ¢ () G ¢+ (e () ¢ () (aw)

+ (xv) (ux)

The above expression includes third derivatives of the wavefunction which

requires the knowledge of the singly excited configurations of Wl“v. The
. AUV pYIRY) . .

variational parameters Uai of ¥ can be determined by the third-order

Hurley's condition obtained by differentiating eq.(78) and the relations

AUVK o+ o+ (4),.xuv,.x l‘ (4), . xu. vk + L+
Yai,bjSaiSvj = ( Pg "URi Upy * 3 P 'UniUps ) SgiSp; (85)
with

Pé4) = uv) (k) + (uwk) (X)) + (vka) (p) + (xau) (v)

Then we have the following relations



1 ,(4),auv K _ (4),x UVK
2 P3 Uai <|SaiH |> = 4 Pl Ua1<ls . H | >

1 p(4)yr yu <Is, (1 _EY%)s!

T4 T2 ai'bj S 1>

bj

I> + 2<1S_.S, .S HS: > ]

(4) X ;U 9
+ P3 u~.u U U [ <IS bJ(H E)S aiSbiSckiSa1

ai bj ck'dl" 4 ai~- ck dl

Pé4)[U*.<|s M suYE o+ UM <)s BN SUYK ]
al al al al

N

Sl

(4)Au VK 3 VLVt
P2 Uai[ <|SaiH [> + 2{<|Sai(H E )SbjI>U

K_Kyo®
+ <|Sai(H -E )SbjI>Ubj

+

+ {<ISai(H—E)Sbj|> + <|S ai b Hi>) UbJ

+ v K

+ 2{ 2<ISal bJH ok I> + <|S bJSckl }Ubchk ] (86)
In the case of a=u=v=k, the above relations are reduced to eq.(59). Once
U;;A haveAbeen determined, U;;“ can be obtained by putting x=v=k in
eq.(86). Finally we can determine the remaining Ug?v using the known
U;;l nd Ulk“. Now the fourth derivatives can be evaluated in terms of

the Kknown quantities}' Although the equations are rather complicated,
there are no algebraic problems. Finally, the fourth energy derivatives

can be written as

Ek“vK = <|Hl“vK|> + 2 P§4) ll<IS .HHVKI>

v 2 P(4)U* Uk <rs_, (V*-EYF)s] 1>

ai’bj ai bj
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(4) nov Kot
+ 6 P3 Ua1UbJUck ISaiSij Sckl>
+ 8 urut Y uk <1s_.s s HSY. >
ai"bj ck d1<'%ai bj ck Tdl
i
6 UalUbJUCkUdl lSal bJ(H E)S’ ck dl'

(4) A VK et
+ ustu, v | <|S (H E)Sbj|> + <ISaiSijI> }

2 ai'bj ai
+ 2 Pé4)U;§[ <IS_ HI> + <Is, (H -E )sbJ|>U§j
+ Sai(HK—EK)ngI>U§J
+ 2<lsaisijs;k|> + <Is_.HS bJ Ck|> }U UCk ] (87)

AUVK

Of course we can express E in terms of only the first-order

parameters by eliminating U;? with the help of eq.(80).

V. Conclusion

We have dérived équations which provide the second, third and fourth
derivatives of the energy of a molecule based on the Hellmann-Feynman
theorem. The Hurley's condition can be used to obtain approximations to
the first-order wavefunction, from which the second, third and fourth
energies can be obtained. There are several significant advantages over

the direct analytic derivative method. First the anlytic expressions of
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these higher derivatives are much simpler compared to those of the direct
analytic method. Second the electrostatic calculation involves only
one-electron integrals. Since the wavefunction derivatives can be
expanded in the excited configurations in terms of the basis functions,
there appear no integrals involving derivatives of the basis functions.
This leads to drastic simplification since the fuliy ab initio evaluation
of higher energy derivatives of the conventional method requires large
amounts of computer time and storage primarily because of the derivatives
of the integrals. Third there is no need of solving the coupled perturbed
Hartree-Fock equations to obtain the derivatives of the wavefunction. We
only need solutions of a set of linear equations. There is no iteration
involved. Only the first derivative wavefunction is sufficient to
determine these higher order derivatives. Fourth thgre are intuitive
physical pictures associated with these higher derivatives as the
Hellmann-Feynman force picture associated with the first derivatives.

We have also shown that the present procedure of deriving higher
energy derivatives based on the Hellmann-Feynman theorem with the
auxiliary Hurley's condition is equivalent to minimizing the derivative
energy by the perturbation variation techniques. Thus the derived
formulae can be applicable to any real one-electron perturbation such as
electric properties. -Also it is easy to modify the formulae for the pure
imaginary pertdrbed wavefunctions in the case of magnetic properties. If
the spin~dependent perturbations are treated, the singlet excitation

operators defined in eq.(23) should be replaced by the triplet excitation

operators
+ + +
S =
jofe] (apaaqa apBan)N2



We have also derived these higher derivatives in the similar form of
the sum-over-state perturbation method without any approximation. These
expressions may help our understanding of various terms of these higher
energy derivatives. o

In this paper explicit formulae are derived only for the
closed-shell SCF wavefunction. But the present procedure can easily be

extended to other variational wavefunctions obeying the Hellmann-Feynman

theorem.
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NOTE ON AN UPPER BOUND PROPERTY OF SECOND DERIVATIVES OF THE ENERGY
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and
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ABSTRACT

An alternative proof is given for the upper bound relation of
second derivatives of the energy

(8%E/82%)<w 19> < <via%H/82% >

The relation is proved to be equivalent to the stability condition of

a variational wavefunction.



Silverman and Leuvenl) have used perturbation variational theory to

derive the upper bound relation for second derivatives of the energy

(82E/8x2)<¥1¥> < <¥182H/622 > (1)
Here H 1is the lHamiltonian, A is any parameter in H (coordinate of a
nucleus, charge of a nucleus, etc.), ¥ and E are either the exact
cigenfunction and elgenvalue of the Schrodinger equation or some
optlimal variational counterparts to them. An alternative proof 1is

2) for the exact solution. The curvature theorem (1)

provided by Deb
provides insight into the behavior of exact and optimum variational
solutions to the Schrodinger equation when these solutions are treated
as functions of a real parameter occuring in the Hamiltonian. For
instance, when the coordinates of nucleus in a molecule. are taken as A,
then the second derivatives of the energy give the force constants. In
this case, the relation (1) indicates the relaxation terms are negative.

In thls note we wish to show that there is an easier way to derive
(1) for the optimized variational wavefuctions (all variational
parameters chosen to minimize the expectation value of H(x) for each
{1}) as well as for the exact wavefunction.

Let ¥ be a normalized optimal varjiational wavefunction and E the

corresponding optimal energy
<YIH-EI¥Y> = 0 (2)

and let x be a real parameter in H. Here, we first differentiate (2)

with respect to x to find



(BE/BA)<¥|¥> = <¥|3li/9x|¥> + <dY/Ax|H-EI¥Y> + <¥Y|H-E|8¥/3x>

However, the variational condition ensures that

<3¥Y/3xIH-ElY> + <Y|HU-E|8%/8x> = 0 (4) 3

3)

whence we have the llellmann-Feynman theorem

(BLE/8X)<¥I¥Y> = <¥lall/ox|y> (5)

The condition (4) is called as the lurley's condition.4)

Differentiating (5) again with respect to x yields

(8%E/822)<¥ 19> = <¥15%H/822 >
+ <g¥/ax|al/axiy> + <P|8H/82]|8Y/8Y> (8)

Similarly by differentiating the Hurley's condition we obtain

<B¥/8x1811/8x|¥> + <¥|9H/0x10¥/8x> =
. 20(<8¥/8x |H-E|8¥/8x> + Re<d2¥/8x2|H-E|¥>]  (7)

Substitution in (8) leads to the result

(82E/82%) - <¥182%H/822 19> =
_2[<8Y/8xII-E18¥/82> + Re<d2¥/8x2H-EI¥>]  (8)

(3)



Hence what we want is a condition which will ensure that
<B¥/0x1I-E|8¥/82> + Re<d¥/ax2|H-E|¥> > 0 (9)

as a consequence of the variational principle.
Now let us consider a small displacemeﬁt of an optimal
wavefunction by replacing X to x+8x. From Taylor's theorem we can

expand the wavefunction as
Pla+sx) = Y(a) + (8¥/8x)8a + (1/21)(8%9/8x%) ()2 + ... (10)

Here Y(ax+8x) 1s assumed to be normalized also to unity. The first
differential of ¥ is the first order change in ¥ produced by changing .
Similarly the second differential of ¥ is the second order change of V.

Then the energy is given by

E(P(x+dx)) = E + [<3¥/xIH-EI¥Y> + <¥Y|H-EI8¥/8x>]8x

+ (1/21)[<8Y/8X|H-E|8¥/8x> + Re<d2%/0x 2 |H-E|¥>](62)2 + ... (11)

The first order term in éx is zero due to the Hurley's condition (4).
This leads to a simple criterion that the energy corresponding to ¥ be
stationary with respect to the variation given by (10). Once one has
located a stationary point, a natural question to ask is, is it a
minimum, a maximum or Jjust a saddle point? The way to answer this
question 1s to look at the second order term in &x. The second order
term is expressed as a quadratic form in the |8¥/8x> and <d8¥%/8x]. Thus

the question to be answered is, is the form positive (local minimum),
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negative (local maximum) or indefinite gsaddle point)? The ‘energy is

stable 1if

(1/21) [<8¥/8x |H-E|8¥/82> + Re<d2W/0x2|H-EI¥>] > 0 (12)

This inequality is known as the stability condifion for the optimized
variational wavefunction. The stability condition ensures that the
wavefunction represents a true minimum or a saddle point of the energy
Tunctional. Thus 1f the encrgy Is stable we arrive at the required

upper bound relation from (8)
(8%E/ax2)<¥i¥> < <w|a%1/022 19> (13)

That is, the upper bound condition is equivalent.to the stability
condition. The upper bound condition provides additional criterion to
that of the variational principle for judging the quality and stability
of an approximate wavefunction. A general condition for the stability
problems of a Hartree-Fock solution was first formulated by Thoulesss).
Cizek and Palduse), Fukutome7) and Hirao and Nakafsuji8) have discussed
the concept of the stability of a variational wavefunction. But we
will not go further on this point. If the equality of (12) and
therefore of (ia) is satisfied, the critical point i1s a saddle point
and we must go to higher order terms to examine the criticalvpoint.

If E is the exact energy, (H-E)¥=0, then the last term of r.h.s.

in (8) vanishes. The E is the true lowest bound state energy and an

expectation value of a positive semidefinite operator (H-E) gives



<d¥Y/ox|H-EI3¥/3ax> > 0 (14) -
which leads to the required upper bound relation.z)

There is an alternative to the cholce of (10) for ¥, namely
¥' = expl ihD J¥ ; D = (1/1)(8/8x) (15)

llere D is a given differentiation operator and h is an arbitrary real
number not contalned In 1. Since the D is Hermitian, ¥' is related to

Y by a unitary transformation. The energy E'=<¥'|HI¥'> is given by

E' = E + h[<d¥Y/OxXIH-EI¥Y> + <Y|H-E|8¥/9x>]

+ n2[<8¥/0A1H-E13¥/82> + Re<d2¥/0x2|H-EI¥>] + ...  (16)

Now consider the transformation of the Hamiltonian expressed as

-1hD,, 1hD
e C

I

Then the exponential series can easily be expanded using Hausdorff

formula to yield

E' = E + ih<¥|[H-E,D]I¥> + (1h)2/2!<¥|[[H-E,D].D]I¥> +

= E - h<¥[8H/8x- 8E/8x1¥> + (h%/21)<¥18%H/00%- 8%E/0221¥> + ... (17)

By comparing (16) with (17), we can see that the first ordér energy ternm
glves the Hellmann-Feynman theorem and the second order term with the
stability condition leads to the upper bound relation.

- 6 -
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Abstract

We have studied pseudorotation reactions of some penta-coordinated
phosphorous compounds {PHs, PFs, PFsH, PF:H:, PFsCHs, PF3(CHs),
P(O>CoHi)Hs, P(OCsHo)Hs and POsHi'} to elucidate the reaction
mechanisms by using ab initio SCF and MP4 methods. We have
calculated the potential surface for the lowest pass of pseudorotation
reactions. The geometries of the transition state connecting them have
been determined theoretically. The ligands which form the covalent bond
with the central phosphorus atom such as Hydrogen, methyl and

methylene groups prefer to coordinate in the equatorial position. This



nature of the ligands is called as the equatoriphilicity . It is possible to
predict whether the pseudorotation reaction can occur or not, based on
the number of the equatoriphilic ligands in the penta-coordinated
molecules. The normal coordinate analyses have been carried out at the
stationary points of PHs and PFs. The mechanism of pseudorotation is

discussed and explained on the theoretical basis.

1. Introduction

The different behavior in the hydrolysis reactions between DNA and
RNA is an interesting fact that is related to their different roles in the
biochemical system. DNA molecules which work as tapes for the storage
of genetic informations show very strong resistance to the decomposition
by the hydrolysis. Even after one hour reaction at 100°C in IN NaOH
(aq.) DNA molecules don't show any changes.(l) On the other hand, 2-
hydroxyethyl methyl phosphate, which is a model molecule of RNA,
easily undergoes the hydrolysis reaction. The half-life of the hydrolysis
reaction of this molecule at 25°C in IN NaOH (aq.) is 25 minutes."”
Indeed RNA molecules have high turnover rates and are easily
hydrolized. The difference to the hydrolysis reaction between DNA and
RNA which functions as a carrier of genetic informations comes from
these chemical characteristics. The behavior of phosphate ester to the
hydrolysis reaction is closely related to the nature of phosphorus atom.
The high reactivity comes from the penta-coordinated intermediate
formed by the attack of the vicinal hydroxyl group through the hydrolysis
reaction. The group-15 elements in the second and succeeding rows of

the periodic table can show higher valence numbers. One of the possible
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structures of penta-coordinated compounds is trigonal bipyramid. The
hypervalent character of elements in higher rows of the periodic table is
quite different from that of the first row elements. For example, CHs is
in a high energy transition state of the SN2 reaction, while SiHs is a
stable intermediate. Recently, as theoretical techniques have been
expanded, it becomes possible to predict the existence of compounds from
the theoretical background. Though it has been assumed that hypervalent
compounds of first-row elements such as nitrogen cannot exist, a recent
study of Ewig et al. suggested the existence of three nitrogenous penta-
coordinated compounds, i.e. NFsHz, NF+H and NFs.©”

In relation to the phosphorus penta-coordinated compounds,
Westheimer™ has proposed the mechanism of the hydrolysis of phosphate
esters. He has postulated that the nucleophilic displacement reactions of
phosphorous  compounds  proceeds  through  penta-coordinated
intermediates. (see Figure 1-(a)) He also assumed that an axial entry of
the nucleophile takes place in forming a trigoﬁal bipyramidal intermediate
and that an axial departure of a leaving group occurs in forming
products. If the activated states have sufficiently long lifetime, it is
further assumed that ligand rearrangement, that is pseudorotation
reaction, may be encountered before product formation. The Berry's
pseudorotation(4) process, which rapidly exchange axial and equatorial
ligands in the trigonal bipyramidal intermediate (Figure 1-(b)), has a
strong basis in phosphorous chemistry where NMR studies have
established intramolecular ligand exchange process for many phosphorane
molecules. (see Figure 2) Many studies of the bonding nature, structures

of phosphorous molecules and relative reaction energies of pseudorotation
3



. : : 3)-(32),(46
reaction have been performed experimentally and theoretlcally.( FE2),(46)

©0) Particularly, Holmes has contributed to developments of the
understanding of penta-coordinated phosphorous compounds.(32) In
theoretical treatments some models are adopted; valence electron pair

1(24), a three-center four-electron bonding model. #> @7

repulsion mode
Furthermore there are many ab initic  or semiempirical molecular
orbital calculations.”” ®®?  Strich et al.” studied PHs and supported
Berry's pseudorotation. Marsden"'” calculated PFs and estimated the
energy barrier of the pseudorotation to be 3.8 kcal/mol. Schleyer(45)
studied first and second row substituents of phosphoranes in a systematic
way. Recently, Dieters and Holmes'™® studied a series of substituted
phosphorous compounds. The pseudorotation reaction is not confined to
only phosphorus compounds. Recently Gordon et al.®? have performed
theoretically an extensive study of the pseudorotation reaction of SiHs .
There has been much interest in the pseudorotation mechanism in
view of the important role of the phosphorus chemistry. As the
pseudorotation reaction is a ligand exchange isomerization reaction
between the apical part and the equatorial part, the reaction mechanism is
closely related to the relative stabilities between the isomers which are
interconverted through the pseudorotation isomerization reaction. The
relative stability of apical and equatorial substituted isomers have been
discussed by the substituent electronegativities, steric interaction and ring
strain. It is very difficult to observe directly the pseudorotation process
as it is a reaction in the intermediate. And it is necessary to study the

transition state of the reaction to understand the process of pseudorotation

reaction. Ab initio  calculations are nowadays widely accepted as a
4



legitimate way of getting informations that are experimentally
inaccessible. The theory can describe the mechanism and provide some
correct explanations of the pseudorotation hypothesis.

We have carried out ab initio molecular orbital calculations on
pseudorotation profiles of some phosphorous compounds in this study.
The computational methods in this study are described in Section 2. The
results are present and discussed in Section 3. The emphasis of the
discussion is put on the pseudorotation mechanism. We also discussed the
relative stability of isomers. The equatorial substituent effects in the
apical bond formation are also discussed. Some general conclusions are

summarized in Section 4.

2. Computational details
In this study all geometries of penta-coordinated compounds were
fully optimized at the SCF level. Because of the fact pointed out by

Magnusson(4

Y that relative energies of singly substituted phosphoranes
vary considerably with different basis set, it is necessary to use basis set
at least as large as 6-31G*. So for all molecules except PHs, the basis sets

are used at the double-zeta level®™

which are augmented with
polarization functions. The polarization functions (ctp=0.43, oc=0.75,
0.0=0.85, az=0.90, ay=1.00) are added to phosphorus atom and other
ligands which are directly connected to the central phosphorus atom. We
have also added a diffuse function (c.o=0.059) on the phosphoryl oxygen

atom in the calculation of POsHs™. We used a triple—zeta(33)

plus
polarization (TZP) basis set for PHs calculations.  The correlation

energies are calculated by the fourth-order Msgller-Plesset perturbation
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method (MP4) at SCF optimized geometries.

3. Results and discussions

In Section 3A we discuss the pseudorotations of some penta-
coordinated phosphorous compounds. We discuss the relation between
the stability and the structure of penta-coordinated phosphorous
compound in Section 3B, i.e. equatoriphilicity. We discuss the apical
bond character by using the orbital energy correlation diagrams in
Section 3C. Some discussions on the equatorial substituent effects are

given in Section 3D.

3A. Pseudorotation
PHs

The optimized structures of the ground (Dst) and transition (Cav)
states are shown in Figure 3-(a) and (b), respectively. The ligand at the
apex position of the Cav structure is called as the pivotal ligand.

The energy relation between the ground state and the transition
state is shown in the energy diagram. (see Figure 4) The broken line
shows result of the SCF calculation and the solid shows that of the MP4
calculation. The individual electron pairs are separated as far as possible
in the ground state. These electrons become closer each other in the
transition state. Thus the electron correlation effect becomes more
significant in the transition state. ~ The energy barrier of the
pseudorotation reaction is about 2 kcal/mol with and without the electron
correlation. We can say, therefore, the Berry’s pseudorotation occurs

very easily in this molecule.



The electronic structure of phosphorane PHs is

(core) 1°(1a17) 2(1¢)) 2(2¢") 2(122")* (2ar') 2 (3¢) °(4€) °(3ar’) * -
The highest occupied molecular orbital (HOMO) is shown in Figure 5-(a).
The apical bond has a three-center character and is weaker than the
normal single bond. The electronic structure of the transition state is

(core) 1°(1a1)%(1e)%(26)*(2a1)*(1b1)*(3a1) (4ar)’ -
The changes of the bond length of PHs through the reaction are shown in
Table III-(a), in which the bond length before the reaction is put as 100.
The pivotal ligand stays in the equatorial plane before and after the
pseudorotation reaction. The pivotal bond length is shortest in the
transition state. Its change is also smallest in the reaction. The orbital
mainly related to the pivot is 1la1 MO which is the deepest one in the
valence molecular orbitals of the ground state. In the transition state two
apical orbitals and two equatorial orbitals mixes-up to form four
equivalent ligand orbitals. The bond brought to the apical position is
lengthened. The electron density moves to the overlap region between
phosphorus and the pivotal hydrogen from other parts of the molecule in
course of the reaction. So the pivotal bond becomes shorter than the
corresponding equatorial bonds in the ground state.

The symmetry of the transition density(36)_(39) from the HOMO to
the LUMO of the ground state PHs is

a’' x e = ¢

The intramolecular vibration mode inducing the pseudorotation is e’
symmetry. The transition densities with 3-21G* basis set are shown in
Figure 5-(b) and (c), in which (b) is one along the apical axis and (c) is

one in the equatorial plane. The intramolecular displacement of
7/



individual atoms is expected to occur along the arrows. The results of the
vibrational analysis of the ground state with TZP basis set are shown in
Figure 6-(a) and (b). There are two modes of € symmetry with the
frequencies of 629.0 cm™ and 1373.8 cm™. We can see that the equatorial
bond is more flexible than the apical one and the opening motion of the
equatorial ligands (629.0 cm™) initiates the pseudorotation reaction. We
also performed the vibrational analysis calculation for the transition state.
There is one vibrational mode with the imaginary frequency. The
transition vector is shown in Figure 6-(c). One of the <HPH angles closes
down and the other angle opens up simultaneously. The transition vector
shows that the molecule returns to the ground state along this mode of the

vibration.

PFs

The optimized structures of PFs are shown in Figure 7. This
molecule has a D3 symmetry at the ground state and a Cav at the
transition state. The values in the parentheses are the experimental
ones."® The calculated apical and equatorial bond lengths are in good
agreement with the experiment. The calculated energies at several levels
of approximation for ground and transition states are shown in Table 1.
From these results, the MP2 level of correlation correction seems to be
adequate for the calculation of the potential energy barrier. The potential
energy barrier in the reaction has 4.24-5.07 kcal/mol (see Figure 8), so
the pseudorotation reaction proceeds easily. The change of the bond
length is least for the pivotal ligand as shown in Table III-(b). The bond
length of the pivotal ligand is shortest in the transition state like PHs case.

8



The results of the vibrational analysis are shown on Figure 9.
Berry's pseudorotation reaction begins with e’ vibration and the transition
state has Cav symmetry. The opening motion of the equatorial ligand is
easier (185.3 cm™) than the bending of the apical bond (559.9 cm) for

this molecule as well as PHs.

PFsH and PR3
The total and relative energies are summarized in Table I for PFsH
and PF3He.

The energy diagram of PFsH in course of the reaction is drawn in
Figure 10-(a). The hydrogen atom is in the equatorial position in the
ground state. This atom occupies the apex (pivotal position) of Cav
structure in the transition state. There are 7.38 and 5.70 kcal/mol of
potential energy barriers for PFsH pseudorotation reaction at SCF and
MP4 levels, respectively.

The most stable isomer of PFsH: has two hydrogens in the
equatorial position. The results of the calculated potential energy are
summarized in Table II. The potential energy surface of this reaction is
shown in Figure 10-(b). The isomerization product is fairly unstable
because of the very small energy difference between the transition state
and the product. The barrier height to the pseudorotation of PF3H: is
calculated to be 12.16 kcal/mol and 10.43 kcal/mol by the SCF and MP4,
respectively. The relative energies of the pseudorotated isomer to the
ground state are calculated to be 12.03 kcal/mol and 10.82 kcal/mol at the
SCF and MP4 levels, respectively. The pseudorotation reaction does not

proceed because of the high potential energy barrier. We can also say
9



that there is no stable energy minimum structure for the pseudorotation
products from the MP4 results. Through the process of the
pseudorotation reaction both of two equatorial hydrogen atoms cannot
remain in the equatorial plane. One hydrogen is brought inevitably to the
apical position and its bond is lengthened leading to the instabilization of

the molecular system.

PF4CHs and PF3(CHs)2

Westheimer discussed the pseudorotation reaction of PF4CHs and
PF3(CHs)2.(2) If the pseudorotation reaction occurs, the only one type of
F-NMR peak is expected for PFsCHs. The NMR experiment verified that
the pseudorotation is expected to occur in PF4CHs molecule. On the other
hand, no evidence of the pseudorotation reaction is obtained in the case of
PF3(CHs)a.

Our results on PFsCHs are shown in Figure 11-(a). One methyl
group is in the equatorial plane at the ground state. The methyl group
occupies the pivotal position in the transition state structure. As the
pseudorotation proceeds, two apical fluorines and two equatorial fluorines
interchange. The energy barrier for the pseudorotation reaction is
calculated to be 5.26 kcal/mol (SCF) and 3.95 kcal/mol (MP4). The easy
proceeding of the pseudorotation reaction is expected for PF4CHs, which
verifies experimental results.

We also studied on PF3(CHs)2. In the ground state two methyl
groups occupy the equatorial positions. One of two methyl groups takes
the apical position in the isomerization product. The other apical position

is occupied by the fluorine atom. As the reaction proceeds, the bond
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brought to the apical position from the equatorial one is stretched, and the
stability of the molecule decreases. The potential energy curve of the
reaction is shown in Figure 11-(b). There is only one stable minimum
structure for PF3(CHz)2 reaction. The energies of the isomerized product
are calculated to be 15.04 kcal/mol (SCF) and 14.01 kcal/mol (MP4)
higher relative to the stable isomer. Thus the pseudorotation reaction
cannot proceed as shown in the experiment because of the high energy
barrier and the shape of the potential energy curve. The high barrier
comes mainly from the fact that one of CHs group occupies the apical

position.

P(02C2Hs)Hs and P(OC3Hs)H3

Westheimer” also discussed the compounds having ring structures
shown in Figure 2-(c),(d).

As a model of the cyclic intermediate in a RNA hydrolysis reaction
we studied the ethyleneglycoxyphosphorane (P(O2C2Hs)Hs). One end of
the ring of this molecule occupies the apical position and the other end
forms one end of the equatorial plane in the ground state. The angle
between apical PO and PH bonds comes close as the pseudorotation
reaction proceeds. The transition state has Cs symmetry which resembles
to the Cav structure of the simple penta-coordinated molecule such as PHs
and PFs. The energy diagram of the pseudorotation is shown in Figure
12-(a). A low potential barrier is found in the pseudorotation reaction.
The relative energy of the transition state to the ground state is calculated
to be only 2.32 kcal/mol (SCF) and 1.83 kcal/mol (MP4), respectively.

Thus it is expected that the isomerization easily occurs by the
11



pseudorotation reaction.

We also studied another cyclic phosphorane P(OC3Hs)Hs in which
one oxygen atom of ethyleneglycoxyphosphorane is replaced by a
methylene group. There is only one stable energy minimum structure in
which the oxygen occupies the apical position and the carbon atom is
placed in the equatorial plane. We calculated the energy change when the
angle <O2P1H3 is changed. The results are shown in Figure 12-(b) as an
potential energy curve. There is no second stable isomer in which the
carbon atom occupies the apical position and the oxygen atom occupies
the equatorial one. The calculated energy barrier for the pseudorotation
is about 9 kcal/mol in the SCF level. Thus the pseudorotation reaction is
not expected to occur easily. When the correlation energy is taken into
account, the potential barrier is reduced to 7.77 kcal/mol. The potential
energy barrier became low, but the pseudorotated isomer will return to
the ground state because of the shape of the potential surface. In the
process of the pseudorotation reaction the methylene group which forms
covalent bond with the central phosphorus cannot keep the equatorial
position. This bond is transferred to the apical position and stretched, and

the molecule becomes unstable.

3B. Equatoriphilicity

Here we explain the relation between the structure and the stability
of the penta-coordinated phosphorous compound. Let having five atoms
(ligands) around P with a large distant apart. If we suppose that those
atoms (ligands) are able to form a stable penta-coordinated molecule, we

shall obtain a stabilization energy. It will be convenient to divide this into
12



two processes, of which the first one corresponds to forming the
equatorial plane and the second one to forming a penta-coordinated whole
molecule. The results on PFsHe and PF3(CHs)2 are summarized in Table
IV. In this table when the ligand are far apart we speak of the separated
ligand. We name the process in which the equatorial plane part as the
equatorial plane formation. The process of the whole penta-coordinated
molecule formation is called as a whole molecule formation.  E(stable)
and E(unstable) of Table IV mean the total energy of the stable and
unstable isomers, respectively. The value in E(A)-E(b) is the difference
between E(stable) and E(unstable), that is the relative stability to the

stable isomer. The structures of stable and unstable molecules are shown
| in Figure 13. The energy of the separated ligand is the sum of the
energies of all separated ligands and that of the phosphorus atom. The
energy of the equatorial plane formation is the sum of the total energy of
the equatorial part and those of the separated apical ligands.

In the case of PFsH:, the stable isomer is 12.03 kcal/mol stabler
than the pseudorotated unstable one. When the stabilization energies are
compared in the formation of the equatorial plane (PHzF and PF2H), the
stabilization energy of the PH2F which is a equatorial plane of the stable
isomer is 31.64 kcal/mol greater than that of PF2H. In the apical bond
formation E(stable) of the PF2H + FH process obtains more stabilization
by 19.61 kcal/mol than E(unstable) of the PH2F + F2. The total
stabilizations are obtained by adding up all stabilization energies. The
stability of the equatorial plane mainly determines the total stabilization of
the penta-coordinated whole molecule. There is a same tendency in the

case of PF3(CHs)2, in which the total stabilization is mainly determined by
13



the stability of the equatorial plane.

These results come from the fact that the ligands such as hydrogen,
methyl group and methylene group which form the covalent bonds with
the central phosphorus prefer to coordinate on the equatorial positions. If
such a group is contained only one in the molecule, it is able to remain
near the equatorial position through the pseudorotation reaction
occupying the pivotal position and its bond length remains almost
constant. But when there are more than one such ligands, one ligand at
least must be moved to the apical position and the covalent bond is
lengthened in the reaction process. Thus the pseudorotated isomer
becomes less stable. These process determine the possibility of the
pseudorotation reaction. This explains the relationship between the ligand
position and the stability of the molecule in the different view point from
the known apicophilicity, which says that more electronegative ligand
prefers to occupy the apical position. We name this concept as an
equatoriphilicity

We present some predictions of the relation between the possibility
of the pseudorotation and the number of equatoriphilic groups in Table
V. In acyclic molecules when the number of the equatoriphilic group is
zero or one, the reaction is expected to occur as shown in PFs, PFsH and
PF4CHs. In the case of two, three and four equatoriphilic groups, the
progress of the pseudorotation reaction brings the equatoriphilic group to
the apical position and so the reaction is prohibited. When all the ligands
are replaced by the equatoriphilic group, the energy change before and
after the pseudorotation reaction is remains zero and thus the reaction

will not be hindered. But because both of the two apical positions are
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occupied by the equatoriphilic ligands in this case, the resultant penta-
coordinated molecule would become less stable. For example PHs is a
metastable molecule not a global one. In cyclic molecules when the
number of the equatoriphilic end of the ring is zero or two the reaction is
expected to proceed. On the other hand if the number is one, the reaction
will be prohibited.

We applied the equatoriphilicity to the pseudorotation reaction of
POsH:™.  This molecule is a prototype of the penta-coordinated
intermediate of the hydrolysis reaction of phosphates. There are two
possible structures. One is that the phosphoryl oxygen atom is placed in
the equatorial plane. The phosphoryl oxygen occupies an axial position in
the other isomer. The energy relation given by our studies is showed in
Figure 14 with the transition state between two isomers. The energy of
the isomer A relative to the isomer B is considerably high, i.e. 11.52
kcal/mol at the SCF level and 9.57 kcal/mol even at the MP4 level. The
transition state energy between these stable isomers is calculated to be
13.53 kcal/mol (SCF) and 11.64 kcal/mol (MP4), respectively. The
relative energy of the transition state to the isomer A is computed as 2.01
keal/mol (SCF) and 2.07 kcal/mol (MP4). If the isomer A is formed in
the reaction of POsHs with OH™ anion, this isomer isomerizes easily to the
very stable product B. The phosphoryl PO bond is in the apical position
in the isomer A. In this structure the covalent bond is in the apical
position and is lengthened. Thus the necessity of the equatoriphilicity is
not satisfied in this structure. So it isomerizes to the most stable isomer B
through the pseudorotation to transfer the phosphoryl PO bond to the

equatorial position. We also consider the pseudorotation reaction between
15



the isomers B and its 90° pseudorotated B’. The transition state between
them is Cs4 symmetry structure. The transition state energy is 6.90
kcal/mol (SCF) and 6.19 kcal/mol (MP4) higher than that of the isomer
B. This result implies that the intermediate of the hydrolysis reaction of

the phosphate will easily isomerize by the pseudorotation.

3C. Apical Bonding Character

We divided a whole molecule to an equatorial plane and an apical
ligand part as shown in Figure 15-(a) and drew molecular orbital energy
correlation diagrams between them in order to study the character of the
apical bond and the origin of the well-known apicophilicity. (see Figure
15-(b)) Here an orbital which is symmetric about the equatorial plane is
called as a symmetric orbital. An antisymmetric orbital means an
antisymmetric one about the equatorial plane. When a whole molecule
A-B is formed from two parts A and B, their orbitals ¢a and ¢b having
the orbital energies €a and &b (ea<eb), respectively, interact to yield two
new orbitals ¢a’ and ¢@b’. Through the orbital interaction the energy level
of the orbital @a’ is lowered relative to that of the initial orbital ¢a by the

value Aea estimated with the second-order perturbation theory

/ H,, - €,.S.4)°
Aga =g, - 8a=( ab a ab)
€2~ &

where Hab is the interaction energy and Sab is the overlap integral for
these orbitals.”" The factors affecting to the orbital stabilization are the
orbital overlapping and the energy level closeness of the interacting two
orbitals ¢a and ¢v.
The graph on Figure 16 shows the stabilization of the total energy,
16



symmetric and antisymmetric orbital energies in the formation of the
penta-coordinated molecule. The stabilization energies are plotted to the
change of the number of the equatorial fluorine. Both of the two apical
ligands are fixed to fluorine atoms. The symbols in the parenthesis mean
the equatorial plane parts. We can easily see that the close relation
between the equatorial substituent effect on the symmetric orbital and that
on the whole molecule. On the other hand the stabilization of the
antisymmetric orbitals are almost same for every case. There are little
substituent effect on the antisymmetric orbital from the equatorial
fluorines. Thus we can discuss the molecular stabilization by using only
the symmetrical orbital stabilization.

This result can be explained as follows. The electrons in the
antisymmetric orbital concentrate on 3p : lone-pair of the central
phosphorus before the orbital interaction. The orbital interaction
stabilizes it by the extension of the orbital space. Therefore if the same
apical ligands are coordinated, the stabilization with an almost same level
will be given by the orbital interaction. This corresponds to the known
apicophilicity. If the electronegative and electron withdrawing group is
placed in the apical position, the electrons concentrated on 3p: lone-pair
of the phosphorus can begin to move to the apical bond region effectively
and strong ionic bond is formed with the great stabilization. On the other
hand, the symmetric electron is on the stretched apical ligands before the
orbital interaction. The 3dz 2 AO of the central phosphorus bridges two
apical fluorines through the symmetric orbital interaction, and thus its
contribution is essentially important for the stabilization of the axial bond.

Thus there are obvious difference in the stabilization of the symmetric
17



orbital due to the difference in the ability to participate in the three-center
bond.

The orbital energy correlation diagrams of PH s, PHsF2 and PFs are
shown in Figure 17-(a), (b) and (c), respectively.

In PHs the symmetric orbital is characterized by 1s AO of the
apical hydrogen and 3dz2 orbital of the central phosphorus atom mixed
into it. This orbital is very slightly stabilized because the 3dz2 AO of the
central phosphorus is in high energy level. There is a difficulty of charge
transfer from the donor H 2 to the acceptor PH3.

In PHEBF: the stabilization of the A orbital is much larger than that
of PHs. This means that the fluorine is more apicophilic ligand. The
stabilization of S orbital mainly comes from the interaction of 2p AO of
the apical fluorine and 3dz2 AO of the central phosphorus. The charge
transfer from HOMO of fluorine to LUMO of phosphorus atom is
induced fairly strongly by this contribution of 3dz 2 AO. The larger
stabilization of the antisymmetric orbital induces the great charge transfer
from the lone-pair HOMO of PH3 to the LUMO of F2, as the difference
of the electronegativity is large (2.19 for P and 3.98 for F by Pauling’s

©2) According to the great charge transfer, almost all the

definition).
charge on phosphorus HOMO flows to the apical LUMO and the
coefficients of 3pz AO of the central phosphorus in the whole PHs3F2
molecule become small and the bond with ionic character is formed in P -
F regions.

In PFs there is a very strong substituent effect on the LUMO of the

equatorial plane because all equatorial positions are substituted by

fluorines. So the stabilization of symmetric orbital becomes much larger
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than that of PHs. The stabilization of the antisymmetric orbital is almost
same level with PH3F: as the apical ligand is fluorine for both molecules,

i.e. the apicophilicity is fixed.

3D. Substituent Effects

The orbital energy level of the equatorial plane parts of the penta-
coordinated molecule have an important contribution to the stabilization
of the apical bond. We studied the substituent effect on the apical orbital
of the equatorial plane part.

The results of the substituent effects on HOMO and LUMO of
equatorial part are shown in Figure 18. The bond angles in  the triangle
plane are fixed to be 120°. All combinations of equatorial ligands are
considered by using the following bond lengths; R(P-H)=1.40 A, R(P -
F)=1.55 A and R(P-CH3)=1.81 A. When a fluorine atom coordinates as
an equatorial ligand, the orbital energy of LUMO becomes lower. On
the other hand, there is not an obvious effect of an equatorial ligand in
methyl group and hydrogen atom. The substituent effect on LUMO
comes from the o-type attracting interaction by the ligands. When great
electronegative ligands like fluorine coordinate, the strong o-type
interaction is induced and the orbital energy of LUMO becomes lower.
Thus if the apical ligands are fixed, there is much stabilization of the
axial orbital in molecules having fluorine as an equatorial ligand.  The
axial bond becomes strong in such molecules. The influence of the
substituent to HOMO of the equatorial part comes from the w-type
donating interaction to the 3p: lone-pair of central phosphorus atom.

When methyl group coordinates, its effect is given through the
19



hyperconjugation. The orbital energy of HOMO becomes higher as the
antibonding nature through the =-type interaction increases, though this
effect is smaller than that of the o-type interaction between substituents
and LUMO.

We showed the variation of the orbital energies of the apical
LUMO according to the difference of the apical ligand in Figure 19. In
this study one dummy atom is defined at a middle point of the apical
bond. The bond lengths from a dummy atom(X) to each apical ligands
are as follows; R(X-H)=1.45 A R(X-F)=1.60 A, R(X-CH 3)=1.84 A and
RX-OH)=1.74 A. The interaction between 3p--HOMO of central
phosphorus and LUMO of the apical ligand becomes greater when the
electronegative ligands participate in the interactions because of their low
orbital energy LUMO. If the equatorial part is same, the molecule having
fluorines as apical ligand is most stable and that having hydrogen atoms
or methyl groups is less stable. The difference of the orbital energy level
of the apical ligand is the origin of the apicophilicity.

4. Conclusions
The implications of this study can be summarized as follows;

1. By analyzing the energy relation between the stable isomer and the

unstable one in the pseudorotation reaction, we found that the stabilization
of the equatorial plane part of the penta-coordinated molecule determines

the stability of the whole molecule. The groups forming the covalent

bonds with P such as H, CH3 and CHz prefer to coordinate in the

equatorial position, i.e. equatoriphilicity . If the whole molecule was

formed from completely separate atoms, the equatorial plane part would
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be formed first by the groups which make covalent bonds with P and then
the remained ligands would coordinate at the apical positions.

2. We drew orbital energy correlation diagrams for some molecules
and considered the stability of apical bonds. The apical bond is three-
center four-electron character. When the apical ligands are fixed, the
special orbital is related with the stabilization of the molecule. We can
discuss the strength or nature of the apical bond by using the special
orbital.

3. The potential energy barrier of the pseudorotation for the model
phosphate molecule is fairly low, and it is considered that the reaction
proceeds easily in gas phase.

4. From the study of the substituent effect on the equatorial plane part,
it is shown that the fluorine has a significant effect on the 3d AO of the
central phosphorus.

5. The correlation effect is necessary but not essential in determining
the potential barrier height. The MP2 level of energy correction seems  to
be adequate for some explanations of the nature of pseudorotation

reactions.
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Table 1 The calculated energies in some levels

Methods Ground State Transition State Relative energy
(a.u.) (a.u.) (kcal/mol)
SCF -343.528616 -343.524348 2.68
MP?2 -343.693636 -343.690815 1.171
MP3 ~-343.720720 -343.718088 1.65
MP4(DQ) -343.724957 -343.722374 1.62
MP4(SDQ) -343.725823 -343.1723284 1.59
MP4(SDTQ) -343.728719 -343.7262171 1.53
SDCI -343.715483 -343.712706 1.74
SDCI(Davidson's correction) -343.728684 -343.726360 1.46
Coupled Cluster -343.7258743 -343.723208 1.59

PFs DZP Basis Set

Methods Ground State Transition State Relative energy
(a.u.) (a. u.) (kcal/mol)
SCF -838.184055 -838. 175975 5.07
MP2 -839.145335 -839. 138455 4.32
MP3 -839.134876 -839. 127467 4.65
MP4(DQ) -839.141543 -839.134182 4.62
MP4(SDQ) -839.157117 -839.150024 4.45
MP4(SDTQ) -839.183257 -839.176493 4.24
SDCI -838.999488 -838.991797 4.83
SDCI (Davidson's correction) -839.149570 -839.142333 4.54

PF4H DZP Basis Set

Methods Ground State Transition State Relative energy
(a.u.) (a.u.) (kcal/mol)
SCF -739.339311 -739.251810 7.38
MP2 -740.066801 -740.057365 5.92
MP3 ~740.062518 -740.052423 6.33
MP4(DQ) -740.069250 -740.059178 6.32
MP4(SDQ) ~740.082283 -740.072611 6.07
MP4(SDTQ) -740.103597 -740.094516 5.70
SDCI -739.962596 -739.952088 6.59
SDCI (Davidson’ s correction) -740.076286 -740.066540 6.12
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PFzH2 DZP Basis Set
Calculated energies (a.u.)

Methods Isomer Transition Isomer
A State ' B

SCF -640.339311 -640. 319940 ~640.320136
MP2 -640.983482 ~640. 966482 -640. 965907
MP3 -640.986074 -640. 968355 -640.967983
MP4(DQ) . —640.992684 -640. 974932 -640.974537
MP4(SDQ) ~641.002782 -640. 985444 -640.984945
MP4(SDTQ) -641.019130 -641.002503 -641.001888
SDCI -640.917403 -640.899434 -640.899221
SDCI(Davidson's correction) -640.998586 -640. 981249 -640.980803

Methods Transition Isomer
State B
SCF 12.16 12.03
MP2 10.67 11.03
MP3 11.12 11.35
MP4(DQ) 11.14 11.39
MP4(SDQ) 10.88 11.19
MP4(SDTQ) 10.43 10. 82
SDCI 11.28 11.41
SDCI(Davidson's correction) 10.88 11.16

PF4CHz DZP Basis Set
Calculated energies (a.u.)

Methods Ground State Transition State Relative energy
(a.u.) (a.u.) (kcal/mol)
SCF -778.317482 -778.309098 5.26
MP2 -779.243283 -779.236814 4.06
MP3 -779.249062 -779.241875 4.51
MP4(DQ) -779.2563717 -T779.249252 4. 417
MP4(SDQ) -779.270468 -779.263708 4.24
MP4(SDTQ) -779.295633 -7179.289336 3.95
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PF3C2He DZP Basis Set
Calculated energies (a.u.)

Methods Ground State 122.5 degree Relative energy
(a.u.) (a.u.) (kcal/mol)

SCF -718. 444972 -718.420999 15.04

MP2 -719.335317 -719.313707 13.56

MP3 -719.357558 -719.334828 14.26

MP4(DQ) -719.365328 -719.342659 14.23

MP4(SDQ) -719.377661 -719.355332 14.01

POsHs~ DZP+diffuse(on phosphonyl 0) Basis Set
The calculated energies (a.u.)

Methods A TS1 B TS2

SCF -T17.543764 -717.540558 -717.562121 -T17.581127
MP2 -718.577403 -718.574347 -718.592420 -718.5826717
MP3 -718.576367 -718.573054  -718.592565 -718.582292
MP4(DQ) -718.584464 -718.581140 -T718.600412 -718.590297
MP4(SDQ) -718.596275 -718.592979 -718.611530 -718.601662

Methods A TS1 TS2

SCF 11.52 13.53 6.90
MP2 9.42 11.34 6.11
MP3 10.16 12.24 6.36
MP4(DQ) 10.01 12.09 6.39
MP4(SDQ) 9.51 11.64 6.19

P(02C2H4)Hs DZP Basis Set
Calculated energies (a.u.)

Methods Ground State Transition State Relative energy
(a.u.) (a.u.) (kcal/mol)

SCF -570.259906 ~570.256207 2.32

MP2 -571.006186 -571.003244 1.85

MP3 -571.036013 -571.033022 1.88

MP4(DQ) -571.043240 -571.040223 1.89

MP4(SDQ) -571.051341 -571.048432 1.83
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P(0CsHe)Hs DZP Basis Set
Calculated energies (a.u.)

Methods Ground State 120.0 degree Relative energy
(a.u.) (a.u.) (kcal/mol)

SCF -534.399504 -534.384867 9.18

MP2 -535.1037717 -535.091700 7.58

MP3 -535. 146680 ~-535.133687 8.15

MP4(DQ) -535.153406 -535.140562 8.06

MP4(SDQ) -535.159715 -535. 147335 7.11
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Table I The potential energy change with SCF calculations for PFgHz, PF3CzHs
and P(0CsHs)Hs

1. PFsHz Potential Energy Change with SCF

degree Total Energy Relative Energy

(a.u.) (a.u.) (kcal/mol)
178.8 (Minimum 1) -640.339311 0.000000 0.00
160.0 -640.327938 0.0118373 7.14
145.0 -640.320708 0.018603 11.67
136.0 (TS) -640.319940 0.019371 12.16
130.0 -640.320064 0.019247 12.08
125.8 (Minimum 2) -640.320136 0.019175 12.03
120.0 -640.319871 0.019440 12. 20
2. PF3C2He Potential Energy Change with SCF
degree Total Energy Relative Energy

(a. u.) (a.u.) (kcal/mol)
175.3 (Minimum ) -T718. 444974 0.000000 0.00
1565.0 -718.430836 0.014138 8.817
135.0 -718.422170 0.022804 14. 31
130.0 -T718. 421659 0.023315 14.63
125.0 -718.421252 0.023722 14. 89
122.5 -718.421002 0.023972 15. 04

degree Total Energy Relative Energy

(a.u.) (a.u.) (kcal/mol)
177.8 (Minimum ) -534.399504 0.000000 0.00
150.0 -534.388692 0.010812 6.178
140.0 -534.386962 0.012542 7.81
130.0 -534.385960 0.013544 8.50
120.0 -534.384867 0.014637 9.18
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Table III-(a) The change of the bond length of PHs (A)

before reaction transition state after reaction
pivotal length 1.415 (100) 1.394 (98.5) 1.415 (100)
equatorial length 1.415 (100) 1.451 (102.5) 1.477 (104.4)

Table III-(b) The change of the bond length of PFs (A)

before reaction transition state after reaction
pivotal length 1.537 (100) 1.524 (99.2) 1.537 (100)
equatorial length 1.537 (100) 1.562 (101.6) 1.577 (102.6) |
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TableIV
(1) The total energy change of PF3H2 (hartree)

separated ligand equatorial plane whole molecule
formation formation
(b) ©
(PH2E" and PF2H ")
A. E(stable) -639.877916 -640.003001 -640.320136
B. E(unstable) -639.877916 -640.053428 -640.339311
E(A)-EB) @ 0.000000 0.050427 0.019175
(0.00) (31.64) (12.03)
(2)  Thetotal energy change of PF3(CH3)2 (hartree)
separated ligand equatorial plane whole molecule
formation formation
@®CH2FD and PR2cH:®)
A. E(stable) ~717.992666 -718.110894 ~718.420999
B. E(unstable) -717.992666 -718.131585 -718.444972
B(A)-E@®) @ 0.000000 0.020691 0.023973
(0.00) (12.98) (15.04)

(a) The values in the parenthesis are shown in kcal/mol.

(b) equatorial plane part of the stable isomer of PF3H2

(c¢) equatorial plane part of the unstable isomer of PF3H2

(d) equatorial plane part of the stable isomer of PF3(CH3)2
(e) equatorial plane part of the unstable isomer of PF3(CH3)2
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Table V.  The relationship between the possibility of the pseudorotation and the number of the equatoriphilic groups

(a) acyclic molecule

Number of the equatoriphilic groups Pseudorotation Some examples (acyclic molecule)
0 Yes PFEs
1 Yes PF.CHs, PE:H
2 No PFs(CHs)2, PFsH2
3 - No PF:(CHs3)s
4 No PF(CHs)4
5 Yes PHs, P(CHs)s

Number of the equatoriphilic groups Pseudorotation Some examples (cyclic molecule)
Yes P(O2CH2)Hs
1 No P(OCsHe)Hs

Yes P(CsHs)Hs



Figure Captions

Figure 1  (a): The schematic structure of D 3n trigonal bipyramid.
(b) : The schematic explanation for Berry's pseudorotation reaction.

Figure 2  The experimental results of some pseudorotation reactions.

Figure 3  The optimized structure of PH s. (a) : The ground state
structure. (b) : The transition state structure of the pseudorotation
reaction. The bond length is shown in A and the angle is shown in
degrees.

Figure 4 The energy diagram for the pseudorotation reaction of PH s.
TS means the transition state with C 4v symmetry. The energies are
relative to that of A in kcal/mol. The SCF energy of the ground state A
is -343.528616 hartree.

Figure 5  (a) : The contour map of the highest occupied molecular
orbital of PHs. (b) : The calculated transition density from HOMO to
LUMO of PHs molecule along the apical axis. (c) : The transition density
in the equatorial plane. The expected intramolecular movements of atoms
are shown by arrows.

Figure 6 The vibrational modes of PH s molecule. (a) and (b) are €’
modes of the ground state and (c) is the transition vector.

Figure 7 The optimized structures of PF s molecule. (a) is the ground
state structure, and (b) is the transition state structure. The values in the

parenthesis are experimental values. 9 The bond length is shown in A
and the angle is shown in degrees.

Figure 8 The energy diagram for the pseudorotation reaction of PF 5.
The SCF energy of the ground state A is -838.184055 hartree.

Figure 9  The vibrational modes of PF s molecule. (a) is ¢’ modes of
the ground state and (c) is the transition vector.

Figure 10 (a) : The energy diagram for the pseudorotation reaction of
PF4H. The SCF energy of the ground state A is -739.339311 hartree. (b)
: The potential energy curve of PF 3k for the pseudorotation reaction.

One fluorine atom occupies an equatorial position in the ground state and
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two fluorine atoms occupy equatorial positions in the pseudorotated
isomer. The SCF energy of the ground state is -640.339311 hartree.

Figure 11 (a) : The energy diagram for the pseudorotation reaction of
PF4CHs. The SCF energy of the ground state A is -778.317482 hartree.
(b) : The potential energy curve of PF3(CHs)2 for the pseudorotation
reaction. The SCF energy of the ground state is -718.444972 hartree.

Figure 12 (a) : The energy diagram of the pseudorotation reaction of
P(02C2Hs)H3 model molecule. The SCF energy of the ground state A is -
570.259906 hartree. (b) : The potential energy curve of P(OCsHs)Hs
molecule for the pseudorotation reaction. The SCF energy of the ground
state is -534.399504 hartree.

Figure 13 The structures of the stable (A) and unstable (B) isomers of
PFsH: and PF3(CHs).

Figure 14 The energy diagram of the pseudorotation reaction of

POsHs™. The phosphoryl oxygen occupies the apical position in the
isomer A and it is contained in the equatorial plane in the isomer B. The
SCF energy of the isomer B is -717.562121 hartree.

Figure 15 (a) : The explanation of the method of division of a whole
molecule into an apical part and an equatorial plane. (b) : The schematic
explanation of the orbital interaction of Dsn trigonal bipyramidal
molecule.

Figure 16 The stabilization energy of the whole molecule (full line),
antisymmetric (dotted line) and symmetric (broken line) orbitals. The
symbols in the parenthesis mean the equatorial plane part of the penta-
coordinated molecule.

Figure 17 (a) : The orbital energy correlation diagram of PHs. (b) :
The orbital energy correlation diagram of PH3F2. (c) : The orbital
energy correlation diagram of PFs. The S and A mean the symmetric
and antisymmetric orbitals about the equatorial plane.

Figure 18 The substituent effect on HOMO and LUMO of the
equatorial part. The orbital energy is shown in atomic unit.
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Figure 19 The orbital energy variations of some apical ligands part.

The orbital energy is shown in atomic unit.
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Abstract

The stability and structure of bent and linear N,O--HF complexes are
studied by ab initio method. It is shown that the N,O dipole moment is very
sensitive to two bond lengthes and to the electron correlation. The theory
predicts a minimum difference of 273 cm-! between the isomers with the bent
isomer more stable. The interconversion path connecting two isomers is also
calculated. There is a low energy conversion path between linear and bent

complexes. The barrier between two minima is estimated to be 497 cm! .



I. Introduction

The study of the weakly bound molecular complexes is of importance to
a variety of chemical phenomena including inelastic energy transfer,
photofragmention dynamics, theories of hydrogen bonding and transition
between gas and condensed phase. A considerable research effort has been
done to elucidate the full potential energy surfaces which govern these weak
but important intermolecular forces.)

Largely by virtue of their simplicity, complexes involving hydrogen
fluoride have been the focus of many investigations both experimentally and
theoretically.2) One of these is the study of HF complexes with CO, and N,O.
Aside from being isoelectronic, N,O and CO, display many other similarities
and both are ilhportant atmospheric compounds. However, N,O has a small
dipole moment of 0.160880 debye. Unlike CO,, N,O has a liquid phase at
atmospheric pressure. N,O is sweet tasting but CO, is tasteless.

It is well established both theoretically and experimentally that CO,:--HF
is a linear hydrogen bound species.?) On the other hand, in the N,O:---HF
complexes, two distinct isomers are observed. This complex was first studied
by Klemperer et al ¥ in a molecular beam electric resonance apparatus and
indicated a decidedly bent structure, with the HF hydrogen bonding on the
oxygen atom. High-resolutional IR spectroscopy by Lovejoy et al>) on the v,
HF stretch mode in N,O--HF, however, yields a spectrum of a linear
hydrogen fluoride-nitrous oxide complex, red shifted by 61.4 cm-! from the
monomer. Subsequent investigation of complexes labeled with SN nitrous
oxide unambiguously demonstrated that the hydrogen bond in these complexes
was forming on the nitrogen atom.9) This behavior in N,O--HF complexes

constituted the first demonstration of two stable geometric isomers in a



hydrogen bonded system. The linear isomer has been observed and verified
experimentally in a FT microwave spectrometer.”)  The bent isomer has also
been observed by Miller et al 8) with a band origin red shifted by 83.2347
cml.

How has ab initio calculation responded to the challenge posed by the
new evidence? The earlier works assumed a bent structure rather than
performing a completely free optimization. The SCF calculations of Sapse et
al 9 with 6-31G and 6-31G** conformed the bent structure. Rendell et al 10)
studied the nature of the SCF binding energy and concluded that the
electrostatic term dominates. The first theoretical observation of two isomers
was done by Handy et al.1) They optimized two isomer at MP2 level,
predicting that the linear structure to be more stable than the bent structure by
320 cm! . It is surprizing since the monomer dipoles are opposed in the
linear structure. BSSE was calculated but did not change this conclusion.

Frisch and Del Bene 12 studied nitrous oxide and showed that the
severe oscillation occurs in dipole moment and protonation energies with the
perturbation series. The oscillation with order of perturbation theory
includes a change of direction at each order. They further studied the binding
energies of N,O and HF wusing the various correlation method and
demonstrated that the convergence of the MP expansion is erratic, predicting
that the terminal nitrogen is the preferred binding site for the complexes at the
MP2 and MP4 levels, in disagreement with SCF and MP3 and other models.
They concluded that the bent structure is more stable by 0.6-1.1 kcal/mol than
the linear structure.

N,O and hydrogen bond formation with HF are still a challenging
problem for theory. The difference in the structural and dynamical behavior



of these complexes make them attractive for further theoretical study. The
binding energy in these complexes is dominated by electrostatic term caused
by the dipole moments of two molecules. It is suggested that the N,O dipole
moment is even more sensitive to the electron correlation than that of CO.
The most interesting is to study how the N,O dipole moments depends on the
two bond lengths in the region of minima.

The N,O---HF is the only weakly bound complexes for which the
microwave spectrum has been observed for two different structural isomers.
The possible interpretation of this is that the binding energies of two isomers
must be very close and the barrier to interconversion should be higher than
200 cm-l. The relative well depths for these two isomers and the barrier to
interconversion between them are still of considerable interest.

In this paper we will report the structures and energetics of the weakly
bound hydrogen complexes formed from N ,0 and HF. The dependence of
N,O dipole moment on the bond lengths is also studied from the theoretical

point of view.

II. Computational Methods

The geometries were fully optimized at SCF level. The basis sets used
in this study are Dunning’s [4s2p] contraction for N, O and F, with [2s]
contraction for H. 13 These are augmented by a polarization function on each
atom (on=0.864, 0o=1.154, 0x=1.496, ay=1.0). The calculations were also
performed with [5s3p] augmented by double polarization functions (on=1.35,
0.45, 0p=1.35,0.45, ax=2.0,0.67, ayg=1.5,0.5) .14 The electron correlation
effect was estimated by single and double CI (SDCI) and MP2, MP3, MP4

methods. To compensate for the lack of size consistency of SDCI method, the



Davidson'’s corrections were included (SD(Q)CI).

II. Results and Discussions
A. N,O dipole moment

Energies, bond lengths, and the dipole moments of N,O computed using
the two basis sets and various levels of electron correlation can be found in
Table 1. The dipole moment values in parentheses are those calculated at the
experimental geometry. Geometry optimization at the SCF/DZp level yields
NN bond length (Rx~) of 1.096 A and NO bond length (R no) of 1.187 A, The
CISD/DZp calculation gives Run=1.128 A and Ryo= 1.198 A.  These have
to be compared to the reported experimental values of R nn=1.1282 A and Ryno
= 1.1842 A. Thus, the SCF computes shorter bond lengths, which can be
remedied by the inclusion of the correlation effect. The MP2 values differ
markedly from the SDCI and the experimental results. Especially MP2
increases the SCF optimized Rnn by 0.0875 A. The similar tendency can be
found in the calculations with TZ2p basis sets.

The calculated dipole moments are more sensitive to the method
employed. The SCF and SDCI give the correct sign *NNO - although the
computed dipole moments are too large compared to the experiment. The
MP2, however, produces incorrect sign. The dipole moments at the
experimental geometry did not change the tendency. Clearly the perturbation
series oscillates badly for N,O dipole moment as pointed by Del Bene. 12

A simple resonance hydrid pictures of N ,0 is

(A) N=N*-0O" (B) N'=N'-0



where (A) is the n-oxide valence bond formula and (B) is the germinal double
bond formula. N ,O is best described by (A) with contribution of (B). The

calculated geometries and dipole moments suggest that the SCF underestimates
the contribution of (B) and MP2 overestimates the contribution of (B). The

CISD includes (B) to a reasonable extent although still not sufficient.

To understand the dependence of the dipole moment both on the
geometry of a molecule and on the correlation effect, we showed in Fig.1 by
the contours which are for the energies and the dipole moments of N ,0. They
show how these proprieties change with the two bond stretching coordinates.
We can easily see how the minimum point changes due to the correlation
effect. The SCF and SDCI gives similar energy contour maps while the MP2
gives quite different map. The SCF and SDCI optimized geometries lie in thee
positive region of the dipole moment but the MP2 geometry is embedded in
the negative region. The dipole moments has zero contours passing through
regions not too distant from the optimized geometry. This indicates that the
dipble moment if N,O may change sign in the course of some low-energy
vibrational excision. We can also see from the fact that the contour lines are
nearly vertical that there is a greater sensitivity of the dipole moment to the
Rnothan to the Ryy. The SCF contour lines are more denser than of MP2 and
SDCI. The inclusion of the electron correlation make the dipole moment less
sensitive to the geometry. The sign reversal of the MP2 dipole moment is

undoubtedly a reflection of the poor MP2 geometry.

B. N,O---HF Complexes
The total energies and the hydrogen bond energies for the complexes

NNO-HF and FH-NNO computed relative to the isolated monomers and



relative to the supermolecule are summarized in table 2. The MP binding
energies converge poorly leading to a change in the preferred site for
hydrogen bond formation with HF. Atsecond (MP2) and fourth (MP4) order,
the nitrogen site is predicted to be the more basic site, whereas oxygen is
favored at SCF, third order (MP3) and SDCI. The MP2 and MP4
overestimated the contribution of the germinal double bond formula (B). The
bent form is more stable than the linear by 1.77 kcal/mol a the SCF level and
by 0.77 kcal/mol at the SD(Q)CI level. The correlation effect to the binding
energy is quite large. The MP3 increases the binding energy of NNO-HF by
0.34 kcal/mol while SD(Q)CI by 0.15 kcal/fmol. The MP3 leads to
stabilization of the FH-NNO by 1.00 kcal/mol and SD(Q)CI by 1.14 kcal/mol,
compared to the SCF results. Obviously correlation effect is considerably
greater in the linear form than in the bent form. It is interesting that the
significant binding of the linear complex does not occur until correlation is
included in theory.
The optimized geometries of both isomers are given in Fig.2. As the HF
approaches to the oxygen end of N,O, the N-oxide valence bond structure
N=N"-0O" (A) will be favored over the germinal double bond structure
N =N*"=0 (B) . Thus, it is expected that hydrogen bonding leads to the
structural shift of a shortening of the Rn~ and a lengthening of the Rno. It is
also seen from the contour plots of dipole moments in Fig.2 that this structural
shift corresponds to the increase of the dipole moments of N,O. The
calculated Rvn and Rno are shortened (0.03 A) and lengthened (0.07A),
respectively by forming a complex at oxygen. The geometrical change of Rno
bond is larger in magnitude than that of Rnn. This is consistent with the fact

that the dipole moment of N ,0 is more sensitive to the Rno than the RN,



Analogous reasoning suggests that as HF approaches N,O collinearly from the
nitrogen end, the resonance structure (B) will be favored over (A), leading
that the Rno should be shorter. This shift decreases the dipole moment of
N,O. They confirms the prediction, with the Rno decrease upon forming the
hydrogen bond at oxygen being 0.007 A. The hydrogen bond length is
calculated to be 2.003 A for the bent NNO-HF isomer and 2.181 A for the
linear FH-ONN isomer.

To examine the change in the charge distribution on complex formation,
two difference density maps are drawn in Fig.3. The increase of the density
around the oxygen in the bent complex and around the nitrogen in the linear
complex and the decrease around the hydrogen in both complexes are all
caused by the polarization interactions. The figure also gives the correct trend
for the polarization and structural results as discusses above based on the
resonance structures. The dipole moments of the complexes are listed in Table
3. The N,O shows increases polarization in the complexes under the influence
of the HF molecule.

Table 4 shows the harmonic frequencies for two isomers calculated at
the SCF with DZp basis set. The experimental frequencies are obtained in an
Ar matrix for the bent structure. The SCF overestimates the frequencies and
we multiplied 0.88 to the computed frequencies to improve the agreement with
the experiment. We see that the shifts are in reasonable agreement. The HF
stretch in the bent complex is calculated to be 3891 cm-! red-shifted 70 cm -
from the calculated monomer frequency as compared to an experimental red
shift of 83 cm-1. The corresponding red shift for the linear complex is
calculated to be 20 cm-! and can be compared with the experimental red shift

of 61 cm-!. The stretching modes v; of N,O are blue shifted 59 and 7 cm-! in



the bent and linear complexes, respectively. This suggests a stronger
perturbation of N ,0 by forming the bent complex than the linear complex.

In Fig. 4, the interconversion path connecting two isomers are shown
schematically. The 0 is the angle between the line of the NNO and HF centers
of mass and the NNO axis. The 6=140 and 6=0 correspond to NNO-HF and
FH-NNO isomers, respectively. The 6 is varied from the O to 180 and each
fixed 0 all other geometric parameters are optimized. ~ As can be seen from
Fig.4, there is a2 low energy conversion path between linear and bent
complexes. We found six stationary points in the range of ©=0-180.
Vibrational analysis indicates that three correspond to the minima and three to
the transition states. Two minima correspond to the linear and bent isomers
and the remaining minimum corresponds to the meta-stable state. The three
transition states connect these minima, respectively. The energies and
geometries of these stationary points are given in Table 5 and Fig.5. In the
linear and bent isomers, the negatively charged fluorine will tend to positive
itself as far apart as possible from the negatively charged terminal nitrogen
and oxygen since the main effect in the formation of the complex is
electrostatic. Between two isomers, the fluorine attaches to the more positive
central nitrogen. The complex, bound by electrostatic attraction, exhibits a
meta-stable in energy ata distance of 3.094 A between the fluorine and the
positive nitrogen to which it is bound. The positive hydrogen in HF tends to
positive itself closer to the negatively charges atoms. In the interconversion
path, the motion of HF is rather complicated as shown in Fig.5. This arises
primarily from the motion of hydrogen atom due to the small mass of the
hydrogen compared to the fluorine atom. The hydrogen rotates around the

fluoride involving the out-of-plane displacement near the meta-stable region.



The bent is more stable by 0.78 kcal/mol (273 cm-1) than the linear and
the barrier between two minima is estimated to be 1.42 kcal/mol (497 cm -1)
from the unstable linear complex. This barrier to interconversion is  sufficient
to be observed as two structural isomers in the microwave spectrum.

The linear structure with HF hydrogen bonding on the oxygen atom
corresponds to the transition state (TS1) connecting two bent isomers. The
barrier height is calculated to be 0.97 kcal/mol (339 cm 1) at the SD(Q)CI
level. This is related to a picture of a floppy, nonrigid hydrogen bond to an
oxygen atom in the bent NNO-HF complex. On the other hand, the linear FH -
NNO complex has only a single well, which leads to a stiff, linear hydrogen

bond to the nitrogen atom.
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Table 1  Energies, bond lengths and dipole moments of N,O

at the optimized geometry

Method Energy R(N-N) R(N-0) dipole moment (debye)
A) B)
DZP SCF -183.715177 1.0956 1.1868 0.819
(0.661)
MP2 -184.269094 1.1831 1.2009 -0.135
(-0.064)
CISD -184.194723 1.1276 1.1983 0.395 0.473
(0.303) (0.368)
TZ SCF -183.753388 1.0815 1.1712 0.709
(0.621)
+DP MP2 -184.390869 1.1557 1.1822 -0.173
(-0.070)
CISD -184.305255 1.1059 1.1776 0.346 0.387
(0.313) (0.353)
experimentalvalue 1.1282 1.1842 0.161

Values in parentheses are dipole moments calculated at the experimental

geometry.

(A) calculated using electronic dipole operator

(B) calculated using first derivative methods
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Table 2  Total energies of NNO-HF and FH-NNO

The calculated energies of NNO-HF

Methods Total energy (au.) Stabilization Energy (kcal/mol)
SCF -283.820762 -2.98
MP2 -284.641780 -2.46
MP3 -284.616186 -3.32
MP4(SDTQ) -284.680796 -2.50
SDCI -284.519661 -3.19
SD(Q)CI -284.636136 -3.13

The calculated energies of FH-NNO

Methods Total energy (a.u.) Stabilization Energy (kcal/mol)
SCF -283.818396 -1.21
MP2 -284.643163 -3.04
MP3 -284.614873 221
MP4(SDTQ) -284.682021 -2.98
SDCI -284.518450 -2.15
SD(Q)CI -284.630820 -2.35
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Table 3  Dipole moments of the complexes for NNO-HF, FH-NNO

(debye)
NNO-HF FH-NNO HF
SCF 3.040 1.791 1.95
CISD 2.453 1.702 1.87
experiment 2.069 1.91

The N,O shows in creased polarization under the

influence of the HF molecules.
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Table4  Vibrational frequencies of the complexes of HF with

NNO at SCF/DZp
species mode calculated shift experiment shift
HF vl 4505 (3961) 3961
NNO vl 593 593
v2 1198 1202
v3 2284 2285
NNO-HF “bent” 30
“stretch” 126
“shear” 351, 439
“"v1(N2O)” 577, 590 (-16,-3) 583 -5)
“v2(N,O)” 1170 (-27) 1307 (+24)
"y3(N,0)" 2341 (+59) 2250 (+29)
“y1(HEF)” 3891 (-70) 3878 (-68)
FH-NNO “bent” 33
“stretch” 84
“shear” 268
"v1(N,0)" 600 +7)
"v2(N,0)" 1228 (+31)
"v3(N,O)” 2289 =7
“vI(HEF)" 3941 (-20) 3900 (-61)
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Table § Binding energies of the stationary points
(kcal/mol)

Methods TS1 NNO-HF TS2  Meta-stable @ TS3 FH-NNO
SCF 2.17 2.98 0.49 0.49 0.39 1.21
MP2 1.66 2.46 1.02 1.18 1.18 3.04
MP3 2.34 3.32 0.95 1.01 0.91 2.21
MP4(SDTQ) 1.63 2.50 0.98 1.13 1.14 2.98
SDCI 2.31 3.19 0.85 0.92 0.82 2.15
SD(Q)CI 2.16 3.13 0.93 1.01 0.94 2.35
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Figure Captions

Fig.1

Contour plots of the energy and the dipole moment of N,O as a function
of the two bond lengths. The top figure is the energy. The relative energy
count from the optimized structure in kcal/mol. The lower figure is the dipole
moment. Magnitudes are quoted in debye(D). |
Fig.2

Geometries of NNO-HF and FH-NNO with DZP basis sets. Bond
lengths are A. Bond angles are in degree. Value in parenthesis are Net
charges of the complexes. The R(N-N) and R(N-O) bonds are shorten and
lengthened, respectively, by forming a complex at oxygen. However, the R(N-
N) bond is lengthened, and the R(N-O) bond is shortened by N-complex.
Fig.3

Differential density maps, supermolecule - isolated molecules, obtained
with the DZP basis sets. Full lines show the increase of electronic density
and broken lines the decrease. Values of contour lines are * 0.0040, *
0.0020, * 0.0005, and * 0.00025, respectively, from the inside out.
Fig.4

Interconversion path connecting two isomers NNO-HF and FH-NNO
with SCF and SDCI method
Fig.5

Geometries of transition states and meta-stable state of the complexes of
NNO-HF optimized with DZP basis sets. Bond lengths are A. Bond angles
are in degree. Value in parenthesis are Net charges of the complexes. The

transition vectors indicate the reaction pass way of each transition states.
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Fig.1 Contour plots of the energy and the dipole moment of N:O
(a) Energy

SCF MP2 CISD

Optimzed Structure 125

125

N

Energy = -183.715177 a.u.

s

% RN-N) = 1.0956 A
A
//—,_10\

N

Optimzed Structure 125 Optimzed Structure
1201 R(N-O) = 1.1868 A 1.20 1

/
\ Energy = -184.269094 a.u. _% Energy = -184.194723 a.u.
R(N-N) = 11831 A ] /’\ R(N-N) = 1.1276 A
o 120 4 10 /'—\ o
REN-0) = 1.2009 A - 8 6/—\ R(N-0) - 1.1983 A
RON-N) | ] ]
] :% RN-N) ] 2
1151 . \ 1.15 j 1

)

RN-N)
1 115 |
‘ \ J 42\—/ . <
] 1 | 86¥_,/ |
Li0; = 110 k & 110 +\
NS—— AN

1.05 \ﬁ — 1.05 <W 1.05 -

My ™ S Aas S S —

1.10 1.15 1.20 1.25 1:10 1.15 1.20 1.25 1.10 1.15 1.20 1.25
R(N-0) R(N-O0) R(N-0)

(b) Dipole Moment

>

dipole moment = 0.819 Debye dipole moment = -0.135 Debye CISD dipole moment = 0.395 Debye
125 125 — .

125 T 7 U s ' ' ’

06 oy 1 106 ) /

RPN 9 {/ / !

1 04 4 . K

! 03 1 04 )

204/ / 1.20 120{ K

Sy 00 ] I,’ 02

,1' 02 {1/ /
R(N-N) / RON-N) RN-N) |/ 00

1/ 0.4 . ¥ ;
1 s L1S 115 !
L1514, 06 1/ 02

J /

038 ] 1/ X
] / J 1/ /
: ! 04

| 10 1.10 1 - IRLE
1.10 X | 0.6

1 1.2 ) ] .4

/ / - 0.3

1 06 1
1.0 . y A { 1.05 ey —Lpr— 1.05 . R T S SR y / .

110 LIS 120 125 110 . . 125 L10 L5 120 125

RN-0)



Fig.2 Geometries of NNO-HF and FH-NNO

(a) NNO-HF
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Fig.3 Differential density maps
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Fig. 4a) Isomerization reaction path of NNO-HF
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Fig. 4(b) Potential Energy Surface of NNO-HF
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Fig. 5 Geometries of transition states and
meta stable state
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(b) Transition State No.2
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(c) Meta-stable state
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(d) Transition State No.3

(-0.11) (+0.46) (-0.35)




