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THE NON-CLOSED-SHELL SYMMETRY ADAPTED CLUSTER (SAC) THEORY.

TEE OPEN-SHELL SAC THEORY AND MULTエーREFERENCE SAC THEORY

冗.H工RAO

Department of Chemistry, College of General Education,

Nagoya University, Nagoya, Japan

and

工nstltute for Molecular Science, Okazakl, Japan

ABSTRACT

The non-closed-shell version of the symmetry-adapted-cluster (SAC)

theory ls presented. We classlfled the total correlation effects into

two groups, the dynamlcal (transferable) or speclflc (non-transferable)

correlation effects. The speclflc correlation effects consist of

near-degeneracies, the internal and semi-internal correlation and the

spln pOlarlzatlon. Once speclflc correlation effects are included, the

remaining effects are just llke those in closed-sbells･ We started wltb

the RHF/CASSCF orbltals but re-defined the reference function wblch

includes the state-specific correlation effects. Speciflc correlation

effects are expressed ln the form of the linear operator and the

dynamlcal correlation ls treated by means of the exponential operator･

The present theory is exact and does not include the non-commutative

algebra. Tbere ls a very close parallel between the standard single

reference SAC theory and its non-closed-shell version. We have discussed

the open-shell (excited state) SAC theory and the SAC theory based on a

muユti-reference function (MRSAC). Tbe theory provides low-lying excited

state solutlons as well as the ground state solution.
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ェ. Introduction

There are three approaches to the electron correlation problems of

molecules･ The first method ls based on the variatlonal principle. The

most commonly used varlatlonal method is the method of C工.1 The C工has

conceptual simpllclty and generality. However, it suffers from the slow

convergenece of the wavefunction･ The second approach is the many-body

perturbation theory･2 It ls a size-consistent theory. The introduction

of diagrammatic analysis ls a powerful way of handling and summing

various types of terms ln a perturbation expansion. 吉owever, the use of

diagrams ls only an ald･ It does not alter the fact that we are doing

the C工calculatlon･ whose convergence ls also.slow･ There ls an approach

which ls neither varlatlonal nor perturbatlonal･ The theory is based on

the cluster expansion of an exact wavefunctlon.3-13 工t is a

size-extensive theory and the convergence of the wavefunctlon is much

faster than that of the C工 expansion.

The cluster expansion method is based on the ansatz3

V -

exp( T )lo> (1)

where (0> is the Hartree-Fock single determinantal reference functi.n and

T Is a sum of one- to N-particle excltatlon operators

T=T(1)+T(2)+
…十T(N)

(2)

we have proposed the symmetry adapted cluster (SAC) theory.5 The SAC
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method, originally designed for closed-shell systems, has been extended

to include open-shell systems. 工t is based on the ansatz

v =

Qexp( S )[0> (3)

where S Is a sum of symmetry adapted single to N-pュe excltation operators

s=s(1)+s(2)
…s(N)

(4)

and Q Is a symmetry projector which applles only to the disconnected

clusters of the expansion. For singlet closed-shells, Q is not necessary.

The Schrodinger equation for closed-shells ls given by

e-sHeSlo>
=

Eg[0> (5)

where Eg is the ground state energy･ By now the SAC approach has

been well tested for numerous closed-shell ground states. The single and

double SAC method, wbicb is equivalent to the coupled-cluster method wltb

single and double.excitations (CCSD) of Bartlett･4 recovers about 98o/o of

the total correlation energy of a given basis set.6

For open-shell excited states, the SAC-C工metbod has been proposed.7

The idea beblnd the SAC-CI theory ls that the majority of the electron

correlation in the closed-shell ground state will be transferable to the

excited states since the excitation of interest involves only one and/or

two electrons. We can express the correlated excited state wavefunctlon

ln terms of the SAC function using the excltatlon operator T

ー 3 -



V =

TV
=

Texp( S )Io>e ど
(6)

The T and S operators commute each other since both are defined ln the

same restriction･ Tbe expression of eq.(6) is also exact if T includes

all excltations. From the Schrodinger equation, we have the SAC-C工

equation

e-s[H･ T]eSJo>
- (Ee- Eg)Tfo> (7)

where E is the energy of the excited state. The SAC-C工 wavefunctlon can
e

be obtained only by a single dlagonallzatlon of the nonsymmetrlc matrix.

There is no iteratlon involved･ It ls well tested that the SAC-C工 wlth

single and double excitatlons reproduces electronic excltation energies,

1onlzatlon potentials and electron affinities within the error of 2%.8

The single reference cluster approach, however, breaks down when

applied to the states where the restricted Hartree-Fock (RHF) function is

not a good starting wavefunction･ Such cases occur in many actual systems

particularly at non-equlllbrlum geometries when the chemical bonds are

broken･工n such situations, the low-lying excited conflguratlons are

likely to penetrate into the range of the reference configuration

energies and act as intruder states･ They also occur, when we study open

shells and excited states.

Whlle the single reference cluster expansion approach has been

successfully exploited during the past two decades, the extension of this

formalism to non-closed-shells cannot be considered to be fully

understood even today' despite siginlflcant theoretical progress made ln

recent years･9-13 This ls undoubtedly due to the lnberent complexity of
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the problem involved as well as to our lack of understanding of the

cluster structure of general non-closed-shell wave functions.

In non-closed-shell systems, there are three, about equally

important types of correlation effects. The exact wave function ls

expressed as

V=申ref + Xint +X(semi-int
+polariz)

+ Xalトext (8)

where ¢ref is the reference function with including quasldegeneracles･

The internal correlation xlnt cones from the mlxlng of the configurations

that can be made from the occupled orbltals. Seml-internal correlation

xsemト1nt cones from the conflguratlons involving the open-shell orbitals･

When two electrons collide. for Instance, one electron goes into the

virtual space while the other remains ln the occupied space. Moreover

the occupied orbitals ln non-closed-shells are individually polarized in

excited states other than the slnglet state. The one-electron

polarlzatlon effect is much smaller than the other correlation effects

lnvolvlng pairs of electrons･ The polarization effects xpolarlz are

coupled by symmetry to the semi-internal correlation. Both the internal

and semi-internal correlation effects are very specific in tbelr

magnitudes to each other. They depend strongly on the symmetry of the

state, on the total number of electrons, etc. 工t is expected that once

_these
specific correlation effects are calculated, the remaining effects

become Just like those in closed-shells. Tbat ls, the remalnlng are the

all-external correlation effects xall-ext･

Tbe another difficulty of the non-closed-shell theory lies on the

validity of the commutation property of the excitation operators.
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Non-commutative algebra makes the theory very complicated and loses its

conceptual simpllclty･工n order to retain the commutative property of all

the operators･ the fermion creation~ and annihilation operators should be

defined ln the same restrictlon･工n non-closed-shells, however, there

are three separate orbital spaces, the closed-shell (core), the

open-shell (active) and virtual orbital spaces. The problem is what to

treat the open-shell orbltals.

A general formalism of the non-closed-shell/multトreference cluster

expansion theory was given by MukherJee et al,9 by Jeziorski and

Monkhorst･10 by Nakatsuji,ll and by others･12-13 MukherJee.S theory9 is

based on the ansatz,

V-exp(T)¢M
･申M-∑ci¢i

(9)

and ¢1 are N-electron determlnants･ T Is an excltation operator given by

T -

t;a:ai
･ i,t;?a:a;aia]

･
･･･ (10)

The theory is a stralgbtforward generallzatlon of the single reference

theory･ However･ the theory involves non-commutative algebra for the

Operators and T Is not unique unless some additional condltlons are

lmposed･ Jeziorskl and MonkhorstlO proposed a genuine multトreference

coupled cluster theory which ls free from such difficulties. They

started from the ansatz

vリ- ∑c叫eXp( Tル)op

- 6 -
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where申p span a COmplete reference space within the valence orbitals･

TLL is a sum of one- to N-particle excitation operators as given by eq.(10)

and is different for each reference determinant. The theory ls unique

and does not include the non-commutative algebra bacause of the

completeness of the reference space･ However, fro担ーーaT practical point of

view, the theory seems to be too difficult to be applied, except when

some drastic approximations are introduced. Nakatsujill has proposed the

following ansatz,

vソニ男｡【 ∑bkVMこ】exp( ∑cごs;)Lo,
(12)

where lo, is the closed-shell single determinant･ The

MこandS;
are both

symmetry adapted operators and defined by the excitatlons from the

occupied orbitals to the virtual orbitals･ The盟o is an artificial

operator and deletes the coefficient b岩in
the disconnected terms to

avoid the possible divergence ln the case of b岩beingclose
to zero･ He

divided the orbital space into two parts, occupied or virtual and

defined the excitation operators. Therefore, all the excitation operators

can be chosen as to ensure the commutation relation. However, some

important internal correlation effect cannot be included.

工n this paper we will present the non-closed-shell version of the

SAC theory. The theory is required to be exact. 工t is also required

that the excltatlon operators can be defined uniquely and the theory does

not involve any non-commutative algebra. 工n the next section, we will

first present the open-shell (excited state) SAC theory. Tben, the

muユti-reference SAC theory will be discussed in See.工工Ⅰ. In the final

section, some conclusions will be summarized.
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Ⅰ工. The open-shell SAC theory

Flrst･ we will consider the open-shell system with a hlgb spin state

repesented by only a single determlnantal REF function ¢o

申o - 逮(¢closed申open) - l甲1C"1β-･甲q叩q紬(q･1)∝･-甲p∝l (13)

where ¢closed and ◎open are the closed-shelland open-shell parts of ¢o

and 逮 is an antisymmetrizer･ Thus, the system has 2s unpaired c( spins,

namely, s-(p-q)/2･工n.such a case, the RHF wave function provides a good

zeroth order representation and the open-shell system affords similar

slmpllclty as the closed-shell system.

We will classify the correlation effects into two groups, the

dynamlcal (transferable) correlation or the speclflc (non-transferable)

correlation･ The essential cbaracterlstlc of the present approach ls to

re-define the reference function composed of RfiF orbltals. Our

open-shell SAC wavefunctlon ls given by

V =

exp( R )¢ref ;申ref
= T申closed (14)

R
The e represents the dynamical correlation and the linear operator T

describes the speclflc non-dynamical correlation. 工ntermedlate

normallzatlon ls assumed

<¢o佃o'-<◎oJv,-1 (15)

ー 8 -



ヽ

Here･申ref = T申closed is the newly defined reference function which

includes the state-specific correlation effects. Thus, T operator

generates the open-shell part ¢open when operated on ¢closed and also

describes the internal/semi-internal correlation effect and spin

polarization effect. Tbe T operator ls expressed as a sum of one- to

N-particle symmetry adapted excitation operators

･-∑cIT;-T(1)･T(2)･
- ･T(N) (16)

Thus T generates the 2s-electron attached state when applied to申closed

with the simultaneous spin elgenfunctlons of S2 and S

s2申ref =

S(s+1)申ref I Sz申ref ≡

S申ref (17)

Although T depends on the system, T Is defined uniquely lf the system ls

glVen. The R operator describes all-external excltatlons from the

closed-shell to virtual orbitals, which ls more or less transferable

among different states of the system

R-∑cJR;-R(1)･R(2)- ･R(N)

Thus,

T;
and

R;

(18)

operators are defined exclusively and they commute each

other. Tbe theory is exact since any excitation operator can be included

王n the present formalism. A symmetry projector Q Is unnecessary since T

Is linear and R Is a sum of singlet-type excltatlon operators.

工n practical applications we will introduce some approximations.工n

the present work we consider only one- and two-body parts of T and･R,
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1.e. T=T(1)+ T(2) and R=R(1)+ R(2) Let us consider first the T

operator. The T operator depends on the systems of interest. Retalnlng

up to double excltatlon, we have

･-∑cIT;-T｡ ･∑c冒丁冒･∑c孟丁孟･∑pc言pT言p__-

･∑c苦言TT言.∑pc誓言pT冒言･∑c詑丁言忘･∑pc三三pT詑
(19)

where Cワare the cluster amplitudes to be determined and Tワ are the
l 1

symmetry adapted excitatlon operators (represented by generic symbols C工

and T;
I respectively)

defined ln terms of the fermlon creation and

annlhllatlon operators. In eq.(19) and throughout we follow the

convention that the subscripts (superscrlpts) 1,J refer to the

closed-shell orbitals, m, n to open-shell orbitals and a, b to virtual

orbitals･ The To operator reproduces the RHF wave function ◎o when

applied to申cl｡sed･ The

T冒,T孟andpT言aresingle excitation operators

and others are double excltation operators involving the open-shell

orbltals

T｡ -

alq.1)α-aニ∝･･･a
(20a)

T冒-aてq.1)∝･･･aニ∝-a;∝aニ8aiβ
(20b)

T孟-alq.1)∝･･･a三∝-a;∝
(20c)

PT?
1

[1′2s(s･1)]1/2 【s (aニ∝ai∝
-

a;βaiβ)aてq.1)∝･･･aニ∝･･･a;α

- 10 -



T?fr.I1J

pTチワ
1J

･

a;∝a;β喜aてq･1'∝･･･aニ8･･･a;∝】
(20d)

-

(aニ∝ai∝
･

a;βaiβ)aてq.1)∝･･･aニ∝-･a;∝aニ8a)β/ノ2
(20e)

- 【1′2s(s･1)]1/2 【 s

(aニ∝ai｡
-

a;βaiβ)aニ-&aニβaてq.1)α-･a;∝a)β

ーa;αai8aニ∝aニβnun aてq･1'∝･･･a芸∝aj8
] (20f'

･言忘-(aニαai∝
･

a;βaiβ)aてq.1)∝･-aこ∝･･･a;α
/ノ2

pT三宝-[1/2s(s･1)]1/2 【s
(aニ∝ai∝

-

a;βai8)aてq.1)∝･･･aこ∝･･･a;α

-

a;∝aiβ
n2

on

aてq･1)∝･･･a岩∝･･･a;∝】

(20g)

(20h)

The creation operators are defined ln the open-shell and virtual orbital

spaces and annlhllatlon operators are defined ln the closed-shell orbital

space･ Thus･

T;
are commutative for each other･ The qn in eqs･(20f) and

+

(20h) 1s the spin-flip operator to change the spin of a+ to anβ･ namely
nC(

onaニ∝
-

aニβ･
The T are the usual singlet-type excitation operators while

the
pT

are the spin polarization excitatlon operators which include real

excitations and spin-flips. Among them, the single excitation operators

pT;,lay the most important role in the spin correlation problems･14 As

to the double excitatlon, there are (2s+1) independent spin

eigenfunctions corresponding to the excitation from (甲i･ Vj)
to (甲a, q)b)･

Two types of spin eigenfunctions corresponding to the all-external

excitatlons will be considered ln the R operator. The remaining (2s-1)

- 11 -



spin elgenfunctlons are neglected ln the present approxlmatlon since they

are expected to make a small contrlbutlon to the energy. Then, the

reference function ln the present approximation becomes as

oref = T¢closed - J甲1∝V18
-･甲qCUq紬(q･l)∝･･･甲mα-･甲p∝Ⅰ

-

≡ c冒J甲1叩1β-甲qCUq紬m叩mβ甲(q.1)α-･甲i∝-甲｡∝l

･ ≡ c孟l甲1叩18･･･中｡叩｡紬(q.1)∝･･･中aα･-甲｡∝l

･ ≡ pc言【1/2s(s･1)]1′2f-甲a甲i甲(｡.1)･-甲｡(s(∝8･8∝,α･･･∝

-

∝∝∑∝‥.β‥.α) ∫
m

･ ≡
c謂J･･･甲m∝甲m8Wi(∝β一紬)/ノ2甲(q.1)∝･･･甲｡∝l

･ : pc言冒[1′2s(s+1,,1/2[･･･甲m｡甲mβ甲a中i甲(q.1,･･･q,･s(∝β+紬,∝･･･∝

-

c(α:α...β‥.c() I
n

･ ≡
c三三l･･･甲aVi(aB一紬,′ノ2甲(q.1,∝･･･甲b∝･･･甲｡∝l

･ ≡ pc三宝[1/2s(s+1,]1′2r･-甲a甲i甲(q.1,-･甲b･･･甲｡{s(∝β･紬,α-･∝･･･∝

-

∝∝∑∝‥.β.‥∝) ∫
n

- 12 -
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Thus･申ref COnSists of singly and doubly excited conflguratlons involving

the open-shell orbltals relative to ¢o ln addition to ¢o ltself･

Namely･ ¢ref includes the semト1nternal and spin polarization effects

which are speclflc to the state of interest.

Let us consider next the R operator. Once the state-speclflc

correlation effects are included, the remaining effects are just like

those ln closed-sbells･ The

R; operators represent the alトexternal

excltatlon operators defined by the excltatlon from the closed-shell

orbitals to the virtual orbltals･ The

R;
operators do not involve any

open-shell orbital. Thus, the

R; operators commute each other and also

commute with the

T;
operators since both are chosen excluslvely･ The R

operator is formally identlcal with the corresponding operator of the

single reference SAC approach. The expllclt expressions for the R(1) and

R(2)are

R-∑cJRユニ∑c言R言･∑̀1)c三言`1'R号音･∑(2'c三言`2'R;冒(22)

R言-(aa;ai∝
･

aa;ai8)/ノ2

(i)R;?- (R;R?
･

R;R?)/2

with

(23a)

+ + + + 十 + +

-

(aニ∝al｡ab8a)β
･

aaβai8ab∝a〕d
･

ab∝ai∝aa8a〕β
+

abβaiβaa∝a〕∝)/4

(23b)

(2)R;?- (R;R?
-

R;R?)/2
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-

(2aニ∝ai∝a言∝a｣∝
･

2a三βaiβa岩βa)β
･

aニ∝al∝a芸βa)β
･

+ + + +
~

ab∝al∝aaβa〕β
-

abβaiβaa∝a〕∝ )/4ノ3

+ +

aaβalβab∝a｣∝

(23c)

The R generates the following excited configurations when operating on ¢o

R¢｡

∑c言1- wi(∝β-β∝)/ノ2･- (

･

≡(1)c三言[･･･甲i甲)甲a甲b(∝8-β∝)(∝β-紬)/4･･･I

･

≡(2'c三言J
･ ･

･甲i甲)甲aVb(2∝∝β8･2β8c-β∝β-∝β紬一紬αβ一触紬'′ノ12.
‥ I

(24)

RThe exponential operator e produces triply, quadruply,‥. excited

conflguratlons ln addltlon to the singly and doubly excited

configurations.

The total wavefunctlon ls given by

v- (1

･J2cJR; ･喜J2K2cJCKR;R左+
･- ,申r｡f

†
I

=中o

+至cIT;申closed･誉cJR;
｡o

･至J2cJCIR;T;申cl｡sed

･喜JZK2cJCKR;R左中｡
･

-･ (25,

Here summation is done over all orbitals and ∑ indicates that the terms

lnvolvlng To are excluded from the sum甲atlon･ The second terms on the
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r.h.s. of eq.(25) represent the speclflc correlation effects and the

third terms describe the dynamical correlation effect. The coupling of

the all-external excitatlon with the semi-internal and spin polarization

excitations are also included through the disconnected terms ln the form

of the products of R; and T; operators･ The fifth terms correspond to

the disconnected clusters of the all-external excitatlons.

Let us turn now the Scbrodinger equation

(H - E)V = (H-E)eRoref = (H-E)eRTOclosed = 0

Left-multiplying eq.(26) by e-R, we have

e-RH eR申ref
= E申ref (27)

(26)

Eq.(27) is then projected against a sufficient set of excited functions

to generate a series of equations

<oclosedT工Ie-RH eR(◎ref>
-

E<◎closedT工[oref>

<¢o RJle-RH eR】◎ref>
- 0

(28a)

(28b)

where (T;)千
- TI and (R;)†

- RJ･ Eq･(28a) are a set of linear equations

for

T; while eq･(28b) are a set of nonlinear coupled equations for

R;･
The

resultant set of equations are equal in number to the number of symmetry

adapted excitation operators to be determined. Eq.(28b) are formally

identical to the corresponding closed-shell SAC equations and eq.(28a) to

the SAC-C工 equations. The eq.(28a) are reduced to an eigenvalue problem
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of the nonsymmetrlc matrix while eq･(28b) to a system of linear equations.

The solution ls performed lteratively until the self-consistent is

acbleved･ That is･ ¢ref ls also determined tbrougb the optimlzatlon

process･ This ls actually possible and quite straightforward. The total

energy is given by projecting the Schrodinger equation onto the RHF

function申o

<oofe-RH eRJoref>
- E (29)

Thus･ the non-closed-shell SAC theory can be obtained with a slight

modlficatlon of the closed-shell SAC theory.

Now let us examine the relation to the SAC-CI theory. For the sake

of simplicity, we will consider the doublet state

¢ =

RL(¢closedq)m) (30)

The SAC equation for the closed-shell ¢closed is reduced to

e-sE eS¢closed
= Eg申closed (31)

where Eg ls the energy of eS¢closed･ Also the SAC-CI equation for the

electron attached states ls given by

e-s[H, T]eSoclosed = (Ee -

Eg)TOclosed (32)

where (Ee- Eg) gives the electron afflnlty･ If the difference between R

and S Is defined by St (St-R-S), then eq.(27) leads to
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e-s【H･ eStT]eS¢closed
≡ (Ee-Eg)eS'T¢closed (33)

we see that the T in the SAC-CI equation of eq.(32) is replaced by eS'T.

This means that the present theory takes account of the reorganization

effect of the electron correlation due to the excltatlon. Tbe frozen

correlation approximation in the SAC-CI theory ls now relaxed in the

present open-shell SAC theory. When S' is small, i.e. dynamical

correlations are transferable, the SAC-C工 method becomes a good

approximation. Tbus, the present theory is a straightforward

generalization of the SAC-CI theory for the excited states.

工工工. Multl-reference SAC theory

We now turn to discuss the multl-reference SAC theory (MRSAC). The

idea beblnd the open-shell SAC theory can easily be applied to the

multトreference cases. We will start with the multトconfigurational

function

¢冨 -∑AIV¢Ⅰ (34)

Here, v denotes a state under consideration. Tbe theory is required to be

rather immune to intruders, allowing flexibility ln choosing the

reference space. Thus, quasidegeneracies are fully considered in中吉･
we

assume that申oU is obtained by the CASSCF theory15 and申I Span a COmplete

space among the active orbitals. But this restriction is not serious.

We may start with the conventional MCSCF wave function. The configuration
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tヽ

coefflclents
AI?will

be reoptlmized but we will keep the norm of the

corresponding function throughout the calculation

･申oV fo冒,-<蛸optl¢冨opt,-1 ;中吉opt-∑c¥¢Ⅰ
(35)

where ¢ざopt
is the corresponding optimized function in the final stage.

Note here that we only need the CASSCF orbltals.

工n tbls case, orbltals are classlfled as core (closed-shell),

valence (active) or virtual. The core orbitals are always occupied and

all possible distributions of the remalnlng electrons in the valence

orbitals give rise
to蛸･

Then the MRSAC wave function is defined as

vソニexp( R

)中ごef
;

¢ごef-Tリ¢c｡re (36)

Again･ the

¢ごef
is a newly defined reference function and the Oc｡re is

the doubly occupied part of

assumed

<申oV [vリ>=1

申oU･ 工ntermedlate normalization is also

(37)

Tbus･ the Tリoperator generates all the configurations appeared in the

starting function 申oU and also includes the internal and semi-internal

correlation effects･ The R operator represents the dynamlcal correlation

as before･ The Tリand R can be chosen uniquely and they commute each

other･ The wavefunctlon given by eq.(36) is unique and exact. Of

course, the theory is reduced to the single reference SAC theory in the

absence of near-degeneracles.
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For the resulting slmpllclty we will consider the singlet state with

two active orbltals. It gives useful lnslght on the structure of the

MRSAC method. The lndlces m and n are used to refer to specific active

orbltals. The CASSCF wavefunctlon is given by

¢呂-
≡
A¥0Ⅰ

-

A冨1-甲i∝qiβ-甲m叩m8[

･

Aご1-･中i叩i8･･･甲m甲n(∝β一紬)/ノ2l
･

A芸]･･･甲i叩i8･･･甲｡叩n81
(38)

Two conflguratlons are sufficient to span the complete space but we will

start with the general expression given by eq.(38). 工f we truncate the

excltatlon operators after double excitatlon, T is given by

TV-∑c¥T;-
C｡T｡ ･

C芸T:･ C器T::･ ∑c冒TT･∑c冒言丁冒冒

･∑pc言pT言･∑c孟丁孟･∑c孟ET三三･∑c冒言TT言･∑c言三丁言三
(39)

since all cluster amplitudes considered here correspond to

C;I
we can

drop the lableリ Without amblgulty. The explicit expressions of these

excitation operators are

+ +

To =

am∝amβ

T芸-(aニ∝aニβ
-

aニβaニ∝)/ノ2

T三三-aニ∝a三β

- 19 -
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Tワニaニαaニ8(aニ∝alα･anβaiβ)ノ2
+

1

T甲r!
1J

Ta =

m

-

aニ∝aこβaニ∝aニβ(aiβa]∝-ai｡a｣β)/J2

(a;∝aニβ-a;βa去∝)ノ2

･三三-(aニαa岩β-a三βa岩∝)′ノ2

(40d)

(40e)

(40f)

(40g)

pT言- (-2aニ∝aiβaニβaニ8
･

2a三βai∝aニ∝a三∝
-

aニ∝ai∝aニ∝a三β
･

aニβaiβaニβaニ∝

-

a三∝ai∝aニβaニ∝
･

a;βaiβaニ∝aこβ
)′ノ12 (40h)

T言冒-(2a三∝aiβaニβa｣∝
･

2a三βaiαa三∝a｣β
･

aニ∝ai∝aニαa)α
･

a三βaiβaニβa)β

-

aニ∝ai∝aニβa]β
-

a;βaiβaニ∝a｣∝)aニ∝aニβ′ノ12 (40i)

･三三-(2a;∝aiβaニβabβ
-

2aニβai∝aニ∝abα
･

a三∝ai∝aニ∝abb
-

aニβaiβaニβab∝

･

aニ∝aiαaニβab∝
-

aニβalβaニ∝abβ
) ′ノ12 (40j)

The creation operators are defined in valence and active orbital spaces

while annlhllatlon operators defined ln the core orbital space. The first

three operators on the r.h.s. of eq.(39) reproduce the CASSCF

configurations in ¢oU･ Then the OrVef is given by

¢rvef - TVoc｡re -

c｡J-･甲m叩nβ[ ･

C:[･･･甲m甲n(∝β一帥/ノ2l
･

- 20 -



･

c::J･･･甲｡叩n8l
･ ≡

c冒l･･･甲m∝甲mβWi(αβ一紬)/ノ2[

･ ≡
c苦言I･･･甲i甲)(∝β-紬)/ノ2中m叩m紬n叩｡βl

･ :
c孟l-甲a甲n(郎一紬)′J2f 土∑ c孟≡J-甲aVb(∝β一紬)′J2I

･ ≡ pc言l-甲a甲i甲m甲n(2∝∝ββ+2β8cm-∝紬β-β∝紬-∝8紬-紬∝β)/ノ12l

- ≡
c器l-甲a甲i甲｡甲)(2a∝ββ･2β紬∝-a8∝β-紬βa-∝β紬一触αβ)/J12l

･ ≡
c三三I

･

-甲a甲i甲｡中n(2∝∝8β･2β8cm-α紬---∝β紬一紬αβ)′ノ121

(41)

The申ref includes CASSCF conflguratlons and configurations corresponding

to the single and double excltations involving the active orbitals. The

R operator ls a sum of all-external excltation operators and takes the

same form as given by eqs.(22) and (23). The commutation relation of

all the excitatlon operators ls satlsfled. Tbe total wave function is

given by

vv - (1 ･

J=c,VR;･宣言K=cJVc芸R;R左･
･･･ 'orvef

-

o岩opt ･至'cIVT;
｡c｡re ･

I: CJVR;0.?
Opt

･J:CJVR;'至'c;T;oc｡r｡'･喜至≡cJVcZR;R左｡岩opt
･ ･･･

(42)

The second terms on the r.b.s. of eq.(42) represent the internal and
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semト1nternal correlation effects and the third terms all-external

correlation effects･ The fourth terms are the coupling between the

all-external and internal/semi-internal correlation effects.

The solution of the MRSAC approach given here ls very similar to

the previous case__･__
_The

Schrodinger equation is projected against a

sufflclent set of excited functions to generate a series of equations

<申coreT=fe-RH eRJoref>
=

E<¢coreTIIoref>

<申oU OptRJfe-RH
eR[oref>

- 0

The total electronic energy is also given by

<¢ov optle-RH
eRJoref>

- E

(43a)

(43b)

(44)

Slnce the T operator ls linear, eq.(43a) leads to an eigenvalue

problem of the nonsymmetrlc matrix. The solution with the lowest

elgenvalue corresponds to the ground state. Tbe other solutlons

correspond to the excited states involving the active orbltals. The

situation is similar to the case of the conventional C= method. This

will provide a good approximation since the dynamlcal correlation effect

R .

represented by e lS more Or less transferable from the ground state to

the excited states･ Thus, the MRSAC theory presented so far can give the

low-lying excited state solutions as well as the ground state solution.

The present approach can also be applied to the majority of

open-shell ground states and molecular excited states having more than

a single･reference configuration or determinantal function.
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ⅠⅤ. Summary

we have presented the non-closed-shell version of the SAC tbeory･

we started with the RHF/CASSCF orbltals but re-defined the reference

function which includes the state-specific correlation effects. The

transferable dynamical correlation effect ls expressed through the

R

exponential operator e and the linear operator T Is used to represent

the state-specific correlation effects such as quasidegeneracies,

internal and semトinternal correlation effects, the spin-polarization

effect, etc. The R and T operators can be chosen uniquely and they are

defined exclusively. The non-closed-shell SAC theory can be obtained

with a sllght modlflcatlon of the SAC theory for closed-shells･ The

theory ls exact since any excltatlon can be included ln the present

formalism. In addltlon, the theory does not involve any non-commutative

algebra. Furtbermore, the present theory gives the low-lying excited

state solutions as well as the ground state solution.

we would like to stress a very close parallel between the standard

single reference closed-shell SAC and its non-closed-shell version･ The

present theory has practical and conceptual simplicity. This approAch is

particularly suitable for the evaluation of potential energy surfaces,

the excited states and open-shell systems, where allowance for mlxlng of

electronic conflguratlons is often necessary. Applications are now being

investigated ln order to check the generality and the accuracy of the

present theory.
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Abs†rqc†

The accuracy of the SAC-CI (symmetry adapted

cluster-configuration interaction) method is examined f･.r

the singlet and triplet excited states of H20 by com.paring

With the full CI results for the [4s2p] basis set. The

SACICI results for the excitation energy agree to Within

1.4 % of the f-ull CI results.
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The SAC (symmetry adapted cluster) [ 1 〕 and SAC-CI [2] methods Were

proposed for calculations of the ground and excited states, ionized states

and electron attached states of a molecule･ Through many applications,

the SAC/SAC-CI method has been proved to be very useful f･or reliable and

effective calculations of the ground, excited, and ionized states of

molecules[3].
LI

Some ye?rs ago, the accuracy of the SAC/SAC-CI method has been

exeunined for the ground state[4] and the t.riplet excited, ionized and

electron at･tached states[5] of HP by comparing With the full CI results.

The basis set Was [4s2p] set of Huzinaga[6]
and Dunning[7]. The

purpose of this paper is to examine the accuracy of the singlet excited

states of H20 calculated by the SAC-CI method, since this exaLmination

Was missing in the previous paper【5】. We carry out comparative rul上 CI

calculations and compare their total energies and excitation energies

With the SAC-CI results･ Some additional results are also reported f･or

the triplet excited states.

The ground state of' H20 is calculated by t.he SAC method. The

Hartree-Fock (肝) orbitals are calculated by the program CAJm [8】 and

used as the reference orbitals in the SAC/SACICI calculations. Linked

terms in SAC include all single (Sl) and double (S2) excitation operators

and the unlinked terms include quadruple excitation operators as products

or double excitation operators (S2S2).

The excited states are calculated by the SAC-CI theory. Linked terms

in SAC-CI include all single (Rl) and double (R2) excitation operators.

For unlinked terms･ ve use two different approximations. The first one,

called SAC-CI(A) , includes only RIS2 operators and the second one, called

SAC-CI(B)･ includes both RIS2 and R2S2 0PeratOrS. No configuration

selection is performed in both SAC and SAC-CI calculations. We used the

- 2 -



program package SAC85 [9].

The rulュ CI. calculations for the singlet and triplet excited states

of H20 are carried out With t.he use of t.he modified version of' t.he

determinant integer f､ull CI program of､ Handy[ 10].

The total energy of the gr･ound state is
-76.156254

har･tree by SAC

and -76.157866
hartree by f､u11 CI. These are the same as those reported

一

previously [5]. The energy dif･ference is only 1.6xlO-3 hartree (1.0

kca1/mo1) , so that the SAC met.hod is proved to be very reliable.

The results for t.he singlet ground and excited states of H20 ar.e

summarized in table 1. The dimensions of､ the matrices involved in

SAC/SAC-CI are the same as those of SⅨニI and are t.hree-orders-oトmagnitude

smaller than those of'full CI. The excitation energies of both SAC-CI(A)

and SAC-CI(B) are in good agreement With those or f､ull CI. The

differences are to Within 1.2 %. There is a trend that SAC-CI(A) gives

larger excitation energies and, in contrast, SAC-CI(B) gives smaller ones

in comparison With full CI. Refined unlinked terms in SAC-CI(B) lover

the energies of the excited states and give smaller･ excit.ation energies.

Total energies of SAC-CI are also in very good agreement With those of

flull CI. However, ve note that ･the SAC-CI(B) results sometimes overshoot

the exact f'ull-CI energies, though the differences ar.e less than

2.1xlO-3 hartree. This arises from the non-variational nature in the

solution of､ SAC-CI. Variational solution always gives
an upper bound

for full CI, but it is very difficult to obtain it for the SAC/SAC-CI

expansion[2]. For the
lAl

and
lB2

Symmetries, ve also give the results

for the second excited states. Both total energies and excitation

energies of SAC-CI (especially, SAC-CI(B)) compare very veil With those

of full CI. We list the timing data in table 1. The CPU'time f'or SAC-CI

is much shorter tharl that for full CI.
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The results of t･he triplet excited states of H20 are
shown in table

2･ Here ve also show the pr･evious result of SAC-CI by Hirao and Hatano

[5] ･ We call it SAC-CI(H). The dimensions of SACICI(H) are smaller than

those of SAC-CI(A) and SAC-CI(B) , because SAC-CI(H) does not include spin

polarization type double excitation operators for triplet excited states.

We also show the results of the second excited states for the
3AI

and
3B2

LI

states:- Total energies and excitation energies of SAC-CI(A) and SAC-CI(B)

are in very good agreement With those of full. CI. The SAC-CI excitation

energies differ from the full-CI ones only to Within 1.4 %, though the

dimensions of SAC-CI are much less than those of full CI. Result.s of

SAC-CI(H) are also comparable and agree veil With those of full CI.

In conclusion, the SAC-CI method is conf､irmed to be quite accurate

f'or the singlet and triplet excited states of､ H20. The excitation

ener'gleS Calculated by the SAC-CI method agree to Within 1.4 % With t.hose

of full CI, though the dimensions of SAC-CI are three-orders-of-magnitude

smaller than those of full CI. The CPU time for SACICI is also much

shorter than that for full CI. The total ener･gies of SAC-CI(B) sometimes

overshoot the f'ull CI energies because of the non-variational nature of

the solution, though the energy differences between SAC-CI(B) and full

CI are very small. We conclude that the SAC/SAC-CI method is quite

reliable and eff-ective far the study of ground, excited and ionized states

of､ molecules.
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Table l･ Total energies and the excitation energies for the singlet ground and

excited states of H20 calculated by the full CI and SAC/SAC-CI methods.

state冒濫買主
Dimension

三:…言よ慧…詫;tion託;冒rc;rom冒冒Eea
(au) (eV) (%) (m上n)

1Al
ground state SAC

Ful 1-CI

1

3al (n) -4al SAC-CI (A)
SAC-CI (B)
Full CI

l b2(0) -2b2 SAC-CI (A)
SAC-CI (B)
Full CI

IA2
1bl(7r)-2b2 SAC-CI(A)

SAC-CI (B)
Full CI

IBl
lbl(7E)-4al SAC-CI(A)

SAC-CI (B)
Full CI

IB2
3al(n)-2b2 SAC-CI(A)

SAC-CI (B)
Full CI

lb2(0) I-4al SAC-CI (A)
SAC-CI (B)
Full CI

361

256474

360

:賂0

空莞打74

:姶0

360

256474

192

1監

a4500 0

216

216

245776

312

3I2
254752

312

312

254752

-76.
156254

-76.
157866

-75.
754848

-75.761
163

175.
75951 2

-75.
450Tl

-75.
45441 7

-75. 457584

-75.
756082

-75.
761 SX56

-7ち.
761 050

-75.
83391 0

-75.
840435

-75.
838288

-75.
664∈迫0

-75.
670341

-75.
670141

-75.
56461 I

-75.
568589

-75.571512

0.0 0.002

0.0

10.9229 0.8

10.7511
-0.8

10.8399

19.20& 0.8

19.0981 0.2

19. 0558

10.88SX3 0.8

10.7a;た
-0.6

10.7980

8.7715 0.9

8.594D -1.2
8.6兜

13.3765 0.8

13.2225
-0.4

13.ど718

16.09S6 0.9

15.9913 0.2

15. 9556

I.8

55

o.6b

2.Ob

1SX)b

0.1

0.6

82

0.2

0.8

82

0.4

I.5b

.193b

cDue to FACm rq80 computer.
hrhis

timing data is for the tvo占Ⅹcited-state solutions belonging to the saLme

symmetry.
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Table 2･ Total energies and excitation energies for the triplet excited states of

H20 calculated by the full CI and SAC-CI methods.

State Orbital

picture

Dimens ion. Total

ener gy

(au)

Excitation Error f'rom CPU

energy full CI timed

(eV) (%) (m上n)

3A2

3Bl

3B2

Bat(n)-ヰal SAC-CI(A)
SAC-CI (B)

l

SAC-CI (H)
Full CI

lb2(0)-2b2 SAC-CI(A)
SAC-CI (B)
Full CI

lbl(7E)-2b2 SAC-CI(A)
SAC-CI (B)
SAC-CI (H)
Full CI

lbl(7E)-4al SAC-CI(A)

SAC-C! (B)
SAC-CI (H)
Full CI

3al(n)-2b2 SAC-CI(A)
SAC-CI (B)
SAC-CI (H)
Full CI

lb2(0)-4a) SAC-CI(A)
SAC-CI (B)
Full CI

417

417

315

440475

417

417

440475

Z74

274

192

4m

294

芸)4

216

487520

410

410

312

441 120

410

410

441 120

-75.
794m

-75.
79SXm

-75.791
1SX)

-75.
7g71 74

-75.
5661 85

-75.
56EW23

-75.
569523

-75.
7r75095

-75.
780262

175.
776939

-75.
779926

-75.
tX54m

-75.
869Sm

-75.批314

-75.
867507

-75.718219

-75.
7221 34

-75.71
1568

-75.
721626

-75. 631 970

-75.
634992

-75.
635841

9.84e汀 0.3

9.7192
-1.0

9.934 1.2

9.8150

16.0567 0.3

15.9877
-0.

1

16. 00≦冶

10.m 0.9

10.2314
-0.5

10.322 0.4

10.2844

7.SW 0.6

7.7SX)4
-1.4

7.835
-0.8

7.9011

ll.91S6 0.4

1l.813l
-0.5

12.101 1.9

ll.8708

14.2fS66 0. 4

14. 1844
-0.2

14.2151

0.3

i.8

114

0.4

2.1

113

o.9b

3.7b

259b

oDue to FACCM M780 computer.
brhis

timing data is for the two solutions belonging to the same syTnmetry･
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THE SCF ORBtTAL THEORY

THE CLUSTER EXPANSION OF A WAVEFUNCT=ON FORMALtSM

K.H工RAO

Department of Chemistry, College of General Education,

､
Nagoya University, Nagoya, Japan

1. 工NTRODUCT工ON

工n the simplest possible descrlptlon of an N-electron

systems, one-electron function is associated with each electron

arld the N-electron wave function is a Slater determinant built up

from these one-electron functions. Thls independent particle

model, which has been developed in forms of the SCF scheme,

constitutes the basis upon which the language of quantum chemistry

ls founded. Thls review is intended to form a framework for the

SCF orbital theory. Our approach ls to start with the expression

for the N-electron wavefunctlon ln the one-particle cluster

expansion of a wavefunctlon.

Let us consider a wavefunctlon of the form

lo'- exp[ Tl】loo'

-

(1･Tl.計T12.計T13･
･･･ Io, [1】

where the reference function [oo'is an antisymmetrized product of

N one-electron functions and Tl is the one-particle linked cluster

generator

- 1 -



～

+ +

一oo, -

ala2-a品f,

T. =

∑f.bTa.1
1

1 1 1
[2]

The ket f> denotes a vacuum state･ alT and ai are Creation and

annihllatlon operators for single-particle states, bT are the
l

normalized one-particle cluster generators and the coefficients f.
1

are complex･ Thouless- theoreml states that the cluster expansion

given by [1】 corresponds to a transformation of a single Slater

determinant Foo'to another determinantal function

lop-T
l (a;十flb;=, 【3】

As a reference function, we choose a restricted single

determinant given by

l¢o'-

n

∑

k=1

+ +

abc(ak8 J'

J佃1甲1･ ･

･甲k甲k･ -q)n甲nI[
【4]

for 2n-electron closed-shell systems. Here "...J[ denotes the

normalized determlnant･ A bar above a spin orbital indicates that

lt ls associated wltb β spln･ For open-shell states, the

reference function is given by

loo'
q

【 ∑

k=1

+ +

ak∝akβ 】

p

【 ∑

m=q+1

+

am∝ ]l'
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= r[vl甲1･･･甲k甲k-･甲q甲q甲q+1･･･甲m･･･Ppll [5]

We define the number of unpaired spins ln the system by s

S
=

p
-

q

we
assu?e that the lo｡'or [o'in shorter version is an

elgenfunction of the spin operators S2 and S wltb eigenvalues
Z

s/2(s/2+1) and s/2, respectively. We will denote the simultaneous

spin eigenfunctions of S2 and Sz by

egM (J･-I,2,-I)

s2eg'M
-

S(S･1)OgM
I SzOgM

-

MOgM [6】

The index 3' runs over the independent spin eigenfunctions

belonging to the same elgenvalues of S2 and Sz･ the number of

which ls denoted by ′. We will construct the spin elgenfunctions

through the genealogical scheme,2 1n which a particular N spin

elgenfunction ls specified in terms of the eigenfunctions of all

smaller numbers of spins from which lt has been constructed. The

basis of the scheme is that an N spin elgenfunction can be

obtained by combining a single spin eigenfunction with an (N-1)

spin elgenfunction･ The possible routes to N spin elgenfunctlons

are conveniently summarized on a branching diagram.

Throughout the paper, indices k,I refer to the closed-shell

orbitals, m,n to■open-shell orbitals and i,j to general orbltals.

For the sake of convenience, we will separate the spin index and

employ the two-component operators･ The ai and bi are then

represented by column matrices,

- 3 -



【7】

The one-particle cluster generator Tl ls written as

Tl=Tc+To

where T and T are the one-particle cluster generators for
C 0

closed-shell and open-shell manifolds, respectively. These are

expressed in terms of the excltatlon operators as

T〈 = ∑ [

'11o=∑[
m

f｡,kS;,k
+

∑fて,kS:,k】
I (て-Ⅹ,y･Z)

て

f｡,mS;,m
･

fx,mS;,∩】 [8】

The closed-shell excitation operators are defined as

s;,k-ノ2b這o｡ak･ Sニ,k-ノ2b這gてak
(て-X･y･Z) [9]

and the open-shell excitatlon operators are given by

s;,m- bニq｡am I

s;,k- b這qxak [10】

Here oo and crて(て=X･y･Z) represent 2★2 unit and Pauli matrices,

respectively. The ど ln 【8】 are complex and their real part is

referred to as ど and imaginary part to as h, namely f=g+Lh.

The

S;,k
ls called the singlet excltatlon operator since lt

gener'ates a singlet-type excited configuration when operating on

the reference function Jo>

- 4 -



+

so,klo>
- "ql甲1-XkVk(∝β-紬)/J2････II 【11】

where xk is the spatial orbital created by

b;･
Similarly

S:,k
is

named as the triplet excltation operator since lt gives a

triplet-type excited configuration when operating on the

closed-shell reference function, wblcb is an eigenfunctlon of the

operator corresponding to て COmpOnent Of the total spin angular

momentum ,

s;,klo,
-

1佃1甲1-XkVk(∝β･紬)/ノ2･･･甲｡甲nll [12】

However, when the reference functlon lo> is an open-shell

determinant as ln [5], three triplet excitatlon operators generate

the spin contaminating excited states, while the singlet

excitation operators preserve the spin Symmetry. For instance,

the
S;,k Operator for open-shell systems can be expressed as a sum

of spin-adapted excltatlon operators,

s:,k
-

(i,1
2

s'2s:,k･(i,I
2

's'2''2s;,k

where

[13]

s'2s芸,k
- (S+2,~1 2【ぶ言(b芸∝ak∝-bこβakβ,･/i7i b這αakβ

m= aニβam∝]

(s+2'/2s;･k- (s･2,ll 2[b這∝ak∝-

b這βak8-bこ∝akβ
m=
aニβam∝】

- 5 -
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The S/2s+
p

,k

and (s+2)/2s;,kgenerate Singly excited states of spin

eigenfunctions ,

s/2s;,k[0,ニーlxk甲k甲q.1-甲m･･･中｡0冒′2s′2‖

(s+2)/2s;:,klo,-

"xk甲k甲｡.1-･甲m･･･甲｡efs′2.1)s′2‖
【15]

where

o冒/2s/2
- (s･2) [Js/2 (c(8･8c()c(...c(...c(-J2/s c(c( = c(...8...c(]

m

ofs'2･1's/2-
(s･2,-1

2[(∝β･β∝,∝･･･a･･･a
I

∝∝m:∝･･･β-･∝]

【16】

Note here that the Op ls a linear comblnatlon of the spin

elgenfunctions constructed by the genealogical scheme

o冒/2s,2
-

[悲,】12of;≦s′2･【
2(s+1)

】1 2e吉′2
s,2

These operators in [14] are essentially single excitation

operators, although they involve two simultaneous elementary

excitations, real excitation and spin flip in the last term,' due

t｡ the spin-symmetry requlrement･ The S/2s;,kOperator makes an

important role ln the spin correlation problem and ls called as

the spin polarization excltation operator.

The+sx,k and+sy,k eXCitatlon operators also generate the spin

contaminating excited states when operating on the open-shell

reference function.

Let S be the Ⅲermltlan conjugate of S+, S=(S+)千. From the

- 6 -



definltlon of the excltatlon operators, we see

s[o'-o 'ols'-o [17]

They satisfy quasiboson commutation relations

～ 【?Ⅰ･sJ]
-

【S;IS;] -0, <OL[sI･ S;]lo,-8工J

The unllnked clusters (S+)2, (s+)3,‥. generate doubly,

trlply,.‥ exclted states, repectlvely. The

[18]

(s;,k)2and (S:,k)2
give the same doubly excited state with a difference of a sign

(s;,k)2lo,ニー(s;,k)2[o,
- ‖甲1甲1･-XkXk-甲q甲q-" [19]

2. DETERM工NANTAL FUNCT工ONS

Let us now examine how the determinantal wave function can be

expressed ln terms of these excltatlon operators. For simpllclty

we will consider only the closed-shell case, but the dlscusslon

can easily be extended to the open-shell case. Any other Slater

determinant･ not actually orthogonal to l申o'･ can be expressed

I中> -

exp[ LFγ 】1¢o> ;

F
-与∑γ t ･fγ,kS;,k

-

f;,kSγ,k,
-

F;
(γ =

0,Ⅹ,y,z) [20]

The exponential operator eLF is unitary due to the Hermitian

property of F. Thus, the wave function lo> can be obtained from

the wave function [oo'by a unitary transformation･工f we define a

new fermion operator by
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ヽ

d;,k
-

eLFγ

a這e~LFγ
[21】

then we can rewrite the Jo> as a determinantal form

lo'-ごd;,k∝d;,kβl' 【22]

､

These operators satisfy the fermlon anticommutatlon relations.

An alternative prescription may be used to obtain the

determinantal wave function. Thouless' theorem can be written in

terms of the excitation operators as

+

[o> =耶exp【

k=fγ･kSγ･k】Jo>

[23】

The factor 3Z assures the normalization. It is apparent that the

lo> takes a determinantal form

lo'- TT

c:.,′山C:..,b['γ,kα)γ,kβ
[24】

where

c;,k
-

(aこ･f;,kb這qγ)′(1
･

Jf;,kl2)1
2

[25]

Here we denote f' by f/J2.

Tbe Hartree-Fock (ⅢF) wavefunctlon is the optimized one

within the space spanned by the determinantal functions generated

by the real singlet excltatlon operators

fo'-訳exp[吉go,kS;,k】fo'-kT
co,kαCo,kβJ'

+ +

- 8 -

【26】

where



c岩,k
-

(a芸･g占,kb這)/[
1. (g占,k)2】 [27】

The double occupancy of orbitals ls preserved･ The varlatlonal

cluster expansion of the wavefunctlon given by [26] or that of the

form

､

lo,-exp[ LGo ]], ;

Go-皇≡go,k(S;,k-So,k'
【28]

1s the EF wave function for the closed-shell systems. Thus, the

self-consistency effects can be expressed in the cluster expansion

of a wave function formalism.

we wish to go further beyond the HF approxlmatlon wlthln the

framework of the orbital model, that ls, within the space spanned

by the determlnantal functlons･ Ilowever, even if we extend the

varlational space by lntroduclng the remaining excltatlon

operators, we cannot reach beyond the HF approximation in case the

HF solution is stable. This paradox is called the ''stability

dilemma.-' 工t is clearly concerned with the problems of the

symmetry dilemma proposed by Lowdin･3 Tbe stablllty dilemma can

be resolved by projecting the determlnantal function onto the

correct symmetry Space. We can go beyond the HF approximation

only when the stablllty dilemma ls resolved･ 工n the next･ we will

consider the stability condition for the closed-shell HF theory

and then discuss the orbital theory including the electron

correlation.4･5

3. STAB工L工TY CONDIT工ON FOR ⅢARTREE-Foc冗 SOLUT工ON
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～

A general condltlon for the stablllty problems of the HF

state was first formulated by Thouless.1 clzek and Paldus6 and

Fukutome7 have shown that the stablllty of a closed-shell HF

solution involves four different types of stability. We will

review the stablllty condltlon for the HF solution ln terms of the

excltation operators.

Conslder a small displacement of the ⅢF wavefunctlon, given

by the unltary transformation,

Jo> -

exp【 LF ][HF> ;

F-三y=k='fγ･kS;･k-f;･kSγ･k,-F†(γ-0･x,y･z, [29】

where lIIIF, is the HF wave･function. In this case, the excitati.n

operators are defined by the ⅢF orbitals as a basls･ The energy

expectation ls given by

E - EIiF ･

L<HFJ[H･F〕f11F,

･宕<HFJ[[H,F],F】JIIF,
･... [30]

where EHF is the HF energy･ Due to the Brillouin theorem, we

have

<HF([H,F]fHF>
- 0 [31】

Tbls leads to a simple criterion that the energy corresponding to

lHF'should be stationary with respect to the type of variation

given by [29】. The energy is stable if

ぷ<HFJ‖H,F],F]JHF,三0

ー 10 -

[32】



This lnequallty ls known as the stablllty condltlon for the HF

state. Expandlng [32] we obtain the stabilty condition

1
foサAo Bo

吾

f岩 B岩 A;
f,昌･喜≡:…†AB…

Bt

A;

f
て

> o

f*
-

て

【33]

for all coefficients f･ ロere the fo and ∫ are the column vectors
LII

formed by fo,k and fて,k･ reSpeCtlvely･ The supermatrices A and B

are defined as

(A｡)kL -

<HF[s｡,kHS岩,I-
EHFIHF,I

(Bo)kt -

`liFIso,kSo,tII]IU'･

(At)kL -

<HFIsて,kⅢSニ,i-EHFIHF,I

(Bt)kL -

<HFIsて,kSて,tHIIIF' (て=X,y,Z) [34]

From the deflnltlon we see that A are Hermitian matrices while B

are not, since B†-B★. Hoiever, the supermatrices in [33】 are

again Hermltian. The three identical supermatrlces correspond to

the triplet-type excltations and the remaining supermatrix ls

associated with the the singlet-type excltations. Two types of

independent stability conditions are called as singlet and triplet

(nonslnglet) stability conditions. When the matrices A and B are

real matrices, the stablllty condltlons may further be simplified.

First consider the singlet stability condltlon. Tbe singlet

stablllty condition may be factored into two subproblems

- 11 -



†

go(Ao
+ Bo)go + hof(Ao - Bo)ho三0 [35]

where go and ho are column vectors of real and imaginary parts of

the complex column vector fo(=go+Lho)･ The matrices (Ao I Bo) are

sym皿etrlc under the assumption that Ao and Bo are real･ so unltary

matrices (U, V) may be found by which the matrices (Ao ± Bo) are

diagonallzed,

u†(A｡ ･ B｡)U-

D;

vサ(Ao
-Bo)V= Do 【36】

ⅠIere D are the diagonal matrices. If we further define the

unltary transformed excltatlon operators

p;･k -k=S;･kUtk
I

Q;･k-k=S;･kVtk [37]

together with

言o-U†go･古o=v†ho

Then, we have from [35】 that

∑

(Eo,k)2(D;)kk.∑ (E｡,k)2(D6)kk三Ok k

where

(D;)kk
-

<HFJp｡,kHP昌,k
- EH｡ ･ P｡,kP｡,kHfHF,

(Do)kk -

`HFIQo,kHQ岩,k
- EHF ･ Q｡,kQ｡,kH[HF,

- 12 -

[40]

【38】

[39】



Thus the singlet stability condltlon can be classlfled into real

and imaglnary COnditions,

(a)
(D;)kk三0･

forallk

real singlet stablllty condition

(b) (Do)kk三0･ for allk

imaglnary singlet stablllty condition

工n the same manner, each triplet stability condition ls

factored into real and imaginary conditions when At and Bt

matrices are real. Using the diagonal transformations, we can

define the new sets of triplet excltatlon operators P+ and Q:
and

て

coefficients喜てand瓦て
Then we have

(c)
(D;)kk

-

<HFIpて,kHPニ,k
-

EI-Ⅰ｡ ･

Pて,kPて,kll[IiF,之O

for all k, real trlplet stability condltlon

(d) (Dt)kk -

<HFIQて,kHQ:,k
- EIiF ･

Qて,kQて,kHlllF,三O

for all k, imaginary triplet stability condition

These stablllty condltlons ensure that the HF single determlnantal

wave function represents a true minimum of the energy functional

within the space spanned by all determlnantal functions. As

derived above the general variatlonal space is separated into

independent subspaces generated by the excltatlon operators and

hence, we obtain an independent stability condition for each

subspace. This factorlzation leads to a useful classlficatlon of

the orbital theories. We now discuss the lnstablllty conditions of

the ⅢF solution, suggested by the form of the above stability

conditions. For the sake of resulting formal simpllclty, we

- 13 -



employ the uncoupled approximation. That ls, the unltary

transformed excltation operator P+, Q+ are ･replaced by the

prlmltlve excitatlon operators S+･ The uncoupled approximation

slmpllfles the instability conditions to the following forms

(a) Eo,k-EHF+Kkk*<0･ for allk

real singlet lnstabllity condltlon,

(b) Eo,k-EHF-Kkk*<0･ for allk

lmaginary singlet instability condition,

(c) Et,k-EHF-Kkk★く0･ for allk

real triplet instability condition,

(d) Et,k-E‡IF+Kkk★<0･ for allk

imaginary triplet instablllty condition

where Eo,k and Et,k are energies of the singlet and triplet

excited states respectively and Kkk★ 1s the usual exchange

integral due to the relation of 【19】

E｡,k -

<HFIs｡,kHS;,klHF,

Et,k -

<HF(ST,kHS;,kfHF,

Kkk★ -

<HFIso,kSo,kHfHF>
- -

<HF[sて,kSて,kH)HF> [41]

工f these instablllty conditions are satisfied ln the HF solution,

1t means that lt does not represent a true minimum with respect to

the corresponding fluctuation and that another solution, having

- 14 -



the lower energy than the HF solution, must exist.

工n case of the singlet lnstabllity problems, the new

solutlons preserve the double occupancy of the orbitals and

therefore preserve the spin symmetry but they violate the space

symmetry. The real instability condition ls rewritten as

EHF - Eo,k> Kkk★之0 【42】

This implies that the singlet excited state has lower energy than

the ground state. Comparlng to the real and lmaglnary singlet

instability condltlons, we see that the lmaglnary singlet

instability may procede the real singlet lnstablllty. 工n case of

the triplet instability problems, the double occupancy, and

therefore the singlet character of the HF wave function, is not

preserved and unrestricted HF (UIIF) solutions appear. From the

imaginary triplet lnstablllty condltlon we see that the triplet

excited state has lower energy than the ground state

EHF - Et,k> Kkk★三0 【43】

when the ⅢF solution is lmaglnary triplet unstable.

we start from the reference determinant lEF> built from the

HF orbitals. By adding the variational subspace generated by one

of the real triplet excitation operators, we have the function

lo'= exp( iGz ]lHF';

Gz

-吉∑gz,k(S;,k-
Sz,k) [44】

where gz,k are real quantities･ Thetenergy for lo'is
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E - EHF ･

L<HFJ[H･Gz][HF,
･宗<HFI‖H,Gz],Gz]価,

･
･･･ [45】

First order correction to the energy vanishes due to the spin

symmetry indlcatlng that the energy be stationary. Thus, the

subspace added does work as the variatlonal space only lf the HF

solution ls real triplet unstable, namely lf

L2

言! <HF-=H,Gz]･Gz]fHF>
-

gz†(At
･ Bt)gz < o 【46]

Even if we extend the varlatlonal space by introducing the

excitation operators･ we cannot reach beyond the IiF approximation

ln case the EF solution ls stable･ This paradox ls called the

stability dilcmma･ When the HF solution is unstable, another･

solution･ having lower energy than the lip energy, must exist.

Unfortunately the corresponding wavefunctlon ls no longer

symmetry-adapted･工n this case, the spin-symmetry is not

preserved･ The release from the stability dilemma results in the

symmetry paradox.

Now consider the wavefunctlon by projecting out the component

with the correct symmetry

Jo'> -

os(申>
= Os exp【 LGz‖HF> [47】

where Os is the spin projection operator which selects the singlet

spin elgenfunctlons･ We see that t■he first order energy shift for

佃', vanishes and the stability condition is reduced t｡

gz†Btgz三0 [48]

due to the projection operator･ The stablllty condition [48】 1s
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equivalent to requlrlng that the Bt matrix be positive deflnlte･

Since the trace of the Bt matrix is nonpositlve,

Tr(Bt)
=

≡`HFIsz,kSz,kHIHF'-
I

k:

Kkk★三0 【49]

there always exists at least one negative elge-nvalue of the Bt･工f

the Bt has any negative elgenvalue, 1t ls possible to construct an

anti-Hermitian operator LG which violates the stability condition
Z

【48]. Thus, we can go beyond the ⅢF approxlmatlon･ The

spin-symmetry ls also restored. The projection operator

introduced preserves the symmetry property by projecting the

symmetry adapted components and also resolves the stablllty

dilemma by violating the stablllty condltlon･

Notlng the slgn of the trace of the Bo and Bt matrices

defined by [41],

Tr(Bo)
- ∑ <HFIso,kSo,kHFlllF'- ∑Kkk★三O

k

Tr(Bt) - ∑ <EFIst,kSt,kHF[HF'- -∑Kkk★三O
k

[50】

we see that the imaginary singlet a.nd real triplet stability

dilemmas can be resolved by applying the appropriate projection

operators. That is, the imaginary singlet and three real triplet

excitatlon operators generate the variatlonal space for the

improvement of the EF theory.

工n general, the closed-shell orbital theories lncludlng the

electron correlation can be defined as
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[o> エアexp[ LF ]Jo> [51】

where the F Is the excitatlon operator to give the variatlonal

space andタis the projection operator to resolve the stability

dllemma･ By appropriate choice of the excitation operator and the

projection operator, we can obtain the various orbital theories

proposed so far for lmprovlng upon the ⅢF approximation.

For the open-shell systems･ we can also derive the stability

condltlons for the restricted ⅢF (REF) solution in the same mannar

as done ln the closed-shell systems. Unlike the closed-shell

systems, the UI一IF wavefunctlon for open-shell states always leads

to lower energy than the RIIF wave function. The UHF orbltals can

+

be created by -making use of the Sz,k eXCltatlon operators･

Consider the lnflnlteslmal unitary transformation given by

Jo'- exp【 LFcz]fRHF, ;

Fcz

-王k:'fz,kS;,k
-

f;,kSz,k,
[52】

In this case, the open-shell reference function ls a RHF

wavefunction･ The energy for 佃> is

E - ERHF ･

L'RHFf[H･ FczHRHF, ･ -･ [53】

The relation 【13】 reduces the first order energy shift to

i<RHF[[H･Fcz'"HF, -

(読,1
2k=

fz,k<RH叩s/2s;,k[RHF,
･ C･C･

【54]

The first order correction to the energy does not vanish, implying
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that the RHF solution ls not stationary to the varlatlon described

by [52]. Thus the open-shell UHF wave function always leads to the

lower energy than the RHF wavefunctlon.

The open-shell orbital theory lncludlng the electron

correlation can be defined as

l¢'-?exp[ iFc･ LF｡】lo' [55]

where F and F are the closed-shell and open-shell excltatlon
C 0

operators respectively. By making use of the imaginary singlet

and two types of real triplet

(S: and

S;)
excitation operators･

we can construct the various open-shell orbital theories including

the electron correlation.

4. ANALYSIS OF THE ORB工TAL THEORY

Now we will analyze the orbital theories including the

electron correlation. Flrst, we will consider the alternant

molecular orbltals (AMO) for closed-shell systems proposed by

Lowdin8 and examine why one can remove a large part of the

correlation error simply by permlttlng so-called different

orbltals for different spins (DODS). The DODS idea ls used in the

uⅢF9 and spin extended HF (SEHF) theorieslO for open-shell states.

However, they are poor for both the electron correlation and spin

correlation. The SEHF Is a good example to understand the

importance of resolving the stablllty paradox. The generalized

valence bond (GVB) metbodll and complex molecular orbital (CMO)

method12 will also be discussed.
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(a) The DODS Type Wavefunctlon for Closed-Shell States

We start with the unprojected form of the DODS type

wavefunctlon ,

[o'-邪exp[

k:go,kS岩,k･吉gz,kS;,k]
Jo, [56]

When we start from the arbitrary determinant, not from the HF

wavefunction･ the real singlet excltatlon operators

(s;,k)
are

necessary tO generate the HF orbltals. If we define the new

fermion operators by making a canonical transformation,

c岩,k-(aこ･gム,kb芸)/[1
･

(g占,k)2]1
2

c昌,k★
-

(bこIgム,kaこ)/[1
･

(g占,k)2]1
2

the above wavefunctlon can be rewritten as

lo'-
kTT c這∝c芸βJ,

where

+
+

ck

-宅kC;,k
+ nkC｡,k★gz

with

【57】

【58】

[59】

考k=1/【1'(g去,k)2]1
2

, nk-g去,k/[1･ (g左,k)2】1
2

Let us introduce the spatial orbitals for c.,k and

c:,k.
+

c;,kf,
- (入k∝,入kβ) I

C岩,k.I,-
(リk∝,リkβ)

Tbe入k andリk are Spatlally･ orthogonal to each other and the

- 20 -

[60]

[61]



reduced density matrix for ]0> becomes diagonal

p(1J2)
-

∑2モ孟入k(1)入k(2)
+ ∑2

n孟vk(1)vk(2)k k

【62】

These functions入k･ Vk are therefore the natural orbitals･ Due to

the relation that宅孟･ n孟--･1･･-theモ孟is
the fractional

occupation probability for the natural orbita1入k and
n孟is

that

for tbeリk･工n terms of these natural orbltals･ we have

[o'- [lq･1aq,2a-q'naq'1bq'2b - q'nb"

q)ka =モk入k 'nkリk

qlkb =モk入k
-

nkリk

where

【63]

【64]

The new orbltals (p have the property that their spatial overlap

integral is diagonal and are called the corresponding orbltals･

This expression suggests that the･optimized cluster expansion of

the wavefunctlon of the form of 【56] is the UHF wave function for

closed-shell systems.

since the nk are Small numbers･ we can expand Jo'in terms of

the natural orbitals

Jo'- crf]orf'･ Cl[01'. C2]02'+ ･･･ [65】

1n the form of the llⅢited C工･ Here the ¢rf ls the normalized

restricted function with doubly occupied orbltals
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佃rf> = Jl入1入1･-入k入k-･入n入n--

with the coefficient given by

crf=ご(宅k)2

【66】

[67】

The reference function forf'is approximated as the HF determinant

but, of course, they will not be identical･ The functions lol>･

[o2'･ ･･･ are Singly･ doubly･-･ excited configurations,

cllol'=吉ノ2Crf(nk/tk'‖ll11･･･リk入k(αβ.紬)/ノ2-入n入n‖

c2Jo2>ニーk= Crf(nk/ek)2 11入1入1-リkリk･-入n入n‖

+ ∑

k

crf(nk/モk)(nt/宅t)If入1入1･
-リk入kリt入t(αβ+紬)(∝β+紬)/2-

･ lf

【68]

The higher order terms are written ln the same manner as above.

Note here that the singly and doubly excited configurations

include the nonsinglet spin states･ The closed-shell UHF theory

may exist only when the ⅢF solution is real triplet unstable,

which ls a striking contrast to the open-shell case. In case the

HF state is stable･ the coefficients nk are all zero due to the

stability dilemma.

Now we consider the wavefunctlon by applying the projection

operator and selecting the component of the singlet spin

elgenfunction
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Jo''- oslo' [69]

The variatlonal cluster expansion of [69】 1s the A…O

wave function.8 }t is called SEHF wave function by KaldorlO and GF

function by Goddard.13 As the projection operator acts only on

i

the spin part of the wave function, we can rewrite l申'■>als

lo-'- crflorf'･C2lo2'･ ･･･ [70】

The singly excited conflguratlons vanish due to the projection

operator. Tbe leading excited configurations are the doubly

excited ones. This is the reason why we can cover a large part of

the correlation effect simply by permlttlng the DODS ln

closed-shell case. The doubly excited configurations take the

form

c2Io2>ニーk= Crf(nk/tk)2 "入1入1-Vkリk･･･入n入n"

- ≡(1′ノ3)Crf(nk/ek･) (nL/モt) ‖入1入1･ ･

･リk入kリt入tOo2o-入n入n‖
k

【71]

e喜｡

where

=

((2∝∝β-∝β∝-β∝∝)β-(∝ββ+βはβ-2ββ∝)α)/ノ12

The spin coupling appeared ln the AMO wave function is

【72】

e吉｡
(I-2)

associated with the standard tableaux Sl･ This type of spin

coupllng 王s not keeping our lntuitlve idea such as electron-pair

bond.
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(b) The DODS Type Wavefunctlon for Open-Shell States

Let us consider the DODS type wave function for open-shell

systems represented by

[o'-訳exp[

k=go,kS岩･k+k=gz,kS;･k･=go,mS;,m
]lo, [73]

m

Here Jo, is the open-shell reference function as in [5]. The above

wavefunctlon ls expressed as a determinantal function

Joy- 【

kTT c;∝c這β‖mT cニJJ,
[74]

wllere

+ +

ck

-モkC;,k
･ nkC｡,k★Oz

+

c
-

(aニ･gム,mbニ)/[1.(gム,m)2]1
2

m
[75]

Now let us define the spatial orbital ^m for

c:･
Then the reduced

density matrix for Jo> becomes

p(1J2)
-∑2モ孟k

入k(1)入k(2) +

∑2n孟リk(1)リk(2)
･ ∑入m(1)入m(2)

k m

[76]

The入k,リk
and入m are also natural orbitals･ If these natural

orbltals are replaced by

qlka =宅k入k
+ nkリk

q)kb =宅k入k
-

nkリk

- 24 -



q)ma
=

入m

then we obtain the expression for lo>

l申> ≡ ][vla甲2a-
･甲pa甲1b甲2b-甲qb"

[77]

【78]

since the nk are Small numbers･ we can expand [0'by means of

the natural orbitals as in the closed-shell case

l¢'- crflorf'･ Cllol'･ C2Io2'+ 【79]

For open-shell case･ the singly excited configuration lol'is not a

spin elgenfunction and can be expressed as

Iol, -

(i,1
2k=S/2"kP,

･

(士,1

where

2∑ (s+2)/2

k

s/2lokP, -

"vk入k･･･入q.1･･･入m･･･入｡8冒′2s/2Jl

]o孟,
【80】

(s'2)/2l¢孟,-

‖リk入k･･･入q.1･･･入m･･･入｡Ofs/2.1)s/2"
[81】

This result ls a consequence of the` relation given by 【13]. Thus

the (s+2)/2[o孟,are the main spin-contaminating configurations of

the UHF wavefunctlon.9 For example, taking 3-electron doublet

spin state (s=1);

s/2o冒′2s′2

1/2o12/2
1′2

-

(∝紬･--2∝∝β)′J6

(s'2)/2efs/2.1)s/2

- 3/2e去′21′2

- (-･紬∝･∝∝β)′ノ3 [82]
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Thus･ the open-shell UHF solution always exists due to the

configuration of S/2JoP,.

Now consider the SEHF (GF) method.10･13 The SEⅡF

wave function ls the optlmlzed one of the form

)osEH･F;= os[申UHF> 【83】

Expanding l申SEHF, in terms of the natural orbitals, we obtain,

instead of [79], that

l◎SEHF> -

crfrOrf> ･ CIOs[¢1> ･

C20s1申2> ･ [84]

In the closed-shell SEIiF wave function, the singly excited

cotlfiguratlons vanish due to the projection operator. 工n open

shell case, however, the singly excited configurations still

remain even if we apply the projection operator･ The singly

excited configurations in open-shell SEIIF wave function become

oslo1,
-

(-ま㌃)1
2k=

S/2JokP, [85】

The l汀1prOVement from the REF energy orlglnates from the singly

excited conflguratlons, not from the doubly excited conflguratlons.

The open-shell SEⅢF theory takes the orbital correction into

account but it does not involve the electron pair correlation

through the two-body interactions. We should note that the

closed-shell and open-shell SERF theories are constructed on a

quite different approximation.

The

S;,k
Operators Which give the DODS orbitals are a sum of

the spin-adapted excitation operators as shown in [13】.工f the
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s;,k
operators are replaced by spln polarization operators s/2s;,k

1n the SEⅢF method, the resultant wavefunctlon constitutes our

pseudo-orbital theory,
14

Jo, - os,7 exp[

k:go,kS;,k
･吉gz,kS′2s;,k

+

m?
go,mS;,m

]Lo,

- os耶exp[

k= gz･kS/2s;･k】1RHF,
[86]

Then the first order correction vanishes to the expectation value

of one-electron spin dependent operators. Therefore, the

psuedo-orbital theory involves the spin correlation correctly and

gives the reasonably accurate spin density wlthln orbital

theoretic approach.14

on the other band･ 1f the (s+2)/2s;,kOperators are

considered instead of the

S;,k･
We have

l申, - Os刃exp[

k= go･kS;･k
･

k= gz,k`s'2'/2s;･km= go･mS;･m]1o,
[87】

The unprojected wave function of 【87】 has the stability dilemma,

unlike the SEHF one, and the projection operator resolves the

dilemma. Tbus, the electron correlation can be included through

the unllnked clusters of (s+2)/2s;,k･When the two excitation

operators, s/2s;,kand (s+2)/2s;,k･are treated independently･

both the spin and electron correlations can be described correctly.

+

Ⅲowever･ when these two operators are combined to yield the Sz,k

operator like in UHF and SEHF theories, two effects interfere each

other and the method becomes poor for the description of the
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ener'g:y and the spin density･ tn the UHF theory, the stability

dilemma does not occur due to the existence of the spin

polarization operators･ S/2s;,kI and the self-consistency effects

(unlinked terms) of the spin polarization operators should be

distorted by th9-一-u-nlinked terms of the (s+2)/2s;,kOperatOrS･ The

pseudo-orbital theory ls free from these theoretical defects｣ A

proper lncluslon of the (unlinked) self㌧conslstency effect ls

quite important and the pseudo-orbital theory realizes this

requirement in a simple orbital framework.

(c) Complex Molecular Orbltals

Next we consider the complex molecular orbita]_s (CMO) for

closed-sI-elユ states described by

佃'- oR耶exp[
k: fo,kS昌,k】Io, [88】

The fo,k are COmplex and the unprojected form of 【88】 leads to the

complex fIF theory･12 The OR is the projection operator which

selects out the real part of the wavefunction･ This operator

recovers the space symmetry violated by the imaginary singlet

excitation operators･ It ls apparent that

[o'- oR

kTr c這｡cこβI,

where

[89】

+
+

ck- (c岩,k･ihム,kC｡,k★)/【1･(h占,k)2]1
2

[90]

+

The co,k and

c岩,k★
have the same form as defined by [57】. In a
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similar manner, we can define the coefficients宅k and nk by

モk-1/[1･(h占,k)2]12･ nk-h占,k/[1+(h占,k)2]12
[91】

+

and spatial orbitals入k andリk for c｡,k and

c岩,k.
, reSpeCtively･

Then,入k andリk are again the natural orbitals of the unprojected
l

wave function of [88ト The CMO wavefunctlon■can be expanded ln the

limited C工 based on its natural orbitals

lo'- oR】I (モk入k + tモkVk)(宅k入k +叫kリk) Il

-

crfl¢rf'･C2l¢2'+ - [92】

The reference function is again a restricted wavefunctlon with

doubly occupied orbltals. The slngly exclted conflguratlons

vanish due to their pure imaginary property. The doubly excited

conflguratlons have the form

c2(02,ニーk: Crf'nk'ek'2 ‖入1入1･ ･

･リk石:T･5;*in丈n1.

+ ∑

k

Crf(nk/ek)(nt/モt) ]l入1入1･ ･

･リk入kリt入t(c(β-8c()
(c(β-Bc()/2･ ･ ･ )I

【93】

The CMO wavefunctlon involves the choice of the singlet type spin

couplings represented by OJ･ The singlet spin coupling may cause

the lower energy than the corresponding spin polarization type

spin coupling appeared in SEHF wavefunctlon since the former might

be thought as representing covalent bonds but the latter is not in

keeping our lntultive idea such as electron pair bond. Tbus the
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CMO theory gives the lower energy than the SEEF theory.

Now we define the wavefunctlon expressed as

lo, -訳exp【

k:go,kS岩,k･喜k: 'Lho,左so,孟'‖o,

Then we can rewrite the above wavefunctlon as

0> = TT

k c:k
I, [95]

【94]

+

where ckk ls the two-particle creation operator

cこk
-

【e岩,k∝C;,kβ-(h占,k)2c;,k.∝C;,k★8]/[1
･

(h占,k)4]1
2

[96]

Note hcrc that the
(Lh.,kS;,k)2

are the unlinked terms of the

imaginary singlet excltatlon operators but they generate

two-particle cluster functions. 工f we further define

モk-1/【1+(h占,k)2]12･nk-h占,k/[1+(h占,k)2]12 [97]

+

and the spatial orbitals入k andリk for c｡,k and

c岩,k.
I We have

lo'-l[q'1a甲1b(c'β-紬)/ノ2
-甲na甲nb(∝β-8c()/ノ2

Il

q'ka =･宅k入k+ nkリk I ～)kb =宅k入k- nkリk

where

【98】

[99]

The甲ka and甲kb Satisfy the strong orthogonality condition that

the orbltals are ortbogonal each other unless they are singlet

paired,
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<q,kal甲kb'≠0 I <甲kJ甲t'- 0 【100】

Therefore the optimized ]0'in [94] is the GVB wavefunctionll

proposed by Goddard. Thls type of wave function was first

suggested by Hurley et al.15 under the name of the paired-electron

l

approxlmatlon. The'GVB wavefunctlon ls also expanded as a llmlted

C工 based on its own natural orbitals. Tbe expansion ls analogous

to those of the SEHF and CMO wave functions. However, the GVB

wave function only includes the paired-type doubly excited

configurations ;

Il入1入1-
･リkリk- ･入n入n(l

Thc CMO wavefunction -for open-shell systems is also dcfincd

in a slmllar manner as ln 【88ト The wavefunctlon involves the

singlet type spin couplings OI associated with the standaLrd

tableux S∫ ･ For example･ the spin coupling appeared in the

doubly excited configurations for doublet spin state is

oI/21/2
≡ (∝β-β∝)(∝β-β∝)α/2 [101]

The spin polarization type spin coupling represented by OP does

not appear ln the CMO method. Tbus the CMO is not suitable for

the calculation of the spin dependent properties.

(4) Complex DODS Wavefunctlon

Next consider the wavefunctlon defined by

)o'- oROs耶exp【

k:fo,kS;,k

･

∑gz,kS;,kユlo,

- 31 -
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The 佃'can be written in the following determinantal form

(o'- oROs

km C這∝cこβI,
[103]

where

+

ck

I-モo,k宅z,k【c昌,k
･(nz,k/ez,k )c'｡,k.qz ･

i(n｡,k/e｡,k)c岩,k.

-i(no,k /モo,k)(nz,k/モz,k)c岩,kqz] [103】

The宅o,k
･no,k ･宅z,k

and nz,k have the same form as defined

previously･ In terms of the natural orbitals入k,リk for

c岩,k
and

+

co,k* I
We Can expand the wave function as

fo'- crf[orf, ･ C2lo2, + [104】

mhe reference function is again the restricted wave function with

64ubly occupied orbitals･ The doubly excited configurations contain

possible two independent spin elgenfunctlons OJ and O′ (′=2)

lルk入kリt入L(c(β18c() (c(β-βc()/2fl

lJvk入kVt入t(2∝∝β-c(8c(-8c(c() β- (c(ββ.8c(β-2β帥)c(/ノ12-J

The complex DODS method leads to lower energy than the other

orbital theories discussed above.

For open-shell systems, the complex general spin orbital

(GSO) theory defined by the following cluster expansion

l◎'=ヂ耶exp[

k:fo,kSo,這+k:gx,kSx,こ･
∑fo,mS岩,mm
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･

=gx,ms;,m]Io,
m

【105】

corresponds to the complex DODS theory for closed-shell systems･

The projection operator タ, which resolves the stability dilemma,

takes the formタ= OROsOM･ The OM Selects out the spin symmetry

l

adapted components of Sz operator characterized by M･ We see that

doubly excited configurations of [0> involve the two types of

independent spin elgenfunctions, that ls, the singlet type OJ and

the spin polarlzatlon type

We have shown that the stablllty of the HF solution leads to

a concept called stability dilemma. Only when the stability

dilemma ls resolved, the electron correlation effect can be taken

into account through the unllnked terms of the one-electron linked

clusters (excitation operators) wlthln the framework of the

orbital theory. The stability and symmetry paradox can be resolved

by projecting the determlnantal wave function onto the correct

symmetry space. The various orbital tbeorles can be obtained by

the appropriate choice of the excltation operators.

Tbe limited C工in terms of natural orbitals can be used to

study the internal relationship of various orbital theories.

TABLE 1

The doubly excited configurations in the limited C工 based on the

natural orbitals of G∀B, AMO(SEHF), CMO and Complex DODS

wave functions for closed-shell states.
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GVB

AMO(SEHF)

CMO

Complex DODS

IJukリkC(8 "

I(ukリkC(8 JI

IJリk入kリt入t( (2∝αβ-c(8c{-8c'c()8-(c(ββ.紬β-2β8c()c()/J12f[

JJukVkC(β lJ

Hvk入kVt入t(∝β-8c() (c(β-βc()/21I

f[ukVk∝8 JJ

[Iuk入kリt入t(c(8-8c() (c(8-8c()/2Jl

"リk入kリt入t( (2cm8-c'8c(一紬∝) β-(cWβ.Bc(β-2ββc()c()/ノ121I

TABLE 2

The leading excited configurations ln the limited C工 based on the

natural orbltals of UEF･ SEHF, GVB, CMO and Complex GSO

open-shell wave functions for doublet spin states.

UHF

SEHF

GVB

singly excited conflguratlons

J[vk入k入m(c(8'βc() c(/ノ21J

IJvk入k入m( c(8c('8c(c(-2c(c(8 )/ノ6 Jl

doubly excited configurations

J(リkリk入mC(8c( fl
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CMO

Complex GSO

llリkリk入m∝紬Il

"リk入kリt入t入m(c(β-8c() (∝β-8c()c(/2"

I)リkリk入mC(8c( "

llリk入kリt入t入m(c(β一紬) (c(β-8c()c(/2LI

llリk入kリL入t入m((2c"β-∝紬一紬∝) β-(∝ββ+紬β-2β紬)α)a/J12I[

]lvk入kVm(∝β一紬)c(/J2 1]

The leading excited configurations are most important since the

higher order terms arise just from the self-consistency effects･

In TABLE 1 and 2, we summarized the leading excited configurations

appeared in the limited CI expansion. From these we can expect

Ecomplex
DODS三EcMO三EAMO三EGVB

for closed-she11 states

Ecomplex
GSO三EcMO三EGVB

<< EsEIiF < EufIF

for open-shell states

We assumed that natural orbltals defined in each orbital theory

are not ldentlcal but similar and that the singlet type spin

coupling Ⅲay cause the lower energy than the correspond'1ng spin

polarization type spln COupllng■.

5. BRUECKNER ORBITALS

The HF wavefunctlon is a best energy wave function among all

possible determinantal functions. Then the first order correction

to the energy vanishes due to the Brillouin theorem and also
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vanishing are the first order corrections to the electron density

and to the expectation value of the spin-free one-electron

OperatOrS･ Another critelron of goodness ls that of maximum

overlap with the exact wavefunction･ The besトoverlap

wave function ls the determinant with least mean-square devlatlon

from the exact wave function. It can be shown that the

best-overlap orbltals are identical with Lowdin･s exact SCF

orbltals･16 The best-overlap determinant has the very interesting

property that lf we expand the wavefunctlon in terms of the

best-overlap orbitals to a complete basis, then no singly excited

configurations appear in the expansion. The orbitals are also

called as the Brueckner orbitals.17

The Brueckner orbitals can easily be obtained lf one uses a

cluster expansion of the wavefunctlon. Consider the cluster

expansion of the wavefunctlon

lo, -

exp[ s 】Jo> ;

s=cISl+C2S2+
･-+CNSN

`ooJ¢o'- <oo(o,
- 1

with

【107】

[106】

Here S･ 1s a linked cluster operator whlcb producesトfoldl

sym皿etry~adapted excited conflguratlons when operating on lo> and

C･ 1s an expansion coefficlent･ The Schrodinger equationl

(H-E)[0,- (H-E)eS】o,-o 【108]
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1s then projected against a sufflclent set of the excited

functions to generate a series of nonlinear coupled equations

<sile-SHeSlo>
- o [109]

The total energy ls given by projecting of the Scbrodlnger

l

equation onto the reference state,

'o]e-sHeS[o,
- E [110】

This ls our symmetry-adapted-cluster (SAC) theory for the ground

state.18 Now let us choose single, double and triple excitaions

as the linked cluster,

lo> =

exp[ciSi･CI〕Si)･Ci)kSi)k】Io>
【111]

Here we used a brief notation that the repeated index implies a

summation

C.S.
1 1 若ciSi

I CijSij

=若)cijSij
, etC

Then we have

･si[H[0,
+

<Si]H
-

EIc)s), ･

<siIHIc)kS)k･計(c)s))2,

･

<silHIc)ktS〕kt･ C)CktS)Ski
･計(c)s〕)3,

- o [112]

工f we use the Tbouless' theorem, we get

lo> -

exp[ci)Si)･ Ci〕kSi]k]lo-> [113]

Here lo-> 1s again a determinantal wavefunctlon. Thus, a stepwlse
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optlmlzatlon of [113】 1s possible by first guessing Cl･ then

obtaining a new (o'> which can then be the starting point for the

calculation of a new Ci With 【112]･ etc･ When the lteratlon ls

completed, we can always choose orbltals such that all C. vanish
l

ldentically･ Note that the corresponding variational prlnclple for

the HF wave function

Jo'- exp[ ciSi ]lo,

leads to the Brillloun condition

<siJliJo'- o

Now･ 1mposlng Cl= 0･ we get from 【112】

[114】

【115】

<sifI-IJo>
+

<siJIiJc)kS)k>
･

<SiII-r[c｣ktS｣kL>
- 0 [116】

This is called as the Brlllouin-Brueckner condition and ls

actually a condition for [0> to be the Slater determinant that has

maximum overlap with the exact wave function.

The Brueckner orbltals are useful in nuclear theory. But in

atomic and molecular problems the Brueckner orbltals have any

noteworthy advantage and lt ls believed that the Brueckner

orbltals for closed-shell state do not usually differ much from

the IiF orbitals･工n order to examine this, we have calculated

Brueckner orbitals for H20･ The calculations were performed with a

double zeta quality basis, the same as that used ln the earlier

full CI calculations･19 These calculations are reported at three

c2v geOmetrles･ corresponding to stretching of the OⅢ bonds to Re･

1･5*Re and 2･0*Re･ Results are summarized in TABLE 3･ For
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equlllbrium geometry･ Re･ two sets of orbltals resemble each other･

The energy difference ls only 0.0007 au and the overlap integral

between Brueckner and HF determinants ls 0.9997. HolVeVer, When a

single determlnantal expression ls not a good approxlmatlon, the

best-energy and best-overlap orbitals differ conslderably･ For

2･0★Re･ the energies differ by O･022 au and the overlap between

two wavefunctlons is 0.9782. TABLE 3 also includes the

correlation energies calculated by the SAC theory based on the

Brueckner orbitals. The best-overlap determinant includes no

singly excited conflguratlons ln the expansion of [106]. This

leads to considerable slmpllficatlon ln the SAC theory.

TABLE 3

Comparison of HF orbitals and Brueckner orbitals for I-I20

1.5★R 2.0★R

EⅢartree-Fock

EBrueckner

-76.009842 -75.809774

-76.009102 -75.797353

<¢HF [oBrueckner' 0･999679 0･995653

-75.595188

-75.573106

0.978160

Correlation energy (au) based on the Brueckner orbitals

SAC with S2 -0･146240 -0･205402

SAC with S2 and S3
-0･147391 -0･209178

full C工(ref.19) -0.147030 -0.210992

-0.300733

-0.311659

-0.310067
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6. SUMMARY

We have discussed the SCF orbital theory with the formalism

of the cluster expansion of the wavefunctlon･ Especially we

stressed on analyzing the structure of the SCF orbital theory

lncludlng the correlation effect･ The stability and symmetry

paradox may always be resolved by applying the appropriate

projection operator to the deter皿inantal function. The best

results obtained if the varlatlonal parameters are revarled after

projecting out the component of the trial wavefunctlon with the

correct Symmetry properties, lead to the varlous SCF orbital

theories proposed prevlously･ However, the procedure ls sometimes

difficult from the computatlonal point of view.

Although the orbital theory constitutes the basis upon which

the language of quantum chemistry is foundedt lt is certainly
●'4

●

necessary to go further and perform a study of postcorrelatlon lf

more accurate information is required･ The very promising

approach to the correlation problem is the theory based on the

clus･ter expansion of the wavefunctlon. As shown above, the

one-particle cluster expansion which corresponds to the HF theory,

gives the 99% of the total energy･ The orbital theory including

correlation effects takes into account the two-particle

interaction through the unllnked terms of the one-particle cluster.

Thus, the next step for improving upon HF theory is to consider

two-particle linked cluster explicitly. This is our SAC18 and

-
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SAC-C工20 theories.工f we consider one- and two-particle clusters

at a time, then we can recover 98% of the correlation error･
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ABSTRACT

The electrostatlc calculation for molecules using approximate

wave functions leads to well-known difficulties connected with the

application of the Ⅲellmann-Feynman tbeore皿. Tbls ls due to the

basis set inadequacies ln the underlying SCF/MCSCF calculatlons.

This defect can easily be remedied by floating functions whose centers

are optimized ln space. We can keep almost everything of the

traditional wave function with nuclear fixed basis set, but we apply

single floating to ensure the Hellmann-Feynman theorem. Tben one can

obtain a wave function obeying the Hellmann-Feynman theorem. This provide5

a great conceptual simplification and may lead to practical advantages.

The single floating scheme.wbicb retains one expansion center per nucleus

ls successfully applied to a series of small molecules using SCF and

CASSCF wave functions with sdfficiently polarized basis sets.
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Ⅰ.工NTRODUCT工ON

The derivatives of the potential energy hypersurf.a_ce are of

fundamantal importance in studying molecular geometrles, vlbratlons,

chemical reactions and dynamlcs･ The analytical calculatlons of

energy derlvatlves has received much attention in the past

decade･1･2) First and second derlvatlves can now be calculated

analytically for a variety of wave functions by direct dlfferentlatlon

of an expectation value of the Hamiltonian･ The gradient of total

lnOlecular energy with respect to nlユClear coordinates, X Is gjーVen by
a

霊-哀<y-,-<y針y,･<諾,H",.<VfIII'B;, '1'

∂

a a a a a

The negative gradient equals to the force acting on nucleus a and lt

ls called as the Born-Oppenbelmer force.

The =ellmann-Feynman theorem3) offers an attractive alternative

to the direct dlfferentiatlon･ Theorem states that･ the force holding

the nuclei together ln a molecule could be given an entirely

classical lnterpretatlon once the electron density has been computed

by quantum mechanlcs･ This electrostatlc theorem results ln the

simple formula for the force on nucleus a

f

--<vlS!fV,
a

a

(2)
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if V and E are exact eigenfunction and eigenvalue of li･ This seems a

very simplification since the derivative of the Hamiltonian･

involving only-one-electron operators, is much simpler than the

derivative of the expectation value of the Hamiltonian･ The so-

called Hellmann-Feynman force obtained 主.rl
_this

way will agree with

the energy derlvatlve.

The Ⅲellmann-Feynman theorem ls apparently valid even for

optimal varlatlonal wavefunctlons. However, the appllcatlon of (2)

leads to well-known dlfflcultles connected with the appllcatlon of

the Ⅲellmann-Feynman theorem.4-8) The error ln the =ellmann-Feynman

theorem arises essentially from the basis set inadequacies ln the

underlying calculations. The rlellmann-Feynman force is extremely

sensltlve to the small error ln the wavefunctlon, particular】_y near

the nuclei of interest. This small error is enough to vltlate any

force calculation. 工n spite of its great theoretical significance,

the Hellmann-Feynman theorem has been of surprisingly little value

for practical calculations and its value has been largely conceptual･

The valldlty of the Hellmann-Feynman theorem requires some

condition when LCAO approximate wave functions are employed･ Ⅲurley9)

sholVed that the Ⅲellmann-Feynman theorem ls satlsfled by the

wave function built from floating functions, whose centers are

optimized ln space. NakatsujilO) showed that a sufficient condltlon

for the Hellmann-Feynman theorem ls that the basis set includes the

derivatives for every basis function. Floating corresponds to the

addition of derlvatlve functions. 工n other words, the addltlon of the

derivatlve AO gives the freedom of floating to the parent AO. The

different point ls that the addition of derivatlve AO gives lower energy
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than the floating functions since the basis set space due to the addltlon

of derivatlve AO becomes much wider than that of floating.

Floatlng functions make the optlmlzation of wave functions more

cornpllcated since a new set of varlational parameters ls introduced.

IIIowever･ the optimization of orbital centers is now trivial with

recent developments ln second-order tecbnlque for optimlzatlon of

geometrles･11) clearly･ the Ⅲellmann-Feynman theorem ls very nice

theorem･ lending itself to a clear-cut conceptual picture.

Furthermore the tl-eorem leads to a considerable reduction of

computatlonal work for the higher energy derlvatives. In view of

these･ we decided to reexamine floating functions obeying the

lle_llln('11nr卜Feynman theorem.

sin(児the introduction o･f.floating functions by lltlrlcy,9) the

calculatlons of molecular wavefunctlons and properties using floating

functions have been reported by several authors. Frost12)introduced

floating spherical gaussians in 1967 and liuber13) has studied the

floating orbital geometry optl皿izatlon皿ethod･ Nakatsu.jl and

coworkers14) have carried out the force-theoretical studies. More

recently, Helgaker and Almlof15) calculated properties using floating

gaussian orbltals･ They used floating for an alternative to adding

polarization functions･ Hurley reinvestlgated the subject and stressed

the usefulness of the Hellmann-Feynman theorem.16)

The floating functions are translationally invariant and satisfy the

Ⅲellmann-Feynman theorem but the orbltals may have tbelr cusps off the

nuclel･17) The floating seems simply and conveniently to include the

major portion of polarization effects but at the same time floating

introduces the less desirable characterlstlcs ln the wavefunctlon, the
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dlscontlnultles ln the wavefunctlon ln the viclnlty of the nuclei. The

floating reduces the electron density at the nuclei, as discussed

earlier by Shell and Ebbing.18) Thus, floating produces only minor

changes ln the energy lmprovement･ Indeed, floating ls less effective

than adding polarlzatlon functions. Other properties, especially ln

､
which polarization effects play an important role, are often

signlflcantly improved.15)

The method proposed in this paper ls related to the floating

functions, but lt ls presented in a different philosophy. 工f one

wants to satisfy the I-Iellmann-Feynman theorem, one is inevitably led

to floating of basis functions. Iiaving realized this, we want to

keep the splrlt and loglstlc of the standard SCF/MCSCF as long as

possible. These days we are using the fully polarized basis sets.

The conventional SCF or correlated wavefunctlon with nuclear fixed

basis ls, on the whole, not really bad, 1t only has dlfflcultles to

represent the electron density in the neighborhood of nuclei and this

region ls very crltlcal for the electrostatlc theorem. We can remedy

this by floating a wave function.一 工f polarization and -related effects

due to floating are included sufflclently in advance by other features

in the wavefunctlon, the displacement of the orbital posit.ions from the

nucleus and the energy improvement can be expected to approach zero ln

order to mlnlmlze the effect of the dlscontinultles. The key idea ls

that we can keep almost everything of the traditional wavefunctlon with

nuclear fixed basis set, but we do apply floating ln order to satisfy

the liellmann-Feynman theorem. The floating is carried out only for the

Hellmann-Feynman theorem, not for the energy improvement.

We first calculate the equilibrium geometry of a molecule
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through the usual geometry optlmlzation procedure according to the

crlterlon that the gradients are zero･ Then we detach the expansion

centers and optimize the positions, keeping the nuclear positions

flxed･ Floating makes the wavefunctlon obey the Hellmann-Feynman

theorem, but the wavefuncti9_p is improved accordingly and the equilibrium

geometry will shift from that before floating･ However, 1f floating has

little effect, that ls･ the improvement due to floating ls llmlted to

remedy the wavefunctlon near the nuclei, the devlatlon ls expected to be

small enough that the Hellmann-Feynman force remains in the acceptable

error･ Then･ we can go into the next step, for instance, the calculation

of higher energy derivatives.

The main message of this paper is that one can obtain a wave function

()beying the flellmann-Feynman theorem simply by floating･ This provides.･1

great conceptual slmpllflcatlon and皿ay lead to practical advantages.

The main interest of this paper ls not in the numerical results but ln

their analysis and ln the conclusions drawn from this analysis.

In Sec･工工we present and discuss the results of our calculatlons on

a series of test molecules･ In Sec･ⅠⅠI some general conclusions are

sul□marlzed.

工Ⅰ･ Results and DIscusslons

The floating functions required for the Hellmann-Feynman theorem

may be obtained by detacblng the basis functions from the nuclei and

transferring them to new expansion centers･ The total energy ls

mlnlmized with respect to varlatlons of all the expansion centers of

basis functions.
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=n many cases diffuse functions would go wide of their parent atom,

often breaking symmetry of the molecule and occasionally coming to rest

close to another atomic center. Such behavior ls not acceptable and lt

ls often used to attach diffuse orbltals to the same floating center of

the less diffuse orbitals. Whenever the expansion centers of orbltals

wltb angular momentum hlgber than zero are optlmlzed, a combined floating

center for all components of the shell should be used in order to

preserve the rotational lnvarlance of the shell･ The important point ls

that all the expansion centers whichever they are independent or

combined, should be optimized so as to satisfy the liellmann-Feynman

theorem. Although floating of innermost orbltals has a negligible ef-ビect

on the calculated properties, their positions must be treated as a

variational parameter in view of the i-Iellmann-Feynman theorem･ When the

bond functions are used, their posltlons must also be determined

varlatlonally.

The standard computer programs for geometry optimization of a

molecule can well be adapted to yield floating functions. The basis

functions are put on dummy nuclei with zero nuclear charge and bare

nuclei with the appropriate nuclear charge at the nuclear positions. The

positions of the expansion centers are optimized in the same manner as

nuclear posltlons.are optlmlzed in geometry calculations. The

Ⅲellmann-Feynman force ls very sensitive to the displacement from the

nuclei･ A convergence crlterlon of 10-7 atomic units was adopted for the

gradients.

The Hellmann-Feynman forces were calculated with different basis

sets. For each basis set we carried out one calculation with the

fixed basis set and one calculation ln which･ the positions of the
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orbital centers were varlatlonally optlⅢ11zed. For the first row

atoms we used the Ⅲuzlnaga-Dunning double zeta [4s2p]19) and triple

zeta [5s3p】20) basis sets. For hydrogen we used the

Huzinaga-Dunning [2s] and [3s】 basis with the scale factor of 1.2.

single polarlzatlon function ls taken from the llterature21) and the

exponents of double polarization functions are basically composed of

the second and third outermost prlmltlve gausslans of their valence basis

-functions･ All calculations were performed using HONDO7 program

system.
22)

A. Floating Schemes

We utilized the floating procedure Just for the valldlty of the

ITcllmann-Feynman theorem･ We don't want to improve the whole

wavefunctlon･ We do want to remedy only a poor descrlptlon of the

wavefunctlon near the nuclel･ For this purpose, the single floating

scheme ls expected to be the most appropriate. To illustrate this we

calculated H2 and CO molecules using various floating schemes at the

SCF level.

Table工glves the Ⅲ2 reSults･ First we optimized the H-H

distance (RHH) with the fixed TZ2p basis set･ The gradient becomes

less than 1017 au at RHH=1･368658 au･ Then at this nuclear

separation, we calculated floating functions by various schemes. The

single floating means that each atom gives rise to one floating

center･ This ls denoted by (3s2p); three s orbitals and two p

orbltals are combined on each hydrogen atom to the same floating

center･ 工n the double floating, (3s,2p), three s valence basis

functions were placed on one floating center and two p polarlzatlon
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functions on a second floating center･ The most flexible scheme ls

to employ the different expansion centers for different orbitals of

an atom, (1s,1s,1s,1p,1p). We can see from Table 工 that for the

fixed basis, the Ⅲellmann-Feynman force at the mlnlmum energy point

ls quite large･ fH=0･0011271 au, 1mplylng that the fixed basis set

弓

fails ln obtalnlng reliable Eellmann-Feynman force･ Floatlng

described above ensures the Hellmann-Feynman theorem. Ⅲowever, at

the same time floating introduces a new set of varlatlonal parameters

which leads to the improvement of the wavefunctlon･ The mlnlmum

point on the energy hypersurface will shift a little from that with

the fixed basis. The Ilellmann-Feynman force computed with floating

functions ls accurate since it obeys the IIellmann-Feynman theorem･

The non-zero flellmann-Feynman force arises from the deviation froln

the true energy mlnlmum point･ Therefore we must reoptlmlze the

lnOlecular geometry to reach the true minimum energy point of the

･floating functions. The magnitude of the Hellmann-Feynman force

colnputed with the floating function lndlcates the degree of devlatlon

from the energy minimum point. The floating function which employs

different expansion centers for the different orbltals gives the lowest

energy and therefore does the largest Ⅲellmann-Feynman force･ The

decrease of E is 4.65*10-4 au. This floating scheme is quite an

effective way to describe polar阜zation of the basis functions although

lt ls less effective than adding explicit polarization functions･ On

the other hand, the energy decrease due to single floating ls only

o.2★10-5 au (o.ooユ kcal/mol). This implies that the single floating

function is very close to that wltb the fixed basis except the region

near the nuclei. .工t
ls convenient for the present purpose that floating
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is used just for･ validity of the liellmann-Feynman theorem. The computed

Hellmann-Feynman force ls fⅢ=0･26★10-4 au･ The magnitude ls negllglbly

sma11･ For reference, we obtained the true minimum energy point by

applying the energy gradient to the expansion centers and the

Hellmann-Feynman forces to the nuclei simultap__90_uSly･ Optimal single

floating function gives the energy mlnlmum at RⅢH=1･368600 au･ The

deviation is only O･58*10-4 au and no energy improvement is gained with

8-digit accuracy through reoptimlzatlon. The difference ls so small that

we believe that lt will not influence any further calculatlons. 工t ls

worth mentlonlng that the magnitude of the energy lowering dlユe tO

floating is in the same order of that o-f the rlellmann-Feynman force

remained with floating functions.

Table II gives results on CO calculated by various floatlllg

schemes with DZp basis set･ All calculatlons were done at Rco=

2･111673 au optimized with the fixed basis set. At this nuclear

distance, the gradients with fixed basis are less than 10-7 au.

IIIowcver･ the computed Hellmann-Feynman forces are fc=0･3087 au and

fo=-0･7584 au which indicates the complete breakdown of the

Hellmann-Feynman theorem. Here the direction from C to 0 is taken to

be a posltlve slgn･ The Hellmann-Feynman force calculated wltb

floating functions shows the degree of devlatlon of the energy Ⅲ1nlmum

from that with the fixed basls･ The better the calculated energy ls,

the larger the Hellmann-Feynman force remains. The decrease of E due

to single floating is O･46*10-4 au (o･o29 kca1/mo1) and the remaining

liellmann-Feynman force ls fc=-fo=0･19★10-4au･ Again the effect of single

floating ls negllglbly small･ The true minimum lnternuclear distance with

the single floating wave function is 2･･111686 au･ So the discrepancy is
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only 0.13★10-4 au･ The dlsplacements of the floating centers from C and

o nuclei are 1.054*10-4 and -0.7870*10-4
au, respectively･ The

dlsplacements are very small but they are completely enough to ensure the

Ⅲellmann-Feynman theorem.

The energy lowering and the旦agnltude of the Hellmann-Feynman

force increase as the number of expansion centers. When more flexible

floating schemes are used, the newly introduced variational parameters

work as to improve not only the region near the nuclei but also other

parts of the wavefunctlon. Thls can readily be seen also from the

computed dlpole moment. The calculated dlpole moment with single

floating wave function is 10.07051
au (C+0~), which is very close to

-o.o7053
au calculated with the fixed basis. On the other hand, more

flexible floating schemes give quite different values. Note here

that the sign of the SCF computed dlpole moment has the opposite sign

(c+o-) to that of experiment (C-0+).27)

These examples allow us to feel with some confidence that single

floating is the most appropriate scheme for our purpose. So we employ

the single floating scheme hereafter and all functions on each atom are

expanded on the same floating center. Wlth such a scheme, the usual

geometry optlmlzatlon has very good convergence properties to achieve

less than 10-7 au ln gradients.

B. Basis Sets

Now let us examine the effects of the basis sets. All floating

functions were obtained by a single floating scheme at the SCF level.

Calculated results with the fixed and floating functions for CO,

organized according to the types of the basis sets are summarized in
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Table 工工工･ For each basis set, fixed (upper row) and floating (lower

rolV) results are listed together for comparison･ The basis set generally

improves fr?m top to bottom･ For each basis set, we first optimized tlle

CO distance and then the expansion centers were variationally determined

at the same nuclearI_,_SQRparation･ The largest basis set employed was

obtained by contracting Huzinaga-s (14s9p) basis
set23) to

'

(10,10,1,1,1,1/5,1,1,1,1) set supplemented by three sets of d

polarization functions (EBS). The most accurate computation of the

ground state of CO is by McLean and Yoshinime･24) They used five s-,

-four p-, one d- and one f-type STO functions･ They obtained an energy

E=-1ユ･2･78911 au at Rco=2･132 au･ which is O･00088 au lower than that by

the present EBS calculation.

｢1'1~leOptimized CO distance generally dlmlnlshes as tlle basis set

lmproves･ First consider the Hellmann-Feynman force calculated with

the fixed basis sets･ As expected unpolarized basis sets such as DZ

and TZ give the largest liellmann-Feynman forces･ Adding polarization

functions decreases the error but fairly large ‡Iellmann-Feynman

forces still remaln･ Of course, the error decreases as the basis set

improves･ However･ even with EBS･ we have fc=-0･0574 and fo=-0.1310 au･

This shows that the best available approximate wavefunctlon wltb fixed

basis ls too inaccurate to be of皿uCh use for the electrostatic

calculation･ Floating changes the picture of･the Hellmann-Feynman force

dramatically althougll the decrease ln total energy is quite small. The

non-zero Hellmann-Feynman forces with floating functions do not arise

from the failure of the Ⅲellmann-Feynman theorem but from the slight

deviation from the true minimum energy point. Thus the magnitude of

the Hellmann-Feynman force reflects the effect of floating･ The larger

- 12 -



the Hellmann-Feynman force ls, the greater effect floating has･

Floating with unpolarized basis set has considerable effects on the

energy and geometry･ On the other hand, floating with the sufflclently

polarized basis has little effects on both. The energy improvement due to

floating with TZ2p and EBS is less than l･0書10-4 au and the

l

Hellmann-Feynman forces calculated are fairly close tb z占ro. values of

dlpole IⅥOment Of CO are presented in Table 工Ⅴ. The difference between

fixed and floating functions ls also very small, less than l･0★10-4 au･

This also supports that single floating does not affect the wavefunctlon

except in the vlclnity of the nuclei.

From these results we conclude that a single floating

scheme with sufficiently polarj_zed basis set, at least as large as

DZp seems to be adequate for the present purpose. A single floating

scheme makes the wave function obey the liellmann-Feynman theorem. Due

to the improvement of the wavefunctlon, we will have the non-zero

Helllnann-Feynman force at the equilibrium geometry determined with the

fixed basis set. However, the llellmann-Feynman force still remains

within the acceptable error.

The displacement of hydlrogen must be the largest when optimized

through floating. It can easily be understood since the exponent of

hydrogen is the smallest (The displacement from.the nucleus ls

approximately proportional to the 1/∝1/2 where α 1s an exponent of the

gaussian function). Thus, the most difficulty of the present appllcatlon

may be found ln a system which has a polar bond lnvolvlng hydrogen. We

used HF as an example. Results are summarized ln Table V. The dlrectlon

from li to F is assumed to be positive. All the computations were

performed at the HF internuclear distance optimized with each basis set.
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Very accurate SCF calculations on IIF have been made by Ca°e and Huo using

STO basls･25) Their energy ls
-100･07030

au at the experimental

RHF(-1･7328 au), which is only O･0008 au lower than that by the present

EBS･ The general trend is similar to that found ln CO. But the effect of

floating ls more significant than that of CO･ Particularly the

displacement of expansion center of hydrogen ls of the order of 10-2
'･au,

which ls by 102-103 times larger than that of a heavy atom･ Consequently

the ‡Iellmann-Feynman force appeared is fairly large even with DZp basis

set･ This implies deficiency of the polarization functions, which leads

to a relatively large geometry change･ That ls, the DZp basis is not

flexlbユ･e enough to describe such a polar bond.

rllwo approaches will be suggested to overcome tI-1s dlfflculty. One

may insist that the true energy mini-mum is sear･chcd by reoptimization or

the geometry･ The true mlnlmum point ln a DZp floating function is at

RI-IF=1･7053 au･ However･ no energy improvement was gained through

reoptj-rnlzatlon, 1ndlcatlng the energy hypersurface ls rather･ flat with

respect to stretching of sucll a polar bond. The difference of the bond

distance between fixed and floating functions ls 1.5★10-3 au.

Alternatlvely, one may add the polarlzatlon functions to reach a better

polarlzatlon of hydrogen･ If one adds an addltlonal p set to the DZp

basis set, which ls denoted by the DZp･ (double polarization on H),

floating yields the Ⅲellmann-Feynman force of the order of 10-4 au, which

ls nontheless tolerable･ With floating DZp- we also reoptlmlzed the

geometry and found that the deviation from the true mlnlmum ls 1.6★10-4

au･ ten times smaller than that of DZp basis･ Thus, the DZp･ provides

sufficient flexibility to polarize the s basis functions of hydrogen.

With this basis･set one obtains good results with respect to the
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Hellmann-Feynman force. Of course lf more flexible basis sets such as

TZ2p and EBS are used, the Hellmann-Feynman force remains within the

acceptable error.

The calculated dlpole moments of HF are summarized ln Table V工･ The

fixed as well as floating basis sets give dipole moments which are too

large compared to the experiment.28) polarization:fuhctions reduce their

values. We also see that the dlpole moments computed with sufflclently

polarized basis sets (DZp-, TZ2p, EBS) are indeed close to those with the

corresponding fixed basis sets.

we also calculated CH4･ C2Ii6･ C2Ii4･ C2H2, NH3･ H20and H2CO

InOlecules and results are listed ln Tables V工I and VII工. These test

calculatlons confirm the above conclusions. In general, a single

floating scheme works well if used with su-fficicntly polarized basis

sets. For hydrocarbons, the single floating DZp basis gives

excellent results. For a system lnvolvlng polar hydrogens a single

floating with DZp' gives reasonably good results.

C. Geometry Changes

Energies and forces acting on C at various internuclear distances

for CO computed with DZp basis are listed in Table 工Ⅹ. The force computed

with fixed functiops ls taken from the negative gradient (Born-Oppenhelmel

force)･ The fixed basis gives the energy Ⅲ1nlmum at Rco=2･111673 au

while the floating function at Rco=2･111686 au° Both functions give very

close energies and forces. Energy lowering due to single floating ls

almost constant over a wide range of internuclear distance, ca･ 5★10-5au

(0.03 kcal/mol). Computed forces show the similar tendency as the total

energleS. The difference between fixed and floating functions lies
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within the range of 4･0★10-5 au. Thus, the potential curve is not

affected by floating.

Table X shows results on ⅢF molecule with DZp- basis. Tbe

similar trend can be found as the case of CO. The energy lowering

due to floating is almost constant in the region of RHF=1･5-3･O au･

However･ it increases considerably At RHF=4･0-5･O au･ At this

region, the charge transfer occurs from H to F. 工nconsistent effect

of floating indicates that the present basis set ls still not sufflclent

enough to describe the whole HF potential curve at the same level of

accし】raCy･ Thus, single floating can be used to check the adequacy of tlle

basis set, especially the sufficiency of the polarization functions.

D. Correlatlorl Effects

Tbe electron correlation effect ls also examined using the

complete active space SCF (CASSCF) wave function.26) The Iiurley-s

co【1dltlon9) 1s satlsfled by any varlatlonally optlmlzed wavefunctlon.

So the floating MCSCF wave function obeys the Hellmann-Feynman theorem.

The CI wave function satisfies, in principle, the Hellmann-Feynman

theor･em･ However, if one truncates the expansion of the

configurations to some order, tbe Ⅲellmann-Feynman theorem ls not

satisfled･ In a C工 treatment, conflguratlon expansion coefficients

are determined varlatlonally but orbitals are left unoptimized.

Varlatlon of orbltals introduces singly excited configurations

reユーatlve to the parent C工 configuratlons･ For example, trlply

excited conflguratlons are necessary for the usual single and double

C工 wavefunctlon with respect to the Hellmann-Feynman theorem. Thus,

We employed here the CASSCF wavefunctlon to examine the correlation
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effect on floating.

Results on H2 1Vlth TZ2p basis are given ln Table X工･ The 2 and 3

active orbital CASSCF include valence configurations arising from cr

bonding and cr antibonding MO, while 5 active orbital CASSCF includes

configurati旦TlS arising from three cr and two Tt Orbitals･ We optimized

l

first the Ⅲ-H distance in each fixed CASSCF theory and then a single

floating scheme ls applied. Correlatlon effects increase the H-H bond

distance relative to the SCF one. As to single floating, however, the

trends as found with the CASSCF theory are the same as found with the SCF

theory. That ls, the energy difference between fixed and floating

CASSCF Is very small and the remaining IIellmann-Feynman force of

-noating wave function is also negligible small. In the 5 active

orbital CASSCF theory, we allowed excitations -from cr to Tt Orbitals･

The slight increase of the magnitude of the flellmann-Feynman force may

arise from the disregarding the d function ln the present calculations･

Of course, it will be improved if we employ the basis set which ensures

the d polarization. Thls ls numerlcally verlfled by the calculation

with the basis set supplem.ented by d functions (see the final row of

Table X工).

Results on CO are glven･1n Table XI工. The 2 and 3 actlve orbital

CASSCF include valence conflguratlons arising from excltatlons from

CO cT bonding to cr antibonding MO. In the 6 active orbital CASSCF,

the six electrons are distributed within the two active cr and four

active T[ Orbitals. The effect of floating is again very similar to

that of the SCF case. Table XI工 also lists the calculated dlpole

moment. Fixed and floating CASSCF produce a very close dlpole moment.

Only the 6 actlve orbital CASSCF gives a dlpole moment of 0.12749 au,
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of the correct sign with the experiment (C-0+)･27) This also supports

that the correct result could not be obtained except by lncludlng

excitations involving" MO.29)

The single floating scheme can also be applied successfully to

the MCSCF wavefunctlon. 工t ls noted that the error ln the

Hellmann-Feynman theorem arises essentially from the basis set

lnadequacles･ not from the accuracles of tlle Varlatlonal wavefunctlon.

Ⅰ工Ⅰ. Conclusions

IVe have systematically lnvestlgated the importance of floating

functI'-OnS Whj･ch satisfy the I-7ellmann-Feynman theorem. It is

demonstrated that the error resulting from the use o･f the

rlellmann-Feynman theorem can be made negligible small by a single

floating scheme lf used wltb a sufflclently polarized basis set･工n many

cases･ it is reasonably well described even at the DZp level, although

ln some cases hydrogen requires double polarization. The current

methods for the analytical calculation of energy gradients can be

well adapted to yield floating function苧･ The computation required

only about twice of the computing times of conventional geometry

optlmizatlon and can be performed just as routinely. The floating

functions satisfies the electrostatlc (Hellmann-Feynman) theorem,

wblch provides a great conceptual slmpllflcation and may lead to

practical advantages･ If we have a wave function obeying the

Hellmann-Feynmantheorem for a molecule, we may talk about

geometrles･ vlbratlons･ chemical reactions, etc, 1n the language of

clear-cut conceptual plcture･ The slmpllcity of the Hellmann-Feynman
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theorem ls appealing. In adlltlon we can calculate the higher energy

derlvatlves based on the Hellmann-Feynman theorem. The Hurley's

condition can be used to obtain approxlmatlons to the first-order

wavefunctlon, from wblch the second, third and fourth energy derlvatlves

can be obtained, leading to quadratlc, cubic and quartlc force constants･

1

There are several slgnlficant advantages over the direct analytic

derlvative method. Tbe expressions of these higher energy derlvatlves

are much simpler than those of the wave-mechanical method･ The

electrostatlc calculation involves only one-electron integrals. No

lntegrals appear lnvolvlng derlvatlves of the basis functions･ There ls

no need of solving the coupled perturbed IIartree-Fock equations to obtain

t上1e lVaVefunction derlvatlves. Orle Only needs solutlons of linear

equations. There ls no lteratlon lnvolved･ 1｢1-1e Calculatloll O◆r the f()rcc

constants baed on the Hellmann-Feynman theorem will be reported

elselVhere.
30
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Table I

Total erlergies and I-lellmann-Feynman forces acting on H nucleus of H2

molecule (RfIH = 1･368658)a) calculated with fixed and floating TZ2p

basis set (a.u.)

Expansion center per nucleus
1

Energy HF force

fixed

floating

(3s2Ⅰ)I
b)

(3s,2p) C)

(1s.2s,2p)
d)

(1s,1s,1s,1p.1p) e)

-1.128416

-1.128418

l

-1.128509

-1.128567

-1.128881

0.0011271

0.0000256

0.0000378

0.0001081

0.0002986

a) The Born-Oppenhelmer force ls less than 10-7 au at t上lls

lnternuclear distance.

b) Single floating ; one expanslon center per nucleus.

c) l)ouble floatlrlg; ttle Valence bas上s functlons were placed on one

r.lo''lL[nLr (:Cllt.Cr ''1n(I I)()]'･1rt7.ZluOn runCt;I.ons on a scccnd.

d) Triple rlollLlrlg; the lllnermOSt Orbltal ls placed on one floatlng

center, tlle-remaining two s functions on a second and polarization

functions on a third.

e) Qulntuple floating; different expansion center for the different

orbltals.



rllJll)1_e
.t工

rl､o亡al energies and IIellmann-Feynman forces acting on C nucleus of CO

molecule (nco = 2･111673)a) calculated with fixed and floating DZp

basis set (a.u.)

Expansion center per nucleus Energy HF force

fixed

r1()(.ユling

(4s2Ⅰ)1d)
b)

(1s,3s2p】_d) C)

(1s.3s,2pld)
d)

(1s,3s2p,1d) e)

(1s.3s,2p,1d)
f)

-112.759377

-112.759423
l

-112.760056

-112.762330

-112.762503

-112.764590

0.3087334

0.0000189

0.0006548

0.0073079

0.0108202

0.0164709

a) The f3()rrl-Oppenheimer force is less than 10-7 au at this

lllしct･Ilu(:1e‡1r d上sta【lCe.

t') Slngl･c (､1()･･1いr-ど ; one cxpansiorl CCrlLer per rllJCleus.

c)り()llbLc r･Lo(･1Lh)g; Lhc
･=1TICrlnOSL

furlCLlorl ls p⊥accd oT! OrlC

floating center and the remalnlng functions on a secend.

d) Triple floating; the innermost orbital is placed on one floating

center･ the remaining three s functions on a second and two p and

one d functions on a third.

d) Triple floating; the innermost orbital is placed on one floating

ccnLcr･ the rcTnaining tluec s and two p -functions on a second and

p()I.;1t.i7.a亡.i()ll Functions on a third.

ど) Qu;ldruple floating; the lnncrmost orbital, remainlng three s, two

P
･･md polarizations are placed on the different expansion centers.



Table III

Energies and IIcllmaml-Illeynman forces of CO by various basis sets at

the intcrnuclear distance optimized with fixed basis (a.u.)

Basis Rco Energy

Ⅲellmann-Feynman Force

C 0

DZ fixed 2.150313

rloatlng

TZ fixed 2.123982

rloatlng

1)Z,p fixcd 2.111673

~rloatlng

uzp+ a) fixed 2.107483

floatlrlg

DZ2p flxed 2.103270

floatlng

rllZ2Ⅰ) flxed 2.092277

floatlng

EuS
b)

rixed 2.085026

floating

-112.685311

-112.685774

-112.707937

-112.708320

-112.759377

-112.759423

ー112.762850

-112.762850

-112.766560

-112.766579

ー112.778534

-112.778565

ー112.788226

-112.788227

-1.070930

-0.000333

ー0.967949

-0.000389

0.308733

-0.000019

0.299029

0.000014

0.246179

0.000039

0.323223

0.000002'

0.057448

0.000002

2.300725

0.000333

2.094532

0.000388

-0.758350

0.000019

-0.760322

-0.000014

-0.416335

-0.000039

-0.504481

-0.000002

ー0.130950

-0.000002

a) DZp plus diffuse functions

b) Extended basis set; (10,10,1,1,1,1/5,1,1,1,1/1,1,1). Ref.23.



rllable lV

Ca-tculated dlpole moment of CO by various basis sets at

the CO distance optimized with the fixed has.is (a.u.)

73asis

fixed

Dlple moment

floatlng

I)Z

rrZ

I)/.p

I)ZI)+

Ⅰ〕Z2r)

;1)

TZ2p

EBS
b)

Exptl C)

-0.11407

-0.09091

-0.07053

-0.06693

-0.06150

-0.05892

-0.05549

-0.11418

-0.09097

-0.07051

-0.06692

-0.06154

-0.05897

-0.05549

0.0441+0.0020

a) I)Z上) r)1us diffuse f､unctions

b) fてxtc-ndcd basj･s set; (10･10･1･1･1･1/5,1,1,1,1/1,1,1). Ref.23.

c) 1‡er.27.



1'able V

Energies and IIellmann-Feynman forces of EF by various basis sets at

the internuclear distance optlmlzed with fixed basis (a.u.)

Basis RIIF Energy

Hellmann-Feynman Force

H F

Ⅰ)Z f'ixe(1 1.737861

r.1_()～1tlng

rrZ fixed 1.737918

rloatlng

Ⅰ)Zp fixed 1.706794

rloating

uzp. a) fixed i.704032

floating

I)7.2p fixed 1.702171

Ⅰ､lo(rlting

rllZ2Ⅰ) Ⅰ'1xed 1_. 696589

floatlng

EBS
b)

fixed 1.695666

floating

-100.021980

-100.027628

-100.036872

-100.042256

-100.047932

-100.048188

-loo.048724

-100.048809

ー100.050186

-100.050284

-100.063476

-100.063551

-100.069497

-100.069565

ー0.112725

0.006160

-0.107144

0.006099

-0.016942

0.001145

ー0.006338

0.000114

-0.007233

0.000143

-0.008407

0.000104

-O.oo8354

0.000065

2.186379

-0.006160

1.808263

-0.006099

0.973120

-0.001145

0.999229

-0.000114

0.975888

-0.000143

0.614806

-0.000104

0.141422

-0.000065

a) Double polarization on H

b) Extended basis set; F(10,10,1,1,1,1/5,1,1,1,1/1,1,1)

1-I(5,1,1,1,1/1,1,1,1). See Ref.23.



'rable VI

Calculated dipole moment of liF by various basis sets at

tlle肝dlstance optimized ､vlth the flxed basis (a.u.)

Ⅰ3asis

rlxed

Diple moment

floatlng

I)Z

TZ

1)Zp

I)Zp, (･1)

I)7.2f)

TZ2p

EBS
b)

Exptl C)

-0.88236

-0.93753

-0.77797

-0.77770

-0.731G8

-0.77069

-0.74383

-0.719

-0.88653

-0.93279

-0.77916

-0.77780

-0.73171

-0.77092

-0.74389

a) I)ouble polari7,ation on lI.

b) Ext.e工Ided bas上s set.

c) Ref.28.



Table VII

Energies and f-orces actlng on C at varlous lnternuclear distances for

CO molecule calculated with DZp basis set (a.u.)

l‡co

EnergleS

rlxed floatlng

I(E+112.)

Forces

fixed

a)

floatlng

0.649799 0.649845

0.748490 0.748540

0.759272 0.759318

2.11167こi 0.759377 0.759423

2.111686 0.759377 0.759423

2.12 0.759325 0.759371

2.2 0.754015 0.754063

2.5 0.684845 0.684898

3.0 0.520183 0.520230

-0.848409

-0.208468

-0.018173

0.0

0.000021

0.01■2510

0.115227

0.305807

0.317951

-0.848370

-0.208477

-0.018192

-0.000019

0.0

0.012490

0.115206

0.305801

0.317983

a) The direction from C to 0 Is posltlve in sign. Forces ln flxed

basis are negative gradients and those of floating are Hellmann-

Feynman forces.



Table VIII

Erlergles aI-d forces acting on = at various lnternuclear distances for

IIF molecule calculated with DZp' bas上s set (a.u.)

ErlergleS

lil"
fixcd floating

-(E+100.)

Forces

flxed

a)

floating

0.028831

0.044222

1.7O387G 0.048724

1.704032 0.048724

]_.8 0.045736

2.0 0.026359

3.0
-0.123682

4.0
-0.233889

5.0
-0.302811

10.0
-0.401496

0.028961

0.044324

0.048809

0.048809

0.045836

0.026433

-0.123622

-0.233603

-0.302115

-0.401492

-0.223372

-0.092624

-0.000114

0.0

0.058199

0.126347

0.136026

0.086692

0.053664

0.005985

-0.223052

-0.092398

0.0

0.000114

0.058243

0.126359

0.135959

0.086312

0.053391

0.005988

a) The direction from H to F is positive in sign. Forces in fixed

basis are negative gradients and those of floating are He11mann-

Feynman forces.



Table 工Ⅹ

Energies and Hellmann-Feynman forces of CH4, C2H6･ C2H4 and C2H2

at the geometry optimized with fixed basis (a･u･)a,b)

Basis Energy IJellmann-Feynman Force

CⅢ4

DZ flxed -40.185613

floatlng -40.193598

DZp flxed -40.207594

floating -40.207860

TZ2p fixed
-40.212172

floatlng -40.212212

C2H6

DZ flxed ′-79.206408

floatlng
-79.218869

DZp fixed
-79.249242

floatlng
-79.249644

fH =fH =ffI =0･04212
X y Z

fH =fH =fll =0･00006
Ⅹ y Z

fli =fII =fl-I =0･00562

X y Z

fit =fH =fll =-0･00004

Ⅹ y Z

fH =fH =fH =0･00194

X y Z

fH =fⅢ =fH =-0･00001

Ⅹ y Z

fc =-0･01445･
fH = 0･02756･ fH = 0･06955

Z Z X

fc = 0･00119･ fH =-0･00011･ fⅢ =-0･00012

Z Z X

fc ≡ 0･01041･ fH ≡ 0･00366･ fⅢ = 0･00912

Z Z X

fc = 0･00007, fH =-0･00002･ fⅢ ≡-0･00006

Z Z X

TZ2p fixed
-79･257119

fc = 0･00556･ fⅢ = 0･00100, fH = 0･00312

Z Z X

floatlng -79･257159 fc ≡ 0･00001･ fH =-0･00000,
fⅢ ≡-0･00000

z Z X



C2Ii4

DZ flxed
-78.011990

floatlng
-78.020649

DZp flxed
-78.050575

floating
-78.058374

TZ2p flxed
-78.061954

floatlng
-78.062012

(二2112

DZ flxed
-76.799232

floatlng
-76.803606

DZp flxed
-76.832544

floatlng
-76.832686

TZ2p fixed
-76.848167

floatlng
-76.848207

fc = 0･05708･ fH = 0･03934･ fH = 0･06531

Z Z X

fc = 0･00209･ fH =-0･00016, fH =-0･00020
Z Z X

fc
=-0･065451 fH = 0･00500･ fH = 0･00827

Z Z x

fc = 0･00007･ fH =-0･00003･ fⅢ =-0･00006
Z z ~~x

fc =-0･02796･ fH = 0･00189･ fH = 0･00359

Z Z x

fc = 0･00002･ fI-I =-0･00001･ fH =-0･0000l
Z Z

fc = 0･12977･ fi‡ = 0･07389

fc = 0･00151･ fH =-0･00032

fc =-0･11310･ fli = 0･00960

fc = 0･00018･ fⅢ ≡-0･00012

fc =-0･03391･ fH = 0･00460

fc = 0･00004･ fH =10･00002

Ⅹ

a) The direction from each nucleus to the center of mass ls taken to be

be a posltlve sign.

b) Molecular geometry

c日4 (Td); the x･ yan° z are all S4aXeS･

c2I16 (D2d), C2H4 (D2h) ; 21fold axis is z and qvplane is xz･



Table X

Energies and Hellmann-Feynman forces of NH3･ H201 and H2CO

at the geometry optlmlzed with fixed basis (a･u･)
a,b)

Basis Energy Ⅲellmann-Feynman Force

NH3

DZ flxed
-56.180540

floatlng
-56.189200

DZp flxed -56.209682

floatlng
-56.210195

DZp' fixed -56.210892

floatlng -56.210961

TZ2p fixed
-56.219257

floating
-56.219318

Ⅲ20

DZ fixed
-76.O11020

floatlng
-76.019883

fN =-0･69904･
Z

fN =-0･00217･
Z

fN =-0･47138･
Z

fN =-0･00047･
Z

fN =-0･46139･

Z

fN =-0･00006･

Z

fN --0･36410･
Z

fN = 0･00006･

Z

fo = 1･90398･

Z

fo =10･00191･
Z

DZp fixed
-76･046951

fo ≡ 0･82209･

Z

floating -76･047405 fo =-0･00113･
Z

fH =0･00524･

Z

fH =0･00072,

Z

fI-I =0･00331･
Z

fll =-0･00016･

Z

fⅢ =0･00301,
Z

fE =0･00002･
Z

fH =0･00148,

Z

fH =0･00001･

Z

fⅢ =-0･04031,
Z

fH = 0･00096･

Z

fH =-0･00781･
Z

fH = 0･00057･

Z

fE =0･08514

X

fH =-0･00129
X

fII =0･01476
X

fli =-0･00037
X

ffI =0･00353
Ⅹ

fH =0･00003
Ⅹ

fⅢ =0･00406

Ⅹ

fH =0･00003

Ⅹ

fB =-0･09526
Ⅹ

fH = 0･00374

X

fH =-0･O1488

X

fⅢ = 0･00061

X



DZp' fixed
176･048501 fo = 0･82369･ fH =-0･00142･ ffI =-0･00519

Z z x

floatlng
-76.048613

TZ2p flxed
-76.060362

floatlng
-76.060447

Ii2CO

DZ flxed
-113.830712

floatlng
-113.836354

DZp fixed
-113.895328

floatlng
-113.895507

TZ2p flxed
-113.910966

floating
-113.911014

fo =-0･00002･ fH = 0･00001, fE = 0･00000

Z z x

fo = 0･60174, fH =-0･00295･ fH =-0･00545--1-
Z z x

fo =-0･00007･ fⅢ = 0･00003･ fⅢ = 0･00005

Ⅹ

fc =-0･30027･ fo

Z

fc = 0･00007･ fo

Z

fc =-0･10490･ fo

Z

fc =-0･00006･ fo

Z

fc ≡-0･07209, fo

Z

fc =-0･00002, fo

Z

2･07353･げHl=0･08629

0･00004･ JfHI=0･00011

0･82985･ J-fIIIJ=0･01021

0･00001･ (fH(=0･00003

0･54429･げIII=0･00424

0･00001･lfHJ=0･00002

a) The direction from each nucleus to the center of mass ls taken to be

a positive slgn.

b) Molecular geometry

NH3; 3-fold axis is z and gvplane is xz･

H20･ H2CO ; 2-fold axis is z and ovplane is yz･



rrable Xl

llnerglcs El=d IIcl11n～1=-I-ITcymnan forces of lI2 by ･rlxed and floatlng

CASSCF theory lVlth TZ2p bas上s set (a.u.)

11ellmpa-h丘-Feynman
｢1'IleOry RI柑 Energy

Force

SCF fixed 1.368658

floatlng

(二∧SSCF

2-EICtlvea) fixed 1.408933

floatlrlg

3-activeb) fixed 1.396635

floatlng

5-actlVeC) ･rlxed 1.383846

rloatlng

5-activeC･d) fixed 1.386399

floatlng

-1.128416

-1.128418

-1.147313

-1.147313

-1.153941

-1.153942

-1.163418

-1.163433

-1.164591

-1.164594

0.001127

0.000026

0.000172

0.000009

0.000351

0.000009

0.001230

0.000048

0.003125

0.000027

a) CASSCF with two q orbltals as active.

b) CASSCF with three cr orbitals as active.

c) C^SSCF with three g orbltals arld two T( Orbltals as actlve.

d) TZ2p plus d functions (d∝=1･0)･



Table Xlー1

Energies and IIellmann-Feynman forces of CO by fixed and floating

CASSCF theory wit:h DZp bas]'.s set (a.u.)

liellmann-Feynman Dipole

Theory nco Energy
Force on C Moment

SCF rlxed 2.111673

floating

C∧SSCF

2-active(･1) fixcd 2.1122G9

floating

3-activeb) fixed 2.112163

floatlng

6-actlveC) flxed 2.168402

rloa亡1rlg

Exptld)

-112.759377

-112.759423

-112.7G8249

-112.768295

-112.771064

-112.771109

-ll.2.880197

-112.880240

0.308733 -0.07053

0.000019
-0.07051

0.305935
-0.OG809

-0.000017 -0.06808

0.304618
-0.06541

-0.000018 -0.06539

0.32013.6 0.12752

-0.000016 0.12749

0.0441+0..0020

a) CASSCF IVith two o orbitals as active.

b) CASSCF with three o orbitals as active.

c) CASSCF IVith two cr orbitals and four TT Orbitals as active.

d) Ref.28.
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ABSTRACT

General formulae for the second, third and fourth derlvatlves of the

energy lVlth respect to the nuclear coordinates of a molecule are derived

from the Hellmann-Feynman theorem･ The HurleyTs condition can be used to

obtain approxlIⅥations to the first-order ヽvavefunctlon, from which the

second, tblrd and fourth energies can be obtained, leading to quadratic,

cubic and quartlc force constants･ The procedure is ･equivalent
to derive

blgher energy derlvatlves by the perturbation varlatlon method･ There ar

several slgnlflcant advantages over the direct analytic derlvative method

The expresslons◆ of these higher energy derlvatives are much simpler than

those of the direct analytic derlvative method. The electrostatlc

calculation involves only one-electron lntegrals. No lntegrals are

necessary involving derlvatives of the basis functions･ There ls no need

of solving the coupled perturbed Hartree-Fcok equations to obtain the

wave function derivatlves. One only needs solutions of linear equations･

There is no iteration involved･ There are intuitive physical pictures
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associated with these higher derivatives as the Hellmann-Feynman force

picture associated wltb the first derlvatives.

工.工ntroductlon

Mally important molecular properties are directly defined as the

derlvatives of an electronic energy. Electric moments and

polarlzabllltles are property defined as the derlvatlves of the energy

with respect to the applied electric flelds･ Magnetic properties sucll aS

dlamagnetlc susceptibllltles and nuclear magnetic resonance chemical

shifts are related to energy derlvatlves with respect to external and

nuclear magnetic flelds･ Dlfferentiation of the energy with respect to

nuclear coordinates corresponds to the calculations of forces and force

constants･ These nuclear displacement energy derlvatlves are very

important ln the exploration of potential surfaces.

The first derivatlves of the energy with respect to nuclear

coordinates give the force acting on the nucleus and are used to find the

stationary points such a･s equilibrium structures and transition

StruCtureS･ The second derlvatlves are related to the harmonlc force

constants as well as the nature of the stationary point. The third and

fourth derlvatives are related to the cubic and quartic force constants,

respectlvely･ The knowledge of these derlvatlves yields anharmonic

SpeCtrOSCOplC COnStantS.

There are two general approaches to the calculation of analytic

energy derivatives･ The first method is the direct analytic

differentiation of the expectation value of the Hamiltonian. The
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procedure has been the most commonly used and procedure doing this has

been the forcus of many investlgatlons in recent years･ The underlying

idea beblnd the direct analytical derlvatlve Ⅱlethod is just rigorously

dlfferentlatlng the true quantum mechanical energy･ Generally this

involves solving a type of eigenfunctlon equations or a simultaneous

system of linear equatlons･ Consequently n dlfferentlatlons are

necessary to reach n-tb energy derivatlves･

Dlrect analytic first derlvatlves of the SCF energy were first

derived by Pulay.1 It is now relatively straightforward to calculate the

first derivatlves with respect to nuclear coordinates for any method･

2
pople and coworkers presented the analytical method for the evaluation o]

SCF second derivatlves. To obtain second derlvatives lt ls necessary to

solve the coupled perturbed I-Iartree-rock equations of Gerratt and Mills･3

The most severe bottleneck ln this approach ls the drastic increase of

the number of basis molecular integrals to be computed. In spite of

this, such second derlvatlve approach ls used rather routinely for SCF

and some MC-SCF schemes. The formulation of the SCF third derlvatlves

were first given by Caw, Yamaguchi and Schaefer･4 some slmpliflcatlons

in the formula･were given by Caw and Handy･5 The fourth derivatives were

presented by Handy and coworkers･6 Thls needs the solution of the second

order coupled perturbed.Hartree-Fock equations･

Alternative method is possible based on the use of the

Eellmann-Feynman theorem.7･8 The Hellmann-Feynman theorem gives the

first derivatlves of the energy with respect to the nuclear coordinates

as a simple expectation value. Consequently, n-1 differentiations are

required to reach the n-th derlvatives of the energy. 工n addltlon we

have the so-called Hurley.s condition9 for the optimal variationa1
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l∇aVefunctlon, which serves as an auxiliary condltlon. Thus, the

Hellmann-Feynman approach seems to be much superior to the direct

dlfferentlation method･ However, although there have been isolated

successes of the Hellmann-Feynman approach,10･11 thus far there is no

general theoretical understanding of the situa_tion. This)s_ mainly due

to the unreliability of the Hellmann-Feynman method for evaluating forces

On nuClei･ Although the Hellmann-Feynman theorem is valid for true

Hartree-Fock wavefunctlons, 1t ls found to be of little value for the

finite basis sets typically used in molecular calculations. Thus, the

error in the Hellmann-Feynman theorem arises essentially from the basis

set inadequacies in the underlying calculations･ The Hellmann-Feynman

forces are extremely sensitive to the small error･ in the wave function

particularly near the nuclei of interest･ The valldlty of the

Hellmann-Feynman theorem requires some additional condition when the

finite basis sets are employed.

rlurley showed that the Hellmann-Feynman theorem is satisfied by the

wave function built from floating functions, whose centers are optlmlzed

in space･9 The floating functions are translatlonally lnvarlant and

satisfy the Hellmann-Feynman theorem butt the orbitals may have their

cusps off the nuclei･ The conventional SCF or correlated wave function

with nuclear fixed basis ls･ on the whole, not really bad, 1t only has

dlfflcultles to represent the electron density ln the neighborhood of

nuclei and this region is very c.rltlcal for the Ⅲellmann-Feynman theorem.

As shown ln the previous paper･12 this defect can easily be remedied by a

single floating scheme and we can obtain the wave function obeying the

Hellmann-Feynman theorem.

Nakatsuji and coworkers13 have proposed the ･basis functions for the
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validity of the Hellmann-Feynman theorem. A sufficient condition for the

Hellmann-Feynman theorem is that the basis sets include derivative basis

functions for every basis function.

The Hellmann-Feynman theorem provides a great conceptual

simplification and leads to practical advant年g.e_?. We will develop here

the analytic derivative theory based on the Hellmann-Feynman theorem.

In See.ZI some properties of the Hellmann-Feynman theorem and the

sufficient conditions for the Hellmann-Feynman theorem lVill be reexamlned.

In See.Ill the second, third and fourth energy derivatives for a diatomic

molecule will be derived from the Hellmann-Feynman theorem. In Sec.ⅠV

general analytic expressions for these higher energy derlvatlves will be

glVen. 工n the final section some conclusion will be s1ユmmarlzed.

ⅠⅠ. The Eellmann-Feynman Theorem

Let V be a normalized optimal variational wave function and E the

corresponding energy

<VJH-E(V>
= 0 (1)

By differentiating eq.(1)-with respect to a nuclear coordinate ^ we

obtain

El =

<v[Hl]v>
+

<vllH-E)V> + <yIH-EIVl> (2)

Iiere the derivatives of operators and wave functions are designated as
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aH
Hl=-

∂入

aV
vl=-

∂入

The varlatlonal condition ensures that

<vIIH-EtV'. 'V[H-EIV壬_>_≡o (3)

whence we have the Hellmann-Feynman theorem

El =

<vfHIIV> (4)

The negative energy gradient is called as the Hellmann-Feynman force.

such a condltlon as eq･(3) was first given by Hurley9 and ls called as the

Hurley's condition･ True IIIartree-Fock approximations (as distinct -from

the SCF approximations), be they restricted, unrestrlcted, open-shell,

closed-shell･ muユti-conflguratlonal, or lVhatever, satisfy the

Hellmann-Feynman theorem.

For simplicity we will consider the 2n electron closed-shell systelnS

ln this paper･ The wave function ls expressed as a Slater determinant

V=[luIC"1β
･･･甲iCUiβ

･- lI (5)

The Hartree-Fock orbitals甲1･･･甲n are eigenfunctions of the Fock

operator･ the corresponding eigenvalues being El･･･En

Fq)i =

Eiq)i (6)

Orbital labels i･J,k ･･･ denote occupied orbitals, a,b,c... denote
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virtual orbitals and p,q,r.‥ denote general orbitals. The

liellmann-Feyn血an theorem is satisfied if the Hurleyts condition of eq.(3)

1s fulfilled. The wave function derlvatlve ls given by

1
伽l-一叩1β･･･甲i中i(αβ-Bc()･･･Jf (7)

Taking account of the one electron property of Hl, we assume that the

derlvatlve of the orbital can be expressed as a linear comblnatlon of the

other orbltals

1
甲i

=

甲pUpi/J2 (8)

where p=1 1s excluded from the orthogonallty condition of orbltals. 1Ve

used Einstein summation notation for repeated lndices･ Substituting

eq.(8) into eq.(7), we have

vl= U
.V

.

al al

with

(9)

Vai = [l甲1C(･Vlβ-中a甲i(c(β-βc()/ノ2
-ll

The Vai are Singly excited configurations･ Thus the Hurley-s condition

of eq.(3) is equivalent to the Brlllouin theorem

<VaiIH-EJV> +
<VIH-EIVai>

= 0

- 7 -
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As known well, the Hellmann-Feynman theorem is satisfied for the optimal

wavefunctlon as a consequence of the varlatlonal prlnclple.

The differentiation of the Fock equations <vj[F-Ei[甲i>
= 0

leads to

･u)lFl-E壬･甲i,
･

(E)-Ci)<U),中三,
- o (ll)

In the case of l=j we have the IIellmann-Feynman theorem lVlth respect to

the orbital energy

1

Ei
-

<吋Fl一中i,
(12)

Let us now consider the SCF approximation. The molecular orbltals

are defined in terms of the finite basis functions xl-Xm

甲i
=

XαCc(i = XCi (13)

The X and Ci･ are the row and column vectors of x∝ and Cαi･ reSpeCtively･

The derivative of甲i With respect to入is given by

中三-
xlci

･XC壬'
(14)

1n a matrix representation. The first term on the r.h.s of eq.(14)

arises from the fact that the basis functions will generally be defined

ln such a way that they move with the nucleus. The second term arises

from the fact that■the coefficients may･also depend on入. The日urley-s
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condition ls fulfilled lf

FCl =

EiSCl

and

where

(15a)

ド(1)ci=CiS(1)ci (15b)

(F(1))αβ-<かIx｡,
I

(S(1),αβ-<かβ,

Eq.(15a) are the Fock equations and hold for any SCF orbltal･ But

eq.(15b)
are not fulfilled ln general. Thus the llellmann-Feynman theorem

ls not necessarily satlsfled for the SCF wavefunctlons with the finite

basis sets. The error in the Hellmann-Feynman theorem arises essentially

from the basis functions. The Hellmann-Feynman theorem･error in the SCF

approxlmatlon can be estimated by

A - 4 ≡ CIT(F(1)-･EiS(1))ci
(16)

This ls called as the AO error.13 Note here that the Hurley･s condltlon

ls lnequivalent to the Brillouln theorem in the case of the SCF

approximations.

Two approaches have been suggested to overcome this difflculty･ One

way is to employ the basis set which ls invariant to the changes of 入･

Evidently the● floating functions will do the job. In the floating

- 9 -



functions the lndlvidual orbltals are not fixed on the nuclei a prlorl.

Rather the centers are allowed to float, the variatlonal method then

determlnlng the optlⅢal centerlng･ If the floating functions are used,

the derivative of甲i is given by

中三-xc壬
(17)

and the HurleyTs condition becomes identical to the Brillouin theorem.

One can easily obtain the wave function obeying the Hellmann-Feynman

theorem by a single floating scheme if used with the sufflclently

polarized basis sets.12

Tbe otlュer approacll, the use of fixed basis functions, 1s also

applicable･ The first method is to describe a molecule by one-center

basis sets･ Although appllcatlon ls limited, its usefulness ls

discussed･14 The second is to employ the basis sets X = (x, xl,

x2･-･)I where xn denotes the n-th derivatives ofズ･ It is necessary to

include the derlvatlve basis functions for every basis function. Then

eq･(15b) are fulfilled and the SCF wave function obeys the

=ellmann-Feyn皿an theoremt13 工f these･basls sets are used, the space

spanned by derlvatlve basis functions ls included in the original basis

function space･ Thus we can expand the derivative basis functions Xl ln

terms Of the original basis functions X su.cb as Xl = xB. Then lt ls

possible to represent甲i in the form of

中三-
x(BCi ･

C壬)
(18)

From･eq･(15b) we see that XBCl lies on the virtual manlfold･ Thus･

- 10 -



the Brillouln theorem ls also sufflclent to satisfy the Hurley's

condltion.

=n any case if the wave function obeys the Hellmann-Feynman theorem･

the derivatlve of the wavefunctlon can be defined ln terms of only the

ー_..__0∫1glnal
basis functions･ On the other hand･ユn the usual basis sets

l

used in the molecular calculations, the wavLefunction derivative are

deflned ln terms of both X and Xl. This implies that the basis set

functlon space ls not flexible enough to cover the space spanned by the

derivative basis functions. The introduction of Xl yields integrals

lnvolvlng basis function derivatlves and the lterative coupled perturbed

Hartree-Fock equations which constitutes a heavy part of the computations

ln the calculation of the higher energy derlvatives･

The above conslderatlon implies the sufflclent condition for the

fixed basis functions to satisfy the Hellmann-Feynman theorem is that the

space spanned by the derlvative basis functions constitutes a partial

space of the original basis function space･ Tbls suggests the nelV method

to obtain the wave function obeying the llellmann-Feynman theorem･ But

thls is not the subject of this paper and we will not go further on this

polnt.

工工工. Analytic Energy Derlvatives of a Dlatomic Molecule

ln this section we shall derive the second, third and fourth energy

derivatives based on the Hellmann-Feynman theorem. For a sake of

resulting formal slmpllclty, we will first consider the 2n-electron

closed-shell SCF wave function for a diatomlc molecule. The electronic

energy ls given by

- 11 -



<VIH-EIV>
= 0 (1)

The nuclear coordinates are understood to have been written ln terms of

the internuclear distance_.R. Thus only R appe.ars as a parameter.

Dlfferentlation of eq. (1) results ln the Ⅲellmann-Feynman theorem

El =

<vfHIIV> (4)

1f the Hurley-s condltlon ls fulfilled

<vl[11-EIV> +
<…トEIVl>

= o (3)

Here lVe used the notation

anH
Iin =-

∂Rn

and analogous notation for Vn and En. We observe that R is real so that

the derlvatlve wave functions are assumed to be real. Thls is not a

serlolユS reStrlctlon. The normallzatlon condltlon of the wavefunctlon

requires

<vllV>
= 0

(a) Second derivatlve

(19)
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Differentiation of the Hellmann-Feynman theorem with respect to R

yields

E2 =

<vIH2IV>
+ 2<VIIHllV> (20)

The second derivatlve of the energy requires the knowledge of■ the first

derlvatlve of the wavefunctlon. The essential difficulty ln calculating

higher energy derlvatives lies in flndlng a good approxlmatlon to the

first derlvatlve of the wave function. By dlfferentlatlng the Hurley's

condition we have the first-order I-Iurley's condition

<vlrlilV>
+

<Vlll-I-EIVl>
+ <v2[H-EIV>

= 0 (21)

Eq.(21) is the equation to determine the first derlvatlve of the

wave function. As shown later, finding yl based on the use of eq･(21) is

equivalent to finding the optimal Vl by the perturbation variation

method.15 Based on the discussion in See.II, we assume that VI can be

expanded in terms of the singly excited conflguratlons

vl -

u(I)s'.val al
(22)

Here U(I) are expansi._n c.efficients, namely the first-order variational
al

parameters and S+. are･the single excltation operators defined by
al

s芸q
-

(a;∝a｡∝.a;βaqβ)/ノ2
(23)

+

The a a･nd a are the creation and destruction operators which satisfy
p q

- 13 -



Fermion aI-tlcom皿utation relatlon･ From the ortbogonallty relations of

orbitals, we have

u三三)･u三,1)
-o (24)

+

The Sa主 generates a Singlet singly excited configuration when operating

on V

+

saiV≡S三il,
- [Ⅰ ･-

wi(αβ一紬)ノ2
- )J (25)

Eq･(21) involves the second derivative of the wave function V2. so we

must elj-minate V2･ The V2 can be written in general in terms of the

excitation operators as

v2 =

u(i)u(i)s+ s+
pq rs pq rsl>

(26)

The orbital pairs pq･ rs run over all orbitals･ Thus V2 consists of the

ground･ singly and doubly excited conflguratlons

v2 - [
u(2'.uま…'s三i･･Uま…ヲbjS｡;sbJT,., (27)

The ground state component comes from the

excltations･S;as;1】,
and singly

excited configurations arise from

SニbSこi',and
S,TiS三)I,･

The V2 can be

expressed in terms of the first-order parameters as

v2 - [
u三三)u三三's;｡s三i

I

Uま去'u三三's三｡s岩j
･

U(l'u't'sて･s･･Jl aJ Jl aJ

- 14 -



･

uま壬)u三吉)s三iS;)
],,

comparing eq.(28) and eq･(27) we have

u(2)ニーIuま壬)l2

uま…)
-

u£去)u三三)
+

u5壬)uま吉)

uま…ヲb)
-

Uま壬)u三吉)

(29a)

(29b)

(29c)

(28)

The U(2) can be obtained also from the second-order normallzatlon

condltlon

<v2[y> + <vl[vl>
= o (30)

Returning to
eq.(21), we see that the last term requires only the

knowledge of the doubly excited configurations of V2･ using the

relation given by eq･(29c), we can rewrite e.q･(21)
as

･ISaiHl･, ･ [

<･sai(H-E)Sこ).,
･ <tsaiSb)H,,

]U三吉)
- o (31)

These are a set of linear equations, which are sufficient for finding

uま壬)
we only need soluti｡ns of eq･(31) to Obtain Vl･ There is no

lteratlon involved. Eq.(31) are known as the coupled perturbed

rlartree-Fock equations as discussed by Stevens et a1･16 Note here that

once the first-order wave function has been determined, the second10rder

wave function V2 can be obtained except

Uま…)
The

Uま…)
requires the
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knowledge ｡f

U£去)
and U(･!) which cannot be fixed from the first-order

JI

wavefunctlon.

Finally, the second energy derlvatlve can be written ln terms of the

excitation operators as

E2 -

<JH2[, I

2U(I)<[SaiHl),al
(32)

Eq.(32) can be formulated ln another lVay. Let us consider the

general expression of E2 obtained by double dlfferentlatlon of eq.(1)

E2 =

<v[fI2川･>
+ 4<Vlll11[v> + 2<VllI-I-E[V1> + 2<V21H-EIV> (33)

工t can be shown17 for any approximate Vl,
say中1

that

<vfH2[v,
･

4<gl[HllV, I 2<gl[H-E[中1, + 2<中21H-Etv, ≡巨2
, E2 (34)

Thus we may choose an arbitrary trial function lVlth variable parameters

and optimize it by minimizing E～2. If中1 contains only linear parameters

and V-2 can be writtes as eq.(27), it is easy to sh･ow that the optimized

trial function satisfies

･y三｡t.I-,.<V三｡t･H-E[V三｡t,
+

<v喜｡trH-E",
- 0 (35)

This implies that the

V:,t
satisfies eq･(21) derived from the Hurley･s

condition･ Also we have the expression of E2 for the optimal

V:,t

E2
-.<vH{2",

･

2<V!,t.Hl",
(36,
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which takes the same form as given by eq.(20). Thus, flndlng approximate

vl from the Hurleyls condition of eq･(21) is equivalent to optimizing Vl

using the perturbation variation technlque･15 Namely, the analytic energ:

derivativ_es derived from the Hellmann-Feynman theorem is satisfied for

l

the optimal wave function derivative determined by the liurley-s condition･

工t must be emphasized that the varlatlonal perturbation method will lead

to successful results only for the lVaVefunctlon obeying the

Hellmann-Feynman theorem.

Eq.(32) can be expressed ln a simple matrix form

b + (A + B)U = 0 (37)

The b and U are the column vectors of <lSalHll> and first-order

variatlonal parameters

defined by

respectively. The A and B 皿atrlces are

(A)ai,b) -

<[Sai(H-E)S;)I,

(B)ai,b] =

<lSaiSb]H)>

(38a)

(38b)

since we are dealing with closed-shell systems, all the lntegrals can be

chosen as real. So the A and B matrices are symmetric. Now let us

consider the unltary transformation among singly excited configurations

which diagonalizes (A+B) matrix

0†(A + B)0 = d (39)
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Here 0 Is the unitary matrix and d ls a diagonal matrix.工f we further

define the unltary transformed excltation operators by

R:i
-

S:)Ob),ai

together with

･ま壬'-o｡),aiU三吉'

Then we have

vl -

Tま壬)R三il,

･ま壬)
-

<･RaiHl･,/△Eai

and

with

(43)

(40)

(41)

(42)

｡Eai -

<lRai(H-E)R三il,
+

<lRaiRaiHl, (44)

Finally, the second energy derlvatlve can be written as

E2 -

<(H2T>
- 2 l<fRaiHl]>I2/AEai (45)

Eq･(45) 1s derived without any approxlmatlon ln spite of its slmpllclty.
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Namely by choosing 0 as dlagonallzlng the matrix (A.B), the second energy

derlvative can be expressed in the similar form as a simple

sum-over-state perturbation method･18 Tbe similar procedure has been

used to analyze the second-order perturbation energy of the coupled

Hartree-Foch theory and the unllnked terms of the SCF effect of

l

orbltals･19 Note here that △Eal is not really the excltatlon energy･ 1t

includes the additional term originated from the I】matrix. 工t ls called

as the generalized exchange lntegral19 since <lSalSal=l> equals to the

usual exchange integral (ailal). The generalized exchange integral

represents the SCF effect of the change ln the orbltals due to the

displacement of the lnternuclear distance･

The first term of r.h.s. of eq.(45) is the classical formula for the

force constant and corresponds to moving the nuclei while holding the

electrons fixed. 工t is positive. The second terms are often referred to

as the relaxation terms since they represent the effect of the changes ln

charge dlstrlbution due to the movement of the nuclel･ As can be seen

from eq.(45), the relaxation terms are negative･ Tbls holds for

optimized variational functions ?s well as for the exact wavefunction･
20

(c) Third derlvatlve

The third energy derlvatlve ls obtained by further dlfferentiatlng
l

eq.(20) with respect to R

E3 ≡

<vIH3lV>
+ 4<VlltH2-E2IV> + 2<V11Hl-EIIVl> + 2<V2]Hl-E1(v> (46)

This expression of the third energy derivatlve contains the second

derivative of the wave function V2. The unknown quantities of V2 are the
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parameters

uま…)
for the singly excited configurations. So it is

necessary to look at the second-order Hurley-s condition obtained by

dlfferentlatlng eq. (21)

<v3JH-EIV>
+ 2<V2lHl-EIIV> + 3<V2)H-EIVl>

+
<vIJH2IV>

+ 2<VllHl-EllV1> = o (47)

However･ eq･(47) includes the third derivative of the wave function, V3.

rrherefore, we shall try to ellmlnate the third-order wavefunctlon. Thls

is possible･ The general form of V3 is

v3 - 【 u'3'+

uま…'s三i
･

Uま…ヲbjSaiS｡j
･

Uま…ヲbj,ckS｡iS｡jS｡k
】-, (48,

+ + + + +

However, we can express u(?)al
I

Uま…ヲb)I
and

U三…ヲb),｡k
in terms of the lo､ver

order parameters by analyzing the excltatlons,

u(3) -

-3Uま…)uま壬)
(49a)

uま…ヲbj
-

3Uま…)u三言'
(49b,

uま…ヲbj,｡k
-

Uま壬'ui,t'u三三'
(49c,

The relation of eq･(49a) can be derived directly from the tblrd-order

normallzatlon condltlon of the wavefunctlon

<v3Iy> + 3<V2(vl> = o (50)
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Note here that only the doubly excited configurations of V3 can

contribute to the

unknolVn parameters

｡f U(?) and U(1)al al
I

u(?)<1Sai引,al

first term of eq.(47). Thus, eq.(47) contains only

uま至)
if

Uま壬)
are kn｡wn･ Expressing eq･(47) in terms

we have the follolVlng relations

l

-

uま壬)【
<･saiH2.,

･ 2<IS

ai(Hl-El)s;A.,u三吉)

･ (

2<ISaiSb)HS;k･,
･

<,Sb)S｡kHSニi.,)U三吉)u三三)
] (51)

Thus. the U(?) Can be expressed explicitly in terms of the firsトorder
al

parameters･ The third energy derlvatlve is now reヽvrltten as

E3 -

<.H3.,
+

6U(I)<･saiH2.,
･

6Uま壬)u三吉)<･sai(Hl-El)sこ)
I,

al

･

6Uま壬)u去Jt)u三三)<･saiSb)HS:k,,
(52)

The formula ls much simpler than that of the direct analytic derlvatlve

method. Note here that the final expression of E3 contains only the

first-order variational parameters･ The explicit knowledge of V2 is not

necessary. Thls point will● be discussed later･

If we use the unltary transformed excltatlon operators, the above

expression can be expressed ln the form of the sum-Over-state

perturbation method

E3 -

<lH3r,
- 6

<lHIRニil,<lRaiH2l,
/ △E

- 21 -
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･

6<佃1Rニi[,<JRai(HしEl,R昌)･,<･Rb]Hl･,,(△Eai△Eb),

-

6<-HIR;i-,<･HIR言j-,<･RaiRbjHR;kI,<･R｡kHl･,,(△E｡i△Ebj△Eck,(53'

This equation ls also exact･ There ls no appro.ximatlon employed.

Now let us consider the general analytic expression of E3 derived
､

by successive differentiations of eq.(1)

E3 =

<v[H3JV>
+ 6<VIIH2-E2IV> + 6<VIJHl-EIJVl> + 6<y2fHl-EIIV>

+ 6<V21H-E[Vl> + 2<V3fli-E[V> (54)

Expanding the lVaVefunction derivatives in terms of the excltatlon

operators as before and minimizing E3 with respect to the unknown

parameteter

uま…)
,

we have

-

<-saiHl',
･ [

<-sai(H-E,S岩).,
･ <･saiSb)H,, ]U去,t'-

o

Eq.(55) hold automatically if Vl is ch.sen.ptimal, that is if
U(I)al

satisfy eq･(31)･ The E3 expression for the optimal y2 takes the same form

as given by eq.(46). ･Thus, the first-order wavefunctlon suffices to

determine the third energy derlvatives･ This property ls also utilized

to derive the third energy derlvatlves of the direct analytic method.4

(c) Fourth derivative

The fourth derivatlve ls obtained by dlfferentlatlng eq.(46) agalp
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with respect to R

E4 =

<vIH41V>
+ 6<VIIH3[v> + 6<V2IH2-E2IV>

I+

6<VllH2-E2[vl>

+ 6<V21Hl-EIIVl> + 2<V3[Hl-EllV> (56)

The last term on the r.也.s. of eq.(56)
involves the third derlvatlve of

the wave function. We need the singly excited components of V3 to

evaluate this term due to the one-electron property of =1･ To determine

the unknoIVn quantltles, we start with the third-order Hurley's condition

<v41H-EfV>
+ 3<V3IHl-EllV> + 4<V31H-EIVl> + 3<V2IH2-E2Iy>

+ 9<V2IHl-EI[vl> + 3<V21HIEIV2> + <vIIH3IV>
+ 3<Vl[H2-E2[vl>

= o

(57)

Again the above condltlon contains the fourth derlvative of the

wavefunctlon. Ⅲowever, the required quantltles to evaluate the first

term of eq.(57) are only the doubly excited configurations of V4･ From

the analysis of the excltation operators, we see that

uま三三bjS;iS;)-
(

4Uま…)u三吉).3Uま…)u去…',s三iSこ)

Thus we Can find the unknown parameters U(?) from eq.(57).
al

expression ｡f U(?) becomes
al

(58)

The final

u(?)<･saiHl･,
-

uま壬)[
<.s

･H3.,
･

3<,Sai(H2-E2)sこ)I,u三吉)al al

- 23 -



･

9<1SaiSb)HIsこ｡･,ui;)u三三'･
(
3<.SaiSb)(H-E)S;kS昌l･,

･

･

4<･SaiSb)S｡kHS昌1,,)U三吉)u三豊)uよ壬)
] .

3U(2)uま壬)<･saiHl･,

･

3Uま…)[
<･s

･H2-,
+

3<･Sai(Hl-El)s;).,･uii)al

･ (

<.sai(H-E)S言)I,
･ <･saiSb)H･, )U三J?)

･ 2(
2<･SaiSb)TIS;k･,

･

<.S｡)SckHS三i.,)U三吉)u三三)
] (59)

Note here it ls not necessary to solve the second-order coupled perturbed

Hartrec-rock equations for the calculation of the third-order parameters.

It ls also p｡sslble t｡ represent U(?) 1｡ terms ｡f the first_Order
al

parameters u(i) if we utilize the relations gi,en by
eq.(51).al

The fourth energy derlvatlve can be expressed ln terms of the

excitatlon operators

E4 -

<"41, ･

6U(I)<lSaiH3l,
･

6U(?)<lSaiH2l,
･ 6U(2)<JH2-E2l,

al al

･

6Uま壬'u三吉)<,sai(H2-E2)s岩)I,
･

6U(2'u(I)<･s+･Hl･,al al

･

6Uま…'u三,!'去･sai(Hl-El,sこ)-,

･

6Uま壬'ui,t'u三三'<･saiSbjHIs:k-,十2Uま…'<ISaiHl.,
(60,

utilizing the relations given in eq.(59) we Can eliminate U(?) and have
al
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E4 -

<.H4., ･

8U(I)<-SaiH3･,
･

12Uま壬)u三吉)<.sai(H2-E2)sこ)I,al

･

24Uま壬)u三吉)u£去)<･saiSb)HIs;kl,

･

6Uま壬)uii'u三三)uA壬)<･saiSb)(H-E)S;kS去Il,

･

8Uま壬)u三吉)u£去)uエ11)<lSaiSb)SckHS昌l･,

･

6Uま…)u去…)(<1Sai(H-E)Sこ)[,
+ <･saiSb)Hl, )

･

12Uま…)[
<ts

･H2t,
･

2U三吉)<暮Sai(Hl-El)s;).,al

･ {
2<･SaiS｡jI-IS:k･,

I

<･SaiHSこjS三k･,,U三吉'u三三']
(61'

since according to the relations of eq.(51), the last four terms on the

r.h.s. of the above equation ls

12Uま…)[
<･saiH2., +

2U三吉)<-sai(Hl-El)sこ)I,

･ {
2<･SaiSb)HS;k･,.･<･SaiHSこ]sニk･,}Ut;'u三三']

･2Juま…)'l2<lSaiHll,/Uま壬)
(62)

provided that U(I)メ 0.工f we further use the relations given by eq.(51)
al

we can express E4 in terms.f.nly the first-.rder parameters U(I)al

Although the formula looks complicated, 1t consists only of

straightforward combinations of known quantities. There are no algebraic
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problems.

The fourth energy derlvatlves can be expressed in terms of the

unltary transformed excltatlon operators as

E4-<lH4暮,

-8<fHIR三iJ,<R･H3J,/△E
･

al air--
-

･

12<lHIR三iI,<･R｡i(H2-E2)Rこ)-,<･Rb)Hl-,
/ (△Eai△Eb))

-

24<･lIIR三i･,<,HIR言)I,<･RaiRb)HIR:k-,<-R｡kHII,/ (△Eai△Eb)△E｡k)

･

6<･1,1R三i.,<･HIRこ).,<.RaiRb)(H-E)R:kR昌1･,<･R｡kl11･,<･R｡IHl.,
/

(△Eai△Eb｣△Eck△Edl)

I

8<IHIR:i･,<･HIR;)I,<･HIRckI,<･RaiRb)RckHR;l･,<.RdlHl･,/

(△Eal△Eb｣△Eck△Edl )

-

6lTま至)I2△E
･

al
(63)

Here, T(?) are the transformed second-Order parametersal

･ま…'-
(△Eai,-l[ <･RaiH2･,

I

2<.Rai(Hl-El,R岩j-,<･RbjHl･,/△Ebj

･

(2<[RaiRb)HRc;l,
I

<[RaiHR:)R:k[,)<IRb)Hll,<[RckHII,/(deb)AEck)
]

(64)
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Eq.(63) is also an exact equatlon･

Let us again consider the general formula for E4 obtained by

successive differentiations of eq･(1)

E4 =

<vIH4]v>
+ 8<VIIH3[v> + 12<V2IH2-E2IV> + 12<VlfH2-E2IVl>

+ 24<V21Hl-EI]vl> + 8<V31Hl-EllV> + 6<V21H-E[V2>

+ 8<V3IH-EIVl> + 2<V4IH-EIV> (65)

Taking account o-f eq.(58), we minimize E4 with respect to
U(?) This

al

yields

讃丁-<･SaiHl･,･ [

<･sai(H-E,S;j･,
･<,SaiSbjH･, ,U三吉)

-o (66,

al

This is also satisfied if Vl is chosen optimal and the E4 for the optimal

v3 becomes identical to that in eq.(56). Thus, the optimal Vl is

sufflclent to evaluate the derlvati･ves of the energy up to fourth-order･

Analogous results for E5, E6,･- may be derived･ The only difficulty ls

that these lower-order wavefunctlons must be known exactly.

ⅠⅤ. General Formulae for the Second, Third and Fourth Energy Derivatives

ln th.is section we shall give the general formulae for the second･

third and fourth energy d9rivatives based on the Hellmann-Feynman theor･em
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We will start with the energy expression given by eq.(1). By

differentiating eq.(1) with respect to a nuclear coordlnate 入, We Obtain

the Hellmann-Feynman theorem

E入= <v[H入Iy,

and the Hurley's condition

(67)

<v入IH-EIV>
+

<VIH-EIV入>
≡ o (68)

We assume the wave function is normalized to unity and have

'v^[v'
.

'vIV^'
- 0 (69)

Second energy derlvatives can be obtained by dlfferentlating eq.(67)

with respect to ～

E入山= <vIH入山】v>
+ 2<V入IHLl(v> (70)

Here we used the relations, assuming that all the functions are real,

<v入JHLllV>
=

<VJ1[H'^[V> (71)

The second derivatives require the first derivative wave functions V^. By

differentiating
eq.(68) with respect to 〃 we have the firsトorder

Hurley's condition
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<v入IHLIIV
> +

<V入IH-EtVP>
+ <v入p)H-EtV>

= 0 (72)

As shown in the previous section, V^ may be expanded in terms of the

singly excited conflguratlons

v^ - u^ai

S:it,

Then V叫can be expressed as

(73)

v入山- [
-lu^ai[2

+

u^a竺s;i
･ U^aiUbP) s三iSこ)

]1,

Eq.(72) with 入=LL gives

(74)

･ISaiH入･, ･ [

<暮Sai(HIE)Sこ)I,
･ <-SaiSb)H■, 〕U歪)

- o (75)

By solving a set of linear equations we can obtain V入and then E川･

E入山- <lH叫l,. 2U三i<1S｡iHPJ,
(76)

The third energy derivatlves are derived by further differentlatlng

eq.(70) with respect toリ. It is not symmetrized with respect to 入, Ll,

リ. 工t can be recast in a symmetrical form. The third energy derivatives

are given by

E入山リ- <vtH川リJV,

･号pi3)<v入相ルソーE仏ソ[v,･号p皇3)<vlplHリーEリけ,

･号p去3)<v入lH山一EPIサリ,
- 29 -
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The n｡tati｡n

P王3)Ip皇3)Ip去3)
means the permutatioヮ of the superscripts

(入)(Llリ) + (Ll)(り入) + (リ)(入p)

(入Ll)(リ) + (LIU)_I(ら)+ (り入)(J1)

(A)(Ll)(リ) + (Ll)(リ)(入) + (リ)(入)(Ll)

This implies there are three terms from each P(3) The third energy

derivatives require the second-order parameters･

U三笠･
The second-order

liurley's condition is given by

･v入〃リJH-EIV,

･号p皇3)<v入〃けⅠリーEリけ,.P皇3)<v仙[IIIE■Vリ,

十吉p王3)<v入IHPU-EPU･v,･号p去3)<v入･liP-EP川り,
- o (78)

Using the relations

u三笠?b)
-

P去3)u三笠ubU)
(79)

we can express u入サin terms of U入. from
eq.(78) as

al al

吉p･皇3)u入サ<･saiHリ･,
-吉p王3)u三i<)SailiPUl,

al

･号p去3'u三i<･S｡i(H山一E山,sこj.,UbVj
･

P皇3)u三i<･SaiSbjHS;k･,UbPjUごk
(80,

In the case of 入-〟-リ, eq.(80) are reduced to
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u三三<ISニiH入t,
-

u三i[<lSaiH入入l,
I

2<1Sai(H入-E入)sこ)l,Ub^)

(
2<･SaiSb)HSニk･,

･

<1SaiHSこ)s;kI,)Ubl)u三k]

Also we have t__b.e_following relations by puttin.g入-∨in eq･(80)

l

2U三笠<ISaiH入I,
･

U^a壬<1SaiHPI,
-

(81)

2U^ai<ISaiH^HI, I

U芸i<lSaiH入入l,
･

4U^ai<lSai(H入-E入)sこ)I,UbP)

･

2U入･<-sai(HP-EP)sこ)I,ug)
･

3U入･<ISaiSb)HS;kl,Ubl)u竺kal al

･

6U三i<lS｡iSb)i-S;kl,UbP)u三k
(82)

s｡ Once u入ケhave been determined by eq･(81), the remaining U三笠can
be

al

obtained from eq.(82). Now the third energy derivatlves given ln

eq.(77) can be rewritten in terms of the excitation operators as

E入山リ- <tH入pVL,ナ2 Pi3)u三i<1SaiHPVt,

･.2

P去3･)u^aiUbH5<･Sai(HV-Eリ)s;)
I,

･ 2

P皇3)uまiUbP)uごk<.SaiS｡〕HS;kl,
(83)

Thus, we only need solutions of linear equations of eq･(75)
to evaluate

the third energy derlvatives.

The fourth energy derlvatlves are given ln a symmetrical expression
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E入山りに-

<-入山りにけ,.書p王4)<v入fH抑KIV,
+

P(芸r)[<v^p'Hリに-Eリに.v,

･
<y入JHLLU-EPUJVK,

+圭(<v叫fHリーEリfVに,
+

<v叫柑K-EにJVリ,)]

･圭p王4)<v叫リJHに-EK川,

p王4)

by

lVlth

(84)

(入)(LlリK) ･ (J1)(リk:A) + (リ)(に入Ll) ･ (に)(入Llソ)

p去4)
- (入H)(りに) + (小U)(K入) ･ (リK)(入p) ･ (K川uu). (小K)(入り)

+ (入り)(Ilk)

The above expression includes third derivatives of the wave function which

requires the knowledge of the singly excited configurations of V入LN The

variational parameters u入サリof V入pU can be determined by the third-Order
a1

Ⅲurley-s condition obtained by dlfferentlatlng
eq.(78) and the relations

u三笠∵bKjS三iS昌j
-

'P去4'u三笠リubK)･喜p皇4'u三笠ubV,T
,

s三iS岩i･
(85,

with

p去4)
- (入HU)(に). (i"K)(A). (リK入)(～). (K入H)(リ)

Then we have the following relations
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吉p去4)u入サリ<･s･Hに,, -吉pi4)u三i<1SaiHPUKl,al al

･吉p皇4)u三iUbP)<･sai(Hリに-Eリに)sこ)I,

･

p皇4)u三iUbPjUごkUKdl【呈<-sai旦bj'H-E'S;kS昌･l',
･

2<1SaiSbjS｡kHS左l],
]

･吉p皇4)[u^ai<1SaiHPl,Uリに･u芸i<1SaiH入l,Uリに】

･吉p皇4)u三笠[
<lSaiHリにl,

･書(<lSai(rIリーEリ)sこ)I,UbK)

･

<lSai(Hに-EK)sこ)I,UbV))

･

(<lSai(lトE)Sこ)I,
･ <IS｡iS｡)--Il,) UbVJ?

･ 2(
2<ISaiSb)HS:k･,

･

<･SaiI-Sこ)s:kl,
)UbV)ucKk 〕 (86)

工n the case ofユ-J1-ソニK, the above relations are reduced to
eq･(59)･

Once

u^!^ have
al

eq.(86).

u^!^ and
al

the known

been determined, U入ナLIcan be obtained by putting入-ソニにin
al

Finally we can determine the remaining U三笠リusing
the known

u三三p
Now the fourth derivatives can be evaluated in terms of

quantities･ Although the equations are rather complicated･

there are no algebraic problems･ Finally' the fourth energy derlvatlves

can be written as

E入山リK -

<lH入山リK),
･ 2

Pi4)u三i<lSairI仏ソにl,

･ 2

P皇4)u三iUbP)<-sai(Hリに-EリK)s昌j.,
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･ 6

P去4)u三iUbP)ucUk<･SaiSb)HKs;k･,

･ 8

U三iUb?)UごkU芸1<ISaiSb)S｡kHS昌1l,

･ 6

U三iUb?)UごkU芸l<JSaiSb)(H-E)S;kS昌l[,

･

p皇4'u三笠ubU言{<,sai(H-E,Sこj･,
I

<･SaiSb)Hl, }

･ 2

P皇4)u三笠【<.sai剛,
+

<･Sai(HリーEリ)s岩)I,ubK)

･

<fSai(HK-EK)sこ)I,UbU)

･ (
2<ISaiSb)HS;kl,

I

<1SaiHSこ)s;kl,)UbU)u:k
〕

of course we can express E入LLリK in terms of only the first-order

parameters by eliminating

U:;with the help of eq･(80)･

(87)

Ⅴ. Conclusion

We have derived equations which provide the second, third and fourth

derivatives of the energy of a molecule based on the Hellmann-Feynman

theorem･ The Hurley-s condition can be used to obtain approxlmatlons to

the first-order wave function, from which the second, third and fourth

energies can be obtalned･ There are several signlflcant advantages over

the･direct analytic derivative method. First the anlytic expressions of
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these higher derivatlves are much simpler compared to those of the direct

analytic method･ Second the electrostatic calculation involves only

one-electron integrals. Since the wave function derivatives can be

expanded in the excited configurations in terms Of the basis functions･

there_旦PPear nO integrals involving derivative.s of the basi岳functions･

l

This leads to drastic simplification since the fully 畠b initio evaluation

of higher energy derivatlves of the conventional method requires large

amounts of computer time and storage primarily because of the derlvatlves

of the lntegrals. Third there is no need of solving the coupled perturbed

liartree-Fock equations to obtain the derivatives of the wavefunction･ We

only need solutions of a set of linear equatlons･ There is no lteratlon

involved. Only the first derivatlve lVaVefunctlon is sufficient to

determine these higher order derlvatives. Fourth there are intuitive

physical pictures associated with these higher derlvatlves as the

I-Iellmann-Feynman force picture associated with the first derivatives･

1†e have also shown that the present procedure of deriving higher

energy derivatives based on the Hellmann-Feynman theorem with the

auxiliary Eurley-s condition is equivalent to minimizing the derlvative

energy by the perturbation variation technlques･ Thus the derived

formulae can be applicable to any real one-electron perturbation such as

electric properties･ ･AIso
lt is easy to modify the formulae for the pure

imaginary perturbed wavefunctlons ln the case of magnetic properties･ If

the spin-dependent perturbations are treated, the singlet excitation

operators defined in eq.(23) should be replaced by the triplet excltatlon

operators

s;｡
-

(a;αa｡α
-

a;βa｡β)/ノ2
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we have also derived these higher derlvatlves ln the similar form of

the sum-over-state perturbation method without any approxlmatlon･ These

expressions may help our understanding of various terms of these higher

energy derivatives･

工n this paper explicit formulae are derived only for the

closed-shell SCF wavefunctlon. But the present procedure can easily be

extended to other variatlonal wave functions obeying the Hellmann-Feynman

theorem.
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NOTE ON AN UPPER 王∋OUND PROPERTY OF SECOND DERIVAT工VES OF TIiE ENERGY

K.I-Ⅰ工RAO
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and
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ABSTRACT

An alternative proof ls glven for the upper bound relatlon of

second derlvatlves of the energy

(∂2E/∂入2)<v]v>三<VIa2H/∂入2fV>

The relation ls proved to be equivalent to the stabillty condltlon of

a varlatlonal wavefunctlon.
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sllve上･man aI-d Leuvenl) i-aye used perturbatlon varlatlonal theory to

derive the upper bound relation for second derivatives of the energy

(∂2E/∂入2)<v(v> 三<y]a2fl/∂入21y> (1)

ⅠIere I王is the llamiltonian,入1s any parameter in H (coordinate of a

nuc】･cus. (:harge oF a nucleus, etc.), V and E are elther the exact

cigellru-1C亡ion alld elgerlValue of the Schrodinger equation or some

op亡1mal v(･HllaLlo=al coullLcrparts to thcm･ ^n alternatlve proof ls

provlded by Deb2) for tI-e exact solutlon･ ･rhe curvature theorem (1)

provides insight into the behavior of exact and optlmum variational

SOlutions to the Schrodinger equation when these solutlons are treated

as functions of a real parameter occuring in the llamiltonian. For

instance･ l1′hen the coordinates of nucleus ln a molecule･are taken as人,

then the second derivatives of the energy give the force constants.工n

いIis case･ tile relatlon (1) 1ndlcates the relaxatlon terms are negative.

In tllis note we wish to show that there is,an easier way to derive

(1) for 亡he optlfnlzed variatlonal wavefuctlons (all varlatlonal

Parameters Chosen to minimize t:he expectation value of H(A) for each

(A)) as well as for the exact wavefunctlon.

Let V be a normalized optimal variational wave function and E the

COrreSpOndlng optimal energy

<y=I-EIV>
= o (2)

and let入be a real parameter in H･王Iere, we flrst dlfferentlate (2)

with respect to 入 to find

- 2 -



(∂E/∂入)<V[V> =

<yf∂1Ⅰ/∂入IV>
+

<∂V/∂入JfI-Ely>
+ <VIIi-EI∂V/∂入>

王王olVeVer, tlle Varlatlonal condltlon ensures that

<∂V/∂入=トEIV> + <V‖トEl∂V/∂入>
= 0

whence we have the llellmann-Feynman theorem3)

(∂L:/∂入)<yIV> =

<VIall/∂入)V> (5)

(4)

The condition (4) is called as the llurley.s condition.4)

Differentiating (5) again with respect to ^ yields

(∂2E/∂入2)<ylV> =

<yl∂21Ⅰ/∂入21V>

+ <∂y/∂入[∂lI/∂入Iy> +
くV)∂Il/∂入)∂V/∂V> (6)

Similarly by differentiating the llurley-s condition we obtain

<∂y/∂入l∂lI/∂入Iy> +
<y)∂H/∂入I∂V/∂入>

=

- 2【<∂V/∂入=l-El∂V/∂入> + Re<∂2v/∂入21H-EIV>] (7)

Substitution in (6) leads to the result

(∂2E/∂入2) -

<vla2H/∂入2け>
≡

-2【<∂y/∂入=I-El∂y/∂入>
+ Re<∂2v/∂入2)H-Ely>] (8)

- 3 -
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llence what: we want is a condition which will ensure that

<∂v/∂入=トElay/∂入> + Re<∂2y/∂入2III-EIV>之0 (9)

as a consequence of the varlatlonal prlnclple.

Now let us consider a small displacement of an optima1 :
.

wave function by replacing 入 tO 入+占入. From Taylor-s theorem we can

expand t土1e l∇aVerunCtlon as

v(入+∂入) =

V(入) + (∂y/∂入)b入+ (1/2!)(∂2v/∂入2)(8入)2 +
… (10)

Iiere V(入+b入)tis assumed to be normallzed also to unity. The first

differelltial of V is the first order change in y produced by changing入.

Similar-1y the second differential o.f V is the second order change of y.

′1'11Crl Llle ellergy ls given by

E(V(入'b入)) - E ･ 【<∂y/∂入川-E[V> ･

<V川-E[∂V/∂入>】b入

+ (i/2!)【<∂y/∂ill-トEJaV/∂入> + Re<∂2v/∂入21H-EIV>](古人)2 +
.‥ (ll)

The first order term in b入is zero due to the Hurley-s conditlon (4).

This leads to a simple criterlon that the energy corresponding to V be

stationary with respec't to the variation given by (10). Once.one has

located a statlorlary point, a natural questlon to ask ls, 1s lt a

minimum, a maximum or Just a saddle Point? The way to answer this

questlon ls to look at the second order term ln ∂入. Tbe second order

term is expressed as a quadratic form in the )aV/∂入> and <∂V/∂入l. Thus

the question to be anslVered is, 1s the form posltlve (local minlmum),
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negatlve (local maxlmuln) or lndeflnlte (saddle polnt)? The=energy ls

stable lf

(1/2!)【<∂V/∂入=トEI∂y/∂入> + Re<∂2y/∂入21=-EIV>]三0 (12)

T上lls lnequallty ls knoⅥ′n as the stablllty condltlon for the optlmlzed

varla亡lollal lVaVefunctlon. TIle Stablllty condltlon ensures that the

wave function represents a true mlnimum or a saddle point of the energy

fun(:い-on(1l.. 'llluS ]r the cncrgy ls stable wc.arrlvc at the requlred

upper boulld relatloll from (8)

(∂2E/∂入2)<…> 三<y)∂21Ⅰ/∂入2]v> (13)

That is･ the upper bound condition is equivalent to the stability

condltion･ The upper bound condltlon provldes addltlonal crlterlon to

t上Iat Of tlle Varlational princlple for Judging the quality and stabllity

of an appro又1ローate lVaVefunctlon･ A general condltlon for the stablllty

problems of a IIartree-Fock solutlon was first formulated by Thouless5).

cizek and Paldus6), Fukutome7) and Hirao and NakatsuJi8) have discussed

the concept of the stablllty of a varlatlonal wavefunctlon. But we

wュll not go furt上1er On thls polnt､. 工f the equality of (12) and

therefore of (13.) is satisfied, the critical point is a saddle point

and we must go to higher order terms to examlne the crltlcal polnt.

If E is the exact energy, (H-E)V=0, then the last term of r.h.s.

1n (8) vanishes･ The E Is the true lowest bound state energy and an

expectation value of a posltlve semldeflnlte operator (H-E) Elves

- 5 -



<∂V/∂入川Il;1∂y/∂入> 三 0 (14) ･

which leads to the required upper bound relation.2)

There is an alternative to the choice of (10) for V. namely

V' -

exp[ ihD ]V , D = (1/i)(a/∂入) (15)

Ilere D Is a glveI- dlrferentlatlon operator and b ls an arbltrary real

!mlflbc.r rl()L co‖talnc(1 1n ll･ Slnce the D Is llermltlan, V' 1s related to

V by a uLliLこ1ry tranSformatlon･ The energy E--<V･IIIIV･> is glven by

E- - E '. h[<∂V/∂入】1I-Ely> ･
<y川-EI∂V/∂入>】

十h2【<∂v/∂入川-EfaV/∂入> + Re<∂2v/∂入2.1i-EIV>] +
‥. (16)

NolV COnSlder tl-e transformation of the =amlltonlan expressed as

eJht)IIclhu

T上1en tl-e expoI-entlal series can easllァbe expanded using Hausdorff

formula to yield

E, = E + ih<V([H-E,D]1V> + (ih)2/2!<Vl[[H-E,D],D]fy> +
...

= E -

h<V[alI/∂入- ∂E/∂入Iy> + (h2/2!)<VI∂2H/∂入2- ∂2E/∂入2fV> +
… (17)

l

By comparing (16) wltll (17), we can see that the flrst order energy term

gives the王Iellmann-Feynman theorem and the second order ter皿With the

stability condltlon leads to the upper bound relatlon.
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Abstract

We have sbdied pseudorotation reactions of some penta-coordinated

phosphorouscompounds ‡PH5, PF5, PF4H, PF3托, PF4CIもPF3(CH3)2,

P(02C2H4)H3, P(OC3Ⅰも)H3 and PO5H4-) to elucidate the reaction

mechanisms byusing ab initio SCF and MP4 methods. We have

calculatedthe potential surface forthe lowest pass of pseudorotation

reactions･ The geometries of the transition state cormectmg them have

been determined theoretically･ The ligands which formthe coval'ent bond

with the central phosphorus atom such as Hydrogen, methyl and

methylene groups prefer to coordinate in the equatorial position･ This



nature of the ligands is called asthe equatoTiphilici& It is possible to

predict whetherthe pseudorotation reaction can occur or not, based on

the number of the equatoriphilic ligands in the penta-coordinated

molecules. The normal coordhate analyses have been carried out at血e

stationary polntS Of PHS and PF5･ The mechanism of pseudorotation is
●

discussed and explained onthetheoretical basis.

1. Introduction

The different behavior inthe hydrolysis reactions between DNA and

RNA is aninteresting fact that is related totheir different rolesinthe

biochemical system･ DNA molecules which work as tapes forthe storage

of genetic idormations show very strong resistance tothe decomposition

bythe hydrolysIS. Even after one hour reaction at lOOoC in lN NaOH
=

(aq･)DNA molec山∝ don′t show any changes.(1) on血e o血er band, 2-

hydroxyethyl methyl phosphate, which is a model molecule of RNA,

easily undergoes the hydrolysIS reaCtion･ The half-life of the hydrolysIS
●

reaction of this molecule at 25oCin1N NaOH (aq･) is 25 minutes.(1)

Indeed RNA molecules have highturnover rates and are easily

hydrolized･ The difference tothe hydrolysis reaction between DNA and

RNA which functions as a carrier of genetic informations comes from

也ese chemical characteristics･ The behavior of phosphate ester to血e

hydrolysis reaction is closely related tothe nature of phosphorus atom･

The highreactlVlty comes fromthe penta-coordinated intermediate
● ●

formed bythe attack of the vicinal hydroxyl group thoughthe hydrolysis

reaction･ The group-15 elements i凪血e second and succeeding rows of

血e periodic table can show higher valence numbers･ One of血e possible
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structures of penta-coordinated compounds is trigonal bipyramid･ The

hypervalent character of elements in higher rows of血e periodic table is

qulte different fromthat of the first row elements･ For example, CH5- is

ina highenergy transition state of the SN2 reaction, while SiH5- is a

stable intermediate. Recently, astheoretical teclmiques have been

expanded, itbecomes possible to predictthe existence of compounds from

血e血∽retical background･ Though it has been assumed血at hypervalent

compounds of first-row elements such as nitrogen cannot exist,
a recent

study of Ewig et all suggestedthe existence of thee nitrogenous penta-

coordinated compounds, i･e･NF3n, NF4H and NF5･(53)

In relation to the phosphorus penta-coordinated compounds,

westheimer(2) has proposedthe mechanism of the hydrolysIS Of phosphate
●

esters･ He has postulatedthatthe nucleophilic displacement reactions of

phosphorous compounds proceeds though penta-coordinated

intermediates. (see Figure 1-(a)) He also assumedthat
an axial enhy of

the nucleophile takes placeinformmg
a trlgOnal bipyramidalintermediate

●

■
●

′ヽ
●

andthat
an axial departure of a leavlng group OCCurSin formlng

=

products･ If the activated states have sufficiently long lifetime, lt is

further assumed that ligand rearrangement,that is pseudorotation

reaction, may be encountered before product formation･ The Berry's

pseudorotation(4) process, which rapidly exchange axialand equatorial

ligandsinthe trigonal bipyramidalintermediate (Figureト(b)), has a

strong basis in phosphorous chemistry where NMR studies have

establishedintramolecular ligand exchange process for many phosphorane

molecules. (see Figure 2) Many studies of the bonding nature, structures

of phospborous molecules and relative reaction energleS Of pseudorotation
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reaction have been performed experimentally andtheoretically･(3)-(32),(46)

(50)
Particularly, Holmes has contributed to developments of the

understanding of penta-coordinated phosphorous compounds･(32) =n

theoretical treatments some models are adopted; valence electron palr
■

repulsion model(24), athree-center four-electron bonding model･(25)-(27)

Furthermorethere are many ab initio or semiempirical molecular

orbital calculations･(27)-(31)･(50) strich et al･(7)studied PHS and supported

Berry,s pseudorotation. Marsden(12) calculated PF5 and esfimafedthe

energy barrier of the pseudorotation to be 3･8 kml/mol･ Schleyer(45)

studied first and second row
substituents of phosphoranesina systematic

way･ Recently, Dietersand Holmes(14) studied a series of substituted

phosphorouscompounds･ The pseudorotation reaction is not confined to

only phosphorus compounds･ Recently Gordon et al･(50)have performed

theoretically an extensive study of the pseudorotation reaction of SiH51.

There has been muchinterestinthe pseudorotation mechanismin

view of the important role of the phosphorus chemistry･Asthe

pseudorotation reaction is a ligand exchange isomerization reaction

betweenthe apical part andthe equatorial part,the reaction mechanism is

closely related to血e relative stabilities between血e isomers which are

interconvertedthroughthe pseudorotation isomerization reaction. The

relative stability of apICal and equatorial substituted isomers have been
●

discussed bythe substituent electronegativities, stericinteraction and ring

strain･ It is very difficult to observe dhectlythe pseudorotation process

as it is a reactionintheintermediate･ And it is necessary to studythe

transition state of the reaction to understandthe process of pseudorotation

reaction･ Ab im'tio calculations are nowadays widely accepted as a

4



legitlmate way of gettlng informations that are experimentally
二

inaccessible. Thetheory can describethe mechanism and provide some

correct explanations of the pseudorotation hypothesis･

we have carried out ab ilu'tio molecular orbital calculations on

pseudorotation profiles of some phosphorouscompoundsinthis study･

The computational methodsinthis study
are described in Section 2･ The

results are presentand discussedinSection 3･ The emphasis of the

discussion is put onthe pseudorotation mechanism･
We also discussed the

relative stability of isomers･ The equatorial substituent effectsinthe

apical bond formation are also discussed･ Some general conclusions
are

summarizedinSection
4.

2. Computational details

ln this study all geometries of penta-coordinated compounds were

fully optlmized atthe SCF level･ Because of the fact pointed out by

Magnusson(44)that relative energies Of singly substituted phosphoranes

vary considerably withdifferent basis set, it is necessary to use basis set

at least as large as 6-31G*･ So for all molecules except PH5,the basis sets

are used at the double-zeta level(33),(35)which are augmented with

polarization functions. The polarizationfunctioI娼(αp-0･43, αc-0･75,

α｡-o.85, αF-0.90, αH-1.00)
are added to phosphorus atom and other

ligands which
are directly connected tothe central phosphorusatom･ We

have also added a diffuse function (α｡-0.059) on the phosphoryl oxygen

atominthe calculation of PO5H{. Weused a triple-zeta(33) plus

polarization (TZP) basis set for PIもcalculatioIIS･ The correlation

energleS are Calculated bythe fourth-order Moller-Plesset perturbation

5



me血od (MP4) at SCF optimized geometries.

3. Results and discussions

ln Section 3A we discuss the pseudorotations of some penta-

coordinated phosphorouscompounds. We discussthe relation between

the stability and the structure of penta-coordinated phosphorous

compoundinSection 3B, i･e･ equatoriphilicity･ We discussthe apical

bond character by usmgthe orbital energy correlation diagramsin
●

Section 3C･ Some discussions onthe equatorial substituent effects are

二

glVen i皿Section 3D.

3A. Pseudorotation

PHS

The optimized structures of the ground (D3h) and transition (C4v)

states are shown in Figure 3-(a) and (b),respectively. The ligand atthe

apex position of the C4v Structure is called asthe pivotal ligand･
=

The energy relation betweenthe ground state andthe transition

state is showninthe energy diagram. (see Figure 4) The broken line

shows result of血e SCF calculation and也e solid sbows血at of血e MP4

calculation･ Theindividual electron paws are separated as far as possible
●

inthe ground state. These electrons become closer each otherinthe

transition state. Thus the electron correlation effect becomes more

significant in the transition state･ The energy barrier of the

pseudorotation reaction is about 2 kcal/mol withand withoutthe electron

correlation･ We can say, therefore,the Berry's pseudorotation occurs

very easilyinthis molecule.
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The electronic structure of phosphorane PH5 is

(core)10(1al)2(1e′)2(ュe′)2(1a2′′)2(ユal′)2(ョe′)0(4e′)0(ヨal′)
0

---

The highestoccupied molecular orbital (HOMO) is showninFigure 5-(a)･

The apical bond has a three-center character and is weakerthanthe

normal single bond･ The electronic structure of the transition state is

(core)10(1al)2(1e)2(2e)2(2al)2(1bl)2(ヨal)0(4al)0-----

The changes of the bond lengthof PH5throughthe reaction are shownin

Table Ill-(a),inwhichthe bond lengthbeforethe reaction is put as lOO･

The pivotal ligand staysinthe equatorial plane before and afterthe
●

pseudorotation reaction･ The pivotal bond lengthis shortestinthe

transition state. Its change is also smallestinthe reaction･ The orbital

mainly related to the pivot is lal MO which isthe deepest oneinthe
●

valence molecular orbitals of the ground state･ Inthe transition state two

apICal orbitals and two equatorial orbitals mixes-up
to form four

■

equlValent ligand orbitals･ The bond brought tothe apICal position is
=

lengthened. The electron densltymoves tothe overlap region between
=

phosphorusandthe pivotal hydrogen from other parts of the moleculein
●

course of the reaction. Sothe pivotal bond becomes shorterthanthe
●

corresponding equatorial bondsinthe ground state･

The symmetry of the transition density(36)-(39)fromthe HOMO to

血e LUMO of血e ground state PH5 is

al/× e/
-

e/

The intramolecular vibration mode hduclng血e pseudorotation is e′
●

symmetry･ The transition densities wi血3-21G☆ basis set are shown i皿

Figure 5一仲)and (c),inwhich (b) is one along the apical axis and (c) is

one inthe equatorial plane･ The intramolecular displacement of
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individual atoms is expected to occur along the arrows･ The results of the

vibrational analysis Ofthe ground state with TZP basis set are shownin
●

Figure 61(a) and @). There are two modes of e'symmetry withthe

frequencies of 629･O cm-1 and 1373･8 cm-l･ we can see thatthe equatorial

bond is moreflexiblethanthe apical oneandthe openlng motion of the

equatorial ligands (629.0 cm-1)initiatesthe pseudorotation reaction. We

also performedthe vibrationalanalysis calculation forthe transition state.

There is one vibrational mode withthe imaginary frequency. The

transition vector is shownin-Figure 6-(c). One of the <HPH angles closes

down andthe other angle opens up simultaneo1鵜Iy. The transition vector

showsthatthe molecule returns tothe ground state alongthis mode of the

vibration.

PF5

The optimized structures of PF5 are ShowninFigure 7. This

molecule has a D3h Symmetry atthe ground state and a C4v atthe

transition state･ The values inthe parentheses are the experimental

ones･(16) The calculated apICal and equatorial bond lengths areingood
●

agreement wi血血e experiment･ The calculated energleS at Several levels

of approxlmation for ground and transition states are showninTable I.

From these results,the MP2 level of correlation correction seernsto be

adequate forthe calculation of the potential energy barrier･ The potential

energy barrier inthe reaction has 4.24-5.07 kcal/mol (see Figure 8), so

血e pselldorotation reaction proceeds easily･ The change of血e bond

lengthis least forthe pivotal ligand as showninTable III一仲).The bond

length of the pivotal ligand is shortestinthe transition state like PH5 Case.

●
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The results of the vibrational analys鵜are Shown on Figure 9･
●

Berry′s pseudorotation reaction beglnS Withe'vibration andthe transition

state has C4v Symmehy･ The opening motion of the equatorial ligand is

easier (185.3 cm-I)thanthe
bending of the apical bond (559･9 cm-I)

for

dlis molecule
as well as PH5.

PF4H and PF3H2

The total and relative energleS are SummarizedinTable I for PF4H

and PF3Hま.

The energy diagram of PF4Hincourse of the reaction is drawnin

Figure 10-(a). The hydrogen atom isinthe equatorial position inthe

ground state. This atom occupies血e apex (pivotal position) of C4v

structure in the transition state. There are 7.38 and 5.70 kcal/mol of

potential energy barriers f♭r PF4H pseudorotation reaction at SCF and

MP4 levels, respectively.

The most stable isomer of PF3Ⅰも has two hydrogens in the

equatorial position･ The results of the calculated potential energy are

summarized in Table II･ The potential energy surface of this reaction is

showninFigure lO一仲).The isomerization product is fahly urutable

because of the very small energy difference between the transition state

andthe product･ The barrier height tothe pseudorotation of PF3H皇is

calculated to be 12.16 kcal/moland 10.43 kcal/mol by the SCF and MP4,

respectively･ The relative energleS Of血e pseudorotated isomer to血e
=

ground state are calculated to be 12･03 kcal/mol and lO･82 kcal/mol at血e

SCF and
MP4 levels, respectively･ The pseudorotation reaction does not

proceed because of血e high potential energy barrier･ We can also say
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that there is no
stable energy minlmum structure forthe pseudorotation

products from the MP4 results. Through the process of the

pseudorotation reaction bothof two equatorial hydrogen atorru carmot

remaininthe equatorial plane. One hydrogen is broughtinevitablyto the

=

apICal position and its bond is lengthened leading tothe imtabilization of

血e molecular system.

PF4CH‡ and PPS(CIも)2

Wes血eimer discussed血e pseudorotation reaction of PF4CH‡ and

pF3(CH‡)2･(2)Ifthe pseudorolalion reaction occurs, the only one type of

F-NMR peak is expected for PF4CH3. The NMR experiment verifiedthat

the pseudorotation is expected to occurinPF4CIもmolecule. Onthe other

hand, no evidence of the pseudorotation reaction is obtainedinthe case of

PPS(CIも)2.

Our results on PF4CIB are showninFigure lト(a). One methyl

group ISinthe equatorial plane atthe ground state. The methyl group
●

occllPiesthe pivotal positioninthe transition state structure. Asthe

pseudorotation proceeds, two apICal fluorines and two equatorialfluorines
●

interchange･ The energy barrier for the pseudorotation reaction is

calculated to be 5･26 kcal/mol (SCF) and 3.95 kcal/mol (MP4). The easy

proceeding of the pseudorotation reaction is expected f♭r PF4CH‡, wbicb

verifies experimental results.

We also studied on PF3(CH3)2. In the ground state two methyl

groups occupythe equatorial positions. One of two methyl groups takes

血e aplCal position in the isomerization product･ The o血er aplCal position

is occupied bythefluorine atom･ Asthe reaction proceeds,the bond

lO



brought tothe apICal position fromthe equatorial
one is stretched, andthe

stabilityofthe molecule decreases･ The potential energy curve of the

reaction is showninFigure 11一仲).There is only one stable minimum

structure for PF3(CH3)2 reaction. The energies of the isomerized product

are calculated to be 15.04 kcal/mol (SCF) and 14･01 kcal/mol (MP4)

higher relative to血e stable isomer･ ThⅧs血e pseudorotation reaction

carmot proceed as showninthe experlment because of the highenergy

barrier andthe shape of the potential energy curve･ The high barrier

comes mainly fromthe fact that one of CH3 group OCCuPleSthe apICal
●

position.

P(02C2H4)H3 and P(OC3H6)H3

westhelmer(2) also discussedthe compounds havmg rlng Structures

●

showninFigure 2-(c),(d)･

As a model of the cyclic intermediate in a RNA by血olysIS reaction
=

we studiedthe ethyleneglycoxyphosphorane (P(02C2H4)Ii3)･ One end of

血e rlng Of血is molecule occupleS血e aplCal position and也e o血er end

forms one end of the equatorial planeinthe ground state･ Theangle

between aplCal PO and PH bonds comes close as血e pseudorotation
●

reaction proceeds･ The transition state has Cs symmetry which resembles

to the C4v Structure Ofthe simple penta-coordinated molecule such
as PH5

and PF5･ The energy diagram of the pseudorotation is shown in Figure

12-(a). A low potential barrier is foundinthe pseudorotation reaction･

The relative energy of the transition state to血e ground state is calculated

to be only 2.32 kcal/mol (SCF) and l･83 kcal/mol (MP4), respectively･

Thus it is expected thatthe isomerization easily occurs by the

nL



pseudorotation reaction.

We
also studied another cyclic phosphorane P(OC3Ih)Ibinwhich

one oxygen atom of ethyleneglycoxyphosphorane is replaced by a

methylene group･ There is only one stable energy minimum structurein

whichthe oxygen occupleS the apICal position andthe carbon atom is
●

●

placedinthe equatorial plane･ We calculatedthe energy change whenthe

angle <02PIH3 is changed. The results are showninFigure 12-仲)as an

potential energy curve. There is no second stable isomerinwhich die

carbon atom occupleS也e apical position and也e oxygen atom occupleS

●
●

the equatorial one･ The calculated energy barrier forthe pseudorotation

is about 9 kcal/molinthe SCF level. Thusthe pseudorotation reaction is

not expected to occur easily. Whenthe correlation energy lS takeninto
●

account,the potential barrier is reduced to 7.77 kcal/mol. The potential

energy barrier became low, butthe pseudorotated isomer will return to

the ground state because of the shape of the potential surface･ Inthe

process of the pseudorotation reactionthe methylene group which forms

covalent bond withthe central phosphor耶CannOt keepthe equatorial

position･ This bond is transferred to the apical position and stretched, and

the molecule becomes unstable.

3B･ Equatoriphiucity

Here we explain the relation between the stmc山re and也e stability

of the penta-coordinated phosphorouscompound･Let havlng five atoms

=

(ligands) around P witha large distant apart. If we supposethatthose

atoms (ligands) are able to form a stable penta-coordinated molecule, we

shall obtain a stabilization energy･ It will be convenient to divide血is血to
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two processes, of whichthe first one corresponds to formlngthe
=

equatorial plane andthe second one to formlng a Penta-COOrdinated whole

molecule. The results on PF此and PF3(CIも)2 are SummarizedinTable

IV. In this table whenthe ligand are far apart we speak of the separated

ligand･ We name the processinwhichthe equatorial plane part asthe

equatorial plane formation･ The process of the whole penta-coordinated

m.lecule formation is called as a whole molecule formation. E(stable)

and E(unstable) of Table IV meanthe total energy of the stable and

unstable isomers, respectively. The valueinE(A)-E(b)
isthe difference

between E(stable) and E(unstable),that isthe relative stabilitytothe

stable isomer. The structures of stable and unstable molecules are shown

inFigure 13･ The energy of the separated
ligand isthe sum of the

energleS Of all separated ligands andthat of the phosphorus atom･ The
■

energy of the equatorial plane formation isthe sum of the total energy of

the equatorial part andthose of the separated apICal ligands･
●

In the case of PF3托,the stable isomer is 12.03 kcal/mol stabler

二

thanthe pseudorotated unstable one･ Whenthe stabilization energleS are

compared inthe formation of the equatorial plane (PH2F and PF2H),the

stabilization energy of the PH2F which is a equatorial plane of the stable

isomer is 31.64 kcal/mol greaterthan that of PF2H･ In the apical bond

formation E(stable) of the PF2H + FH process obtainsmore stabilization

by 19.61 kcal/molthan E(unstable) of the PH2F + F2･ The total

stabilizations are obtained by adding up all stabilization energies･ The

stability of the equatorial plane mainly determinesthe total stabilization of

the penta-coordinated whole molecule･ There is a same tendency ln the

case of PF3(CIも)2,inwhichthe total stabilization is mainly determined by

13



血e stability of血e equatorial plane.

These results come fromthe factthatthe ligands such as hydrogen,

methyl groupand methylene group which form the covalent bonds with

the central phosphorus prefer to coordinate onthe equatorial positions･ If

such a group IS contained only oneinthe molecule, it is able to remain
●

near the equatorial position through the pseudorotation reaction

■ ●

occupylngthe pivotal position and its bond length remains almost

constant. But whenthere are morethanone such ligands, one ligand at

least mtlSt be moved tothe apical position andthe covalent bond is

lengthenedinthe reaction process. Thusthe pseudorotated isomer

becomes less stable･ These process determinethe possibility of the

pseudorotation reaction･ This explains也e relationship between血e ligand

position andthe stability of the moleculeinthe different view polnt from

=

血e blown aplCOphilicity, which says血at more electronegative ligand

prefers to occupythe apical position･ We namethis concept as an

eq uatorl'ph ilicity

We present some predictions of the relation between血e possibility

of the pseudorotation and the number of equatoriphilic groupsinTable

V･ In acyclic molecules whenthe number of the equatoriphilic group JS

zero or one,the reaction is expected to occur as showninPF5, PF4H
and

PF4Cfb･ Inthe case of two, thee and four equatoriphilic groups,the

progress of血e pseudorotation reaction brings血e equatoripbilic group to

血e aplCal position and so the reaction is probibited･ When all血e ligands

are replaced bythe equatoriphilic group,the energy change beforeand

afterthe pseudorotation reaction is remains zero and thusthe reaction

will not be hindered･ But because bothofthe two apICal positions are
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occupied bythe equatoriphilic ligandsinthis case,the resultant penta-

c｡｡rdinated molecule would become less stable. For example PH5 is a

metastable molecule not a global
one･ In cyclic molecules whenthe

number of the equatoriphilic end of the rug lS Zero Or tWOthe reaction is
二

=

expected
to proceed･ Onthe other hand if the number is one,the reaction

will be prohibited･

we applied血e叩1atOripbilicity to血e pseudorotation reaction of

po5I14-. This molecule is a prototype of the penta-coordinated

intermediate of the hydrolysIS reaction of phosphates･ There are two

possible structures･ One isthatthe phosphoryl oxygen atom is placedin

the equatorial plane･ The phosphoryl oxygen occupleS
an axial positionin

●

the other isomer. The energy relation glVen by our studies is showed in

Figure 14 wi血血e transition state between two isomers･ The energy of

the isomer A relative tothe isomer B is considerably
high, i.e･ 1l･52

kcal/mol atthe SCF level and 9.57 kcal/mol even atthe MP4 level･ The

transition state energy betweenthese stable isomers is calculated to be

13.53 kcal/mol (SCF) and ll.64 kcal/mol (MP4), respectively･ The

relative energy of the transition state tothe isomer A is computed
as 2･01

kcal/mol (SCF) and 2.07 kcal/mol (MP4)･ Ifthe isomer A is formed in

the reaction of PO4ⅠもwithOH- anion,this isomer isomerizes easily tothe

very stable product B. The phospboryl PO bond is in血e aplCal position

●

inthe isomer A. Inthis structurethe covalent bond isinthe apICal

position and is lengthened･ Thusthe necesslty Ofthe equatoriphilicity lS

not satisfiedinthis structure. So it isomerizes tothe most stable isomer B

throughthe pseudorotation to transferthe phospllOryl
PO bond tothe

equatorial position･ We also consider the pseudorotation reaction between
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the isomers B and its 90o pseudorotated B'. The transition state between

them is C4 Symmetry Structure. The transition state energy is 6.90

kcal/mol (SCf) and 6.19 kcaVmol (MP4) higherthanthat of the isomer

B. This result impliesthatthe intermediate of the hydrolysis reaction of

the phosphate will easily isomerize bythe pseudorotation.

3C. ApicalBonding Chamcter

We divided a whole molecule to an equatorial plane and an aplCal
●

ligand part as showninFigure 15-(a) and drew molecular orbital energy

correlation diagrams between血em in order to s山dy血e character of the

apical bond andthe originofthe well-known apicophilicity. (see Figure

15一仲))Here an orbital which is symmetric aboutthe equatorial plane is

called as a symmetric orbital. An antisymmetric orbital means an

antisymmetric one about the equatorial plane･ When a whole molecule

A-B is formed from two parts A and B,their orbitals q)a and (pb havmg

the orbital energies eaand eb (ea<eb),respectively,interact to yield two

new orbitals I)a'and (pb'. Throllghthe orbitalinteractionthe energy level

of the orbital (paris lowered relative tothat oftheinitial orbital (pa bythe

value Aea estimated withthe second-order perturbationtheory
′

△Ea-Ea一己a- (Hab -

eaSab)2
ea-eb

where払b istheinteraction energy and Sab isthe overlap Integral for
●

these orbitals･(51) The factors affectlng tOthe orbital stabilization arethe

orbital overlappmg and the energy level closeness of血e interactmg two

orbitals (pa and (pb･

The graph on Figure 16 shows血e stabilization of血e total energy,
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symmetric andantlSymmetric orbital energleSinthe formation of the

penta-coordinated molecule･ The stabilization energleS are Plotted tothe

●

change of the number of the equatorialfluorine･ Bothofthe two apICal

ligands are fixed tofluorine atoms･ The symbols in the parenthesis mean

the equatorial plane parts･ We can easily see thatthe close relation

betweenthe equatorial substituent effect onthe symmetric orbital andthat

on血e whole molecule. On血e o血er hand 血e stabilization of血e

antisymmetric orbitals are almost same for every case･ There are little

substituent effect onthe antisymmetric orbitalfromthe equatorial

fluorines. Tlms we can discuss the molecular stabilization
by uslng Only

●

血e symmetrical orbital stabilization･

This result canbe explained
as follows･ The electronsin the

ant鵜ymmetric orbital concentrate on 3p z lone-palr Ofthe central
●

●

phosphon旭beforethe orbitalinteraction･ The orbitalinteraction

stabilizes it bythe extension of the orbital space･ Therefore if the same

apical ligands are coordinated,the stabilization withanalmost same level

will begiven bythe orbitalinteraction･ This corresponds totheknown

●

apICOPhilicity･ Iithe electronegative and electron withdrawmg group IS
●

placedinthe apICal position, the electrons concentrated on 3p z lone-palr
●

of the phosphorus can begln tO move tOthe apICal bond region effectively
●

●

and strong ionic bond is formed with the great stabilization･ Onthe other

hand,the symmetric electron
is onthe stretched apICal ligands before the

●

orbitalinteraction. The 3dz 2 AO of the central phosphorus bridges two

apICal fluorines throughthe symmetric orbitalinteraction, andthusits

contribution is essentially important forthe stabilization of the axial bond･

Thusthere are obviousdifferenceinthe stabilization of the symmetric
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orbital due tothe differenceinthe ability to partlCIPateinthe three-Center
■ ●

bond.

The orbital energy correlation diagrams of PH 5, PH3F2 and PF5 are

showninFigure 17-(a),仲)and(c),respectively.

In PH5血e symmetric orbital is characterized by ls AO of the

二

apICal hydrogen and 3dz2 orbital of the central phosphon旭atOm mixed

into it･ This orbital is very slightlystabilized becausethe 3dz2 AO of the

central phosphorus isinhighenergy level. There is a difficulty of charge

transferfromthe donor H 2 tOthe acceptor PH3.

In PIもF2the stabilization of the A orbital is much larger thanthat

of PH5･ This meansthat thefluorine is more apICOPhilic ligand. The
●

stabilization of S orbital mainly comes fromtheinteraction of 2p AO of
●

the apICalfluorine and 3dz2 AO of the central phosphorus. The charge

transfer from HOMO of fluorine to LUMO of phosphorus atom is

induced fairly strongly bythis contribution of 3dz 2 AO･ The larger

stabilization of the antlSymmetric orbitalinduces the great charge transfer
●

fromthe lone-pair HOMO of PH3 tOthe LUMO of F2, aSthe difference

of the electronegativity is large (2.19 for P and 3.98 for F by Pauling's

definition)･(52)According tothe great charge transfer, almost all the

charge on phosphorus HOMO flows tothe apICal LUMO andthe
●

coefficients of 3pz AO
of the central phosphorusin the whole PH3F2

molecule become small and也e bond wi血ionic character is fわrmed in P -

F reglOnS.

In PF5there is a.very strong substituent effect onthe LUMO of the

equatorial plane because all equatorial positions are substituted by

fhorines･ So血e stabilization of symmetric orbital becomes much larger

18



血an血at of PH5. The stabilization of血e antisymmetric orbital is ah10St

same level withPH3F2 aSthe apICal ligand isfluorine for bothmolecules,
二

i･e･the apICOPhilicity is fixed･
=

3D. Substituent Effects

The orbital energy level of the equatorial plane parts of the penta-

coordinated molecule have an important contribution tothe stabilization

of the apICal bond･ We studiedthe substituent effect onthe apICal orbital
●

■

of the equatorial plane part･

The results of the substituent effects on HOMOand LUMO of

equatorial part are showninFigure 18･ The bondanglesin the triangle

plane are fixed to be 120

o
･ All combinatiorLS Of equatorial ligands are

considered by usingthe following bond lengths; R(P-H)-1･40 A, R甲-

F)-1.55 A and R(P-CH3)-1.81 A･ when a fluorine atom coordinates
as

an equatorial ligand,the orbital energy of LUMO becomes lower･ On

the other hand,there is not an obvious effect of an equatorial ligandin

methyl group and hydrogen atom･ The substituent effect
on LUMO

comesfromthe o-type attractlng Interaction bythe ligands･ When great
●

electronegative ligands likefluorine coordinate,the strong o-type

interaction isinducedandthe orbital energy of LUMO becomes lower･

Thusifthe apICal ligands are fixed,there is much stabilization of the
●

axial orbitalinmolecules havingfluorine as an equatorial ligand･ The

axial bond becomes stronginsuch molecules･ Theinfluence of the

substituent to HOMO of the equatorial part comes fromthe 7t-type

donatlng Interaction tothe 3p z lone-palr Of central phosphorusatom･
●

when methyl group coordinates, its effect is given tI甘Oughthe
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●

hyperconJugation. The orbital energy of HOMO becomes higher asthe

antibonding nature血oughthe 7t-tyPeinteractionincreases,thoughthis

effect is smallerthanthat of the o-typeinteraction between substituents

and LUMO.

We showedthe variation of the orbital energleS Ofthe apICal
●

●

LUMO according tothe difference of the apical ligandinFigure 19. In

仙is s山dy one dummy atom is de丘ned at a middle polnt Of血e aplCal
● ●

bond･ The bond lengths from a dummy
atom@)

to each apical ligands

are as follows; R畔-H)-1.45 A R(Ⅹ-F)-1.60 A, R畔ICH 3)-1.84
A and

R畔-OH)-1.74 A. Theinteraction between 3p
z-HOMO of central

phosphorus and LUMO of the apICal ligand becomes greater whenthe
=

electronegative ligands participateintheinteractions because of their low

orbital energy LUMO･ If the equatorial part is same,the molecule havmg

fluorines as apICal ligand is most stable andthat havlng hydrogen atoms

●
●

or methyl groups is less stable. The difference of the orbital energy level

of血e aplCal ligand is血e orlgln Of血e aplCOphilicity.
● ●

■
●

4. Conclusions

The implications of this study can be summarized as follows;

1･ By
analyzmg血e energy relation between the stable isomer and也e

unstable oneinthe pseudorotation reaction, we foundthatthe stabilization

of the equatorial plane part of the penta-coordinated molecule determines

the stability of the whole molecule. The groups formlngthe covalent
●

bonds withP such as H, CH3 and C托prefer to coordinateinthe

equatorial position, i.e. equatoriphilicity. If the whole molecule was

formed from completely separate atoms, the equatorial plane part would
20



be formed firstbythe groups which make covalent bonds withP andthen

the remained ligands would coordinate atthe apICal positions･

2. We drew orbital energy correlation diagrams for some molecules

and consideredthe stability of apICal bonds･ The apICal bond is thlee-
+

d < < ml
I

center four-electron character. When the apICal ligands are fixed,the

special orbital is related withthe stabilization of the molecule･
We can

discussthe strengthor nature of the apICal bond by usmgthe special
●

●

orbital.

3･ The potentialenergy barrier of the pseudorotation for the model

phosphate molecule is fairly low, and it is consideredthatthe reaction

proceeds easily in gas pbase･

4. Fromthe study of the substituent effect onthe equatorial plane part,

it is shownthatthefluorine
has a slgnificant effect onthe 3d AO of the

●

central phosphorus ･

●

5. The correlation effect is necessary but not essentialindetermin1ng

the potential barrier height･ The hm level of energy correction seems to

be ad叩ate fわr some explanations of血e na加e of pseⅦdorotation

■

reactlOIIS.
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Table I The calculated energies in some levels
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PH5 TZP Basis Set

Methods Ground State Transition State Relative energy

(a.u.) (a.u.) (kcal/mol)

SCF

MP2

MP3

MP吐(DQ)

MP吐(SDQ)

MP4(SDTQ)
SDCI

SDCI(Davidson's correction)
Coupled Cluster

-343.528616

-343.693636

-343.720720

-343.724957

-343.725823

-343.728719

-343.715483

-343.728684

-343.725743

-343.524348

-343.690815

-343.718088

-343.722374

-343.723284

-343.726277

-343.712706

-343.726360

-343.723208

2.68

1.77

1.65

1.62

1.59

1.53

1.74

1.46

1.59

PF5 DZP Basis Set

Methods Ground State Transition State Relative energy

(a.u.) (a.u.) (kcal/mol)

SCF

MP2

MP3

MP吐(DQ)

MP吐(SDQ)

MP4(SDTQ)
SDCI

SDCI(Davidson's correction)

-838.184055

-839.145335

-839.134876

-839.141543

-839.157117

-839.183257

-838.999488

-839.149570

-838.175975

-839.138455

-839.127467

-839.134182

-839.150024

-839.176493

-838.991797

-839. 142333

5.07

4.32

4.65

4.62

4.45

4.24

4.83

4.54

PF4H DZP Basis Set

Methods Ground State Transition State Relative energy

(a.u.) (a.u.) (kcal/mol)
~~ ~~-

--I- --~ ー~ - ~一一-■ lI--･l- -- --Ill- 1 - --■-I- 1 --■ -- 1 -- -一一- ---
1 -- ----▲ --- ●-■■-■--■■- -- --- 1 -- --- -I- 1-･----- ■--- ■■-1111 --111 -- -Ill _ ■■_

SCF

MP2

MP3

MP吐(DQ)

MP吐(SDQ)

MP吐(SDTQ)

SDCI

SDCI(Davidson's correction)

-739.339311

-740.066801

-740.062518

-740.069250

-740.082283

-740.103597

-739.962596

-740.076286

26

ー739.251810

1740.057365

-740.052423

-740.059178

-740.072611

-740.094516

-739.952088

-740.066540

7.38

5.92

6.33

6.32

6.07

5.70

6.59

冨=H革



PF3H2 DZP Basis Set

Calculated energies (a.u.)

Methods lsomer Transition lsomer

A State , B

SCF

MP2

MP3

MP4(DQ)

MP吐(SDQ)

MP吐(SDTQ)
SI)CI

SDCI(Davidson's correction)

-640.339311

-640.983482

-640.986074

-640.992684

-641.002782

-641.019130

-640.917403

-640.998586

-640.319940

-640.966482

-640.968355

-640.974932

-640.985444

-641.002503

-640.899434

-640.981249

-640.320136

-640.965907

-640.967983

-640.974537

-640.984945

-641.001888

-640.899221

-640.980803

Relative energies to Isomer A (kcal/TnOl)

Methods Transition lsomer

State B

SCF

MP2

MP3

MP4(DQ)

MP吐(SDQ)

MP吐(SDTQ)
SDCI

SDCI(Davidson's correction)

12.16

10.67

ll.12

ll.14

10.88

10.43

ll.28

10.88

12.03

ll.03

ll.35

ll.39

ll.19

10.82

ll.41

ll.16

PF4CH3 DZP Basis Set

Calculated energies (a.u.)

Methods Ground State Transition State Relative energy

(a.u.) (a.u.) (kcal/mol)

SCF

MP2

MP3

MP4(DQ)

MP吐(SDQ)

MP吐(SDTQ)

-778.317482

-779.243283

-779.249062

-779.256377

-779.270468

-779.295633

-778.309098

-779.236814

-779.241875

-779.249252

-779.263708

-779.289336

5.26

4.06

4.51

4.47

4.24

3.95
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PF3C2H6 DZP Basis Set

Calculated energies (a.u.)

Methods Ground State 122.5 degree Relative energy

(a.u.) (a.u.) (kcal/mol)

-718.444972

-719.335317

-719.357558

-719.
365328

-719.377661

-718.420999

-719.313707

-719.334828

-719.342659

-719.355332

15.04

13.56

14.26

14.23

14.01

PO5H4- DZP+diffuse(on phosphonyl 0) Basis Set

The calculated energies (a.u.)

Methods A TSl 王∋ TS2

-717.543764 -717.540558

-718.577403 -718.574347

-718.576367 -718.573054

-718.584464 -718.581140

-718.596275 -718.592979

-717.562121

-718.592420

-718.592565

-718.600412

-718.611530

-717.551127

-718.582677

-718.582292

-718.590297

-718.601662

Relative energies to lsomer B State (kcal/mol)

Methods A TSI TS2

ll.52

9.42

10.16

10.01

9.57

13.53

ll.34

12.24

12.09

ll.64

6.90

慧="H

6.36

6.35

6.19

P(02C2HA)H3 DZP Basis Set

Calculated energies (a.u.)

Methods Ground State Transition State Relative energy

(a.u.) (a.u.) (kcal/mol)

SCF

MP2

MP3

MP4(DQ)

MP4(SDQ)

-570.259906 -570.256207 2.32

-571.006186 -571.003244 1.85

-571.036013 -571.033022 1.88

-571.043240 -571.040223 1.89

-571.051341 -571.048432 1.83
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p(oc3H6)H3 DZP Basis Set

calculated energies (a.u.)
-____-I-------1---I-------------------------I-----一-------I--------------I-ll-I

Methods Ground State 120･O degree Relative energy

(a.u.) (a.u.) (kcal/Ⅶo1)

__-I_----I--一-----------I-ll--I--I--I--------------------------------~~~~~~--~~

scF -534.399504 -534･384867
9･18

MP2 -535.103777 -535･091700
7･58

MP3 -535･146680 -535･133687
8･15

MP吐(DQ) -535.153406 -535･140562
8･06

MP吐(SDQ) -535.159715 -535･147335
7･77

__I-I___-I---I-ll----I-----一--------I-一-----一-I-----------ll----～--~~~ー~~~~ーー~~

______________-I-ll-I--I--r I-===============================================================================================ニー----I----I-I--~~~---~-Ill-~~~1--~
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Table II The potential energy change with SCF calculations for PF3H2, PF3C2H6

and P(OC3H6)H3

1. PF3H2 Potential Energy Change with SCF

degree Total Energy Relative Energy

(a.u.) (a.u.) (kcal/mol)

178.8 (Minimum 1)

160.0

145.0

136.0 (TS)

130.0

125.8 (Minimum 2)

120.0

-640.339311

-640.327938

-640.320708

-640.319940

-640.320064

-640.320136

-640.319871

0.000000

0.011373

0.018603

0.019371

0.019247

0.019175

0.019440

0.00

7.14

ll.67

12.16

12.08

12.03

12.20

2. PF3C2H6 Potential Energy Change with SCF

degree Total Energy Relative Energy

(a.u.) (a.u.) (kcal/mol)

175.3 (Minimum )

155.0

135.0

130.0

125.0

122. 5

-718.444974

-718.430836

-718.422170

-718.421659

-718.421252

-718.421002

0.000000

0.014138

0.022804

0.023315

0.023722

0.023972

0.00

8.87

14.31

14.63

14.89

15.04

3. P(OC3H6)H3 Potential Energy Change with SCF

degree Total Energy Relative Energy

(a.u.) (a.u.) (kcal/mol)

177.8 (Minimum )

150.0

140.0

130.0

120.0

-534.399504

-534.388692

-534.386962

-534.385960

-534.384867

0.000000

0.010812

0.012542

0.013544

0.014637

0.00

6.78

7.87

8.50
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Table III-(a) The change of the bond lengthof PH5 (A)

before reaction transition state after reaction

pivotal leng血 1･415 (100) 1･394 (98.5) 1･415 (100)

equatorial length 1･415 (100) 1･451 (102.5) 1･477 (104.4)

Table Ⅲ-(b) The change of血e bond leng血of PF5 (A)

before reaction transition state after reaction

pivotal leng血 1.537 (100) 1.524 (99.2) 1･537 (100)

equatorial length 1･537 (100) l･562 (101･6) 1･577 (102･6)
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TableIV

(I) Thetotalenergy change ofPF3H2 (hartree)

separated ligand equatorial plane whole molecule
fo rmat ioA format io A

(pH2F(b) and PF2H(C))

A. E(stable) 1639.877916 1640.00300l -640.320136
B. E(unstable) -639.877916 -640.053428 -640.3393

I 1

E(A)-E(B)
(a)

0.000000 0.050427 0.0 19 175

(0.00) (31.64) (12.03)

(2) The total energy change ofPF3(CH3)2 (hartree)

separated ligand equatorial plane whole molecule
formati on format ioA

(p(cH3)2F(d) and PF2CH3
(e))

A. E(stable) -717.992666 -718.
1 10894

-718.420999
B. E(unstable) -7

17.992666
-718.

13 1585 -7
18.444972

E(A)-E(B)
(a)

0.000000 0.02069 1 0.023973

(0.00) (12.98) (15.04)

(a) The values h the parenthesis are shown h kcal/mol.

(b) equatorial plane part of the stable isomer of PF3H2

(c) equatorial plane part of the unstable isoner of PF3H2

(d) eqtlatOrial plane part of the stable isomer of PF3(CH3)2
(e) equatorial plane part of the llnStable isomer of PF3 (CH3)2



Table V. The relationship betweenthe possibility of the pseudorotation andthe number of the equatoriphilic groups

(a)acyclic molecule
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Figure Captions

Figure 1 (a) : The schematic structure ofD 3h trigonal bipyramid.

仲): The schematic explanation for Berry's pseudorotation reaction.

Figure 2 The experimental results of some pseudorotation reactions.

Figure 3 The optlmizedstructureofPH 5. (a) : Theground state

structure.仲)
: The transition state structure of the pseudorotation

reaction. The bond leng血is shown in A and也e angle is shown i皿

degre田.

Figure 4 The erlergy diagram forthe pseudorotation reaction ofPH 5.

TS meansthe transition state withC 4v Symmetry. The energleS are

■

relative to that of Ainkcal/mol. The SCF energy of the ground state A

is
-343.528616

hartree.

Figure 5 (a) : The contour map of the highest occupied molecular

orbital of PH5.仲) : The calculated transition density from HOMO to

LUMO of PH5 molecule alongthe apical axis. (c) : The transition density
inthe equatorial plane･ The expectedintramolecular movements of atoms

are shown by arrows.

Figure 6 The vibrational modes of PH 5 molecule. (a)and (b) are e'

modes of the ground state and (c)isthe transition vector.

Figure 7 The optlmized structures ofPF 5 molecule. (a)isthe ground
state structure,and (b) isthe transition state structure. The valuesinthe

parenthesis are experimental values.
(16)

The bond lengthis
showninA

and也e angle is shown i皿degrees･

Figure 8 The energy diagram forthe pseudorotation reaction of PF 5.

The SCF energy of也e ground state A is
-838.184055

bartree.

Figure 9 The vibrational modes ofPF 5 molecule. (a)is e'modes of
the ground state and (c)isthe transition vector.

Figure 10 (a) : The energy diagram for the pseudorotation reaction of
PF4H･ The SCF energy of the ground state A is

1739.33931
1 hartree.仲)

: The potential energy curve of PF 3托forthe pseudorotation reaction.
One fluorine atom occupleS an equatorial positioninthe ground state and
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twofluorine atoms occupy equatorial positionsinthe pseudorotated

isomer. The SCF energy of the ground state is
-640･33931

1 hartree･

Figure ll (a) : The energy diagram forthe pseudorotation reaction of

pF4CIB. The SCF energy of the ground state A is
-778･317482

hartree･

o') : The potential energy cwve of PF3(C托)2 forthe pseudorotation

reaction. The SCF energy of the ground state is
-718･444972

hartree･

Figure 12 (a) : The energy diagram of the pseudorotation reaction of

p(o2C2H4)H3 model molecule. The SCF energy of the ground state A is -

570･259906 hartree･仲) ‥ The pot?ntialenergy
curve of P(OC3Ib)H3

molecule forthe pseudorotation react10n･ The SCF energy of the ground

state is
-534.399504

hartree.

Figure 13 The structures of the stable (A)and unstable @) isomers of

PF3Hz and PF3(CH3)2.

Figure 14 The energy diagram of the pseudorotation reaction of

po5I14-･ The phosphoryl oxygen occupleSthe apical positioninthe
●

isomer A and it is containedinthe equatorial planeinthe isomer B･ The

SCF energy of the isomer B is
1717･562121

hartree･

Figure 15 (a) : The explanation of the method of division ofa whole

moleculeinto an apical part and an equatorial plane･仲)
: The schematic

explanation of the orbital interaction of D3h trlgOnal bipyramidal

molecule.

Figure 16 The stabilization energy of the whole molecule (fullline),

antisymmetric (dotted line)and symmetric (broken line) orbitals･ The

symbolsinthe parenthesis meanthe equatorial plane part of the penta-

coordinated molecule.

Figure 17 (a) : The orbital energy correlation diagram of
PH5･ @) :

The orbital energy correlation diagram of PH3F2･ (c) : The orbital

energy correlation diagram of PF5･ The S and A mea皿血e symmetric

and antlSymmetric orbitals aboutthe equatorial plane･
●

Figure 18 The substituent effect on HOMO and LUMO of the

equatorial part･ The orbital energy lS Showninatomic unit･
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Figure 19 The orbital energy variations of some apical ligands part･

The orbital energy lS Showninatomicunit.
●
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Theoretical study on N20･･･ HF Complexes
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Abstract

The stabilityand structure of bentand linear N20･･･HF complexes are

studied by ab initio method. It is shownthatthe N20 dipole moment is very

sensitive to two bond lengthesand tothe electron correlation. Thetheory

predicts a minimum difference of 273 cm-I betweenthe isomers withthe bent

isomer more stable. Theinterconversion pathconnecting two isomers is ako

mlculated. There is a low energy conversion pathbetween linearand bent

complexes. The barrier between two minlma is estlmated to be 497 cm-I.



I. Introductiom

The study of the weakly bound molecular complexes is oflmportance to

a
variety of chemical phenomena including inelastic energy tra腿fer,

photofragmention dynamics,th紬ries of hydrogen bondingand transition

between gasand condensed phase. A considerable research effort has been

done to elucidatethefull potential energy surfaces which governthese weak

but importantintermolecular forces. 1)

Largely by virtue of their slmplicity, complexesinvolving hydrogen

fluoride have beenthe focus of many Investigations bothexperimentallyand
■

theoretically.2) One of these isthe study of HF complexes withCO2and N20.

Aside from being lSOelectronic, N20and CO2 display many other similarities
●

and botharelmportant atmospheric compounds. However, N20 has a small

dipole moment of 0.160880 debye. Unlike CO2, N20 has a liquid phase at

atmospheric pressure. N20 is sweet tasting but CO2 is tasteless.

It is well established boththeoreticallyand experlmentallythat CO2･ ･･ fIF

is a linear hydrogen bound species.3) Onthe other hand,inthe N20･･･fIF

complexes, two distinct isomers are observed. This complex was flrSt Studied

by Klemperer et al 4)ina molecular beam electric resonance apparatusand

indicated a decidedly bent structure, withthe HF hydrogen bonding onthe

oxygen atom. High-resolutionalIR spectroscopy by LoveJOy et al5) onthe vl
●

HF stretch modeinN20･･･HF, however, yields a spectrum of a linear

hydrogen fluoride-nitrous oxide complex, red shifted by 61･4 cm-I &omthe

monomer･ Subsequentinvestigation of complexes labeled with15N nitrous

oxide unambiguotlSly demonstratedthatthe hydrogen bondinthese complexes

was formlng Onthe nitrogen atom･6) This behaviorinN20･･･HF complexes

●

constitutedthe first demonstration of two stable geometric isomers ina

2



hydrogen bonded system･ The linear isomer has been observedand verified

experimentallyina Fr microwave spectrometer･
7) The bent isomer has also

been observed by Miller et al
8) witha band orlgln red shifted by 83･2347

●
●

cm-1.

How has ab initio calculation responded tothe challenge posed bythe

new evidence? The earlier works assumed a bent structure rather than

performlng a COmPletelyfree optlmization･ The SCF calculations of Sapse et
●

●

al 9) with6_31Gand 6-31G** conformedthe bent structure. Rendell et al
10)

studiedthe nature of the SCF binding energyand concludedthat the

electrostatic term dominates. The flrSt theoretical observation of two isomers

was done by Handy et al･11) They optlmized two isomer at Ⅳ『2 level,

predictingthatthe linear structure to be more stablethanthe bent structure by

320 cm-1 ･ It is sⅦrprizhg s血ce血e monomer dipoles are Opposed in血e

line∬ structure. BSSE was calculated but did not changethis conchsion･

Frisch and Del Bene 12)
studied nitrous oxideand showedthatthe

severe oscillation occtusindipole momentand protonation energleS With the
●

pe血rbation series･ The oscillation wi血order of pe仙rbation血eory

includes a change of direction at each order･ They further studiedthe binding

energleS Of N20 and HF uslng the various correlation method and
● ^ - ー ^ ■ Y

~ー
_ . ●

demonstratedthatthe convergence of the MP expansion is erratic, predicting

thatthe terminal nitrogen is die Preferred binding site for the complexes atthe

Mmand MP4 levels,indisagreement withSCFand MP3and other models･

They concludedthatthe bent structtue is more stable by O･6-1･1 kcaVmolthan

the linear structure.

N20and hydrogen bond formation withHF are still a challengmg
●

problem fortheory. The differenceinthe structuraland dynamical behavior

3



of these complexes makethem.attractive forfurthertheoretical study･ The

binding energyinthese complexes is dominated by electrostatic term mused

bythe dipole moments of two molecuks･ It is suggestedthatthe N20 dipole

moment is even more sensitive tothe electron correlationthanthat of CO.

The mostinteresting is to study howthe N20 dipole moments depends onthe

two bond lengthsinthe reg10n Of minlma･
●

The N20-HF isthe only weakly bound complexes for whichthe

microwave spectrum has been observed for two different structural isomers･

The possibleinterpretation of this isthatthe binding energleS Of two isomers
●

must be very closeandthe barrier tointerconversion should be higherthan

200 cm-1. The relative well depths forthese two isomersandthe barrier to

interconversion betweenthem are stillof considerableinterest.

Inthis paper we will reportthe structuresand energetics of the weakly

bound hydrogen complexes formed from N
20 and HF･ The dependence of

N20 dipole moment onthe bond lengths is also studied fromthetheoretical

point of view.

II.Computational Methods

The geometries were fully optlmized at SCF level･ The basis sets used
●

inthis study are Duming's 【4s2p]contraction for N, 0and F, with[2s】

contraction for H･ 13) These are augmented by a polarization fLmCtion on each

abm (αN-0.864, αo-1.154, αF-1.496, αH-1.0). The calc111ations were also

performed with[5s3p] augmented by double polarization functions ( αN- l･35,

0.45
, αo-1.35, 0.45, αF-2.0, 0.67, αH- 1.5, 0.5). 14) The electron correlation

effect was estlmated by singleand double CI (SDCI)and MP2, MP3, MP4

methods. To compensate forthe lack of size consistency of SDCI method,the
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Davidson's corrections wereincluded (SD(Q)CI).

ⅡⅠ.Resultsand Discussions

A. N20 dipole moment

●

Energl飴, bond lengths, andthe dipole moments of N
20 computeduslng

●

the two basis setsand various levels of electron correlation can be found in

Table l･ The dipole moment valuesinparentheses arethose calculated atthe

experimental geomeby. Geometry optimization atthe SCFn)Zp level yields

NN bond lengthPNN) of l･096ÅandNO bond lengthP
NQ) of l･187 Å･ The

CISD/DZp calculationgives臥N-1.128
Åand RNO- 1･198 A

･ These have

to be compared tothe reported experimental values of R N N -1･ 1282 Aand RNO

- 1.1842 A. Thus,the SCF computes shorter bond lengths, which canbe

remedied bytheinclusion of the correlation effect･ The MP2 values differ

markedlyfromthe SDCIand the experlmental results･ Especially Mm

increasesthe SCF optlmized RNN by 0.0875 A. The slmilar tendency canbe

foundinthe calculations withTZ2p basis sets.

The calculated dipole moments are more sensitive tothe method

employed･ The SCF and SDCI give血e correct sign +NNO
~

al血o11gb血e

computed dipole moments are too large compared tothe experiment･ The

Mm, however, produc鈷incorrect sign･ The dipole moments atthe

experimental geometry did not changethe tendency･ Clearlythe perturbation

series oscillates badly for N
20

dipole moment as pointed by Del Bene･ 12)

A simple resonance.hydrid pictures of N 20 is

(A) N=N'10-

5

(B) N--N'-0



where (A) isthe A-oxide valence bond formulaand @) is the germinal double

bond formula. N
20

is best described by (A) withcontribution of (B). The

calculated geometriesand dipole moments suggestthatthe SCFunderestimates

the contribution of (B)and Mm overestimatesthe contribution of (B)･ The

CISDincludes (B) to a reasonable extent althoughstillnot sufficient･

Tounderstandthe dependence of the dipole moment bothonthe

geometry of a moleculeand onthe correlation e飴ct, we showed inFig･1 by

the contours which are forthe energleSandthe dipole moments of N
20･

They
●

show howthese proprieties change withthe two bond stretching coordinates･

We c弧eaSily see how the minlmum point changes due tothe correlation

effect. The SCFand SDCIgives slmilar energy contour maps whilethe MP2

glVeS quite different map･ The SCFand SDCI optlmized geometries lieinthee
●

positive region of the dipole moment butthe hm geometry is embeddedin

the negative region. The dipole moments has zero contours passmgthrough
● ●

regionsnot too distant fromthe optimized geomeby･ Thisindicates thatthe

dipole moment if N20 may change slgn inthe course of some low-energy
●

vibrational excision. We can also see fromthe factthatthe contour lines are

nearly verticalthatthere is a greater sensitivityofthe dipole moment tothe

RN｡than tothe RNN. The SCF contow lines are more denserthanof Mmand

SDCI. Theinclusion of the electron correlation makethe dipole moment less

sensitive tothe geometry. The sign reversal of the MP2 dipole moment is

undoubtedly a refl∝tion of the poor MPZ geomeby･

B･ N20･･･ HF Complexes

● ●

The total energleSandthe hydrogen bond energleS forthe complexes

NNOIHFand FH-NNO computed relative tothe isolated monomers and
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relative tothe supermolecule are summarizedintable 2･ The MP binding

energies converge poorly leading to a changeinthe preferred site for

hydrogen bond formation withHF･ At second (舵)and fourth(MP4) order,

the nitrogen site is predicted to be the more basic site, whereぉ0Ⅹygen is

favored at SCF,third order (MP3)and SDCI. The hm and MP4

overestimatedthe contribution of the germinal double bond formula (B)･ The

bent form is more stablethanthe linear by 1.77 kcal/mol athe SCF leveland

by 0.77 kcal/mol atthe SD(Q)CI level. The correlation effect tothe binding

energy lS quite large･ The MP3increasesthe binding energy of NNO-HF by
●

0.34 kcaVmol while SD(Q)CI by 0.15 kcaVmol･ The MP3 leads to

stabilization of the FH-NNO by 1.00 kcaVmoland SD(Q)CI by l･14 kcaVmol,

compared tothe SCF results･ Obviously correlation effect is considerably

greaterinthe linear formthaninthe bent form･ It isinterestingthatthe

slgnificant binding of the linear complex does not occur until correlation is
●

includedintheory.

The optlmized geometries ofbothisomers aregiveninFig･2･Asthe
HF

approaches tothe oxygen end of N20,the N-oxide valence bond structure

N=N+I 0
I

(A) will be favored overthe germinal double bond structure

N
--

N'-0 (B). Thus, it is expectedthat hydrogen bonding leads tothe

structural shiftofa shortenlng Ofthe RNNand a lengthenlng Ofthe RNO ･ It is
●

■

also seenfromthe contour plots of dipole momentsinFig･2thatthis structural

shiftcomsponds totheincrease of the dipole moments of N20･ The

calculated恥Nand RNO are Shortened (0.03 A)and lengthened (0.07Å),

respectively by formmg a complex at oxygen･ The geometrical change of RN 0
二

bond is largerinmagnitudethanthat of RNN. This is consistent withthe fact

thatthe dipole moment ofN20 is more sensitive tothe RNOthanthe RNN･

7



Analogous reasonlng SuggeStSthat as HF approaches N20 collinearlyfromthe
■

nitrogen end,the resonance structure @) will be favored over (A), leading

thatthe RNO Should be ghorter. This shiftdecreasesthe dipole moment of

●

N20. They confirmsthe prediction, withthe R N 0 decrease upon formngthe

hydrogen bond at oxygen being 0.007 A. The hydrogen bond lengthis

calculated to be 2.003 Å forthe bent NNO-HF isomerand 2.181 A forthe

linear FH-ONN isomer.

To examinethe changeinthe charge distribution on complex formation,

two difference density maps are drawninFig･3･ Theincrease of the density

aroundthe oxygeninthe bent complexand around the nitrogeninthe linear

complexandthe decrease aroundthe hydrogeninbothcomplexes are all

catlSed bythe polarizationinteractions. The figure also glVeSthe correct trend
●

forthe polarizationand structural results as discusses above based onthe

resonance structures･ The dipole moments of the complexes are listedinTable

3. The N
20 showsincreases polarizationinthe complex岱underthe血凸uence

of the HF molecule.

Table 4 showsthe harmonicfrequencies for two isomers calculated at

the SCF withDZp basis set･ The experlmental frequencies are obtainedin.an
●

Ar matrix forthe bent structure. The SCF overestimates the frequenciesand

we multiplied 0.88 tothe computed frequencies to improve the agreement with

the experiment. We see thatthe shifts areinreasonable agreement･ The HF

stretchinthe bent complex is払Iculated to be 3891 cm-I red-shifted 70 cmll

fromthe calculated monomer frequency as compared toanexperimental red

shiftof 83 cm-I. The corresponding red shiftforthe linear complex is

calculated to be 20 cm-land canbe compared withthe experlmental red shift

of61 cm-1. The stretching modes v3 0fN20 areblue shifted 59and 7 cm-1in
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the bentand linear complexes, respectively･ This suggests a stronger

perturbation of N
20

by formngthe bent complex thanthe linear complex･
●

In Fig･･ 4,theinterconversion path cormecting two isomers are
shown

schematically･ The 0 istheangle betweenthe line of the NNOand HF centers

ofmassandthe NNO axis. The 0-140and 0-0 correspond to NNO-fIFand

FH-NNO isomers, respectively･ The 0 is variedfromthe 0 to 180and each

fixed 0 all other geometric parameters are optimized･Ascanbe seen from

Fig･4,there is a low energy conversion pathbetween linear and
-bent

complexes. We found six stationary points inthe range of 0-0-180･

Vibrationalanalysisindicatesthatthree correspond tothe minlmaandthree to

the transition states. Two minlma correspond to the linear and bent isomers

andthe remamlng minlmum corresponds tothe meta-stable state･ The血ree
■ ●

transition states connectthese minima, respectively. The energies and

geometries of these stationary points are glVeninTable 5and Fig･5･ hthe
=

linearand bent isomers,the negatively chargedfluorine will tend to positive

itself as far apart as possiblefromthe negatively charged terminal nitrogen

and oxygen sincethe maineffectinthe formation of the complex is

electrostatic. Between two isomers,the fhorine attaches tothe more positive

central nitrogen･ The complex, bound by electrostatic attraction, exhibilLS a

meta-stableinenergy at a distance of 3.094 A betweenthefluorineandthe

positive nitrogen to which it is boⅦnd･ The positive hy血ogen h HF tends to

positive itself closer tothe negatively charges atorru･ htheinterconversion

path,the motion of HF is rather complicated
as shownin Fig･5･ This arises

prlmarily丘om血e motion of hy血ogen atom due to血e small mass of 血e
=

by血ogen compared to血e fhori皿e atom. The by血ogen rotates around血e

fluorideinvolvingthe out10f-plane displacement nearthe meta-stable region.
●
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The bent is more stable by 0.78 kcaymol (273 cm-1)thanthe
linearand

the barrier between two minima is estlmated to be 1.42 kcaymol (497 cm
-I)

fromthe Ⅶ瓜table linear 'complex. This barrier tointerconversion is sufficient

to be observed as two structural isomersinthe microwave spectrum.

The linear structure withHF hydrogen bonding onthe oxygen atom

corresponds tothe transition state CrSl) connecting
two bent isomers･ The

barrier height is calculated to be 0.97 kml/mol (339 cm -I)atthe SD(Q)CI

level. This is related to a picttlre Of afloppy, nonrigid
hydrogen bond toan

oxygen abm h血e bent NNO-HF complex. On血e o血er hand,血e linear FH -

NNO complex has only a smgle well, which leads to a stiff, linear hydrogen
●

bond to血e nitmgen abm.
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Table 1 Energies, bond lengths and dipole moments of N20

at the optimized geometry

--_____-----------------I--●1-■----■-･--------I--------一一-----Ill--ll---■-I-------■--I------------I---■--■一一-1I----●---

■-

Method Energy RPIN) R(N-0) dipole moment (debye)

(A) (B)

●--■-■一-----■-------1
1-I-----一一--■1-------1一----■-ll---1------------●---I----■-I-------■--------I--1■■●~---I--I-------~一-

DZP SCF
-183.715177

MP2
-184.269094

CISD
-184.194723

TZ SCF
-183.753388

+DP Mp2
-184.390869

CISD
-184.305255

experinentah,a lue

1.0956 1.1868 0.819

(0.661)

1.1831 1.2009
-0.135

(-0.064)

1.1276 1.1983 0.395 0.473

(0.303) (0.368)

1.0815 1.1712 0.709

(0.621)

1.1557 1.1822
ー0.173

(-0.070)

1.1059 1.1776 0.346 0.387

(0.313) (0.353)

1.1282 1.1842 0.161

-一--------■----■■●-----■■■--■-■--1I-------ll-一-■--I----1 1-I----■- -----------I-I-■■-----I---------I-I.■------I-------I--I--I--■■●

Valuesinparentheses are dipole moments calculated atthe experimental

geometry ･

(A) calculated using electronic dipole operator

P) alculated using firstderivative methods
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Table 2 Total energies of NNO-EF and FH-NNO

●

The calculated energleS Of NNOIHF

Methods Total energy (a.u.) Stabilization EAergy (bymol)

SCF

hm

Mpヨ

MP4 (SDTq)

SDCI

SD(Q)CI

-283.
820762

-284.64
1780

-284.616186

-284.680796

-284.519661

-284.636136

-2.98

-2.46

-3.32

-2.50

-3.19

-3.13

The calculated energleS Of FH-TWO
●

Methods Total energy (a.tl.) Stabilization Energy (ぬ氾I/mol)

SCF

hm

h4P3

MP4 (SDTQ)

SDCI

SD(q)CI

ー283.818396

-284.643
163

-284.614873

-284.68202
1

-284.5
18450

-284.
630820

-1.21

-3.04

-2.21

-2.98

-2.15

-2.35
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Table 3 Dipole moments of the complexes for NNO-ⅡFI FⅢ-NNO

(debye)

■--■■■-■-----■■---I-■■--I-------I------一--■■-------一-----■■---■■-■---■■●-■-一一-I-I-●一IP●■■--1I

NN 0
-HF

FH-NN 0 HF

-■-･--I-----I--■--I--I--I------I--------■■●----■■■---1一一■-------------一一-I----------

scF 3.040 1.791 1.95

CISD 2.453 1.702 1.87

experiment 21069 l
･9

I

The N20 showsincreased polarizationunderthe

i血ence of血e HF molecules.
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Table 4 Vibmtionalfrequencies of the complexes ofHFwith

NNO at SCF/DZp

-t----------------■---■■■■一■■■-I-■■■-ー----------I-･---I------■---I-----■---■----------------I-●-------■--------~-~~1-I--~-■■■■~1--■~一■-一-

species mode calculated shift experiment shift

---一--l-●-----------■一---ニー■---■■--------■一一--一--■■-----■---------一一■--I----I---■-I-■------------------■--I----■l--■-------~=~--■■■一--

HF vl

NNO vI

v2

v3

TWO
-HF

〟

be nt〝

JJstretc h
～

IJs hearn

"vl (N20)′′

"v2(N20)
"

"v3(叩20)
`′

"vl(H巧"

FR-NN O
〝

beI止`′

'JstretchN

ws hearn

"vl (N20)′′

"v2(N20)"

"v3(N20)"

"vl(H巧"

4505 (3961)

30

126

351, 439

577, 590 (-16,-3)

1 170 (-27)

234 1 (+59)

3 89 1 (-70)

33

84

268

600

1228

2289

3941

(+7)

(+31)

(+7)

(-20)

3961

583

1307

2250

3878

3900

(-5)

(+24)

(+29)

(-68)

(-61)
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Table 5 Binding energies of the stationary points

(kcaVmo I)

I--~一---------■---■-I--■-----------■-■■一-I-------------I-I-I--I.■--■---------------I-■-ll---ll--I----■----1■------■-----_-I_r■●____●■__

Methods TSI NNO-HF TS2 Meta-stable TS3 FH-NNO

-~ー~■~-●~1------■~■~-~~~-------------~1-----------■■---I-----I--■--■1---I--I-●-■--I-------■--●-------------Il一----------■--1■---____I

SCF 2. 17 2.98 0.49 0.49 0.39 1.21

Ⅳ『2 1.66 2.46 1.02 1.18 1.18 3.04

MP3 2.34 3.32 0.95 l.O1 0.91 2.21

MP4(SDTQ) I.63 2.50 0.98 l.13 l.14 2.98

SDCI 2.31 3.19 0.85 0.92 0.82 2. 15

SD(q)CI 2. 16 3.13 0.93 1.01 0.94 2.35

--~1--~----------I--~------I.-■ll1-■--------1111----I--■■---------■-■----■-I----I---■-I---●--■-I-------------■-I--■--■--I-------I----__-
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Figure Captions

Fig.1

Contour plots of the energyandthe dipole moment of N20 as afunction

of the two bond lengths. The top figtue isthe energy. The relative energy

countfromthe optimized structureinkmymol･
The lower figure isthe dipole

moment. Magnitudes are
quotedindebye(D)･

Fig.2

Geometries of NNO-HF and FH-NNO withDZP basis sets. Bond

lengths are A. Bondangles areindegree. Valueinparenthesis are Net

charges of the complexes. The RP-N)and RP10) bonds are shortenand

lengthened, respectively, by forming a complex at oxygen･ However,the R即-

N) bond is lengthened,andthe R(N-0) bond is shortened by N-complex･

Fig.3

Differential densitymaps, supermolecule
- isolated molecules, obtained

withthe DZP basis sets. Full lines showtheincrease of electronic density

and broken linesthe decrease. Values of contow lines are ± 0.0040,
±

0.0020,
±

0･0005,and
±
0･00025, respectively,fromtheinside out･

Fig.4

Interconversion pathcormecting two isomers NNO-HFand FH-NNO

wi血SCF and SDCI me血od

Fig.5

Geometries of transition statesand meta-stable state of the complexes of

FWO-HF optimized withDZP basis sets. Bond leng血s are A. Bond angles

areindegree. Valueinparenthesis are Net charges of the complexes. The

transition vectorsindicatethe reaction pass way of each transition states.
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Fig･1 Contour plots of the energy and the dipole moment of N20
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Fig･2 Geometries of NNO-HF and FH-NNO

(a) NNO-HF

(-o.o5) (+0･47) (-0･41)

1.093 1.194

(b) FII-NNO

(-0.45) (+0.45)

0.905

@ -;A
180.0

2.181

(+0.45)

(-0.45)

(-0.10) (+0.43) (-0.33)

1.096 l.180

-(N)､N′
O-'

180.0 180.0



Fig.3 Differential density maps
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Fig･ 4(a) Isomerization reaction path of NNO-IIF
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Fig. 4(b) Potential Energy Surface ofNNO-HF
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Fig. 5 Geometries of transition states and

meta stable state

(a) Transition State No.1
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(b) Transition State No･2
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(c) Meta-stable state
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(d) Transition State No･3
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