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序
一 研究内容の要約

一

本研究の目的は､分子の高振動励起状態の性質とそのダイナミック

ス等に関する基礎的な運動法則を明かにすることである｡高振動励起

状態の分子運動を特徴付けるのは､所謂カオスと呼ばれる､見かけ上

極めて複雑かつ乱雑な運動様式である｡カオスは､現代科学の最も包

括的な概念の一つであって､自然現象の至る所で観察することができ

る｡化学現象に即して言うならば､それは､高振動励起状磨のみなら

ず､化学反応の遷移状態近傍や､単分子分解における分子内エネルギ

ー移動､理論的に確認は未だされていないが､溶液やクラスターのダ
イナミックスなどで見ることができる｡ただ､分子の場合には､本質

的に量子力学の制約を受けるために､特に量子カオスと呼ばれる一分

野を成しているということになる｡しかし､化学の場合には､レーザ

ー技術の発展のため良質な分光学的データを得ることができ､今後さ
らに､量子カオスの中における重要性を増すであろう｡

一方､分子がカオスの性格を持ちやすいということば､分子運動が
古典力学的性質を強く持つということに拠っている｡つまり､分子は､

電子などに比べて､はるかに重いということである｡このように､古

典力学的性質を強く持つ量子系を扱う際には､半古典力学を適用せざ

るを得ない｡この領域では､分子は非常に短い波長の物質披を持ち､

従って極めて高い状態密度を持つことになる.更に､高い状態密度は

必然的に系に統計力学的性質をもたらす｡化学反応の速度過程がしば

しば単純統計論で処理されるのは､このためである｡

本課題研究では､上の観点に立って､比較的一般的な(量子)カオ

スの立場から､状態密度の決定や､カオスへの遷移の問題を取り扱っ

た｡本研究で現在までに明かになったことは､概略､以下の通りであ

る:

(1)筆者が開発した位相空間経路積分の方法を分子振動の量子化の問題

に適用し､状態密度の一般的表式を得た｡ (論文a) この際､系が可

積分の場合には所謂EBK条件が得られ､非可積分(カオス)の場合に

は､ Gutzwiller の式を拡張したものが得られた｡更に､非可積分系

は､二つの場合に分けられる｡系が不安定な周期軌道を持つ場合には､

状態密度はそれらの軌道のエネルギー位置でローレンツ型ピークを持

ち､その高さは軌道の安定度に逆比例する｡一方､安定な周期軌道を

持つ場合には､共鳴型の量子条件を持つ事が統一的に示された｡特に

後者の場合､現に実験で得られている準カオス系のスペクトルの解釈

に重大な示唆を与えるものとなっており､今後の発展が期待される｡
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(2)論文aでは更に､量子化という観点からカオスを弱いものと強いも

のに分け､それを判定する条件を検討した｡

(3)量子化規則の中に現われるトポロジカルな量であるマスロフ指数の､

位相空間における非常に単純な幾何学的意味づけを見いだした｡また､

古典カオスで常用される判定条件の一つであるリアプノフ指数が量子

力学から自然に導かれることを示した｡また､大局的カオスの判定条

件として有名なグリーンの留数がやはり､量子力学から自然に出てく

る量であることも分かった｡筆者の主張は､これら三つの量が全て､

位相空間経路積分の半古典的表式の中の振幅項から統一的に導かれる

ということである｡

(4)位相空間における周期軌道の理論に立脚して､エントロピーや温度

の概念に検討を加えた｡ (論文a) 特に､作用積分の虚数部分が温度

の逆数に対応していることを､この理論の枠組みの中で､主張した｡

これは､今後の本研究の重要な展開点になると思う｡

(5)分子振動による運動が可積分か非可積分(局所的カオス)かを判定

するには､つまり､系のカオスへの遷移を判定するには､直接､作用

変数を計算すればよい｡本研究では､分子の作用変数を実際的に計算

する手法を位相空間の幾何学に基づいて開発した｡これにより､相当

大きな分子の振動量子化が行なえるようになった｡ (論文c､ d)

(6)これに関連して､高速フーリエ変換のスペクトルから精度の高い周

波数と振幅を計算するアルゴリズムを同時に開発した｡ (論文b)

これは､高速フーリエ変換を使って離散スペクトルを同定しようとす

る全ての問題に応用できる｡

(7)更に､作用変数の近似概念として擬作用変数というものを定義した｡

(論文c､ d) 擬作用変数はカオス系では連続スペクトルを与える

が､これを調べることにより､位相空間内で異なる多様体が接合する

ことによる連続スペクトルの発生や引込現象に類似のスペクトルの存

在などを見いだした｡また､この理論を使って一次共鳴の研究等が現

在も進行中である｡
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DENSITY OF STATES FOR CHAOTIC SYSTEMS

IN PHASE-SPACE SEMICLASSICAL MECHANICS

Kazuo Takatsuka

College of General Education

Nagoya University

Nagoya 464-01, Japan

The periodic orbit theory for calculating density of states in a chaotic Hamiltonian

system is discussed within our framework
of phase-space semiclassical mechanics. An

extended expression or the density or states in
chaos

is de血ved, tbrougb wbicb a possibility or

assigning the "quantum numbers" and their roles for irregular spectra are discussed. It is also

shown that a systematic application of the periodic orbit theory in phase space leads to the EBK

quantum conditions for integrable systems, and also to a quantum condition for a stable but

non-integrable system. A simple interpretation of the geometrical meaning of the so-called

Maslov index in the quantum conditionsisgiven.Anattempt is made to analyze the Boltzmann

entropy of microcanomicalensemble in terms of
the dynamics relevant to quantum chaos.



I. INTRODUCTION

Since the first mathematical expression for the density of states of a classically chaotic

system was given by Gutzwillerl, the so-called periodic orbit tbeoryl,2 ba£ been argued

extensively in the field of quantum chaos from various points of view such as the number of

quantum numbers,3a the treatment of the Maslov index,3b･3cand the relationship of the

periodic orbit theory to the- Einstein-Bri1louin-Keller (EBK) conditions4･ After these close

theoreticalstudies, also withnumericalexaminations,5･6･7 the essential validity of the periodic

theory seems to be recognized well these days･8 Nonetheless,the trace formula involved in the

theory is stillstated to be "very difrlCult"･Recently Littlejohn9has established all elegant theory

whichgives a new way oflooking atthe I.agrangianmanifolds in quantum theory, which can

lead to the trace formula more naturally.

In this paper we would like to present another way of constructing the density of states

both fわr regular and chaotic systems systematically in tens Or a phase-space semiclassical

mechanics,
10

which we call the dynamical characteristic function (DCF) formalism. 1 1

Roughly speaking, setting up the quantum conditions is equivalent to measuring the size of

phase space manifolds such as invariant toriand periodic orbits in units of the length of matter

wave. This is a part of reasons why the trace formula considered in the configuration (q)

spacel is very difrlCult and also why the phase space approach cangive more transparent view･

Throughour reconsideration of the periodic orbit theory, we will elucidate the following

points:

(I)Anextended expression of the density of states in chaos isgiven, Eq.(5-7) in Sec･V, in

wbicb the "quantum numbers''are fわund to be associated with each quantized pedodic o血it･

The possibility of experimentalassignment of the quantum numbers to irregular spectra and

their roles are discussed (See.VI). A modified version of the ergodic hypothesis relevant to

quantum chaos is proposed, and a qualitative argument on the relationship betweenthe



Boltzmann entropy in a microcanonical ensemble and quantum chaos is also presented

(Sec.ⅤⅠ).

(2) The relationship between the density of states of a non-integrable system and that of an

integrable one in resonance is clarified.

(3) The EBK conditions (conditions for multiply periodic orbits, which are topologically

different from pure periodic orbits)are derived within the hmework of the present periodic-

orbit theory. In the integrable case, the quantum conditions for resonant and non-resonant

cases are distinguished. (Sec.ⅠⅤ)

(4) A simple geometrical interpretation
of the Maslov index isgiven in the context of the

topological nature of a volume element which is to be carried by phase now along a periodic

orbit (See.III).

(5) It will be shown that some indices commonly recognized as being characteristic to classical

chaos such as the Liapounov exponent12 and Greene･s residue13 are naturally derived from

the amplitude factor ofDCF (See.II).The KS-entropy12 is also discussed in the context of

quantum theory, and we define a new dynamicalentropy which is relevant to the periodic orbit

theory (See.VI).

The present paper beginswith a brief review of the DCFtheory in the next section.
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ⅠⅠ.SEMICLASSICAL MECⅡANICS

The theory starts with the definition ofa phase spacefunctionl
l

a (め(q(fE:如,･E,･)

dq〟q ･q(h･･(q ･り,･)exp[q(fL･-

fjyB], (2-1)

which is called DCF･ Here Q)･and QF are mutually independent wave functions, and they can

have even different time arguments. q and f(with suffices iand f)have dimensions of length

and momentum, respectively, and thus DCF is afunction defined in phase space･

Obviously, the variables TIL･and 17((and fj and f() are not independent of each other

in Eq.(2-I). Nonetheless, the arguments in Eq.(2-I) are put into the groups in that manner

since the following property, the associationru1e, holds suchthat

(27rB)- dZ2
a(¢^Z,:4'BZ2 )a(4'BZ2:¢cZl )-a(¢AZ,:¢cZl),

(2-2)

where a short-handed notation of a phase space point is used, that is Zk--(17kfk) (k- l,2,3)･

Here an arbitrary wave-packet state ¢B has been assumed to be normalized to unity･ This

associationru1e sets the foundation of a phase-space path-integral formalism･ In order to go

beyond the formalism of wave packet evolution, we define another DCF, the identity DCF, by

aI (q(f(t[:り,･f,･t,･)-

dqK(q･q(,q･q,･,
tE-I.･ )exp[q(E,･-

fj粒], (2-3)

where K is the Feynman kemel, the explicitform of which is well-known in case where

I( - I.Iis infinitesimal. The successive applications of the associationru1e forthe identity DCF



having an infinitesimal time-incrementgive a semiclassical form of the identity DCF with a

finite time-interval･ Instead of writing down itexplicitly, we consider the followlng integral

uslng the semiclassical DCF

(叶･'H(/a fQ)- (2碕)-N e-I.Nn/2

句Z(
-

ZJ･)

dZ,I
a(¢

Z,･:
¢Z()

exp[孟s(z(,zL･･t)]
, (2-4)

where N is the physical dimension, Z( is the end point ofa classical trajectorystarting from

Z). for time I,and S isthe action integral taken along the path. In a phase space scheme, the

branches of the action aqe automatically specified,and therefore S is characterized in terms of

Zj and Z(･ The first term in the integrand ofEq･(214) is a DCF representingthe "initial

condition''for each orb.it･ (Note the symmetric appearance ofゆ and ¢.) The second termis an

amplitude factor which is to be described in a greater detail later. All the possible trajectories

should berunand summed up, each having contributions from theamplitude, phase,and imitial

condition. The integralhaving the form ofEq.(2-4) appears in the S-matrix, time correlation of

wave packets,14a density orstates, quantum scars,14 and so on, with 歩and ¢ chosen in

appropdate fbms.

The amplitude factor in Eq.(2-4) has many interesting properties in conjunction with

classical chaos. Inside it we observe the following Jacobiandetem'･Dant a(Z( - Z,･ )/az.･.Let

exp(jbk) and exp(-L'bk) (k- 1,..,N)bethe eigenvalues of the Jacobian matL7'x [aZ(/aZ,･].If

some of bk's happen to be complex valued, the trajectoryundergoes exponentially divergent

separation from some of its neighboring trajectorieswhich are set infinitesimally close at the

outset･ This is )odchaos･12 If, on the other hand, all the bk･s are real, the trajectoryis said to

be stable. Let us first rewrite Eq･(2-4) in terms of bk's using the following identity
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〃 〃

qz(-zL･'/aZL･
=

ETA

[(exp'jbk'-1Xexp'-,'bk'-l']- n [2sin(!)]2･
(2-5'

k=l

Thus we have

(¢Ie-,･HE/a ")-
(2qB,-Nl

dZL1 4QZL:
¢ZE)kBl[!sin(!)]exヰ孟(s(z(･zL･･I,,]･

(216,

This is the basic eqtntion for our analysis of the density of states･

Suppose that we observe classical chaos throughthe imaginary Part Of bk's,and let L

be the sum of them which are positive and larger than a certain criticalvaluer Then we can

express as (seeEq.(2-5))

鼻[isin(帥exp(i)a,[子sin(!)],(2-7,

where the product in theright hand side is composed of bk's which are not used in L･ The

argument L is called the Liapounov exponent in the study of classical chaos･ (Note that some

slight
difference in the definition can be present depending on the method of practical

calculation.12) It is intriguing that the Liapounov exponent is derived from quantum

mechanics.

It is trivial to see the following identity hold fTora general 2 by 2 matrix,

Jet(M-I)I 2-TL･(M). (2-8)
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IfM is the tangent map of the Poincar6 surface of section for a periodic orbit, then 21Tr(ノ切is

identical with 4R, where R is the residue of Greene･13 R isknown to be an extremely

important quantity to judge the global occurrence of classical chaos.
12 we have already

considered the lefthand side ofEq･(2-8),ifM
is identified as the Jacobianmatrix [aZ(/aZ,･].

since the

-atrix[句Z[
-

ZL･)/az,･]
in Eq･(2-5)is not restricted to be 2 by 2.,its deteminant can

be regarded as a natural generalization of Greene's residue. (Note, however, that unlike

Greene's M, [aZ(/aZ,･]includes the information about not only transversaldirections to the

periodic orbit but the parallel one. 13)

Before closing this section we should comment on the convention of choosing the

branches of the square root of Eq.(2-4) [cf.Eq.(2-5)]. Due to the real valuedness and

symplectic property of [aZ[/aZ.･],L'b always appear as a quadruplet set ()'b,-L'b, jb', -jb+ ) ,

provided thatthey are complex･ (The suffices are ignored for a moment.) Noting that exp()'b)'s,

not b's themselves, are to be obtained as the eigenvalues of [aZ(/aZj],We consider a

complexplane B on which the roots (jb,-jb, jb+, -jb+ ) sit･Define

jb =c +L'd (b-d-jc). (2-9)

In case ofnonzero c , we have to take ,'b and -jb+
from (jb,-jb, ,'b+, -jb* ) to apply Eq.(21

5),and concomit弧tlythe following product

[isin (i)][isin (#)] '2110'

appears in the magnitude part ofEq.(2-6).
In what follows, Eq.(2-6) is understoodinthis form

implicitly･ We take a convention that the roots are selected from theright-halfof the B-plane.

Thus foranimaginary case, we pick up a pair of roots
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L･b=c'jd and -L･b'-c-jd (c≧0). (2-ll)

On the otherhand, in cases ofelliptic (jb = ± fd), hyperbolic ()'b= ±
c), and hyperbolic

with-reflection6a (L'b- ±c -

''7'Or jb - ±c ･ i 7T)fixed points,we do not have aquadruple

but apair of roots on the B-blane.In elliptic case, jb to be used in Eq.(2-6) is picked up from

the positive (negative)imaginary axis for t>0 (t<0). For a hyperbolic case, the root is taken

from the positive real axis for all time, and in the case ofhyperbolic-with-renection, the root

are
selected from the upperright-halfplane for the positive time and the lowerright-halfplane

in the negative time. These are summarized are Table I. With this convention, the time reversal

symmetry ofDCF is conserved,1
I
and also itis always connected smoothly as a function of

time. Since there is no part of taking an absolute value in theamplitude factor in the value of

Eq.(2-6), we should have no additional phase factor in DCF. This should be compared with

the Maslov and Morse indices to be considered as a sudden jump of quantum phase for the

semiclassical Feynmankemel and the WKB wave functions at caustics.
15

III. DENSITY OF STATES IN TERMS OF DCF

A. Density or States

After the general manner due to Gutzwiller, I
we try to write down the density of states

as follows,

D(E) = T[ ∂(E-H) -

∑∂(E-E.･) - (27,A)~1
L

8

dq(q[e-L'H(/h[q)eL-EE/h(3-1)



The kemel part in this integrand can be replaced by Eq.(216) withadopting ¢-q and ¢-q. The

DCF in Eq･(2-6) can now be integrated exactly over the qlCOOrdinates as

dqa(1q)Z,･: Iq)Z()
=

(27TB)N∂(z(-z.･). (3-2)

The 8function here directly indicates thatthe classical trajectoriescontributing to D(E) must be

perfectly periodic as originallydiscovered by Gutzwiller. 1 The present condition Eq.(3-2),

which we
callthe strict periodic-orbit condition, is too strong, since the integration in it is

performed in the range from
-00to

oo･ In reality, however,the information about bound states

could be acquired in some much smaller finiteregion, which will reduce Eq.(3-2) to a less

sharp function･ This is a rather essential point in our approach and we will come back to this

problem later･ For the time being,the strictperiodic-orbit condition is adopted. Then we have

qD
-

("町1Re[dtldZ,･8(Z(-Z,･郎sin(%))ex4i
(s (z(,zJ･･

t,･Et,]
･ (3-3,

B･ Geometrical Meaning of the Amplitude Factor and the Maslov Index

Before proceeding, we examine very brieny the geometrical meaning of the amplitude

factor in Eq･(3-3), particularly in the context of the periodic motion. Remembering Eq.(2-5),

we investigatethe meaning of the Jacobian determinant句Z(-Z,･)/aZ,I.This represents the

sensitivity of the motions of an infinitesimal volume element in phase space to its initial

location･ It is required in quantum mechanics to think about the behavior not only of each phase

space point but also ofanvolume element around it.Basically there arethree kind of motions

made by an infinitesimal volume element while carried by classical phase flow,･(I)translation
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(2)spinming around its own axis (3)deformation.The effect of the translation has already been

removed out inthe expression of句Z(
-

Z,･)/azL･.Thus only the intemal motions, namely the

spinning and deformations, should be considered.

Here we consider only an integrable case. For a heuristic and short discussion, we first

imagine a one-dimensional harmonic oscillator. In Fig. 1, a couple of infinitesimally nearby

orbits are depicted, in whichL the coordinates are scaled so that the Ira)ecloriesformcomplele

circles. [Note that the distance betweenthe two circles is exaggerated in the figure.]Asthe

center of the tiny volume element ABCD moves along the trajectory,itonly spins around its

own axis with no deformation in this exceptionally ideal case. Thus the factor qZ( -

Z,･)/∂Zj

in this case isjustdue to the spinning motion. Furthermore, itis quite simple to show that

qz(-zL･)/∂Z,･
= 4sin2 (普), (3-4)

where wh is the frequency of the oscillator and is identical withthat of the spin. wht

corresponds to bkOfEq.(3-3). From this expression including the sine function, it is observed

that the spinning motion generates an extra quantum phase in addition to the action. Because
of

the dividing factor 2 in Eq.(3-4), the progress of the phase due to the spinning motion is two

times slower thanthat of the oscillator itself. This is essentially due to the square root in Eq.(2-

4),which characterizes quantum mechanics.

Ifthe oscillator is not harmonic, the trajectoriesdeviate from the complete circles and

thus the volume element deforms from time to time. However, as far as the volume element is

confined to be infinitesimal, the effect of the deformation in句Z(- Z,･)/aZ,･cannot be virtually

observed at the every instance when the pedodic motion is completed. This is simply because

the volume element comes back to the odginal position, wi血tbe same odentation and shape at

this particular instance. Further, Eq.(3-4) holds in this case, too. Thus again only the spinming

motion can generate the additional quantum phase.
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It is almost tdvial to see血at the above obsen′ation can be applied to multi-dimensional

integrable systems, since the existence of the action-anglevariables means that the total phase

space can be viewed essentially as a direct product or independent two-dimensional phase

spaces･ On the other hand, in chaotic cases, the change of the shapeafter each iteration of the

periodic motion is significantly large in general, and hence the phase change due to this

deformation must be very important, as will be seen later.

There can be various ways of interpreting the physical or geometrical meaning of the

Maslov index･ 15 In the DCF formalism, as is seen later, the continuous quantum phase due to

the spinning motion brings about the Maslov index･ This is in harmony with the current idea

due to Littlejolm,16 who considers the Maslov index as a result of the continuous phase

progress occurring in the representation of the so-called metaplectic operator in his

semiclassical theory, and is quite different from the standard interpretation in the WKB theory,

in which the sudden change of the phase by 7T is introduced whenever two wave functions

based on the solutionsof the Hamilton-Jacobi equation in different branches are patched

together. 15･ 1 7

C･ Manifolds Composed of Periodic Orbits

Let us reconsider the 8 function in Eq.(3-3),which requires periodic orbits. Since Z( is

a function ofZj, itis more appropriate to transformthe 8function in the followingform;

∂(z(-z,･)
= l句ZrZL･)/az,illa(z,･-zJt)), (3-5)

where Zp(I) denotes a point on a manifold which is composed of periodic orbits having the

period i Note that Zp(t) is a symbolic expression in that ifZp(I) is not a point (definitelyitis

not),the averaging procedure is understood to be taken implicitly. For example, in the action-
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angle variables, theright hand side ofEq.(3-5)
is not afunction of the angle variables and

consequently it should be divided by 27T for each dimension. Equation (3-5) thus reforms

Eq.(3-3)as

D(E,
-

(qB,-1Re[dtJ
dZL･6(ZL･-Zp(I,,

k*l
(2L･s*))-1

･

exp[f(s(zF,ZL･･
I)･Et)]

･ (3-6)

Unlike the Gut2Willer's theory, Eq.(3-6) includes the (stability)component for the direction of

the periodic motion among bk's, Which should have the formof wt, where a is the frequency

of the totalperiodic motion, as shown in the preceding subsection. This makes the inverse sine

function here become infinity at each instance when the periodic motion is completed.

However, from the other parts of the integral, zero value arises unless a certaincondition is not

fulfilled. Thus we have spikes only at specific energies, as will be seen in thefo1lowing

sections.

IV. INTEGRABLE SYSTEMS (THE EBK CONDITIONS)

For integrable systems, the EBK conditions are perfectly established both theoretically

and numerically. The relationship between the EBK and the periodic orbit theory has been

studied extensively by Berry and Tabor･4 physically, a single periodic orbit does not cover an

entire torus, while a multiply periodic orbit does. Logically,therefore, it seems not obvious

that the EBK conditions canbe derived within the periodic orbit scheme. Very recently, Ozorio

de Almeida18 hasgiven a very interesting and delicate answer to this question; the tori
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composed of periodic orbits which lie arbitrarily close to the quantized torus makes phase-

coherent contributionsto the sum formula･ I would like to show another possibility of

understanding it, by relaxing the strict periodic-orbit condition, which was mentioned earlier

below Eq･(3-2)･ Throughthis relaxation, the multiply periodic orbits in the vicinity of the

originalperiodic orbit are taken into account. The reader can skip this section ifnotinterestedin

the regular spectrum.

A. The Strict Periodic Orbit Condition

We first write down the 8function in Eq.(3-6) in terms of action variables. For a one

dimensional case this is

a (Z-Zp(I))- (2q)-1 ∑
√

d(rT)a (z-ZO(T))a (I-rT) , (4-1)

where 10(T) is an action variable having the period T and ( is the rotation number. So, I has

to coincide with one ofTT, T being, in turn, a function of I. It is extended to a

multidimensionalcase in a straightforwardway suchthat

～

N

∂(Z-Zp(I))-(27r)-N ∑ Il ∑
LZz_00kz-1

T上 [ld(DTkTk,∂(Ik-IB(Tk,)6(t-DrkTk,]･(4-2,

Each action variable Zk is associated with the frequency WL(-2mPk). Let a vector R

correspond to the topology of a periodic orbit by assigning its A-th component with (A, Which

is the rotation number in the direction of 8k(that is Ok=2p(A ) in a singlecircuit of the toLa]

periodic motion･ The totalperiod TR is simplygiven by TkTkfor anyk･ The number A in
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Eq.(4-2) is the number of rotations of such a total periodic motion. The product of8 functions

including t can be rewritten for A
= 1, for instance, as

a(t-L･kTk)a(L･1Tl-T2T2)∂(L･2T2-r3T3)-a(rN_1TN_1-′NTN), (4-3)

where these Nll commensurable relations clearly require the orbit to be periodic. We bring

Eqs. (4-2) and (4-3) back into Eq.(3-6),and integrate over all the variables except Zl and Tl,

wbicb gives

D(B-(2-妄nを†dllld(DTFTl'k*l
(2jsin(那

x

a(Il-P(Tl))
exp[fD(2方UkRIk-H(DTR'ETR)],

(4-4)

where the sum over the topology R is meant by the originalexpression in Eq.(4-2), and the

element of vector R is specified
by the superscript R･ The stability components bk in Eq･(4-4)

are redefined so that they are evaluated for each single circuit of the periodic motions,and are

thus different from those ofEq.(3-6).

The reason why the integration over (Tl,Zl )plane is left undone is that we are going to

relax the strict periodic condition in the next step to take account of the trajectoriessurrounding

the periodic orbit･ This procedure can be made for any (TkZk) pairwith k-1,2, ･･･

,N･
In fact,

we will see that the final quantum condition to be obtained does not depend on the choice of the

pair. This is simply because the periodic orbit is stable in any direction. On the other hand, the

situation is quite different if the system is in chaosand we will see this in the next section.
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B. Relaxation of the Strict Periodic Orbit Condition

Up to Eq.(4-4),the trajectoriesconsidered in the integrand have been determined in

such a way that: (i)The total length of therunning time is TR -

J7L･)RT],(ii)All the action

variables are fixed except for Zl, Which is left as a variable･ Setting Zl =

ZP(Tl),Of course,

leads to a periodic orbit･ Only after these integral processes, the periodic orbits considered in

Eq･(4-4) canbe deformed continuously to non-periodic orbit by varying Zl, aS long as the total

runningtime D･rデT)
is rlXed･ Note that the frequencies WKS (k≠1)

depend on Zl, too. In

order to introduce such relaxation, we replace the 8 function for ZI With a smoothed function,

keeping both the topology R and time Tl fixed (thismeans that total time TR is fixed

accordingly).
We choose this replacing function to be the simplest one, that is a square

function, thewidth of which is url, With the center being
I?(T)),and the height is [1/五･

Outside the square, the function is set to be zero･ The reason to take this width is that the phase

in Eq･(4-4) covers the range of at least 27T aS Zl is varied by unity, so that the stationary

phase approximation makes sense･ In the classical limit of万一0, this square function goes

back to the 8 function. On the other hand, we have no a pL7'oL7'reason, Other than its simplicity,

why the square function has to be chosen･ This is a drawback and needs further study on what

happens ifthe other functional forms are used.

After all,D:E) is evaluated in the following order: (1)Zl-integrationfixing Tl･Asin the

usual application of the stationary phase approximation, the integration range is essentially

extended to minus and plus infinities. The stationary phase point is found to be located at

zl
-P(Tl),Which isthe originalperiodic orbit. In reality, if this were not the case, the

replacement of the 8 function had been invalid. Thus,the major contribution has been found in

the periodic orbits in spite of the removal of the strictperiodic orbit condition. We here aESSume

the existence of such periodic orbits. (2)Tl-integration. The stationary phase condition requires

that the energy of the classical trajectorymust be identical with EofD(E). The most parts of the
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amplitude factors in the stationary phase approximations for the two coordinates cancel each

other 【seeEq.(5-3) for essentially the same argument】,and the integrated value tums out to be

D(E,=報告nf^kq
(2jsin(#))-I

exp[主2nD草4IJ9]
･ (4-5,

Obviously'the stationary phase approximation in TI COOrdinate is not valid at all form - 0･

This case corresponds t? the Thomas-Fe-i density and ba£ been analyzed in a great detail by

Berry and Mount.19 Nonetheless, we include the case ofn
- 0 justin the above formal sense.

It should be noted that althoughwe had relaxed the strict periodic orbit condition only in (Tl,

Zl) coordinates, Eq･(4-5) appeared not to depend on this particular choice･ This means that the

same procedure canbe performed on the other (Tk Zk) coordinates with the same result･ This

situation is peculiar to integrable systems.

As usual, makinguse of the following identity3b

(2sin(部1-j云e-L･(mL･t)Ab上(4-6,
mL亡0

where bkR -rkRwkTk, and of the Poisson sum formula20 we get

D(P

-妄語Mij=.mi.･･･m妻∂(k!l紳-(-k･fH一-)

-妄Mi_00去Qf=.-mf=.a(E-E[wR-暮(-瑚･-])･

16
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where WR is Hamilton's characteristic function, whose partial derivative by E is TR. The

summation over M is redundant here,and thereby

RE,=妄語mi.mi.･･･m麦.a(葺TkR(I2(-k･f)A))
･ (4-8,

If a system at hand has periodic orbits satisfying all the stationary phase conditions under the

given topology, then Eq.(4-8) leads to a quan山m condition

蔓′kR(I2-(-k･;)A)-0,(419,

which should be quoted as the resonant quantum condition, since the periodic orbit is

essentially resonant Orbit in the sense that the commensurable relations as in Eq.(4-3) holds. In

this case, the action variables are not calculated individually but only in the formof linear

combinations, namely ∑′kR z呈.Accordingly,the Masl.v index is n.t 2 any m.re.

On the other hand, when the system does not have suchrigorous periodic orbits on the

energy shell required, we should have approximated the stationary phase evaluation ofEq.(4-

4) with use ofa multiply periodic orbit, which is supposed to come back to a point arbitrarily

close to the originalpoint after the time TR. Such introduction of the multiply periodic orbits

has been made possible by the relaxation of the strict periodic orbit condition, and the error

expected inthis approximation to the stationary phase approximation must be arbitrarily small･

In introducing multiply periodic orbits into the theory, we have to modify the idea about the

period and topology: Arigorous periodic orbit does not change its topology and period

throughout the periodic motion. On the other hand, in case of multiply periodic orbit, the

topology and the period canbe identirled only as a result thatthe orbit has been realized to

come back to a point very close the originalpoint. The topology and period can change in each
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quasi-circuit. Moreover, a slnglemultiply periodic orbit is assumed to generate all the linearly

independent topologiesR eventually. This is of course due to the incommensurable relations

among the frequencies, and recently this idea has been applied numerically by Mehta and De

Leon.22 once this situation has been taken into account, the mathematical procedure from

Eq.(4-5) to (4-8) is the same as before. Thus Eq.(4-9) reads that a vector, the k-th component

.fwhich is ∫豊-(mk･f)a,.is.nh.g.malt. all the inde,endent vect.指R. Hence, a single

(multiplyperiodic)orbit can satisfytheconditions like Eq.(4-9)only when itholds that

/呈-(mk･f)a
(k-1,.I.,N), (4-10)

which are the EBK conditions. In the intermediate case where the resonance in the above sense

occurs partly, Eq.(4-9)and Eq.(4-10) should be combined together.

V. UNSTABLE SYSTEMS

A. General Expression of D'(E)

In this section, we assume that all of the bk's are complex with one exception that

corresponds to the parallel direction to the periodic motion. In a phase space, periodic orbits

form a one parameter family (a curved plane) which intersects transversally with the constant

energy surfaces･23 Let I be a coordinate on this plane which intersects vertically with each

periodic orbit. The coordinate I is essentially equivalent to an action variable･ Accordingly, the

coordinate along each periodic orbit is named 0.Then we introduce a set of local coordinates

along (t,a),which is (
uk(0,Zg),k-1,2,‥,2N-2),and in particular, a point (ukO(a,zg))

is

supposed to locate on the periodic orbit. This coordihate transformation in phase space can be

18



area-preserving, the explicit formof which is not necessary at all for our purpose･ The 8

function in Eq.(3-6) for the periodic manifold is then written as

00

a (Z-Zp(t))-(27,)-1∑∑
q

L)-一対 ∫a(J7Ta) a (I-J7Ta)a(za-ZOpq))

2N ･2

x Il a(uk-uB(a,IOJ)･
k[1

(5-1)

Asinthe integrable case, Eq･(5-1)can be integrated directlyfor allthe coordinates except for I

and 0, the result being

D(4

-(2qB,-1写真Jdlal
d(nTa,

k*
(2J･sin(#))-1

･

∂(Iq-Ig(Ta))
exp[f(sa(qj,qL･･nTa)･DETa)]･

(5-2)

In what follows, the stability factors bka (- dkq + jcka) bear the superscript a to specify the

periodic orbit, only when necessary.

Here again the strictperiodic-orbit condition is relaxed･ Just as in the preceding section,

we replace the 8function with a square function, of which height is五and width is 1/a withthe

center at Zg(Ta ).Among the 8 functions for various coordinates in Eq.(5-1),such relaxation

is allowed onlyinZ coordinate, since the instabilityof the periodic orbit makes no sense of the

idea of "contact vicinity of the originalorbit" inthe other coordinates. On the other hand, the

family of the periodic orbits is stably arranged in the Zdirection･Anintegrable system allows

this sort of relaxation to every direction of the action variables, since a periodic orbit in this

case is surrounded by
stable vicinity in the all directions. Except for this difference, the

periodic orbittheory cantreat both integrable and non-integrable cases on the equal theoretical
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basis. In this way, we apply the stationary phase approximation only in the ∫ coordinate. On

the other hand, the trace formula in Gutzwille!s theoryl takes the q-coordinates (configuration

space)
for the stationary phase approximation regardless of the topological arrangement of

periodic orbits.Since the present theory think about the vicinity of the periodic orbit in phase

space, in which the stable manifold composed of the periodic orbits as a one-parameter family

canbe clearly identified, our ltrace
operation seems more natural･

As in the integrable case, the stationary phase approximation is applied as fわllows.

(1)Za-integrationwith the extended domain of the integration (actuallythe infiniteone)･
The

stationary phase point is found to be located at ZB(Tα)and we have

00

D(E) -(27,A)-1∑∑
a

J7士-00 &l
d(DTa,

kq
(2jsin(#))-I

27rjB

∂rα

aZa

･

exp[喜(sa(qj,q)･･nTa)･nETa)]
･

1/2

(5-3)

Here,the partial derivative ∂Ta/∂Zadue to the stationary phase evaluation is understood to be

taken at thegiven values of T,, and Za. (2)In Ta-integration, the stationary phase condition

requires thatthe energy of the classicaltrajectorymust be equal to E ofD!E). Furthermore

some cancellation in the amplitude factors∝curs leaving a simple､result as

00

D(E,

-報皿L去kq
(2)･sin(9F))-Iexp[fnwJq,･,q)･･E,]

･ (5-4,

Here again, the stationary phase approximation for L7
-- 0 has been carried out formally.

In order to remember that bk's are generally complex, we denote them as in Eq.(2-9).

In expanding theinverse sine function of Eq.(5-3),we have two possibilities, namely
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〈2)･sin(9f)Jl-1-云e-L･(mL･t)nb･[o, DCk≧0 '5-5a'
mL-0

〈2jsin粋))-1-主eL･(mL･i)nbk(or DCk<0･ '5-5b'
mL E 0

Or

These expansions are both convergent.Asstated in the last part of
Sec.II, our convention of

choosing the roots of jbk皇on the B-plane, L7CklS always selected to be positive, that is

)'bk
I

J7(ck
+
jdk)for n>0and )'bk

=

J7(-Ck
+ jdk)for L7<0, and hence we only use Eq･(5-

5a) under this circumstance. (Equation (5-5b) might be required in the other convention.)

Putting these into Eq.(5-4) and applying the Poisson sum formula,20 we obtain our final result

00 00 00
00

D'E)-Eq吾∑∑∑-∑
MT_的mlIO m2JEO mN土0

wa一方k"!l(-k･i)dka-2方MB･丘k"!l(-k･i)Ickal

J

wa一方k"!1(-k･i)dka-2打MB -,nk"!l(-k･i)rckql

(5-6)

The first term in the square bracket comes from the positive time (L7≧0), whereas the second

one is due to the negative time (J7< 0). Inthe genral case (see Table I), both J4 and -14

appear at the same time inthe denominator in the above expression. (The cases ofhyperbolic
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fixed points are exceptions.)So, ifthe quantum numbers associated with 14and
- 1d happen to

be mutually equal, these terms are caJICelled out in the denominators.

Equation (5-6)canbe converted very easily into the form of the "Lorentzian",1 that is

00 00 00 00

D(E)-∑藷∑ ∑∑-∑
a M王一朗･mlきO m2=O mN=0

2Bkfl(-k･i)[ckaJ

[wa-A
k!l
(-k･i)dka

-2qMB]2･[Bk!l
(-k･i)Jcka[]2

This expression is an extension ofGutzwille{s onel in that (i)the "quantum numbers" mkare

correctly treated (in Gutzwiller'stheory, all the quantum numbers except for M and one

corresponding to the direction of the periodic motion are fixed to be
zero6a), (ii)all the

quantum numbers corresponding to any directions are treated on an equal footing (note that at

least one of ck's in the above expression is exactly zero･ which should correspond to the

direction or the pedodic motion.) (iii)the dimensionality is not restdcted (irwe consider a two

dimensional system having a simple hyperbolic rlXed point, for which dk -0, Eq･(5-7)

reproduces Gutzwille′s Eq.(44) orbis paper in ∫.Mat九. Pbys. (1971)).The meaning or the

"quantum numbers" is discussed below.
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ⅤⅠ. DISCUSSION

A･ Weakly Unstable and Stable Non-integrable Systems

D(E) is essentially the sum of the Lorentzian curves each of which is generated by a

periodic orbit α･ To see this more clearly'we expand Wa in the energy and take it up to the

firstorder, which results in

00 oo oo oo

D(E)-よ∑∑ ∑ ∑･･･∑
a M暮._00m)=O m2z-0 mN亡0

ibf.(-k･ i)fcka(

[E-Ea ･ (wa(Ea, -A

k!l
(-k･ i)dka

-2打MBVTa]2･[貴kf.
(-k･ i)fckaf]2

(6-I)

where Ea is a quantized energy which makes the curly bracket
ofEq.(6- I)zero under a certain

set ofMquantum numbersn･ and E is supposed to be close to Ea･ Further, it was assumed here

that the energy dependence of ck's and dk･s are much smaller within the width･ The width is

the sum of the instability factors ofall the directions transversal to the periodic motion, each of

which is associated with the pquantum numbers"･ Remember again thatthe stability

components bk in Eqs･(5-7)and (6-1)are taken for each single circuit of the periodic motion

(notaccumulated).

Natural1y, aperiodic orbit having at leastone large instability component fckaVTacannot

have a sharp peak･ IfJckqVTais moderately large, but not to. large, the L.rentzian can have a

significant peak only when mk lS ZerO･ This is the case considered by Gutzwiller･ 1 However,

on the transition from a stable (or an integrable)to stronglyunstable case, there can exit a

weakly unstable one having only small lckaVTa･s,which can supp.rt even "excited sta(es".r

the states of non-zero quantum numbers associated with ck Therefore,
neglecting these
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quan山m numbers can lead to wrong assignment or the spectroscopy and to bad estimate or the

nearesトneigbbor level spacing. Currently, we have no general mle or tendency or the

relationship between the magnitude of ck and the period Ta･ It is conceived qualitatively,

however, that the longer becomes the period, the larger
cぷsgrow･

In this regard, it is

important to note that unstable periodic orbits with longperiods should not be excluded under a

simpleminded idea that they must have large instability factors. Conversely, it is not correct

either to conclude that only pedodic motions having veⅣ long pedods can contdbute to the

high resolution of energy spacing.

Let us examine a limiting case of Eq.(517), where all the instability components ck's

become zero･ The fact that all the quantum numbers are treated on equal footinginEqs.(5-7)

and (6-1)is very helpful for smoothchange from the expression of an unstable case to that ofa

stable one. It
simply

becomes

]1'D!D(E)=∑Tq∑ ∑ -∑ ∂tWq-∑(wq-k蔓1(-k･f)dkaB-2方MB)
(6-2,

cL-0
a ml=Om2=O mN王0

which has the same form as Eq.(4-7),and will lead to the resonant type quantum condition (not

the EBK for multiply periodic orbits).Thus D(E) in an unstable case has been shown to have

the sound limit･ Strictly speaking, however, the expression in Eq.(6-2) is more general than

that in Eq.(4-7) in that the former does not assume the existence of the action-angle variables,

namely the integrability, but simply assuming the zero instability (ck -

0)･Thus Eq･(6-2) can

be applied to a stable but non-integrable system.

Tbe above consideration leading to Eq.(6-2) helps to understand the role or the

nquantum numbers" mk ln quantum Chaos･ In the limit to the stable case, these numbers

correspond to the quantum numbers in the resonant quantum condition, Eq.(4-9).It is obvious

there that each quantum number mk Cannot necessarily have independent meaming, since only
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the sum
of(i(mk+1A) is the really required quantity･ (Note that both

[k and mk are integers

andthere can be more than one set ofmk's to reproduce the same value of the sum of

(dmk+I(2)
I This is in clear contrast to the quantum numbers in the EBK conditions. Inthe

same sense, a single Lorentzian in Eq.(5-7) can have plural sets of quantum numbers within a

required resolution, which leads to Maccidental degeneracyH of the levels and thereby yields a

highdensity around zero in the distribution of nearest-neighborlevel spacing.

More importantly, D(E) is the sum ofall the possible periodic orbits, the number of

which is expected to be enormous even in a singleenergy plane. For this reason and due to the

possible accidental-degeneracy mentioned above, th-e assignment of the quantum numbers in

most of the irregular spectra should be prohibitively difrlCult in general. This does not mean

immediately, however,that no spectra in chaotic regionare associated withquantum numbers.

On the contrary, it is predicted that there may exist an weakly chaotic spectra for which the

assignment is possible. In fact, Malta has reported very recentlythat there is a system in which

D(E) happens to be dominated by a single periodic orbit.7 If,further, there is no accidental

degeneracy, the quantum numbers could be assigned approximately･

B･ The Endurance Tine in Decay of Quantum Time-Correlation Function

Asseen in Eq.(611),only those periodic orbits whose width is smaller than some

critical value of the energy level spacing (AE) can contribute to the density of states. This leads

toaninequality

吉k葺L(-k･f)fcka[
≦Ag･ (6-3)
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In order to
specifya stationary state in terms of periodic orbits, the experimental setting should

be 1.nger than at least Ta
,
but,.n the.ther hand, ∑(mk･吉)Icka[.ends..de.eri.ratethe

identity of the vicinity of the periodic orbit. These two factors thereby compete each other.

Thus we define the endurance time by

(6-4)

If the endurance time is shorter compared to a possible measuring time such as the life-time of

photo-emission, such an experiment cannot determine whether a takes part in supporting an

eigenstate･ hanintegrable ase, the endurance time is infinite(theperiod Ta is finitethough),

which allows a practical determination of the eigenstates.

Ofcourse, the above argument on the observability of each chaotic eigenstate cannot be

justifiedfrom any view point that the mathematical procedure to calculate Eq.(3-1) is purely

equivalent to the eigenvalue problem of the Hamiltonian, which should not care about

experimentally observing processes･ In fact, Berry,25 voros,26 and Eckhardt27 have

considered about how to get the fully resolved eigenvalues. One important point to note in this

regard is that the semiclassical theory for D(E) goes back to the tiふe-dependentproblem of

dynamics where the mechanism or exponential decay due to ''classical" chaos is automatically

introduced (seebelow and also Eq.(3- 1)),whilethe time-independent Schr6dinger equation

has been derived under the definite assumption of the existence of stationary states. At the

present moment, I have no conclusion as to whetherthe semiclassical argument based on the

phase space structure of classical mechanics is really relevant to the experiment to identifypure

quan山m states･
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In order to see the physical meanng of the endurance time in a littlegreater detail, we

Fourier-transformthe quantized density of states ofEq.(6- I)back
into the time domain, under

the condition that one can find a set of quantum numbers which can
make the curly bracket in

the denominator
ofEq･(6- 1)become zero. Althoughthe Lorentzian form is valid only where E

is close to Ea
,the

integral domainis
extended tothe entire space, sincethe major contribution

comes from only the vicinity ofEa anyway. Thus we hve

fdE-,e-,･E,/a-fdq(q,e-,･HE/a.q,だ享exp[iEat-H]･(615,

where Ea here is specified by the quantum numbers implicitly.The second and third terms in

the above expression meanthat the trace of the auto-correlation of quantum states is represented

by the sum of the exponential decays superimposed by the oscillating features.

Recently, Heller has found an exponential decay in the long time behavior of the time

correlation function of a Gaussian wave packet evolved along a periodic orbit.14a His

correlationfunction shows additional oscillating behavior due to the fact that the wave packet is

a Gaussian-type superposition of energy eigenfunctions. Althoughthe assumption that a

Gaussian packet retains to be Gaussian14a evenunder strong chaos and even for a long time

seems quite hard to justifh Eq.(6-5) hereby supports the basic validity of his argument from a

different point of view.

The exponential decay shown in Eq.(6-5) seems to expose an inherent difficulty of

semiclassical theory in treating quantum chaos, since pure quantum treatment should not have

such decaying factors irrespective of whether the spectrum of a system is regular or not. This

difficulty arises beause only the exponential separation of the nearby orbits from a periodic

orbit is emphasized. The fact is that new trajectoriesenter into the close vicinity ofa periodic
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orbit after the predecessors have left and/or they are leaving. Besides, there is no absolute

origin in time fわrbound-state problems. Hence, in addition to Eq.(6-5),

dE功E )ex -jE(I-to)

記写exp[去Ea(I-to)-1if],
(6-6'

is also acceptable as a time-correlationfunction･ Here to is an arbitrary constant, at which the

nearby orbits start to correlate with periodic orbits･ By preparing many of these correlation

functions and taking their sum extended in the entire time domain, we can construct

conceptually an effective correlation-function which decays locally around the individual time

originto
but does not decay globally.

Asan important consequence of this consideration, we are led to the following model of

the behavior
of classical trajectories:First of all, a phase-space structure is characterized by the

set of periodic orbits, which are completely stationary･ A non-periodic orbit wanders around in

phase space migrating from the vicinity of one periodic orbit to that of another from time to

time. If a trajectorysticks closely to some of periodic-orbits for a significantly long time, its

behavior would look like an intermittency-type chaos. In fact, the present author has

numerically observed a very typicalintermittency clearly represented in terms of what we call

quasi-action variable,28 which is an extension of the action variable and yet has a natural

generaliation even in chaotic region. In order for a trajectoryto support a bound state by

staying in the close vicinity ora pedodic o血it α, itshould remain there fわrat least the pedod

Ta. On the other hand, the trajectoryis destined to leave from the vicinity according to the

exponential decay as in Eq.(6-6),where to is regarded as a time when the trajectoryhas come

inthe vicinity. Here we hypothesize that trajectoriesvisit each periodic orbit with almost equal

chances (democratically)･Then the probability (denotedby pα ) for the close vicinity of α to be
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occupied by non-periodic trajectoriesand to support bound
state(s)with this occupation must

be proportional to

(pa-) exp[-k]
=

exp[-kfJ
(-k･i)Zckql]･

(6-7,

These are simply normalized so that their sum becomes equal to umity, that is

pa
-

exp[A] exp

wi tb

[-
kE"_)(-k･f)JckaI]

A -
-

1n写[exp(-kE".)(-k･f)lckaJ)]･

(6-紘)

(6-8b)

This is a modified version of the ergodic hypothesis which is relevant to quantum chaos. In the

originalergodic hypothesis due to Boltzman?, the hypothetical existence ofa trajectorywhich

eventually visits every point of an energy plane leads to the equivalence between ensemble

(phase-space) zmdtime averages. Obviously, number of periodic orbits embedded in the energy

plane, which plays the main role in the periodic orbit theory, work as the counter example that

do not cover the entire plane･ Thus, the concepts of the ergodic hypothesis and the periodic

orbit theory in chaos are not in hamony with each other in principle･ Therefore, our newly

proposed hypothesis has integrated them.

Since I/T,, COrreSpOnds to the rate of loosing the information (memory) for the periodic

orbit a, and hence, it can be defined as entropygained during the period. We
call 1/Ta the

Gutzwiller entropy (hod) for a･ The total entropy of the energy shell can be defined by the
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average of these local entropies taken over the periodic orbits whose Ta is longer
enoughto

havethe Lorentziansignificantly sharp, that is

(hG)
-写'吉pa･

(6-9)

The prime over the symbol of summation is used throughout in the above sense. Ifall the mk岳

ofEq･(6-4) are zero, (hG) is compatible with the KS-entropy hKS in classical chaos that is a

phase-space average of the localLiapounov exponents･
12･24 Note, however, that for KS-

entropy the phase-space average is not meant to be the average over periodic orbits but over the

entire energy plane. In addition, the Liapounov exponent in classical chaos is not exactly

equivalent to our ∑lckJ,but it is calculated in practice with the step-wise "distance,, of

separation from nearby orbits
I 2･24

since classical chaos is concemed about not only periodic

but general orbits･ Ifall mk岳are not zero in a weakly unstable system, hG Should be modified

so that the quantum numbers are taken into account.

C. The Number of Periodic Orbits and the Boltzmann EQtrOPy

ln this subsection, we attempt to estimate, veⅣ roughly, the Boltzmann entropy fb∫a

microcanonical ensemble in terms of the results of semiclassical dynamics developed so far in

the present paper. This subsection is confined only to an unstable system. As before, Ea is a

quantized energy specified by a set of quantum numbers, in particular, all of the quantum

numbers in the unstable directions are assumed to be zero. Under this assumption, the peak

positions described by Eq.(6- I)are uniquely defined by these sets of quantum numbers. Let us

consider the density
of states loα11y averaged over a small energy interval AE,
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L2(E)-
i

AE
^Ef2

D(E) dE. (6-10)

Usually L2(E), rather thanD(E), is referred to as the density of states in statistical mechanics.

We choose AE so that it covers most of the widths of the sharp Lorentzian curves represented

in Eq･(6- 1)IThus L2(E)hE is estimated roughly as

L2(E)AE- ∑ 1 -

a

The number of periodic orbits

on the enrgy shell whose Tα is

longerthanyAE

=

J7(E). (6-ll)

Hence,
J7(E)

is an implicitfunction of五and AE. Needless to say, Eq.(6-ll) does not

necessarily mean that each periodic orbit supports a single eigenstates. By definition, the

Boltzmam entropy ∫山ms out to be

s

≡kl如(E)AE]
- kln(A(E)), (6112)

where i is the Boltzmann constant･ Thus S has a simple relation to a dynamical quantity,

which requires counting the number of the eI)'B7'b]eperiodic orbits inthe sense of Eq.(6-I I).In

the classical limit (五- 0), all the periodic orbits on the energy shell can clear the eligibility.

MoreoverI Sincethe Poincar6 recurrence theorem assures that any orbit can be regarded as an

arbitrarily close approximation to some periodic orbit, the above number counting can be

replaced by the measure of the relevant volume element in classical phase space.

Let us try to definethe local Boltzmann entropy justas the topologicalor dynamical

entropies･ such as hKS and hG are defined firstforanindividualorbit･. (Note that both hKS

and hG have dimensions of the inverse oftime･) For this purpose, we can take an advantage of

the parallelism between statistical and quantum (and classical)mechanics : It is quite well-
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known that from the analogy between the quantum time evolution operator
ex良一)'Ht/B]and the

.pe,at.r.fthe partiti.n functi.n
eXJ-βH]

(β- 1/kT), where T indicates a temperature, β

is regarded as an imaginary time, that is one can write formally that t,･mag
-

-)7iβ
･ Also we

already have two standard classicalequalities;

∂Ⅳ

-=t

aE

壁-kP.
aE

(6-13a)

(6-13b)

Again, W and S are Hamilton's characteristic function and the entropy, respectively. Now, let

us go back to Eq.(5-6).In the positive-time component, D(E)has a pole at

w#･)-五k"!1(mk･f)dka-2qM五-mk!1(mk･f)(ckqf,
(6-14)

where E* indicates an energy corresponding to a pole in the complex energy plane. In analogy

ofEq.(61 I3a),the energy derivative
of the complex-valued Wa should bring about a complex

timea5

旦wa(E.)- Tq-,7iPa ,

IP

aE

(6115)

where Ta indicates the period again and

一- -,･且I-[Wq(E･)]
=

-,n蓋k!1JckaV2,

Eiコ

aE
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[notemk =0] andthus

EiZ!

･a

-蓋kyCkaV2･
(6-17)

The quantity
Ta -

1/(kP^a)can be.ermed as.he 1.cal.em,era.ure ass.cia.ed wi.h.he

periodic orbit a, in lightof the formal relation I.･mag
-

-mP
I Then, by comparing Eqs･(6-

13b) and (6117),we can define the local Boltzmann entropy such that

sαニーfLm[Wa(E･)]
･const･ -i ∑ lckaV2･const･

k=l

Here the arbitrary constantinthis e甲reSSion is chosen to be些三塁, that is

sa

-一夏血[Wa(E･)]
-I ∑)ckqV2･ (6-18b)

k=l

(6-18a)

since ∑IckaV2is regarded as information lost during the period, aS described in See.ⅤⅠ.B,

Sa thus defined is compatible with the concept ofShannon's information entropy. Connecting

the local Boltzmann entropy with the imaginary part ofHamilton's characteristic function is not

meaningless, since a relationship between statistical mechanicsand resonance scattering theory

and/or tunneling phenomena could be established.

It should be noted that we have started from Eq.(6-14),which corresponds to a pole of

the positive-time part ofD(E) ofEq.(5-6). If, on the other hand, we begin with the ne琴ative-

time component, namely

w#･)-五k"a(-k･f)dka-2方MB･J3よ1(-k･f)[cka[,(6119,
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the local entropy ∫α becomes negative, and accordingly the temperature bears the opposite

sign.

We next constmct a total entropy or microcanonical ensemble. Let us remember the

quantity pa defined in Eq･(6-8a),which is the probability forthe close vicinity of a periodic

orbit α to be occupied by trajectoriesand to support bound
state(s).

Since all the mk's should

be set to zero here, we have

pa
-

exp[-A] exp

wi th

[-
k量∫IckaV2]

Aニー1n[宅'exp[-sa/k]],

-

exp[A] exp [- Sa/k] (6-20)

(6-21)

where Sα has been defined in Eq.(6-lab). It is noteworthy to confirm that the probabilitypα

is proportional to exp[-Sα/k].with these probability functions the Gibbs entropy or

Sharmon's information entropy (denoted by SIT) isgiven by

l

SH --A ∑ palnpa･
a

Or defining

qa=-klnpa-Sa一上A,

one canrewrite SIT aS

34

(6-22)

(6-23)



SII-宅'qaexp[苦]=∑'(sq-k^)pa -宅'sqpa-kA･JT

As is well-known, itholds that

S ≧SII (6-25)

(6-24)

which means that S in Eq.(6112) is the maximum for Sl:t.The equality holds as usual in case

where all the Sa's happen to be the sa血e.

From Eq･(6-24), Sl( isknown to be composed of two pieces: The first sum in the

right-mostequality(∑'sapa)indicatesthe average of the local dynamical-entropies and bears a

close connection to the Gutzwiller entropy defined in Eq.(6-9).The Gutzwiller entropy as well

as hKS represent a rate Process Ofmixing in phase space and are of topological nature, while

the Boltzmann entropy is usually supposed to represent the capacity of a microcanonical

ensemble･ The second term-上A in Eq.(6-24) is of more statistical nature, since itjustcomes

from the normalization condition･ For instance, even ifthe dynamical part of Sit happens to be

zero, namely Sα-0 or ∑lckaV2- 0 forall α, which implies that the system under study is

stable, A still have a non-zero value, actually that is
equal

to ln(A(E)). Thus
-A is really

viewed as the capacity of a microcanomical ensemble. On the other hand, as Sa's become

larger, -A gets smaller, according to Eq.(6･21),and can tum out to be even negative. Also,

the more becomes the number of periodic orbits, the more qa is dominated by
-A, and thus

SIT in a macroscopic system is expected to approach S. Further, from Eq.(6-23), q,r can be

regarded again as a local entropy in which the effect of the ensemble is taken into account.

Incidentally,the temperature is also predictedthroughSzt as

♂-警ニー主u(-sa一号'sypy)papa]･
(6-26,
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Again, β is wdtten in tens Or the dynamical quantities. As seen in this expression, the

contribution from each local entropy to the totalP depends not only on the local P, which can

be positive or negative, but also on magnitude of the local dynamical-entropy measured from

their average.

As fわrthe number orpedodic orbits, by the way, there have been some theorems, in

which the number of periodic orbits having a period T, denoted by N(T) , isgiven by

N(T)= Cl exp(hKST )
, (T -") (6127a)

N(T)与C2 eXP(hKST), (T-00) (6-27b)

Or

where C岳are constants. The first estimate has been derived by Bowen29a for the so-called

axiom Aflow (ageodesicflow on a compact manifold of constant negative curvature satisfying

certain conditions),29and the second one isgiven by Zaslavsky et al.30 for more generalcases

but on a lessrigorous ground. Althoughthere seems to be of no practical use, the logic leading

to Eq.(6-28b) suggests that itbad better be replaced by

N(7l丈C3 eXP((hG)7l,
(T-00) (6-28)

since (hG) involves the information only of periodic orbits, while hKS does not･ If a method

predicting (hG)is available without actual search for the periodic orbits, Eq.(6128)canbe useful
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for an estimate of the Boltzmann entropy, sinceknowing the Boltzmann entropy S ofEq.(6-

12) is equivalent toknowing the number ofeligibleperiodic orbits.

Althoughthe discussion in this subsection is crude, the Boltzmann entropy has been

described as a function of the instability components of the periodic orbits. Obviously, more

dgorous discussion is required fb∫these results to be clearly stated, even tbougb accuracy

required forthe quantities of statistical mechamics orthermodynamics is generally much coarser

than that for pure mechanics. Yet, one of the goals in the study of quantum chaos is to set a

dynamicalfoundation for statistical mechanics.
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VII. CONCLUDING REMARKS

We have examined the density of states both for regular and chaotic cases in a uniform

manner from the view point of the phase-space periodic-orbit theory based on DCF. An

extended expression of the density ofstatesinchaotic regime
has been obtained, and the roll of

the "quantum numbers" has been discussed. Further, we have pointed out the possible

existence of"excited stated" *ith non-zero quantum numbers in unstable directions, if a system

is weakly unstable. The quantum conditions for multiply periodic orbits and resonant ones in

integrable systems (theEBK and its resonance version),and that for a stable non-integrable

case have been discussed. Some insight into classical and quantum chaos has been obtained.

Especially, theLiapounov exponent and Greene's residue in classical chaos have been derived

from quantum mechanics in a natural manner. A very simple interpretation for the Maslov

index ba£ been given as well. All these three quantities are closely related to each other tbrougb

the amplitude factor of the identity DCF. It has been attempted to connect some basic concepts

of statistical mechanics with quantum chaos. The Boltzmann entropy for microcanonical

ensemble has been descdbed in tens Or the number orpedodic orbits.

The convergence problem adherent to the semiclassical theory, that is that the theory

does
notgive 8 function-like spikes for D(E) in chaos, is not solved at all.Also, any practical

method to calculate the state density has not been presented in this paper. Nevertheless, we

believe that it is extremely important to consider the mathematical structure of the quantum

conditions on a unified standing point. Inthis sense, the present paper complements the

theories ofGut2Willerland Littlejolm9.
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Table l. The convention for choosing the roots from )'b-plane

Name.fFixedP.inl i > 0 a) t < 0 b)

Elliptic

Hyp erboli c

)'ldI -1'Idl

Hyperb.1ic-with-renecti.n [cl+ )'7' Icト1'7T

General lcl･)'LdL Icト1'(dl

lc[-1'ldl lcl+L'Idl

a)The roots to be taken for a positive time. b)The roots for a negative time･
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Figure Caption:

Fig.1

Geometrical meaning of句Z(-
Z,･ )/aZ,･in a harmonic oscillator. (a) The motion of a

volume element sandwiched by infinitesimally nearby orbits in a scaled phase space. (b)

□ABCD is slidden to the position or □A'B'C'D'and de血oted by口A"B''C''D". (c) A square

----ー ー ー ー

formed by the vectors AnA', BnB', CnC',and DnD'･ The ratio of the area thus formed to that

of□ABCD is equal to句ZrZ,･)/aZ.･
= 4sin2 (r/2)･
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Extraction of Accurate Frequencies from

the FasトFourier-Transfom Spectra

Kazuo Takatsuka
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Abstract

The Fast Fourier Transformation (FFT) is we111known to be extremely fast and

useful. However, its spectrum is quite often not accurate, because it is a discrete

transformation and,further, the effect of finite range of sampling, the so-called Gibbs

phenomenon, produces long tails.Here a very simple and efficient method to extract the

accurate frequencies andtheamplitudes of discrete spectra from FFT data is proposed.

No window function is used in the present method. The resultant frequencies have been

found to be extremely accurate.



I. INTRODUCTION

Quasi-periodicfunctionswhich are of the fわllowing form

¢(i)- ∑ cmcos((mt)･smsin(fmt)(--≦t ≦…) (I-1)

m≧O

appear frequently in science and engineering. For example, in classical mechanics,

･ coordinatesand momenta of a particle in multiply periodic motions, such as molecular

vibrations, can be represented as in the above expression.[1]
Theoretically, the action-

angle variables can be obtained by a certain procedure[2L
in which the frequencies

(Fm ) and amplitudes (Sm and Cm ),play essential roles. The continuousFourier

transformation can provide these values in principle. In practice, however, it is quite

often required to extract them from a finite set of discrete sampling points with high

accuracy and highspeed. From the view point of speed, the celebrated Fast Fourier

Transformation (FFr) teclmique is almost exclusively used practically. However, the

accuracy of the results by FFT is considerably limited, since FFT is not really a

continuous integral transformation but a discrete one performed within a finite range.

Therefore, if an actual frequency, say fm, is located in between two frequencies which

aregiven
by FFT automatically, the FFT spectra at these sandwiching points oscillate

violently with different signs. Furthermore, these peaks have long tails, which is due to

sudden truncation of the series of sampling data (theso-called Gibbs
phenomenon).An

example or this situation is depicted in Fig.1.

One of the
methods to avoid the long-tail behavior is to apply the so-called window

teclmique. It is well-known that a bell-shaped window function, for instance,皿n Well

reduce the truncation effect.[3]On the other hand, the data thus windowed are biased

and the height
of the spectral peaks is lowered. In order to suppress the tailsand also to

obtain accurate heights simultaneously, FFT is sometimes performed two times with

2



different type of windows for each purpose･ A recent and important example of the

application of a window technique can be found in ref･[2],which also briefly reviews

the former works. It is also ausual practice to vary the length of sampling set to lead

one of the FFT frequencies to come very close to a truefrequency･ These procedures

are generally very tedious.

h this paper, I propose a method to obtain the accurate frequenciesand amplitudes

of quasi-periodic functions from their FFT spectra with no use of such a window

function technique･ The idea is very simple and its implementation and usage are

extremely easy.

II. BASIC PROCEDURES

A.FFr

we consider a function having only two frequencies in Eq･(I-I) without loss of

generality for the presentation of our procedure, namely,

¢(i)-Q((i)+¢g(i)

with

Q((i)
-

a cos(ft)+阜sir(′t)

and

¢g(i)
= Cgcos(gt)+ Sgsi止gt)･

(2-1a)

(2-1b)

(2-1c)

The frequencies (andg are assumed not very close to each other throughout the

present paper･ The cosine-FFT and sine-FFT are usually defined as

N11

Fc'k'-孟,F.cos(割QFUAt'･QgUAt')
'2-2'
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and

〃_1

Fs'k'- kj!.sin(3#)(QMt)･QgUAt')
with

At =-T

.〟

(2-4)

(2-3)

where r and 〟 are the sampling length and number, respectively.

By inserting Eqs.(2-1) to Eqs.(2-2)and (2-3),we have

Fc(k ) =

AJk,I)a 'Acik,I)s+AJk,g)cg'Acik,g)sg (2-5)

and

Es(k ) -

Asc(k,f)c('Ass(k,I)i+Asc(k,a)cg
･
Ass(k,g)sg.(2-6)

The definitions of the above functions such as Asc (k,Jl)are obvious. For example,

N-1

Acs'f,k'-孟,i.cos(箸)sin'[jAt'･
(2-7)

It is clear that iff皿d g areknown, Eqs.(2-5)and (2-6)can be viewed as simultaneous

equations to determine theamplitude factors q･ , SE, Cg,and Sg with appropriate choice

ofk.

B. Approximate E%luation of FFT

Let us rewrite Eq.(2-2) as follows,

Ⅳ-1

Fc'k'-チ,!.
cos (竿AT)(Qf(fjAt'･¢g'fjAt')At･'2-8)
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Under a condition that At is "sumciently" small, the above sum is evaluated

approximately by an integral

Ec(k,;子loTdtcos(響){QMt,･Qg(ff,～,
(2-9)

which is simply a retum to the continuous Fourier transform･ This integral can be

evaluated exactly, the result being

Fc(k)=!

.生

sin(/r)

I-苧
T

f･警
sin(gり.隻_W

Tg一撃 Tg･警

T
I_22珪

T I+

s( cos(fT)-I
_

S( cos(fT)-1
2 7Tk

r r

Sg
cos(gT)-1

Sg
cos(gT)-1

2* T

g･2#r
`ノ

r

(2-10)

b血e similar way, sine-FFr is also evaluated as

Fs(k)
-

!

.隻r

cos(′rト1

I-2盛
r

cos(/T=
.旦

sin((T) sF Sin((T)
T

I.警 Tf一撃
T

f･警
cos(gT)- 1 Cg

cos(gT)- 1
+
Sgsin(gT) Sg

sin(gT)

g一撃
T

g･警 Tg一撃 Tg･警
(2-ll)

In Eqs.(2-10) and (2-11), the oscillatory behavior shown in Fig･1 is quite apparent･

Before proceeding, let us confirm that in these expressions I; g CF, and S( are

unknown, while Fdk) and Fs:k) areknown as the FFT spectra.

C. First Guess Ofthe Frequencies

We assume that the true frequency I happens to be located in the range

22LK 'f

'字(K+1)
(2-12)

r
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for agiven K, which canbe inspected directly in the FFT spectra or in its power. Then

the far dominant term in Eq.(2110)for k=K is

EiK )記_CLsi止FT
)

T
(_22LK

r

and that for A-K+1,

Ec(K+ I) - g[
rJ

sin(∫r)

27T(K+I)

(2-13)

(2-14)

The other terms are very small unless both I and k are close to zero. In addition, we

have assumed that T is chosen so that sin(fT) is Lnol very small.

Now ( can be guessed withuse of the ratio defined by

Xc = Fc(K+ 1)

Fc(K )

such that

f方22LK_ 22E__運L
T T I-Xc

(2-15)

(2-16)

Thus we canmake a first guess of I The similar procedure can be camied out using the

sine-FFT data･ We have observed that the difference between the two guesses is

generally very small and accordingly we adoptthe simple average of them hereafter.

Moreover, our numerical experience has shown that the (value thusguessed is already

fairly close to the exact one･ The same procedure canbe camied out independently for

the frequency g.
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D. First Gue弘Of theAmplitudes (Linear Equation Methd)

Nowthat we have the first guess of(and g, Eqs.(2-5)and (2-6)皿n be made use of

to obtain the amplitudes. It is assumed that gsatisfies

22LL 'g

'字(L'1)･
(2-17)

r

Further let K be either one of K and K+1, which is closer to I in the sense ofEq.(2-

12),and similarly choose L'in Eq.(2-17).Then by putting k-K and k-L'in Eqs･(21

5) and (2-6),we have simultaneous linear equations, the number or wbicb is equal to

that of the unknown. In our example,that is

Ace(K･,() Acs(K′,∫)Ace(K′,g) 4s(K,,g)

Asc(K,,()A"(K,,f･l)Asc(K･,g)Ass(KJ,g)

Ace(L･,∫)Acs(L′,′l)A"(L′,g)Ace(L,,g)

Asc(L･,f･)Ass(LJ,(J)Asc(L,,g)Ass(L,,g)

C′

S(

Cg

Sg

Fc(K')

Fs(K')

Fc(L')

Fs(L')
(2118)

Thus the firstguess of the amplitudes can be obtained. The matrix elements in Eq･(2-

18) can be evaluated tbrougb the expressions as in Eq.(2-7).Alte皿atively, they can be

approximated by the integralrepresentation as in Eq･(2-9)･ For example, the

approximation of Acs((, K) is obtained as a coemcient of Cf in Eq･(2110) by

comparing Eqs.(2-5) and (2-10).From this approximation, it is seen that if JTand/or

gT are very close to an integer multiple of 27r and k is not properly chosen, the matrix

(Asc )becomes nearly singular. This was already pointed out below Eq･(2-14)･

The above method based on Eq.(2118) is convenient in that the matrix (Asc ) and

the vector ( Fc ) are decoupled more or less to each frequency region as the functions

of k. For example, the off-diagonal terms Asc (K, a)'s in Eq･(2-18) are all small ir /

and g are sufficient separated. This fact will lead to an iterative method to solve Eq･(2-
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18) locally at each frequency part as will be described in subsection F. A major

drawback
of solving Eq.(2･18) is, however, that the evaluation of (Asc ) is a littletime

consuming and moreover certain error is expected to arise. Remember that ( and g to

be put in (AscJ are approximate ones, which were obtained in the preceding

subsection. Even if both ( andg are reasonably good, sin(It ) and cos((( ),for

example, deviate from the exact values as t becomes large and correspondingly this

takes place asノget5
large in Eq.(2-7).A very simple way to circumvent this is to use

the initial data ( ¢ (jAt) Jj = 1,2,..,N) directly. We have equations

cos ((jAt)a+ sin((jAt)sg･
cos (gjAt)cg･sin(gjAt)sg-¢UAtI)

(2-19)

forj- 0, l" N-1･ Here again (andg are only approximated quantities. Equations (2-

19) can be inverted to obtain the amplitudes, where j's have to be chosen to be small

enough,and the resultant linear equations should be made mutually independent.

E. D∝oupling ofthc tail efrtcts (lmprovement of the frequencies)

We have now the first estimate of amplitudes, which can in tum be made use of in

order to improve the firstguess of the frequencies. We remember that the frequencies

have been estimated through Eqs.(2115)and (2-16),in which the original (raw) spectral

data or FFr were adopted. However, each peak in FFr spectnlm is contaminated by

long tails extended from the other peaks. Let us look at the FFT spectrum at Fc(K) ,

that is

Fc(K ) 3;旦si止fT
)

T
I_22LK

r

〃_1

･

fj!.cos(主剤cgcos(a'At'･
Sgsin'g'At')

(2-20)

8



The second termin theright hand side forms the tail from the peak at the frequency g･

The magnitude of the tail is not necessarily small in general, since itlooks like

ら_叫grL.ら_垂担1_旦 cos(gT)二⊥_量 cos(gr )- 1

Tg一撃 Tg･警T g-2草
T

g十2苧
(2-21)

and thusits range is very long, justlike the Coulomb potential･ It is a trivial work to

remove the effect of the tail in Eq.(2-20) and thuswe obtainthe purer spectrum, for

instance,

〃_1

F'c'K'- Fc'K'- fj!.cos(主剤cgcos(g'At'･
Sgsi<gjAt')

(2-22)

which should be brought back to Eq.(2-15) to refine the frequencies･

The renewed frequencies are again inserted into Eq･(2･18) or Eq･(2-19) to improve

the amplitudes･ This entire process should be iterated until a convergence is attained･

F. The Iteration Method for theAmplitudes

When we treat a spectrum composed of many peaks, the matrices and vectors in

Eq.(2-18) become large. To avoid this, we can solve Eq･(2-18) in an iterative marmer:

Going back to Eqs.(2-10) and (2-ll),we can set up the fわllowing linear equations fわr

the amplitudes associated with the frequency ( ;

9



sin(の+ 血りT)
fT- 27ZK fT+ 27TK

co?(fT)-1 cos(fT)-1
(T- 27ZK fT+ 27TK

cos(′r)-1 cos(∫r)-1
(T- 27TK fT+ 27TK

sin(fT) _ sin((T)
(T- 27TK fT+ 27ZK

(2-23)

where F'is the spectrum in which the tail effect have been subtracted as in Eq.(2-22).

The similar set of equations can be set up for each frequency. In the calculation of the

purified spectra F', however, the amplitudes should have beenknown beforehand.

Thus the procedure should be carried out iteratively.

III. NUMERICAI. EXAMPLES

Some simple, but not necessadly easy, examples are presented here to show bow

the method works. Our presentation is confined to only two frequency cases for the

sake of simplicity, althoughour procedure and program are general. The iteration

procedure from subsection A to E has been
performed. The matrix (Asc) has been

evaluated directly with Eq.(2-7).

Our sample functionsare chosen to be exactly the same form as in Eq.(2-I).One is

¢1
-

cos(5.5t)+2.Osin(ll.Ot)

where two frequencies are fTarapart and the other is

¢2
-

cos(10.5t)+2.0 sin(ll.Ot)

which has relatively close frequencies, in which the tails have stronger magnitude.

At, T, and N are varied. The standard values of At here is 0.I, which is not very

small compared with the shortest period in the above trigonometricfunctions involved,

10



that is about 0.571. The stan血rd value or〃 here is 2048 (211). This is a small scale

FFT. h short, our examples are set so that the conditions are not exceptionally good, or

rather relatively worsethanthe usualapplicationsof FFT･ The resolution of a frequency

imf-Fris

△f = 22L =

__22LT ･NAt

(2-24)

For our standard values of AtandN A( is about 0.030680, which means the

resolution of a frequency by the present FFT is up tothe first decimal point below zero･

Tbe reach to a convergence ba£ been judged when the successive improvement or

the frequencies gets within 10-13･ The number of iterations was generally about 5 to 10･

since the firstguess of the frequencies and amplitudes are not L･e)atl'tle)y good･ the

second iteration improves their values significantly･ The convergence after the second

iteration is hence slow.

The results are shown in Table 1. The method A is referred to a procedure using

Eq.(2-18),and B is to that based on Eq.(2-19)･Asseen in the table, the results obtained

are generally very good･ In particular, the accuracy of the frequencies is far beyond the

FFr resolution mentioned above.

on the other hand, the accuracy of the amplitude is not as good as that of the

frequencies･ In particular, the method A reproduces the amplitudes rather poorly as

noted in subsection D. The method B, which is fTaster,givesbetter results as anticipated･

In Eq.(2-9), the sum has been approximated by an integral･ This must be crucial･

Hence the result depends on how small At can be chosen･ On the other hand, if we let

At become smaller withkeeping N constant, A/ becomes larger in accordance with

Eq.(2-24), which in tum means that the dominancy by the single
term in Eq･(2-13) is

detedorated. Thus the better results are expected only when 〟 is increased

ll



simultaJleOus1y･ We choose At =0･05and N=4096-212.Asseen in Table I, the errors

both in the frequencies and amplitudes have been reduced by the factor about 2.

IV. CONCLUDING REMARKS

We have proposed an efficient and simple idea to extract the frequencies and

amplitudes of a quasi-periodic function from FFr spectra. The results have been fbund

very accurate･ One of the most annoying parts of the numerical procedure ofFFT is the

selection of window functions･ It is hoped that the present method can relax this

si山ation in part.

Since血e purpose or the present paper is to present the outline or the basic idea, the

sophistication or the procedure ba£ not been mentioned at all･ For example, the

acceleration of the iteration process can be achieved by an extrapolation method or its

analogue.

Fina11y, the present procedure ba£ been worked out in a study or onset or Hamilton

chaos･ Its theoreticalaspect and numerical examples will be presented elsewhere.[4]
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Table l･ Thefrequenciesandamplitudes extracted from the FFT spectra

Methodsa I C( Sf g Cg Sg

Exact 5.500000 1.000000 0.000000 11.000000 0.000000 2.000000

Ab 5.500069 0.990846 0.006965 1l.000004
10.000806

1.999547

AC 5.500035 0.995401 0.003507 11.000002
-0.000400

1.999776

Bb 5.500069 I.000005 0.000018 1l.000006 -0.000005 I.999991

BC 5.500034 1.000002 0.000010 11.000003
-0.000002

1.999995

¢2

Exact 10.500000 1.000000 0.000000 11.000000 0.000000 2.000000

Ab 10.500061 0.990914 0.006258 11.000001
-0.000243

I.999885

AC 10.500030 0.995432 0.003152 11.000001
-0.000103

1.999953

Bb 10.500055 I.000108 0.000072 11.000016
-0.000107

I.999928

BC 10.500027 1.000057 0.000032 11.000008
-0.000057

1.999968

a ) Method A is based on Eq.(2-18),while B on Eq.(2-19).

b)At=0.1, N-21l c)At=0.1, N=212
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Figure Caption:

The cosine-FFT spectrum for 4)(I)-

cos(10.Ot ) + 2.0 s)'D(11･Ot) : One of the

discretized frequencies given by FFT happens to be extremely close to 10･0, and

correspondingly a single sharp peak is produced･ On the other hand, the sine component

in d() is detected even irithecosine transformation with a large amplitude oscillation,

which is accompanied by long tails.
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Possible Onset of Entrainment in Hamilton Chaos

Kazuo Takatsuka

Department of Chemistry, College of General Education

Nagoya Umiversity

Nagoya 464-01, Japan

Abstrad

A break-up of an invariant torus is monitored in terms
of the spectrum of the quasi-

action variable which is newly defined as a continuous function of frequency. We have found

a new characteristic phenomenon called "entrainment" at the onset of chaos, in which two

discrete peaks in a regular regime merge into a continuous spectrum as a system steps into

chaos and the resultant band has significant magnitude only in between the original

frequencies.



I. mRODUCTION

Chaos has been one of central subjects in recent advances of various studies on

dynamical systems l･ systematic analyses on the mechanism or chaos have been made with

the Poincar6 surface of section, whichgives aglobal structure of phaseflowl. on the other

hand, chemists are often interested in the characteristic behavior
of an each trajectoryof

relatively large molecules add
liquid-state systems, andthe surface or section is too limited

for this purpose･ In quantum chaos, the density
of states2 and the so-called quantum scars3

are characterized in terms of periodic orbits2, which also means that the analysis of each

trajectoryis unavoidable.

Here we consider only Hamilton chaosl, which is simply defined by the break of an

invariant torus.Asis wellknown, the "size" of an invariant torus is measured by the action

variables, which are the const弧tS Of motion of a system. A natural question here is whether a

classical trajectorywe happen to have at hand is on a torusor not. If yes, how large are the

action variables? These values can be directly made use or fわr the semiclassical

determination of quantum levels based on the EBK conditions4･ In case of chaos, on the

other hand, what happensto the action variables, particularly at the onset?

Recently we have devised a practical method to calculate action variables and their

frequencies5, which is based on a geometrical consideration in phase space･ A natural

generalization of the action variable, which we call the quasi-action variable, have also been

studied to investigate the transition from regular to chaotic motions･ The quasi-action

variable is defined as afunction of frequency. In our numerical study of chaos, we have

observed variouspattems in the spectra of the quasi-action･ The rest of the present paper is

devoted to reporting a particularly characteristic feature of the onset of chaos, which we want

to call HentrainmentH mechanism.
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We first review very brieflythe defimitionof the qtnsi-action variable5. Let us assume

a case where a system has a set of action variables. Suppose we have a classical trajectoryin

2N dimensional phase space as depicted in Fig.1. Let 2(I)
-( 2)･(I))

-

(q,･(I),p)･(i))

(i-1
,2,･･,N)

be a phaLSe space POint on the trajectory,where qlt)andpJ(I)arethe coordinates

of the position and its conjugate momenta, respectively, at time I.The suffix )tis reserved for

general canonical coordinates. We define the following oriented area;

M-1 N N

B(t'-をk!.
,.$1
2L･(tk)^2L(tk･At)-圭.EIZl,･(o)^z-i(I), (1'

where to-0, tk-RAE, and M-i(21t. The limitAt - 0 should be taken. The geometrical

meaning ofqt) is the sum of the segment areas in Fig.1 (theshaded area),each of which is

formed by the projection of the trajectoryonto, say, Zl-Plane and that of a straightline

connecting 2(0)and 2(t).By the definition
ofq(), it is canonically invariant6.

For a one-dimensional oscillator, it is quite obviousthat B(I) becomes equivalent to

the action variable
I- fpdqat I -T, where T is the period ( - 27'/a). In a multi-

dimensional case, the si山ation is not so simple. However, the canonical invadance allows to

transformB(t) to the action-angle phase space (tk-8k space) invariantly. [The sufrlX k is

used for the action-angle variables.]In Fig.2,the shaded area (segment), denoted by Bdt) ,

corresponds to the projectedarea onto Zk8kPlane, where the trajectoryis represented by the

straight
line, while the straightline of Z(0)Z(t) in the originalcoordinates (see Fig.i) is

transformed into a curved line. The sum of all But)'sis qt).Asin the one-dimensional ase,

Bdt) coincides with the action variable Zk at t - Tk, Where Tk is the period in the k-th

angle coordinate (mod. 27T).

Since Bk(I) is a periodically increasing function with a linear term of I and an

oscillating part whoseperiod is雅(≡2丁れ)k



Bk(t)- akt･ ∑ [bAsin(mwkt)･
c&cos(mwkt)]

,

m =0

(2)

wherethe coefficients a, b's, and es are all constant. Judging from this expansion, the time

derivative of Bdt) must be more ftasible for the Fourier analysis･ It is written as

B主(I)- ak ･ wk ∑ m[bEcos(mwkt)- CAsin(mwkt)]
m ≠0

= ak +Fk(t) (3)

where the second equality derlneS the function Fk(I) , and B'(i)
-

∑BL(I)･Thus the

Fourier transformof B'(t) should provide the frequencies corresponding to the angle

variables. Furthermore, the action variables canalso be deduced from the Fourier data as

Zk=27Tak- -27T ∑ mbE･
m -0

(4)

This has been derived under the following conditions BdO) - 0, Bk'(0)-0, and Bk'(Ti) =Zk･

Incidentally, it is noteworthy that the expansion of B'(I)does not have the combination bands

of different modes. This is in a marked contrast to the Fourier expansion of primitive

qtnntities7 such as q,(I), since we have

00 0⊃

qL･(t)
-

∑-∑ Djlノユ-.jNeXP[j U'lWl 'j2W2'-･+jNWN)t]
･ (5)

jI
.i2

h practice, the perfect form of the Fourier expansion of B'(I) is not always realized

because of numerical errors mainly due to the finite time difference approximation to the
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various differential equations. Since B'(I) is expected to increase monotonically as t
,

or

BL(I)
≧ 0. we candetemine Zk Variationally as

zk = - 22L
Fk(tm,･n) ,

Wk
(6)

where tmL'D is a I which makes Fk(I) minimum. tmL･n is actually very close to 0, which

indicates thatthe condition Bk'(0)=0used to derive Eq.(4) is almost satisfied. A practical

method to calculate B'(t)will be reported elsewhere.5

We next try to extend the above procedure to define the quasi-action variable. We first

note that -Fk((mLn
) is essentially equivalent to the square root of the power spectrum of

Fk(tmLn),

pk- ∑ Pkm(mwk)
-

∑ (wkm)2[(紘)2･(c&)2]
m !l m!l

(7)

Generally the contributionsto Pk fromthe second harmonies (m-2) and the higher ones are

very small as compared to thefundamental component, and hence, we have (seeEq.(6))

･k

-慧[pi(wk)]1/2,
(8)

On the other hand, B'(i) can be computed equally well for a chaotic trajectory.Since the

Fourier exI凪nSion andthe decomposition into the k-th action-angle component as in Eq.(3)

are both
meaningless,and since the concept of the overtone of discrete spectrum looses the

sense as well, we simply define the total power spectrum of B'(t), after the constant termis

subtracted. This is denoted by P(a). Then in the analogy of Eq.(8)we define the quasi-action

vadable as



i(a)
=慧[p

(a)]1/2, (9)

which is a continuous function of w. In an integrable system, the qtui-action variable has a

discrete spectrum at frequencies of mwk ( k=l,..,N,･ m=l,2,･･) [see Fig･3(a)]･Asstated

above, the components dug to m
- 2 and the higher ones are very small in general･ The

quasi-action variables at thefundamental frequencies are the same as Zk Of Eq･(8), and thus

gives a very good approximation to the true action variables･ In a cha'otic system, on the other

hand, the quasi-action variable in Eq.(9) provides a continuous spectrum, the height of which

is afunction of the time length of running a classicaltrajectory.The
longer is therunming

time, the lower becomes the peak height of the quasi-action variable･ This is not the ase in

an integrable case, since there is no constant of motion except for the total energy in chaos･

We now present a very characteristic feature of chaos monitored by the quasi-action

variable. The system of our application is the Henon･Heiles Hamiltonian

H-&･%･#x2
･y2 ･ 2x2y

-iy3)wi.bach.ice.,mx- 1..andm,= I.5,

which breaks the symmetry. A pattem of the so-called intermittency or burstgivesrise to in

the standard choice, mx
=

my- 1･0
, which is discussed elsewhere5･ we have camied out a

series of computationswith changing the total energy E around the onset point of chaos up to

the dissociation limit. The initial conditions of the trajectoriesare chosen so that x
-

y= 0･O

withtheir associated momenta being positive and the fraction of the energy assigned to the x

_coordinate
is 40%.

h Fig.3, the quasi-action variables with some energies are displayed･ In case of E =

o.I (the panel (a)),the two strong discrete peaks directly indicate that the trajectoryis

rurming on a toruswith those fundamental frequencies and approximate action variables･ All
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the small peaks inthis panel are the noise mainly due to the FFT ( Fast-Fourier-Transform),

and they are actually almost invisible in the power spectmm in Eq.(9). The ove爪one

components, which are very small, are not displayed. Also, the small frequency part is

omitted here, wbicb should bear a direct relation to血e l〝noise (see.Eq.(9)).

b the panel (ら)or Fig.3 (E=0.105),a continuous SpeCtmm indicating the onset or

chaos is observed, although the true onset energy for odr initial conditions is a little lower

than E-0.105. The cases or E=0.10583 and E=0.1075, the panels (c) and (d) in Fig.3,

respectively, have even stronger continuous spectra. The occurrence of the continuous

spectra in chaos has been pointed out bythe other authors8 already, who have confirmed the

break down of the expansion in Eq.(5).What is important in our findings common in the

panels (a) to (e) is that the continuous spectra have sigmificant intensity only in between the

original
fundamentalfrequencies. (By the way, the higher components around the second

harmonies have very small magnitudes.)This very characteristic feature continues at least up

to E=0.125 with slightshift of the positions.And further up in E-0.145, the panel (f)in Fig.3,

more violent chaos takes place to break this characteristic feature. However, we can still

observe the significant trace of the two strongpeaks. This trace of the peaks of regular

regime cannot been seen explicitly in Poincar6 section. It should be mentioned that the

runming time of the classical trajectoriesdo not alter the features.

Qualitatively, the above characteristic phenomenon indicates that the two

"independent" (in the sense of the two independent actions) vibrational modes tend to

synchronize to each other, after the restriction that the torus should exist is removed. It is

well-knownin mechamical vibrationthat when a perturbation having a constant frequency is

applied to a vibratorwith a different frequency, the latter frequency can be absorbed (pulled)

into the same one as the outer frequency under a certain condition. This phenomenon, first

found by Huygens, is called entrainment9･ In this sense, the onset of the present chaos looks

similar to the entrainment. Two major differences should be noted between the simple
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entrainment and our onset of chaos: First, our system is not dissipative but conservative,

which means that it cannot have a sink or limit cycle to which the system is absorbed with

fixed frequencies･ On the contrary, Poincar6's recurrence theorem requires that a motion

should come back to an area very close to the originalpoint
in phase space･ Thusthe

"instantaneous" frequency pulled to one direction has to be pushed back eventually･ Second･

althoughone of the vibrational modes in our system canbe viewed asanouter perturbation

applied to the other, the analogy to the entrainment is far from completeness, since both

modes changes their frequencies from time to time because of high nonlinearity･

h spite of the differences mentioned above, we would like to callthe present onset

"entrainment", since synchronization (pulling each other) of the frequencies are very

impressive. This view can be complemented by the Poincari surface of section･ In Figs･4(a)

and 4(b),we have the su血ces of section due tothe trajectoryofE=0･l, which are taken at x

- o and y =0, respectively. Similarly, Figs･4(A) and 4(B) display those for E-0･105･

comparing Figs.4(a)and 4A shows that the manifold occupied by the trajectoryis innated

outward as E has changed from 0.1 to 0.105. On the other hand, Figs･4(b)and 4(B) indicate

that the "diameter" of this direction has shrunk inward. nis does not necessarily provide the

direct evidence of the entrainment, since the size of the manifolds are not always related to

the frequency･ However, generally speaking, the outer manifold tends to have the smaller

frequency. Thusthe entrainment mechanism seems consistent with the Poincari surfaces･

we have reported a very characteristic phenomenon in the onset of Hamilton chaos

based on the numerical experiment with the quasi-action variable･ The nentrainmentp can be

one of the general mechanisms of mode mixing in chaos, and can provide a relationship

between the dynamics of open and closed systems･
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Figure captions.

Fig.1: A classical trajectoryand the position vectors in phase space is projected onto the i-th

canonical coordinate plane.

Fig.2: Decomposition of qt) into the areas represented in the action-anglevariables･

Fig･3: The qtusi-action variables for various energies･ h all the panels, the frequency domain

is covered from 0.6 to I.4. The energy (E) and the height
of each panel (H) are: (a) E=0･l,

H=0.3; (b) E=0.105, H=0.3; (c) E-0.10583, H=0.I; (d) E=0.1075 H=0.08,･ (e) E= 0･125, H-

0.I; (f)E=0.145, H=0.08.

Fig.4: The Poincar6 surfaces of section taken atズ-0 (Panels (a)and (A)),and atァ0 (Panels

(b) and (B)). For Panels (a) and (b),E=0.I, while Panel (A) and (B) have E-0･105･ The

cun′ed line or (a) consti山tes almost the inner limit or that or (A), and the manifわld or (B) is

bounded from the outside by the curve of (b).
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