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DENSITY OF STATES FOR CHAOTIC SYSTEMS
IN PHASE-SPACE SEMICLASSICAL MECHANICS

Kazuo Takatsuka
College of General Education
Nagoya University
Nagoya 464-01, Japan

The periodic orbit theory for calculating density of states in a chaotic Hamiltonian
system is discussed within our framework of phase-space semiclassical mechanics. An
extended expression of the density of states in chaos is derived, through which a possibility of
assigning the ”quantum numbers” and their roles for irregular spectra are discussed. It is also
shown that a systematic application of the periodic orbit theory in phase space leads to the EBK
quantum conditions for integrable systems, and also to a quantum condition for a stable but
non-integrable system. A simple interpretation of the geometrical meaning of the so-called
Maslov index in the quantum conditions is given. An attempt is made to analyze the Boltzmann

entropy of microcanonical ensemble in terms of the dynamics relevant to quantum chaos.



1. INTRODUCTION

Since the first mathematical expression for the density of states of a classically chaotic
system was given by Gutzwillerl, the so-called periodic orbit theoryl,2 has been argued
extensively in the field of quantum chaos from various points of view such as the number of
quantum numbers,32 the treatment of the Maslov index,3Y,3¢ and the relationship of the
periodic orbit theory to the Einstein-Brillouin-Keller (EBK) conditions?. After these close
theoretical studies, also with numerical examinations, -6,/ the essential validity of the periodic
theory seems to be recognized well these days.8 Nonetheless, the trace formula involved in the
theory is still stated to be ”very difficult”. Recently Littlejohn? has established an elegant theory
which gives a new way of looking at the Lagrangian manifolds in quantum theory, which can
lead to the trace formula more naturally.

In this paper we would like to present another way of constructing the density of states
both for regular and chaotic systems systematically in terms of a phase-space semiclassical
mechanics, 10 which we call the dynamical characteristic function (DCF) formalism.!!
Roughly speaking, setting up the quantum conditions is equivalent to measuring the size of
phase space manifolds such as invariant tori and periodic orbits in units of the length of matter
wave. This is a part of reasons why the trace formula considered in the configuration (q)
space1 is very difficult and also why the phase space approach can give more transparent view.
Through our reconsiderafion of the periodic orbit theory, we will elucidate the following
points:

(1) An extended expression of the density of states in chaos is given, Eq.(5-7) in Sec.V, in
which the “quantum numbers” are found to be associated with each quantized periodic orbit.
The possibility of experimental assignment of the quantum numbers to irregular spectra and
their roles are discussed (Sec.VI). A modified version of the ergodic hypothesis relevant to

quantum chaos is proposed, and a qualitative argument on the relationship between the



Boltzmann entropy in a microcanonical ensemble and quantum chaos is also presented
(Sec.VI).

(2) The relationship between the density of states of a non-integrable system and that of an
integrable one in resonance is clarified.

(3) The EBK conditions (conditions for multiply periodic orbits, which are topologically
different from pure periodic orbits) are derived within the framework of the present periodic-
orbit theory. In the integrable case, the quantum conditions for resonant and non-resonant
cases are distinguished. (Sec.IV)

(4) A simple geometrical interpretation of the Maslov index is given in the context of the
topological nature of a volume element which is to be carried by phase flow along a periodic
orbit (Sec.II).

(5) It will be shown that some indices commonly recognized as being characteristic to classical
chaos such as the Liapounov exponent12 and Greene’s residuel3 are naturally derived from
the amplitude factor of DCF (Sec.II). The KS-entropyl2 is also discussed in the context of
quantum theory, and we define a new dynamical entropy which is relevant to the periodic orbit
theory (Sec.VI).

The present paper begins with a brief review of the DCF theory in the next section.



II. SEMICLASSICAL MECHANICS

The theory starts with the definition of a phase space function!1

a (¢ff)fff t@ini&i )
= j dq éq +nod(q +n)exp[q (& - & Va), Q-1

which is called DCF. Here $; and ¢¢ are mutually independent wave functions, and they can
have even different time arguments. 77 and & (with suffices i and f) have dimensions of length

and momentum, respectively, and thus DCF is a function defined in phase space.

Obviously, the variables 1; and n¢ (and ¢; and {f) are not independent of each other
in Eq.(2-1). Nonetheless, the arguments in Eq.(2-1) are put into the groups in that manner

since the following property, the association rule, holds such that

(27rﬁ)-Nf dZ, a(paZs: 652y ) aldpZy: 602, ) = al6aZs 6cZ1),  (2-2)

where a short-handed notation of a phase space point is used, that is Z;=(1,&) (k=1,2,3).

Here an arbitrary wave-packet state ¢g has been assumed to be normalized to unity. This

association rule sets the foundation of a phase-space path-integral formalism. In order to go

beyond the formalism of wave packet evolution, we define another DCF, the identity DCF, by

ar (ne&ety miity ) = qu K(g+negtni, te-t; )cxp{q(&- - -f,-)/ﬁ] , (2-3)

where K is the Feynman kernel, the explicit form of which is well-known in case where

tr — t; is infinitesimal. The successive applications of the association rule for the identity DCF



having an infinitesimal time-increment give a semiclassical form of the identity DCF with a
finite time-interval. Instead of writing down it explicitly, we consider the following integral

using the semiclassical DCF

(Ble-iH gy = 27BN e-IN7h I dz;alp Z: ¢ )
12
x {dct. {__6(21 — Zi)}

exp [is (25 Z, t)] . (2-4)
0Z; h

where N is the physical dimension, Zf is the end point of a classical trajectory starting from
Z;j fortime t, and S is the action integral taken along the path. In a phase space scheme, the
branches of the action are automatically specified, and therefore S is characterized in terms of
Z; and Zg. The first term in the integrand of Eq.(2-4) is a DCF representing the initial
condition” for each orbit. (Note the symmetric appearance of ¢ and @.) The second term is an
amplitude factor which is to be described in a greater detail later. All the possible trajectories
should be run and summed up, each having contributions from the amplitude, phase, and initial
condition. The integral having the form of Eq.(2-4) appears in the S-matrix, time correlation of
wave packets,14a density of states, quantum scars,14 and so on, with ¢and @ chosen in
appropriate forms.

The amplitude factor in Eq.(2-4) has many interesting properties in conjunction with
classical chaos. Inside it we observe the following Jacobian determinant &(Zy - Z; )/ 0Z;. Let
exp (iby) and exp(-ibg) (k=1,..,N) be the eigenvalues of the Jacobian matrix [0Z¢/0Z;). If
some of by’s happen to be complex valued, the trajectory undergoes exponentially divergent
separation from some of its neighboring trajectories which are set infinitesimally close at the
outset. This is Jocal chaos.12 If, on the other hand, all the by are real, the trajectory is said to

be stable. Let us first rewrite Eq.(2-4) in terms of bg's using the following identity



N N
Az:-2Yoz; = T Uexplibe) - Xexp(-ib) - 1) = [ [2 sin(%&)]z. (2-5)

k=1 k=1

Thus we have

ﬁ [% Siﬂ(%)] CXP[% (S(Zr, Z;,0)|. (2-6)

k=1

(@ | e-irte/n | p) = (Zﬂﬁ)'Nf dz; d¢z;: ¢2;)

This is the basic equation for our analysis of the density of states.

Suppose that we observe classical chaos through the imaginary part of bg’s, and let L
be the sum of them which are positive and larger than a certain critical value. Then we can

express as (see Eq.(2-5))

11 [2on(2))- (B ans]. @
where the product in the right hand side is composed of bg's which are not used in L. The
argument L is called the Liapounov exponent in the study of classical chaos. (Note that some
slight difference in the definition can be present depending on the method of practical
calculation.12) It is intriguing that the Liapounov exponent is derived from quantum
mechanics.

It is trivial to see the following identity hold for a general 2 by 2 matrix,

det(M-1)=2-Tr(M). (2-8)



If M is the tangent map of the Poincaré surface of section for a periodic orbit, then 2-Tr(M) is
identical with 4R, where R is the residue of Greene.l3 R is known to be an extremely
important quantity to judge the global occurrence of classical chaos.12 We have already
considered the left hand side of Eq.(2-8), if M is identified as the Jacobian matrix [0.Z;/0.Z;].
Since the matrix [O(Z[ -Z ,)/ 0z 1’] in Eq.(2-5) is not restricted to be 2 by 2, its determinant can
be regarded as a natural generalization of Greene’s residue. (Note, however, that unlike
Greene’s M, [0Z;/0Z;] includes the information about not only transversal directions to the
periodic orbit but the parallel one.13)

Before closing this section we should comment on the convention of choosing the
branches of the square root of Eq.(2-4) [cf. Eq.(2-5)]. Due to the real valuedness and
symplectic property of (0Z;/0Z;], ib always appear as a quadruplet set {ib, =ib, ib*, -ib*},
provided that they are complex. (The suffices are ignored for a moment.) Noting that exp(ib)’s,
not b’s themselves, are to be obtained as the eigenvalues of [0Z;/0Z;] we consider a

complex plane B on which the roots {ib, ~ib, ib*, —ib* } sit. Define
ib=c+id (b=d -ic). (2-9)

In case of nonzero ¢, we have to take ib and -ib* from {ib, —ib, ib*, ~ib* } to apply Eq.(2-
5), and concomitantly the following product

2 in (b [z - (i)] -

L, sm(z)] - sin{— (2-10)
appears in the magnitude part of Eq.(2-6). In what follows, Eq.(2-6) is understood in this form

implicitly. We take a convention that the roots are selected from the right-half of the B-plane.

Thus for an imaginary case, we pick up a pair of roots



ib=c+id and -ib*=c-id (c20). @-11)

On the other hand, in cases of elliptic (ib =  id ), hyperbolic (ib=* ¢ ), and hyperbolic
with-reflectionfa (ib=%c-im or ib=zc + i) fixed points, we do not have a quadruple
but a pair of roots on the B-plane. In elliptic case, ib to be used in Eq.(2-6) is picked up from
the positive (negative) imaginary axis for £>0 (t<0). For a hyperbolic case, the root is taken
from the positive real axis for all time, and in the case of hyperbolic-with-reflection, the root
are selected from the upper right-half plane for the positive time and the lower right-half plane
in the negative time. These are summarized are Table I. With this convention, the time reversal
symmetry of DCF is conserved,11 and also it is always connected smoothly as a function of
time. Since there is no part of taking an absolute value in the amplitude factor in the value of
Eq.(2-6), we should have no additional phase factor in DCF. This should be compared with
the Maslov and Morse indices to be considered as a sudden jump of quantum phase for the

semiclassical Feynman kernel and the WKB wave functions at caustics. 15

II1I. DENSITY OF STATES IN TERMS OF DCF
A. Density of States
After the general manner due to Gutzwiller,! we try to write down the density of states

as follows,

D(E)=Tr 8(E-H)=Y 6(E-E;) = 27 h)™! f dt’ dq(q|e-iHt/a| q) eiBtln . (3-1)



The kernel part in this integrand can be replaced by Eq.(2-6) with adopting ¢=q and ®=q. The

DCF in Eq.(2-6) can now be integrated exactly over the g-coordinates as
f dqa(lq) Z;:|q) Zg) = QN (2~ Z;). (3-2)

The b function here directly indicates that the classical trajectories contributing to D(E) must be
perfectly periodic as originally discovered by Gutzwiller.! The present condition Eq.(3-2),
which we call the strict periodic-orbit condition, is too strong, since the integration in it is
performed in the range from —o° to %, In reality, however, the information about bound states
could be acquired in some much smaller finite region, which will reduce Eq.(3-2) to a less
sharp function. This is a rather essential point in our approach and we will come back to this

problem later. For the time being, the strict periodic-orbit condition is adopted. Then we have

D(E) = (7T 'Re f dtj dZ;5(Z;- ,)H ( sm(Tk))ex L(S (2,2, )+E1)]. (3:3)

0

B. Geometrical Meaning of the Amplitude Factor and the Maslov Index

Before proceeding, we examine very briefly the geometrical meaning of the amplitude
factor in Eq.(3-3), particularly in the context of the periodic motion. Remembering Eq.(2-5),
we investigate the meaning of the Jacobian determinant &Z;~ Z;)/0Z;. This represents the
sensitivity of the motions of an infinitesimal volume element in phase space to its initial
location. It is required in quantum mechanics to think about the behavior not only of each phase
space point but also of an volume element around it. Basically there are three kind of motions

made by an infinitesimal volume element while carried by classical phase flow; (1)translation



(2)spinning around its own axis (3)deformation. The effect of the translation has already been
removed out in the expression of {Zy - Z ,)/ 0Z;. Thus only the internal motions, namely the
spinning and deformations, should be considered.

Here we consider only an integrable case. For a heuristic and short discussion, we first
imagine a one-dimensional harmonic oscillator. In Fig.1, a couple of infinitesimally nearby
orbits are depicted, in which the coordinates are scaled so that the trajectories form complete
circles. [Note that the distance between the two circles is exaggerated in the figure.] As the
center of the tiny volume element ABCD moves along the trajectory, it only spins around its
own axis with no deformation in this exceptionally ideal case. Thus the factor A Zr - Zi)/ 0Z;

in this case is just due to the spinning motion. Furthermore, it is quite simple to show that

AZ-2:)/0Z; = dsin? (“’T"’) (3-4)

where wp is the frequency of the oscillator and is identical with that of the spin. wpt
corresponds to bg of Eq.(3-3). From this expression including the sine function, it is observed
that the spinning motion generates an extra quantum phase in addition to the action. Because of
the dividing factor 2 in Eq.(3-4), the progress of the phase due to the spinning motion is two
times slower than that of the oscillator itself. This is essentially due to the square root in Eq.(2-
4), which characterizes quantum mechanics.

If the oscillator is not harmonic, the trajectories deviate from the complete circles and
thus the volume element deforms from time to time. However, as far as the volume element is
confined to be infinitesimal, the effect of the deformation in Z¢~ Z;)/0Z; cannot be virtually
observed at the every instance when the periodic motion is completed. This is simply because
the volume element comes back to the original position, with the same orientation and shape at
this particular instance. Further, Eq.(3-4) holds in this case, too. Thus again only the spinning

motion can generate the additional quantum phase.
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It is almost trivial to see that the above observation can be applied to multi-dimensional
integrable systems, since the existence of the action-angle vaﬂablcs means that the total phase
space can be viewed essentially as a direct product of independent two-dimensional phase
spaces. On the other hand, in chaotic cases, the change of the shape after each iteration of the
periodic motion is significantly large in general, and hence the phase change due to this
deformation must be very important, as will be seen later.

There can be various ways of interpreting the physical or geometrical meaning of the
Maslov index.15 In the DCF formalism, as is seen later, the continuous quantum phase due to
the spinning motion brings about the Maslov index. This is in harmony with the current idea
due to Littlejohn,16 who considers the Maslov index as a result of the continuous phase
progress occurring in the representation of the so-called metaplectic operator in his
semiclassical theory, and is quite different from the standard interpretation in the WKB theory,
in which the sudden change of the phase by 7 is introduced whenever two wave functions
based on the solutions of the Hamilton-Jacobi equation in different branches are patched

together.lS' 17

C. Manifolds Composed of Periodic Orbits
Let us reconsider the d function in Eq.(3-3), which requires periodic orbits. Since Zf is

a function of Zj, it is more appropriate to transform the 3 function in the following form;
8(2,-zi)=|az,-2)) loz]" 5(2;- Z 1), (3-5)

where Zp(t) denotes a point on a manifold which is composed of periodic orbits having the
period ¢ Note that Zp() is a symbolic expression in that if Zp(t) is not a point (definitely it is

not), the averaging procedure is understood to be taken implicitly. For example, in the action-

11



angle variables, the right hand side of Eq.(3-5) is not a function of the angle variables and

consequently it should be divided by 27 for each dimension. Equation (3-5) thus reforms

Eq.(3-3) as

N

I (sl )

k=1

D(E) = (nh)'Re f dt f dZ;5(Z;- Zy(t)

x exp [ﬁi(s (Ze, Ziy ) + Et)J . (3-6)

Unlike the Gutzwiller’s theory, Eq.(3-6) includes the (stability) component for the direction of
the periodic motion among bg's, which should have the form of wt, where w is the frequency
of the total periodic motion, as shown in the preceding subsection. This makes the inverse sine
function here become infinity at each instance when the periodic motion is completed.
However, from the other parts of the integral, zero value arises unless a certain condition is not
fulfilled. Thus we have spikes only at specific energies, as will be seen in the following

sections.

IV. INTEGRABLE SYSTEMS (THE EBK CONDITIONS)

For integrable systems, the EBK conditions are perfectly established both theoretically
and numerically. The relationship between the EBK and the periodic orbit theory has been
studied extensively by Berry and Tabor4 Physically, a single periodic orbit does not cover an
entire torus, while a multiply periodic orbit does. Logically, therefore, it seems not obvious
that the EBK conditions can be derived within the periodic orbit scheme. Very recently, Ozorio

de Almeidal8 has given a very interesting and delicate answer to this question; the tori

12



composed of periodic orbits which lie arbitrarily close to the quantized torus makes phase-
coherent contributions to the sum formula. I would like to show another possibility of
understanding it, by relaxing the strict periodic-orbit condition, which was mentioned earlier
below Eq.(3-2). Through this relaxation, the multiply periodic orbits in the vicinity of the
original periodic orbit are taken into account. The reader can skip this section if not interested in

the regular spectrum.

A. The Strict Periodic Orbit Condition

We first write down the d function in Eq.(3-6) in terms of action variables. For a one

dimensional case this is

8(Z-Zy(t)=@r)'y f d(T)8(I-1%T)) 6 (t-rT), (4-1)
r

where 10( T) is an action variable having the period T and r is the rotation number. So, ¢ has

to coincide with one of rT, T being, in turn, a function of I. It is extended to a

multidimensional case in a straightforward way such that

N

5(z-Zp()=Cry™ ¥ ] X

n=.o k=1 Tk

jd(nrkaw (I ~12(T&)) 8 (t-nrTe)|.  (4-2)

Each action variable Iy is associated with the frequency @W(=27/Tg). Let a vector R

correspond to the topology of a periodic orbit by assigning its k-th component with r which
is the rotation number in the direction of Ok (that is 6k=2prk) in a single circuit of the total

periodic motion. The total period T is simply given by 1Ty for any k. The number 11 in

13



Eq.(4-2) is the number of rotations of such a total periodic motion. The product of d functions

including ¢ can be rewritten for n= 1, for instance, as
5(t—1'ka)5(1'1T1 —I'2T2)5(I'2T2— 1'3T3)-' . 5(1'N—1TN-1 —I'NTN) , (4-3)

where these N-1 commensurable relations clearly require the orbit to be periodic. We bring

Egs. (4-2) and (4-3) back into Eq.(3-6), and integrate over all the variables except Iy and T,

which gives

D(E)=(27h)y 'Y, { jdfnj nrf T ﬁ (2’5“‘( f))

R =0 k=1

x &(1, - I%(Ty)) exp [ﬁin( 21y I —H(I)TR+ETR)], (4-4)
k

where the sum over the topology R is meant by the original expression in Eq.(4-2), and the

element of vector R is specified by the superscript R. The stability components by in Eq.(4-4)

are redefined so that they are evaluated for each single circuit of the periodic motions, and are

thus different from those of Eq.(3-6).

The reason why the integration over (T7 1) plane is left undone is that we are going to

relax the strict periodic condition in the next step to take account of the trajectories surrounding

the periodic orbit. This procedure can be made for any (Tk,I k) pair with k=1,2, ... \N. In fact,

we will see that the final quantum condition to be obtained does not depend on the choice of the
pair. This is simply because the periodic orbit is stable in any direction. On the other hand, the

situation is quite different if the system is in chaos and we will see this in the next section.
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B. Relaxation of the Strict Periodic Orbit Condition

Up to Eq.(4-4), the trajectories considered in the integrand have been determined in
such a way that: (i) The total length of the running time is Tr = arR T, (ii) All the action
variables are fixed except for I}, which is left as a variable. Setting I, = I(T ), of course,
leads to a periodic orbit. Only after these integral processes, the periodic orbits considered in
Eq.(4-4) can be deformed continuously to non-periodic orbit by varying I |, as long as the total
running time nrR T is fixed. Note that the frequencies w kS (k # 1) depend on I, too. In
order to introduce such relaxation, we replace the 8 function for I; with a smoothed function,
keeping both the topology R and time T fixed (this means that total time TR is fixed
accordingly). We choose this replacing function to be the simplest one, that is a square
function, the width of which is %/r; with the center being I9(T;), and the height is r1/f.
Outside the square, the function is set to be zero. The reason to take this width is that the phase
in Eq.(4-4) covers the range of at least 27 as | 1 is varied by unity, so that the stationary
phase approximation makes sense. In the classical limit of i — 0, this square function goes
back to the d function. On the other hand, we have no a priori reason, other than its simplicity,
why the square function has to be chosen. This is a drawback and needs further study on what
happens if the other functional forms are used.

After all, D(E) is evaluated in the following order: (1)J j-integration fixing T;. As in the
usual application of the stationary phase approximation, the integration range is essentially
extended to minus and plus infinities. The stationary phase point is found to be located at
I = IX(Ty), which is the original periodic orbit. In reality, if this were not the case, the
replacement of the & function had been invalid. Thus, the major contribution has been found in
the periodic orbits in spite of the removal of the strict periodic orbit condition. We here assume
the existence of such periodic orbits. (2) T'f-integration. The stationary phase condition requires

that the energy of the classical trajectory must be identical with E of D(E). The most parts of the
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amplitude factors in the stationary phase approximations for the two coordinates cancel each

other [see Eq.(5-3) for essentially the same argument], and the integrated value turns out to be

by

T o N -1 . N
D(E)=%§7R Z kHl (2151n exp[%Zﬂn;rfI})} . (4-5)

Obviously, the stationary phase approximation in T; coordinate is not valid at all for n = 0.

This case corresponds to the Thomas-Fermi density and has been analyzed in a great detail by

Berry and Mount.19 Nonetheless, we include the case of n = 0 just in the above formal sense.

It should be noted that although we had relaxed the strict periodic orbit condition only in (T,
I ]) coordinates, Eq.(4-5) appeared not to depend on this particular choice. This means that the
same procedure can be performed on the other (T}, Iy) coordinates with the same result. This
situation is peculiar to integrable systems.

As usual, making use of the following identity3b

{2s1n( )_ =i Z (’"*+l)"b‘ (4-6)

m,=0

where bR =rRw Ty, and of the Poisson sum formula20 we get

D(E)): 5 LY - 2535’*{ ~{(m+ 1)~ M )

M =—n0 m =0 m3=0 my k=1
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where Wp is Hamilton’s characteristic function, whose partial derivative by E is TR. The

summation over M is redundant here, and thereby

©co oo oo

1XE)=§ ;%TE Yy ¥ --¥% 5(:{:1’5([2—(mk+%)}§}), (4-8)

m=0 m=0 my=0

If a system at hand has periodic orbits satisfying all the stationary phase conditions under the

given topology, then Eq.(4-8) leads to a quantum condition

g rf (1§ ~(me +1)5) =0, 4-9)

which should be quoted as the resonant quantum condition, since the periodic orbit is
essentially resonant orbit in the sense that the commensurable relations as in Eq.(4-3) holds. In
this case, the action variables are not calculated individually but only in the form of linear
combinations, namely Y rRI 2 . Accordingly, the Maslov index is not 2 any more.

On the other hand, when the system does not have such rigorous periodic orbits on the
énergy shell required, we should have approximated the stationary phase evaluation of Eq.(4-
4) with use of a multiply periodic orbit, which is supposed to come back to a point arbitrarily
close to the original point after the time TR. Such introduction of the multiply periodic orbits
has been made possible by the relaxation of the strict periodic orbit condition, and the error
expected in this approximation to the stationary phase approximation must be arbitrarily small.
In introducing multiply periodic orbits into the theory, we have to modify the idea about the
period and topology: A rigorous periodic orbit does not change its topology and period
throughout the periodic motion. On the other hand, in case of multiply periodic orbit, the
topology and the period can be identified only as a result that the orbit has been realized to

come back to a point very close the original point. The topology and period can change in each
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quasi-circuit. Moreover, a single multiply periodic orbit is assumed to generate all the linearly
independent topologies R eventually. This is of course due to the incommensurable relations
among the frequencies, and recently this idea has been applied numerically by Mehta and De
Leon.22 Once this situation has been taken into account, the mathematical procedure from
Eq.(4-5) to (4-8) is the same as before. Thus Eq.(4-9) reads that a vector, the k-th component
of which is 13- (m k +%)T’ , is orthogonal to all the independent vectors R. Hence, a single

(multiply periodic) orbit can satisfy the conditions like Eq.(4-9) only when it holds that

19 = (mk+%) A (k=1,-,N), (4-10)

which are the EBK conditions. In the intermediate case where the resonance in the above sense

occurs partly, Eq.(4-9) and Eq.(4-10) should be combined together.

V. UNSTABLE SYSTEMS
A. General Expression of D(E)

In this section, we assume that all of the bg’s are complex with one exception that
corresponds to the parallel direction to the periodic motion. In a phase space, periodic orbits
form a one parameter family (a curved plane) which intersects transversally with the constant
energy surfaces.23 Let I be a coordinate on this plane which intersects vertically with each
periodic orbit. The coordinate I is essentially equivalent to an action variable. Accordingly, the
coordinate along each periodic orbit is named 6. Then we introduce a set of local coordinates
along (I,6), which is {uk(e, Ig), k=1,2,..,2N-2}, and in particular, a point {uf(@, Ig)} is

supposed to locate on the periodic orbit. This coordinate transformation in phase space can be
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area-preserving, the explicit form of which is not necessary at all for our purpose. The d

function in Eq.(3-6) for the periodic manifold is then written as

6(Z-Zp(t)=(@2m)'Y Z fd(nT 8(t-nT )8 (I ,-TYT )

QX n=ooo

2N -2

x H 5(uk-u2(8,I2,)). (5-1)

k=1

As in the integrable case, Eq.(5-1) can be integrated directly for all the coordinates except for J

and 0, the result being

2

* & (la=18(Ta) exp | L (Salns, ni, 0T+ nETS) . (5-2)

D(E) =(2xa)' Yy Z defd(nTa) H (215111(

a n= oo

In what follows, the stability factors by (= d + ic{) bear the superscript a to specify the
periodic orbit, only when necessary.

Here again the strict periodic-orbit condition is relaxed. Just as in the preceding section,
we replace the d function with a square function, of which height is i and width is 1/A with the
centerat I9(T ) . Among the d functions for various coordinates in Eq.(5-1), such relaxation
is allowed only in I coordinate, since the instability of the periodic orbit makes no sense of the
idea of ”contact vicinity of the original orbit” in the oiher coordinates. On the other hand, the
family of the periodic orbits is stably arranged in the Idirection. An integrable system allows
this sort of relaxation to every direction of the action variables, since a periodic orbit in this
case is surrounded by stable vicinity in the all directions. Except for this difference, the

periodic orbit theory can treat both integrable and non-integrable cases on the equal theoretical
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basis. In this way, we apply the stationary phase approximation only in the I coordinate. On
the other hand, the trace formula in Gutzwiller’s theory! takes the g-coordinates (configuration
space) for the stationary phase approximation regardless of the topological arrangement of
periodic orbits. Since the present theory think about the vicinity of the periodic orbit in phase
space, in which the stable manifold composed of the periodic orbits as a one-parameter family
can be clearly identified, our trace operation seems more natural.

As in the integrable case, the stationary phase approximation is applied as follows.

(1)1 ;-integration with the extended domain of the integration (actually the infinite one). The

stationary phase point is found to be located at I3(T) and we have

oy 3 gf s f en g 22

a p=—o k=1 0T,
oI,
< exp[ L (Salns, 1y nT0)+ nET)]. (5:3)

Here, the partial derivative Ta/ 01, due to the stationary phase evaluation is understood to be
taken at the given values of T, and I,. (2)In Ty-integration, the stationary phase condition
requires that the energy of the classical trajectory must be equal to E of D(E). Furthermore

some cancellation in the amplitude factors occurs leaving a simple result as

-1
exp[ aWyni,ni E)|. (5-4)

%; -5 ﬁ—ﬁ (2ism("§f)

n=o C& k=l

Here again, the stationary phase approximation for n =0 has been carried out formally.

In order to remember that by's are generally complex, we denote them as in Eq.(2-9).

In expanding the inverse sine function of Eq.(5-3), we have two possibilities, namely
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e Z c"'(”'”;“)"b‘ for ncgz0 (5-5a)

m,-O

{Zisin (%)}

or

{Zzsm bk} Z e"(mﬁ;—)nbk for ncy<0. (5-5b)

mg =0

These expansions are both convergent. As stated in the last part of Sec.Il, our convention of

choosing the roots of ibgs on the B-plane, ncy is always selected to be positive, that is
ibg = n(cg + idy) for n>0and iby = n(~cy + idy) for n<0, and hence we only use Eq.(5-
5a) under this circumstance. (Equation (5-5b) might be required in the other convention.)

Putting these into Eq.(5-4) and applying the Poisson sum formula,20 we obtain our final result

D(E)-22 Z E 2 Z

M =0 m;=0 m;=0 my=0

i ]
- - (5-6)
Wo-T ¥ (my+L)dg-2m MB+in Y (mk+l)lcg|
k=1 2 k=1 2

i

Wa-F } (m+ L) dg -2m M -m% (mict Ll
akz-:lkzk k2 U )k

The first term in the square bracket comes from the positive time (n > 0), whereas the second
one is due to the negative time (n < 0). In the genral case (see Table I), both |d| and -|d

appear at the same time in the denominator in the above expression. (The cases of hyperbolic
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fixed points are exceptions.) So, if the quantum numbers associated with |d and - |d happen to
be mutually equal, these terms are cancelled out in the denominators.

Equation (5-6) can be converted very easily into the form of the "Lorentzian”,1 that is

D(E>Zz,,EZZ Z

M = oo er m;— my=0

N
255, (mut+ 1)legl
k=l . (5-7)

N 2 N 2
{Wa-rz Y (met L)dg 27 M 5| +|B Y, (met l)lcﬁl}
k=1 2 k=1 2

This expression is an extension of Gutzwiller’s onel in that (i) the "quantum numbers” my are
correctly treated (in Gutzwiller’s theory, all the quantum numbers except for M and one
corresponding to the direction of the periodic motion are fixed to be zero%@), (ii) all the

quantum numbers corresponding to any directions are treated on an equal footing (note that at

least one of cy's in the above expression is exactly zero, which should correspond to the

direction of the periodic motion.) (iii) the dimensionality is not restricted (if we consider a two

dimensional system having a simple hyperbolic fixed point, for which dy =0, Eq.(5-7)

reproduces Gutzwiller's Eq.(44) of his paper in J. Math. Phys. (1971)). The meaning of the

”quantum numbers” is discussed below.
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VI. DISCUSSION
A. Weakly Unstable and Stable Non-integrable Systems

D(E) is essentially the sum of the Lorentzian curves each of which is generated by a

periodic orbit a. To see this more clearly, we expand Weq in the energy and take it up to the

first order, which results in

D(g):ﬂLE y y y - Z (6-1)
& M=o m=0 m2=0 mN =0
N .
oy )t
[ W(E)—HN( +1)d"—2 Mﬁ'/ r i J 1 >
E-E,+\Walla kf_:,l mg 5) 9k ~4T ’Ta +[T—ak§1 (mk"'i')lcgl}

where Ey is a quantized energy which makes the curly bracket of Eq.(6-1) zero under a certain
set of “quantum numbers”, and E is supposed to be close to Eg. Further, it was assumed here
that the energy dependence of ¢xs and dy’s are much smaller within the width. The width is
the sum of the instability factors of all the directions transversal to the periodic motion, each of
which is associated with the "quantum numbers”. Remember again that the stability
components by in Eqs.(5-7) and (6-1) are taken for each single circuit of the periodic motion
(not accumulated).

Naturally, a periodic orbit having at least one large instability component ICEVT x cannot
have a sharp peak. If ]CEVT « is moderately large, but not too large, the Lorentzian can have a
significant peak only when m k is zero. This is the case considered by Gutzwiller.] However,
on the transition from a stable (or an integrable) to strongly unstable case, there can exit a

weakly unstable one having only small ICEVT «'S, Which can support even “excited states” or

the states of non-zero quantum numbers associated with ¢ Therefore, neglecting these
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quantum numbers can lead to wrong assignment of the spectroscopy and to bad estimate of the

nearest-neighbor level spacing. Currently, we have no general rule or tendency of the

relationship between the magnitude of cj and the period Ty. It is conceived qualitatively,
however, that the longer becomes the period, the larger cy’s grow. In this regard, it is
important to note that unstable periodic orbits with long periods should not be excluded under a
simple minded idea that they must have large instability factors. Conversely, it is not correct
either to conclude that only periodic motions having very long periods can contribute to the

high resolution of energy spacing.

Let us examine a limiting case of Eq.(5-7), where all the instability components cg’s
become zero. The fact that all the quantum numbers are treated on equal footing in Eqs.(5-7)
and (6-1) is very helpful for smooth change from the expression of an unstable case to that of a

stable one. It simply becomes

(6-2)

limD(E)=Y T, ¥ ¥ ¥} 5(Wa- ¥ (mic+L)dgh - 2n M
a k=1

€~ 0 m=0 my=0 my=0

which has the same form as Eq.(4-7), and will lead to the resonant type quantum condition (not
the EBK for multiply periodic orbits). Thus D(E) in an unstable case has been shown to have
the sound limit. Strictly speaking, however, the expression in Eq.(6-2) is more general than
that in Eq.(4-7) in that the former does not assume the existence of the action-angle variables,
namely the integrability, but simply assuming the zero instability (cz = 0). Thus Eq.(6-2) can
be applied to a stable but non-integrable system.

The above consideration leading to Eq.(6-2) helps to understand the role of the

"quantum numbers” my in quantum chaos. In the limit to the stable case, these numbers

correspond to the quantum numbers in the resonant quantum condition, Eq.(4-9). It is obvious

there that each quantum number mj, cannot necessarily have independent meaning, since only
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the sum of ry(my+}/2) is the really required quantity. (Note that both rg and my, are integers
and there can be more than one set of mys to reproduce the same value of the sum of

rg(my+1/2) . This is in clear contrast to the quantum numbers in the EBK conditions. In the

same sense, a single Lorentzian in Eq.(5-7) can have plural sets of quantum numbers within a
required resolution, which leads to “accidental degeneracy” of the levels and thereby yields a
high density around zero in the distribution of nearest-neighbor level spacing.

More importantly, D(E) is the sum of all the possible periodic orbits, the number of
which is expected to be enormous even in a single energy plane. For this reason and due to the
possible accidental-degeneracy mentioned above, the assignment of the quantum numbers in
most of the irregular spectra should be prohibitively difficult in general. This does not mean
immediately, however, that no spectra in chaotic region are associated with quantum numbers.
On the contrary, it is predicted that there may exist an weakly chaotic spectra for which the
assignment is possible. In fact, Malta has reported very recently that there is a system in which
D(E) happens to be dominated by a single periodic orbit.” If, further, there is no accidental

degeneracy, the quantum numbers could be assigned approximately.

B. The Endurance Time in Decay of Quantum Time-Correlation Function

As seen in Eq.(6-1), only those periodic orbits whose width is smaller than some
critical value of the energy level spacing (AE) can contribute to the density of states. This leads
to an inequality

A

N
1l cal < -
T k)_:,l (mk + 2)|ck| <AE. (6-3)

25



In order to specify a stationary state in terms of periodic orbits, the experimental setting should

1
be longer than at least T, , but, on the other hand, X (mk+5)[cg | tends to deteriorate the

identity of the vicinity of the periodic orbit. These two factors thereby compete each other.

Thus we define the endurance time by

Ta = L. (6-4)

N
Y (mic+ Llegl
k=1 2

If the endurance time is shorter compared to a possible measuring time such as the life-time of
photo-emission, such an experiment cannot determine whether & takes part in supporting an

eigenstate. In an integrable case, the endurance time is infinite (the period T, is finite though),
which allows a practical determination of the eigenstates.

Of course, the above argument on the observability of each chaotic eigenstate cannot be
justified from any view point that the mathematical procedure to calculate Eq.(3-1) is purely
equivalent to the eigenvalue problem of the Hamiltonian, which should not care about
experimentally observing processes. In fact, Berry,25 Voros,26 and Eckhardt27 have
considered about how to get the fully resolved eigenvalues. One important point to note in this
regard is that the semiclassical theory for D(E) goes back to the time-dependent problem of
dynamics where the mechanism of exponential decay due to classical” chaos is automatically
introduced (see below and also Eq.(3-1)), while the time-independent Schrédinger equation
has been derived under the definite assumption of the existence of stationary states. At the
present moment, I have no conclusion as to whether the semiclassical argument based on the
phase space structure of classical mechanics is really relevant to the experiment to identify pure

quantum states.
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In order to see the physical meaning of the endurance time in a little greater detail, we
Fourier-transform the quantized density of states of Eq.(6-1) back into the time domain, under
the condition that one can find a set of quantum numbers which can make the curly bracket in
the denominator of Eq.(6-1) become zero. Although the Lorentzian form is valid only where E
is close to Eg, the integral domain is extended to the entire space, since the major contribution

comes from only the vicinity of Eg anyway. Thus we have

f dE D(E )e-iEt/f = I dq(q]e-iH‘/ﬁlq) =z epriEat—]TL], (6-5)
a

—o0 a

where Egy here is specified by the quantum numbers implicitly. The second and third terms in

the above expression mean that the trace of the auto-correlation of quantum states is represented
by the sum of the exponential decays superimposed by the oscillating features.

Recently, Heller has found an exponential decay in the long time behavior of the time
correlation function of a Gaussian wave packet evolved along a periodic orbit.142 His
correlation function shows additional oscillating behavior due to the fact that the wave packet is
a Gaussian-type superposition of energy eigenfunctions. Although the assumption that a
Gaussian packet retains to be Gaussian142 even under strong chaos and even for a long time
seems quite hard to justify, Eq.(6-5) hereby supports the basic validity of his argument from a
different point of view.

The exponential decay shown in Eq.(6-5) seems to expose an inherent difficulty of
semiclassical theory in treating quantum chaos, since pure quantum treatment should not have
such decaying factors irrespective of whether the spectrum of a system is regular or not. This
difficulty arises because only the exponential separation of the nearby orbits from a periodic

orbit is emphasized. The fact is that new trajectories enter into the close vicinity of a periodic
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orbit after the predecessors have left and/or they are leaving. Besides, there is no absolute

origin in time for bound-state problems. Hence, in addition to Eq.(6-5),

a

f dED(E)exp[—I—E———t———to—} ~ ¥ e L Ealt-n)-1251], 60

is also acceptable as a time-correlation function. Here fy is an arbitrary constant, at which the
nearby orbits start to correlate with periodic orbits. By preparing many of these correlation
functions and taking their sum extended in the entire time domain, we can construct
conceptually an effective correlation-function which decays locally around the individual time
origin fp but does not decay globally.

As an important consequence of this consideration, we are led to the following model of
the behavior of classical trajectories: First of all, a phase-space structure is characterized by the
set of periodic orbits, which are completely stationary. A non-periodic orbit wanders around in
phase space migrating from the vicinity of one periodic orbit to that of another from time to
time. If a trajectory sticks closely to some of periodic-orbits for a significantly long time, its
behavior would look like an intermittency-type chaos. In fact, the present author has
numerically observed a very typical intermittency clearly represenied in terms of what we call
quasi-action variable,28 which is an extension of the action variable and yet has a natural
generalization even in chaotic region. In order for a trajectory to support a bound state by
staying in the close vicinity of a periodic orbit ¢, it should remain there for at least the period
Tq. On the other hand, the trajectory is destined to leave from the vicinity according to the
exponential decay as in Eq.(6-6), where fy is regarded as a time when the trajectory has come

in the vicinity. Here we hypothesize that trajectories visit each periodic orbit with almost equal

chances (democratically). Then the probability (denoted by p, ) for the close vicinity of a to be
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occupied by non-periodic trajectories and to support bound state(s) with this occupation must

be proportional to

N
- % mer et &

(pu) exp[- Le] - exp
k=1

a

These are simply normalized so that their sum becomes equal to unity, that is

N
Pa = exp[A] exp[- Y (mk'*'%)'C}?I (6-8a)
k=1
with
N 1
A=-1In ; [exp —kfh (mk+ E)ICI?I)]. (6-8b)

This is a modified version of the ergodic hypothesis which is relevant to quantum chaos. In the
original ergodic hypothesis due to Boltzmann, the hypothetical existence of a trajectory which
eventually visits every point of an energy plane leads to the equivalence between ensemble
(phase-space) and time averages. Obviously, number of periodic orbits embedded in the energy
plane, which plays the main role in the periodic orbit theory, work as the counter example that
do not cover the entire plane. Thus, the concepts of the ergodic hypothesis and the periodic
orbit theory in chaos are not in harmony with each other in principle. Therefore, our newly
proposed hypothesis has integrated them.

Since 1/7, corresponds to the rate of loosing the information (memory) for the periodic
orbit a, and hence, it can be defined as entropy gained during the period. We call 1/7, the

Gutzwiller entropy (b g ) for a. The total entropy of the energy shell can be defined by the
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average of these local entropies taken over the periodic orbits whose 7, is longer enough to

have the Lorentzian significantly sharp, that is

he) = ¥, -po. (6-9)

74 a

The prime over the symbol of summation is used throughout in the above sense. If all the my$
of Eq.(6-4) are zero, (g} is compatible with the KS-entropy hgg in classical chaos that is a
phase-space average of the local Liapounov cxponcnts.12»24 Note, however, that for KS-
entropy the phase-space average is not meant to be the average over periodic orbits but over the
entire energy plane. In addition, the Liapounov exponent in classical chaos is not exactly
equivalent to our Y led, but it is calculated in practice with the step-wise “distance” of
separation from nearby orbits!2,24 since classical chaos is concerned about not only periodic

but general orbits. If all mg$ are not zero in a weakly unstable system, A should be modified

so that the quantum numbers are taken into account.

C. The Number of Periodic Orbits and the Boltzmann Entropy

In this subsection, we attempt to estimate, very roughly, the Boltzmann entropy for a
microcanonical ensemble in terms of the results of semiclassical dynamics developed so far in
the present paper. This subsection is confined only to an unstable system. As before, Ey is a
quantized energy specified by a set of quantum numbers, in particular, all of the quantum
numbers in the unstable directions are assumed to be zero. Under this assumption, the peak
positions described by Eq.(6-1) are uniquely defined by these sets of quantum numbers. Let us

consider the density of states locally averaged over a small energy interval AE,
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E+ AER
Q(E)=Lf D(E) dE. (6-10)
AE E-AER

Usually Q(E), rather than D(E), is referred to as the density of states in statistical mechanics.
We choose AE so that it covers most of the widths of the sharp Lorentzian curves represented
in Eq.(6-1). Thus Q(E)AE is estimated roughly as

, The number of periodic orbits
Q(E)AE = 2 1 = |on the enrgy shell whose 1, is | = n(E). (6-11)
(74

longer than E/ AE

Hence, n(E) is an implicit function of & and AE. Needless to say, Eq.(6-11) does not
necessarily mean that each periodic orbit supports a single eigenstates. By definition, the

Boltzmann entropy S turns out to be
S =k Q(E)AE] = kln(a(E)), (6-12)

where k is the Boltzmann constant. Thus S has a simple relation to a dynamical quantity,
which requires counting the number of the eligible periodic orbits in the sense of Eq.(6-11). In
the classical limit (5 — 0), all the periodic orbits on the energy shell can clear the eligibility.
Moreover, since the Poincaré recurrence theorem assures that any orbit can be regarded as an
arbitrarily close approximation to some periodic orbit, the above number counting can be
replaced by the measure of the relevant volume element in classical phase space.

Let us try to define the local Boltzmann entropy just as the topological or dynamical

entropies, such as hxs and hg, are defined first for an individual orbit. (Note that both Ay

and h; have dimensions of the inverse of time.) For this purpose, we can take an advantage of

the parallelism between statistical and quantum (and classical) mechanics : It is quite well-
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known that from the analogy between the quantum time evolution operator exp{- iHt/h] and the

operator of the partition function CXP[" ﬁH] (8 = UKT), where T indicates a temperature, j
is regarded as an imaginary time, that is one can write formally that ¢;,,,, = -/ . Also we

already have two standard classical equalities;

ﬂ =t ' (6-13a)
OF
%S _kp. (6-13b)
oF

Again, W and S are Hamilton’s characteristic function and the entropy, respectively. Now, let

us go back to Eq.(5-6). In the positive-time component, D(E) has a pole at

N
Wo(Es)= T Y, (my +1)dg-2n MAa-ifi 3 (mg+Llcgl, (6-14)
K=1 2 k=1 2

where Ex indicates an energy corresponding to a pole in the complex energy plane. In analogy

of Eq.(6-13a), the energy derivative of the complex-valued Wy should bring about a complex

time as

O WoE)= T.-ibf,, (6-15)

oE

where Ty indicates the period again and

itfy =i Lm[WoE) = -2 ¥ legla, (6-16)
O0E OF k=1
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[note my =0] and thus

Ba = 2 ¥ lctlh. (6-17)
OFE k =1

The quantity Ta= 1/ (kﬂa) can be termed as the local temperature associated with the
periodic orbit a, in light of the formal relation t;5,,, = -ihf . Then, by comparing Eqs.(6-

13b) and (6-17), we can define the local Boltzmann entropy such that

Sy = - hLIm[W,,(En)] +const. =k Y l‘-‘f I3 + const. (6-18a)
k=1

Here the arbitrary constant in this expression is chosen to be zero, that is

Sy = —ELIm[Wa(E.)] =k ¥ lcglh. (6-18b)
k=1

Since Z IC?VZ is regarded as information lost during the period, as described in Sec.VI.B,
Sq thus defined is compatible with the concept of Shannon’s information entropy. Connecting
the local Boltzmann entropy with the imaginary part of Hamilton’s characteristic function is not
meaningless, since a relationship between statistical mechanics and resonance scattering theory
and/or tunneling phenomena could be established.

It should be noted that we have started from Eq.(6-14), which corresponds to a pole of

the positive-time part of D(E) of Eq.(5-6). If, on the other hand, we begin with the negative-

time component, namely

N
WoE:)= 1 Y (me+tL)dg-2r MB+in § (my+L)lcg], (6-19)
k=1 2 k=1 2
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the local entropy Sy becomes negative, and accordingly the temperature bears the opposite

sign.
We next construct a total entropy of microcanonical ensemble. Let us remember the

quantity p, defined in Eq.(6-8a), which is the probability for the close vicinity of a periodic

orbit o to be occupied by trajectories and to support bound state(s). Since all the mgs should

be set to zero here, we have

N
Pa=exp[-Alexp|- Y} |cgl/2| = exp[A] exp [- Salk] (6-20)
k=1
with
- -y expl- Salk] (621

where Sy has been defined in Eq.(6-18b). It is noteworthy to confirm that the probability py

is proportional to exp(- Salk]. With these probability functions the Gibbs entropy or

Shannon’s information entropy (denoted by Syr) is given by

S =-k Y palnpg. (6-22)
x
Or defining
Ogo=-klnp,=S,- kA, (6-23)

one can rewrite SII as

34



Su=Y 04 exp[—ia} =Y (Sa-kAWPs = ¥ Sapa- KA. (6-24)
x ax x

As is well-known, it holds that
S 28 (6-25)

which means that S in Eq.(6-12) is the maximum for Syr. The equality holds as usual in case
where all the Sp’s happen to be the same.

From Eq.(6-24), Sjr is known to be composed of two pieces: The first sum in the
right-most equality (Z, Sapa) indicates the average of the local dynamical-entropies and bears a
close connection to the Gutzwiller entropy defined in Eq.(6-9). The Gutzwiller entropy as well
as hy¢ represent a rate process of mixing in phase space and are of topological nature, while
the Boltzmann entropy is usually supposed to represent the capacity of a microcanonical
ensemble. The second term —-kA in Eq.(6-24) is of more statistical nature, since it just comes
from the normalization condition. For instance, even if the dynamical part of S;; happens to be
zero, namely Sg=0 or Y} |c,‘§[/2 =( forall @, which implies that the system under study is
stable, A still have a non-zero value, actually that is equal to In(n(E)). Thus -A is really

viewed as the capacity of a microcanonical ensemble. On the other hand, as Sg’s become

larger, ~A gets smaller, according to Eq.(6-21), and can tumn out to be even negative. Also,

the more becomes the number of periodic orbits, the more Oq is dominated by -A, and thus

Syr in a macroscopic system is expected to approach S. Further, from Eq.(6-23), 0, can be

regarded again as a local entropy in which the effect of the ensemble is taken into account.

Incidentally, the temperature is also predicted through Sy as
p-2u. 1y [(_s,, -y s,p,)ﬁap,,]. (6-26)
a Iz
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Again, § is written in terms of the dynamical quantities. As seen in this expression, the
contribution from each local entropy to the total § depends not only on the local 8, which can
be positive or negative, but also on magnitude of the local dynamical-entropy measured from
their average.

As for the number of periodic orbits, by the way, there have been some theorems, in

which the number of periodic orbits having a period T, denoted by N(T), is given by

N(T)=C °xp(b7’fsT ), (T-w) (6-27a)
or
N(T) = G, explbixsT), (T —) (6-27b)

where C§ are constants. The first estimate has been derived by BowenZ292 for the so-called
axiom A flow (a geodesic flow on a compact manifold of constant negative curvature satisfying
certain conditions),29 and the second one is given by Zaslavsky et al. 30 for more general cases
but on a less rigorous ground. Although there seems to be of no practical use, the logic leading

to Eq.(6-28b) suggests that it had better be replaced by
N(T) = C; exp((hg)T), (T =) (6-28)

since (hg) involves the information only of periodic orbits, while hgg does not. If a method

predicting (hg) is available without actual search for the periodic orbits, Eq.(6-28) can be useful
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for an estimate of the Boltzmann entropy, since knowing the Boltzmann entropy S of Eq.(6-
12) is equivalent to knowing the number of eligible periodic orbits.

Although the discussion in this subsection is crude, the Boltzmann entropy has been
described as a function of the instability components of the periodic orbits. Obviously, more
rigorous discussion is required for these results to be clearly stated, even though accuracy
required for the quantities of statistical mechanics or thermodynamics is generally much coarser
than that for pure mechanics. Yet, one of the goals in the study of quantum chaos is to set a

dynamical foundation for statistical mechanics.
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VII. CONCLUDING REMARKS

We have examined the density of states both for regular and chaotic cases in a uniform
manner from the view point of the phase-space periodic-orbit theory based on DCF. An
extended expression of the density of states in chaotic regime has been obtained, and the roll of
the ”quantum numbers” has been discussed. Further, we have pointed out the possible
existence of “excited stated” with non-zero quantum numbers in unstable directions, if a system
is weakly unstable. The quantum conditions for multiply periodic orbits and resonant ones in
integrable systems (the EBK and its resonance version), and that for a stable non-integrable
case have been discussed. Some insight into classical and quantum chaos has been obtained.
Especially, the Liapounov exponent and Greene’s residue in classical chaos have been derived
from quantum mechanics in a natural manner. A very simple interpretation for the Maslov
index has been given as well. All these three quantities are closely related to each other through
the amplitude factor of the identity DCF. It has been attempted to connect some basic concepts
of statistical mechanics with quantum chaos. The Boltzmann entropy for microcanonical
ensemble has been described in terms of the number of periodic orbits.

The convergence problem adherent to the semiclassical theory, that is that the theory
does not give d function-like spikes for D(E) in chaos, is not solved at all. Also, any practical
method to calculate the state density has not been presented in this paper. Nevertheless, we
believe that it is extremely important to consider the mathematical structure of the quantum
conditions on a unified standing point. In this sense, the present paper complements the

theories of Gutzwiller! and Littlcjohn9.
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Table 1. The convention for choosing the roots from ib -plane

Name of Fixed Point t>08) t<0b)
Elliptic ild| - ild|
Hyperbolic lc] lc|
Hyperbolic-with-reflection lc| + im lc| - im
General |+ ild| lc|-ild|
lc| - ild| le|+ ||

a) The roots to be taken for a positive time. b) The roots for a negative time.
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Figure Caption:

Fig.1

Geometrical meaning of {Zr~ Z;)/0Z; in a harmonic oscillator. (a) The motion of a
volume element sandwiched by infinitesimally nearby orbits in a scaled phase space. (b)
OABCD is slidden to the position of [JA’B’C'D’ and denoted by JA”B”C”D”. (c) A square
formed by the vectors A”A’, B"B’, C’C, and D”D’. The ratio of the area thus formed to that

of JABCD is equal to & Z; - Z;)/0Z; = 4sin? (}’/2)-
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Extraction of Accurate Frequencies from
the Fast-Fourier-Transform Spectra

Kazuo Takatsuka
Department of Chemistry, College of General Education
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Nagoya 464-01, Japan

Abstract

The Fast Fourier Transformation (FFT) is well-known to be extremely fast and
useful. However, its spectrum is quite often not accurate, because it is a discrete
transformation and, further, the effect of finite range of sampling, the so-called Gibbs
phenomenon, produces long tails. Here a very simple and efficient method to extract the
accurate frequencies and the amplitudes of discrete spectra from FFT data is proposed.
No window function is used in the present method. The resultant frequencies have been

found to be extremely accurate.



I. INTRODUCTION
Quasi-periodic functions which are of the following form

@ ()= D Cmcos(fut)* Smsin(fnt) (- <t <o) (1-1)

m20

appear frequently in science and engineering. For example, in classical mechanics,
: coordinates and momenta of a particle in multiply periodic motions, such as molecular
vibrations, can be represented as in the above expression.[1] Theoretically, the action-
angle variables can be obtained by a certain procedure[2], in which the frequencies
(fm ) and amplitudes (S and Cjp; ), play essential roles. The continuous Fourier

transformation can provide these values in principle. In practice, however, it is quite
often required to extract them from a finite set of discrete sampling points with high
accuracy and high speed. From the view point of speed, the celebrated Fast Fourier
Transformation (FFT) technique is almost exclusively used practically. However, the
accuracy of the results by FFT is considerably limited, since FFT is not really a
continuous integral transformation but a discrete one performed within a finite range.
Therefore, if an actual frequency, say fm, is located in between two frequencies which
are given by FFT automatically, the FFT spectra at these sandwiching points oscillate
violently with different signs. Furthermore, these peaks have long tails, which is due to
sudden truncation of the series of sampling data (the so-called Gibbs phenomenon). An
example of this situation is depicted in Fig.1.

One of the methods to avoid the long-tail behavior is to apply the so-called window
technique. It is well-known that a bell-shaped window function, for instance, can well
reduce the truncation effect.[3] On the other hand, the data thus windowed are biased
and the height of the spectral peaks is lowered. In order to suppress the tails and also to

obtain accurate heights simultaneously, FFT is sometimes performed two times with



different type of windows for each purpose. A recent and important example of the
application of a window technique can be found in ref.[2], which also briefly reviews
the former works. It is also a usual practice to vary the length of sampling set to lead
one of the FFT frequencies to come very close to a true frequency. These procedures
are generally very tedious.

In this paper, I propdse a method to obtain the accurate frequencies and amplitudes
of quasi-periodic functions from their FFT spectra with no use of such a window
function technique. The idea is very simple and its implementation and usage are

extremely easy.

I1. BASIC PROCEDURES
A. FFT
We consider a function having only two frequencies in Eq.(1-1) without loss of

generality for the presentation of our procedure, namely,

@ (t)=ds(t) + @g(t) (2-1a)

with

Gr(t) = G cos(ft)+ & sin(ft) (2-1b)
and

¢ (t) = Cyeos(gt) + S si(gt). (2-1¢)

The frequencies f and g are assumed not very close to each other throughout the

present paper. The cosine-FFT and sine-FFT are usually defined as

N-1 .
Fu(k) = ’1%% cos| 278|917 a1) + 94 (a1} (22)



and

N-1
HOEF Y sin 22 )40 + g o) 23)
with
At =T | (2-4)

N

where T and N are the sampling length and number, respectively.
By inserting Egs.(2-1) to Egs.(2-2) and (2-3), we have
F(k) = Ak F)G + Adkf)S+ Adkg)C, + Ak g)S, (2-5)

and

Fk) = Axc(kF)Cr+ As (kF)S+ Asc(k,8)C, + As(k,8)S; . (2-6)
The definitions of the above functions such as Ay (X, f]) are obvious. For example,

As(f k) =2 Z cos| 224 )sm(fjm) (2-7)
J=0 N
It is clear that if f and g are known, Eqgs.(2-5) and (2-6) can be viewed as simultaneous
equations to determine the amplitude factors & , S Cg, and S with appropriate choice

of k.

B. Approximate Evaluation of FFT

Let us rewrite Eq.(2-2) as follows,

N-1
Rk = 2 oo P8 At fig 140+ g (cja0) AL (2:9)

j=0



Under a condition that At is ”sufficiently” small, the above sum is evaluated

approximately by an integral

T

F.(k)= %L dt cos(&fTﬁ)=<¢f(ft)+¢g(ft)\, (2-9)

which is simply a return to the continuous Fourier transform. This integral can be

evaluated exactly, the result being

G sin(fT) + & sin(fT) _ S cos(fT)-1 S cos(fT)-1
T f_27mk T g427k T _27k T f+27k
T T T T

+& sin( gT) + G sin(gT) _Sg cos(gT)-1 _ §£ cos(gT)-1
g - 27k T g+2_7Tj

T ,_2nk T ,,.27k T
£-71 £ 5T T

Fe(k)=

(2-10)
In the similar way, sine-FFT is also evaluated as

Cr cos( fT)-1 _ G cos( fT)-1 +isin(f'T)_L_S‘_f sin( £T)

F (k) =
K T f_27mk T 427k Ty¢_ 27k T g427k
T T T T
+g cos(gT)-1 G cos(gT)-1 +§€sin(gT)_§ sin( gT)
T - 27k T + 27k T ,_2rk T ,,27k
g T g T g T g

(2-11)

In Egs.(2-10) and (2-11), the oscillatory behavior shown in Fig.l is quite apparent.
Before proceeding, let us confirm that in these expressions f, g Cf and Sf are

unknown, while Fg(k)and Fg(k) are known as the FFT spectra.

C. First Guess of the Frequencies

We assume that the true frequency f happens to be located in the range

2T K < f <2Z(K+1 2-12
2 T( ) (2-12)



for a given K, which can be inspected directly in the FFT spectra or in its power. Then

the far dominant term in Eq.(2-10) for k=K is

~ G si(fT) i
F{(K) T—-f_zLI( (2-13)
T

and that for k=K+ 1,

C sin( fT )
Fc K+1 :_—‘f - 2‘14
( ) Tf_27r(K+1) ( )
T

The other terms are very small unless both f and k are close to zero. In addition, we
have assumed that T is chosen so that sin(f7) is not very small.

Now f can be guessed with use of the ratio defined by

_R(K+1) _
F.(K) @15)

C

such that

re=2K-m e 2-16)

Thus we can make a first guess of £ The similar procedure can be carried out using the
sine-FFT data. We have observed that the difference between the two guesses is
generally very small and accordingly we adopt the simple average of them hereafter.
Moreover, our numerical experience has shown that the f value thus guessed is already
fairly close to the exact one. The same procedure can be carried out independently for

the frequency g.



D. First Guess of the Amplitudes (Linear Equation Method)
Now that we have the first guess of fand g, Eqgs.(2-5) and (2-6) can be made use of

to obtain the amplitudes. It is assumed that g satisfies

2 [ <o <2 (L+1). 2-17
7 g T( ) (2-17)

Further let K’ be either one of K and K+ I, which is closer to f in the sense of Eq.(2-
12), and similarly choose L’ in Eq.(2-17). Then by putting k =K’ and k =L’ in Eqs.(2-
5) and (2-6), we have simultaneous linear equations, the number of which is equal to

that of the unknown. In our example, that is

Ak f) Ak r) Ak g ) Aslk’, g) Fo(K")
( 1) ALK ) Ak g ) Ak 8) || s; || Fak)
) AlLnf) AL g) alig) || e || Fe@)

As (L f) AL 1) AL g) AL, g) " F F5<L')(2 ®

Thus the first guess of the amplitudes can be obtained. The matrix elements in Eq.(2-
18) can be evaluated through the expressions as in Eq.(2-7). Alternatively, they can be
approximated by the integral representation as in Eq.(2-9). For example, the
approximation of Acgs(f, K) is obtained as a coefficient of Cf in Eq.(2-10) by
comparing Egs.(2-5) and (2-10). From this approximation, it is seen that if T and/or
&T are very close to an integer multiple of 2 and k is not properly chosen, the matrix
{Asc } becomes nearly singular. This was already pointed out below Eq.(2-14).
The above method based on Eq.(2-18) is convenient in that the matrix {Agc } and

the vector { F¢ } are decoupled more or less to each frequency region as the functions
of k. For example, the off-diagonal terms Agc (K, g)’s in Eq.(2-18) are all small if f

and g are sufficient separated. This fact will lead to an iterative method to solve Eq.(2-



18) locally at each frequency part as will be described in subsection F. A major
drawback of solving Eq.(2-18) is, however, that the evaluation of {Agc } is a little time
consuming and moreover certain error is expected to arise. Remember that f and g to
be put in {Agc} are approximate ones, which were obtained in the preceding
subsection. Even if both f and g are reasonably good, sin(ft ) and cos(ft ), for
example, deviate from the exact values as ¢ becomes large and correspondingly this
takes place as j gets large in Eq.(2-7). A very simple way to circumvent this is to use
the initial data { ¢ (jAt)|j= 1,2,.., N} directly. We have equations

cos (fj At) G + sin (fj At) S + cos (gj At) G, + sin (gj At) S, = ¢ (j At)
(2-19)

for j=0, 1,.., N-1. Here again f and g are only approximated quantities. Equations (2-
19) can be inverted to obtain the amplitudes, where j’s have to be chosen to be small

enough, and the resultant linear equations should be made mutually independent.

E. Decoupling of the tail effects (Improvement of the frequencies)

We have now the first estimate of amplitudes, which can in turn be made use of in
order to improve the first guess of the frequencies. We remember that the frequencies
have been estimated through Egs.(2-15) and (2-16), in which the original (raw) spectral
data of FFT were adopted. However, each peak in FFT spectrum is contaminated by
long tails extended from the other peaks. Let us look at the FFT spectrum at Fc(K) ,

that is

. G sin(fT) 2
FAK) T f_27K * N z (

T

) C, cos(gj At ) + Spsin( gj At )\

(2-20)



The second term in the right hand side forms the tail from the peak at the frequency g.
The magnitude of the tail is not necessarily small in general, since it looks like
g si( gT ) + % sin{ gT) _§£ cos(gT )-1 _ S cos(gT )-1

T ,_27aK T ,+2zK T _2nK T + 21K
4 T g T g T g T

(2-21)

and thus its range is very long, just like the Coulomb potential. It is a trivial work to
remove the effect of the tail in Eq.(2-20) and thus we obtain the purer spectrum, for
instance,

, 5 N-1
F.(K)=F.K)- Ng cos

Z”KJ) Cgcos(giAt) + S gsin(g jAt))

(2-22)
which should be brought back to Eq.(2-15) to refine the frequencies.
The renewed frequencies are again inserted into Eq.(2-18) or Eq.(2-19) to improve

the amplitudes. This entire process should be iterated until a convergence is attained.

F. The Iteration Method for the Amplitudes

When we treat a spectrum composed of many peaks, the matrices and vectors in
Eq.(2-18) become large. To avoid this, we can solve Eq.(2-18) in an iterative manner:
Going back to Egs.(2-10) and (2-11), we can set up the following linear equations for

the amplitudes associated with the frequency f';



sin(fT) | sin(fT ) _cos(fT)-1 cos(fT )-1

fT-27K T+ 27K fT- 27K T+ 27K {Cf}
cos(fT )-1 cos(fT)-1 sin(fT )  sin(fT) S
fT-27K fT+ 27K fT-27K fT+27K
=[F;(K)}
Fy(K)
(2-23)

where F’ is the spectrum in which the tail effect have been subtracted as in Eq.(2-22).
The similar set of equations can be set up for each frequency. In the calculation of the
purified spectra F’, however, the amplitudes should have been known beforehand.

Thus the procedure should be carried out iteratively.

1. NUMERICAL EXAMPLES

Some simple, but not necessarily easy, examples are presented here to show how
the method works. Our presentation is confined to only two frequency cases for the
sake of simplicity, although our procedure and program are general. The iteration
procedure from subsection A to E has been performed. The matrix {Agc} has been
evaluated directly with Eq.(2-7).

Our sample functions are chosen to be exactly the same form as in Eq.(2-1). One is

@1 = cos(55¢t)+2.0sin(11.0¢)
where two frequencies are far apart and the other is

@2 = cos (10.5¢) + 2.0 sin (11.0¢)
which has relatively close frequencies, in which the tails have stronger magnitude.

At, T, and N are varied. The standard values of At here is 0.1, which is not very

small compared with the shortest period in the above trigonometric functions involved,
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that is about 0.571. The standard value of N here is 2048 (211) . This is a small scale
FFT. In short, our examples are set so that the conditions are not exceptionally good, or
rather relatively worse than the usual applications of FFT. The resolution of a frequency

in FFT is

For our standard values of At and N, Af is about 0.030680, which means the
resolution of a frequency by the present FFT is up to the first decimal point below zero.

The reach to a convergence has been judged when the successive improvement of
the frequencies gets within 10-13. The number of iterations was generally about 5 to 10.
Since the first guess of the frequencies and amplitudes are not relatively good, the
second iteration improves their values significantly. The convergence after the second
iteration is hence slow.

The results are shown in Table 1. The method A is referred to a procedure using
Eq.(2-18), and B is to that based on Eq.(2-19). As seen in the table, the results obtained
are generally very good. In particular, the accuracy of the frequencies is far beyond the
FFT resolution mentioned above.

On the other hand, the accuracy of the amplitude is not as good as that of the
frequencies. In particular, the method A reproduces the amplitudes rather poorly as
noted in subsection D. The method B, which is faster, gives better results as anticipated.

In Eq.(2-9), the sum has been approximated by an integral. This must be crucial.
Hence the result depends on how small A¢ can be chosen. On the other hand, if we let
At become smaller with keeping N constant, Af becomes larger in accordance with
Eq.(2-24), which in turn means that the dominancy by the single term in Eq.(2-13) is

deteriorated. Thus the better results are expected only when N is increased

11



simultaneously. We choose At =0.05 and N =4096=212. As seen in Table 1, the errors

both in the frequencies and amplitudes have been reduced by the factor about 2.

IV. CONCLUDING REMARKS

We have proposed an efficient and simple idea to extract the frequencies and
amplitudes of a quasi-periodic function from FFT spectra. The results have been found
very accurate. One of the most annoying parts of the numerical procedure of FFT is the
selection of window functions. It is hoped that the present method can relax this
situation in part.

Since the purpose of the present paper is to present the outline of the basic idea, the
sophistication of the procedure has not been mentioned at all. For example, the
acceleration of the iteration process can be achieved by an extrapolation method or its
analogue.

Finally, the present procedure has been worked out in a study of onset of Hamilton

chaos. Its theoretical aspect and numerical examples will be presented elsewhere.[4]
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Table 1. The frequencies and amplitudes extracted from the FFT spectra

Methodsa  f Cf Sf g Cg Sg

¢1
Exact 5.500000 1.000000 0.000000 11.000000 0.000000 2.000000
Ab 5.500069 0.990846 0.006965 11.000004 -0.000806 1.999547
Ac 5.500035 0.995401 0.003507  11.000002 -0.000400 1.999776
Bb 5.500069 1.000005 0.000018 11.000006 -0.000005 1.999991
B¢ 5.500034 1.000002 0.000010  11.000003 -0.000002 1.999995

¢2
Exact 10.500000 1.000000 0.000000 11.000000 0.000000 2.000000
Ab 10.500061 0.990914 0.006258 11.000001 -0.000243 1.999885 |
Ac 10.500030 0.995432 0.003152 11.000001 -0.000103 1.999953
Bb 10.500055 1.000108 0.000072  11.000016 -0.000107 1.999928
B¢ 10.500027 1.000057 0.000032  11.000008 -0.000057 1.999968

a ) Method A is based on Eq.(2-18), while B on Eq.(2-19).
b) At=0.1, N=211

c)At=0.1, N=212
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Figure Caption:

The cosine-FFT spectrum for ¢(t) = cos(10.0t ) + 2.0 sin(11.0t ) : One of the

discretized frequencies given by FFT happens to be extremely close to 10.0, and
correspondingly a single sharp peak is produced. On the other hand, the sine component

in ¢(t)is detected even in the cosine transformation with a large amplitude oscillation,

which is accompanied by long tails.
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Possible Onset of Entrainment in Hamilton Chaos

Kazuo Takatsuka
Department of Chemistry, College of General Education
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Abstract

A break-up of an invariant torus is monitored in terms of the spectrum of the quasi-
action variable which is newly defined as a continuous function of frequency. We have found
a new characteristic phenomenon called “entrainment” at the onset of chaos, in which two
discrete peaks in a regular regime merge into a continuous spectrum as a system steps into
chaos and the resultant band has significant magnitude only in between the original

frequencies.



1. INTRODUCTION

Chaos has been one of central subjects in recent advances of various studies on
dynamical systems!. Systematic analyses on the mechanism of chaos have been made with
the Poincaré surface of section, which gives a global structure of phase flowl. On the other
hand, chemists are often interested in the characteristic behavior of an each trajectory of
relatively large molecules and liquid-state systems, and the surface of section is too limited
for this purpose. In quantum chaos, the density of states2 and the so-called quantum scars3
are characterized in terms of periodic orbits2, which also means that the analysis of each
trajectory is unavoidable.

Here we consider only Hamilton chaos!, which is simply defined by the break of an
invariant torus. As is well known, the ”size” of an invariant torus is measured by the action
variables, which are the constants of motion of a system. A natural question here is whether a
classical trajectory we happen to have at hand is on a torus or not. If yes, how large are the
action variables? These values can be directly made use of for the semiclassical
determination of quantum levels based on the EBK conditions4. In case of chaos, on the
other hand, what happens to the action variables, particularly at the onset?

Recently we have devised a practical method to calculate action variables and their
frequenciesS, which is based on a geometrical consideration in phase space. A natural
generalization of the action variable, which we call the quasi-action variable, have also been
studied to investigate the transition from regular to chaotic motions. The quasi-action
variable is defined as a function of frequency. In our numerical study of chaos, we have
observed various patterns in the spectra of the quasi-action. The rest of the present paper is
devoted to reporting a particularly characteristic feature of the onset of chaos, which we want

to call ”entrainment” mechanism.



We first review very briefly the definition of the quasi-action variableS. Let us assume
a case where a system has a set of action variables. Suppose we have a classical trajectory in
2N dimensional phase space as depicted in Fig.l. Let Z(t)={ Z; (0)) ={qi (1), pi(2))
(i=1,2,..,N) be a phase space point on the trajectory, where q{(t) and pf(t) are the coordinates
of the position and its conjugate momenta, respectively, at time ¢. The suffix i is reserved for

general canonical coordinates. We define the following oriented area;

M-1 N _ - N _,
B)= 1y Zi(te)nZi(te+at)- 1S Zio)aZi(r), (1)
k=0 i=1

8]

where tp=0, tk=kAt, and M=t/At. The limit At — 0 should be taken. The geometrical
meaning of B(t) is the sum of the segment areas in Fig.1 (the shaded area), each of which is
formed by the projection of the trajectory onto, say, Z;j-plane and that of a straight line
connecting Z(0) and Z(t). By the definition of B(t), it is canonically invariant6.

For a one-dimensional oscillator, it is quite obvious that B(t#) becomes equivalent to
the action variable 1= {’qu att =T, where T is the period ( = 27/w). In a multi-
dimensional case, the situation is not so simple. However, the canonical invariance allows to
transform B(t) to the action-angle phase space (Ix-8k space) invariantly. [The suffix k is
used for the action-angle variables.] In Fig.2, the shaded area (segment), denoted by Bi(t),
corresponds to the projected area onto -0k plane, where the trajectory is represented by the
straight line, while the straight line of Z(0)Z(t) in the original coordinates (see Fig.1) is
transformed into a curved line. The sum of all Bi(t)’s is B(t). As in the one-dimensional case,
By(t) coincides with the action variable Ik at t = Tk, where T is the period in the k-th
angle coordinate (mod. 27).

Since Bi(t) is a periodically increasing function with a linear term of ¢ and an

oscillating part whose period is Tk (= 2m/wk



Bi(f) = akt+ ¥ [ bk sin(muwyt) + ckcos(muwyt )], ()
m=0

where the coefficients a, b's, and Cs are all constant. Judging from this expansion, the time

derivative of By(t) must be more feasible for the Fourier analysis. It is written as

B(t) = ak + wy Z m|[ bk cos (mwgt) - ck sin(mwkt)]
m=0

= ak + Fi(t) 3

where the second equality defines the function Fi(f) , and B{(f) =Y’ By (f). Thus the
Fourier transform of B’(t) should provide the frequencies corresponding to the angle
variables. Furthermore, the action variables can also be deduced from the Fourier data as

Ik=27rak= -2 Z mb,’,% (4)

m =0

This has been derived under the following conditions Bx(0) = 0, BK'(0)=0, and By(Tp) =Ik.
Incidentally, it is noteworthy that the expansion of B’(z) does not have the combination bands

of different modes. This is in a marked contrast to the Fourier expansion of primitive

quantities” such as g{1) , since we have

E Z ) jaeain €XPL 1 (1@1 + fawo* ¥ jnwn)t] . )
Ji J2

In practice, the perfect form of the Fourier expansion of B’(t) is not always realized

because of numerical errors mainly due to the finite time difference approximation to the



various differential equations. Since B’(t) is expected to increase monotonically as ¢, or

B }(’ f)= 0 we can determine Ik variationally as

I = "lEFk(tmin) , 6
Wi

where tmpjp is a t which makes Fi{t) minimum. fpn is actually very close to 0, which
indicates that the condition Bg'(0) =0 used to derive Eq.(4) is almost satisfied. A practical
method to calculate B’(t) will be reported elsewhere.’

We next try to extend the above procedure to define the quasi-action variable. We first

note that —F (¢ min ) is essentially equivalent to the square root of the power spectrum of

Fk(tmin ).

Pe= Y PP(may) = ¥ (wim)2[(6k)? +(ck)?] (7)

m =1 m =1

Generally the contributions to Pk from the second harmonics (7=2) and the higher ones are

very small as compared to the fundamental component, and hence, we have (see Eq.(6))

]1/2’

I~ 2L [Pi(ws) @)

On the other hand, B’(t) can be computed equally well for a chaotic trajectory. Since the
Fourier expansion and the decomposition into the k-th action-angle component as in Eq.(3)
are both meaningless, and since the concept of the overtone of discrete spectrum looses the
sense as well, we simply define the total power spectrum of B'(t) , after the constant term is
subtracted. This is denoted by P(w). Then in the analogy of Eq.(8) we define the quasi-action

variable as




]
O

2P (w)]'?, ©)

I(w)
which is a continuous function of w . In an integrable system, the quasi-action variable has a
discrete spectrum at frequencies of mwk ( k=1,..,N; m=1,2,.) [see Fig.3(a)]. As stated
above, the components due to m= 2 and the higher ones are very small in general. The
quasi-action variables at the fundamental frequencies are the same as Ix of Eq.(8), and thus
gives a very good approximation to the true action variables. In a chaotic system, on the other
hand, the quasi-action variable in Eq.(9) provides a continuous spectrum, the height of which
is a function of the time length of running a classical trajectory. The longer is the running
time, the lower becomes the peak height of the quasi-action variable. This is not the case in

an integrable case, since there is no constant of motion except for the total energy in chaos.

We now present a very characteristic feature of chaos monitored by the quasi-action

variable. The system of our application is the Henon-Heiles Hamiltonian

2 2
H=_£i‘_+_£y_+l(x2+y2+ley --2—)’3)
my, 2

2m, 2 3 with a choice of mx = 1.0 and my = 1.5,

which breaks the symmetry. A pattern of the so-called intermittency or burst gives rise to in
the standard choice, my = my= 1.0, which is discussed elsewhereS. We have carried out a
series of computations with changing the total energy E around the onset point of chaos up to
the dissociation limit. The initial conditions of the trajectories are chosen so that x = y= 0.0
with their associated momenta being positive and the fraction of the energy assigned to the x
-coordinate is 40%.

In Fig.3, the quasi-action variables with some energies are displayed. In case of E =
0.1 (the panel (a)), the two strong discrete peaks directly indicate that the trajectory is

running on a torus with those fundamental frequencies and approximate action variables. All



the small peaks in this panel are the noise mainly due to the FFT ( Fast-Fourier-Transform),
and they are actually almost invisible in the power spectrum in Eq.(9). The overtone
components, which are very small, are not displayed. Also, the small frequency part is
omitted here, which should bear a direct relation to the 1/f noise (see.Eq.(9)).

In the panel (b) of Fig.3 (E=0.105), a continuous spectrum indicating the onset of
chaos is observed, although the true onset energy for our initial conditions is a little lower
than E=0.105. The cases of E=0.10583 and E=0.1075, the panels (c) and (d) in Fig.3,
respectively, have even stronger continuous spectra. The occurrence of the continuous
spectra in chaos has been pointed out by the other authors8 already, who have confirmed the
break down of the expansion in Eq.(5). What is important in our findings common in the
panels (a) to (e) is that the continuous spectra have significant intensity only in between the
original fundamental frequencies. (By the way, the higher components around the second
harmonics have very small magnitudes.) This very characteristic feature continues at least up
to E=0.125 with slight shift of the positions. And further up in E=0.145, the panel (f) in Fig.3,
more violent chaos takes place to break this characteristic feature. However, we can still
observe the significant trace of the two strong peaks. This trace of the peaks of regular
regime cannot been seen explicitly in Poincaré section. It should be mentioned that the
running time of the classical trajectories do not alter the features.

Qualitatively, the above characteristic phenomenon indicates that the two
“independent” (in the sense of the two independent actions) vibrational modes tend to
synchronize to each other, after the restriction that the torus should exist is removed. It is
well-known in mechanical vibration that when a perturbation having a constant frequency is
applied to a vibrator with a different frequency, the latter frequency can be absorbed (pulled)
into the same one as the outer frequency under a certain condition. This phenomenon, first
found by Huygens, is called entrainment?. In this sense, the onset of the present chaos looks

similar to the entrainment. Two major differences should be noted between the simple

7



entrainment and our onset of chaos: First, our system is not dissipative but conservative,
which means that it cannot have a sink or limit cycle to which the system is absorbed with
fixed frequencies. On the contrary, Poincaré’s recurrence theorem requires that a motion
should come back to an area very close to the original point in phase space. Thus the
"instantaneous” frequency pulled to one direction has to be pushed back eventually. Second,
although one of the vibrational modes in our system can be viewed as an outer perturbation
applied to the other, the analogy to the entrainment is far from completeness, since both
modes changes their frequencies from time to time because of high nonlinearity.

In spite of the differences mentioned above, we would like to call the present onset
"entrainment”, since synchronization (pulling each other) of the frequencies are very
impressive. This view can be complemented by the Poincaré surface of section. In Figs.4(a)
and 4(b), we have the surfaces of section due to the trajectory of E=0.1, which are taken at x
= 0 and y =0, respectively. Similarly, Figs.4(A) and 4(B) display those for E=0.105.
Comparing Figs.4(a) and 4A shows that the manifold occupied by the trajectory is inflated
outward as E has changed from 0.1 to 0.105. On the other hand, Figs.4(b) and 4(B) indicate
that the "diameter” of this direction has shrunk inward. This does not necessarily provide the
direct evidence of the entrainment, since the size of the manifolds are not always related to
the frequency. However, generally speaking, the outer manifold tends to have the smaller

frequency. Thus the entrainment mechanism seems consistent with the Poincaré surfaces.

We have reported a very characteristic phenomenon in the onset of Hamilton chaos
based on the numerical experiment with the quasi-action variable. The ”entrainment” can be
one of the general mechanisms of mode mixing in chaos, and can provide a relationship

between the dynamics of open and closed systems.
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Figure captions.

Fig.1: A classical trajectory and the position vectors in phase space is projected onto the i-th

canonical coordinate plane.

Fig.2: Decomposition of B(t) into the areas represented in the action-angle variables.

Fig.3: The quasi-action variables for various energies. In all the panels, the frequency domain
is covered from 0.6 to 1.4. The energy (E) and the height of each panel (H) are: (a) E=0.1,
H=0.3; (b) E=0.105, H=0.3; (c) E=0.10583, H=0.1; (d) E=0.1075 H=0.08; (e) E= 0.125, H=
0.1; (f) E=0.145, H=0.08.

Fig.4: The Poincaré surfaces of section taken at x=0 (Panels (a) and (A)), and at y=0 (Panels
(b) and (B)). For Panels (a) and (b), E=0.1, while Panel (A) and (B) have E=0.105. The
curved line of (a) constitutes almost the inner limit of that of (A), and the manifold of (B) is

bounded from the outside by the curve of (b).
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A Trajectory in 2N-dimensional Phase Space
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