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In mean-field dynamo theory, the electromotive force term 〈u′ × B′〉 due to small-scale fields connects the small-scale magnetic field
with the large-scale field. This term is usually approximated as the α-effect, assumed to be instantaneous in time and local in space.
However, the approximation is valid only when the magnetic Reynolds number Rm is much less than unity, and is inappropriate when
Rm & 1, which is the condition satisfied in the Earth’s core or solar convection zone. We introduce a function φqr as a nonlocal and
non-instantaneous generalization of the usual α-effect and examine its behaviour as a function of Rm in the range 1/64 ≤ Rm ≤ 10 for
a kinematic dynamo model. We use the flow of G.O.Roberts (1972), which is steady and has non-zero helicities and two-dimensional
periodicity. As a result, we identify three regions in Rm space according to the behaviour of the function φqr: (i) Rm . 1/4, where
the function φqr is local and instantaneous and can be approximated by the traditional α and β effects, (ii) 1/4 . Rm . 4, where the
deviation from the traditional α and β effects increases and nonlocalness and non-instantaneousness increase, and (iii) Rm & 4, where
boundary layers develop fully and nonlocalness and non-instantaneousness are prominent. We show that the nonlocal memory effect for
Rm & 4 strongly affects the dynamo action and explains an observed augmentation of the growth rate in the dispersion relation. The
results imply that the nonlocal memory effect of the electromotive force should be important in the geodynamo or the solar dynamo.
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1 Introduction

Mean-field theory is a useful tool for interpreting the generation of dynamos. The generation of the magnetic
field B is described in magnetohydrodynamics (MHD) by the induction equation:

∂B
∂t

= ∇× (u × B) + Rm−1∇2B, (1)

where u is the fluid velocity and Rm = UL/λ is the magnetic Reynolds number with λ being the mag-
netic diffusivity, L the characteristic length and U the characteristic velocity. Here t denotes time non-
dimensionalised by the advection time scale τa = L/U . The magnetic Reynolds number Rm is the ratio of
the diffusion time τd = L2/λ to the advection time τa and expresses how much the magnetic lines of force
can be distorted. Its order of magnitude is Rm = O(100−2) for the Earth and Rm > O(105) for the Sun.
In mean-field theory, it is considered that the fluid velocity u and the magnetic field B can be separated
into the mean parts, 〈u〉 and 〈B〉, and the fluctuating parts, u′ and B′. The mean part of (1) becomes

∂〈B〉
∂t

−∇× (〈u〉 × 〈B〉) − Rm−1∇2〈B〉 = ∇× E, (2)
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where

E = 〈u′ × B′〉. (3)

The fluctuating part is obtained by subtracting (2) from (1):

∂B′

∂t
−∇× (〈u〉 × B′) −∇× (u′ × B′) + ∇× E − Rm−1∇2B′ = ∇× (u′ × 〈B〉). (4)

In mean-field theory, the generation of magnetic fields is understood in terms of the interaction between
small-scale phenomena (4) and large-scale phenomena (2). The effect of small-scale fields on the large-scale
magnetic field is represented by the electromotive force E, which acts as the source of the mean field 〈B〉.
On the other hand, (4) expresses the generation of a small-scale field B′ by the mean field 〈B〉, if we regard
the right-hand side as the source term. Note that (4) allows non-zero B′ even if 〈B〉 = 0. This is called
the small-scale dynamo (e.g. Rädler 2000, Desjardins et al. 2007, Tobias and Weiss 2007). However, we
neglect this component and only deal with B′ induced by the mean field 〈B〉.

The key in mean-field theory is how the electromotive force term E is expressed as a functional of the
mean field 〈B〉. It can be seen from (4) that the fluctuating field B′ is a linear functional of the mean field
〈B〉. if we regard the right-hand side as the source term of the equation. It follows that the electromotive
force E is also a linear functional of the mean field 〈B〉. Its general form should therefore be written as

Eq(x, t) =
∫ t

−∞

∫ ∞

−∞
φqr(x − ξ, t − τ)〈B〉r(ξ, τ)dξdτ (q, r = 1, 2, 3) (5)

if the average properties of the velocity field is stationary and uniform (e.g. P.H.Roberts 1994, Rädler 2000).
Here φqr is the kernel of the functional. The kernel is usually approximated as local and instantaneous.
This approximation allows the electromotive force term to be written in the form of a Taylor series as

Eq(x, t) = αqr〈B〉r(x, t) + βqrs
∂〈B〉r(x, t)

∂xs
+ .... (q, r = 1, 2, 3) (6)

(e.g. Steenbeck et al. 1966, Krause and Rädler 1980), where αqr and βqrs are constant tensor elements.
Decomposition of the α and magnetic-field-gradient tensors into symmetric and antisymmetric parts yields

Eq = α(s)
qr 〈B〉r + [γ × 〈B〉]q − β(s)

qr [∇× 〈B〉]r − [δ × (∇× 〈B〉)]q − κqrs(∇〈B〉)(s)rs (7)

(Rädler 2000), where α
(s)
qr and β

(s)
qr are symmetric tensors, γ and δ are vectors, κqrs is a third-rank tensor

and (∇〈B〉)(s) is the symmetric part of the gradient tensor of 〈B〉. Here, terms including second or higher-
order derivatives of 〈B〉 are neglected.

For isotropic small-scale fields, (7) reduces to

E(x, t) = α〈B〉(x, t) − β∇× 〈B〉(x, t), (8)

where α and β are constants. The effect of the term containing α is called the α-effect, and represents the
generation of a large-scale field. The second term containing β is called the β-effect, and represents the
dissipation of the large-scale field. The coefficients α and β are often treated as smooth functions of time
and space if the average properties of the velocity field are non-stationary or non-uniform.

Equation (8) is the most commonly used form of the electromotive force and has been useful for explaining
kinematic and MHD dynamos. It is known that the α2-dynamo mechanism or the αω-dynamo mechanism
based on the local and instantaneous α-effect can generate large-scale magnetic fields (e.g. Steenbeck and
Krause 1966, P.H.Roberts 1972). Numerical three-dimensional MHD dynamo simulations are therefore
often interpreted in terms of the α and β effects (e.g. Kageyama and Sato 1997, Olson et al. 1999).
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This type of interpretation has recently been used quantitatively. Correlation of the electromotive force
and the magnetic field of a numerical simulation is used to determine the coefficients α and β, and the
resulting mean field equation is solved to see if the average magnetic field can be reproduced (Brandenburg
and Sokoloff 2002, Schrinner et al. 2005, Kowal et al. 2006, Schrinner et al. 2007). These attempts only
sometimes succeed.

To summarize, reduction of (5) to (8) has been achieved under three assumptions: isotropy, instanta-
neousness and localness. However, these assumptions do not hold under some circumstances. Anisotropy
is sometimes important for the Earth or Sun, because of the strong influences of rotation and the gravity
field. Anisotropy in the form of (7) has been studied extensively (e.g. Rädler 2000). Local numerical sim-
ulations have been performed recently to reveal the latitude and depth dependence of the anisotropy in
the Earth and Sun (e.g. Matsushima 2005, Käpylä et al. 2006).

Our study focuses on the validity of the other two assumptions, localness and instantaneousness. The
local and instantaneous approximation is valid only for Rm ¿ 1 (figure 1), for which the magnetic lines
of force are distorted only slightly by a flow. The approximation may break down for Rm & 1, which is
the condition appropriate for a geodynamo or solar dynamo. As Rm increases, the magnetic lines of force
are distorted more strongly (figure 1), which gives rise to nonlocal and non-instantaneous effects. The
limitations of the approximation have been addressed in past studies on kinematic or magnetohydrody-
namic dynamos. For example, G.O.Roberts (1972) numerically solved a kinematic dynamo produced by
simplified columnar fluid motion and attempted to explain the results using the α-effect. He found that the
local α-effect cannot be used to explain the result for Rm & 1, in spite of its success for Rm ¿ 1. Another
recent example is the analysis of Schrinner et al. (2005, 2007) on numerical MHD dynamo simulations for
Rm & 1. They found that the results cannot be explained only by local and instantaneous α and β effects.
These results return us to the general equation (5).

Recent studies have suggested that the introduction of nonlocal or non-instantaneous kernels in the
electromotive force strongly affects the resulting magnetic field. Fedotov et al. (2002, 2003) assumed a
finite correlation time for turbulent flow and examined a non-instantaneous effect, which they called the
‘memory effect’, on the generation of the mean field. They showed that the memory effect in α suppresses
the growth of the mean field, whereas in β it enhances the growth. Their studies, however, were restricted
to the local effect and they assumed the form of the non-instantaneous effect to be of the exponential form
e−t/τ with τ being a correlation time, the validity of which is not obvious. Urpin (2002) calculated the
electromotive force caused by an isotropic homogeneous turbulence with a time correlation, but without
nonlocal effects. He found that a non-instantaneous β-effect gives rise to a mode which decays with the
correlation time of kinetic turbulence. Moreover, Courvoisier et al. (2006) calculated the α-effect induced
by a time-dependent modified G.O. Roberts’ flow, and found that the time-dependence of the fluid motion
can change the sign of the α-effect.

It should be noted that the kernel may be non-instantaneous even if the flow is steady. The steadiness
of the flow only guarantees that φqr depends on t − τ as in (5). Two sources exist for the memory effect
of the electromotive force E = 〈u′ × B′〉: the time-dependence of the flow u′ and the time-dependence of
the magnetic field B′. We can distinguish them by referring to the former source as the ‘kinetic memory
effect’ and to the latter as the ‘magnetic memory effect’. Previous studies (Fedotov et al. 2002, 2003, Urpin
2002) considered the kinetic memory effect. In this study, we consider instead the magnetic memory effect,
which has never previously been calculated explicitly.

Nonlocal effects have also been shown to contribute significantly to mean-field generation (Rädler et al.
1997, Rädler and Brandenburg 2003, Brandenburg and Sokoloff 2002, Kowal et al. 2006). Brandenburg and
Sokoloff (2002) analysed numerical MHD simulations of the accretion disc to determine the coefficients
α and β. They compared direct numerical simulations with mean-field simulations under two different
assumptions for the coefficients: a local, non-uniform assumption and a nonlocal, uniform assumption.
They showed that the α- and β-effects under the latter assumption can better reproduce the features of
direct MHD simulations, suggesting the importance of nonlocal behaviour. However, they considered only
nonlocal effects and neglected non-instantaneous effects.

The purpose of this study is to examine both nonlocal and magnetic memory effects for a simple kinematic
dynamo. We use a simple dynamo model because discriminating the two effects is difficult for realistic
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MHD dynamo simulations. We choose the two-dimensional periodic flow of G.O.Roberts (1972) for the
kinematic dynamo model for the following three reasons. First, Roberts’ flow has a columnar structure
similar to those expected for thermal convection in a rapidly rotating system (e.g. Busse 1970, 2002).
Second, the flow shows dynamo action, and a local and instantaneous α-effect has explicitly been verified
for Rm ¿ 1. Third, the two-dimensional periodicity of the flow allows us to define the horizontal average
rigorously and to avoid non-uniformity. We return to (5) in this paper and investigate the kinematic
dynamo of G.O.Roberts (1972) for Rm & 1 in terms of the nonlocal and non-instantaneous kernel φqr,
which we shall show is necessary for understanding the behaviour of its dispersion relation. The concept
behind dynamo experiments recently carried out in Karlsruhe (Stieglitz and Müller 2001, Müller and
Stieglitz 2002) originates from Roberts’ dynamo model, and much work has been done in interpreting the
experimental results (e.g. Rädler et al. 2002, Rädler and Brandenburg 2003).

In section 2, we briefly review the settings and results of G.O.Roberts (1972) and clarify the conditions
under which the local α-effect is insufficient to interpret the dispersion curve. In section 3, we introduce and
formulate the nonlocal and non-instantaneous electromotive force for Roberts’ problem. We then present
the results of the calculations of the nonlocal and non-instantaneous kernel φqr in (5) in section 4. We
show that the kernel exhibits increasingly nonlocal and non-instantaneous behaviour with an increase in
Rm for 1/4 . Rm . 4 and that nonlocalness and non-instantaneousness are established for Rm & 4. We
consider the effects of nonlocalness and non-instantaneousness on the dispersion relation of the mean field
in section 5 and present an illustrative interpretation of the behaviour of Roberts’ solution. Finally, we
summarize the results in section 6.

2 G.O. Roberts’ problem

G.O.Roberts (1972) investigated a kinematic dynamo problem driven by a fluid motion with a non-zero
helicity and two-dimensional periodicity:

u(x, y) = (sin y, sinx, cos x − cos y) (9)

(figure 2). The flow is periodic in the x and y directions: u(x + 2nπ, y + 2mπ) = u(x, y) where n and m
are integers. Since the helicity of the flow 〈u · (∇ × u)〉 is positive, a negative α-effect is expected from
the first-order smoothing approximation (e.g. Moffatt 1978). Under Bloch’s theorem, the eigenfunctions
should have the form

B(x, t) = H(x, y; j, p)ept+ij·x, (10)

where H has the same periodicity as the flow u, i.e. H(x + 2nπ, y + 2mπ) = H(x, y). Here Roberts
considered only the case in which the direction of the Bloch wavenumber j is the same as that of the axis
of the columnar flow:

j = jez, (11)

where ez is the unit vector in the z direction. Tilgner and Busse (1995) and Plunian and Rädler (2002a)
examined the solutions without the assumption (11) and found that the growth rate is largest when the
condition (11) is satisfied for any Rm. We thus use the assumption (11) in the following.

Since the flow (9) depends on x and y and is spatially periodic with period 2π, we define the average
part as

〈f〉(z, t) =
1

4π2

∫ 2π

0

∫ 2π

0
f(x, y, z, t)dxdy (12)
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and the fluctuating part as

f ′(x, y, z, t) = f(x, y, z, t) − 〈f〉(z, t), 〈f ′〉 = 0, (13)

where f is an arbitrary spatially periodic function with a period of 2π. It naturally follows that the mean
flow is zero:

〈u〉 = 0. (14)

The electromotive force E becomes a function of z and t from the definition (3) and the definition of the
average (12). Since the right-hand side of the z component of (2) vanishes for the above definition of the
average, the mean field 〈Bz〉 eventually vanishes and is not of interest. Thus we set it to zero as

〈Bz〉 = 0. (15)

Substituting (10) into (12) gives

〈B〉(z, t) = 〈H〉(j, p)ept+ijz. (16)

Hence the mean field is independent of x and y with a zero z component. Subtracting (16) from (10), we
obtain the fluctuating part,

B′(x, y, z, t) = H′(x, y; j, p)ept+ijz. (17)

Roberts numerically calculated the dispersion relations and found that the kinematic problem has at
least one growing solution for any Rm. Figure 3 shows the maximum eigenvalue p, which is always pure
real, in (Rm, j) space. We can see from this figure that the growth rate is positive for any Rm if the
wavenumber j is small. This means that the flow (9) exhibits dynamo action for any Rm.

Figure 4 shows the dispersion relation for two values of Rm. The growth rate Re[p] for the branch with
the largest Re[p] increases linearly with j for j ¿ 1 for both values of Rm. This explains why dynamo
action always occurs for small j. Roberts implicitly showed that mean-field theory based on the local
and instantaneous α-effect can explain the linear behaviour of Re[p] versus j for small j. Under the local
and instantaneous approximation for the α- and β-effects, a two-dimensional variant of (8) holds. With
eigenfunctions of the forms (16) and (17) the variant becomes

Ẽ(j, p) ∼ α〈H〉 − ijβez × 〈H〉 + ..., (18)

where Ẽ = 〈u × H′〉. (19)

Substituting (14), (16) and (18) into (2), we obtain the growth rate of the mean field for small j as

p ∼= ±|α|j. (20)

That is, the α-effect can explain the linear behaviour of Re[p] as a function of j around j ∼ 0 in the
dispersion relations (figure 4). In addition, (20) shows that one of the two branches is always a growing
solution.

As j increases, the behaviours of Re[p] for Rm ¿ 1 and for Rm & O(1) become different. For Rm =
8 ∼ O(1), the growth rate of the component with j ∼ 1/2 increases above that expected under the α-effect
approximation (18). In contrast, the growth rates for Rm = 1/8 < 1 do not exceed (20) for any j (figure
4). In particular, the growth rate of the component with wavenumber j ∼ 1/2 for Rm = 8 is the fastest
of the whole range of Rm. This feature is important since Rm in the Earth’s core is estimated to be in
the range 1–102. The nonlinear behaviour of Re[p] as a function of j for j = O(1) cannot be explained
even if anisotropy is introduced in the expressions of α and β. In the following sections, we show that
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the nonlocal and non-instantaneous effects of the electromotive force are essential in understanding the
nonlinear behaviour of Roberts’ dispersion relation for Rm & 1.

3 Formulation of the kernel φqr for G.O. Roberts’ flow

We now reduce the nonlocal and non-instantaneous kernel φqr, defined as (5), to a form appropriate for
Roberts’ problem. To achieve this, we change the formulation from an eigenvalue problem, a traditional
form for the kinematic dynamo problem, to a time-evolution problem.

We apply a Fourier–Laplace transform to the problem. This transform is useful for understanding the
relation between the time-evolution problem and the eigenvalue problem, since in the Fourier–Laplace
transform functions of (z, t) are expanded in terms of exp(pt+ijz), which is the form of the eigenfunctions
(10) and (11) of the eigenvalue problem. The magnetic field B, its horizontal average 〈B〉 and its fluctuating
part B′ are expanded as

B(x, y, z, t) =
1
2π

1
2πi

∫ ∞

−∞
dj

∫ ν+i∞

ν−i∞
dpH(x, y, j, p) exp (pt + ijz), (21)

〈B〉(z, t) =
1
2π

1
2πi

∫ ∞

−∞
dj

∫ ν+i∞

ν−i∞
dp〈H〉(j, p) exp (pt + ijz), (22)

and

B′(x, y, z, t) =
1
2π

1
2πi

∫ ∞

−∞
dj

∫ ν+i∞

ν−i∞
dpH′(x, y, j, p) exp (pt + ijz), (23)

respectively, where the horizontal average is defined by (12), and ν is a real number chosen so that the
contour path of integration lies within the region of convergence of each Laplace-transformed function.
Similarly, the Fourier–Laplace transform of the electromotive force E is given by

E(z, t) =
1
2π

1
2πi

∫ ∞

−∞
dj

∫ ν+i∞

ν−i∞
dpẼ(j, p) exp (pt + ijz), (24)

where ˜ represents a Fourier–Laplace transformed function. Substituting (21), (22), (23) and (24) into
the fluctuating part of the induction equation (4), we obtain

pH′ − ∇̃ × (u × H′) + ij × Ẽ − Rm−1∇̃2H′ = ∇̃ × (u × 〈H〉), (25)

where ∇̃ is defined as

∇̃ =
(

∂

∂x
,

∂

∂y
, ij

)
. (26)

The fluctuating field H′ is produced by the right-hand-side term ∇̃×(u×〈H〉). Hereafter, the forcing mean
field 〈H〉 or 〈B〉 in the equation of the fluctuating field (25) or (4) is called the ‘source field’. Equation
(25) shows that H′ is a linear functional of 〈H〉 and is a function of j, p, x and y. The electromotive force
Ẽ defined as (19) should therefore be proportional to 〈H〉 and be a function of j and p. Thus the general
form of Ẽ in (j, p) space can be expressed as

Ẽq(j, p) = φ̃qr(j, p)〈H〉r(j, p) (q, r = 1, 2, 3), (27)
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where φ̃qr is a second-rank tensor and a complex function of j and p, and is determined by the flow u.
Moreover, symmetry about the z = 0 plane requires that Ẽz = 0. Since 〈Hz〉 = 0 (15), (27) is essentially
two-dimensional and may be written as

(
Ẽx

Ẽy

)
=

(
φ̃xx(j, p) φ̃xy(j, p)
φ̃yx(j, p) φ̃yy(j, p)

) (
〈Hx〉
〈Hy〉

)
, (28)

which is a generalization of (18). The transformation of (28) into (z, t) space gives

Eq(z, t) =
∫ t

−∞

∫ ∞

−∞
φqr(z − z′, t − t′)〈B〉r(z′, t′)dz′dt′ (q, r = 1, 2), (29)

where

φqr(z, t) =
1
2π

1
2πi

∫ ∞

−∞
dj

∫ ν+i∞

ν−i∞
dpφ̃qr(j, p) exp (pt + ijz), (30)

and its inverse transform is given by

φ̃qr(j, p) =
∫ ∞

−∞
dz

∫ ∞

0
dtφqr(z, t) exp (−pt − ijz). (31)

Equation (29) is the general form of the electromotive force in the two-dimensional problem and is a
two-dimensional variant of (5). The function φqr includes nonlocal and non-instantaneous effects of the
electromotive force, as opposed to α in (6), which expresses only local and instantaneous effects. The
memory effect is expressed by the dependence of φ̃qr on p.

Symmetry can be used to reduce the number of independent components of the tensor φ̃qr (e.g. Rädler
and Brandenburg 2003). Since u is invariant under 90◦ rotation around the z-axis together with a trans-
lation of π in the x or y direction, φ̃qr is axisymmetric around ez. The general form of an axisymmetric
two-dimensional second-order tensor is given by(

φ̃xx(j, p) φ̃xy(j, p)
φ̃yx(j, p) φ̃yy(j, p)

)
=

(
c1(j, p) ijc2(j, p)

−ijc2(j, p) c1(j, p)

)
, (32)

where c1 and c2 are arbitrary complex functions. The reality of φqr in (z, t) space requires c†i (j, p) =
ci(−j, p), where † represents the complex conjugate and i = 1, 2. Symmetry about the z = 0 plane leads to
ci(j, p) = ci(−j, p). Therefore c1 and c2 are pure real and independent of the sign of j. Thus (28) reduces
to (

Ẽx

Ẽy

)
=

(
ϕ̃(|j|, p) ijψ̃(|j|, p)

−ijψ̃(|j|, p) ϕ̃(|j|, p)

) (
〈Hx〉
〈Hy〉

)
, (33)

where ϕ̃ and ψ̃ are real functions of j and p. The corresponding expression in (z, t) space is

E(z, t) =
∫ t

−∞

∫ ∞

−∞
ϕ(z − z′, t − t′)〈B〉(z′, t′)dz′dt′

− ez ×
∂

∂z

∫ t

−∞

∫ ∞

−∞
ψ(z − z′, t − t′)〈B〉(z′, t′)dz′dt′,

(34)
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where ϕ and ψ are the inverse Fourier–Laplace transforms of ϕ̃ and ψ̃, respectively. These equations show
that the behaviour of the electromotive force in Roberts’ problem can sufficiently be described by only
two functions, ϕ and ψ.

The dispersion relation of the mean field can readily be written in terms of ϕ̃ and ψ̃ as follows. Substi-
tuting (33) into the equation of the mean field (2) in (j, p) space, we have

p∗
(
〈Hx〉(j, p)
〈Hy〉(j, p)

)
= ij

(
ijψ̃(|j|, p) −ϕ̃(|j|, p)
ϕ̃(|j|, p) ijψ̃(|j|, p)

)(
〈Hx〉(j, p)
〈Hy〉(j, p)

)
, (35)

where

p∗ = p + Rm−1j2. (36)

Solving the eigenvalue problem (35), we obtain the dispersion relation:

p∗1,2 = ±ϕ̃(|j|, p)j − ψ̃(|j|, p)j2. (37)

Both growing and decaying solutions always exist for sufficiently small j regardless of the sign of ϕ̃ unless
ϕ̃(0, p) = 0. The growing branch of the dispersion relation is written as

p∗ = |ϕ̃(|j|, p)| j − ψ̃(|j|, p)j2. (38)

The diagonal component ϕ̃ functions to intensify the mean field. The growth rate p increases as the absolute
value of ϕ̃ increases. The non-diagonal component ψ̃ functions to decrease the mean field if it is positive
(eddy diffusion) and to increase the mean field if it is negative. Note that (37) basically represents two
eigenvalues, whereas the original kinematic dynamo problem has an infinite number of eigenvalues. This
results from the neglect of the ‘small-scale dynamo’ mentioned in the Introduction.

The relationship between the dispersion relation p = p(j) and the kernel ϕ̃(j, p) can be illustrated on
the (j, p) plane as follows, if ψ̃ is constant. Equation (37) may be understood as being the solution of the
simultaneous equations

ϕ̃ = ±ϕ̃(j, p) (39)

and

ϕ̃ = (p∗ + ψ̃j2)/j. (40)

Therefore, the intersection of the two topographies described by the two equations above gives the disper-
sion relation on the (j, p) plane. This relation can serve as a guide to identifying features of ϕ̃(j, p) which
are important to the behaviour of the dispersion relation.

Step responses Φ(z, t) and Ψ(z, t) defined as

Φ(z, t) ≡
∫ t

0
ϕ(z, t′)dt′,

Ψ(z, t) ≡
∫ t

0
ψ(z, t′)dt′

(41)

are used in the following to display the response kernel φqr in (z, t) space, in addition to ϕ̃(j, p) and ψ̃(j, p)
in (j, p) space. They are the responses to a source field given by the form of the step function

〈B〉 =〈B0〉δ(z)Θ(t), (42)
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where 〈B0〉 is the strength of the source field, δ(z) is the delta function and Θ(t) is the step function, given
by

Θ(t) =

{
1 for 0 ≤ t′ ≤ t,

0 for t < t′ < ∞.
(43)

For the source field above, the electromotive force becomes

Eq(z, t) =
∫ t

−∞
dt′

∫ ∞

−∞
dz′φqr(z − z′, t − t′)〈B0〉rΘ(t′)δ(z′)

= Φ(z, t)〈B0〉q −
∂Ψ(z, t)

∂z
εqrser〈B0〉s.

(44)

Equation (44) represents how the responses Φ and Ψ operate if the source field 〈B〉 is applied suddenly at
t = 0 on the |z| = 0 surface and is maintained for t > 0.

The responses Φ and Ψ in (z, t) space have simple approximate relations with ϕ̃ and ψ̃ in (j, p) space. The
Laplace transformation between the time t domain and the growth rate p domain can be approximated as

ϕ̃(j, p) =
∫ ∞

−∞
dz

∫ ∞

0
dt ϕ(z, t)e−pt−ijz

∼
∫ ∞

−∞
dz

∫ 1/p

0
dt ϕ(z, t)e−ijz =

∫ ∞

−∞
Φ(z, t = 1/p)e−ijzdz. (45)

In the same way, ψ̃(j, p) and Ψ(z, t) are approximately related as

ψ̃(j, p) ∼
∫ ∞

0
Ψ(z, t = 1/p)e−ijzdz. (46)

Hence, we can regard ϕ̃ and ψ̃ at p = 1/t(> 0) in (j, p) space as the Fourier transforms of Φ and Ψ at the
time t.

The traditional α and β are related to ϕ̃ and ψ̃, or the spatial integrals of Φ and Ψ, as follows. The
traditional α may be defined as the coefficient of proportionality between the electromotive force and the
mean field 〈B〉, which is uniform in time and space. When the source field 〈B〉 is constant, the electromotive
force (34) becomes

E(z, t) =〈B〉
∫ t

−∞
dt′

∫ ∞

−∞
dz′ϕ(z − z′, t − t′). (47)

Consequently, the traditional α is

α =
∫ t

−∞
dt′

∫ ∞

−∞
dz′ϕ(z − z′, t − t′) =

∫ ∞

−∞
Φ(z, t → ∞)dz. (48)

In this way α is a spatial integral of Φ in the long-time limit. From (48) and (45), α is connected with ϕ̃
as

α = ϕ̃(j = 0, p = 0). (49)

Furthermore, when the source field is proportional to z, 〈B〉(z) = Azex with a constant A, the electromotive
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force (34) reduces to

E(z, t) =Azex

∫ t

−∞

∫ ∞

−∞
ϕ(z − z′, t − t′)dz′dt′ − Aey

∫ t

−∞

∫ ∞

−∞
ψ(z − z′, t − t′)dz′dt′. (50)

On the other hand, substituting 〈B〉(z) = Azez into the definition of β in (8), we get Ey = −βA. Comparing
this expression with the y-component of (50), we obtain

β =
∫ ∞

−∞
Ψ(z, t → ∞)dz. (51)

Thus β is a spatial integral of Ψ, in a way similar to α. From (51) and (46), its relations with ψ̃ is written
as

β = ψ̃(j = 0, p = 0). (52)

To summarize, the two sets of functions {Φ(z, t), Ψ(z, t)} and {ϕ̃(j, p), ψ̃(j, p)} have their own natural
advantages. The set {Φ(z, t), Ψ(z, t)} is suitable for showing short-term and short-range responses. The
set {ϕ̃(j, p), ψ̃(j, p)} is suitable for showing long-term and long-range responses. The former set is easier
to understand intuitively because it is a set of functions in physical space, whereas the latter set is useful
for understanding the connection between the electromotive force and the dispersion relation because they
are related by (38).

4 Results: characteristics of the mean electromotive force φqr

In this section, we show the numerical results of the responses ϕ̃, ψ̃,Φ and Ψ caused by Roberts’ flow (9)
and explain their characteristics. The numerical method is explained in Appendix A. The range of the
magnetic Reynolds number in our calculations is 1/64 ≤ Rm ≤ 10. We do not carry out calculations for
Rm > 10, since developing the boundary layer in three-dimensional space with thickness δb ∼ O(Rm−1/2)
requires considerable computation time.

We first calculate the traditional α defined by (48) and (49) to see the overall behaviour of the elec-
tromagnetic induction as a function of the magnetic Reynolds number Rm. Numerical results are shown
in figure 5, together with asymptotic behaviours reported in past studies. For Rm ¿ 1, the first-order
smoothing approximation(G.O.Roberts 1972, Rädler et al. 2002) gives

α ∼ −Rm, (53)

as we shall see in section 4.1. For Rm → ∞, the boundary layer theory based on flux explusion(Childress
1979, Anufriyev and Fishman 1982, Soward 1987) gives

α ∼ −0.5327(2/Rm)1/2. (54)

Our numerical results reproduce these asymptotes very well. Furthermore, we can identify three regions
based on the applicability of these approximations. For Rm . 1/4 (Region 1) the first-order smoothing
approximation holds and for Rm & 4 (Region 3) the boundary layer theory holds. The interval 1/4 . Rm .
4 (Region 2) is the transition between these two regions. As we shall see in section 4.2, non-localness and
non-instantaneousness increase with Rm in Region 2. In the following three subsections, we explain the
responses ϕ̃, ψ̃,Φ and Ψ for Rm = 1/32 (Region 1), Rm = 1/4, 1 and 4 (Region 2) and Rm = 8 (Region
3).
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4.1 Region 1: Rm . 1/4

In this section, we confirm that ϕ and ψ reduce to the traditional α- and β-effects for Rm . 1/4.
Figure 6a shows the contour of the time development of the response Φ forced by the source field (42)

for Rm = 1/32. A negative Φ is established almost instantaneously at t = 0 and becomes steady after
t ∼ Rm, which is the diffusion time in our non-dimensionalisation. The negative Φ is concentrated near
the source field at |z| ∼ 0. The response Ψ behaves similarly. A steady positive Ψ concentrated near |z| = 0
is established almost instantaneously within t . Rm (figure 6b). Thus Φ and Ψ show instantaneous and
local responses if Rm is small enough.

Figure 7 shows the contours of ϕ̃ and ψ̃ in (j, p) space for the same Rm. These contours correspond
to figure 6 through the relations (45) and (46). The response ϕ̃(j, p) depends only slightly on Re[p] and
depends weakly on j. The very weak dependence of ϕ̃(j, p) on p means that the response is instantaneous.
The weak dependence on j means that the response is local. The dependence on j is due to the magnetic
diffusion effect, as described below. The response ψ̃ shows a similar behaviour (figure 7b). Thus ϕ̃ and ψ̃
in (j, p) space demonstrate that ϕ(z, t) and ψ(z, t) are local and instantaneous for Rm . 1/4, which is
consistent with the results for Φ and Ψ in (z, t) space (figure 6).

The analytical solutions of ϕ and ψ can easily be obtained for Rm ¿ 1. We first consider which terms
contribute most to the balance in (25). When Rm ¿ 1 and j = O(1), we have

H′ ∼ Rm〈H〉 (55)

in order that the left-hand-side balances the right-hand-side source term. If we further assume that

p = O(Rm−1), (56)

the equation of the fluctuating part (25) becomes

(
p − Rm−1∇̃2

)
H′ = −∇̃ × (u × 〈H〉). (57)

The solution of (57) is obtained as

H′ =
1

p∗ + Rm−1

−ij(cos x − cos y) cos y
cos x −ij(cos x − cos y)
− sinx sin y

(
〈Hx〉
〈Hy〉

)
, (58)

as shown in Appendix B. Taking the cross product with the flow u × H′ and averaging it, we obtain the
electromotive force

Ẽ = 〈u × H′〉 =
1

p∗ + Rm−1

−1 ij
−ij −1
0 0

(
〈Hx〉
〈Hy〉

)
. (59)

Thus ϕ̃ and ψ̃ in (j, p) space become

ϕ̃(j, p∗) = −ψ̃(j, p∗) = − 1
p∗ + Rm−1

, (60)
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which are transformed into ϕ and ψ in (z, t) space according to (30) as

ϕ(z, t) = −ψ(z, t) = − 1
2π

∫ ∞

−∞
e−Rm−1(1+j2)teijzdj (61)

= − 1
2π

√
π

Rm−1t
exp

[
−Rm−1t − z2

4Rm−1t

]
. (62)

Here we have used an integral formula∫ sr+i∞

sr−i∞

1
A + s

estds = 2π i e−At (63)

where s is complex, s = sr + isi, and A is a constant. When t ∼ 2Rm, or twice the diffusion time, the
responses ϕ and ψ almost vanish and the integrated responses Φ and Ψ approach a steady state within
10%. Integrating (62) gives the steady state of Φ and Ψ as

Φ(z, t → ∞) = −Ψ(z, t → ∞) = −1
2
Rm e−|z|, (64)

where we have used another integral formula∫ ∞

0

1√
x

e−ax−b2/xdx =
√

π

a
e−2b

√
a (a, b > 0) (65)

where a and b are positive constants. This analytical result (64) reproduces the numerical result very well,
as shown in figure 8. To summarize, the analytical results confirm and clarify the local and instantaneous
nature of ϕ and ψ for Rm ¿ 1.

The traditional α and β are obtained by the two methods explained in section 3. We can derive them
from Φ and Ψ in (z, t) space by substituting (64) into (48) and (51) as

α =
∫ ∞

−∞
Φ(ξ, t → ∞)dξ = −Rm,

β =
∫ ∞

−∞
Ψ(ξ, t → ∞)dξ = Rm.

(66)

The same result may be obtained by substituting (60) into (49) and (52) as

α = ϕ̃(0, 0) = −Rm, (67)

β = ψ̃(0, 0) = Rm. (68)

Since the responses ϕ̃ and ψ̃ for p ¿ Rm−1 (t À Rm) and j ¿ 1 reduce to

ϕ̃ = −ψ̃ = −Rm, (69)

the traditional α and β are valid for p ¿ Rm−1 and j ¿ 1.

4.2 Region 2 (transition): 1/4 . Rm . 4

Figures 9 and 10 show the responses in the transition region 1/4 . Rm . 4. Figure 9 shows {Φ, Ψ} for
Rm = 1/4, 1 and 4 in (z, t) space and figure 10 shows {ϕ̃, ψ̃} for the same magnetic Reynolds numbers in
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(j, p) space. The kernels {Φ, Ψ} and {ϕ̃, ψ̃} become increasingly nonlocal and non-instantaneous as Rm
increases.

Figures 9 i)a and ii)a show the kernel Φ for Rm = 1/4 and 1, respectively. The similarity to figure 6a
(Rm ¿ 1/4) indicates that localness and instantaneousness still apply. However, Φ already deviates from
(64) and the deviation increases with Rm. The steady state magnitude of ΦRm−1 at z = 0 should be 1/2
if (64) is valid, but it is 0.48 and 0.36 for Rm = 1/4 and 1, respectively. For Rm = 1, the time taken to
reach the steady state is a little shorter than (64) predicts; Φ(z = 0, t) is already within 10% of the steady
state value at tRm−1 = 1, i.e. the diffusion time. The spatial structure of the function Φ(z, t → ∞) is
almost e−|z| for Rm = 1/4 and 1.

For Rm = 4, non-instantaneousness and nonlocalness are apparent. Figure 9 iii)a shows that a negative
Φ is generated initially around |z| = 0 and spreads with time in the z direction until t ∼ 2. After that,
the spread stops and Φ increases until t ∼ 4. The sign of the response even turns positive at t ∼ 4 over
π . |z| . 4π. A weak oscillation follows, becoming steady at tRm−1 ∼ 4, which is slower than (62)
predicts. Its amplitude in the steady state is |Φ(z = 0, t → ∞)Rm−1| ∼ 0.12, much smaller than (64)
predicts.

The kernels ϕ̃ in (j, p) space display corresponding features in accordance with (45) (figure 10 a). The
magnitude of the kernel |ϕ̃Rm−1| at j = p = 0 should be unity if (60) is valid, but it is 0.97 and 0.75 for
Rm = 1/4 and 1, respectively. Non-instantaneousness and nonlocalness are apparent for Rm = 4 (figure
10 iii)a) as a non-monotonic dependence of ϕ̃(j, p) on j and p. In particular, two notable features appear
in the region 0 . j . 1 and −0.5 . p . 0: a valley extending from (j, p) ∼ (0.5, 0) to (j, p) ∼ (1,−0.5)
and a singular ring near (j, p) ∼ (1/2,−2/5).

The off-diagonal response Ψ(z, t) also becomes increasingly non-instantaneous and nonlocal with Rm
(figure 9b ). The deviation from (64) increases with Rm and the relation Φ = −Ψ is no longer valid. The
steady state response |ΨRm−1| at z = 0 should be 1/2 according to (64), but it is 0.47 for Rm = 1/4
and 0.33 for Rm = 1. For Rm = 1/4 (figure 9 i)b), the spatial form of Ψ remains nearly e−|z|, but it
changes sign at |z| ∼ (5/2)π. For Rm = 1 (figure 9 ii)b), the deviation from the relation Φ = −Ψ becomes
apparent. The response Ψ slightly overspreads in the z direction at tRm−1 ∼ 1 and approaches a steady
state at tRm−1 ∼ 4. The steady response changes sign at |z| ∼ (3/4)π, closer to the source field than
for Rm = 1/4. For Rm ∼ 4 (figure 9 iii)b), non-instantaneousness and nonlocalness are clear. A positive
response Ψ is generated initially around |z| = 0 and spreads in the z direction with time until t ∼ 1. After
that, it decreases until a negative region centered at |z| ∼ π/2 spreads and becomes maximum at t ∼ 4.
The negative region shrinks again to zero at t ∼ 7 and an oscillatory behaviour follows until it becomes
steady at t ∼ 22.

The behaviour of the kernel ψ̃ in (j, p) space reflects that of Ψ in accordance with (46). The magnitude
of ψ̃ becomes smaller than (60) predicts. While |ψ̃(0, 0)Rm−1| should be unity if (60) held, it is 0.94 for
Rm = 1/4. Equation (60) is a monotonically decreasing function of j and p. However, ψ̃ for Rm = 1 is not
monotonic (figure 10 ii)b) and has a small hill extending from (j, p) ∼ (0, 1/4) to (j, p) ∼ (3/4,−1/2). The
hill passes through (j, p) ∼ (1/2, 0), which corresponds to a smooth wavy structure with a wavelength ∼ 4π

of a steady state of Ψ(z, t) (figure 9 ii)b). For Rm = 4 (figure 10 iii)b), the kernel ψ̃ has a negative valley
which runs from (j, p) ∼ (1/2, 1/4) to (j, p) ∼ (1,−1/2) and a singular ring centered at (j, p) ∼ (1/2,−2/5).
The valley corresponds to a negative Ψ at t ∼ 4 according to (46).

4.3 Region 3: Rm & 4

The response Φ for Rm & 4 exhibits non-instantaneous and nonlocal behaviour. Figure 11a shows the
response Φ for Rm = 8. After the source field is applied at t = 0, a negative Φ is first produced near the
source field at |z| = 0 and spreads out in the z direction until t ∼ 2. Then Φ begins to increase, becomes
positive at t ∼ 4 over the interval π/2 . |z| . 4π and becomes maximum at t ∼ 6 and |z| ∼ π. It then
approaches a steady state in an oscillatory manner. Apart from the oscillatory part, a boundary layer, in
which Φ is negative, forms around |z| = 0. This boundary layer represents a local and instantaneous part
of the electromotive force.

Figure 12a shows ϕ̃ in (j, p) space for Rm = 8. Equation (45) can serve as a guide to examine the



August 29, 2008 14:13 Geophysical and Astrophysical Fluid Dynamics HoriYoshida

14 Nonlocal memory in the EMF of a 2D periodic fluid flow

correspondence between Φ and the positive-p part of ϕ̃. For p & 0.5, ϕ̃ for Rm = 4 and Rm = 8 behave
similarly. In accordance with (45), Φ for Rm = 4 and Rm = 8 look similar at t . 2. This similarity
means that the initial evolution of the electromotive force is entirely due to advection and is unaffected
by diffusion. Subsequently, diffusion begins to operate, resulting in a difference between Rm = 4 and
Rm = 8. Of particular importance for the dispersion relation is the valley running from (j, p) ∼ (1/2, 1/6)
to (j, p) ∼ (3/2,−1/2) for Rm = 8. Its relation to the dispersion relation will be discussed in the next
section. This valley results in a wavy structure in (z, t) space with wavenumber j ∼ 1/2 at t & 4 (figure
11a). The negative-p part of ϕ̃ is difficult to interpret. Many singularities exist, one of which is apparent
in figure 12a around (j, p) ∼ (1/2,−1/6) and has a circular structure on the (j, p) plane. The nature of
these singularities is yet to be examined.

Figure 13a shows ϕ̃ for three values of p as functions of j. For p = 2.0, the |ϕ̃| decreases monotonically
with j and is smooth. For p . 0.3, the dependence of |ϕ̃| on j becomes non-monotonic. For p ∼ 1/6, |ϕ̃|
shows a peak at j ∼ 1/2, which is reflected in the wavy structure of Φ with a wavelength of about 4π at
t ∼ 6 in figure 11a.

The off-diagonal responses Ψ and ψ̃ similarly show nonlocal and non-instantaneous behaviour. Figure
11b and figure 12b show Ψ(z, t) in (z, t) space and ψ̃(j, p) in (j, p) space, respectively, for Rm = 8. A
positive Ψ appears and spreads during 0 . t . 2, corresponding to a broad positive region of ψ̃ for
p & 0.5, in accordance with (46). The response Ψ(z, t) turns negative at t ∼ 2 over 0 . |z| . 2π and
oscillatory behaviour follows with a period of about 8. A negative Ψ implies negative diffusion, which can
enhance the dynamo action. Negative values appear also in ψ̃ for j . 1 and 0 . p . 0.5. It is notable
that ψ̃ vanishes near the peak in the dispersion curve at j ∼ 1/2. According to (46), this corresponds to
a vanishing Ψ at t ∼ 6.

Figure 13b shows the function ψ̃(j, p) at three values of p. For p = 2.0, ψ̃ decreases monotonically with
j and is positive at all j. For p . 0.5, ψ̃ is negative, indicative of negative diffusion. At p = 0.16 ∼ 1/6,
the response ψ̃ has a negative peak at j ∼ 1/2, where ϕ̃ also has a peak.

Calculations of the extended α-effect in previous works (Soward 1987, 1989, Plunian and Rädler 2002b)
have represented only a part of the kernel φqr. Since both Soward (1987, 1989) and Plunian and Rädler
(2002b) were interested in the dispersion relation, they focused on the extended α on the dispersion curve,
which is a curve on the (j, p) plane. In contrast, our interest is in the general properties of the kernel φqr, in
(5), not merely on the dispersion relation. Thus we aim to examine the behaviour of φqr or the generalized
α on the whole (j, p) plane. In fact, taking ϕ̃ and ψ̃ in the dispersion relation in accord with the definition
of Plunian and Rädler (2002b) (figure 14), we obtain a result identical with figure 3 in their paper.

5 Dispersion relation induced by φqr

In this section, we interpret the dispersion relation of Roberts’ kinematic dynamo in terms of the approxi-
mate ϕ̃ and ψ̃ obtained in section 4. In section 5.1, we give an explicit expression of the dispersion relation
for Rm ¿ 1. In section 5.2, we semi-quantitatively describe the mechanism of the enhanced growth of
the mean field for Rm & 4 with a nonlocal and non-instantaneous electromotive force. Finally, section
5.3 presents an intuitive explanation of the generation of the nonlocal and non-instantaneous effects in
relation to the twist of the magnetic lines of force.

5.1 Dispersion relation of the mean field in terms of ϕ̃ and ψ̃: Rm ¿ 1

The analytical form of the response (60) can be used to explain the behaviour of the dispersion relation
of the growing solution for Rm ¿ 1. Substituting (60) into (37), we obtain four eigenvalues:

p∗1,2,3,4 = − 1
2Rm

± 1
2Rm

√
1 − 4Rm2(j2 ± j). (70)
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Since Rm ¿ 1, (70) can be expanded as

p∗1 = +Rm j − Rm j2 + O
(
Rm3(j2 − j)2

)
, (71)

p∗2 = − 1
Rm

−Rm j + Rm j2 − O
(
Rm3(j2 − j)2

)
, (72)

if 4Rm2|j2 − j| ¿ 1 and as

p∗3 = −Rm j − Rm j2 + O
(
Rm3(j2 + j)2

)
, (73)

p∗4 = − 1
Rm

+Rm j + Rm j2 − O
(
Rm3(j2 + j)2

)
, (74)

if 4Rm2(j+j2) ¿ 1. The two branches p∗1 and p∗3 represent the growing and decaying solutions, respectively,
of the α2-dynamo with traditional α- and β-effects. The other two branches represented by p∗2 and p∗4 decay
very rapidly. However, they are spurious because for these solutions H′ ∼ Rm−1〈H〉, which violates the
assumption (55) needed in deriving these results. Hence, (71) and (73) are good approximations of the
dispersion relation for Rm ¿ 1 (figure 15a), while (72) and (74) are not (figure 15b). Thus the appropriate
dispersion relation of the growing solution is represented by p∗1 (71), or

p∗ = − 1
2Rm

+
1

2Rm

√
1 + 4Rm2(j − j2). (75)

The mean-field generation described above is schematically illustrated in figure 16a. For simplicity, we
focus on the α-effect and neglect the β-effect. Suppose that an initial mean field 〈B0〉 of the form (42)
is placed at z = 0. It instantaneously generates a negative α-effect (62) near the given field 〈B0〉. The
α-effect is localized, as is evident in figure 6. Then the α1 induces a new field 〈B1〉 through the process
described by (35). This field in turn generates α2 around 〈B1〉 and gives rise to 〈B2〉. In this way, a helical
mean magnetic field that grows with time is produced. This is the α2-dynamo mechanism whose dispersion
relation is expressed as (71) or (75).

5.2 Dispersion relation of the mean field in terms of ϕ̃ and ψ̃: Rm & 4

We next consider the relation between the dispersion curve for Rm & 4 and the nonlocal and non-
instantaneous features of ϕ̃ and ψ̃.

The behaviour of ϕ̃(j, p) in the neighborhood of the dispersion curve is important for understanding the
dispersion relation. The dispersion curve is the intersection between the contours of ϕ̃ and the equation
of the mean field (40), as explained in section 3. We have already noted in section 4.3 that the response
of ϕ̃(j, p) has a valley that runs through p ∼ 1/6 and j ∼ 1/2, where the dispersion curve shows a peak.
This indicates that the enhancement of the mean-field generation is caused by the valley of ϕ̃.

In order to make the explanation above semi-quantitative, we approximate ϕ̃ for Rm = 8 around
0 . p . 0.5 and 0 . j . 1 by

ϕ̃(j, p) = −ϕ0 −
ϕ1

1 +
(

j

j1

)2 − ϕ2

1 +
(

p − p0 + q0j
2

p2

)2 , (76)

where ϕ0 = 0.065, ϕ1 = 0.234, j1 = 1.23, ϕ2 = 0.11, q0 = 0.38, p0 = 0.33 and p2 = 0.18 (figure 17). The
first and second terms on the right-hand side express a smooth feature which represents the instantaneous
α-effect with spatial decay. The third term expresses the valley, which reflects a nonlocal memory effect.
Substituting (76) into (38), we obtain an approximate dispersion relation of the generated mean field,
shown as the dashed curve in figure 18. In calculating this curve, we assume ψ̃ = 0 for simplicity, because
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ψ̃ is small around (j, p) ∼ (1/2, 1/6). As figure 18 shows, the nonlocal and non-instantaneous feature of ϕ̃
results in a growth rate which exceeds that produced only by the local and instantaneous α-effect.

The mechanism above is schematically illustrated in (z, t) space in figure 16b. For simplicity, as in figure
16a, we focus on the α-effect or the effect of ϕ and neglect the β-effect or the effect of ψ. As before, we
suppose that an initial field 〈B0〉 is placed at z = 0. In addition to a negative α1 around 〈B0〉, a positive
nonlocal effect Φ1 arises around |z| ∼ 2π far from the initial field 〈B0〉, as shown in figure 11a. This
nonlocal effect enhances the growth of a mean field with wavenumber j ∼ 1/2 by augmenting the growth
of the field 〈B1〉 at z ∼ π generated by the local α1 accompanying 〈B0〉. As noted in section 4.3, the
nonlocal effect results from the valley of ϕ̃(j, p) around j ∼ 1/2.

5.3 Relation between the electromotive force and magnetic lines of force

Magnetic lines of force provide an intuitive explanation of the generation mechanism of φqr. Since magnetic
lines of force are often used to interpret the results of magnetohydrodynamic numerical simulations, visu-
alising the magnetic memory effect in terms of field lines provides further insight for interpreting numerical
results.

Figure 19 shows the time evolution of typical magnetic lines of force for Rm = 8. It is calculated using (1)
with an initial magnetic field of B(t = 0) = (1, 1, 0)δ(z). This is a situation similar to that for calculating
Φ and Ψ. However (1) is used instead of (25) because magnetic lines of force cannot be divided into a
mean and a deviation. This brings about an important difference. When calculating the kernels Φ and Ψ
using (25), the mean field 〈B〉 is independent of time. On the other hand, when calculating the magnetic
lines of force using (1), the mean field 〈B〉 changes with time.

The field lines evolve as follows. At t ∼ 0.5, they undulate in the z direction and are twisted by at most
about ± 20 degrees in the (x, y) plane (figure 19 i)a and c), forming a screw-like structure (figure 19 i)a
and b). These screw-like field lines give rise to the local and instantaneous α-effect. At t ∼ 2, the twist
increases up to ± 90 degrees in the (x, y) plane (figure 19 ii)a and c), and the radius of the screw-loop
increases to about π (figure 19 ii)a and b). At this point, the spread of negative Φ becomes maximum
(figure 11 (a)). At the same time, the field lines become concentrated to form boundary layers near cell
boundaries of the flow field (figure 19 ii)a and c). After this, field lines pass through convection cells which
do not form a line. A loop of a magnetic line of force is not confined within a convection cell, as illustrated
in figure 1, but meanders among different cells. At t = 6.5, field lines elongated in the z direction by more
than π form loops in a direction opposite to the loops around z ∼ 0 (figure 19 iii)b). The loop at z ∼ 2π is
located at (x, y) ∼ (2π, 5π) in the (x, y) plane (figure 19 iii)b and c), and corresponds to the positive peak
of Φ at about t ∼ 6 (figure 11 (a)). After t ∼ 7 (note, t = Rm = 8 is the diffusion time), the alternating
loops at z ∼ −2π, 0π and 2π are maintained and the magnitude of the field increases in the boundary
layers. The prominent growth of the loops of wavelength 4π results from the nonlocal memory effect.

6 Concluding remarks

We have explicitly calculated a nonlocal and non-instantaneous generalization of the α effect for G.O.
Roberts’ flow. Separating the induction equation (1) into the mean part (2) and the fluctuating part (4)
allows us to express the general kernel φqr of the electromotive force as a function of space and time.
For Rm ≥ O(1), nonlocalness and non-instantaneousness are apparent; they are clearly seen in the step
response Φ(z, t). The response first grows on a timescale of the advection time τa. After that, it oscillates
and approaches a steady state on a timescale of the diffusion time τd = Rm τa. For Rm = 8, a positive
crest in Φ(z, t) at t ∼ 6 extending from |z| ∼ π to |z| ∼ 3π is particularly noted, because it contributes to
the enhancement in the growth rate of the mean field.

The temporal behaviour is visualized by a direct calculation of the time-development of field lines (figure
19). The helical flow twists the field line and makes it helical on a timescale of τa. After that, the field lines
concentrate in the boundary layers and twisted loops spread in the z direction, manifesting nonlocalness.
It should be interesting to compare this behaviour with direct numerical simulations of the geodynamo
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(Kageyama and Sato 1997, Olson et al. 1999).
The nonlocal memory effect enables us to interpret the enhancement of the growth rate, seen in the

dispersion relation of Roberts’ kinematic dynamo. For Rm = 8, the peak in the response function at
(j, p) ∼ (1/2, 1/6) is caused by a valley in the response function ϕ̃(j, p), a nonlocal and non-instantaneous
generalization of the α-effect. The valley corresponds to the crest in Φ(z, t) at t ∼ 6 around |z| ∼ 2π. In
this way, the response of the electromotive force consistently explains the form of the dispersion curve.

It is to be noted that the memory effect in this study operates even if the flow is steady. We have called
it the ‘magnetic memory’, to distinguish it from the memory effect imparted by a finite correlation time
of turbulence. We have called the latter the ‘kinetic memory effect’. It may seem that our memory effect
is similar to the ‘transient effect’ in Livermore and Jackson (2006) because the timescales are similar. The
transient effect is an apparent amplification of the magnetic field due to the non-orthogonal superposition
of the decaying eigenvectors (Schmid and Henningson 2001). Although our memory effect is transient in
the sense that it eventually becomes steady, the two effects are different: the memory effect is a response
to a source field, whereas the transient effect is independent of the source field.
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Plunian, F. and Rädler, K.-H., Subharmonic dynamo action in the Roberts flow. Geophys. Astrophys.
Fluid. Dyn., 2002a, 96, 115–133.
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Figure 1. Schematic illustration of the generation of the nonlocal memory effect showing the time evolution of a magnetic line of force
in a helical velocity field u. The initial field line is straight and can be represented as 〈B〉. The helical flow first warps the field line and
then twists it by 90 degrees, generating an electromotive force locally around the mean field (t = t1). This is the well-known α-effect.
For small Rm, the twist remains steady with time because magnetic diffusion is effective. If Rm & 1, the distortion of the field lines
increases with time (t = t2), generating an electromotive force which varies in time and space. This behaviour necessitates extending

the expression of the α-effect to a nonlocal and non-instantaneous function φqr.
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Figure 2. The flow of G.O.Roberts (1972). The vectors represent a two-dimensional velocity field (ux, uy) and the grey scale represents
the magnitude of uz . The flow consists of helical columns with axes in the z direction. It is two-dimensionally periodic on the (x, y)

plane with a period of 2π × 2π.
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Figure 3. Maximum growth rate Re[p] of the kinematic dynamo of G.O.Roberts (1972). The grey scale represents the magnitude of
the positive Re[p]. The dashed contours represent the magnitude of Re[p] in the range of −5 ≤ Re[p] ≤ 0 with an interval of 1.0 . The

growth rate Re[p] is positive for any Rm if the wavenumber j is small enough. It has a peak along j ∼ Rm0.3 for Rm & 1 and the
fastest growth rate for all Rm is Re[p] ∼ 0.17 at j ∼ 0.5 for Rm = 8.
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Figure 6. Contours of (a) Φ and (b) Ψ in (z, t) space for Rm = 1/32. The horizontal axis is the distance |z| from the plane where the
source field 〈B〉 is placed. The vertical axis is the time t since the source field is set. The dashed and thin solid contours and colours

visible in the electronic version represent their strength (the dashed and solid curves represent negative and positive values,
respectively). The interval of the dashed and solid contours is 0.0025. Both Φ and Ψ are generated until t ∼ Rm = 1/32 and remain

steady after that.
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Figure 7. Contours of (a) eϕ and (b) eψ in (j, p) space for Rm = 1/32. The dashed and thin solid contours and colours visible in the
electronic version represent their strength (the dashed and solid curves represent negative and positive values, respectively). The
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Figure 9. Contours of (a) Φ and (b) Ψ in (z, t) space for (i) Rm = 1/4, (ii) Rm = 1 and (iii) Rm = 4 with axes as in figure 6 but with a
different colour scale. The interval of the dashed and solid contours is 0.05. Nonlocalness and non-instantaneousness increase with Rm.
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Figure 10. Contours of (a) eϕ and (b) eψ in (j, p) space for (i) Rm = 1/4, (ii) Rm = 1 and (iii) Rm = 4 with axes as in figure 7 but with
a different colour scale. The interval of the dashed and solid contours is 0.1.
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Figure 11. Contours of (a) Φ and (b) Ψ in (z, t) space for Rm = 8, with axes and colours as in figure 6 but with a different colour
scale. The interval of the dashed and solid contours is 0.05. Note that Φ and Ψ for Rm = 8 spread with time in the |z| direction at first

and then oscillate with time. A positive peak of Φ exists at around t ∼ 6 and |z| ∼ π.
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Figure 12. Contours of eϕ and eψ in (j, p) space for Rm = 8, with axes, colours and lines as in figure 7 but with different scales. The
interval of the dashed and solid contours is 0.1. The thick solid lines represent the dispersion relation of the fastest growing branch. The

responses eϕ and eψ depend strongly on j and p.
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Figure 15. Comparison of the numerical dispersion relation [circles] of Roberts’ kinematic dynamo with our analytic solutions (70)
[dashed curves] for Rm = 1/32. The horizontal axis is the wavenumber and the vertical axis is the modified growth rate Re[p∗]. The

upper and lower branches in (a) are the horizontally uniform growing and decaying solutions, respectively, both of which are generated
by the α2-mechanism. The two branches of the analytic solutions with p∗ ∼ −1/Rm (b) are spurious.
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Figure 17. Comparisons of the numerical values of eϕ [crosses] and the approximated form (76) [dashed curves] for Rm = 8 at (a)
p = 0.05 and (b) p = 0.15. The open circles represent the positions of the intersections with the numerical dispersion curve of Roberts’

kinematic dynamo.
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Figure 18. Comparison of the numerical dispersion relation of Roberts’ kinematic dynamo [circles] with our approximated solutions
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is the modified growth rate Re[p∗]. The dotted line represents the dispersion relation produced by (76) with j = p = 0.
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Figure 19. Time evolution of the magnetic lines of force for Rm = 8. Two field lines passing through (0.78, 5.81, 0.0) and
(2.15, 4.44, 0.0) are shown at (i) t = 0.5, (ii) 2.0 and (iii) 6.5. We calculated the induction equation (1) for Roberts’ flow (9) in a box of
dimensions 6π × 6π × 6π. The initial field is 〈B〉 = (1, 1, 0)δ(z). We use a periodic boundary condition in the x and y directions, and B

is forced to vanish at z = −3π and 3π. Views from three directions are placed from top to bottom: [a] views from the direction
(−0.15, 0.98,−0.14) [b] views from the direction of the initial field, (1, 1, 0) and [c] projections onto the (x, y) plane.
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Appendix A: Numerical method

This section explains the method of calculating ϕ̃, ψ̃,Φ and Ψ. First, (25) is used to calculate the fluctuation
field H′. The calculation method is different for the two sets {ϕ̃, ψ̃} and {Φ, Ψ}. For the set {ϕ̃, ψ̃}, we
calculate (25) in (j, p) space for a source field 〈H〉 to obtain H′(x, y, j, p). The set {Φ, Ψ} is calculated
in (j, t) space for a source field 〈B̃〉 = 〈B̃0〉Θ(t) to obtain H′(x, y, j; t). The discretization methods for
the calculations above are described later. Next, (19) is used to obtain Ẽ(j, p) for {ϕ̃, ψ̃}, and Ẽ(j; t) for
{Φ, Ψ}. Finally, the set of the responses {ϕ̃, ψ̃} is determined from (33), or

(
Ẽx

Ẽy

)
=

(
ϕ̃(|j|, p) ijψ̃(|j|, p)

−ijψ̃(|j|, p) ϕ̃(|j|, p)

) (
〈Hx〉
〈Hy〉

)
. (A1)

On the other hand, the set of the responses {Φ,Ψ} is obtained in two steps. First {Φ̃(|j|; t), Ψ̃(|j|, t)} is
calculated from

(
Ẽx(|j|; t)
Ẽy(|j|; t)

)
=

(
Φ̃(|j|; t) ijΨ̃(|j|; t)

−ijΨ̃(|j|; t) Φ̃(|j|; t)

)(
〈B̃0〉x
〈B̃0〉y

)
(t > 0). (A2)

Then inverse Fourier transforms of Φ̃(j; t) and Ψ̃(j; t) are performed to obtain Φ(z, t) and Ψ(z, t) in (z, t)
space. As is evident from the equations above, the source fields 〈H〉 = (1, 0) and 〈B̃0〉 = (1, 0) provide
sufficient information to calculate {ϕ̃, ψ̃} and {Φ, Ψ}, respectively.

We use the following discretization of (25) to calculate ϕ̃ and ψ̃ in (j, p) space. Since the perturbation
field H′ is periodic in x and y, it can be expanded in the Fourier series

H′(x, y, j, p) =
+ms∑

m=−ms

+ns∑
n=−ns

hmn(j, p)eimxeiny, (A3)

where m and n are integers and ms and ns are the truncation degrees. Equation (25) can be Fourier-
expanded accordingly to become

{p∗ + Rm−1(m2 + n2)}hmn +
1
2
(mhm,n−1 − mhm,n+1 + nhm−1,n − nhm+1,n)

− 1
2

 hy,m(n−1) + hy,m(n+1)

hx,(m−1)n + hx,(m+1)n

i(hx,(m−1)n − hx,(m+1)n − hy,m(n−1) + hy,m(n+1))


+

1
2
ij(hm−1,n + hm+1,n − hm,n−1 − hm,n+1)

+
1
2
ij

−(hx,−10 + hx,10 − hx,0−1 − hx,01) − i(hz,0−1 − hz,01)
−i(hz,−10 − hz,10) − (hy,−10 + hy,10 − hy,0−1 − hy,01)

0

 = rmn,

(A4)
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where rmn are the coefficients of the Fourier series of the right-hand sides of (25) and are given by

r1,0 =
1
2

−ij 0
1 −ij
i 0

(
〈Hx〉
〈Hy〉

)
, r−1,0 =

1
2

−ij 0
1 −ij
−i 0

 (
〈Hx〉
〈Hy〉

)
,

r0,1 =
1
2

ij 1
0 ij
0 −i

 (
〈Hx〉
〈Hy〉

)
, r0,−1 =

1
2

ij 1
0 ij
0 i

 (
〈Hx〉
〈Hy〉

)
,

rmn = 0 for the other m and n.

(A5)

We use the LINPACK code to solve the simultaneous equations (A4) of hmn.
Equation (A4) is modified to calculate H′(x, y, j; t) to obtain Φ and Ψ. The term including the growth

rate phm,n is replaced by the time-derivative ∂hm,n/∂t to obtain the time development of hm,n(j; t). The
integration in time is carried out using the Euler scheme with a time step of ∆t = 5 × 10−3. The initial
condition is H′ = 0, or hm,n(j; 0) = 0 for any m and n.

Once hm,n is obtained, the electromotive force Ẽ induced by the fluctuating field H′ or hm,n is calculated
from Ẽx

Ẽy

Ẽz

 = 〈u × H′〉 =
1
2

−i(hz,−10 − hz,10) − (hy,−10 + hy,10 − hy,0−1 − hy,01)
(hx,−10 + hx,10 − hx,0−1 − hx,01) + i(hz,0−1 + hz,01)

0

 . (A6)

The truncation degrees for calculating H′ are ms = ns = 9 so that numerical values of ϕ̃ and ψ̃ should
converge within 10−8 for Rm ≤ 10. For calculating Φ̃(z, t) and Ψ̃(z, t), we use 321 j points: 0 ≤ j ≤ 32
with the interval ∆j = 0.1 for Rm < 1/4 and and 0 ≤ j ≤ 64 with ∆j = 0.2 for 1/4 ≤ Rm ≤ 10. This
guarantees convergence of Φ(z, t) and Ψ(z, t) within 4%.

Appendix B: Derivation of (58)

When the fluctuating field H′ and the right-hand term of (57) are expanded in the Fourier series defined
by (A3), (57) reduces to {

p∗ + Rm−1(m2 + n2)
}
hm,n = rm,n, (B1)

where rm,n is defined as (A5). Equation (B1) can be solved and Fourier-transformed to give

H′ =
∑
m,n

1
p∗ + Rm−1(m2 + n2)

rm,neimx+iny. (B2)

When (A5) is substituted into rm,n in the right-hand side, all the terms vanish apart from those with
truncation degrees (m,n) = (±1, 0) or (0,±1). Thus we obtain the form of (58).


