名古屋大学に設置されているGIC社およびHVEE社製の2台の タンデトロン加速器質量分析計の現状

中村俊夫¹⁾, ルディ・パルス²⁾

- 1)名古屋大学年代測定資料研究センター
 464-8602 名古屋市千種区不老町
 Tel: 052-789-2578, Fax: 052-789-3095
- 2) ハイボルテージ・エンジニアリング・ヨーロッパ Amsterdamseweg 63, 3812 RR Amersfoort,
 P.O.Box 99, 3800 AB Amersfoort, The Netherlands Tel: +31-33-4619741, Fax: +31-33-4615291
- キーワード:加速器質量分析,タンデトロン,高輝度セシウムスパッタ負イオン源, 同位体同時入射システム,リコンビネーター,ビームプロフィルモニタ, 電離箱検出器

1. はじめに

1981-1982 年度に名古屋大学年代測定資料研究センターに設置された既存のタンデ トロン加速器質量分析計1号機(米国 General Ionex Corporation (GIC) 社製)に加えて, 新たに1995-1996年度に導入された加速器質量分析計2号機(オランダの High Voltage Engineering Europe (HVEE) 社製の加速器年代測定システム, Carbon Dating System, Model 4130-AMS,本報告では第2世代タンデトロンあるいはタンデトロン2号機と呼 ぶ)は、この1年間調整が進められてきたが、諸処の予想もしないトラブルが発生し、 まだ稼働を開始するには至っていない.しかし、ほぼ故障の原因も出尽くし今夏には 測定利用が開始できるものと期待される.

ここでは、第2世代タンデトロンの特徴を第1世代タンデトロンと比較して紹介す る.第1世代タンデトロンの利用状況や性能等(Nakamura, et al. 1985;中村, 1995, 名古屋大学資料研究センター, 1991-1997)については、本報告書の別稿と重複する のでここでは割愛する.これらについては、別稿を参照して頂きたい.

2. タンデトロン加速器質量分析計2号機の構成

HVEE 社製のタンデトロン加速器質量分析計は,GIC 社製のタンデトロン分析計を 改良した装置であり,寸法や外観は非常によく似ている.しかし,その設計コンセプ トは大きく異なっている.それらは,(1)高正確度・高精度化,(2)安定化,(3)自動化, (4)高能率化である.このねらいが実現していることは,当センターに設置された分析 計とほとんど同一のシステムがオランダのグローニンゲン大学,ドイツのクリスティ アン・アルブレヒト大学(通称はキール大学)に設置されていて,既に本格的な運用 が開始されている(Gottdang et al. 1995; van der Plicht et al. 1995; Nadeau et al. 1997)こと, さらにその運用実績が確かなものであることからも証明されよう.

タンデトロン2号機の構成を図1に, さらにその詳細を図2に示す. 以下にタンデ トロン2号機の各部の詳細を紹介する.

3. タンデトロン2号機の特徴

3.1 高輝度イオン源

イオンビーム入射装置のイオン源は、野外調査において採取されたさまざまな種類の試料,¹⁴C 濃度標準体,および¹⁴C を含まない古い炭素試料から調製されたグラフ ァイトターゲット,さらに鉱物起源あるいは市販の工業グラファイト塊について,全 部で59 個が同時に装着できる高輝度セシウムスパッター負イオン源である.59 個の ターゲットは半径 25cm の円盤(ターゲットホイール)の円周上に装填される(写真 1).グラファイトターゲットは,直径 0.1 mm に絞られたセシウム陽イオンビーム で照射され,通常の測定では 20~30 μ A の¹²C⁻電流強度が出力される.また,直径 2 mm の試料ターゲットを照射するセシウムイオンビームが,試料ターゲット表面を 走査できるように(一力所だけを長く照射すると,その点に直径 0.1 mm 程度の深い 穴がえぐられ,イオンビーム電流出力が次第に弱くなるため),試料台が上下,左右 方向に±5mm の幅で移動可能であり,その移動はコンピューターで自動制御される. 測定の際には,直径 2 mm の円形のターゲット面上の8点を順に走査して計測が行わ れる.

こうして,輝度の高い炭素の負イオンが利用できるため¹⁴Cの計数率を高くして試料1個あたりの測定時間を30分程度に短縮できるし,また59個のターゲットを連続して測定できるため,測定の効率が大幅に向上する.

<u>3. 2 炭素同位体 (¹²C, ¹³C, ¹⁴C) の同時入射系 (Recombinator)</u>

本システムでは, 炭素の安定同位体 ¹²C, ¹³C, および放射性同位体 ¹⁴C が同時に測定 される. すなわち2台の電磁石を一組にして, 2組を線対称に配置した "recombinator system"を用いる(図3).まず2台の電磁石を用いて, イオン源から射出されるイオ ンビームを質量によって分割し, ¹²C⁻, ¹³C⁻, ¹⁴C⁻を別々の軌道に分ける.通常 ¹²C の存

- 30 --

写真1 59 個のターゲットが装填できるターゲットホイール

写真2 タンデトロン2号機に用いられる電離箱検出器

在量は¹³Cの存在量の100倍であり、イオン源で形成された炭素イオンをそのまま加速器に導入すると、加速器の高電圧発生装置に過度の負担がかかり、また加速器からの漏洩放射線量も増加する.そこで、"recombinator system"を用いるシステムでは、 ¹²C⁻, ¹³C⁻, ¹⁴C⁻の軌道が分かれたあとで、回転円盤スリットを用いて¹²Cのビームのみを百分の一の強度に弱める機構(beam chopper)を用いる.

こうして¹²C⁻, ¹³C⁻, ¹⁴C⁻を同時に測定するためには,いったん分割された¹²C⁻, ¹³C⁻, ¹⁴C⁻ビームが再度完全に結合され、タンデム加速器に導入される必要がある.そこで、 リコンビネータの設置は位置の精度が高く、調整も慎重に行われなければならない. 図4に示されるようにリコンビネータから出力されるイオンビームは、2台のビーム プロフィルモニター (Beam Profile Monitor, BPM) で形状(たて、よこのビームの広 がり)が測定される. ビーム上流側にある BPM1 は、ビームの焦点に、また BPM2 は、BPM1 から 700mm 下流に置かれる. BPM1, BPM2 の典型的な例(ビーム調整が 正しく行われている場合)を図5に示す. ビームの形状は、ビームの焦点に置かれた BPM1 で見ると実際によく絞られており、BPM2 においても半値半幅で 3mm 程度に絞 られていることがわかる.

このように複数の同位体を同時に測定することは,分析装置全体の安定性の変動に よる同位体比の変動を打ち消すためにきわめて有効であると考えられる.従来の一般 的な方式では,イオン源の引き出し電圧を高速に切り替えることで,¹²C⁻,¹³C⁻,¹⁴C⁻ の測定が同時にではなく,時間分割法により数ミリー数百ミリ秒の間隔で交互に測定 されている.しかし,同位体比をより正確に測定するには"recombinator system"を用 いる同位体の同時測定法が優れている.

測定される炭素同位体比のうち, ¹³C/¹²C 比は試料ターゲットの炭素同位体分別の効果を補正するために, また試料調製における炭素同位体分別の効果の程度を調査するために, さらに補正された ¹⁴C /¹²C 比は試料の ¹⁴C 年代値の算出のために用いられる. こうして, 本システムでは正確度・安定性の高い ¹⁴C 年代測定が可能である.

3.3 加速器高電圧

加速器の高電圧の発生は、コッククロフト・ワルトン型の交流電源を整流する方式 で行われる.従来は、高電圧の高周波交流(40 kHz)を発生させるために大型の真空 管が用いられていたが、本システムではソリッドステート方式となっている.そこで 2.5MVの加速電圧を安定して供給できる.2.5MVの加速電圧は、加速された負イオン から正イオンを作る荷電変換において、3価の正イオン(¹²C³⁺、¹³C³⁺、¹⁴C³⁺など)が 形成される効率が最も高い.従って、¹⁴Cの検出効率が高く、測定時間の短縮が期待 できる.

高電圧のコントロールは,発電型高電圧計を用いて高電圧を直接読み取りフィード バックする方式と共に,ビーム位置の読み取りができるファラディカップを分析電磁 石の直後に設置して,¹³C³⁺ビームの位置の変動から高電圧の変動を検出しそれを高電

図5 リコンビネータの出力ビームの Beam Profile Monitor による監視例

圧の安定化に利用するスリットフィードバックシステムを装備している. このシステムの機構が図6の上図に示される. 下図には、¹³C³⁺ビームを、スリットを横切らせた際の信号出力の変化が示してある. また図7に、スリットフィードバックシステムが作動していないとき、および作動しているときの加速電圧の安定性が示されている.

こうして,加速電圧がきわめて安定に保たれる (△V/V~6x10⁻⁴, Mous *et al.*, 1994) ため,¹⁴C /¹²C 比測定の再現性や精度の向上が期待できる.

3. 4 重イオン検出器

重イオン検出器としては、イソブタンガス電離箱型検出器(写真2)を用いる. こ こで用いられる電離箱では、アノード(陽極)は、入射イオンビームの方向に2枚に 分かれた電極板で構成される. 入射ビームはその進路にある電離箱内のガスをイオン 化してエネルギーを失い、最終的に電離箱内で止まる. イオンの電離作用で作られた 自由な電子は2枚のアノードで集められ、エネルギー損失率(Δ E)と残余エネルギ ー(Efinal)の2つの信号パルスを形成する. 図8に示すように、この信号を用いて、 ¹⁴C³⁺の計数が行われる. HVEE タンデトロン2号機では、Δ E または Efinal の信号の どちらか一方を用いて¹⁴C を計数することになっている(図9). この電離箱検出器 を用いることにより、目的とする¹⁴C³⁺と他のバックグラウンドイオンとが正確に識別 できる.

<u>3.5 計算機自動制御</u>

加速器質量分析計は、2台のコンピューターにより遠隔操作・制御される.電源装置のつまみを直接さわることは全くない.2台のコンピューターはそれぞれ、(1)装置の各部に供給される電源電圧・電流の制御,真空装置の制御,真空バルブの開閉,真空度のモニター,電源電圧・電流モニター,および(2)測定操作の制御や測定データの収集の役割を分担する.図10にコンピュータによる分析装置の制御系を示す.分析装置に供される高電圧などの制御は高分解能で行う必要がある.このため、一部の制御信号は1/50,000の分解能で出力される.

また,測定の効率化・省力化を図るために,システムは自動制御でオペレータが居 なくても自動運転ができるようになっている.自動運転の際には,各種のインターロ ック機構が設けられており,不慮の事故が発生した場合,システムの状態を記録した のち,自動的に停止し,さらに電話回線などでオペレーターにサービス要求コールを かける機能が付加できるようになっている.こうして,測定の省力化や高能率化が期 待される.

以上に述べた第2世代タンデトロンの特徴を表1にまとめる.

SLIT FEEDBACK STABILISATION

x0 ランテトロン加速器員重力が高之与機に用いられるスラクトシオ トハランシステム 上図:スリットフィードバックシステムの概念図 下図:13C current, error signal の出力の例

error signal (V)

-37-

\boxtimes 8 Schematic diagram of the electronic system for ${}^{14}C/{}^{13}C/{}^{12}C$ measurement

図 8 HVEE 社製タンデトロン加速器質量分析計の炭素同位体(¹²C, ¹³C, ¹⁴C) 計測用 エレクトロニクスシステム

sjunos

Stability of the controls :

Standard analog outputs : approx. 2.10-4

High resolution Output : approx. 2.10-5

図 10 コンピューターによるタンデトロン加速器質量分析計2号機の制御系

表1. 第2世代タンデトロンの特徴

- 1.強力イオン源を装備
 *炭素負イオン出力が従来の10倍以上⇔計数率の増大・測定時間の短縮
 *59個のターゲットの連続測定が可能⇔測定の効率化
- 2.炭素同位体の同時入射系を装備
 * Recombinator を用いた同時入射⇒炭素同位体組成測定の時間的安定性
 *¹²C, ¹³C, ¹⁴C の同時測定
 ⇒炭素同位体分別効果の補正が可能
 となり ¹⁴C 濃度測定の正確度が向上
- 3.加速器高電圧
 *2.5MV まで付加可能(C⁻ ⇒ C³⁺の収率が最大になる最適電圧)
 ⇒検出効率の向上,測定の効率化
 *スリットフィードバックによる高電圧の安定化
 ⇒測定の再現性・精度の向上
- 4. 重イオン検出器

★ Δ E-Eresidual 測定による正確な ¹⁴C 識別 ⇒バックグラウンドの低減による
 6 万年前を越える古い年代の測定

5. 計算機自動制御

*制御系は光ケーブルを使用⇔高電圧サージによる弱電機器の破損を防止. *自動測定 ⇔測定の省力化・高能率化

- 6. 総合性能
 - *****測定誤差 ⇒ ±20~±30 年
 - *測定能率 ⇒ 3000個/年

3.2.5.システム全体としての性能

¹⁴C年代測定の諸性能について,第2世代タンデトロン,第1世代タンデトロン, また,放射能測定法による方法を比較して表2に示す.グローニンゲン大学に導入さ れている第2世代タンデトロンでは,第1世代タンデトロンに比較してイオン源の出 力が一桁大きく,かつ¹⁴Cの検出効率が高いため,現代のショ糖から調製されたグラ ファイトターゲットについて,約20分間の測定で20万個を越える¹⁴Cが計数される. 従って,年代値にして±20年の統計誤差は容易に達成できる.

表2	第1世代,	第2世代タンデトロンと加	牧射能測定による	¹⁴ C年代測定の性	能比較	
Table	2 Compariso	n of performances on ¹⁴ C datir	ig with the 1st- and	l 2nd-Generation	Tandetron	
systems and radioactivity measurements						

Item 2	2nd-Gen. Tandetron AMS at Nagoya Univ.*	1st-Gen. Tandetron AMS at Nagoya Univ.	CO2 gas proportional counter at Isotope Association of Japan
Amount of C necessary	0.05~1 mg	0.2~1 mg	2.2 g
Measurable oldest age	ca. 60,000 yr BP	ca. 60,000 yr BP	35,000~40,000 yr BP
Precision	$\pm 20 \sim \pm 30 \text{ yr}$	$\pm 60 \sim \pm 80 \text{ yr}$	$\pm 80 \text{ yr}$
Counting time $20 \sim 40$ min. (both sample an		$2 \sim 4 \text{ hr}$ $16 \sim 20 \text{ hr}$ nd standard) (sample only)	

*) Expected performances of the second-generation Tandetron.

また,コンピューターによる測定操作の自動化が安心して行えるようになれば,年間 3000 個程度の試料の¹⁴C 測定が可能であるとされている(Mous *et al.*, 1994).

<u>4. おわりに</u>

設置されて1年余を経過しようとしているが,装置の調整が予想外に手間取っている.この間,初期故障が発生し,また加速管の不備が判り修理を行った.初期故障も, ほぼ出尽くした感があり,今後速やかに調整作業が進行するものと期待している.

この調整作業の間,理学部装置開発室の皆さんには部品の手直しを大急ぎでお願い するなど大変お世話になった.ここに記して感謝の意を表する.

参考文献

- Gottdang, A, Mous, D.J.K. and van der Plicht, J.: The HVEE 14C system at Groningen. *Raiocarbon*, **37** (2), 649-656 (1995)
- Mous, D.J.W., Gottdang, A. and van der Plicht, J.: Status of the first HVEE ¹⁴C AMS in Groningen. *Nucl. Instrum. and Methods*, **B92**, 12-15 (1994)
- Nadeau, M,-J, Schleicher, M., Grootes, P.M., Erlenkeuser, H., Gottdang, A., Mous, D.J.
 W., Sarnthein, J.M.and Willkomm, H.: The Leibniz-Labor AMS facility at the Christian-Albrechts University, Kiel, Germany. *Nucl. Instrum. and Methods*, B123, 22-30 (1997).
- 名古屋大学年代測定資料研究センター:名古屋大学加速器質量分析計業績報告書 II ~VIII (1991~1997)

- 中村俊夫:加速器質量分析 (AMS) 法による¹⁴C 年代測定の高精度化および正確度向 上の検討. 第四紀研究, **34**, 173-185 (1995).
- Nakamura, T., Nakai, N., Sakase, T., Kimura, M., Ohishi, S., Taniguchi, M. and Yoshioka, S.: Direct detection of radiocarbon using accelerator techniques and its application to age measurements. *Jpn. J. Appl. Phys.*, **24**, 1716-1723 (1985)
- van der Plicht, J., Aerts, A., Wijma, S. and Zondervan, A. : First results from the Groningen AMS facility. *Radiocarbon*, **37** (2), 657-661 (1995)

Present Status of the GIC- and HVEE- Tandetron AMS Systems of the DMRC, Nagoya University

Toshio NAKAMURA¹⁾ and Ludi PALS²⁾

 Dating and Materials Research Center, Nagoya University Chikusa, Nagoya 464-8602 Japan Tel:+81-52-789-2578, Fax:+81-52-789-3095 E-mail:g44466a@nucc.cc.nagoya-u.ac.jp
 High Voltage Engineering Europe (HVEE) Amsterdamseweg 63, 3812 RR Amersfoort, P.O.Box 99, 3800 AB Amersfoort, The Netherlands Tel: +31-33-4619741, Fax: +31-33-4615291

Key words:accelerator mass spectrometry (AMS), tandetron,

high-intensity cesium sputter negative ion source, simultaneous injection system of isotopes, recombinator system, beam profile monitor, ionization chamber

In the financial years of 1995-1996, we introduced a second-generation Tandetron (a carbon dating system, Model 4130-AMS) which was manufactured by High Voltage Engineering Europe (HVEE) BV, the Netherlands.

Main improvements of the 2nd-generation Tandetron compared with the old GIC (General Ionex Corporation) - Tandetron are: (1) a high intensity cesium sputter ion source is equipped with the new system, so that the ¹⁴C counting rate is almost one order higher than that for the old system. In addition, since up to 59 targets can be loaded at a time, measurements can be conducted more efficiently. (2) carbon isotopes ¹²C⁻, ¹³C⁻ and ¹⁴C⁻ are injected into a tandem accelerator simultaneously, by using a recombinator system, which will archive high accuracy measurements of the carbon isotope ratio. (3) the terminal voltage of the accelerator is 2.5 MV, which gives the maximum yield in producing C^{3+} from C^{-} in the charge exchange process of the tandem accelerator. In addition, a slit feedback system with a position sensitive Faraday cup to monitor the energy of accelerated $^{13}C^{3+}$ ions stabilizes terminal voltage, which provides us highly stable isotoperatio measurement. (4) a gas ionization detector measures E and $E_{residual}$ of incoming ions, to separate $^{14}C^{3+}$ ions from various background ions. Provided that the background ions are rejected efficiently, ^{14}C ages older than 60,000 will be measurable with this system. (5) A computer program is equipped with the system which controls the carbon-isotope-ratio measurement for multi-samples automatically. This provides us a high-efficient measurement without any hard works of operation staff. These improvements are discussed here in detail.

As the results of those improvements stated above, the highest performances in the ¹⁴C measurements with the new Tandetron is: (1) a measurement error of ¹⁴C age can be as small as ± 20 years with a measurement time of a few tens of minutes for a carbon sample of less than 1 mg; (2) a full automatic measurement can be routinely performed; (3) more than 3,000 samples can be measured annually.