A brain atlas of a wild-type inbred strain of the medaka, Oryzias latipes

Yuji Ishikawa, Masami Yoshimoto* and Hironobu Ito*

Division of Biology, National Institute of Radiological Sciences, Chiba 263-8555, Japan and *Department of Anatomy and Laboratory for Comparative Neuromorphology, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo 113-8602, Japan

Abstract In response to the growing interest in the medaka (Oryzias latipes) as a model vertebrate for studies on neurobiology, we provide here an atlas of the adult brain of a wild-type inbred strain of the medaka. We used the HNI inbred strain, which has been used as a standard wild-type medaka in many laboratories. The adult brains were fixed and frontally cut into complete serial sections. The sections were stained with Nissl and Bodian methods. In the present atlas, external features of the brain, photographs of representative levels of the Nissl and Bodian sections, and drawings of these sections are presented. The brain structures were identified based on the recent comparative and hodological studies in various teleost species. In order to demarcate brain structures, hodological experiments using a carbocyanine dye (DiI) as a neuronal tracer have also been carried out. The atlas provides the basis for further developmental, neuroanatomical, neurophysiological, and behavioral investigations using the medaka.

Introduction

In this report, we provide a standard brain atlas of a wild-type inbred strain of the medaka (*Oryzias latipes*).

The knowledge of the organizations of teleost brains is indispensable for developmental, neuroanatomical, neurophysiological, and behavioral investigations in comparative neurology of vertebrates. Teleosts are the most numerous group of vertebrates, encompassing about 25000 species (Nelson, 1994). According to Lauder and Liem (1983), the living teleosts contain four major radiations, the Osteoglossomorpha, Elopomorpha, Clupeomorpha, and Euteleostei (the most diverse group of teleosts).

Small teleost fishes, such as the medaka and the zebrafish (*Danio rerio*), are increasingly being used as vertebrate model systems to study neurobiology (Yamamoto, 1975; Egami *et al.*, 1990;

Kimmel *et al.*, 1991; Iwamatsu, 1993; Kimmel, 1993; Westerfield, 1993; Haffter *et al.*, 1996; Driever *et al.*, 1996; Ishikawa, 1997). Both medaka and zebrafish belong to the Euteleostei (Lauder and Liem, 1983; Nelson, 1994). The medaka (an order of the Beloniformes) belongs to the superorder Acanthopterygii, the most numerous group in the Euteleostei (Nelson, 1994; Naruse, 1996). On the other hand, the zebrafish (belonging to the order Cypriniformes) belongs to a superorder of the Ostariophysi, another highly specialized group within the Euteleostei (Nelson, 1994).

The ostariophysan teleosts including zebrafish have had a unique evolutionary history among the Euteleostei. The comparative studies on visual pathways in the teleost brains suggest that early ostariophysans may have had reduced vision and that the elaborate visual systems of cyprinids reevolved later (Northcutt and Wullimann, 1988; Striedter and Northcutt, 1989). Cyprinids, such as Carassius auratus and Cyprinus caprio, have tetraploidic origins (Ohno, 1970; Ojima, 1983). It is reported that the zebrafish has seven Hox gene clusters, probably as a result of entire genome duplication (Amores et al., 1998). The entire length of the zebrafish genome is about twice that of the medaka genome (Ojima, 1983). Indeed, the brain structures of the cyprinids including zebrafish are strikingly different in several important features from those of acanthopterygian teleost fishes including the medaka (Rupp et al., 1996; Wulliman et al., 1996; Ishikawa, 1997; Anken and Bourrat, 1998).

It is well known that there exists enormous interspecific diversity in brain morphology in teleosts (Lissner, 1923; Herrick, 1924; Evans, 1940; Uchihashi, 1953; Ito, 1978; Meek and Nieuwenhuys, 1997). The brain structures of teleost fishes may be different even among various strains of the same species. Our results using five inbred strains of the medaka revealed that the strains with

^{*} Correspondence to: Dr. Yuji Ishikawa, Division of Biology, National Institute of Radiological Sciences, Anagawa 4-9-1, Inageku, Chiba 263-8555, JAPAN. Tel.: +81-43-251-2111, Fax: +81-43-256-9616, E-mail: ishikawa@nirs.go.jp

different genotypes possess large variation in gross brain morphology (Ishikawa *et al.*, 1996; 1999). The results indicate that there exists large intraspecific variation in gross brain morphology in the medaka.

In order to minimize the variation in a brain atlas of the medaka, we must therefore use a genetically homogenous strain. Recently, Anken and Bourrat (1998) published a brain atlas of a body-colour mutant strain of the medaka. However, they did not state whether the used strain was an inbred or not. In the present study, we used one of the inbred strains of the medaka, HNI strain, which has been used as a standard wild-type medaka in many laboratories.

In our brain atlas, the brain structures were identified mainly based on the recent comparative and hodological information on various acanthopterygian fishes (Ito, 1978; Ito and Vanegas, 1983; Murakami *et al.*, 1983; Ito and Yoshimoto, 1991; Yamane *et al.*, 1996; Yoshimoto *et al.*, 1998). In order to help the identification of brain structures, hodological experiments using a carbocyanine dye (DiI) as a neuronal tracer have also been carried out. Our results were often inconsistent with those of Anken and Bourrat (1998) in delineation and nomenclature of various nuclei and fiber systems.

Materials and Methods

Medaka inbred strain

A medaka inbred strain, HNI-II (Hyodo-Taguchi, 1980, 1990; Hyodo-Taguchi and Sakaizumi, 1993) was used in the present study. The wild populations of the medaka in Japan can be divided into two major genetic groups, the Northern and Southern populations (Sakaizumi et al., 1983). Genetic analysis using DNA sequence data of mitochondrial cytochrome b and 12s ribosomal RNA genes suggests that these two populations diversified more than one million years ago (for a review, see Naruse, 1996). The HNI-II strain is derived from a pair of parent fish belonging to the wild Northern population. The strain has been maintained by full sibling mating for 32 generations, and the probability of homozygosity within the strain is more than 99% (Hyodo-Taguchi, 1980, 1990).

Fish were bred and raised under a common standard set of conditions: about 10 fish were kept in 3 liters of still water in a plastic vessel, and maintained under constant water temperature (26–29°C) and photoperiod (14-h light/10-h dark cycle). The fish were given powdered fish food (Tetra-min, Tetra Werke Co., Mells, Germany) once a day. Under these conditions, the fish mature sexually in 3–6 months after hatching and start to perform mating behaviors at the beginning of the light period. In the medaka, as in other teleost fishes, individuals of the same age and from the same genetic brood vary in size. Sexual maturation is associated with the attainment of a minimal body size rather than age (Sohn and Crews, 1977; Campton and Gall, 1988). Thus, we used sexually matured male fish of a similar body size (about 3 cm total length) of the ages of 3–6 months old.

External features of brains

The fish were anaesthetized with MS222 (0.03%) and perfused through the conus arteriosus with a mixed solution of 2% paraformaldehyde and 2% glutaraldehyde in 0.1M phosphate buffer (pH 7.4) using a small glass pipette. The brains were removed from the skull, post-fixed in the same fresh fixative by immersion for 1.5 h, rinsed in the phosphate buffer, and examined under a dissection microscope (Plates 1 and 2).

Nissl Preparation

The fixed brains were immersed in 20% sucrose in 0.1M phosphate buffer (pH 7.4) for 2 h, embedded in 5% agarose and 20% sucrose in water, and frozen in *n*-hexane (-50°C). Completely serial sections of 40 μ m thick were frontally cut on a cryostat. Sections were Nissl stained with cresyl violet (Panels A in Plates 3–20). The drawings were made with the use of a camera lucida at 100×.

Bodian Preparation

Brains were fixed by immersion in the Bodian II solution, embedded in paraffin, cut frontally into a complete series of serial sections (15 μ m), and stained according to the Bodian-Otsuka method (Otsuka *et al.*, 1960) to visualize fiber systems (Panels B in Plates 3–20). The drawings were made with the use of a camera lucida at 100×.

Dil experiments

Brains were fixed by immersion or perfusion with the 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4). The fixed brains were postfixed at 4°C for at least 2 days. To apply DiI, the fixed brain was washed with the 0.1M phosphate buffer (pH 7.4), blotted dry, and a small hole was made with a sharp needle at a region of the brain. A small crystal of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil, Molecular Probes, Junction City, Oregon) was then pushed into the hole, and the application site was covered with a solution of 6% gelatin (Type A, 300 Bloom, from porcine skin, Sigma, St. Louis, Missouri). The application sites were various regions of the telencephalon, optic tectum, and cerebellum. The brains were put in the 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4) and stored in the dark at 37°C for 6 to 9 days. At the end of the diffusion time, the brains were blotted dry and embedded in 7% gelatin. The embedded specimens were stored in 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) overnight in order to harden the gelatin and then serially sectioned (80 μ m) frontally on a microslicer (DTK-3000, D.S.K., Osaka). The sections were mounted using 50% sucrose and observed under an Olympus epifluorescence microscope (Vanox, AX80) equipped with a rhodamine type filter set.

Nomenclature

We follow the neuroanatomical terms of Nieuwenhuys (1963) and Murakami *et al.* (1983) for telencephalic structures, those of Peter *et al.*, (1975), Sakamoto and Ito (1982) and Ito *et al.*, (1986) for diencephalic structures, and those of Uchiyama *et al.*, (1988) for pretectal structures. Other references were listed in the Index of Abbreviations.

Acknowledgments

We thank Drs. James Albert, Naoyuki Yamamoto, and Nobuhiko Sawai (Department of Anatomy and Laboratory for Comparative Neurology, Nippon Medical School) for their helpful and enjoyable discussions. We also thank Ms. Kyoko Fukusima and Ms. Atsuko Matsumoto for their technical assistance.

References

- Amores, A., A. Force, Y.-L. Yan, L. Joly, C. Amemiya, A. Fritz, R. K. Ho, J. Langeland, V. Prince, Y.-L. Wang, M. Westerfield, M. Ekker and J.H. Postlethwait (1998) *Science*, **282**: 1711–1714.
- Anken, R. and F. Bourrat (1998) *Brain Atlas of the Medakafish*, INRA Editions, Paris.
- Braford, M.R., Jr. and R.G. Northcutt (1983) In

Fish Neurobiology, Vol.2 (Eds., R.G. Northcutt and R.E. Davis), The University of Michigan Press, Ann Arbor, pp.117–163.

- Campton, D.E. and G.A.E. Gall (1988) J. Fish Biol., 33: 203-212.
- Driever, W., L. Solnica-Krezel, A.F. Schier, S.C.F. Neuhauss, J. Malicki, D.L. Stemple, D.Y.R. Stainier, F. Zwartkruis, S. Abdelilah, Z. Rangini, J. Belak and C. Boggs (1996) *Development*, 123: 37–46.
- Egami, N., K. Yamagami and A. Shima (1990) *Biology of the Medaka*, University of Tokyo Press, Tokyo (in Japanese).
- Evans, H.M. (1940) Brain and Body of Fish. Technical Press, London.
- Finger, T.E. (1983) In Fish Neurobiology, Vol.1 (Eds., R.G. Northcutt and R.E. Davis), The University of Michigan Press, Ann Arbor, pp. 285–309.
- Finger, T.E. and S.-L. Tong (1984) J. Comp. Neurol., **229**: 129–151.
- Goldstein, K. (1905) Arch. Mikrosk. Anat., 66: 135 -219.
- Haffter, P., M. Granato, M. Brand, M.C. Mullins, M. Hammerschmidt, D.A. Kane, J. Odenthal, F.J.M. van Eeden, Y.-J. Jiang, C.-P. Heisenberg, R.N. Kelsh, M. Furutani-Seiki, E. Vogelsang, D. Beuchle, U. Schach, C. Fabian and C. Nüsslein-Volhard (1996) *Development*, **123**: 1–36.
- Herrick, C.J. (1924) Neurological Foundation of Animal Behavior. Henry Holt and Co., New York.
- Hyodo-Taguchi, Y. (1980) Zool. Mag., **89**: 283–301 (in Japanese with English abstract).
- Hyodo-Taguchi, Y. (1990) In *Biology of the Medaka* (Eds., N. Egami, K. Yamagami, and A. Shima), Tokyo University Press, Tokyo, pp.129–142 (in Japanese).
- Hyodo-Taguchi, Y. and M. Sakaizumi (1993) *The Fish Biol. J. Medaka*, **5**: 29–30.
- Ishikawa, Y. (1997) Fish Biol. J. Medaka, **9**: 17–31.
- Ishikawa, Y., M. Yoshimoto, N. Yamamoto and H. Ito (1996) Neurosci. Res., 20S: 116.
- Ishikawa, Y., M. Yoshimoto, N. Yamamoto and H. Ito (1999) Brain, Behav. Evol., 53: 2–9.
- Ito, H. (1978) Medical J. Osaka Univ., **28**: 219–228.
- Ito, H. and H. Vanegas (1983) *J. Comp. Neurol.*, **221**: 401–415.
- Ito, H. and M. Yoshimoto (1991) In: *Fish Physiology*, (Eds., Y. Itazawa and I. Hanyu), Kouseisha Kouseikaku, Tokyo, pp.363–402 (in Japanese).

- Ito, H., T. Murakami, T. Fukuoka and R. Kishida (1986) *J. Comp. Neurol.*, **250**: 215–227.
- Iwamatsu, T. (1993) *The Biology of the Medaka*, Scientist-Sha, Tokyo (in Japanese).
- Kimmel, C.B. (1993) Annu. Rev. Neurosci., **16**: 707–732.
- Kimmel, C.B., K. Hatta and J.S. Eisen (1991) *Development* 1991 Supplement 2: 47–57.
- Lauder, G.V. and K.F. Liem (1983) Bull. Mus. Comp. Zool., 150: 95–197.
- Lissner, H. (1923) Wiss. Meeresunters. Abt. Helgolandt, 14: 126–187.
- McCormick, C.A. (1983) In *Fish Neurobiology*, Vol.1 (Eds., R.G. Northcutt and R.E. Davis), The University of Michigan Press, Ann Arbor, pp.179–213.
- McCormick, C.A. and M.R. Braford, Jr. (1994) Brain, Behav. Evol., **43**: 189–205.
- McCormick, C.A. and D.V. Hernandez (1996) *Brain, Behav. Evol.*, **47**: 113–137.
- Meek, J. and R. Nieuwenhuys (1998) In *The Central Nervous System of Vertebrates*, Vol.2 (Eds., R. Nieuwenhuys, H.J. ten Donkelaar, and C. Nicholson), Springer-Verlag, Berlin, pp.759–937.
- Meredith, G.E. and A.B. Butler (1983) *J. Comp. Neurol.*, **220**: 44–62.
- Murakami, T., Y. Morita and H. Ito (1983) J. Comp. Neurol., **216**: 115–131.
- Naruse, K. (1996) Fish Biol. J. Medaka, 8: 1-9.
- Nelson, J.S. (1994) *Fishes of the World* (3rd edition), John Wiley and Sons, New York.
- Nieuwenhuys, R. (1963) J. Hirnforsch., 6: 171– 192.
- Northcutt, R.G. and M.F. Wullimann (1988) In Sensory Biology of Aquatic Animals. (Eds., J. Atema, R.R, Fay, A.N. Popper, and W.N. Tavolga), Springer, New York, pp.515–552.

- Ohno, S. (1970) *Evolution by Gene Duplication*, Springer-Verlag, New York.
- Ojima, Y. (1983) *Fish Cytogenetics*, Suikosha, Tokyo (in Japanese).
- Otsuka, N., A. Miyanaga, F. Tanaka and A. Kimura (1960) *J. Kyoto Pref. Univ. Med.*, **68**: 1125– 1128.
- Peter, R.E., M.J. Macey and V.E. Gill (1975) J. Comp. Neurol., **159**: 103–128.
- Rupp, B., M.F. Wullimann and H. Reichert (1996) *Anat. Embryol.*, **194**: 187–203.
- Sakaizumi, M., K. Moriwaki and N. Egami (1983) *Copeia*, **1983**: 311–318.
- Sakamoto, N. and H. Ito (1982) *J. Comp. Neurol.*, **205**: 291–298.
- Sheldon, R.E. (1912) J. Comp. Neurol., 22: 177– 339.
- Sohn, J.J., and D. Crews (1977) *Proc. Natl. Acad. Sci. U.S.A.*, **74**: 4547–4548.
- Striedter, G.F. and R.G. Northcutt (1989) *J. Comp. Neurol.*, **283**: 342–354.
- Uchihashi, K. (1953) Bull. Jap. Sea Regional Fisheries Res. Lab., **2**: 1–166 (in Japanese).
- Uchiyama, H., S. Matsutani and H. Ito (1988) *Brain, Behav. Evol.*, **31**: 170–180.
- Westerfield, M. (1993) *The Zebrafish Book*, The University of Oregon Press, Eugene, Oregon.
- Wullimann M.F., B. Rupp and H. Reichert (1996) Neuroanatomy of the Zebrafish Brain: A Topological Atlas. Birkhäuser Verlag, Baser.
- Yamamoto, T. (1975) *Medaka (Killifish) Biology* and Strains, Keigaku Publishing Co., Tokyo.
- Yamane, Y., M. Yoshimoto and H. Ito (1996) Brain, Behav. Evol., **48**: 338–349.
- Yoshimoto, M., J.S. Albert, N. Sawai, M. Shimizu, N. Yamamoto and H. Ito (1998) J. Comp. Neurol., **392**: 209–226.

INDEX OF ABBREVIATIONS

ABBREVI- ATIONS	STRUCTURES	ABBREVI- ATIONS	STRUCTURES
а	Mauthner axon	G	granule population
AON	anterior octavus nucleus	Ũ	(McCormick and Hernandez, 1996)
	(McCormick, 1983)	GA	corpus glomerulosum pars anterior
AP	area postrema	GR	corpus glomerulosum pars rotunda
APT	area pretectalis	Н	hypophysis
BO	bulbus olfactorius	HB	habenula
ca	commissura anterior	IM	nucleus intermedius
CAN	caudal nucleus (McCormick, 1983)	LC	locus coeruleus
cans	commissura ansulata	lfb	lateral forebrain bundle
сс	canalis centralis		(fasciculus lateralis telencephali)
cce	commissura cerebelli	LI	lobus inferior
CD	cornu dorsale	11	lemniscus lateralis
CE	corpus cerebelli	М	cellula Mauthneri (Mauthner cell)
cgs	commissure of nucleus gustatorius	MCN	magnocellular octavus nucleus
0	secundarius		(Meredith and Butler, 1983)
ch	commissura horizontalis	MED	medulla oblongata
cho	chiasma opticum	mfb	medial forebrain bundle
СМ	corpus mamillare		(fasciculus medialis telencephali)
cmi	commissura minor	MN	nucleus medialis (McCormick, 1983)
ср	commissura posterior	nALL	nervus lineae lateralis anterior
ĊŔ	crista cerebellaris	NAT	nucleus anterior tuberis (Sheldon, 1912)
ct	commissura transversa	NC	nucleus corticalis
CV	cornu ventrale	NCC	nucleus commissuralis Cajal
Dc	area dorsalis telencephali pars centralis	NCLI	nucleus centralis of inferior lobe
Dd	area dorsalis telencephali pars dorsalis		(Braford and Northcutt, 1983)
dDl	dorsal region of Dl	NDLI	nucleus diffusus lobi inferioris
dDm	dorsal region of Dm	NDTL	nucleus diffusus tori lateralis
Dl	area dorsalis telencephali pars lateralis	NE	nucleus entopeduncularis
DLT	nucleus dorsolateralis thalami	NF	nucleus funiculi
	(Sheldon, 1912; Peter et al., 1975)		(funicular nucleus, Finger, 1983)
Dm	area dorsalis telencephali pars medialis	NFl	nucleus funiculi lateralis
DM	nucleus dorsomedialis thalami		(lateral funicular nucleus, Finger, 1983)
DO	descending octavus nucleus	NFLM	nucleus of fasciculus longitudinalis me-
	(Meredith and Butler, 1983)		dialis
Dp	area dorsalis telencephali pars posterior	NFm	nucleus funiculi medialis
E	epiphysis (pineal organ)		(medial funicular nucleus, Finger, 1983)
EC	efferent cells of octavus nerve	NGS	nucleus gustatorius secundarius
	(Meredith and Butler, 1983)	NI	nucleus isthmi
EG	eminentia granularis	NIP	nucleus interpeduncularis
EW	nucleus Edinger-Westphal	NLT	nucleus lateral tuberis (Sheldon, 1912)
fan	fibrae ansulatae (Sheldon, 1912)	NLV	nucleus lateralis valvulae
fe	fissura endorhinalis	NP	nucleus pretectalis
fd	funiculus dorsalis	NPAC	nucleus paracommissuralis
fl	funiculus lateralis	NPC	nucleus of posterior commissure
flm	fasciculus longitudinalis medialis	nPLL	nervus lineae lateralis posterior
fr	fasciculus retroflexus	NPPv	nucleus posterioris periventricularis
\mathbf{fv}	funiculus ventralis		(Peter <i>et al.</i> , 1975)

ABBREVI- ATIONS	STRUCTURES	ABBREVI- ATIONS	STRUCTURES
NPT	nucleus posterior thalami	slt	sulcus limitans telencephali
NR	nucleus ruber (Goldstein, 1905)		(Nieuwenhuys, 1963)
NRL	nucleus recessus lateralis	SO	secondary octaval population
	(Peter <i>et al.</i> , 1975)		(McCormick and Hernandez, 1996) =
NRP	nucleus recessus posterioris		medial auditory nucleus of medulla
	(Peter <i>et al.</i> , 1975)		(Finger and Tong, 1984)
NRPH	nucleus raphes	sy	sulcus ypsiloniformis
NTA	nucleus tangentialis	TE	telencephalon
	(Meredith and Butler, 1983)	tela ep	tela ependymalis
NTMT	nucleus tractus mesencephalicus nervi	tgs	tractus gustatorius secundarius
	trigemini	tgt	tractus gustatorius tertius
NVT	nucleus ventralis tuberis (Sheldon, 1912)	TL	torus longitudinalis
nI	nervus olfactorius	tmc	tractus mesencephalocerebellaris
nII	nervus opticus	ТО	tectum opticum
nIII	nervus oculomotorius	tol	tractus olfactorius lateralis
NIII	nucleus nervi oculomotorii	tom	tractus olfactorius medialis
nIV	nervus trochlearis	tro	tractus opticus
NIV	nucleus nervi trochlearis	trod	tractus opticus dorsomedialis
nV	nervus trigeminus	trot	tractus rotundus
NVm	nucleus motorius nervi trigemini	trov	tractus opticus ventrolateralis
nVI	nervus abducens	TS	torus semicircularis
nVII	nervus facialis	ttb	tractus tectobulbaris
nVIII	nervus octavus	ttbc	tractus tectobulbaris cruciatus
nIX	nervus glossopharyngeus	ttbr	tractus tectobulbaris rectus
NIXm	nucleus motorius nervi glossopharyngei	tvs	tractus vestibulospinalis
nX	nervus vagus	tV	radix descendens nervi trigemini
NXm	nucleus motorius nervi vagi	VC	valvula cerebelli
OI	oliva inferior	Vd	area ventralis telencephali pars dorsalis
PGc	nucleus preglomerulosus pars medialis	vDl	ventral region of Dl
	commissuralis (Peter et al., 1975)	vDm	ventral region of Dm
PGm	nucleus preglomerulosus pars medialis	vec	ventriculus communis
PO	nucleus preopticus (Peter et al., 1975)	ved	ventriculus diencephali
POm	nucleus preopticus pars magnocellularis	vem	ventriculus mesencephali
	(Peter <i>et al.</i> , 1975)	ver	ventriculus rhombencephali
PON	posterior octavus nucleus	Vi	area ventralis telencephali pars interme-
	(McCormick, 1983)		dia
POp	nucleus preopticus pars parvocellularis	Vl	area ventralis telencephali pars lateralis
	(Peter <i>et al.</i> , 1975)	VM	nucleus ventromedialis thalami
PS	nucleus pretectalis superficialis	Vp	area ventralis telencephali pars posterior
pTGN	preglomerular tertiary gustatory nucleus	Vs	area ventralis telencephali pars supra-
RF	reticular formation		commissuralis
RFm	medial reticular zone	Vv	area ventralis telencephali pars ventralis
rl	recessus lateralis	VIIL	lobus facialis
rv	radix ventralis	XL	lobus vagi
SC	spinal cord		

PLATE 1. Dorsal (A), ventral (B) and left lateral (C) views of a brain of the HNI strain of the medaka. Scale bar = 0.5 mm.

PLATE 2. Line drawings of dorsal (A), ventral (B) and left lateral (C) views of medaka brains. The cranial nerves are shown in panel C. The octaval nerve (nVIII) divides into an anterior (nVIIIa), an intermediate (4), and a posterior (nVIIIp) component. The anterior component divides into 3 smaller nerve branches (1-3). The branch 1 supplies the crista ampullaris of anterior semicircular canal, the branch 2 distributes the macula of utriculus, and the branch 3 ends the crista ampullaris of horizontal semicircular canal. The branch 4 distributes the macula of succulus. The posterior component has 2 smaller branches (5 and 6). The branch 5 distributes the macula of lagena, and the branch 6 supplies the crista ampullaris of the posterior semicircular canal. For other abbreviations, see the list. Scale bars = 0.5 mm.

PLATE 3.

PLATE 4.

PLATE 9.

Y. Ishikawa et al.

PLATE 12.

PLATE **16.**

PLATE 19.

PLATE 20. Frontal Nissl (A) and Bodian-stained (B) sections through the central part of the optic tectum. SM, stratum marginale; SO, stratum opticum; SFGS, stratum fibrosum et griseum superficiale; SGC, stratum griseum centrale; SAC, stratum album centrale; SPV, stratum periventriculare. Scale bar = 10μ m.