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Technical Report
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Here, we report a method for chemical muta-
genesis of the medaka (Oryzias latipes) using N-
ethyl-N-nitrosourea (ENU).

Since the chorions and embryonic structures are
transparent in the medaka and zebrafish (Danio
rerio), the morphological phenotypes can be
examined throughout the entire period of develop-
ment in these fishes. This advantage has enabled
investigators to successfully perform large-scale
mutagenesis in the zebrafish to study genes con-
trolling development in vertebrates (Solnica-
Krezel et al., 1994; Mullins et al., 1994; Haffter et
al., 1996; Driever et al., 1996). However, no such
studies have yet been performed in medaka.

According to Nelson (1994), the teleosts con-
tain four major subdivisions, the Osteoglossomor-
pha, Elopomorpha, Clupeomorpha, and Euteleostei
(the most recently developed teleosts). Both medaka
and zebrafish belong to the Euteleostei. The medaka
(an order of the Beloniformes) belongs to the super-
order Acanthopterygii, the most numerous and
recently developed group in the Euteleostei
(Nelson, 1994; Naruse, 1996). On the other hand,
the zebrafish (belonging to the order Cyprini-
formes) does not belong to the superorder Acan-
thopterygii but to the Ostariophysi, a relatively
“old” group, in the Euteleostei.

The ostariophysan teleosts including zebrafish
belong to the most derived group of teleosts and
may have had a unique and specific evolutionary
history among the Euteleostei (Northcutt and
Waullimann, 1988; Striedter and Northcutt, 1989).
It is well known that many ostariophysans, such
as Carassius auratus and Cyprinus caprio, have
tetraploidic origins (Ojima, 1983; see also Fujii
and Ojima, 1983). Postlethwait er al. (1994) esti-
mated the entire length of the zebrafish genome to
be approximately 1700 Mb, which corresponds to

about twice that of the medaka genome (Uwa and
Iwata, 1981; Tanaka, 1995). It is reported that the
zebrafish has seven Hox gene clusters probably as
a result of entire genome duplication (Amores et
al., 1998). On the other hand, the pufferfish
(Acanthopterygii) has four, as do typical terrestrial
vertebrates (Amores et al., 1998; see also
Wittbrodt ef al., 1998). If many developmental
genes have two nonallelic copies that are function-
al, it may be difficult to recover all classes of
developmental mutations in the zebrafish.

It is of interest to determine what classes of
developmental mutations are recovered in the non-
ostariophysans, such as the acanthopterygians. We
have studied genetic malformations induced by
environmental mutagens in the medaka, and started
a pilot screen of medaka developmental mutants
(Ishikawa, 1996; 1997; Ishikawa and Hyodo-
Taguchi, 1995; 1997; Ishikawa et al., 1997).
A method for the induction of mutations by X-ray
irradiation was reported previously (Ishikawa and
Hyodo-Taguchi, 1997). Here, we report a muta-
genesis method using ENU. According to this
method, visible mutations are recovered at the
frequency of about 0.82 mutations per single
mutagenized spermatogonia.

Preparation
1. Fish and breeding: A medaka inbred strain,
HO4C (Hyodo-Taguchi, 1980, 1990; Hyodo-
Taguchi and Sakaizumi, 1993) is used. This
orange-red variety strain has been maintained
by full sibling mating for 80 generations, and
the probability of homozygosity within the
strain is greater than 99% (Hyodo-Taguchi,
1980, 1990; Hyodo-Taguchi and Sakaizumi,
1993). Fish are bred and raised under standard
conditions: about 10 fish are kept in 3 liters of
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still water in a 6 ¢-plastic vessel, and maintain-
ed under constant water temperature (26—
29°C) and photoperiod (14-h light/10-h dark
cycle). The fish are given powdered fish food
(Tetra-min, Tetra Werke Co., Mells, Germany)
once a day. Under these conditions, the fish
mature sexually 3—6 months after hatching and
begin to display mating behavior at the begin-
ning of the light period. Several single-pair
crosses are required to be tested in advance,
and only successful pairs are used in the
experiment.

2. A dissection microscope (for example, Nikon
SMZ-10).

3. An isopac bottle of N-ethyl-N-nitrosourea (N-

nitroso-N-ethylurea, ENU, Sigma, N3385, 1 g).

. Methylene blue.

. Distilled water.

. A 100-ml syringe (Terumo).

. Several 10-ml syringes (Terumo).

. Ten 300-ml grass vessels.

9. A 3-/ beaker.

10. A fish net (made of a fine nylon mesh).

11. Six-£ plastic vessels for keeping fish.

12. Six-cm-diameter petri dishes.

13. Paper towels.
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Chemical treatment

All work should be performed in a chemical
hood with appropriate protective clothing. After
use, solutions containing ENU and the glassware
used to hold ENU should be inactivated by treat-
ment with 5% sodium hydroxide solution accord-
ing to the Safety Data Sheets for Carcinogenic
Substances (Safety Data Sheets for the DHEW
Guidelines for the Laboratory Use of Chemical
Substances Posing a Potential Occupational Car-
cinogenic Risk, 1979).

1. Inject distilled water (100 ml) into an ENU
bottle with a 100-ml syringe and incubate for 1
hr with occasional shaking to dissolve the
ENU.

2. Remove 2.4 ml of the ENU solution from the
sealed bottle with a 10-ml syringe and add to
97.6 ml of distilled water in a 300-ml glass
vessel. The final concentration of the ENU is 2
mM, and the solution should be used immedi-
ately. Typically, 10 ENU solutions are pre-
pared in glass vessels in advance.

3. Transfer a male fish into the 300-ml glass ves-
sel containing 2 mM ENU and let it swim for
2 hr. Typically, 10 fish are individually treated
in this manner.

4. At the end of the treatment, remove the muta-
genized fish from the vessel with a fish net.

5. Wash the mutagenized fish several times with
distilled water.

6. Transfer the treated fish to water (1 £) in 6-/
plastic vessels and let them swim and recover
for 4 hr. Until this step about 25% of the treat-
ed fish may die due to the toxic effects of
ENU. Only healthy male fish are used for
three-generation crosses.

7. At the end of the experiments, pour all solu-
tions containing ENU into concentrated sodi-
um hydroxide solution in a 3 /-beaker to inac-
tivate the ENU.

Three-generation crosses
A schematic illustration of the three-generation
crosses is shown in Fig. 1.

1. Pair-mate each mutagenized male fish with an
untreated female fish to produce F; eggs.
According to Egami and Hyodo-Taguchi
(1967), the treated stage of spermatogenic
cells is predicted from the number of days
after ENU treatment. Eggs laid at 1-3 days,
4-9 days and 30-36 days after ENU treatment
are considered to have been fertilized by
ENU-treated sperm, spermatids and spermato-
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Figure 1. Schematic illustration of three-generation crosses. A
recessive mutation (asterisk) in a male germ cell in the parental
generation is driven to homozygosity in the F; generation.
Dominant lethals are indicated by D.
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gonia, respectively. A high mutation rate is
recovered in eggs fertilized by ENU-treated
spermatogonia.

2. Raise the F; eggs to adult fish.

3. Pair-mate each F,; fish with an untreated part-
ner to obtain F, eggs.

4. Raise the F, eggs to adult fish.

. Perform several single-pair crosses between

siblings for each F, progeny.
6. Collect eggs (F3) seperately.

w

Detection of morphological mutations

1. Rub egg clusters between two small pieces of
paper towel to isolate single eggs.

2. Place single eggs in a 6-cm petri dish contain-
ing 3 ml of distilled water supplemented with
0.00001% methylene blue.

3. Observe embryos once a day under a dissec-
tion microscope to score the phenotypes, until
normal fry hatch at about 7-10 days after fer-
tilization.

4. A phenotype is considered to represent a
recessive morphological mutation if about
25% of all embryos develop a consistent set of
defects before death or exhibit comparable ab-
normalities at hatching.

5. The spontaneous malformation frequency is
5.6% (Ishikawa and Hyodo-Taguchi, 1997).
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