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Abstract. We consider an effective lower bound of the Siegel–Tatuzawa type for general
L-functions with three standard assumptions. We further assume three hypotheses in this
paper that are essential in developing our argument. Under these assumptions and hypotheses,
we prove a theorem of Siegel–Tatuzawa type for general L-functions. In particular, we prove
such a theorem for symmetric power L-functions under certain assumptions.

1. Introduction

Generally speaking, the value at s = 1 of twisted L-functions is deeply connected with real
zeros of it. In the case of Dirichlet L-functions, the Siegel theorem asserts that for any ε > 0,
there exists a positive non-effective constant C(ε) such that L(1, χ) > C(ε)d−ε , where χ
is a real primitive Dirichlet character and d is the conductor of it (see Davenport [4]). This
implies thatL(σ, χ) does not have real zeros for σ > 1 − C′(ε)d−ε , where the constantC′(ε)
is positive and non-effective. In 1951, Tatuzawa proved that C(ε) in the theorem of Siegel
can be effective except for at most one real character (see [16]).

Let f be a Maass form with respect to the Hecke congruence subgroup �0(N), which is
an eigenfunction of the Laplacian with the eigenvalue λ, and F the adjoint square lift of f in
the sense of Gelbart–Jacquet [5]. Then it holds that

L(s, f ⊗ f)= ζ(s)LN (s)L(s, F ),

where L(s, f ⊗ f) is the Rankin–Selberg L-function associated with f, L(s, F ) is the
L-function attached to F and LN(s) is the product of bad Euler factors. In [8], Hoffstein
and Lockhart proved the existence of an effective constant c(ε)= c(ε, F ) > 0 for which

L(1, F )≥ c(ε)(λN)−ε

holds for all F with at most one exception. This is an analogue of the Siegel–Tatuzawa
theorem. Hoffstein and Lockhart mentioned that their method can be applied to holomorphic
cusp forms of weight k. In fact, a modification of their method shows that an analogue of the
Siegel–Tatuzawa theorem holds for the Rankin–Selberg L-function Lf⊗f associated with a
holomorphic cusp form f . Recently it has been proved that a much stronger result, which
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asserts the non-existence of the Siegel zero, is true for a few types of L-functions (see the
appendix of Hoffstein and Lockhart [8], and also Banks [2], Hoffstein and Ramakrishnan [9]
and Ramakrishnan and Wang [14]). For instance, the above L-function Lf⊗f does not have
the Siegel zero.

In order to prove the theorems of Siegel–Tatuzawa type, a standard method is to introduce
a suitable auxiliary Dirichlet series which is constructed by a product of several related L-
functions. In the above cases, such auxiliary Dirichlet series (see Davenport [4] and Hoffstein
and Lockhart [8]) have a simple pole at s = 1 and non-negative coefficients. These conditions
have been essentially used in the known classical proofs of the theorems of Siegel–Tatuzawa
type.

In general, it is often not so difficult to find an auxiliary Dirichlet series constructed by
a product of some L-functions and has non-negative coefficients, therefore we may assume
that hypothesis (H1) below holds. However, it is not always the case that the order of the pole
of it at s = 1 is simple. In this paper we propose a more flexible condition (H2) below on the
order of the pole, which is suitable for the purpose of discussing the matter of theorems of
Siegel–Tatuzawa type. If the order of the pole is odd and satisfies (H2), then our argument is
basically similar to that of Hoffstein and Lockhart [8]. However, the even order case requires
us to introduce further new ideas to prove the theorems of Siegel–Tatuzawa type.

In literature, some auxiliary series with poles of even order have been introduced to
show Siegel-type theorems. For example, in the case of Rankin–Selberg L-functions Lf⊗g
associated with two cusp forms f �= g, the first author introduced an auxiliary Dirichlet series
for the proof of the analogue of Siegel’s theorem for Lf⊗g (see [10]). It has non-negative
coefficients, but the order of its pole is two. (Recently, Ramakrishnan and Wang proved that
Lf⊗g does not have the Siegel zero in [14].) In the case of L-function Lf associated with a
cusp form f , Golubeva and Fomenko introduced an auxiliary Dirichlet series for the proof
of the analogue of Siegel’s theorem for Lf (see [6]). It also has positive coefficients and
a double pole at s = 1. (Hoffstein and Ramakrishnan proved Lf does not have the Siegel
zero in [9].) Golubeva and Fomenko also considered an auxiliary Dirichlet series which has
positive coefficients and a pole of order 4 in [7]. However, those auxiliary series seem to be
not suitable for handling theorems of Siegel–Tatuzawa type.

In this paper, we introduce a new type of auxiliary Dirichlet series and develop a method
of proving the theorem of Siegel–Tatuzawa type for general L-functions.

Let s = σ + it, let χ be a real Dirichlet character of the modulus d and let k be a positive
integer. We consider the general L-functions Lk(s, χ) defined by the Euler product of the
form

Lk(s, χ)=
∏

p:prime

J (k)∏
j=1

(
1 − ak(j, p)χ(p)

ps

)−1

,

where J (k) is a positive integer and the coefficients ak(j, p) are complex numbers with
|ak(j, p)| ≤ 1 satisfying |ak(j, p)| = 1 for almost all prime p. This converges absolutely for
σ > 1. Throughout this paper we assume the following.
(A1) The L-function Lk(s, χ) can be continued meromorphically to the whole plane. It has

a possible pole at s = 1 if the character χ is principal, while it is entire if χ is non-
principal.
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(A2) There exists an absolute constant 0< δk < 1/2 such that for any ε > 0 the vertical
estimate

Lk(s, χ)� exp(exp(ε|t|)), |t| → ∞,

holds uniformly in −δk ≤ σ ≤ 1 + δk.
(A3) Let χ be primitive. Then there exists a natural number N(k), real numbers αν(k) > 0

and complex numbers βν(k, χ) (1 ≤ ν ≤N(k)) such that the functional equation

L̃k(s, χ)=Wk,χ L̃k(1 − s, χ)

holds with

L̃k(s, χ)=Qsk,χ

N(k)∏
ν=1

�(αν(k)s + βν(k, χ))Lk(s, χ),

where Qk,χ is a real number satisfying Qk,χ � dγ (k) (γ (k) is a natural number) and
Wk,χ is a complex number with |Wk,χ | = 1.

These assumptions are standard and are usually (sometimes conjecturally) known to be
satisfied.

Remark 1. Here, we assume the Ramanujan type of condition on the magnitude of ak(j, p).
However, the condition seems to be unnecessary in many cases. In this paper, we use the
estimate (3) below which has been proved by Carletti et al in [3]. They proved it under the
Ramanujan condition, but Molteni proved it under a different type of assumption instead of
the Ramanujan condition (see [11]).

The plan of this paper is as follows. In Section 2 we give the statement of our main
theorem (Theorem 1). For the preparation of the proof of it, we show some lemmas in
Section 3, and we prove the main theorem in Section 4. In Section 5, we apply the main
theorem to the case of symmetric powerL-functions and show their Siegel–Tatuzawa theorem
(Theorem 2).

2. Statement of the main theorem

We fix an L-function L1(s, χ) satisfying assumptions (A1)–(A3), where χ is a real Dirichlet
character. Our purpose is to prove an analogue of the Siegel–Tatuzawa theorem for L1(s, χ).
We assume that there exist suitableL-functionsLk(s, χ) (2 ≤ k ≤K) satisfying assumptions
(A1)–(A3) and natural numbers ek such that the auxiliary function

�(s, χ)=
K∏
k=1

Lk(s, χ)
ek

satisfies hypotheses (H1) and (H2) below. For σ > 1, we have

log�(s, χ)=
∑
p:prime

∞∑
h=1

χh(p)

hphs

K∑
k=1

J (k)∑
j=1

ak(j, p)
hek. (1)

We put b(h, p)= ∑K
k=1

∑J (k)
j=1 ak(j, p)

hek . Then we have the following hypotheses.
(H1) Positivity. The coefficients b(h, p) are non-negative.
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(H2) Pole order condition. In the case χ = χ0 is the trivial character, we use the notation
�(s) in place of �(s, χ0), and we denote by r the order of the pole of �(s) at s = 1.
Then 1 ≤ r ≤ e1.

Concerning L1(s, χ), we add one more hypothesis.
(H3) Zero-free region off the real axis. There exists an effective positive constant C1 such

that L1(s, χ) has no zeros in the region

σ > 1 − C1

log d

for |t| ≤ 1, t �= 0.

Remark 2. The hypothesis (H3) is automatically satisfied in many cases. In fact, let

L∗
1(s, χ)=

∏
p:prime

J (1)∏
j=1

(
1 − a1(j, p)χ(p)

ps

)−1

,

where a1(j, p) is the complex conjugate of a1(j, p). If L∗
1(s, χ)= L1(s, χ) or, more

generally, if the function �(s, χ) has L∗
1(s, χ) as one of the factors, we can show that there

is an effective positive constant C1 such that L1(s, χ) �= 0 for

σ > 1 − C1

log(d(|t| + 2))

except for the real axis, by using the ordinary method under hypotheses (H1) and (H2).
Therefore, we in particular find that L1(s, χ) satisfies hypothesis (H3). This will be explained
at the end of Section 3.

The hypotheses (H1)–(H3) are crucial in the proof of the Siegel–Tatuzawa theorem for
L1(s, χ). Under these hypotheses, we can prove the following result, which is the main
theorem of the present paper.

THEOREM 1. We denote by X the set of all real primitive Dirichlet characters. If we find
L-functions Lk(s, χ) satisfying assumptions (A1)–(A3) and hypotheses (H1)–(H3), then for
any ε > 0, there exists an effective positive constant C(ε) such that

|L1(1, χ)|> C(ε)

dε
(2)

for any χ ∈X, except for at most one possible element of X. Here d is the conductor of χ .

Remark 3. The important point in the theorem is that the constant C(ε) is effective. If we
do not require its effectiveness, the inequality of the form (2) can be shown for any χ ∈X
without exception. This claim is an analogue of Siegel’s theorem. As explained at the end of
Section 4, this can be deduced easily from Theorem 1.

3. Preliminaries

First of all, we recall some known facts. Assumptions (A1)–(A3) imply that our Lk(s, χ)
is an example of ‘general L-functions’ in the sense of Carletti et al [3] if χ is primitive.
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Therefore, we have
L
(n)
k (1, χ)� dε (3)

for any non-negative integer n and an arbitrarily small number ε > 0 where χ is a non-
principal Dirichlet character of the modulus d . This can be easily reduced to the case when
χ is primitive, and follows from Theorem 2 in [3] for primitive χ . For −1 ≤ σ ≤ 2 it follows
uniformly that

−L
′
k

Lk
(s, χ)= m(k)

s − 1
−

∑
|t−γ |≤1

1

s − ρ
+O(log(d(|t| + 2))), (4)

where the order of the pole of Lk(s, χ) at s = 1 is denoted by m(k), ρ = β + iγ runs over
the zeros of Lk(s, χ) and χ is a Dirichlet character of the modulus d . This is again reduced
to the primitive case, which is Lemma 4 in [3].

We put

φ(s, χ)=�(s)�(s, χ),

φ(s, χ1, χ2)=�(s)�(s, χ1)�(s, χ2)�(s, χ1χ2),

where the Dirichlet characters χ , χ1 and χ2 are primitive and real with the conductors
d > 1, d1 > 1 and d2 > 1, respectively. Moreover χ1χ2 is not trivial. These functions are the
analogue of classical auxiliary functions in the theory of the zeros of Dirichlet L-functions.
A novelty of the present method is to introduce the new auxiliary function

ψ(s, χ)= ζ(s)φ(s, χ),

where ζ(s) is the Riemann zeta function. This function is helpful for the proof of the
main theorem when there is no real zero of L1(s, χ) near s = 1. The functions φ(s, χ),
φ(s, χ1, χ2) and ψ(s, χ) are convergent absolutely for σ > 1. We write their Dirichlet series
expansion as follows:

φ(s, χ)=
∞∑
n=1

δ(n)n−s ,

φ(s, χ1, χ2)=
∞∑
n=1

τ (n)n−s ,

ψ(s, χ)=
∞∑
n=1

ω(n)n−s .

From (1) we have

log φ(s, χ)=
∑
p:prime

∞∑
h=1

b(h, p)

h
(1 + χh(p))p−hs (5)

and

log φ(s, χ1, χ2)=
∑
p:prime

∞∑
h=1

b(h, p)

h
(1 + χh1 (p))(1 + χh2 (p))p

−hs, (6)

hence hypothesis (H1) implies that δ(1)= τ (1)= ω(1)= 1 and δ(n), τ (n) and ω(n) are non-
negative real numbers for n > 1. We prove the following four lemmas on these functions. The
residue of the function f (s) at s = a is denoted by Ress=a(f (s)).
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LEMMA 1. Let β0 be a real number with 3/4< β0 < 1 and � be a sufficiently large natural
number. Then there exists an effective constant c1 > 0, independent of β0, such that

φ(β0, χ)

�! + Res
s=1−β0

(
φ(s + β0, χ)d

c1s

s(s + 1) · · · (s + �)

)
� 1.

LEMMA 2. The definitions of β0 and � are the same as in Lemma 1. Then there exists an
effective constant c2 > 0, independent of β0, such that

φ(β0, χ1, χ2)

�! + Res
s=1−β0

(
φ(s + β0, χ1, χ2)(d1d2)

c2s

s(s + 1) · · · (s + �)

)
� 1.

LEMMA 3. The definitions of β0 and � are the same as in Lemma 1. Then there exists an
effective constant c3 > 0, independent of β0, such that

ψ(β0, χ)

�! + Res
s=1−β0

(
ψ(s + β0, χ)d

c3s

s(s + 1) · · · (s + �)

)
� 1.

LEMMA 4. There exists an effective positive constant c4 such that φ(s, χ1, χ2) has at most
r real zeros (counted with multiplicity) in the range

1 − c4

log d1d2
< σ < 1.

Lemmas 1, 2 and 3 are analogues of Proposition 1.1 in [8]. We only show the proofs of
Lemmas 1 and 4, because the proofs of Lemmas 2 and 3 are similar to that of Lemma 1.

Proof of Lemma 1. Let x > 2 be a non-integer. It is known that

1

2πi

∫ 1+i∞

1−i∞
xs ds

s(s + 1)(s + 2) · · · (s + �)
=




1

�!
(

1 − 1

x

)�
if x > 1,

0 if 0< x ≤ 1,

for any integer �. By using the above formula, we have

1

2πi

∫ 1+i∞

1−i∞
φ(s + β0, χ)x

s

s(s + 1)(s + 2) · · · (s + �)
ds =

∑
n<x

δ(n)

nβ0

1

�!
(

1 − n

x

)�
>

1

�!2� (7)

because δ(n) are non-negative and δ(1)= 1. From assumptions (A2) and (A3) and the
Phragmén–Lindelöf theorem, we obtain

Lk(σ + it, χ)� dγ (k)(1+ε−σ)(1 + |t|)A(k)(1+ε−σ)

and
Lk(σ + it)� (1 + |t|)A(k)(1+ε−σ) (t �= 0)

for −ε < σ < 1 + ε, where A(k)= ∑N(k)
ν=1 αν(k). Hence,

φ(s, χ)� dγ (K)(1+ε−σ)(1 + |t|)2A(K)(1+ε−σ),

where γ (K)= ∑K
k=1 γ (k)ek and A(K)= ∑K

k=1 A(k)ek. From this estimate, the shifting of
the path of integration in (7) to σ = 1/2 − β0 shows that

1

2πi

∫ 1+i∞

1−i∞
φ(s + β0, χ)x

s

s(s + 1)(s + 2) · · · (s + �)
ds

= φ(β0, χ)

�! + Res
s=1−β0

(
φ(s + β0, χ)x

s

s(s + 1)(s + 2) · · · (s + �)

)
+O(dγ (K)(1/2+ε)x1/2−β0) (8)
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for all � ≥ �0, where �0 = �0(A(K)) is taken to be sufficiently large. Then results (7) and (8)
imply that

φ(β0, χ)

�! + Res
s=1−β0

(
φ(s + β0, χ)x

s

s(s + 1) · · · (s + �)

)
+O(dγ (K)(1/2+ε)x1/2−β0) ≥ 1

�!2� . (9)

We now take x = dc1 . It is easy to find an effective constant c1 > 0 such that the error term
on the left-hand side of (9) is smaller than (�!2�+1)−1. We complete the proof of Lemma 1. �

Proof of Lemma 4. From (4) we have

−φ
′

φ
(s, χ1, χ2)= r

s − 1
−

∑
|t−γ |≤1

1

s − ρ
+O(log(d1d2(|t| + 2))) (10)

for −1 ≤ σ ≤ 2, where ρ = β + iγ runs over the zeros of φ(s, χ1, χ2). We know that

−φ
′

φ
(σ, χ1, χ2) ≥ 0 (11)

for σ > 1 from (6). If we assume that there exist r + 1 real zeros ρ1 ≤ ρ2 ≤ · · · ≤ ρr+1 of
φ(s, χ1, χ2), then we obtain

0 ≤ r

σ − 1
−
r+1∑
j=1

1

σ − ρj
+ A1 log d1d2 ≤ r

σ − 1
− r + 1

σ − ρ1
+ A1 log d1d2

for σ > 1 by using (10) and (11), where A1 is an effective positive constant. We put
0<A2 < 1/A1 and σ = 1 + A2/ log d1d2. Then it follows that there exists an effective
positive constant c4 such that

ρ1 ≤ 1 − c4

log d1d2
. �

Lastly in this section we explain how to show the claim of Remark 2. This can be done
quite similarly to the argument of Davenport [4, Section 14]. In fact, if ρ = β + iγ is a zero
of L1(s, χ) with |γ | ≥ 1/2, then, using (4), we can show

4e1

σ − β
≤ 3r

σ − 1
+ �

(
r

σ − 1 + 2iγ

)
+O(log(d(|γ | + 2)))

for σ > 1, from which

β ≤ 1 − C1

log(d(|γ | + 2))

follows under hypothesis (H2). If 0< |γ |< 1/2, we use the fact that not only ρ but also
ρ = β − iγ are the zeros of �(s, χ). This follows from the assumption of Remark 2. By
using this fact we obtain

8e1

σ − β
≤ 3r

σ − 1
+ �

(
r

σ − 1 + 2iγ

)
+O(log(d(|γ | + 2)))

≤ 4r

σ − 1
+O(log(d(|γ | + 2))),

which implies the desired result.
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4. Proof of the main theorem

Proof of Theorem 1. We fix a sufficiently small real number ε1 with 0< ε1 < 1/4. We divide
the argument into three cases.

Case 1. If r is an odd (respectively, even) number, we consider the case that φ(s, χ) has
an even (respectively, odd) number of real zeros in the range 1 − ε1 ≤ σ ≤ 1. We see that
φ(σ, χ) tends to −∞ (respectively, +∞) as σ → 1 − 0 if r is an odd (respectively, even)
number. Therefore, in any case we have φ(1 − ε1, χ) ≤ 0. Taking β0 = 1 − ε1 in Lemma 1,
we obtain

Res
s=ε1

(
φ(s + 1 − ε1)d

c1s

s(s + 1) · · · (s + �)

)
� 1. (12)

We write the Laurant expansion of φ(s, χ) at s = 1 as

φ(s, χ)=
∞∑

j=−r
αj (s − 1)j ,

where α−r �= 0. Then we see that

Res
s=ε1

(
φ(s + 1 − ε1)d

c1s

s(s + 1) · · · (s + �)

)
=

∑
−r≤j,0≤m,n0,...,n�
j+m+n0+···+n�=−1

(−1)n0+···+n�αj dc1ε1(c1 log d)m

m!ε1
n0+1(ε1 + 1)n1+1 · · · (ε1 + �)n�+1 .

(13)
From (12) and (13) we obtain

dc1ε1
∑

−r≤j, 0≤m,n0,...,n�
j+m+n0+···+n�=−1

αj (log d)m �ε1 1. (14)

Next we consider the coefficients αj for −r ≤ j ≤ −1. We write the Laurant expansions
at s = 1 of �(s) and Lk(s, χ) as

�(s)=
∞∑

j=−r
λj (s − 1)j

and

Lk(s, χ)=
∞∑

mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk ,

respectively. We have

φ(s, χ)=
( ∞∑
j=−r

λj (s − 1)j
)

×
{ e1∑
l1=0

(
e1

e1 − l1

)
L1(1, χ)

e1−l1
( ∞∑
m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1

)l1}

×
K∏
k=2

( ∞∑
mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk
)ek
. (15)
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Therefore, we see that the terms αj (s − 1)j , −r ≤ j ≤ −1, appear in the expansion of the
following part of the right-hand side of (15):

( −1∑
j=−r

λj (s − 1)j
){ r−1∑

l1=0

(
e1

e1 − l1

)
L1(1, χ)e1−l1

( r−1∑
m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1

)l1}

×
K∏
k=2

( r−1∑
mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk
)ek

= L1(1, χ)

( −1∑
j=−r

λj (s − 1)j
)

×
{ r−1∑
l1=0

(
e1

e1 − l1

)
L1(1, χ)

e1−l1−1
( r−1∑
m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1

)l1}

×
K∏
k=2

( r−1∑
mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk
)ek
. (16)

Recalling hypothesis (H2), we see that e1 − l1 − 1 ≥ 0. By using (3) and (16), we obtain that
αj �ε1 |L1(1, χ)|dcε1 for −r ≤ j ≤ −1. Here, and in what follows, c is an effective positive
constant, not necessarily the same at each occurrence. This estimate and (14) imply (2).

Case 2. If r is an even (respectively, odd) number, we consider the case that φ(s, χ) has
an even (respectively, odd) number of real zeros in the range 1 − ε1 ≤ σ ≤ 1 and L1(s, χ)

has no real zeros in the same range. Thenψ(s, χ) also has an even (respectively, odd) number
of real zeros if r is an even (respectively, odd) number. The order of the pole of ψ(s, χ) at
s = 1 is r + 1, hence ψ(σ, χ) tends to −∞ (respectively, +∞) as σ → 1 − 0 if r is an even
(respectively, odd) number. Therefore, we haveψ(1 − ε1, χ)≤ 0. Hence, taking β0 = 1 − ε1

in Lemma 3, we obtain

Res
s=ε1

(
ψ(s + 1 − ε1, χ)d

c3s

s(s + 1) · · · (s + �)

)
� 1.

We write the Laurant expansion of ψ(s, χ) at s = 1 as

ψ(s, χ)=
∞∑

j=−r−1

α′
j (s − 1)j ,

where α′−r−1 �= 0. We obtain that

dc3ε1
∑

−r−1≤j,0≤m,n0,...n�
j+m+n0+···+n�=−1

α′
j (log d)m �ε1 1, (17)

by using the same argument as in the proof of (14). We write (near s = 1)

ζ(s)�(s)=
∞∑

j=−r−1

λ′
j (s − 1)j .
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It is clear that λ′−r−1 �= 0. We have

ψ(s, χ)

=
( ∞∑
j=−r−1

λ′
j (s − 1)j

){ e1∑
l1=0

(
e1

e1 − l1

)
L1(1, χ)e1−l1

( ∞∑
m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1

)l1}

×
K∏
k=2

( ∞∑
mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk
)ek
. (18)

We rearrange the right-hand side as follows:

ψ(s, χ)=
( ∞∑
j=−r−1

λ′
j (s − 1)j

){( ∞∑
m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1

)e1

+
e1−1∑
l1=0

(
e1

e1 − l1

)
L1(1, χ)e1−l1

( ∞∑
m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1

)l1}

×
K∏
k=2

( ∞∑
mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk
)ek

=
( ∞∑
j=e1−r−1

λ′
j−e1

(s − 1)j
)( ∞∑

m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1−1
)e1

×
K∏
k=2

( ∞∑
mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk
)ek

+
( ∞∑
j=−r−1

λ′
j (s − 1)j

)
L1(1, χ)

×
{e1−1∑
l1=0

(
e1

e1 − l1

)
L1(1, χ)e1−l1−1

( ∞∑
m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1

)l1}

×
K∏
k=2

( ∞∑
mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk
)ek
. (19)

Therefore, we see that the terms α′
j (s − 1)j , −r − 1 ≤ j ≤ −2, appear in the expansion of

the following part of the right-hand side of (18):( −2∑
j=−r−1

λ′
j (s − 1)j

)
L1(1, χ)

×
{ r−1∑
l1=0

(
e1

e1 − l1

)
L1(1, χ)

e1−l1−1
( r−1∑
m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1

)l1}

×
K∏
k=2

( r−1∑
mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk
)ek
. (20)

Recalling hypothesis (H2), we see that e1 − l1 − 1 ≥ 0. By using (3) and (20) we obtain
that α′

j �ε1 |L1(1, χ)|dcε1 for −r − 1 ≤ j ≤ −2. We next consider the term α′
−1(s − 1)−1.
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We see that it appears in the expansion of the following part of the right-hand side of (19):

λ′
−r−1(s − 1)e1−r−1L′

1(1, χ)
e1

K∏
k=2

Lk(1, χ)ek +
( −1∑
j=−r−1

λ′
j (s − 1)j

)
L1(1, χ)

×
{ r∑
l1=0

(
e1

e1 − l1

)
L1(1, χ)e1−l1−1

( r∑
m1=1

L
(m1)
1 (1, χ)

m1! (s − 1)m1

)l1}

×
K∏
k=2

( r∑
mk=0

L
(mk)
k (1, χ)

mk! (s − 1)mk
)ek
, (21)

because we have that e1 − r − 1 ≥ −1 from hypothesis (H2). By using (3) and (21), we see
that α′−1 � |L1(1, χ)|dcε1 , ifL′

1(1, χ)�ε1 |L1(1, χ)|dcε1 is true, the proof of which is given
below. Then we obtain that α′

j �ε1 |L1(1, χ)|dcε1 for −r − 1 ≤ j ≤ −1. These estimates and
(17) imply (2).

Therefore, the remaining task is to prove that L′
1(1, χ)�ε1 |L1(1, χ)|dcε1 . From (4),

we have
L′

1

L1
(1, χ)=

∑
ρ:real

1

1 − ρ
+

∑
0<|
(ρ)|<1

1

1 − ρ
+O(log d), (22)

were ρ runs over the zeros of L1(s, χ). We recall that there is no real zero of L1(s, χ) in the
range 1 − ε1 ≤ σ ≤ 1 by the assumption of Case 2. This implies that∑

ρ:real

1

1 − ρ
≤

∑
ρ:real

1

ε1
�ε1 log d (23)

by using Theorem 1 of Perelli [13]. Also we have∑
0<|
(ρ)|<1

1

1 − ρ
�

∑
0<|
(ρ)|<1

log d

C1
� (log d)2 (24)

by using hypothesis (H3) and Theorem 1 of Perelli [13]. Consequently, we obtain that
L′

1(1, χ)�ε1 |L1(1, χ)|dcε1 from (22), (23) and (24).
Case 3. Finally we consider the case when r is an even (respectively, odd) number,

φ(s, χ) has an even (respectively, odd) number of real zeros in the range 1 − ε1 ≤ σ ≤ 1
and L1(s, χ) has some real zeros in the same range. We denote by X∗ the set of all real
Dirichlet characters satisfying the assumptions of Case 3. There is a minimal conductor of
the characters in X∗ and we denote it by d2. We fix a character χ2 with modulus d2 in X∗.
We show the theorem for L1(s, χ1) with any character χ1 ∈X∗ and χ1 �= χ2. Let d1 be the
modulus of χ1. Now we know that L1(σ, χ1)L1(σ, χ2) has at least two real zeros ρ1, ρ2 in
the range 1 − ε1 ≤ σ ≤ 1. We may assume ρ1 ≤ ρ2. Then φ(s, χ1, χ2) has at least 2e1 (> r)
real zeros. Taking β0 = ρ1 in Lemma 2, we obtain

Res
s=1−ρ1

(
φ(s + ρ1, χ1, χ2)(d1d2)

c2s

s(s + 1) · · · (s + �)

)
� 1.

We write the Laurant expansion of φ(s, χ1, χ2) at s = 1 as

φ(s, χ1, χ2)=
∞∑

j=−r
α′′
j (s − 1)j .
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We have that ε1 ≥ 1 − ρ1 ≥ c4/(log d1d2) from Lemma 4 and the assumption of Case 3. By
using these inequalities and the same argument as in the proof of (14), we obtain that

(d1d2)
c2ε1

∑
−r≤j,0≤m,n0,...,n�
j+m+n0+···+n�=−1

α′′
j (log d1d2)

m+n0+1 �ε1 1. (25)

We have

φ(s, χ1, χ2)

=
( ∞∑
j=−r

λj (s − 1)j
) K∏
k1=1

( ∞∑
mk1=0

L
(mk1 )

k1
(1, χ1)

mk1 !
(s − 1)mk1

)ek1

×
K∏
k2=1

( ∞∑
mk2=0

L
(mk2 )

k2
(1, χ2)

mk2 !
(s − 1)mk2

)ek2 K∏
k3=1

( ∞∑
mk3=0

L
(mk3 )

k3
(1, χ1χ2)

mk3 !
(s − 1)mk3

)ek3

=
( ∞∑
j=−r

λj (s − 1)j
){ e1∑

l1=0

(
e1

e1 − l1

)
L1(1, χ)e1−l1

( ∞∑
m1=1

L
(m1)
1 (1, χ1)

m1! (s − 1)m1

)l1}

×
K∏
k1=2

( ∞∑
mk1=0

L
(mk1 )

k1
(1, χ1)

mk1 !
(s − 1)mk1

)ek1 K∏
k2=1

( ∞∑
mk2=0

L
(mk2 )

k2
(1, χ2)

mk2 !
(s − 1)mk2

)ek2

×
K∏
k3=1

( ∞∑
mk3=0

L
(mk3 )

k3
(1, χ1χ2)

mk3 !
(s − 1)mk3

)ek3
.

Therefore, we see that the terms α′′
j (s − 1)j , −r ≤ j ≤ −1, appear in the expansion of the

following part of the right-hand side of the above formula:

( −1∑
j=−r

λj (s − 1)j
)
L1(1, χ1)

×
{ r−1∑
l1=0

(
e1

e1 − l1

)
L1(1, χ)e1−l1−1

( r−1∑
m1=1

L
(m1)
1 (1, χ1)

m1! (s − 1)m1

)l1}

×
K∏
k1=2

( r−1∑
mk1=0

L
(mk1 )

k1
(1, χ1)

mk1 !
(s − 1)mk1

)ek1 K∏
k2=1

( r−1∑
mk2=0

L
(mk2 )

k2
(1, χ2)

mk2 !
(s − 1)mk2

)ek2

×
K∏
k3=1

( r−1∑
mk3=0

L
(mk3 )

k3
(1, χ1χ2)

mk3 !
(s − 1)mk3

)ek3
.

We see that e1 − l1 − 1 ≥ 0 from hypothesis (H2), hence we have

α′′
j �ε1 |L1(1, χ1)|(d1d2)

cε1 �ε1 |L1(1, χ1)|(d1)
cε1

by using (3). This estimate and (25) imply (2). The proof of Theorem 1 is now complete. �
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Here we mention how to prove the claim stated in Remark 3. We put F(s)= log φ(s, χ).
We can write

F(s)=
∞∑
n=1

δ′(n)n−s (26)

in σ > 1 from (5), where δ′(n)≥ 0. We prove that the Dirichlet series (26) has the finite
abscissa of convergenceσc. Suppose the contrary. Then the Dirichlet series (26) is convergent
in the whole plane. This implies that F(σ + it)=O(1) as |t| → ∞. However, we have

log�(s, χ)=
K∑
k=1

ek[logWk,χ + (1 − 2s) logQk,χ +
N(k)∑
ν=1

{log �(αν(k)(1 − s)+ βν(k, χ))

− log �(αν(k)s + βν(k, χ))} + log Lk(1 − s, χ)]
by using the functional equation for Lk(s, χ). If t ≥ 2 and σ < 0 we have

log �(αν(k)(1 − s)+ βν(k, χ))− log �(αν(k)s + βν(k, χ))

= log �(αν(k)(1 − s)+ βν(k, χ))+ log �(1 − αν(k)s − βν(k, χ))

− log π + log sin(π(αν(k)s + βν(k, χ)))

∼ −2iαν(k)t log t

by using Stirling’s formula. Hence, log�(s, χ)∼ −2iA(K)t log t . The same conclusion
holds for log�(s), hence F(s)∼ −4iA(K)t log t for t ≥ 2 and σ < 0. However, this gives a
contradiction since F(σ + it)=O(1). Hence, F(s)= ∑∞

n=1 δ
′(n)n−s has the finite abscissa

of convergence σc and hence has a singularity at s = σc by Theorem 11.13 of Apostol [1].
Now suppose that L1(1, χ)= 0. Then the function φ(s, χ) is entire because of (H2).
Therefore, the above presence of the singularity at s = σc shows that φ(σc, χ)= 0. However,
we have φ(σ, χ)≥ 1 for σ > σc since δ′(n)≥ 0. We obtain a contradiction by letting σ → σc.
Hence, we see that L1(1, χ) �= 0. From this fact and Theorem 1, Siegel’s theorem for
L1(s, χ) follows immediately.

5. The symmetric power L-functions

In this final section we apply our main theorem to the case of symmetric power L-functions.
Let

f (z)=
∞∑
n=1

a(n)e2π inz

be a holomorphic cusp form, which is a newform of weight k and level N . Let us write for
each prime p, which does not divide N ,

a(p)= 2p(k−1)/2 cos θp.

For each integer n≥ 0, let

Lsym,n(s, χ)=
∏
p�N

n∏
j=0

(
1 − χ(p)eiθp(n−2j)

ps

)−1

.
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Clearly, Lsym,n(s, χ) converges absolutely for σ > 1. It is, in fact, conjectured that each
Lsym,n(s, χ) can be extended to an entire function for any n≥ 1 and χ . This is stronger
than (A1). Here we suppose that this conjecture is true and the L-functions satisfy (A2) and
(A3). In view of Serre [15], these assumptions are very natural. In the case n= 0, the L-
function is equal to the Dirichlet L-function, hence the Siegel–Tatuzawa theorem in this case
is classical. When n≥ 1, we divide the situation into two cases: n is even or n is odd. Put

�even(s, χ)= Lsym,0(s, χ)Lsym,2(s, χ) · · · Lsym,2n(s, χ)

and

�odd(s, χ)= (Lsym,0(s, χ)Lsym,1(s, χ)Lsym,2(s, χ) · · · Lsym,2n+1(s, χ))
2

× Lsym,2n+2(s, χ).

Note that the case χ = χ0 of these functions was introduced by Ram Murty (see [12, Proof
of Theorem 3]). These functions satisfy (H1), (H2) and (H3). In fact, we can show

log�even(s, χ)=
∑
p:prime
p�N

∞∑
h=1

χh(p)

hphs

(
sin((n+ 1)θph)

sin(θph)

)2

and

log�odd(s, χ)=
∑
p:prime
p�N

∞∑
h=1

χh(p)

hphs

(
sin((n+ 3/2)θph)

sin(θph/2)

)2

,

hence (H1) follows. Hypothesis (H2) trivially holds because we assume that Lsym,n(s, χ0),
Lsym,n(s, χ) are entire for n≥ 1, and (H3) follows from Remark 1. Therefore, the Siegel–
Tatuzawa theorem for Lsym,2n(s, χ) and Lsym,2n+1(s, χ) follows from Theorem 1 under
(A1)–(A3).

THEOREM 2. Let X be the same as in Theorem 1. If the nth symmetric power L-function
Lsym,n(s, χ) can be extended to an entire function (for any n≥ 1 and any χ), and satisfies
(A2) and (A3), then there exists an effective constant C(ε) such that

|Lsym,n(1, χ)|> C(ε)

dε

for any ε > 0, except for at most one possible element of X. Here d is the conductor of χ .
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