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1 Introduction

Let N be the set of natural numbers, N0 = N ∪ {0}, Z the ring of rational

integers, Q the field of rational numbers, R the field of real numbers and C

the field of complex numbers.

The Mordell-Tornheim r-ple zeta-function

(1.1) ζMT,r(s1, . . . , sr; sr+1) =
∞

∑

m1,...,mr=1

1

ms1
1 · · ·msr

r (m1 + · · ·+mr)sr+1

was defined by the first-named author (see [5, 8]). This can be meromorphi-

cally continued to the whole space Cr+1 and possible singularities of (1.1)

can be determined explicitly (see [8, Theorem 1]).

Historically, in the 1950’s, Tornheim considered the double series ζMT,2(p, q; r)

(p, q, r ∈ N), and gave some fascinating formulas (see [16]). A little later,

Mordell independently studied the values ζMT,2(k, k; k) (k ∈ N), and showed

that ζMT,2(2p, 2p; 2p) can be written as Mp · π6p for some constant Mp ∈ Q

(p ∈ N) (see [11]).

About 30 years later, Subbarao and Sitaramachandrarao gave an eval-

uation formula for ζMT,2(2p, 2p; 2p) ([14]). A little later, Zagier proved the

following simple formula:

(1.2) ζMT,2(2p, 2p; 2p) =
4

3

p
∑

j=0

(

4p− 2j − 1

2p− 1

)

ζ(2j)ζ(6p− 2j) (p ∈ N),

which is much simpler than the Subbarao-Sitaramachandrarao formula. As

an analogue of (1.2), Huard, Williams and Zhang gave an evaluation formula

for ζMT,2(2p+ 1, 2p+ 1; 2p+ 1) (p ∈ N0):

(1.3) ζMT,2(2p+1, 2p+1; 2p+1) = −4

p
∑

j=0

(

4p− 2j + 1

2p

)

ζ(2j)ζ(6p−2j+3).

Recently, as interpolations of these formulas, the fourth-named author

gave some functional relations for ζMT,2(s1, s2; s3) (see [21, Theorem 4.5]).
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More recently the second-named author proved functional relations for ζMT,2(s1, s2; s3)

by a different method ([12, Theorem 1.2]). His relations are

ζMT,2(a, b; s) + (−1)bζMT,2(b, s; a) + (−1)aζMT,2(s, a; b)(1.4)

=
2

a!b!

max([a/2],[b/2])
∑

k=0

{

a

(

b

2k

)

+ b

(

a

2k

)}

× (a+ b− 2k − 1)!(2k)!ζ(2k)ζ(a+ b+ s− 2k)

for a, b ∈ N, where [ x ] is the integer part of x. These have simpler forms

than those in [21]. Note that (1.4) holds for all s ∈ C except for singularities

of the both sides.

Furthermore, triple and more general multiple zeta values of the Mordell-

Tornheim type have been studied. Actually Mordell considered the multiple

series
∞

∑

m1,...,mr=1

1

m1m2 · · ·mr(m1 + · · ·+mr + a)

for a > −r, which can be regarded as a prototype of (1.1). Based on his

work, Hoffman studied ζMT,r(1, 1, . . . , 1; k) for k ∈ N and gave some rela-

tions between these values and the Euler-Zagier type of multiple zeta values

(see [2, Section 4]). Markett independently wrote the value ζMT,3(1, 1, 1; k)

(k ∈ N) as a polynomial in the values of ζ(s) at positive integers with Q-

coefficients (see [4]). Recently the fourth-named author proved a certain

property on the values of ζMT,r ([20, Theorem 1.1]), which is called the

‘parity result’ (for details, see Remark 4.8 in Section 4).

In the present paper, we mainly study the Mordell-Tornheim double and

triple zeta-functions. In Section 2, we prove the key lemma (Lemma 2.1) in

order to study double and triple series. As its applications, we confirm that

the functional relations for ζMT,2 of the fourth-named author coincide with

those of the second-named author (1.4) (see Proposition 2.2), and consider

some alternating double series. In Section 3, we give some relation formulas

for the values of ζMT,3 which can be regarded as triple analogues of (1.2)

and (1.3) (see Theorem 3.1). In Section 4, we give some functional relations

among triple zeta-functions, double zeta-functions and the Riemann zeta-

function, which can be regarded as triple analogues of (1.4) (see Theorem

4.5). In Sections 5 and 6, we discuss analytic properties of triple zeta-

functions appearing in Section 4. Actually in Section 6, we study more

general ζMT,r and determine its true singularities (see Theorem 6.1).
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2 The key lemma and its applications

Let ζ(s) be the Riemann zeta-function and

(2.1) φ(s) =
∞

∑

m=1

(−1)m

ms
=

(

21−s − 1
)

ζ(s).

We recall that

∞
∑

m=1

(−1)m cos(mθ)

m2k
=

k
∑

ν=0

φ(2k − 2ν)
(−1)νθ2ν

(2ν)!
;(2.2)

∞
∑

m=1

(−1)m sin(mθ)

m2l+1
=

l
∑

ν=0

φ(2l − 2ν)
(−1)νθ2ν+1

(2ν + 1)!
(2.3)

for k ∈ N, l ∈ N0 and θ ∈ (−π, π) ⊂ R (see, for example, [17, Lemma 2]).

Note that φ(0) = ζ(0) = − 1
2
. Since the both sides of (2.2) and of (2.3) are

continuous for θ ∈ [−π, π] in the case k, l ∈ N, we can let θ → π on the

both sides of (2.2) and of (2.3), respectively. Then, by cos(nπ) = (−1)n and

sin(nπ) = 0 (n ∈ Z), we have

ζ(2k) =
k

∑

ν=0

φ(2k − 2ν)
(−1)νπ2ν

(2ν)!
;(2.4)

0 =

l
∑

ν=0

φ(2l − 2ν)
(−1)νπ2ν+1

(2ν + 1)!
(2.5)

for k, l ∈ N.

Now we prove the following lemma which is a key when we consider the

rearrangement of sums appearing in relation formulas for double and triple

zeta values.

Lemma 2.1. For arbitrary functions f, g : N0 → C and a ∈ N, we have

a
∑

j=0
j≡a (mod 2)

φ(a− j)

[j/2]
∑

µ=0

f(j − 2µ)
(−1)µπ2µ

(2µ)!
=

[a/2]
∑

ρ=0

ζ(2ρ)f(a− 2ρ),(2.6)

and

a
∑

j=0
j≡a (mod 2)

φ(a− j)

[(j−1)/2]
∑

µ=0

g(j − 2µ)
(−1)µπ2µ

(2µ+ 1)!
= −1

2
g(a).(2.7)

Proof. On the left-hand side of (2.6), we change the running indices j

and µ to ρ and ν by j = a + 2µ− 2ρ and µ = ν (≤ ρ). By 0 ≤ j ≤ a and
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0 ≤ µ ≤ [j/2], we have ρ = µ+ (a− j)/2 ≥ µ = ν and 0 ≤ 2ρ ≤ a, namely

0 ≤ ρ ≤ [a/2]. Hence, by a− j = 2ρ− 2ν and j − 2µ = a− 2ρ, we see that

the left-hand side of (2.6) is

[a/2]
∑

ρ=1

ρ
∑

ν=0

φ(2ρ− 2ν)f(a− 2ρ)
(−1)νπ2ν

(2ν)!
+ φ(0)f(a).

By (2.4) and φ(0) = ζ(0) = − 1
2
, this is equal to the right-hand side of (2.6).

Thus we obtain the proof of (2.6). Similarly, changing the running indices

j and µ to ρ and ν by j = a + 2µ − 2ρ and ν = µ ≤ ρ on the left-hand

side of (2.7), and using (2.5), we can see that (2.7) holds. This completes

the proof.

As a direct application of this lemma, we obtain the following proposi-

tion which implies that the result (1.4) of the second-named author ([12])

essentially coincides with that of the fourth-named author ([21]).

Proposition 2.2. For a, b ∈ N,

ζMT,2(a, b; s) + (−1)aζMT,2(a, s; b) + (−1)bζMT,2(b, s; a)(2.8)

= 2

max([a/2],[b/2])
∑

ρ=0

{(

a + b− 2ρ− 1

a− 1

)

+

(

a+ b− 2ρ− 1

b− 1

)}

× ζ(2ρ)ζ(s+ a + b− 2ρ)

holds for all s ∈ C except for singularities of the both sides of (2.8).

Proof. The fourth-named author gave the functional relations

ζMT,2(a, b; s) + (−1)aζMT,2(a, s; b) + (−1)bζMT,2(b, s; a)(2.9)

= 2
a

∑

j=0
j≡a (mod 2)

φ(a− j)

[j/2]
∑

µ=0

(iπ)2µ

(2µ)!

(

b− 1 + j − 2µ

j − 2µ

)

ζ(b+ j + s− 2µ)

− 4

a
∑

j=0
j≡a (mod 2)

φ(a− j)

[(j−1)/2]
∑

µ=0

(iπ)2µ

(2µ+ 1)!

b
∑

ν=0
ν≡b (2)

ζ(b− ν)

×
(

ν − 1 + j − 2µ

j − 2µ− 1

)

ζ(ν + j + s− 2µ)

for a, b ∈ N and s ∈ C (see [21, Theorem 4.5]). Applying (2.6) and (2.7) to

(2.9) with

f(X) =

(

b− 1 +X

X

)

ζ(b+ s+X);

g(X) =

b
∑

ν=0
ν≡b (2)

ζ(b− ν)

(

ν − 1 +X

X − 1

)

ζ(ν + s+X),
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we have

ζMT,2(a, b; s) + (−1)aζMT,2(a, s; b) + (−1)bζMT,2(b, s; a)

= 2

[a/2]
∑

ρ=0

(

a + b− 2ρ− 1

a− 2ρ

)

ζ(s+ a+ b− 2ρ)

+ 2
b

∑

ν=0
ν≡b (2)

ζ(b− ν)

(

ν − 1 + a

a− 1

)

ζ(s+ ν + a).

By putting ν = b− 2ρ in the second summation on the right-hand side, we

obtain (2.8).

We can easily check that

(2.10)
2

m!n!
m

(

n

2k

)

(m+ n− 2k − 1)!(2k)! = 2

(

m+ n− 2k − 1

m− 1

)

for k,m, n ∈ N0. Substituting (2.10) in the cases (m,n) = (a, b) and (b, a)

into (1.4), we obtain (2.8). Thus we showed that (1.4), (2.8) and (2.9) are

all equivalent.

Remark 2.3. Putting a = b = 2p and 2p+ 1 in (2.8), we can obtain (1.2)

and (1.3). Hence (2.8) can be regarded as a continuous interpolation of

both (1.2) and (1.3).

Lemma 2.1 is also useful for the study of

φ2(s1, s2; s3) =
∞

∑

m,n=1

(−1)m+n

ms1ns2(m+ n)s3
;(2.11)

ψ2(s1, s2; s3) =
∞

∑

m,n=1

(−1)n

ms1ns2(m + n)s3
(2.12)

for s1, s2, s3 ∈ C. The fourth-named author proved that

φ2(2p+ 1, 2p+ 1; 2p+ 1) = 2

p
∑

ρ=0

(

4p+ 1− 2ρ

2p

)

φ(2ρ)φ(6p+ 3− 2ρ)

(2.13)

− 4

p
∑

j=0

φ(2j)

{ p
∑

ν=0

φ(2p− 2ν)

ν
∑

µ=0

(

2p+ 1− 2j + 2ν − 2µ

2ν − 2µ

)

× ζ(4p+ 3− 2j + 2ν − 2µ)
(−1)µπ2µ

(2µ+ 1)!

}

for p ∈ N0 (see [19, Theorem 3.4]). Applying (2.7) to (2.13) with a = 2p+1

and

g(t) =

(

2p− 2j + t

t− 1

)

ζ(4p+ 2− 2j + t),
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we have

φ2(2p+ 1, 2p+ 1; 2p+ 1) =2

p
∑

ρ=0

(

4p+ 1− 2ρ

2p

)

φ(2ρ)φ(6p+ 3− 2ρ)

+ 2

p
∑

j=0

φ(2j)

(

4p+ 1− 2j

2p

)

ζ(6p+ 3− 2j).

Since φ(s) = (21−s − 1)ζ(s), we can rewrite (2.13) as follows.

Proposition 2.4. For p ∈ N0,

φ2(2p+ 1, 2p+ 1; 2p+ 1)(2.14)

= 2−6p

p
∑

j=0

(

4p+ 1− 2j

2p

)

(

22j−1 − 1
)

ζ(2j)ζ(6p+ 3− 2j).

On the other hand, from [13, Theorem 3.1] and (2.10), we have

Proposition 2.5. For p ∈ N0,

φ2(2p+ 1, 2p+ 1; 2p+ 1)− 2ψ2(2p+ 1, 2p+ 1; 2p+ 1)(2.15)

= 4

p
∑

j=0

(

4p+ 1− 2j

2p

)

(

22j−2−6p − 1
)

ζ(2j)ζ(6p+ 3− 2j).

Hence, combining (2.14) and (2.15), we have

Proposition 2.6. For p ∈ N0,

ψ2(2p+ 1, 2p+ 1; 2p+ 1)

(2.16)

= 2−6p−1

p
∑

j=0

(

4p+ 1− 2j

2p

)

(

26p+2 − 22j−1 − 1
)

ζ(2j)ζ(6p+ 3− 2j).

Example 2.7. By (2.16), for example, we obtain

ψ2(5, 5; 5) = −2064195

16384
ζ(15) +

573335

8192
ζ(2)ζ(13) +

81875

8192
ζ(4)ζ(11),

ψ2(7, 7; 7) = −899676921

524288
ζ(21) +

242220363

262144
ζ(2)ζ(19)

+
22019907

131072
ζ(4)ζ(17) +

7339801

524288
ζ(6)ζ(15).

These formulas do not coincide with those in [18, Example 3.7]. In fact,

the fourth-named author made some mistakes in calculating the formulas

in [18, Example 3.7]. The above formulas are surely correct.
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3 Relation formulas for triple zeta values

In this section, we prove relation formulas for ζMT,3(k, k, k; k) for k ∈ N,

which are the triple analogues of (1.2) and (1.3). The method to prove

these formulas is similar to that introduced in the previous work of the

fourth-named author (see [17, 20]). Combining that method with Lemma

2.1, we can obtain the following simple expressions like (1.2) and (1.3).

Theorem 3.1. For p ∈ N,

ζMT,3(2p, 2p, 2p; 2p)(3.1)

= 4

p
∑

ν=1

(

2ν + 2p− 1

2p− 1

)

ζ(2p− 2ν)

× {ζMT,2(2p, 2p; 2p+ 2ν)− ζMT,2(2p+ 2ν, 2p; 2p)} − ζ(4p)2,

and for p ∈ N0,

ζMT,3(2p+ 1, 2p+ 1, 2p+ 1; 2p+ 1)(3.2)

= −4

p
∑

ν=0

(

2ν + 2p− 1

2p

)

ζ(2p− 2ν)

×
{

ζMT,2(2p+ 1, 2p+ 1; 2p+ 2ν + 2)

+ ζMT,2(2p+ 2ν + 2, 2p+ 1; 2p+ 1)

}

+ ζ(4p+ 2)2.

Example 3.2. By Theorem 3.1, for example, we can obtain

ζMT,3(1, 1, 1; 1) =
12

5
ζ(2)2 =

1

15
π4;

ζMT,3(2, 2, 2; 2) = 6 {ζMT,2(4, 2; 2)− ζMT,2(2, 2; 4)} − ζ(4)2;

ζMT,3(3, 3, 3; 3) = −12ζ(2) {ζMT,2(3, 3; 4) + ζMT,2(4, 3; 3)}
+ 20 {ζMT,2(3, 3; 6) + ζMT,2(6, 3; 3)}+ ζ(6)2.

Using (2.8), we can rewrite

ζMT,3(2, 2, 2; 2) =
1

11340
π8 − 9ζMT,2(2, 2; 4).

Note that it has not been proven yet that ζMT,2(2, 2; 4) is expressed by

means of the values of ζ(s).

Now we give some preparations for the proof of Theorem 3.1. Fix any
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p ∈ N. By (2.2), we have

∞
∑

l,m=1

(−1)l+m cos((l +m)θ)

l2pm2p

{ ∞
∑

n=1

(−1)n cos(nθ)

n2p
−

p
∑

j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

}

(3.3)

−
∞

∑

l=1

(−1)l sin(lθ)

l2p

{ ∞
∑

m=1

(−1)m cos(mθ)

m2p
−

p
∑

j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

}

×
∞

∑

n=1

(−1)n sin(nθ)

n2p

−
{ ∞

∑

l=1

(−1)l cos(lθ)

l2p
−

p
∑

j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

}

×
∞

∑

m=1

(−1)m sin(mθ)

m2p

∞
∑

n=1

(−1)n sin(nθ)

n2p
= 0

for θ ∈ (−π, π). Using the addition formulas for sin x and cos x, we can

rewrite (3.3) as

∞
∑

l,m,n=1

(−1)l+m+n cos((l +m + n)θ)

l2pm2pn2p

(3.4)

+

p
∑

j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

×
{ ∞

∑

l,m=1

(−1)l+m cos((l −m)θ)

l2pm2p
− 2

∞
∑

l,m=1

(−1)l+m cos((l +m)θ)

l2pm2p

}

=

∞
∑

l,m,n=1

(−1)l+m+n cos((l +m+ n)θ)

l2pm2pn2p

+

p
∑

j=0

φ(2p− 2j)
(−1)jθ2j

(2j)!

×
{ ∞

∑

l,m=1
l6=m

(−1)l+m cos((l −m)θ)

l2pm2p
− 2

∞
∑

l,m=1

(−1)l+m cos((l +m)θ)

l2pm2p

}

+ ζ(4p)
∞

∑

l=1

(−1)l cos(lθ)

l2p
= 0

for θ ∈ (−π, π), using (2.2) again. This implies, by integrating the both
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sides by parts repeatedly, that

∞
∑

l,m,n=1

(−1)l+m+n sin((l +m + n)θ)

l2pm2pn2p(l +m + n)2d+1

(3.5)

+

p
∑

j=0

φ(2p− 2j)

2j
∑

ν=0

(

2d+ 2j − ν

2j − ν

)

(−1)νθν

ν!

×
{ ∞

∑

l,m=1
l6=m

(−1)l+m sin(ν)((l −m)θ)

l2pm2p(l −m)2d+2j+1−ν
− 2

∞
∑

l,m=1

(−1)l+m sin(ν)((l +m)θ)

l2pm2p(l +m)2d+2j+1−ν

}

+ ζ(4p)
∞

∑

l=1

(−1)l sin(lθ)

l2p+2d+1
=

d
∑

ρ=0

C2d−2ρ(2p)
(−1)ρθ2ρ+1

(2ρ+ 1)!
(θ ∈ (−π, π))

for d ∈ N0, and

∞
∑

l,m,n=1

(−1)l+m+n cos((l +m + n)θ)

l2pm2pn2p(l +m+ n)2e

(3.6)

+

p
∑

j=0

φ(2p− 2j)

2j
∑

ν=0

(

2e− 1 + 2j − ν

2j − ν

)

(−1)νθν

ν!

×
{ ∞

∑

l,m=1
l6=m

(−1)l+m cos(ν)((l −m)θ)

l2pm2p(l −m)2e+2j−ν
− 2

∞
∑

l,m=1

(−1)l+m cos(ν)((l +m)θ)

l2pm2p(l +m)2e+2j−ν

}

+ ζ(4p)
∞

∑

l=1

(−1)l cos(lθ)

l2p+2e
=

e
∑

ρ=0

C2e−2ρ(2p)
(−1)ρθ2ρ

(2ρ)!
(θ ∈ (−π, π))

for e ∈ N0, where {C2ν(2p) | ν ∈ N0} are constants which are determined in-

ductively, f (ν)(x) denotes the νth derivative of f(x) and f (ν)(α) := f (ν)(x)
∣

∣

x=α

for f(x) = sin x, cos x. Note that the left-hand side of (3.5) (resp. (3.6)) is

an odd (resp. even) function, hence each coefficient of θ2ρ (resp. θ2ρ+1) on

the right-hand side of (3.5) (resp. (3.6)) is equal to 0.

Since the both sides of (3.5) and of (3.6) are continuous for θ ∈ [−π, π],

(3.5) and (3.6) hold for θ = π. Note that, by putting h = l − m (resp.

k = m− l) if l > m (resp. l < m), we have, for example,

∞
∑

l,m=1
l6=m

1

l2pm2p(l −m)2d+2j−2µ
(3.7)

=
∞

∑

h,m=1

1

h2d+2j−2µm2p(h+m)2p
+

∞
∑

k,l=1

1

k2d+2j−2µl2p(k + l)2p

= 2ζMT,2(2d+ 2j − 2µ, 2p; 2p).
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Hence, letting θ → π on the both sides of (3.5) and of (3.6), we have

p
∑

j=0

φ(2p− 2j)

j−1
∑

µ=0

(

2d+ 2j − 2µ− 1

2j − 2µ− 1

)

(−1)µπ2µ+1

(2µ+ 1)!
(3.8)

×
{

ζMT,2(2d+ 2j − 2µ, 2p; 2p)− ζMT,2(2p, 2p; 2d+ 2j − 2µ)

}

=
d

∑

µ=0

C2d−2µ(2p)
(−1)µπ2µ+1

(2µ+ 1)!

and

ζMT,3(2p, 2p, 2p; 2e) + 2

p
∑

j=0

φ(2p− 2j)

j
∑

µ=0

(

2e + 2j − 2µ− 1

2j − 2µ

)

(−1)µπ2µ

(2µ)!

(3.9)

×
{

ζMT,2(2e + 2j − 2µ, 2p; 2p)− ζMT,2(2p, 2p; 2e+ 2j − 2µ)

}

+ ζ(4p)ζ(2p+ 2e) =

e
∑

µ=0

C2e−2µ(2p)
(−1)µπ2µ

(2µ)!
.

Applying Lemma 2.1 to (3.8) and (3.9) with a = 2p and

f(x) =

(

2e+ x− 1

x

){

ζMT,2(2e+ x, 2p; 2p)− ζMT,2(2p, 2p; 2e+ x)

}

;

g(x) =

(

2d+ x− 1

x− 1

){

ζMT,2(2d+ x, 2p; 2p)− ζMT,2(2p, 2p; 2d+ x)

}

,

we can rewrite (3.8) and (3.9) as
(

2d+ 2p− 1

2p− 1

){

ζMT,2(2d+ 2p, 2p; 2p)− ζMT,2(2p, 2p; 2d+ 2p)

}

(3.10)

=

d
∑

µ=0

C2d−2µ(2p)
(−1)µπ2µ

(2µ+ 1)!

and

ζMT,3(2p, 2p, 2p; 2e) + 2

p
∑

ξ=0

ζ(2ξ)

(

2e+ 2p− 2ξ − 1

2p− 2ξ

)

(3.11)

×
{

ζMT,2(2e+ 2p− 2ξ, 2p; 2p)− ζMT,2(2p, 2p; 2e+ 2p− 2ξ)

}

+ ζ(4p)ζ(2p+ 2e) =

e
∑

µ=0

C2e−2µ(2p)
(−1)µπ2µ

(2µ)!

for d, e ∈ N0.

Now we recall the following.

10



Lemma 3.3 ([21] Lemma 4.4). Let {α2d}d∈N0 , {β2d}d∈N0, {γ2d}d∈N0 be

sequences satisfying that

α2d =

d
∑

j=0

γ2d−2j
(−1)jπ2j

(2j)!
, β2d =

d
∑

j=0

γ2d−2j
(−1)jπ2j

(2j + 1)!

for any d ∈ N0. Then

α2d = −2
d

∑

ν=0

β2νζ(2d− 2ν)

for any d ∈ N0.

Proof of Theorem 3.1 Applying Lemma 3.3 to (3.10) and (3.11) with

d = e, and put ν = p− ξ in (3.11), we have

ζMT,3(2p, 2p, 2p; 2d)

(3.12)

+ 2

p
∑

ν=0

ζ(2p− 2ν)

(

2d+ 2ν − 1

2ν

){

ζMT,2(2d+ 2ν, 2p; 2p)− ζMT,2(2p, 2p; 2ν + 2p)

}

+ ζ(4p)ζ(2p+ 2d)

= 4
d

∑

ν=0

ζ(2d− 2ν)

(

2ν + 2p− 1

2p− 1

){

ζMT,2(2ν + 2p, 2p; 2p)− ζMT,2(2p, 2p; 2ν + 2p)

}

.

In particular when d = p, we obtain (3.1).

As well as (3.3), from (2.2), we have the relation

∞
∑

l,m=1

(−1)l+m cos((l +m)θ)

l2p+1m2p+1

(3.13)

×
{ ∞

∑

n=1

(−1)n sin(nθ)

n2p+1
−

p
∑

j=0

φ(2p− 2j)
(−1)jθ2j+1

(2j + 1)!

}

+

∞
∑

l=1

(−1)l cos(lθ)

l2p+1

{ ∞
∑

m=1

(−1)m sin(mθ)

m2p+1
−

p
∑

j=0

φ(2p− 2j)
(−1)jθ2j+1

(2j + 1)!

}

×
∞

∑

n=1

(−1)n cos(nθ)

n2p+1

−
{ ∞

∑

l=1

(−1)l sin(lθ)

l2p+1
−

p
∑

j=0

φ(2p− 2j)
(−1)jθ2j+1

(2j + 1)!

}

×
∞

∑

m=1

(−1)m cos(mθ)

m2p+1

∞
∑

n=1

(−1)n cos(nθ)

n2p+1
= 0

11



for θ ∈ (−π, π). Then, by the same argument as mentioned above, we can

prove (3.2). This completes the proof of Theorem 3.1.

4 Functional relations for triple zeta-functions

The aim of this section is to give some functional relations for triple zeta-

functions. These can be regarded as triple analogues of (2.8). For this aim,

we consider analytic properties of ζMT,3(s1, s2, s3; s4) and

(4.1) G(s1, s2, s3, s4) :=

∞
∑

k,l,m,n=1
k+l=m+n

1

ks1 ls2ms3ns4
.

First we enumerate the following two theorems. The proofs of these

theorems will be given in the following sections. In fact, we first give the

proof of Theorem 4.2 in the next section. Next we generalize Theorem 4.1

to the result on ζMT,r for any r ≥ 3 (see Theorem 6.1) and give the proof

of this generalized result in Section 6.

Theorem 4.1. ζMT,3(s1, s2, s3; s4) can be continued meromorphically to C4,

and the singularities are located only on the subsets of C4 defined by one of

the following equations:

sj + s4 = 1− l (1 ≤ j ≤ 3; l ∈ N0);(4.2)

sj + sk + s4 = 2− l (1 ≤ j < k ≤ 3; l ∈ N0);(4.3)

s1 + s2 + s3 + s4 = 3,(4.4)

all of which are true singularities.

Theorem 4.2. G(s1, s2, s3, s4) can be continued meromorphically to C4,

and the singularities are located only on the subsets of C4 defined by one of

the following equations:

sj + sk = 1− l (j = 1, 2; k = 3, 4; l ∈ N0);(4.5)

sh + sj + sk = 2− l (1 ≤ h < j < k ≤ 4; l ∈ N0);(4.6)

s1 + s2 + s3 + s4 = 3,(4.7)

all of which are true singularities.

Based on these results, we give some functional relations for triple zeta-

functions mentioned above. In the rest of this section, we use the same

notation as in [12] and generalize Proposition 2.2 to the case of triple zeta-

functions. The method used in this section can be regarded as a triple

analogue of that introduced by the second-named author in [12].

12



We denote by Bj(x) the jth Bernoulli polynomial defined by

text

et − 1
=

∞
∑

j=0

Bj(x)
tj

j!
(|t| < 2π).

It is known (see [1, p. 266, (22) and p. 267, (24)]) that

(4.8) B2j := B2j(0) = (−1)j+12(2j)!(2π)−2jζ(2j) (j ∈ N),

(4.9) Bj(x− [x]) = − j!

(2πi)j
lim

K→∞

K
∑

k=−K
k 6=0

e2πikx

kj
(j ∈ N).

Hence, for k ∈ Z, j ∈ N we have

(4.10)

∫ 1

0

e−2πikxBj(x) dx =

{

0 (k = 0);

−(2πik)−jj! (k 6= 0).

It follows from [1, p. 276 19.(b)] that for p+ q ≥ 2,

Bp(x)Bq(x)

(4.11)

=

max([p/2],[q/2])
∑

k=0

{

p

(

q

2k

)

+ q

(

p

2k

)}

B2kBp+q−2k(x)

p+ q − 2k
− (−1)p p!q!

(p+ q)!
Bp+q.

Using these facts, we obtain the following theorems.

Theorem 4.3. For a, b ∈ N,

(−1)bζMT,3(b, s3, s4; a) + (−1)aζMT,3(s3, s4, a; b) +G(a, b, s3, s4)(4.12)

=
2

a! b!

max([a/2],[b/2])
∑

k=0

{

a

(

b

2k

)

+ b

(

a

2k

)}

(a+ b− 2k − 1)!(2k)!

× ζ(2k)ζMT,2(s3, s4; a+ b− 2k)

holds for s3, s4 ∈ C except for singularities of the both sides of (4.12).

Proof. For <(s3) > 1, <(s4) > 1, we have






































































lim
K→∞

∫ 1

0

K
∑

k=1

e2πikx

ka

K
∑

l=1

e2πilx

lb

K
∑

m=1

e2πimx

ms3

K
∑

n=1

e2πinx

ns4
dx = 0;

lim
K→∞

∫ 1

0

−1
∑

k=−K

e2πikx

ka

K
∑

l=1

e2πilx

lb

K
∑

m=1

e2πimx

ms3

K
∑

n=1

e2πinx

ns4
dx = (−1)aζMT,3(b, s3, s4; a);

lim
K→∞

∫ 1

0

K
∑

k=1

e2πikx

ka

−1
∑

l=−K

e2πilx

lb

K
∑

m=1

e2πimx

ms3

K
∑

n=1

e2πinx

ns4
dx = (−1)bζMT,3(s3, s4, a; b);

lim
K→∞

∫ 1

0

−1
∑

k=−K

e2πikx

ka

−1
∑

l=−K

e2πilx

lb

K
∑

m=1

e2πimx

ms3

K
∑

n=1

e2πinx

ns4
dx = (−1)a+bG(a, b, s3, s4).
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Therefore we have

(−1)aζMT,3(b, s3, s4; a) + (−1)bζMT,3(s3, s4, a; b) + (−1)a+bG(a, b, s3, s4)

=

∫ 1

0

lim
K→∞

K
∑

k=−K
k 6=0

e2πikx

ka

K
∑

l=−K
l 6=0

e2πilx

lb

K
∑

m=1

e2πimx

ms3

K
∑

n=1

e2πinx

ns4
dx.

Changing the order of limitation and integration is justified by bounded

convergence. In fact, we need to treat the case a = 1 or b = 1 carefully.

For this case, we know that
∑∞

m=1 sin(2πmx)/m is boundedly convergent

for x > 0 (see [15, p. 15]).

By using (4.8), (4.9), (4.10) and (4.11), we obtain (4.12) in this region.

By Theorems 4.1 and 4.2, we see that (4.12) holds for all a, b ∈ N, and

s3, s4 ∈ C except for singularities of the both sides of (4.12).

Theorem 4.4. For a, b ∈ N,

ζMT,3(s4, a, b; s3) + (−1)aG(a, s3, b, s4)

(4.13)

+ (−1)bG(s3, b, a, s4) + (−1)a+bζMT,3(a, b, s3; s4)

=
2

a! b!

max([a/2],[b/2])
∑

k=0

{

a

(

b

2k

)

+ b

(

a

2k

)}

(a + b− 2k − 1)!(2k)!

× ζ(2k)ζMT,2(a + b− 2k, s4; s3)

+
2(−1)a+b

a! b!

max([a/2],[b/2])
∑

k=0

{

a

(

b

2k

)

+ b

(

a

2k

)}

(a + b− 2k − 1)!(2k)!

× ζ(2k)ζMT,2(a + b− 2k, s3; s4)

+ (−1)a+1 (2πi)a+bBa+b

(a + b)!
ζ(s3 + s4)

holds for s3, s4 ∈ C except for singularities of the both sides of (4.13).
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Proof. Assume <(s3) > 1 and <(s4) > 1. Then we have



















































































lim
K→∞

∫ 1

0

K
∑

k=1

e2πikx

ka

K
∑

l=1

e2πilx

lb

K
∑

m=1

e−2πimx

ms3

K
∑

n=1

e2πinx

ns4
dx = ζMT,3(s4, a, b; s3);

lim
K→∞

∫ 1

0

−1
∑

k=−K

e2πikx

ka

K
∑

l=1

e2πilx

lb

K
∑

m=1

e−2πimx

ms3

K
∑

n=1

e2πinx

ns4
dx = (−1)aG(a, s3, b, s4);

lim
K→∞

∫ 1

0

K
∑

k=1

e2πikx

ka

−1
∑

l=−K

e2πilx

lb

K
∑

m=1

e−2πimx

ms3

K
∑

n=1

e2πinx

ns4
dx = (−1)bG(s3, b, a, s4);

lim
K→∞

∫ 1

0

−1
∑

k=−K

e2πikx

ka

−1
∑

l=−K

e2πilx

lb

K
∑

m=1

e−2πimx

ms3

K
∑

n=1

e2πinx

ns4
dx

= (−1)a+bζMT,3(a, b, s3; s4).

Therefore we can prove Theorem 4.4 in the same way as in the proof of

Theorem 4.3.

We define K1(a, b, s3, s4) and K2(a, b, s3, s4) by the right-hand side of

(4.12) and (4.13) respectively. By the preceding theorems, we obtain the

following theorem which essentially includes not only Theorem 3.1 but also

the assertion in the triple case given in [20].

Theorem 4.5. For a, b, c ∈ N,

ζMT,3(a, b, c; s)− (−1)b+cζMT,3(b, c, s; a)(4.14)

− (−1)c+aζMT,3(c, s, a; b)− (−1)a+bζMT,3(s, a, b; c)

= (−1)a+bK2(a, b, c, s)− (−1)bK1(a, c, b, s)− (−1)aK1(c, b, a, s)

holds for s ∈ C except for singularities of the both sides of (4.14).

Proof. By (4.12), we have

G(a, b, c, s) = K1(a, b, c, s)− (−1)bζMT,3(b, c, s; a)− (−1)aζMT,3(c, s, a; b).

By exchanging the order of variables, we have

G(a, c, b, s) = K1(a, c, b, s)− (−1)cζMT,3(b, c, s; a)− (−1)aζMT,3(s, a, b; c);

G(c, b, a, s) = K1(c, b, a, s)− (−1)bζMT,3(s, a, b; c)− (−1)cζMT,3(c, s, a; b).

Substituting these relations into (4.13), we obtain (4.14).

We denote by M(a, b, c, s) the right-hand side of (4.14). We prove the

following explicit formulas for ζMT,3(a, b, c; d).
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Theorem 4.6. For a, b, c, d ∈ N with a+ b + c+ d ∈ 2N,

ζMT,3(a, b, c; d) =
1

4

{

M(a, b, c, d)− (−1)b+cM(b, c, d, a)(4.15)

− (−1)a+cM(c, d, a, b)− (−1)a+bM(d, a, b, c)

}

.

Proof. By changing variables in (4.14), we have

M(b, c, d, a) = ζMT,3(b, c, d; a)− (−1)c+dζMT,3(c, d, a; b)

− (−1)d+bζMT,3(d, a, b; c)− (−1)b+cζMT,3(a, b, c; d);

M(c, d, a, b) = ζMT,3(c, d, a; b)− (−1)d+aζMT,3(d, a, b; c)

− (−1)a+cζMT,3(a, b, c; d)− (−1)c+dζMT,3(b, c, d; a);

M(d, a, b, c) = ζMT,3(d, a, b; c)− (−1)a+bζMT,3(a, b, c; d)

− (−1)b+dζMT,3(b, c, d; a)− (−1)d+aζMT,3(c, d, a; b).

Multiply (−1)b+c, (−1)a+c, (−1)a+b on the both sides of above three equa-

tions, respectively, and sum them up. Then, by using (4.14) in the case

s = d, we obtain (4.15).

Example 4.7. Put (a, b, c) = (1, 1, 1) in (4.14). Then we obtain

ζMT,3(1, 1, 1; s)− 3ζMT,3(s, 1, 1; 1) + 6ζMT,2(1, 2; s)

+ 6ζMT,2(s, 2; 1)− 6ζ(2)ζ(s+ 1) + 12ζ(s+ 3) = 0,

which was essentially given by the first-named and the fourth-named authors

(see [10, Example 6.1]). Similarly, putting (a, b, c) = (2, 2, 2) in (4.14), we

obtain

ζMT,3(2, 2, 2; s)− 3ζMT,3(2, 2, s; 2)

= 6 {2ζMT,2(2, s; 4)− ζMT,2(4, s; 2)− ζMT,2(2, 4; s)}
+ 4ζ(2) {ζMT,2(2, 2; s)− ζMT,2(2, s; 2)}+ 2ζ(4)ζ(s+ 2).

In particular when s = 2, we obtain the formula for ζMT,3(2, 2, 2; 2) given in

Example 3.2. Put (a, b, c, d) = (1, 1, 1, 3) in (4.15). Then we obtain

ζMT,3(1, 1, 1; 3) = −6ζ(3)2 +
23

2520
π6,

which can also be obtained from Hoffman’s result in [2, Corollary 4.2] and

Markett’s result in [4, Corollary 4.3].
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Remark 4.8. In [20], the fourth-named author proved, in a different way,

that for k1, . . . , kr+1 ∈ N, ζMT,r(k1, . . . , kr; kr+1) can be expressed as a ratio-

nal linear combination of products of the values of ζMT,j (j < r) at positive

integers if r and
∑r+1

j=1 kj are of different parity. This fact is sometimes called

the ‘parity result’ for the Mordell-Tornheim zeta values. From this fact, we

know that ζMT,3(a, b, c; d) (a, b, c, d ∈ N) can be expressed as a rational lin-

ear combination of products of ζMT,2(p, q; r) and ζ(s) when a+b+c+d ∈ 2N.

Therefore we can interpret the results in Theorem 4.6 as concrete formulas

which represent the parity result for ζMT,3.

The method in this section can be applied to more general situation,

which will be discussed elsewhere.

5 Analytic properties of certain triple zeta-

functions

In this section, we aim to give the proof of Theorem 4.2. For this aim, we

mainly use the method established by the first-named author (see [5, 6, 7,

8]).

Let

(5.1) H(s1, s2, s3, s4) :=

∞
∑

k,l,m=1

1

ks1ms2(k + l)s3(l +m)s4
.

By (4.1), we have

G(s1, s2, s3, s4) =
∞

∑

N=1

∞
∑

k,l=1
k+l=N

1

ks1ls2

∞
∑

m,n=1
m+n=N

1

ms3ns4
(5.2)

=
∞

∑

k,m=1

1

ks1ms3

∑

N>max(k,m)

1

(N − k)s2(N −m)s4
.

We separate the right-hand side of (5.2) as
∑

k<m +
∑

k=m +
∑

k>m. Then

the first term and the third term are equal toH(s1, s4, s3, s2) andH(s3, s2, s1, s4),

respectively. The second term is equal to ζ(s1 + s3)ζ(s2 + s4). Hence we

have

G(s1, s2, s3, s4) = ζ(s1 + s3)ζ(s2 + s4)(5.3)

+H(s1, s4, s3, s2) +H(s3, s2, s1, s4).

Therefore we need to consider H(s1, s2, s3, s4). Actually, H(s1, s2, s3, s4) is

equal to ζsl(4)(s1, 0, s2, s3, s4, 0), where ζsl(4)(s1, s2, s3, s4, s5, s6) is the Witten
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zeta-function associated with sl(4) (see [9]) defined by

(5.4)

ζsl(4)(s1, s2, s3, s4, s5, s6) =

∞
∑

l,m,n=1

1

ls1ms2ns3(l +m)s4(m+ n)s5(l +m + n)s6
.

First we prove the following lemma. Though this is regarded as a spe-

cial case of [9, Theorem 3.5], we can prove this lemma more simply by

considering a simple integral representation of H(s1, s2, s3, s4) (see (5.15)).

Lemma 5.1. The function H(s1, s2, s3, s4) can be continued meromorphi-

cally to C4, and all of its singularities are located on the subsets of C4 defined

by one of the equations:

s1 + s3 = 1− l (l ∈ N0);(5.5)

s2 + s4 = 1− l (l ∈ N0);(5.6)

s3 + s4 = 1− l (l ∈ N0);(5.7)

s1 + s3 + s4 = 2− l (l ∈ N0);(5.8)

s2 + s3 + s4 = 2− l (l ∈ N0);(5.9)

s1 + s2 + s3 + s4 = 3,(5.10)

all of which are true singularities.

Proof. We use the same notation as in the proof of [8, Theorem 1]. We

recall the Mellin-Barnes formula

(5.11) (1 + λ)−s =
1

2πi

∫

(c)

Γ(s+ z)Γ(−z)
Γ(s)

λzdz,

where <s > 0, |argλ| < π, λ 6= 0, c ∈ R with −<s < c < 0, i =
√
−1 and

the path (c) of integration is the vertical line <z = c.

Assume sj ∈ C with <sj > 1 (j = 1, 2, 3, 4). Then H(s1, s2, s3, s4)

is convergent absolutely. Let (k + l)−s3 = l−s3
(

1 + k
l

)−s3
in (5.1), and

substitute (5.11) with λ = k/l into (5.1). Assume −<s3 < c < 0. Then we

have

H(s1, s2, s3, s4)(5.12)

=
1

2πi

∫

(c)

Γ(s3 + z)Γ(−z)
Γ(s3)

∞
∑

k=1

1

ks1

∞
∑

l,m=1

1

ls3ms2(l +m)s4

(

k

l

)z

dz

=
1

2πi

∫

(c)

Γ(s3 + z)Γ(−z)
Γ(s3)

ζ(s1 − z)ζMT,2(s2, s3 + z; s4)dz.

Note that, by the assumptions <sj > 1 (1 ≤ j ≤ 4) and −<s3 < c < 0, we

see that each series in the integrand on the second member of (5.12) is con-

vergent absolutely. By [5, Theorem 1], the singularities of ζMT,2(s1, s2; s3)
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are located only on the subsets of C3 defined by one of the equations:

s1 + s3 = 1− l, s2 + s3 = 1− l (l ∈ N0), s1 + s2 + s3 = 2.

Hence, by considering singularities of Γ(s), ζ(s) and ζMT,2(s1, s2; s3), we

see that the singularities of the integrand of (5.12) are determined by z =

−s3 − l, z = l, z = s1 − 1, s2 + s4 = 1− l, z = 1− s3 − s4 − l (l ∈ N0) and

z = 2− s2 − s3 − s4.

Now we shift the path <z = c to <z = M − ε for a sufficiently large

M ∈ N and a sufficiently small positive ε ∈ R. Then all the relevant

singularities are z = l (0 ≤ l ≤ M − 1) and z = s1 − 1. Counting their

residues, and using the relations

(5.13)
(−1)l

l!

Γ(s+ l)

Γ(s)
= (−1)l

(

s+ l − 1

l

)

=

(−s
l

)

,

and

(5.14) Γ(−l − δ) =
Γ(1− δ)

(−δ) · · · (−l − δ)
= −(−1)l

l!

(

1

δ
+O(1)

)

(δ → 0)

for l ∈ N0, we have

H(s1, s2, s3, s4) =
Γ(s1 + s3 − 1)Γ(1− s1)

Γ(s3)
ζMT,2(s2, s1 + s3 − 1; s4)

(5.15)

+

M−1
∑

k=0

(−s3

k

)

ζ(s1 − k)ζMT,2(s2, s3 + k; s4)

+
1

2πi

∫

(M−ε)

Γ(s3 + z)Γ(−z)
Γ(s3)

ζ(s1 − z)ζMT,2(s2, s3 + z; s4)dz,

because Resz=s1−1 ζ(s1 − z) = −1 and

Γ(s3 + k)

Γ(s3)
Res
z=k

Γ(−z) = −
(−s3

k

)

.

Since M can be taken arbitrarily large, (5.15) implies the meromorphic

continuation of H(s1, s2, s3, s4) to C4.

Fix a point (s1, s2, s3, s4) ∈ C4. Among the above list of singularities of

the integrand of (5.12), only the family s2+s4 = 1−l (l ∈ N0) is independent

of z. Therefore, by choosing a sufficiently large M , we may assume that

the integral term on the right-hand side of (5.15) is holomorphic, except

s2 + s4 = 1 − l (l ∈ N0), around the fixed (s1, s2, s3, s4). Also we see

that the singularities of the first term on the right-hand side of (5.15) are

determined by s1 + s3 = 1− l, s1 = 1+ l, s2 + s4 = 1− l, s1 + s3 + s4 = 2− l,
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s1 + s2 + s3 + s4 = 3 (l ∈ N0), those of the second term are determined by

s1 = 1 + k, s2 + s4 = 1 − l, s3 + s4 = 1 − (k + l), s2 + s3 + s4 = 2 − k

(0 ≤ k ≤M − 1; l ∈ N0). Using the symmetricity

H(s2, s1, s4, s3) = H(s1, s2, s3, s4),(5.16)

we see that s1 = 1+l is not a singularity ofH(s1, s2, s3, s4) because s2 = 1+l

is not a singularity. On the other hand, we see that

(5.17) ζMT,2(s1,−l; s2) 6≡ 0 (l ∈ N0),

because

(5.18) ζMT,2(l + 2,−l; l + 2) =

∞
∑

m,n=1

nl

ml+2(m + n)l+2
> 0,

which is convergent absolutely. Hence, from (5.17), we see that s1 + s3 =

1 − l is not cancelled with the factor of ζMT,2 in the first term on the

right-hand side of (5.15). Hence we find that (5.5), (5.8)-(5.10) determine

true singularities because these equations come from only one term on the

right-hand side of (5.15). The singularity s3 + s4 = 1 − l comes from the

terms, corresponding to 0 ≤ k ≤ l, in the sum part on the right-hand side

of (5.15); but these are not cancelled, because the residues coming from

different terms have different order with respect to s3. Hence (5.7) also

gives true singularities. Furthermore, combining (5.16) with the fact that

(5.5) determines a true singularity as mentioned above, we can conclude

that (5.6) also determines a true singularity. Thus we obtain the proof of

Lemma 5.1.

Remark 5.2. From [9, Theorem 3.5], we see that the list of singularities of

H(s1, s2, s3, s4) = ζsl(4)(s1, 0, s2, s3, s4, 0) are given by (5.5)-(5.10) and

(5.19) s1 + s2 + s3 + s4 = 2− l (l ∈ N0),

though (5.19) does not appear in Lemma 5.1. In fact, we can check that

(5.19) does not determine the singularity of H(s1, s2, s3, s4) as follows. The

possible singularity (5.19) comes from [9, (3.43)], the singularities of ζsl(4),

which come from

S1 =
Γ(s3 + s5 + s6 + n− 1)Γ(1− s3 − s5 − n)

Γ(s6)

× ζMT,2(s1, s2 − n; s3 + s4 + s5 + s6 + n− 1)

corresponding to s1 + (s3 + s4 + s5 + s6 + n− 1) = 1− l (l ∈ N0). These are

indeed true singularities of ζsl(4)(s1, s2, s3, s4, s5, s6). However, in the above

argument, we consider the case (s2, s6) = (0, 0). Hence these singularities

are cancelled with Γ(s6) as s6 → 0. Thus (5.19) does not determine a

singularity of H(s1, s2, s3, s4).
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From Lemma 5.1, we give the proof of Theorem 4.2, namely determine

the true singularities of G(s1, s2, s3, s4).

Proof of Theorem 4.2 The meromorphic continuation ofG comes from

that of H and of ζ(s). From Lemma 5.1, true singularities of H(s1, s4, s3, s2)

are determined by s1 + s3 = 1 − l, s2 + s4 = 1 − l, s2 + s3 = 1 − l,

s1 +s2 +s3 = 2− l, s2 +s3 +s4 = 2− l and s1 +s2 +s3 +s4 = 3 (l ∈ N0), and

those of H(s3, s2, s1, s4) are determined by s1 + s3 = 1− l, s2 + s4 = 1− l,

s1+s4 = 1−l, s1+s3+s4 = 2−l, s1+s2+s4 = 2−l and s1+s2+s3+s4 = 3.

Furthermore those of ζ(s1 + s3)ζ(s2 + s4) are determined by s1 + s3 = 1 and

s2 +s4 = 1. Hence we have only to check that s1 +s3 = 1− l, s2 +s4 = 1− l
and s1 + s2 + s3 + s4 = 3 determine true singularities.

Using the relation G(s1, s2, s3, s4) = G(s2, s1, s3, s4) = G(s1, s2, s4, s3)

and from the fact that s1 + s4 = 1 + l determines a true singularity as

mentioned above, we can conclude that s1 + s3 = 1− l and s2 + s4 = 1− l

also determine true singularities.

On the other hand, this kind of argument using symmetry is not enough

to prove the fact that s1 + s2 + s3 + s4 = 3 determines a true singularity.

Hence we have to give more detailed consideration. From [5, (5.3)], we have

ζMT,2(s1, s2; s3) =
Γ(s2 + s3 − 1)Γ(1− s2)

Γ(s3)
ζ(s1 + s2 + s3 − 1)(5.20)

+
M−1
∑

k=0

(−s3

k

)

ζ(s1 + s3 + k)ζ(s2 − k)

+
1

2πi

∫

(M−ε)

Γ(s3 + z)Γ(−z)
Γ(s3)

ζ(s1 + s3 + z)ζ(s2 − z)dz.

Therefore the singular part of ζMT,2(s2, s1 + s3 − 1; s4) corresponding to

s1 + s2 + s3 + s4 = 3 comes from ζ(s1 + s2 + s3 + s4− 2). Hence the relevant

singular part of H(s1, s4, s3, s2) is

Γ(s1 + s3 − 1)Γ(1− s1)

Γ(s3)
· Γ(s1 + s2 + s3 − 2)Γ(2− s1 − s3)

Γ(s2)
(5.21)

× ζ(s1 + s2 + s3 + s4 − 2).

Similarly, the relevant singular part of H(s3, s2, s1, s4) is

Γ(s1 + s3 − 1)Γ(1− s3)

Γ(s1)
· Γ(s1 + s3 + s4 − 2)Γ(2− s1 − s3)

Γ(s4)
(5.22)

× ζ(s1 + s2 + s3 + s4 − 2).
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Therefore the relevant singular part of G(s1, s2, s3, s4) is

Γ(s1 + s3 − 1)Γ(2− s1 − s3)ζ(s1 + s2 + s3 + s4 − 2)

(5.23)

×
{

Γ(1− s1)Γ(s1 + s2 + s3 − 2)

Γ(s2)Γ(s3)
+

Γ(1− s3)Γ(s1 + s3 + s4 − 2)

Γ(s1)Γ(s4)

}

.

If we substitute s4 = 3− s1 − s2 − s3 into the part of the curly parentheses

in (5.23), then we find that it is equal to

Γ(1− s1)Γ(s1 + s2 + s3 − 2)

Γ(s2)Γ(s3)
+

Γ(1− s3)Γ(1− s2)

Γ(s1)Γ(3− s1 − s2 − s3)
.

We can check that this quantity is 6≡ 0, by observing the situation when

=s1 → ∞, or by observing the value at (s1, s2, s3) with s2 = s3 = 1/2 and

s1 → 1. Thus we see that s1 +s2 +s3 +s4 = 3 determines a true singularity.

This completes the proof of Theorem 4.2. (Note that we will give another

expression of (5.23) in Remark 6.3.)

Remark 5.3. In the proof of Theorem 4.2, we concluded that s1+s3 = 1+l

(l ∈ N0) gives a true singularity by the argument using symmetry of indices

and the fact that s1 + s4 = 1+ l determines a true singularity. On the other

hand, we can directly prove this fact as follows.

Singularities determined by s1 + s3 = 1 − l (l ∈ N0) come from Γ(s1 +

s3 − 1) in the second term on the right-hand side of (5.12). Suppose l ∈ N.

Then the relevant singular part of G(s1, s2, s3, s4) is

Γ(s1 + s3 − 1)

{

Γ(1− s1)

Γ(s3)
ζMT,2(s4, s1 + s3 − 1; s2)(5.24)

+
Γ(1− s3)

Γ(s1)
ζMT,2(s2, s1 + s3 − 1; s4)

}

.

If we substitute s3 = 1− s1 − l into the part of the curly parentheses, then

we have

Γ(1− s1)

Γ(1− s1 − l)
ζMT,2(s4,−l; s2) +

Γ(s1 + l)

Γ(s1)
ζMT,2(s2,−l; s4)(5.25)

= s1(s1 + 1) · · · (s1 + l − 1)

×
{

ζMT,2(s4,−l; s2) + (−1)lζMT,2(s2,−l; s4)
}

6≡ 0.

In fact, if l is even, then by putting s2 = s4 = l+ 2 and using (5.18), we see

that (5.25) holds. If l is odd, then by putting s2 = l + 2 and s4 = l + 3 we

have

ζMT,2(l+3,−l; l+2)− ζMT,2(l+2,−l; l+3) = ζMT,2(l+3,−l−1; l+3) > 0,

22



hence (5.25) holds. This implies that s1 + s3 = 1− l (l ∈ N) determine true

singularities.

Suppose l = 0. Then the relevant singular part of G(s1, s2, s3, s4) is

(5.20) plus ζ(s1 + s3)ζ(s2 + s4) which can be written as

1

s1 + s3 − 1

{

ζ(s2 + s4) +
Γ(1− s1)

Γ(s3)
ζMT,2(s4, s1 + s3 − 1; s2)(5.26)

+
Γ(1− s3)

Γ(s1)
ζMT,2(s2, s1 + s3 − 1; s4)

}

+O(1).

If we substitute s3 = 1− s1 into the part of the curly parentheses, then we

have

ζ(s2 + s4) + ζMT,2(s2, 0; s4) + ζMT,2(s4, 0; s2) = ζ(s2)ζ(s4) 6≡ 0.

This implies that s1 + s3 = 1 determines a true singularity.

6 True singularities of ζMT,r and some remarks

In this section, we consider further applications of the method used in Sec-

tion 5.

First we determine true singularities of ζMT,r(s1, . . . , sr; sr+1). Actually,

in [8, Theorem 1], the first-named author showed that ζMT,r(s1, . . . , sr; sr+1)

can be continued meromorphically to Cr+1 and gave the list ((6.1) below)

of the possible singularities. By combining this method with our present

method, we can determine true singularities of ζMT,r as follows. Note that

the case r = 3 of this theorem coincides with Theorem 4.1.

Theorem 6.1. The function ζMT,r(s1, . . . , sr; sr+1) can be continued mero-

morphically to Cr+1 and their singularities are given by one of the following

equations:

(6.1)











































(sj − 1) + sr+1 = −l (1 ≤ j ≤ r, l ∈ N0);

(sj1 − 1) + (sj2 − 1) + sr+1 = −l (1 ≤ j1 < j2 ≤ r, l ∈ N0);

· · · · · ·
r−1
∑

ν=1

(sjν
− 1) + sr+1 = −l (1 ≤ j1 < · · · < jr−1 ≤ r, l ∈ N0);

s1 + s2 + · · ·+ sr+1 = r,

all of which are true singularities.

Proof. We will prove this theorem by induction on r ≥ 1.
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In the case r = 1, we see that ζMT,1(s1; s2) = ζ(s1+s2). Hence s1+s2 = 1

only determines a singularity of ζMT,1(s1; s2). Thus we have the assertion.

Actually the case r = 2 has also been proved in [5, Theorem 1].

Assume that the assertion in the case of r−1 (r > 1) holds, and consider

the case of r. From [8, (3.2)], we have

ζMT,r(s1, . . . , sr; sr+1)

(6.2)

=
Γ(sr + sr+1 − 1)Γ(1− sr)

Γ(sr+1)
ζMT,r−1(s1, . . . , sr−1; sr + sr+1 − 1)

+
M−1
∑

k=0

(−sr+1

k

)

ζMT,r−1(s1, . . . , sr−1; sr+1 + k)ζ(sr − k)

+
1

2πi

∫

(M−ε)

Γ(sr+1 + z)Γ(−z)
Γ(sr+1)

ζMT,r−1(s1, . . . , sr−1; sr+1 + z)ζ(sr − z)dz,

where M (∈ N) is a sufficiently large number and ε (∈ R) is a sufficiently

small positive number. Since M can be taken arbitrarily large, (6.2) im-

plies the meromorphic continuation of ζMT,r(s1, . . . , sr; sr+1) to Cr+1, by the

assumption of induction.

Now we take a sufficiently large M which satisfies that the third term

on the right-hand side of (6.2) is holomorphic on a certain neighbourhood

of (s1, . . . , sr+1). Indeed, we can take it by the assumption of induction.

Then, by the assumption again, we see that singularities of the first term

on the right-hand side of (6.2) are determined by
∑

j∈J

(sj − 1) + (sr + sr+1 − 1) = −l (l ∈ N0);(6.3)

r−1
∑

j=1

(sj − 1) + (sr + sr+1 − 1) = 0;(6.4)

sr + sr+1 = 1− l (l ∈ N0);(6.5)

sr = 1 + l (l ∈ N0),(6.6)

where J(6= ∅) runs over all proper subsets of {1, 2, . . . , r− 1}. Similarly, we

see that singularities of the second term on the right-hand side of (6.2) are

determined by
∑

j∈J

(sj − 1) + (sr+1 + k) = −l (k, l ∈ N0);(6.7)

r−1
∑

j=1

(sj − 1) + (sr+1 + k) = 0 (k ∈ N0);(6.8)

sr − k = 1 (k ∈ N0)(6.9)
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for J as above.

First we claim that (6.6), namely (6.9) is not a singularity of ζMT,r. In

fact, since s1 = 1 + l (l ∈ N0) is not singular because of r > 1, we see from

the symmetry of indices

ζMT,r(s1, . . . , sr; sr+1) = ζMT,r(sr, s1, . . . , sr−1; sr+1)

that sr = 1 + l (l ∈ N0) is also not singular. Note that this fact has

been already obtained from [8, (3.3)], by checking the cancellation directly.

However the above argument is much simpler than that in [8].

Next we claim that (6.3), (6.4) and (6.5) determine true singularities of

ζMT,r. In fact, these come from only the first term on the right-hand side

of (6.2). Furthermore (6.3) and (6.4) are not cancelled with the Gamma

factors, hence determine true singularities. On the other hand, we need to

check whether (6.5) is cancelled with the factor of ζMT,r−1 or not. For this

checking, we claim that

(6.10) ζMT,r(s1, . . . , sr;−l) 6≡ 0

for l ∈ N0. Actually, as well as (5.17) and (5.18), this fact comes from

ζMT,r(l + 2, . . . , l + 2;−l) =

∞
∑

m1,...,mr=1

(m1 + · · ·+mr)
l

ml+2
1 · · ·ml+2

r

=
∑

k1,...,kr∈N0
k1+···+kr=l

l!

k1! · · ·kr!
ζ(l + 2− k1) · · · ζ(l + 2− kr) > 0.

From these facts, we see that (6.5) is not cancelled with the factor of ζMT,r−1,

hence (6.5) determines a true singularity.

Lastly we consider (6.7) and (6.8). In fact, from the symmetry of indices

and by the fact that (6.3) determines a true singularity, we see that (6.7) and

(6.8) also determine true singularities. Thus, from the above consideration,

we see that the assertion in the case of r holds. By induction on r, we

obtain the proof of Theorem 6.1.

Remark 6.2. Here we give an alternating proof of (6.10) by induction on

r ∈ N. In the case r = 1, it is obvious. Hence we assume that (6.10) holds

for r − 1 (r > 1), and prove the case of r. Put sr = −l in (6.2). Then the

first and the third terms on the right-hand side of (6.2) vanish because of

the Gamma factor. Therefore we have

ζMT,r(s1, . . . , sr;−l)(6.11)

=

M−1
∑

k=0

(

l

k

)

ζMT,r−1(s1, . . . , sr−1; k − l)ζ(sr − k).
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We see that as a set of meromorphic functions, {ζ(s − k) | k ∈ N0} are

linearly independent over C. In fact, we have only to consider each pole of

ζ(s− k) (k ∈ N0). From the assumption of induction, we have

(6.12) ζMT,r−1(s1, ..., sr−1;−l) 6= 0

for some (s1, ..., sr−1) ∈ Cr−1. If we regard (6.11) as a linear relation for

the functions in sr, then (6.12) implies that the coefficient of ζ(sr) does

not vanish. Hence we see that ζMT,r(s1, ..., sr;−l) 6≡ 0. Thus we have the

assertion.

Remark 6.3. Since (6.4) is not cancelled with the Gamma factor, we can

prove that the singular part of ζMT,r(s1, . . . , sr; sr+1) relevant to (6.4) can

be written as

(6.13)
Γ(1− s1) · · ·Γ(1− sr)

(s1 + · · ·+ sr+1 − r)Γ(sr+1)
+O(1)

as s1 + · · ·+ sr+1 → r, by induction on r. In fact, in the case r = 1, we see

that (6.13) is

(6.14)
Γ(1− s1)

(s1 + s2 − 1)Γ(s2)
+O(1) =

1

s1 + s2 − 1
+O(1),

which coincides with the singular part of ζMT,1(s1; s2)(= ζ(s1 +s2)) relevant

to s1 + s2 − 1. Hence we have the assertion in the case r = 1. Assume that

the case of r − 1 holds. Then the singular part of ζMT,r−1(s1, . . . , sr−1; sr +

sr+1 − 1) relevant to (6.4) is

(6.15)
Γ(1− s1) · · ·Γ(1− sr−1)

(s1 + · · ·+ sr+1 − r)Γ(sr + sr+1 − 1)
+O(1).

By substituting (6.15) into (6.2), we immediately obtain the assertion in

the case of r.

Applying (6.13) in the case r = 2 to (5.15), we see that (5.21) can be

written as

Γ(s1 + s3 − 1)Γ(1− s1)

Γ(s3)

Γ(1− s4)Γ(2− s1 − s3)

(s1 + s2 + s3 + s4 − 3)Γ(s2)
+O(1)

(6.16)

= −Γ(1− s1)Γ(1− s2)Γ(1− s3)Γ(1− s4)

s1 + s2 + s3 + s4 − 3

sin(πs2) sin(πs3)

π sin(π(s1 + s3))
+O(1),

because Γ(z)Γ(1 − z) = π/ sin(πz). Similarly, we see that (5.22) can be

written as

(6.17) −Γ(1− s1)Γ(1− s2)Γ(1− s3)Γ(1− s4)

s1 + s2 + s3 + s4 − 3

sin(πs4) sin(πs1)

π sin(π(s1 + s3))
+O(1).
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Since it can be elementarily shown that

sin(πs1) sin(πs4) + sin(πs2) sin(πs3)− sin(π(s1 + s2)) sin(π(s1 + s3))

= {sin(πs4)− sin(π(s1 + s2 + s3))} sin(πs1),

we have

sin(πs1) sin(πs4) + sin(πs2) sin(πs3)(6.18)

= sin(π(s1 + s2)) sin(π(s1 + s3)) +O(s1 + s2 + s3 + s4 − 3).

Hence, using (6.18), we see that (5.23), that is the singular part ofG(s1, s2, s3, s4)

relevant to (5.10), can be obtained as (6.16) plus (6.17), namely

− Γ(1− s1)Γ(1− s2)Γ(1− s3)Γ(1− s4)

s1 + s2 + s3 + s4 − 3

sin(πs2) sin(πs3) + sin(πs4) sin(πs1)

π sin(π(s1 + s3))

(6.19)

= −Γ(1− s1)Γ(1− s2)Γ(1− s3)Γ(1− s4)

s1 + s2 + s3 + s4 − 3

sin(π(s1 + s2))

π
+O(1).

From this expression it is obvious that (6.19), that is (5.23), is indeed sin-

gular at s1 + s2 + s3 + s4 = 3.

We conclude this paper with a comment on the Witten multiple zeta-

function (5.4) associated with sl(4). From (5.4), we see that

(6.20) ζsl(4)(s1, s2, s3, s4, s5, s6) = ζsl(4)(s3, s2, s1, s5, s4, s6).

In [9, Section 4], it was shown that true singularities of ζsl(4)(s1, s2, s3, s4, s5, s6)

are determined by

s1 + s4 + s6 = 1− l (l ∈ N0);(6.21)

s2 + s4 + s5 + s6 = 1− l (l ∈ N0);(6.22)

s3 + s5 + s6 = 1− l (l ∈ N0);(6.23)

s1 + s2 + s4 + s5 + s6 = 2− l (l ∈ N0);(6.24)

s1 + s3 + s4 + s5 + s6 = 2− l (l ∈ N0);(6.25)

s2 + s3 + s4 + s5 + s6 = 2− l (l ∈ N0);(6.26)

s1 + s2 + s3 + s4 + s5 + s6 = 3.(6.27)

Using (6.20), we see that (6.23) and (6.26) determine true singularities from

the fact that (6.21) and (6.24) do so. This argument for (6.23) and (6.26)

is much simpler than the original method in [9]. Hence we can see that

this kind of argument using symmetry is convenient for checking whether
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singularities are true or not. On the other hand, the method used in the

latter part of the proof of Theorem 4.2 and in Remarks 5.3 and 6.3 is

convenient for getting explicit information about singularities. Therefore it

seems that we should use these two methods properly case by case.
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