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1. Introduction

Let r be a positive integer, s1, . . . , sr be complex variables, α1, . . . , αr, w1, . . . ,
wr be complex parameters, and consider the r-ple zeta-function

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

=
∞
∑

m1=0

· · ·
∞
∑

mr=0

(α1 + m1w1)
−s1(α2 + m1w1 + m2w2)

−s2

× · · · × (αr + m1w1 + · · ·+ mrwr)
−sr . (1.1)

If αj + m1w1 + · · · + mjwj = 0 for some j and some (m1, . . . , mj), then the
corresponding terms are to be removed from the sum.

This type of multiple zeta-functions was introduced by the author [11] [12], as
a simultaneous generalization of both Barnes multiple zeta-functions (the case
s1 = · · · = sr−1 = 0 in (1.1)) and Euler-Zagier sums (the case αj = j, wj = 1 for
1 ≤ j ≤ r in (1.1)). Let ` be a fixed line on the complex plane C crossing the
origin. Then ` divides C into three parts; two open half-planes and ` itself. Let
H(`) be one of those half-planes, and assume that

wj ∈ H(`) (1 ≤ j ≤ r). (1.2)

In [11] it has been proved that, under assumption (1.2), the series (1.1) is con-
vergent absolutely in the region

Ar = {(s1, . . . , sr) ∈ Cr | <(sr−k+1 + · · ·+ sr) > k (1 ≤ k ≤ r)}
(1.3)

uniformly in any compact subset of Ar. In [12], the meromorphic continuation
of (1.1) to the whole space Cr has been shown in the special case when 0 < α1 <
α2 < · · · < αr, and wj = 1 for all j.

Then in [13] [14], the meromorphic continuation of (1.1) has been studied in a
more general setting. In [13], besides (1.2), we further assume

αj ∈ H(`) (1 ≤ j ≤ r) (1.4)
1
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and

αj+1 − αj ∈ H(`) (1 ≤ j ≤ r − 1). (1.5)

Note that αj + m1w1 + · · · + mjwj ∈ H(`) always holds under (1.2) and (1.4).
In [13], the meromorphic continuation of (1.1) to the whole space Cr has been
established under the above assumptions. Moreover in the same paper, the as-
ymptotic expansion of ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr)) with respect to
wr when |wr| → 0 has been proved. In [14], the meromorphic continuation of
(1.1) has been proved just under assumption (1.2), without assuming (1.4), (1.5).

In the present paper we return to the situation in [13]; therefore hereafter
we assume (1.2), (1.4) and (1.5). The main purpose of the present paper is
to study the asymptotic behaviour of ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))
when |wr| → ∞. In the next section we will prove a formula, which describes the
behaviour of ζr when |wr| → ∞. In Sections 3 and 4 we will study an important
special case, that is the class of Barnes multiple zeta-functions. Then in Section
5 we will deduce an asymptotic expansion formula for multiple gamma-functions.
Finally in Section 6 we will give some comments on Shintani’s theory for Hecke
L-functions of totally real number fields. In particular we will show that there is
a recursive structure in the family of Shintani multiple zeta-functions.

2. The general asymptotic formula

The purpose of this section is to prove an asymptotic expansion formula for
general ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr)), under assumptions (1.2), (1.4)
and (1.5). Let

ζ(s) =
∞
∑

m=1

m−s, ζ(s, a) =
∞
∑

m=0

(m + a)−s

be the Riemann zeta and the Hurwitz zeta-function (with parameter a) respec-
tively, where

(m + a)−s = exp(−s log(m + a)), −π < arg(m + a) ≤ π.

Let N be the set of positive integers, N0 the set of non-negative integers, and
put

(

s

k

)

=







s(s− 1) · · · (s− k + 1)/k! if k ∈ N,

1 if k = 0.

The case r = 1 is easy. In this case the series (1.1) is

ζ1(s1; α1, w1) =
∞
∑

m=0

(α1 + mw1)
−s1 = w−s1

1

∞
∑

m=0

(

m +
α1

w1

)−s1

(2.1)
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similarly to (3.6) of [13]. The right-hand side of (2.1) is equal to w−s1

1 ζ(s1, α1/w1).
When a is a non-zero complex number with |a| < 1, we have

ζ(s, a) = a−s +
∞
∑

k=0

(

−s

k

)

ζ(s + k)ak. (2.2)

When 0 < a < 1, this is due to Mikolás [16]. Or it can be proved by letting
N →∞ in Lemma 6 of Katsurada-Matsumoto [8]. Lemma 6 of [8] is stated only
for real positive a, but it is valid also for complex a. Substituting (2.2) into the
right-hand side of (2.1), we obtain the expansion formula for ζ1(s1; α1, w1) which
is valid when |wr| is large.

Now we assume r ≥ 2, and write sj = σj + itj (1 ≤ j ≤ r). Let N ≥ 2 be a
positive integer, and at first assume

σj ≥ 0 (1 ≤ j ≤ r − 1), σr > N + r − 1. (2.3)

Then (s1, . . . , sr) ∈ Ar, hence the series (1.1) is convergent absolutely. Using
Mellin-Barnes integral formula ((3.1) of [13]), similarly to (3.7) of [13], we can
show

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

=
1

2πi

∫

(c)

Γ(sr + z)Γ(−z)

Γ(sr)
ζr−1((s1, . . . , sr−2, sr−1 + sr + z);

(α1, . . . , αr−1), (w1, . . . , wr−1)) ζ
(

−z,
αr − αr−1

wr

)

wz
rdz, (2.4)

where the path of integration is the vertical line <z = c. In order to use the
Mellin-Barnes formula, it is necessary to assume −σr < c < 0. Moreover, to
ensure the convergence of two zeta factors on the right-hand side of (2.4), we
require σr−k + · · ·+ σr−1 + σr + c > k (1 ≤ k ≤ r − 1) and c < −1. Therefore,
comparing with (2.3), a suitable choice is c = −N + ε with a small ε > 0.

We list up the singularities of the integrand on the right-hand side of (2.4).
The poles of the gamma factors are

(A) z = −sr − n1 (n1 ∈ N0),
(B) z = n (n ∈ N0).

The Hurwitz zeta-function gives a pole at

(C) z = −1.

Lastly, according to Theorem 1 of [13], the possible singularities of ζr−1 in the
integrand are

(D) z = −sr−j − · · · − sr + j − nj (nj ∈ N0, 2 ≤ j ≤ r − 1),
(E) z = −sr−1 − sr + 1.
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From (2.3) and the choice c = −N + ε we see that the poles (B) and (C) are on
the right of the path of integration, while all the other poles are on the left.

Now let (s0
1, . . . , s0

r) be any point in Cr, and we aim at proving an asymptotic
formula of ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr)) at the point (s0

1, . . . , s0
r).

Write s0
j = σ0

j + it0j (1 ≤ j ≤ r), and assume that

0, t0r, t0r−1 + t0r, . . . , t01 + · · ·+ t0r are all different. (2.5)

This condition especially implies (in view of Theorem 1 of [13]) that ζr is not
singular at (s0

1, . . . , s0
r). Let s∗j = max{σ0

j , 0} + it0j (1 ≤ j ≤ r − 1) and s∗r =

N + r − 1 + η + it0r, where η is a small positive number. Then (s1, . . . , sr) =
(s∗1, . . . , s∗r) satisfies (2.3), hence (2.4) holds for (s1, . . . , sr) = (s∗1, . . . , s∗r). Since
t0r, t0r−1 + t0r, . . . , t01 + · · · + t0r are all different from 0 by (2.5), we can deform
the path <z = c of (2.4) to obtain the new path C from c− i∞ to c + i∞, such
that all the half-lines

Lj = {σ − i(t0r−j + · · ·+ t0r) | σ ≤ −σ0
r−j − · · · − σ0

r + j} (0 ≤ j ≤ r − 1)
(2.6)

are on the left of C, while the poles (B) and (C) still remain on the right of C (see
Figure 1). Then we have

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

=
1

2πi

∫

C

Γ(sr + z)Γ(−z)

Γ(sr)
ζr−1((s1, . . . , sr−2, sr−1 + sr + z);

(α1, . . . , αr−1), (w1, . . . , wr−1)) ζ
(

−z,
αr − αr−1

wr

)

wz
rdz. (2.7)

The next step is to move (s1, . . . , sr) from (s∗1, . . . , s∗r) to (s0
1, . . . , s0

r) with
keeping the values of imaginary parts of each sj. The poles (A), (D) and (E)
of the integrand move along the half-lines Lj (0 ≤ j ≤ r − 1), hence they do
not cross the contour C during this procedure. To carry out this procedure, it is
necessary to show that the integral is always convergent during the procedure.
For this purpose, we need one more assumption. Let

ρ(a, w) = max{| arg a|, | arg w|}.

We assume

ρ(αi − αi−1, wi) + ρ(αj − αj−1, wj) < π (1 ≤ i < j ≤ r) (2.8)

(where α0 = 0), which is necessary to use Theorem 4 of [13]. Write z = x + iy.
Applying Stirling’s formula to gamma factors, Theorem 4 (iii) of [13] to ζr−1, and
Lemma 2 of [13] to the factor

ζ
(

−z,
αr − αr−1

wr

)

wz
r
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−s∗r

−s∗r−1 − s∗r + 1

−s∗r−2 − s∗r−1 − s∗r + 2

−s∗1 − · · · − s∗r + (r − 1)

−s0
r

−s0
r−1 − s0

r + 1

−s0
r−2 − s0

r−1 − s0
r + 2

−s0
1 − · · · − s0

r + (r − 1)

Fig.1

in the integrand, we find that the integrand is

� exp
(

π

2
(|tr| − |tr + y| − |y|)

)

(|tr + y|+ 1)σr+x−1/2

× (|y|+ 1)−x−1/2(|tr|+ 1)−σr+1/2

×

{

r−1
∑

j=1

(|tr−1 + tr + y|+ 1)f(j) exp(|tr−1 + tr + y|ρ(αj − αj−1, wj))

}

× |wr|
x(|y|+ 1)max{0,1+x}+ε exp(|y|ρ(αr − αr−1, wr)), (2.9)

where f(j), f(r − 1) are certain positive numbers depending on σ1, . . . , σr, x, ε.
Therefore, under assumption (2.8), we see that the integral is convergent abso-
lutely during the above procedure. Hence (2.7) with (s1, . . . , sr) = (s0

1, . . . , s0
r)
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is established. The idea of the above argument of analytic continuation was first
appeared in [15].

Next we deform the contour C back to the original path <z = c = −N + ε.
During this deformation we meet several poles, whose residues we should count.
Because of assumption (2.5), none of the poles (A), (D), (E) for (s1, . . . , sr) =
(s0

1, . . . , s0
r) coincides with each other. Hence we can easily show inductively, by

using (4.4) of [13], that all of those poles are (at most) simple. We denote the
residues of ζr−1((s1, . . . , sr−2, sr−1 +sr +z); (α1, . . . , αr−1), (w1, . . . , wr−1)) at the
poles (D) and (E) by

RD
j (nj; (s1, . . . , sr−2); (α1, . . . , αr−1), (w1, . . . , wr−1))

(nj ∈ N0, 2 ≤ j ≤ r − 1) and

RE((s1, . . . , sr−2); (α1, . . . , αr−1), (w1, . . . , wr−1)),

respectively. (These do not depend on sr−1, sr.) Then the residues of the inte-
grand on the right-hand side of (2.7) with (s1, . . . , sr) = (s0

1, . . . , s0
r) at the poles

(A), (D), (E) are

XA(n1)w
−s0

r−n1

r , XD
j (nj)w

−s0

r−j
−···−s0

r+j−nj

r , XEw
−s0

r−1
−s0

r+1
r ,

respectively, where

XA(n1) =XA(n1; (s
0
1, . . . , s0

r), (α1, . . . , αr), (w1, . . . , wr))

=

(

−s0
r

n1

)

ζr−1((s
0
1, . . . , s0

r−2, s
0
r−1 − n1); (α1, . . . , αr−1), (w1, . . . , wr−1))

× ζ
(

s0
r + n1,

αr − αr−1

wr

)

,

XD
j (nj) =XD

j (nj; (s
0
1, . . . , s0

r), (α1, . . . , αr), (w1, . . . , wr))

=
Γ(−s0

r−j − · · · − s0
r−1 + j − nj)Γ(s0

r−j + · · ·+ s0
r − j + nj)

Γ(s0
r)

× RD
j (nj; (s

0
1, . . . , s0

r−2); (α1, . . . , αr−1), (w1, . . . , wr−1))

× ζ
(

s0
r−j + · · ·+ s0

r − j + nj,
αr − αr−1

wr

)

,

and

XE =XE((s0
1, . . . , s0

r), (α1, . . . , αr), (w1, . . . , wr))

=
Γ(1− s0

r−1)Γ(s0
r−1 + s0

r − 1)

Γ(s0
r)

×RE((s0
1, . . . , s0

r−2); (α1, . . . , αr−1), (w1, . . . , wr−1))

× ζ
(

s0
r−1 + s0

r − 1,
αr − αr−1

wr

)

.
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The poles of the form (A) are on the right of <z = c when −σ0
r −n1 > −N +ε,

that is,

0 ≤ n1 < N − σ0
r − ε. (2.10)

Similarly, the poles of the form (D) are on the right of <z = c when

0 ≤ nj < N − (σ0
r−j + · · ·+ σ0

r) + j − ε (2 ≤ j ≤ r − 1).
(2.11)

The poles of the form (E) are on the right of <z = c when

−σ0
r−1 − σ0

r + 1 > −N + ε. (2.12)

We choose N = N(σ0
1 , . . . , σ0

r) sufficiently large such that (2.12) is valid and the
right-hand sides of (2.10) and (2.11) are positive. Let λ0

j = σ0
r−j + · · ·+ σ0

r , and

write λ0
j = [λ0

j ] + {λ0
j}, where [λ0

j ] is an integer and 0 ≤ {λ0
j} < 1. Similarly we

write σ0
r = [σ0

r ] + {σ0
r}. If we choose ε = ε(σ0

1, . . . , σ0
r) > 0 sufficiently small for

which {λ0
j}+ ε < 1 (2 ≤ j ≤ r−1) and {σ0

r}+ ε < 1, then from (2.10) and (2.11)
we have

0 ≤ n1 ≤ N − [σ0
r ]− 1, 0 ≤ nj ≤ N − [λ0

j ] + j − 1 (2 ≤ j ≤ r − 1).

Therefore

ζr((s
0
1, . . . , s0

r); (α1, . . . , αr), (w1, . . . , wr))

=
N−[σ0

r ]−1
∑

n1=0

XA(n1)w
−s0

r−n1

r

+
r−1
∑

j=2

N−[λ0

j ]+j−1
∑

nj=0

XD
j (nj)w

−s0

r−j
−···−s0

r+j−nj

r + XEw
−s0

r−1
−s0

r+1
r

+
1

2πi

∫

(−N+ε)

Γ(s0
r + z)Γ(−z)

Γ(s0
r)

ζr−1((s
0
1, . . . , s0

r−2, s
0
r−1 + s0

r + z);

(α1, . . . , αr−1), (w1, . . . , wr−1)) ζ
(

−z,
αr − αr−1

wr

)

wz
rdz. (2.13)

Lastly we estimate the integral term on the right-hand side of (2.13). The
integrand is estimated as (2.9) with x = −N +ε. Hence the integral is convergent
and O(|wr|

−N+ε). Therefore we now obtain the following result.
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Theorem 1. Let r ≥ 2, and assume (1.2), (1.4), (1.5) and (2.8). Let (s0
1, . . . , s0

r)
be any point in Cr satisfying (2.5). Then the formula

ζr((s
0
1, . . . , s0

r); (α1, . . . , αr), (w1, . . . , wr))

=
N−[σ0

r ]−1
∑

n1=0

XA(n1)w
−s0

r−n1

r +
r−1
∑

j=2

N−[λ0

j
]+j−1

∑

nj=0

XD
j (nj)w

−s0

r−j
−···−s0

r+j−nj

r

+ XEw
−s0

r−1
−s0

r+1
r + O(|wr|

−N+ε) (2.14)

holds for any sufficiently large N and sufficiently small ε > 0.

Remark 1 Let θ ∈ (−π, π] be the number determined by

H(`) =
{

w ∈ C \ {0}
∣

∣

∣

∣

θ −
π

2
< arg w < θ +

π

2

}

.

Then, without assumption (2.8), we can prove a formula similar to (2.14), but
with replacing wr by wre

−iθ, by the method developed in the last section of [13].
Moreover, it is also not difficult to obtain a formula without assumptions (1.4)
and (1.5), if we follow the argument in [14].

Remark 2 In Theorem 4 of [13], we have shown an upper bound estimate of
ζr, valid uniformly in any vertical strip. Such an estimate is not necessary if we
only want to prove the analytic continuation and the asymptotic expansion for
small |wr|, because we can prove those results by the “right-shift” argument of
the path of integration, and during this procedure the factor ζr−1 in the integrand
is always in the domain of absolute convergence (see [14]). However, as we have
seen in this section, the estimate of Theorem 4 of [13] is essentially necessary to
study the behaviour of ζr when |wr| is large.

Remark 3 Formula (2.14) is not the asymptotic expansion with respect to wr

in the strict sense, because the Hurwitz zeta factors in the coefficients XA(n1),
XD

j (nj), XE still include wr. But when |wr| is large, we can substitute formula
(2.2) of Mikolás into those factors to obtain the asymptotic expansion. A special
case is the situation when

αr − αr−1 = bwr (2.15)

holds with a constant b satisfying | arg b| < π. Then ζ(s, (αr−αr−1)/wr) = ζ(s, b)
is independent of wr, so (2.14) itself is the asymptotic expansion with respect to
wr in the strict sense.

Remark 4 This remark is an additional comment for [13]. In [13] we have
discussed the asymptotic behaviour of ζr when |wr| is small. We have stated
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asymptotic expansion formulas (Theorems 2 and 5 of [13]) only under the above
condition (2.15). However we can relax the condition to

αr − αr−1 = b1wr + b2 (2.16)

with two constants b1, b2. In this case we have

ζ
(

s,
αr − αr−1

wr

)

= ζ

(

s, b1 +
b2

wr

)

.

Hence we can apply Katsurada’s asymptotic formula (Theorem 1 of [7]) to obtain
the asymptotic expansion of ζ(s, (αr−αr−1)/wr), hence the asymptotic expansion
of ζr, when |wr| is small.

3. The case of Barnes multiple zeta-functions

One of the originators of analytic thoery of multiple zeta-functions is Barnes,
who introduced his r-ple zeta-function

ζB,r(s; α, (w1, . . . , wr)) =
∞
∑

m1=0

· · ·
∞
∑

mr=0

(α + m1w1 + · · ·+ mrwr)
−s

(3.1)

in [1] (r = 2) and [2] (any r). As mentioned in Section 1, this is the special case
s1 = · · · = sr−1 = 0, sr = s and αr = α in (1.1). It is now well known that Barnes
multiple zeta-functions are very important objects in number theory, hence it is
natural to study this case in detail.

Let r ≥ 2, N be a large positive integer, and α ∈ H(`). Assume (1.2), and also
assume

ρ(α, wi) + ρ(α, wj) < π (1 ≤ i < j ≤ r − 1), (3.2)

ρ(α, wi) + | arg wr| < π (1 ≤ i ≤ r − 1). (3.3)

Choose the parameters α1, . . . , αr by

αj =
j

r − 1
α (1 ≤ j ≤ r − 2), αr−1 = α, αr = α + wr. (3.4)

Then (1.4), (1.5) and (2.8) are satisfied. Hence we can apply the argument in the
preceding section to the present case.

Let s1 = · · · = sr−1 = 0, sr = s and write s = σ + it. When σ > N + r− 1, we
have (0, . . . , 0, s) ∈ Ar, and (2.4) in the present case can be rewritten as

ζB.r(s; α + wr, (w1, . . . , wr))

= ζr((0, . . . , 0, s); (α/(r− 1), . . . , α, α + wr), (w1, . . . , wr))

=
1

2πi

∫

(c)

Γ(s + z)Γ(−z)

Γ(s)
ζr−1((0, . . . , 0, s + z);

(α/(r − 1), . . . , α), (w1, . . . , wr−1)) ζ(−z)wz
rdz, (3.5)
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because (αr − αr−1)/wr = 1. The poles (A), (B) and (C) of the integrand are
the same as in Section 2. The poles (D) and (E) are coming from the factor ζr−1,
which is now

ζr−1((0, . . . , 0, s + z); (α/(r − 1), . . . , α), (w1, . . . , wr−1))

= ζB,r−1(s + z; α, (w1, . . . , wr−1)). (3.6)

The poles of Barnes multiple zeta-functions were studied by Barnes himself.
Barnes [2] proved that (3.1) can be continued meromorphically to the whole com-
plex plane, and holomorphic except for the poles of order 1 at s = k (1 ≤ k ≤ r).
Hence the poles of (3.6) are at

(F) z = −s + k (1 ≤ k ≤ r − 1),

which are on the left of the path of integration <z = c = −N + ε.
Let s0 = σ0 + it0 ∈ C with t0 6= 0. Then we can define a path C ′ from c− i∞

to c + i∞ such that

{σ − it0 | σ ≤ −σ0 + r − 1}

is on the left of C ′ while (B) and (C) are on the right of C ′ (see Figure 2, where
s∗ = N + r− 1 + η + it0). Then, by an argument similar to that in the preceding
section, we can continue (3.1) to s = s0, and we have

ζB,r(s
0; α + wr, (w1, . . . , wr))

=
N−[σ0]−1
∑

n=0

Y A(n; s0)w−s0−n
r +

r−1
∑

k=1

Y F (k; s0)w−s0+k
r

+
1

2πi

∫

(−N+ε)

Γ(s0 + z)Γ(−z)

Γ(s0)
ζB,r−1(s

0 + z; α, (w1, . . . , wr−1)) ζ(−z)wz
rdz,

(3.7)

where

Y A(n; s0) =Y A(n; s0; α, (w1, . . . , wr−1))

=

(

−s0

n

)

ζB,r−1(−n; α, (w1, . . . , wr−1))ζ(s0 + n),

Y F (k; s0) =Y F (k; s0; α, (w1, . . . , wr−1))

=
(k − 1)!Γ(s0 − k)

Γ(s0)
Rr−1,k(α)ζ(s0 − k),

and

Rr−1,k(α) = Rr−1,k(α, (w1, . . . , wr−1))

is the residue of ζB,r−1(s
0 +z; α, (w1, . . . , wr−1)) as a function in z at z = −s0 +k,

that is, the residue of ζB,r−1(s; α, (w1, . . . , wr−1)) as a function in s at s = k.
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−s∗
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Combining (3.7) with the relation

ζB,r(s
0; α + wr, (w1, . . . , wr))

= ζB,r(s
0; α, (w1, . . . , wr))− ζB,r−1(s

0; α, (w1, . . . , wr−1)) (3.8)

(formula (4.9) of [13]), we have

ζB,r(s
0; α, (w1, . . . , wr))

= ζB,r−1(s
0; α, (w1, . . . , wr−1))

+
N−[σ0]−1
∑

n=0

Y A(n; s0)w−s0−n
r +

r−1
∑

k=1

Y F (k; s0)w−s0+k
r

+
1

2πi

∫

(−N+ε)

Γ(s0 + z)Γ(−z)

Γ(s0)
ζB,r−1(s

0 + z; α, (w1, . . . , wr−1)) ζ(−z)wz
rdz.

(3.9)

The value of Rr−1,k(α) was evaluated by Barnes. Let u be a complex variable,
and define Ar,k(u) and Tr,n(u) by the following Laurent expansion:

(−1)rze−uz
r
∏

k=1

(

1− e−wkz
)−1

=
r
∑

k=1

(−1)kAr,k(u)z1−k +
∞
∑

n=1

(−1)n−1Tr,n(u)zn.
(3.10)



12 KOHJI MATSUMOTO

The n-th r-ple Bernoulli polynomial Sr,n(u) = Sr,n(u; (w1, . . . , wr)) is defined by
the properties Sr,n(0) = 0 and

1

n!

d

du
Sr,n(u) = Tr,n(u).

Then it is not difficult to see that

Ar,k(u) = S
(k+1)
r,1 (u) (1 ≤ k ≤ r), (3.11)

where the right-hand side means the (k + 1)-th derivative of Sr,1(u) with respect
to u (Section 3 of Barnes [2]). Since Sr,1(u) is a polynomial of degree r + 1 in u
(Section 7 of [2]), Ar,k(u) is a polynomial of degree r− k in u. Barnes proved (in
Section 28 of [2]) that the residue Rr,k(α) of ζB,r(s; α, (w1, . . . , wr)) at s = k is

Rr,k(α) =
(−1)k+rS

(k+1)
r,1 (α)

(k − 1)!
, (3.12)

hence

Y F (k; s0) =
(−1)k+r−1

(s0 − 1) · · · (s0 − k)
S

(k+1)
r−1,1 (α)ζ(s0 − k). (3.13)

The integral term on the right-hand side of (3.9) is O(|wr|
−N+ε), as in the pre-

ceding section. Therefore we now arrive at the following theorem.

Theorem 2. Let r ≥ 2, α ∈ H(`), and assume (1.2), (3.2) and (3.3). Let s0 be

any complex number whose imaginary part is not 0. Then the formula

ζB,r(s
0; α, (w1, . . . , wr))

= ζB,r−1(s
0; α, (w1, . . . , wr−1))

+
r−1
∑

k=1

(−1)k+r−1

(s0 − 1) · · · (s0 − k)
S

(k+1)
r−1,1 (α)ζ(s0 − k)w−s0+k

r

+
N−[σ0]−1
∑

n=0

(

−s0

n

)

ζB,r−1(−n; α, (w1, . . . , wr−1))ζ(s0 + n)w−s0−n
r

+ O(|wr|
−N+ε) (3.14)

holds for any sufficiently large N and sufficiently small ε > 0.

Remark Since the choice (3.4) satisfies (2.15) (with b = 1), the above formula
(3.14) gives the asymptotic expansion with respect to wr in the strict sense.
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4. Special values of Barnes multiple zeta-functions at integer

points

Theorem 2 in the preceding section requires the assumption t0 6= 0. Hence
it excludes an important special case that s0 = h is an integer. However, for-
mula (3.9) actually gives the analytic continuation of ζB,r(s

0; α, (w1, . . . , wr)) to
a neighbourhood of any point s0 satisfying t0 6= 0. Therefore, putting s0 = h+ it0

in (3.9) and letting t0 → 0, we can obtain explicit information on the behaviour
of ζB,r around s0 = h.

(I) Non-positive case. First consider the case of non-positive integers. Let
s0 → −h, h ∈ N0. Then Y A(h + 1; s0) has a singular factor ζ(s0 + h + 1), but
this singularity is cancelled by the binomial coefficient factor

(

−s0

h + 1

)

= (−s0)(−s0 − 1) · · · (−s0 − h)/(h + 1)!

which vanishes at s0 = −h. The result of the cancellation is that

lim
s0→−h

Y A(h + 1; s0) = −
1

h + 1
ζB,r−1(−h− 1; α, (w1, . . . , wr−1)).

(4.1)

The binomial factor is also equal to 0 at s0 = −h for any n ≥ h + 2, hence

Y A(n;−h) = 0 (n ≥ h + 2). (4.2)

Since Γ(s0) has a pole at s0 = −h, the integral term on the right-hand side of
(3.9) also vanishes. Therefore, letting s0 → −h in (3.9) we obtain

Theorem 3. Under the same assumptions as in Theorem 2, we have

ζB,r(−h; α, (w1, . . . , wr))

= ζB,r−1(−h; α, (w1, . . . , wr−1))

+
r−1
∑

k=1

(−1)r−1

(h + 1) · · · (h + k)
S

(k+1)
r−1,1 (α)ζ(−h− k)wh+k

r

−
1

h + 1
ζB,r−1(−h− 1; α, (w1, . . . , wr−1))w

−1
r

+
h
∑

n=0

(

h

n

)

ζB,r−1(−n; α, (w1, . . . , wr−1))ζ(−h + n)wh−n
r (4.3)

for any h ∈ N0.

On the other hand, Barnes proved

ζB,r(−h; α, (w1, . . . , wr)) =
(−1)r

h + 1
S ′

r,h+1(α) (4.4)
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for any h ∈ N0 (Sections 22 and 30 of [2]). Hence (4.3) may be rewritten as
follows.

Proposition 1. For any h ∈ N0, we have

S ′
r,h+1(α) = −S ′

r−1,h+1(α)−
r−1
∑

k=1

1

(h + 2) · · · (h + k)
S

(k+1)
r−1,1 (α)ζ(−h− k)wh+k

r

+
1

h + 2
S ′

r−1,h+2(α)w−1
r −

h
∑

n=0

(

h + 1

n + 1

)

S ′
r−1,n+1(α)ζ(−h + n)wh−n

r .
(4.5)

This is an explicit formula for S ′
r,h+1(α) in terms of (r− 1)-ple Bernoulli poly-

nomials. The special case h = 0 of (4.5) is

S ′
r,1(α) = −

1

2
S ′

r−1,1(α)−
r−1
∑

k=1

1

k!
S

(k+1)
r−1,1 (α)ζ(−k)wk

r +
1

2
S ′

r−1,2(α)w−1
r .

(4.6)

(II) Positive case. Next consider the situation when s0 → h, where h ∈ N,
1 ≤ h ≤ r. The function ζB,r has a pole of order 1 at s0 = h, and we write the
Laurent expansion as

ζB,r(h + δ; α, (w1, . . . , wr))

= Rr,h(α)
1

δ
+ C0

r,h(α) + C1
r,h(α)δ + C2

r,h(α)δ2 + · · · .

The factor ζ(s0 + n) in Y A(n; s0) is singular at s0 = h only if h = 1 and n = 0.

In this case the residue of Y A(0; s0)w−s0

r at s0 = h = 1 is

ζB,r−1(0; α, (w1, . . . , wr−1))w
−1
r = (−1)r−1S ′

r−1,1(α)w−1
r . (4.7)

Next we determine when Y F (k; s0) is singular at s0 = h. From (3.13) we see that

(i) if 1 ≤ h ≤ r − 1, then the factor ((s0 − 1) · · · (s0 − k))−1 for h ≤ k ≤ r − 1
is singular at s0 = h,

(ii) if 2 ≤ h ≤ r, then the factor ζ(s0 − k) for k = h− 1 is singular at s0 = h.

Therefore, when h = r (≥ 2), the singularity appears only from (ii). Putting
s0 = r + δ, we have

Y F (r − 1; s0)w−s0+r−1
r

=
1

(1 + δ)(2 + δ) · · · (r − 1 + δ)
S

(r)
r−1,1(α)ζ(1 + δ)w−1−δ

r

=
1

(r − 1)!
S

(r)
r−1,1(α)w−1

r

{

1

δ
−
(

1 +
1

2
+ · · ·+

1

r − 1
− γ + log wr

)

+ · · ·
}

,
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where γ is Euler’s constant. Hence the residue of the right-hand side of (3.9) at
s0 = r is

1

(r − 1)!
S

(r)
r−1,1(α)w−1

r . (4.8)

On the other hand, by (3.12), the residue of the left-hand side of (3.9) at s0 = r
is

Rr,r(α) =
1

(r − 1)!
S

(r+1)
r,1 (α). (4.9)

Since

S
(r+1)
r,1 (α) =

1

w1w2 · · ·wr

(4.10)

(Section 7 of [2]), it is clear that (4.9) coincides with (4.8). Concerning the
constant term of the Laurent expansion at s0 = r, we have

C0
r,r(α) = ζB,r−1(r; α, (w1, . . . , wr−1))

−
1

(r − 1)!
S

(r)
r−1,1(α)w−1

r

(

1 +
1

2
+ · · ·+

1

r − 1
− γ + log wr

)

+
r−2
∑

k=1

Y F (k; r)w−r+k
r +

N−r−1
∑

N=0

Y A(n; r)w−r−n
r + O(|wr|

−N+ε).
(4.11)

When 2 ≤ h ≤ r−1, we should count the residues of both (i) and (ii). The first
term ζB,r−1(s

0; α, (w1, . . . , wr−1)) on the right-hand side of (3.9) is also singular.
Hence the residue of the right-hand side of (3.9) in this case is

(−1)h+r−1

(h− 1)!
S

(h+1)
r−1,1 (α) +

(−1)h+r

(h− 1)!
S

(h)
r−1,1(α)w−1

r

+
r−1
∑

k=h

(−1)h+r−1

(h− 1)!(k − h)!
S

(k+1)
r−1,1 (α)ζ(h− k)w−h+k

r . (4.12)

When h = 1, the singularity of the right-hand side of (3.9) appears in the terms
ζB,r−1(s

0; α, (w1, . . . , wr−1)), Y A(0; s0) (with the residue (4.7)), and (i). The re-
sulting residue coincides with the case h = 1 of (4.12). Therefore (4.12) gives the
residue of the right-hand side of (3.9) for 1 ≤ h ≤ r − 1. This is to be equal to
the residue of the left-hand side of (3.9), which is

Rr,h(α) =
(−1)h+rS

(h+1)
r,1 (α)

(h− 1)!
.

Hence we obtain the following formula.
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Proposition 2. For 1 ≤ h ≤ r − 1, we have

S
(h+1)
r,1 (α) = −S

(h+1)
r−1,1 (α) + S

(h)
r−1,1(α)w−1

r

−
r−1
∑

k=h

1

(k − h)!
S

(k+1)
r−1,1 (α)ζ(h− k)w−h+k

r . (4.13)

This identity is related with the behaviour of ζB,r at positive integer points,
but it is interesting to note that this identity can be deduced from (4.6), which
is related with the behaviour of ζB,r at s = 0. In fact, differentiating the both
sides of (4.6) h-times with respect to α, we have

S
(h+1)
r,1 (α) = −

1

2
S

(h+1)
r−1,1 (α) +

1

2
S

(h+1)
r−1,2 (α)w−1

r

−
r−1
∑

k=1

1

k!
S

(k+h+1)
r−1,1 (α)ζ(−k)wk

r

= −
1

2
S

(h+1)
r−1,1 (α) +

1

2
S

(h+1)
r−1,2 (α)w−1

r

−
r+h−1
∑

k=h+1

1

(k − h)!
S

(k+1)
r−1,1 (α)ζ(h− k)w−h+k

r . (4.14)

Barnes proved

S ′′
r−1,n+1(α) = (n + 1)S ′

r−1,n(α) (4.15)

for any n (Section 7 of [2]). Putting n = 1 in (4.15) and differentiating (h− 1)-
times, we have

S
(h+1)
r−1,2 (α) = 2S

(h)
r−1,1(α). (4.16)

Also, since Sr−1,1(α) is a polynomial of degree r in α, we see that S
(k+1)
r−1,1 (α) = 0

for k ≥ r. Therefore from (4.14) we have

S
(h+1)
r,1 (α) = −

1

2
S

(h+1)
r−1,1 (α) + S

(h)
r−1,1(α)w−1

r

−
r−1
∑

k=h+1

1

(k − h)!
S

(k+1)
r−1,1 (α)ζ(h− k)w−h+k

r ,

which implies (4.13).
Note that, when h = r−1 and h = r−2, formula (4.13) can be checked directly

by using Barnes’ formulas (4.10),

S
(r)
r,1 (α) =

α

w1 · · ·wr

−
w1 + · · ·+ wr

2w1 · · ·wr

,
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and

S
(r−1)
r,1 (α) =

α2

2w1 · · ·wr

−
(w1 + · · ·+ wr)α

2w1 · · ·wr

+
1

12w1 · · ·wr







(w2
1 + · · ·+ w2

r) + 3
∑

1≤i<j≤r

wiwj







which are proved in Section 7 of [2].
It is also possible to deduce an asymptotic expansion formula similar to (4.11)

for C0
r,h(α) (1 ≤ h ≤ r − 1).

5. An asymptotic expansion for multiple gamma-functions

The major purpose of Barnes’ paper [2] is to develop the theory of the r-ple
gamma-function Γr(α; (w1, . . . , wr)). It is defined by

log
Γr(α; (w1, . . . , wr))

ρr(w1, . . . , wr)
= ζ ′B,r(0; α; (w1, . . . , wr)), (5.1)

where ζ ′B,r denotes the derivative of ζB,r with respect to s, and

log ρr(w1, . . . , wr) = − lim
α→0

(

ζ ′B,r(0; α; (w1, . . . , wr)) + log α
)

. (5.2)

When α = z +α0, where α0 is fixed and |z| is large, the asymptotic expansion for
log Γr with respect to z is discussed by Barnes [2] himself, and also by Katayama
and Ohtsuki [6]. In the case of double gamma-functions, some asymptotic expan-
sions were studied also by Billingham and King [3], and by Ferreira and López
[4].

In this paper we prove an asymptotic expansion for log Γr with respect to wr

when |wr| is large. Define by

Br,n(w1, . . . , wr) =
1

n

d

du
Sr,n(u; (w1, . . . , wr))

∣

∣

∣

∣

∣

u=0

(5.3)

the n-th r-ple Bernoulli number.
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Theorem 4. For any sufficiently large positive integer N , we have

log Γr(α, (w1, . . . , wr))

= log Γr−1(α, (w1, . . . , wr−1))

+ (−1)r−1
r−1
∑

k=1

1

k!

(

S
(k+1)
r−1,1 (α)− S

(k+1)
r−1,1 (0)

)

×
{((

1 +
1

2
+ · · ·+

1

k

)

ζ(−k) + ζ ′(−k)
)

wk
r − ζ(−k)wk

r log wr

}

+
1

2

{

ζB,r−1(0; α, (w1, . . . , wr−1))− (−1)r−1Br−1,1(w1, . . . , wr−1)
}

× (log wr − log 2π)

+
{

ζB,r−1(−1; α, (w1, . . . , wr−1))− (−1)r−1Br−1,2(w1, . . . , wr−1)
}

× (w−1
r log wr − γw−1

r )

+
N−1
∑

n=2

(−1)n

n
{ζB,r−1(−n; α, (w1, . . . , wr−1))

−(−1)r−1Br−1,n+1(w1, . . . , wr−1)
}

ζ(n)w−n
r

+ O(|wr|
−N), (5.4)

where γ is Euler’s constant.

When r = 2, the above type of asymptotic expansion was first proved in [9],
and then in an improved form in [10]. The above theorem gives a generalization
of those results.

Proof of Theorem 4. From (3.9) we have

ζ ′B,r(0; α, (w1, . . . , wr))

= ζ ′B,r−1(0; α, (w1, . . . , wr−1))

+
r−1
∑

k=1

{

d

ds
Y F (k; s)

∣

∣

∣

∣

∣

s=0

wk
r − Y F (k; 0)wk

r log wr

}

+
N−1
∑

n=0

{

d

ds
Y A(n; s)

∣

∣

∣

∣

∣

s=0

w−n
r − Y A(n; 0)w−n

r log wr

}

+
1

2πi

∫

(−N+ε)

d

ds

{

Γ(s + z)

Γ(s)
ζB,r−1(s + z; α, (w1, . . . , wr−1))

}∣

∣

∣

∣

∣

s=0

× Γ(−z)ζ(−z)wz
rdz. (5.5)

By direct computations from (3.13) we have

Y F (k; 0) =
(−1)r−1

k!
S

(k+1)
r−1,1 (α)ζ(−k) (5.6)
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and

d

ds
Y F (k; s)

∣

∣

∣

∣

∣

s=0

=
(−1)r−1

k!
S

(k+1)
r−1,1 (α)

((

1 +
1

2
+ · · ·+

1

k

)

ζ(−k) + ζ ′(−k)
)

.
(5.7)

Also we have

Y A(n; 0) =















−1
2
ζB,r−1(0; α, (w1, . . . , wr−1)) (n = 0),

−ζB,r−1(−1; α, (w1, . . . , wr−1)) (n = 1),

0 (n ≥ 2).

(5.8)

In fact, the second and the third formulas are the special case h = 0 of (4.1) and
(4.2), respectively, and the first formula is immediate from the definition and the
fact ζ(0) = −1/2.

Next, we have

d

ds
Y A(n; s) =

{

d

ds

(

−s

n

)}

ζB,r−1(−n; α, (w1, . . . , wr−1))ζ(s + n)

+

(

−s

n

)

ζB,r−1(−n; α, (w1, . . . , wr−1))ζ
′(s + n)

(5.9)

and

d

ds

(

−s

n

)

= 0 (n = 0); = −1 (n = 1);

=
(−1)n

n!
{(s + 1)(s + 2) · · · (s + n− 1) + s(s + 2) · · · (s + n− 1)+

+ · · ·+ s(s + 1)(s + 2) · · · (s + n− 2)} (n ≥ 2).

When n = 0, since ζ ′(0) = −(1/2) log 2π, we have

d

ds
Y A(0; s)

∣

∣

∣

∣

∣

s=0

= −
1

2
(log 2π)ζB,r−1(0; α, (w1, . . . , wr−1)). (5.10)

When n = 1, noting the Laurent expansions

ζ(s + 1) =
1

s
+ γ + · · · , ζ ′(s + 1) = −

1

s2
+ · · · ,

we have

d

ds
Y A(1; s)

∣

∣

∣

∣

∣

s=0

= −γζB,r−1(−1; α, (w1, . . . , wr−1)). (5.11)

When n ≥ 2, since

d

ds

(

−s

n

)∣

∣

∣

∣

∣

s=0

=
(−1)n

n
,

(

−s

n

)∣

∣

∣

∣

∣

s=0

= 0,
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we have

d

ds
Y A(n; s)

∣

∣

∣

∣

∣

s=0

=
(−1)n

n
ζB,r−1(−n; α, (w1, . . . , wr−1))ζ(n) (n ≥ 2).

(5.12)

Next consider the integral term on the right-hand side of (5.5). We see that

d

ds

{

Γ(s + z)

Γ(s)
ζB,r−1(s + z; α, (w1, . . . , wr−1))

}

=
Γ′(s + z)

Γ(s)
ζB,r−1(s + z; α, (w1, . . . , wr−1))

+
Γ(s + z)

Γ(s)
ζ ′B,r−1(s + z; α, (w1, . . . , wr−1))

− Γ(s + z)
Γ′(s)

Γ(s)2
ζB,r−1(s + z; α, (w1, . . . , wr−1)).

The first and the second terms on the right-hand side vanish at s = 0, while the
third term at s = 0 is

Γ(z)ζB,r−1(z; α, (w1, . . . , wr−1))

because
Γ′(s)

Γ(s)2

∣

∣

∣

∣

∣

s=0

= −1

(see p.248 of [10]). Hence the integral term on the right-hand side of (5.5) is

1

2πi

∫

(−N+ε)
Γ(z)ζB,r−1(z; α, (w1, . . . , wr−1))Γ(−z)ζ(−z)wz

rdz,
(5.13)

which is O(|wr|
−N+ε). Substituting this estimate and (5.6), (5.7), (5.8), (5.10),

(5.11), (5.12) into (5.5), we obtain

ζ ′B,r(0; α, (w1, . . . , wr))

= ζ ′B,r−1(0; α, (w1, . . . , wr−1))

+ (−1)r−1
r−1
∑

k=1

1

k!
S

(k+1)
r−1,1 (α)

×
{((

1 +
1

2
+ · · ·+

1

k

)

ζ(−k) + ζ ′(−k)
)

wk
r − ζ(−k)wk

r log wr

}

+
1

2
ζB,r−1(0; α, (w1, . . . , wr−1))(log wr − log 2π)

+ ζB,r−1(−1; α, (w1, . . . , wr−1))(w
−1
r log wr − γw−1

r )

+
N−1
∑

n=2

(−1)n

n
ζB,r−1(−n; α, (w1, . . . , wr−1))ζ(n)w−n

r

+ O(|wr|
−N+ε). (5.14)
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Now we consider the limit α → 0 of the right-hand side. From (4.4) and (5.3)
we have

lim
α→0

ζB,r−1(−n; α, (w1, . . . , wr−1)) =
(−1)r−1

n + 1
S ′

r−1,n+1(0)

= (−1)r−1Br−1,n+1(w1, . . . , wr−1). (5.15)

Also, the error estimate on the right-hand side of (5.14) is uniform in α. In fact, by
(5.13) this claim is reduced to the uniformity of the factor ζB,r−1(z; α, (w1, . . . , wr−1))
in α, and, by formula (4.4) of [13] (for r − 1 instead of r), this is further re-
duced to the uniformity of the Hurwitz zeta-function ζ(z, α) in α for z = −k
(k = 0, 1, . . . , M − 1) and for <z = −M + ε, where M is a positive integer.
The latter claim is verified by the formula ζ(0, α) = (1/2)− α for z = 0, and by
Lemma 2 of [12] for all other z. Hence the error estimate on the right-hand side
of (5.14) is still valid when α → 0.

Therefore, adding log α to the both sides of (5.14) and taking the limit α → 0,
we obtain

− log ρr(w1, . . . , wr)

= − log ρr−1(w1, . . . , wr−1)

+ (−1)r−1
r−1
∑

k=1

1

k!
S

(k+1)
r−1,1 (0)

×
{((

1 +
1

2
+ · · ·+

1

k

)

ζ(−k) + ζ ′(−k)
)

wk
r − ζ(−k)wk

r log wr

}

+
1

2
(−1)r−1Br−1,1(w1, . . . , wr−1)(log wr − log 2π)

+ (−1)r−1Br−1,2(w1, . . . , wr−1)(w
−1
r log wr − γw−1

r )

+
N−1
∑

n=2

(−1)n

n
(−1)r−1Br−1,n+1(w1, . . . , wr−1))ζ(n)w−n

r

+ O(|wr|
−N+ε). (5.16)

From (5.14) and (5.16), we obtain the form of formula (5.4), with a slightly weaker
error estimate O(|wr|

−N+ε). However, considering the same form of formula with
N + 1 instead of N , we see that the error term can be replaced by O(|wr|

−N).
This completes the proof of Theorem 4.

Remark It is also possible to show an asymptotic expansion for log Γr when
|wr| is small, but Theorem 3 of [13] is not suitable as the starting point, because
if k is positive, then ζB,r−1(k; α, (w1, . . . , wr−1)) is not uniformly bounded in α
when α → 0. We have to introduce

ζ∗B,r−1(k; α, (w1, . . . , wr−1)) = ζB,r−1(k; α, (w1, . . . , wr−1))− α−s
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and state the expansion formula in terms of ζ∗B,r−1, as in the case of (1.7) of [10].

6. Connections with Shintani’s results on Hecke L-functions of

totally real number fields

We conclude this paper with a discussion on certain connections between our
theory and Shintani’s results on Hecke L-functions.

In his important series of papers [17] [18] [19] [20], Shintani discovered the
relationship between Barnes multiple gamma-functions and Hecke L-functions of
totally real algebraic number fields. Let F be a totally real algebraic number field,
and f an integral ideal of F . Let χ be a character of the group of narrow ideal
classes modulo f of F , and LF (s, χ) the associated Hecke L-function. Shintani
(Theorem 1 of [19]) proved that, for a certain type of χ, the value LF (1, χ) can be
written as a linear combination of log Γr. Therefore, combining with our Theorem
4, we can deduce a certain asymptotic expansion formula for LF (1, χ). We do not
state the result here, because it would require further notations and pages. But
it should be a generalization of the expansion formula for LF (1, χ) when F is a
real quadratic field, which has been proved in the Corrigendum and Addendum
of [9].

In order to prove his results, Shintani introduced the following type of multiple
zeta-functions. Let α1, . . . , αr be non-negative real numbers, (α1, . . . , αr) 6=
(0, . . . , 0), and

Lj(X1, . . . , Xr) = wj1X1 + · · ·+ wjrXr (1 ≤ j ≤ r)

be linear forms with positive coefficients. Shintani’s zeta-functions are defined by
∞
∑

m1=0

· · ·
∞
∑

mr=0

r
∏

j=1

Lj(α1 + m1, . . . , αr + mr)
−s

. (6.1)

Later Hida [5] introduced the multi-variable version, that is

ζSH,r((s1, . . . , sr); (α1, . . . , αr), Wr)

=
∞
∑

m1=0

· · ·
∞
∑

mr=0

r
∏

j=1

Lj(α1 + m1, . . . , αr + mr)
−sj

=
∞
∑

m1=0

· · ·
∞
∑

mr=0

r
∏

j=1

(wj1(α1 + m1) + · · ·+ wjr(αr + mr))
−sj , (6.2)

where Wr is the matrix (wjh)1≤j≤r,1≤h≤r. This is convergent absolutely when
<sj > 1 (1 ≤ j ≤ r). It is clear that Shintani’s function (6.1) is the special case
s1 = · · · = sr = s of (6.2). Shintani discovered that LF (s, χ) can be expressed
as a linear combination of his zeta-functions (6.1), and the value at s = 0 of the
derivative of (6.1) can be expressed in terms of log Γr. Therefore (6.1) plays a
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vital role in his theory. Hence the study of analytic properties of (6.1) and (6.2)
is an important problem.

The meromorphic continuation of (6.1) to C was done by Shintani [17]. Hida
(Theorem 1 in Section 2.4 of [5]) gives the continuation of (6.2) to Cr, following
the idea of Shintani. On the other hand, the continuation of (6.2) to Cr can
also be shown by (a slight generalization of) Theorem 3 of [15], whose proof is
based on the Mellin-Barnes integral formula. In particular, a recurive integral
formula can be shown for ζSH,r (see (2.4) of [15]), which is the key of the proof.
A prototype of such a kind of integral formula was already given in Section 8 of
[12] for ζSH,2.

However, in the case of Shintani zeta-functions, a different type of recursive
integral formula, similar to (2.4) or (3.5) of the present paper, can be proved. For
this purpose, we introduce the following modified Shintani multiple zeta-functions.
Let 1 ≤ k ≤ r, and define

ζSH,k,r((s1, . . . , sr); (α1, . . . , αk), Wk)

=
∞
∑

m1=0

· · ·
∞
∑

mk=0

r
∏

j=1

(wj1(α1 + m1) + · · ·+ wjk(αk + mk))
−sj , (6.3)

where Wk = (wjh)1≤j≤r,1≤h≤k. This series is convergent absolutely when

<sj > 1 (1 ≤ j ≤ k), <sj > 0 (k + 1 ≤ j ≤ r). (6.4)

The meromorphic continuation of ζSH,k,r to Cr is again verified by Theorem 3 of
[15].

Assume αk > 0, and also at least one of α1, . . . , αk−1 is not 0. Then

ζSH,k,r((s1, . . . , sr); (α1, . . . , αk), Wk)

=
∞
∑

m1=0

· · ·
∞
∑

mk=0

r
∏

j=1

(wj1(α1 + m1) + · · ·+ wj,k−1(αk−1 + mk−1))
−sj

×

(

1 +
wjk(αk + mk)

wj1(α1 + m1) + · · ·+ wj,k−1(αk−1 + mk−1)

)−sj

. (6.5)
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Applying the Mellin-Barnes formula ((3.1) of [13]), we obtain

ζSH,k,r((s1, . . . , sr); (α1, . . . , αk), Wk)

=
∞
∑

m1=0

· · ·
∞
∑

mk=0

r
∏

j=1

(wj1(α1 + m1) + · · ·+ wj,k−1(αk−1 + mk−1))
−sj

×
1

2πi

∫

(cj)

Γ(sj + zj)Γ(−zj)

Γ(sj)

×

(

wjk(αk + mk)

wj1(α1 + m1) + · · ·+ wj,k−1(αk−1 + mk−1)

)zj

dzj

=
1

(2πi)r

∫

(cr)
· · ·

∫

(c1)





r
∏

j=1

Γ(sj + zj)Γ(−zj)w
zj

jk

Γ(sj)





×
∞
∑

m1=0

· · ·
∞
∑

mk−1=0

r
∏

j=1

(wj1(α1 + m1) + · · ·+ wj,k−1(αk−1 + mr−1)
−sj−zj

×
∞
∑

mk=0

(αk + mk)
z1+···+zrdz1 · · ·dzr, (6.6)

where −<sj < cj < 0 (1 ≤ j ≤ r). Under assumption (6.4), we can choose
c1, . . . , cr for which















1− <sj < cj < 0 (1 ≤ j ≤ k − 1),

−<sk < ck < −1 (j = k),

−<sj < cj < 0 (k + 1 ≤ j ≤ r)

(6.7)

holds. Then <(sj + zj) > 1 (1 ≤ j ≤ k − 1), <(sj + zj) > 0 (k ≤ j ≤ r), and
<(z1 + · · ·+ zr) < −1. Hence both of the series on the right-hand side of (6.6)
converge, and we obtain

Proposition 3. Let 1 ≤ k ≤ r. If αk > 0, and at least one of α1, . . . , αk−1 is

not 0, then

ζSH,k,r((s1, . . . , sr); (α1, . . . , αk), Wk)

=
1

(2πi)r

∫

(cr)
· · ·

∫

(c1)





r
∏

j=1

Γ(sj + zj)Γ(−zj)w
zj

jk

Γ(sj)





× ζSH,k−1,r((s1 + z1, . . . , sr + zr); (α1, . . . , αk−1), Wk−1)

× ζ(−z1 − · · · − zr, αk)dz1 · · ·dzr (6.8)

in the region (6.4), where c1, . . . , cr are constants satisfying (6.7).
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Obviously ζSH,r,r = ζSH,r, while

ζSH,1,r((s1, . . . , sr); α1, W1)

=
∞
∑

m1=0

r
∏

j=1

(wj1(α1 + m1))
−sj =





r
∏

j=1

w
−sj

j1



 ζ(s1 + · · ·+ sr, α1).
(6.9)

Therefore, when all αj (1 ≤ j ≤ r) are positive, the above proposition gives
the recursive structure

ζSH,r = ζSH,r,r → ζSH,r−1,r → ζSH,r−2,r → · · · → ζSH,1,r,

where the last one is essentially the Hurwitz zeta-function. In view of this recur-
sive structure of the family of (modified) Shintani multiple zeta-functions, (6.8)
may be useful as a starting point of further analytic studies of this family.
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