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In this paper, a Morphing-based Shape Optimization (MbSO) technique is presented for solving Optimum-
Shape Design (OSD) problems in Computational Fluid Dynamics (CFD). The proposed method couples Free-Form
Deformation (FFD) and Evolutionary Computation, and, as its name suggests, relies on the morphing of shape and
computational domain, rather than direct shape parameterization. Advantages of the FFD approach compared to tradi-
tional parameterization are first discussed. Then, examples of shape and grid deformations by FFD are presented. Finally,
the MbSO approach is illustrated and applied through an example: the design of an airfoil for a future Mars exploration

airplane.
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1. Introduction

Due to recent progresses in Computational Fluid Dynam-
ics (CFD) and grid generation software, a growing number
of scientists and engineers are relying on numerical simula-
tions to reduce the time of design process, and are conse-
quently becoming interested in automatic shape optimiza-
tion as a design tool. However, optimum-shape design in
CFD is still a complex task requiring the integration of three
components, namely optimizer, flow solver and mesh gener-
ation software. With computational power more easily
available GAs and variants of Genetic Algorithms (GA)
have gained wide acceptance and are being used as numer-
ical optimizers in aerospace, automotive and other indus-
tries.!”” However, shape parameterization and integrability
issues still impose serious limitations on automatic shape
optimization.

Firstly, the parameterization must balance the demands
for high geometric variability in shapes and the need to keep
the number of design variables low. Indeed, the latter de-
mand is important because a smaller variable set implies a
faster convergence of the optimization process. In general,
the population size in GA-based optimizer should be no
smaller than 20 to 30 individuals regardless of the problem
being tackled. For problems with high dimensions, larger
populations on the order of hundreds are appropriate. As a
larger population size often requires more generations for
convergence, the total computational cost usually grows
quadratically with the problem’s dimension. As a conse-
quence, the design space of the shape optimization problem
should be defined by the smallest parametric description
possible to guarantee a minimum number of design varia-
bles. This conflicts with a highly flexible representation by
which a wide variety of geometries should be realized and
their performances assessed.
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Contemporary optimization practice is to directly param-
eterize a shape by using parametric curves or surfaces such
as NURBS and Bézier patches. The optimization is carried
out using control points of the parameterization as design
variables. This method requires curve fitting of the original
geometry into the parametric design space. To preserve fi-
delity, the number of control points unavoidably increases
according to the complexity of the initial geometry. The
total number of design variables may be some hundreds;
in that context, optimization using GAs requires a large
population size, and consequently thousands of function
evaluations may be needed to obtain an improved design.
Moreover, parameterization based on a parametric surface/
curve requires careful investigation of the range of
variation of design variables to ensure feasible shape and
grid generation.

Secondly, there is an additional requirement for parame-
terization, which is specific to design optimization problems
involving CFD calculations. In this case, a computational
grid has to be generated for each individual. A complex
geometry necessitates the use of mesh generation software.
The remeshing must be performed. Integrating mesh gener-
ation software with optimization code and flow solver re-
quires high-level skills in programming, and the time devot-
ed to the development, debugging and implementation of
this approach may seem difficult to justity for small research
groups and laboratories who already have in-house flow
solvers and numerical optimizers. For these reasons, a pa-
rameterization that also permits omission of the remeshing
procedure is highly advantageous in the current design envi-
ronment.

In this paper, we propose a Morphing-based Shape
Optimization (MbSO) technique. The method couples
Free-Form Deformation (FFD) and Evolutionary Computa-
tion, and as its name suggests, relies on the morphing of
shape and computational domain rather than direct shape
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parameterization. Advantages of the FFD approach over tra-
ditional parameterization are first discussed. Then, exam-
ples of shape and grid deformations by FFD are presented.
Finally, the MbSO approach is illustrated and applied
through an example: the design of an airfoil for future Mars
exploration airplane.

2. Free-Form Deformation as a Tool in Optimum
Shape Design

2.1. Free-form deformation

FFD methods are new techniques in the field of Optimum
Shape Design (OSD) in aerodynamics. They were initially
developed in the field of computer graphics, allowing
intuitive shape deformation by manipulating control points
of a control volume (referred to as a lattice in computer
graphics literature) that encloses the geometry, rather than
the geometry itself. Sederberg and Parry® originally formu-
lated the concept of FFD for parallelepiped-shaped lattice
and Coquillart® extended this concept to any arbitrary
shaped lattice.

As the topology of the lattice is independent of the
complexity of the embedded geometry, complex geometry
can be treated using a small number of control points. The
design engineer can also group control points together to
define macro deformations such as bending, twisting and
stretching. Optimization can be carried out on control
points and/or on the designer’s pre-defined set of deforma-
tions.

2.2. Shape and grid morphing by FFD

The key point of the proposed method is to deform not
only the shape, but also the computational grid inside the
lattice. Therefore, the shape can be modified directly within
the CFD model without the need to remesh each new geom-
etry during calculations. This drastically simplifies the opti-
mization process. Features of the MbSO approach are de-
scribed in the following.

The shape that is modified during optimization is first
embedded in a control volume defined by a set of control
points. Then, the control volume is extended to embed
both the shape and the computational domain. The coordi-
nates of the resulting embedded geometries (shape and

computational domain) in the lattice parameter space
are calculated by a procedure referred to as “freezing”.¥
For uniform parallelepiped control volume, “freezing” is
rather simple.” For non-uniform parallelepiped control
volume, “freezing” is more complex and involves inversion
of the mapping between the lattice space coordinates and
the original Cartesian coordinates.”

In this study the mapping inversion is realized by a
Newphon-Raphson procedure.'?

Finally, the convex hull property is used to decide wheth-
er or not a point is inside the deformable region. The freez-
ing procedure has to be done only once at the beginning
of the optimization process. To preserve the continuity
between deformable and non-deformable regions, only the
inner control points of the lattice are allowed to move. .
Then, by simply manipulating inner control points, one
can deform geometries indefinitely.

In our implementation, Bézier bivariate tensor products
are used, but other researchers may choose different defor-
mation functions such as cubic B-splines. To illustrate our
implementation of FFD, a simple parallelepiped lattice is
employed. We initially embed a two-dimensional airfoil
in a lattice of control points. Then, we extend the lattice
to embed both airfoil shape and computational grid as
shown in Fig. 1(a).

As a result, the internal structure of the control volume
is defined by an array of (31 + 1) x (3m + 1) control points
Pi; (i=0,...,3,,j=0,...,3m), which can be seen from
Fig. 1(b).

Finally, to ensure continuity inside the volume and at the
boundary of the lattice only, the inner control points (37, 35)
i=1,...,1—1,j=1,...,m— 1) are allowed to move in
order to deform the geometries. Two macro deformations
are implemented in this study to modify the camber and
thickness of the airfoil by grouping control points that bend
and stretch (or shrink) the airfoil shape. Figures 2(a) and
2(b) illustrate some examples of shapes and grid deforma-
tions obtained by these two transformations. As one can
see, FFD techniques produce a smooth morphed mesh
without any cell quality issues such as negative volume or
highly distorted cells.

Moreover, two control points P3¢ and Py that are locat-
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Fig. 2. Shape and computational domain deformations by FFD.

ed near the leading and trailing edges of the airfoil ate 3. Morphing-Based Shape Optimization by Coupling
allowed to move freely in the x and y directions. These FED and Evolutionary Computation

control points not only have strong influence on the shape,

but also allow implicit changes in the angle of attack as seen 3.1, Flow solver

from Figs. 2(c) to 2(e). Thus, the airfoil is parameterized The Reynolds-Averaged Navier-Stokes equations are
with only six design variables: two macro deformations  solved using a finite-volume cell-centered method for space
and (x, y) of the two control points. discretization and a 5-multistage Runge-Kutta scheme for

Figure 2(f) illustrates examples of shapes obtained  time integration.' Implicit residual averaging, combination
with these six design variables. Thus, FFD techniques  of second and fourth order artificial dissipations, local-time
allow a wide variety of shape deformation with a small  stepping and enthalpy damping are used along with the
number of design variables, and also avoid the problem  Baldwin-Lomax turbulence model.!” The GA is parallel-
of re-meshing, In the next section, we will show our . ized using message-passing interface (MPI) libraries. Calcu-
results of MbSO by coupling FFD and Evolutionary  lations were performed on a supercomputer system, Fujitsu
Computation, and discuss the quality of the morphed  PRIMEPOWER HPC2500, at the Information Technology
meshes. Center of Nagoya University.
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(c) After deformation

Fig. 3.

3.2. Problem statement

The problem considered in this study is the optimum-
shape design of the wing profile for a future Mars explora-
tion airplane. Mach and Reynolds numbers of the airplane
under cruising conditions are assumed to be 0.4735 and
10°, respectively.!® Martian air properties'® are also taken
into account.

There are two primary objectives. The first objective is
to achieve a high maximum lift coefficient, Cpnax, Which
will result in high maneuverability. The second objective
is to obtain good characteristics of lift over drag ratio,
L/D, at more moderate lift coefficients. In addition, the
airfoil should exhibit docile stall characteristics. One
major constraint is placed on the design of this airfoil; that
is, the zero-lift pitching-moment coefficient, Cyyp), also
referred to hereafter as Cp, must be no more negative
than —0.15.

The design target is to achieve Cpyax ~ 1.50, L/D ~ 40
at moderate Cp, and Cy > —0.15. The objective of good
L/D characteristics is transformed into two additional con-
straints; the lift coefficient at zero angle of attack must equal
0.70, and the average drag coefficient over « € [—4°,4°]
must be no greater than 0.020.

Consequently, the problem is formulated as a single
objective constrained optimization problem:

Maximize Cppax

subject to the following three constraints:

Shape and computational domain deformation by FFD with a non-uniform control volume.

Crla=0°) > 0.7

+4°
1/8/ Cpde < 0.020
—4o

Cm(a = 0°) = —0.15 (1)

Aerodynamic characteristics (i.e., lift, drag and pitching
moment coefficients) are evaluated for angle of attack
o € [—4°,14°] with 1° steps. The GA population size is
30 individuals.

3.3. Application

The commercial software GRIDGEN is used to generate
C-type meshes. The initial airfoil geometry is a low Rey-
nolds number airfoil on Earth, an Eppler 205 taken from
the UIUC Airfoil Coordinates Database. First, a C-type
mesh is generated, which has a total of 351 x 54 cells, with
many of them clustered near the airfoil surface (the first grid
spacing of 10*) and the trailing edge. The shape and com-
putation domain are embedded in the previously mentioned
uniform parallelepiped lattice resulting in a parameteriza-
tion of only six design variables, shown in Fig. 1.

Calculations are stopped after 1000 CFD calls, and a new
computational domain is generated using the best shape
solution of the optimization run. Since control points that
are close to the shape have maximum influence on the shape
deformation, a non-uniform parallelepiped lattice is em-
ployed to refine the parameterization. Figure 3 shows the
non-uniform control volume for which eight control points
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Fig. 5. Cumulative convergence histories of the shape optimization
problem: Cppax and Cp (o = 0°).

(numerated by 1 to 8 in Fig. 3(a)) are allowed to move
in the direction illustrated by the arrow in Fig. 3(b). In
addition, three macro deformations are implemented to
modify the camber, thickness and leading edge radius of
the airfoil. As a consequence, 11 design variables are
used for the second parameterization. Figures 3 (b) and (c)
illustrate an example of deformation obtained by moving
only one control point. As can be seen, by positioning
control points of a non-uniform lattice near the shape,
FFD can make very surprising, large shape and computa-
tional domain deformations.
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Fig. 6. Cumulative convergence histories of the shape optimization
problem: [ Cp and Cp(x = 0°).

Figures 5 and 6 show the cumulative convergence histo-
ries of objective and constraint functions of the two succes-
sive optimizations.

Characteristics of the newly designed airfoil obtained
as the morphed mesh solution are shown in Fig. 4. The
maximum lift coefficient for a design Reynolds number of
10° and a Mach number of 0.4735 is 1.60, which meets
the design objective. The lift coefficient at zero angle of
attack is predicted to be 0.63, which is below the design
constraint of 0.70. During the design process, it was deter-
mined that violating the constraint was necessary to meet
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Fig. 7. Comparison of mesh patterns among the morphed mesh solution
(a,c,e,g) and a high-quality mesh (b, d, f, ) generated using GRID-
GEN.

other, more important goals such as constraints on pitching
moment coefficient and low range of drag coefficients. The
average drag coefficient over the range of angle of attack
[—4°,4°] is expected to be 0.019 (the corresponding
constraint is satisfied), which results in a range of lift over
drag ratio L/D superior to 40 for Cy, range of [0.7,1.3].
The pitching moment coefficient is predicted to be
—0.149, which satisfies the design constraint. Moreover,
the airfoil is expected to exhibit docile stall characteristics
(trailing edge stall). The design requirement is therefore
fulfilled. The airfoil shape (see Fig. 4(d)) is very similar to
the ND 01 wing profile used as the midspan wing section
of the Mars airplane conceptual design reported in other
literature.!319
3.4, Mesh quality

Because low-quality meshes may produce erroneous re-
sults and compromise the final optimum shape solution,
the quality of the deformed grids must be guaranteed during
calculations. It is first verified by visual inspection.

Vol. 50, No. 167

The final mesh resulting from the calculations using the
2nd parameterization are presented in Figs. 7(a)(c)(e) and
(g). Figures 7(b)(d)(f) and (h) show the mesh patterns of
the high-quality mesh generated using GRIDGEN based
on the same shape solution. As one can see in Fig. 7(e),
the camber movement, which is often encountered in a de-
sign optimization process, results in a large computational
domain deformation when employing the proposed ap-
proach. The orthogonality of the near-wall mesh, although
less othogonal than the mesh generated by the mesh gener-
ation software, is preserved with good quality and local
mesh metrics, which are important for resolving the bound-
ary layer. To further validate the proposed approach, we
solve the flow around the shape on the high-quality grid gen-
erated with the mesh generation software and compare the
results with the deformed mesh solution. Figure 8 illustrates
this comparison. Except for a small difference at high angles
of attack, the maximum lift coefficient with the high-quality
mesh is 1.55, and the two solutions fall on the same line.
The quality of the mesh deformed by FFD is therefore
satisfactory.

4, Conclusion

In this paper, we present a MbSO technique for solving
OSD problems in CFD by coupling FFD and Evolutionary
Computation. The key point of the method is to embed
inside the FFD control volume not only the shape, but also
part of the computational domain in order to allow shape
and grid deformations within the CFD model. The advantag-
es of shape and grid morphing by FFD within evolutionary
computation are twofold. Firstly, since FFD allows to
decouple geometry complexity from the parameterization,
optimization can be carried out with a small number of de-
sign variables, which is important when using a GA-based
numerical optimizer. Secondly, the proposed method per-
mits the omission of the re-meshing process, which drasti-
cally simplifies the optimization process. MbSO is illustrat-
ed and successfully applied through an example, the design
of an airfoil for a future Mars exploration airplane, for which
only two grids were generated in the design process. FFD
produces a smooth morphed mesh without any cell quality
issues, and with an acceptable degree of accuracy. Since
FFD techniques are independent of grid topology, the
proposed approach is not limited to structured grids and
can be applied to unstructured, structured multi-blocks and
hybrid grids. This shows the effectiveness of MbSO, and
future work will focus on the application of MbSO to
three-dimensional OSD problems as well as investigating
volume-constraint and other constraint deformation tech-
niques.
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