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A Study on the Discretization of a Distributed RC Circuit Model
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Abstract: This paper discusses the mixed finite-element based Hamiltonian discretization of a distributed RC circuit
aimed at modeling the impedance of rough electrodes of ionic polymer actuators. The accuracy of the discretized model
is discussed by comparing the frequency responses between the discretized and the exact solution in the case of the
constant impedance distribution. The convergence analysis and the numerical example are shown in order to evaluate the
approximation.
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1. INTRODUCTION

The new polymer-based soft actuators have been de-
veloped recently[1]. The ionic polymer-metal composite
(IPMC) is one of such actuators, though its physics is
not simple. From experimental observations, it is known
that the IPMC actuator is appropriate to be modeled as
a distributed parameter system[4]. For example, a dis-
tributed RC circuit is an expected candidate for the model
of the impedance of the IPMC, because we can observe
the rough interface between the polymer and the elec-
trode [3]. For the use of the model in the computer aided
analysis and design, the distributed parameter system rep-
resentation is expected to be approximated by a finite-
dimensional system representation.
In this paper, the linear RC distributed circuit is dis-

cretized by the mixed finite-element based Hamiltonian
discretization method[2]. The discretized model pre-
serves the physical structure of the original distributed
system. Using the discretization method, we obtain the
lumped RC network model. In order to synthesize the
overall impedance (or admittance) from the lumped RC
circuits, this paper shows both a state space representa-
tion which is suitable for the numerical computation, and
a transfer function representation to show that the approx-
imated model converges to the exact model as the order
increases. Especially, we consider the case of the con-
stant impedance distribution. Numerical examples show
frequency responses of the admittance in order to demon-
strate the effectiveness of the discretization.

2. MODEL

2.1 Distributed RC Circuit Model

2.1.1 Governing Equations and the Boundary Condition
Figure 1 shows the distributed RC circuit. The port

voltage and the current are va and ia. Let the spa-

Fig. 1 Discretization of the distributed RC circuit model

tial coordinate be z ∈ [0 L0], where L0 is the length
of the distributed line. The linear impedances are dis-
tributed, denoted by Z1 and Z2, the series and the paral-
lel impedance density functions, respectively. The gov-
erning linear equations in the frequency domain can be
derived as[3]:

Z1(z, s)̃i(z, s) = −dṽ

dz
(z, s), (1)

1
Z2(z, s)

ṽ(z, s) = − dĩ

dz
(z, s), (2)

where the tilde ( ˜ ) represents the function to which
Laplace transform is applied. Boundary conditions are
given by

v|z=0 = va, or i|z=0 = ia (3)

ĩ
��
z=L0

=
−1
Z1

dṽ

dz

����
z=L0

= 0. (4)

Note that the impedance density functions Z1 and Z2

are the spatial function, therefore the general solution of
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Eqs. (1) and (2) can not be obtained in general. The exact
solution can be obtained only in the case of uniformly
distributed impedance density, that is, when Z1 and Z2

are constants. We call such a case as constant impedance
distribution in this paper.

2.1.2 Exact Solution for the Constant Impedance Distri-
bution

In the case of constant impedance distribution, the
general solution of Eqs. (1) and (2) can be easily ob-
tained. Using Eqs. (1), (2), (3) and (4), we get

ĩa(s) =
tanh(L0

�
Z1/Z2)√

Z1Z2

ṽa(s)

where ĩa(s) := ĩ(0, s). The exact solution of the admit-
tance Yexact, defined as a transfer function from ṽa to ĩa,
is obtained as:

Yexact(s) =
tanh(L0

p
Z1(s)/Z2(s))p

Z1(s)Z2(s)
(5)

=

s
C20s

R10(R20C20s + 1)
tanh

„
L0

s
R10C20s

R20C20s + 1

«
(6)

where Z1 and Z2 can be given by

Z1(s) = R10, Z2(s) = R20 +
1

C20s
. (7)

Note that Yexact is a non-rational function, which comes
from the nature of the distributed parameter system.

2.2 Mixed Finite-Element Discretization of the Stokes-
Dirac Structure

2.2.1 Hamiltonian Discretization
The distributed RC circuit, which is represented in the

previous section, is approximated by the Hamiltonian dis-
cretization using a mixed finite-elements method [2]. The
discretized model preserves the physical structure, called
Stokes-Dirac structure, of the original distributed system.
The distributed line is discretized into N finite-

elements. The k-th lumped element is shown in Fig. 1
below. The model consists of the series connection of the
lumped RC elements. The element number k is counted
from the port to the open end, k = 1, 2, ..., N . The pa-
rameters of the k-th lumped element are derived as[2]:

1
R̄1k

=
� bk

ak

∗
�
ωakbk

2 (z)
R1(z)

�
ωakbk

2 (z), (8)

R̄2k =
� bk

ak

∗
�
R2(z)ωakbk

1 (z)
�
ωakbk

1 (z), (9)

1
C̄2k

=
� bk

ak

∗
�
ωakbk

1 (z)
C2(z)

�
ωakbk

1 (z). (10)

where ak and bk which satisfy 0 ≤ ak < bk ≤ L0 are the
interval of the k-th finite element. ωakbk

1 (z) and ωakbk
2 (z)

are the approximation basis for the flow and the effort,
respectively. We employed the Hodge star operator ∗,
converting any k-form ω on a n-spatial domain Z to an
(n − k)-form ∗ω. In this paper the Riemannian metric

is simply the Euclidean inner product corresponding to
a choice of local coordinates on Z . Therefore, on the
one-dimensional domainZ with coordinate z, we simply
have ∗g(z) = g(z)dz, ∗(g(z)dz) = g(z) where g(z) is a
certain density function.

2.2.2 Approximation by Interpolating One-Forms
The basis one-form ωakbk is chosen as:

ωakbk =
dz

Lk
(11)

where Lk = bk − ak. This choice corresponds to the
simplest spline approximation [2]. The material approx-
imation [2] is also identical to the spline approximation
if the distribution is uniform, that is, R1(z), C2(z) and
R2(z) are constants. Substituting Eq. (11) into Eqs. (8),
(9) and (10), we obtain:

1
R̄1k

=
1
L2

k

� bk

ak

1
R1(z)

dz, (12)

R̄2k =
1
L2

k

� bk

ak

R2(z)dz, (13)

1
C̄2k

=
1
L2

k

� bk

ak

1
C2(z)

dz. (14)

2.2.3 Griding the Finite Elements
For the simplicity, let us employ the equally segmented

N ’s finite elements for the discretization.

Lk =
L0

N
(k = 1, 2, ..., N) (15)

We call this segmentation as equally-spaced segmenta-
tion, or uniform grid.

2.3 Linear State Space Representation of the Overall
Admittance
In order to connect the each lumped RC circuit, this

section discusses the state space representation. The gov-
erning equations of the k-th finite element are:

ik − q̇k − ik+1 = 0, (16)

vk − R̄1kik − vk+1 = 0, (17)

vk+1 =
1

C̄2k
qk + R̄2k q̇k. (18)

where the state of the system is the charge qk. Let us de-
rive the transfer function or the state space representation
of the k-th system Gk : [vk, ik+1]T �→ [ik, vk+1]T(k =
1, 2, ..., N).

Gk(s) =
�

Ak Bk

Ck Dk

�
, (19)

Ak =
−1

(R̄1k + R̄2k)C̄2k
, (20)

Bk =
1

R̄1k + R̄2k

�
1 −R̄1k

�
, (21)

Ck =
−1

(R̄1k + R̄2k)C̄2k

�
1

−R̄1k

�
, (22)

Dk =
1

R̄1k + R̄2k

�
1 R̄2k

R̄2k −R̄1kR̄2k

�
. (23)
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Overall admittance Ŷ can be calculated by the linear
fractional transformation (or known as the Redheffer star
product) [5] of the each system Gk (k = 1, 2, ..., N).
Assuming that the circuit is terminated at the end, i.e.,
iN+1 ≡ 0, the admittance Ŷ is derived as:

Ŷ = G1 � G2 � · · · � GN � 0 (24)

where star ( � ) denotes the Redheffer star product. The
state space representation is suitable for the numerical
computation due to the accuracy compared with the trans-
fer function representation.

2.4 Convergence Analysis Using the Transfer Func-
tion Representation for the Constant Distribution
Case
The state space representation gives us the model suit-

able for numerical computation, however, it is not triv-
ial whether the approximated finite-dimensional system
converges to the original infinite dimensional system or
not. In this section, we discuss the convergence of the
discretized model in a limited case.
For the constant distribution case, i.e. R1(z) = R10,

R2(z) = R20, C2(z) = C20, Eqs. (12), (13) and (14) can
be calculated as:

R̄1k = LkR10, R̄2k =
1
Lk

R20, C̄2k = LkC20. (25)

The governing equations of the k-th element can be writ-
ten in the frequency domain:

ĩk − 1
Z2

ṽk+1 − ĩk+1 = 0, (26)

ṽk − Z1ĩk − ṽk+1 = 0, (27)

where Z1 = R10L0/N , Z2 = R20N/L0 + 1
sC20L0/N .

Define Yk as:

ĩk = Ykṽk. (28)

Substituting Eq. (28) into Eqs. (26) and (27), and elimi-
nating ĩ and ṽ, we obtain:

Yk =
1 + Yk+1Z2

Z1 + Z2 + Yk+1Z1Z2
. (29)

Eq. (29) is a sequence or a nonlinear difference equation
with respect to Yk (k = N + 1, N,N − 1, ..., 1). The
initial condition of the sequence Eq. (29) is given by:

YN+1 = 0, (30)

due to the boundary condition iN+1 ≡ 0 as shown in
the previous section. The sequence of Eq. (29) with the
initial condition Eq. (30) can be solved as:

Yk =
2N(1 − S1kS2k)

(P1(P1 + 4N2P2))
1
2 (1 + S1kS2k)

(31)

S1k :=

 
P1(P1 + 2N2P2 − (P1(P1 + 4N2P2))

1
2 )

N3P2

!N−k

(32)

S2k :=

 
P1(P1 + 2N2P2 + (P1(P1 + 4N2P2))

1
2 )

N3P2

!k−N

(33)

Table 1 Parameters used in the numerical examples

L0 R10 R20 C20

0.05[m] 103[Ω/m] 10−3[Ωm] 10[F/m]

where P1 := Z1N , P2 := Z2/N . Substituting k = 1
into Eq. (31), the overall admittance Ŷ is obtained as:

Ŷ = Y1. (34)

We can confirm that the approximated admittance Y1(=
Ŷ ) converges to the exact solution Yexact of Eq. (6) as
N → ∞.

Proposition 1: Y1 of Eq. (31) converges to Yexact of
Eq. (6) as N → ∞:

lim
N→∞

Y1 =
tanh

�
(P1/P2)

1
2

�

(P1P2)
1
2

= Yexact. (35)

See Appendix A for the proof of Eq. (35).

3. NUMERICAL EXAMPLE

The discretized model is evaluated by observing the
differences of the frequency response between the dis-
cretized model and the exact solution. The star product
is calculated by lft function of MATLAB in order to
synthesize the overall admittance Ŷ . Table 1 shows the
parameters used in the numerical examples.
Figure 2 shows the bode diagram of the impedance.

The solid line is the exact solution, the dashed or the
chained lines are the discretized models. The dashed
line is the case of N = 50, the chained line is for
N = 10. The responses of the discretized models well
fit the exact solution at the low frequency, though a lit-
tle differ from the exact solution at the high frequency.
The error decreases as the approximation order N in-
creases. The characteristic property of a transmission
line, that the phase is about π/4[rad] (−45[deg]) and
that the gain slope is 1/2, can be observed around at
1[rad/s]. The bode diagram of the error is also shown
in Fig. 3. The gain shape of the error is similar to the
impedance shown in Fig. 2. The error is smaller when
the frequency is lower. This is because the total capaci-
tance is preserved in the approximated model, therefore
the discretized model is identical to the distributed model
at the zero frequency.

4. CONCLUSION

This paper discussed the discretization of the dis-
tributed RC circuit model which is the candidate of
the impedance model of ionic polymer actuators. The
Hamiltonian discretization based on mixed-finite element
method was shown. The state space representation and
the transfer function representation were derived for the
computation and the analysis, respectively. In the numer-
ical example, the response of the approximated model
well fit the exact solution at the low frequency. We also
showed the response of the limit of the approximated
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Fig. 2 Bode diagram of the admittance for the constant
impedance distribution case
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Fig. 3 Bode diagram of the approximation error

model converged to the exact solution as the segmenta-
tion increased.
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APPENDIX

A PROOF OF THE PROPOSITION 1

Considering the fact:

e = lim
n→∞

�
1 +

1
n

�n

, n ∈ N,

we have the following lemma.
Lemma 1:

lim
n→∞

�
1 +

κ

n
+ O

�
1
n2

��n

= eκ, κ ∈ C

Proof of Proposition 1: Substituting k = 1 into
Eq. (31) to obtain Y1, we have:

Y1 =
1

(P1( P1
4N2 + P2))

1
2

1 − S10S20

1 + S10S20
. (36)

Taking the limit of the first term of the right hand side of
Eq. (36), we obtain:

lim
N→∞

1
(P1( P1

4N2 + P2))
1
2

=
1

(P1P2)
1
2
. (37)

Canceling the common factors of S10 and S20, the second
term of Eq. (36) can be approximated as:

1 − S10S20

1 + S10S20
=

1 −Q1Q2

1 + Q1Q2
(38)

where

Q1 :=

 
1 −

„
P1

P2

« 1
2 1

N
+ O(

1

N2
)

!N

,

Q2 :=

 
1 +

„
P1

P2

« 1
2 1

N
+ O(

1

N2
)

!−N

.

Using Lemma 1, we obtain:

lim
N→∞

Q1 = e
−

“
P1
P2

” 1
2

,

lim
N→∞

Q2 = e

“
P1
P2

” 1
2

.

The limit of the right hand side of Eq. (38) becomes:

lim
N→∞

1 − S10S20

1 + S10S20
=

1 − e
−

“
P1
P2

”

1 + e
−

“
P1
P2

” = tanh

 „
P1

P2

« 1
2
!

.

(39)

Using Eqs. (36), (37) and (39), we have Eq. (35). �


	Back

