
1

Hierarchical Scheduling for Integrating Real-time Applications
with Interrupt Routines

Yutaka MATSUBARA, Shinya HONDA, Nonmembers, IEEE, and Hiroaki TAKADA, Member, IEEE

Abstract—This paper presents a split interrupt routine model for a two-
level hierarchical scheduling in order to integrate multiple independently
developed applications that consist of tasks and interrupt routines
into a shared CPU. In this model, an interrupt routine is split into
an Interrupt Handler (IH), providing device-depended service, and an
Interrupt Service Task (IST), providing application-specific service. By
using this model, a main part of an interrupt routine is handled as a
task and become controllable by global EDF scheduling. We implement
this model on an actual processor to evaluate the response time and
overhead of activating an IST. Furthermore, we analyze the schedulability
of the applications including delay caused by interrupt disabled time and
propose a simple schedulability test method. This method helps system
integrators, such as automotive manufacturers, to quickly determine
which applications could be integrated to the system without detail
knowledge of each application in the system design phase.

I. INTRODUCTION

IN recent years, system integrators of distributed real-time systems,
such as an automotive control system, are challenging to reduce

the number of CPUs in the system. To achieve this aim, multiple
independently developed real-time applications are required to be
integrated on a shared CPU. Furthermore, it is expected that all
applications are schedulable on a shared CPU, if each application
is schedulable on a dedicated CPU. For this purpose, hierarchical
scheduling frameworks in [2]–[4] that provides temporal isolation
among applications are suitable. However, these assumed that an
application consists of only tasks, and ignored the existence of
interrupt routines. In practice, when an interrupt occurs, an interrupt
routine is immediately executed prior to all tasks regardless of the
global scheduling policy. As a result, the prior work, which ignored
the interrupt routines, could miss its deadlines. Figure 1 shows an
example where a deadline miss is caused by the interrupt routine in
a global EDF scheduling.

In this paper, we introduce a split interrupt routine model to a
two-level hierarchical scheduling based on Bandwidth Sharing Server
(BSS) algorithm in [2]. In the model, an interrupt routine is split
into an Interrupt Handler (IH), providing device-depended service,
and an Interrupt Service Task (IST), providing application-specific
service. Because the IST can be handled as a normal task in the
model, the effect of interrupt routines becomes controllable in a
global scheduling. We evaluate the response time and the overhead of
activating an IST through a prototype implementation. Furthermore,
we present schedulability analysis with given interrupt disabled time.
This result helps developers of automotive control system to integrate
several ECUs (Electric Control Units) to one ECU and quickly
determine which applications could be integrated to the ECU without
detail knowledge of each application in the early system design phase.

The remainder of this paper is organized as follows. Section II
presents the system model and the two-level hierarchical scheduling
framework. Section III presents the interrupt routine model and gives
the result of implementation and the schedulability analysis. Section
IV presents related works. Section V describes conclusions of this
paper and future works.

The authors are with the Graduate School of Information Science, Nagoya
University, Nagoya-shi, 464-8603, Japan, e-mail: {yutaka,honda,hiro}@ertl.jp

misses deadline.

Interruption occurs. 

Application 2 

Application 1 

Task

Task

Interrupt routine

Fig. 1. Deadline miss by execution of interrupt routines prior to tasks in a
global EDF scheduling.

II. HIERARCHICAL SCHEDULING

A. System Model

The system is modeled with N applications, denoted by A =
{A1, A2, . . . , An}. Each application Ai is characterized by tuple (Ui,
Di, IDTi), where Ui is a utilization of CPU, Di is a minimum rela-
tive deadline and IDTi is a maximum interrupt disabled time. Note
that IDTij is a maximum interrupt disabled time in a dedicated CPU.
Ai is a set of processing units, denoted by τi = {τi1, τi2, . . . , τim}.
τij must be either a task or an interrupt routine, characterized by a
tuple (pij , dij , idtij), where pij is a static execution priority, dij is
a relative deadline and idtij is a maximum interrupt disabled time
on a dedicated CPU. In this paper, we assume followings.

• The system is closed and static real-time system where applica-
tion characteristics are known in advance.

• Interrupt routines are assigned higher execution priority than all
tasks in the same application.

• Total utilization
∑n

1
Ui must be lower than 1.

• Each Ai is schedulable on a dedicated CPU with relative speed
Ui and All applications are integrated on a shared CPU with
relative speed 1.

• Ui, Di and IDTi for each application are given from the design
specifications or the result of the dedicated verifications.

B. Hierarchical Scheduling Framework

Figure 2 presents a two-level hierarchical scheduling framework
based on BSS algorithm. This framework consists of local schedulers,
a global scheduler and two interfaces called Application Program-
ming Interface (API) and Scheduler Programming Interface (SPI).
A global scheduler schedules applications in EDF scheduling, and
a local scheduler corresponding to each application schedules tasks
in static priority-based scheduling, such as RM scheduling or DM
scheduling. To improve isolation between local schedulers and the
global scheduler, we introduce two modifications to BSS algorithm.
One is that the location of residual list is moved from each scheduler
to the global scheduler. In BSS algorithm, if each local scheduler
takes misses in budget calculation, then the budget management
conflicts. Another one is that the SPI is defined to make a clear
border between local schedulers and the global scheduler. Table I
shows a function list of the SPI. The local schedulers call the SPI
functions to notice the results of local scheduling and request task



2

TABLE I
SCHEDULER PROGRAMMING INTERFACE.

Function Name Parameter Particularities

set_deadline Absolute deadline Notice absolute deadline of the application.
set_schedtsk Task ID Notice task ID that indicates scheduled task in the application.
dispatch void Request task dispatching with saving task context.
exit_and_dispatch void Request task dispatching without saving task context.

Fig. 2. Constitution of the hierarchical scheduler based on BSS algorithm.

dispatching. The global scheduler determines available budget of each
application according to the noticed deadline and the residual list of
the application.

C. Bandwidth Sharing Server

We briefly recall the budget management of BSS algorithm. A
budget element in the residual list of Application Ai is denoted by
tuple lij = (dij , bij), where dij is an absolute deadline, bij is the
available budget until dij . The residual list is a set of budget elements
and ordered by non-decreasing absolute deadline. Three operations
are defined on the list: addition, update, and delete.

Addition. A new element lij is created and inserted in the residual
list when the local scheduler of application Ai notices its application
deadline dij and an element corresponding to dij is not exist in the
residual list. The operation of addition is following procedure.

1) Find the position for the new element lij , that is:

∃li(k−1), lik di(k−1) < dij < dik

2) Calculate the budget available until dij by the following
equation.

bij = min{(dij − tc) ∗Ui, (dij − di(j−1)) ∗Ui + bi(k−1), bik}

where Ui is the utilization of an application Ai and tc is current
time in the system.

3) Insert the lij between li(k−1) and lik in the list.
Update. Every time the application leaves the CPU, the residual

list must be updated. It could happen for any of following reasons:
• the processing unit has finished execution.
• the budget has been exhausted.
• the application has been preempted by another application with

an earlier deadline.
Then, the algorithm picks the element in the list corresponding to
the actual deadline of the application, say the k − th element, and
updates the budgets all lij in the following way:

• bij = bij - e (j ≥ k)
• lij is removed. (j < k ∧ bij > bik)

where e denotes execution time of the processing unit.

0 5 10 2015 25

IST1

TASK1

30

SPIApplication 1

application deadline
scheduled task

10

IST1 IST1

25

NULL TASK1

Budget 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 5 5 5 4 3 2 1 2 1 0 0 0 0 0 0

Application 2

application deadline 24

Budget 12121212121211 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

NULL

10

TASK2

NULL

activates 

NULL

NULL

IH1

9

29

activates 

time

Fig. 3. Example of execution sequence in the hierarchical scheduling.

Delete. This operation is to delete an element that cannot contribute
to the calculation of any new element. In this paper, we skip the
details. The details of the delete operation and the correctness of
BSS algorithm is described in [2].

III. INTERRUPT ROUTINE SCHEDULING

A. Interrupt Routine Model

In this section, we present a split interrupt routine model for a two-
level hierarchical scheduling. In this model, the interrupt routine is
split to an IH, and an IST. An IH provides device-depended service
(e.g. clear an interrupt request) and activate an IST. On the other
hands, an IST provides application-specified service corresponding
to the interrupt source. In this paper, we assume that execution time
of IH is negligible instant and handle an IST as a preemptive task with
same priority as the corresponding interrupt routine. Figure 3 presents
an example of execution sequence of two applications with the inter-
rupt routine model. At t = 0, an interrupt occurs, then IH1 is executed
and activates IST1. Because absolute deadline 10 of IST1 becomes
earliest absolute deadline in the application 1, the local scheduler
calls set_deadline(10) and set_schedtsk(IST1). At the
same time, TASK2 is activated, and the local scheduler of application
2 notices its application deadline 24 through the SPI. At this instant,
deadline of application 1 (10) is earlier than deadline of application
2 (24). Therefore the global scheduler executes IST1 immediately.
At t = 5 IST1 finishes, then the local scheduler updates application
deadline and scheduled task. Since no tasks are ready in application
1, the global scheduler schedules TASK2 of application 2. At t = 15,
the interrupt occurs and IST1 is activated again, then the deadline of
application 1 becomes 25. In this situation, the deadline of application
2 (24) is earlier than deadline of application 1 (25). Therefore TASK2
continues. IST1 is delayed until TASK2 finishes.

B. Implementation results

In order to evaluate overhead, we implement the prototype system
introduced the interrupt model on an actual processor. The prototype



3

TABLE II
PROCESSING TIME OF BASIC FUNCTIONS IN THE PROTOTYPE SYSTEM .

Instruction Function Processing time (us)

act_tsk Activate task with task switching 62
iact_tsk Activate task in kernel mode 4
budget_timer_start Start the budget timer 6
budget_timer_stop Stop the budget timer 7
set_schedtsk Notice scheduled task ID (SPI) 5
set_deadline Notice an application deadline (SPI) 1

TABLE III
RESPONSE TIME OF INTERRUPT ROUTINES.

Interrupt Routines Response Time (us)

Interrupt Handler 3
Normal Interrupt Routine 10
Interrupt Service Task 37

system is developed based on TOPPERS/ASP Kernel which is almost
compliant with the µITRON4.0 specification standard profile [12],
and an open source real-time kernel distributed in [13]. The target
system is the OAKS32R (oaks electric, Inc) with M32R processor
(Frequency;66MHz, cache mode;OFF) which has been used in au-
tomotive control systems. In this evaluation, all executive objects
including data and code section are allocated to on-chip SDRAM.
Code size of TOPPERS/ASP Kernel for OAKS32R is 37KB which
is only kernel code excluding application code. On the other hand,
the code size of prototype system is 50KB. Since introducing the
hierarchical scheduler causes most of 13KB, the effects of introducing
the interrupt routine model is a little. In TOPPERS/ASP Kernel, an
ISR is executed using the common kernel stack. However, because
an IST requires specific stack like a normal task, data size of an
application will increase.

The processing time of basic functions in the prototype system are
shown in Table. II. Table. III presents the average response time of
each interrupt routines obtained through the measurements for 10000
times. Here the response time is defined as the elapsed time from
the instant when interrupts are accepted until corresponding interrupt
routines are activated. Since an IST must be waited until an interrupt
handler finishes and the execution switches to the IST, its response
time gets longer by 27us compared to a conventional interrupt routine
described in Figure. 4. In Most of real-time applications, the overhead
introduced by the proposed interrupt routine model could be allowed
because the overhead introduced by ISTs is small compared to
activating task with task switching (act_tsk()).

C. Schedulability Analysis

We present schedulability analysis for real-time applications with
interrupt disabled time. Firstly, we confirm that all tasks of an
application are schedulable in a shared CPU. Based on the results
of [2], the following theorem is obtained.

Theorem 1: If all ISTs and normal tasks of an application are
schedulable in a dedicated CPU with relative speed Ui, then they are
schedulable in a shared CPU with relative speed 1 by BSS algorithm.

Proof: ISTs are handled as tasks with higher priority than all
tasks in the same application. In the view of the global scheduler,
each application seems a sporadic task with deadline Di. Therefore,
if Ui/

∑N

j=1
Uj ≤ 1 and all ISTs and normal tasks of an application

Ai is schedulable in the dedicated CPU with relative speed Ui, then
all applications are schedulable in the shared CPU with relative speed
1 by BSS algorithm.

(a)

(b)

Fig. 4. Interrupt processing sequences in (a) conventional interrupt model (an
IR means a normal interrupt routine) and (b) the proposed interrupt routine
model.

Theorem 1 also means that an application budget is not exhausted
during execution of ISTs and tasks. Therefore, if a task in an
application disables interrupt, then budgets of other applications
are not exhausted during each execution. Secondly, we analyze the
influence of interrupt disabled time among applications and give
necessary and sufficient condition of schedulability. This condition
is derived based on [7].

Theorem 2: If an application Ai with interrupt disabled time
satisfies following condition, the application is schedulable in a
shared CPU with relative speed 1.

∀di ∈ [0, max
i

{Di}],

di ≥ max
i<j

{IDTj ∗ Uj} +
∑

Dk≤di

(di ∗ Uk) (1)



4

Proof: This is easily derived from Theorem 12 in [7].
maxi<j{IDTj ∗ Uj} is blocked time by interrupt disabled time of
applications with longer relative deadline than Ai.

∑
Dk≤di

(di ∗Uk)
is summation of blocked time by applications with earlier absolute
deadline than di and execution time of Ai itself.
To calculate by only Di and IDTi of each application, we delete
parameters related to such the worst case execution time and relative
deadline of each task from the condition (1), then the following
equation is obtained.

di ≥
maxi<j{IDTj ∗ Uj}
1 −

∑
Dk≤di

(Uk)

≥ maxi<j{IDTj ∗ Uj}
Uj

≥ max
i<j

{IDTj ∗ Uj

Uj
}

≥ max
i<j

{IDTj}

≥ max
i

{IDTi}

After left side becomes minimum, we obtain the following sufficient
condition.

min
i

{Di} ≥ max
i

{IDTi} (2)

To illustrate the use of the proposed schedulability test method, we
utilize two simple examples. In example 1, an applications set is
given with {(0.25, 6, 1), (0.25, 6, 1), (0.5, 8, 7)}. In this case, the
minimum relative deadline is min{6, 6, 8} = 6 and the maximum
interrupt disabled time is max{1, 1, 7} = 7, then the condition
(2) is not satisfied. Therefore an application in the applications set
may miss deadlines. In example 2, an applications set is given with
{(0.25, 6, 2), (0.25, 6, 2), (0.5, 20, 4)}. Then the minimum relative
deadline is min{6, 6, 20} = 6 and the maximum interrupt disabled
time is max{2, 2, 4} = 4. In this case, the condition (2) is satisfied.
Therefore the applications set is schedulable in the shared CPU.
Although the proposed schedulability test condition is sufficient but
not necessary, it is valuable to the system integrators in the system
design phase because they can determine quickly which applications
could be integrated to the system even without detail knowledge of
each application.

IV. RELATED WORKS

Many hierarchical scheduling have been proposed. The Open
System [1] guarantees that utilization of CPU on a shared CPU
corresponds with a dedicated CPU. G. Lipari proposed BSS algorithm
[2] and PShED algorithm [3] that can guarantee that all tasks satisfy
the timing constraints in a shared CPU. Since BSS and PShED require
only deadlines of tasks, the algorithms are applicable compared
to the Open System [1]. However the prior works assumed that
applications consist of only tasks, and ignored the existence of
interrupt routines. J. Regehr proposed and implemented a general
hierarchical scheduling framework described in [5], [6]. They used
a fixed priority scheduler as the root scheduler to schedule interrupt
routines prior to all tasks in [6]. Therefore each application needs
to be resolved into tasks and interrupt routines for mapping proper
execution environments. On the other hand, we use an EDF scheduler
as the root scheduler to respectively schedule each application that
includes interrupt routines without reconstructions of applications.
Moreover, this paper presents response time of an interrupt routines
and proposes schedulability test method for integrated applications
without characteristics of each task.

Several interrupt routine models are presented in [9], [10]. Al-
though they targeted for a conventional real-time systems or a
general-purpose system, not a hierarchical scheduling system. In
this paper, we introduce the split interrupt routine model to a two-
level hierarchical scheduling system. [11] presents schedulability
analysis with interrupt routines. However it assumed that interrupt
occurs periodically, and an interrupt disabled time was not mentioned.
Having interrupt disabled time in tasks is similar to having critical
sections in tasks where they access global resources that are shared
between applications. [8] presents a schedulability analysis of global
resources sharing in EDF+SRP (Stack Resource Policy). It assumes
that WCET parameters are given to calculate demand bound function
in verification phase. Although these schedulability analyses are
useful to check the schedulability in detail, however, even if design
or source code of a task is changed only a little, characteristics of
the task and the schedulability analysis of all applications need to
be calculated again. In practice, if each application is independently
developed in a different company, system integrators could not obtain
detail knowledge of each task in the system design phase.

V. CONCLUSION

This paper presents a split interrupt routine model for a two-level
hierarchical scheduling. By using this model, the main part of an
interrupt routine is handled as a task and become controllable by
a global EDF scheduler. Moreover we analyze the schedulability
of the applications and give a simple feasibility test method. As a
future works, we will refine the prototype system to improve the
response time an ISTs and evaluate it with real applications for a
real automotive control system.

REFERENCES

[1] Z. Deng and J.W.-S. Liu and L. Zhang and S. Mouna and A. Frei,
An Open Environment for Real-Time Applications, Real-Time Systems
Journal, 1999.

[2] G. Lipari and K.Baruah, Efficient Scheduling of Real-Time Multi-Task Ap-
plications in Dynamic Systems, In Proc. of IEEE Real-Time Technology
and Applications Symposium, 2000.

[3] G. Lipari and J. Carpenter and S. Baruah, A framework for achieving inter-
application isolation in multiprogrammed, hard real-time environments,
In Proc. of IEEE Real-time System Symposium, November 2000.

[4] I. Shin and I. Lee, Compositional Real-time Scheduling Framework, In
Proc. of IEEE Real-time Systems Symposium, December 2004.

[5] J. Regehr and A. Stankovic, HLS: A Framework for Composing Soft
Real-Time Schedulers, In Proc. of the 22nd IEEE Real-time Systems
Symposium, December 2001.

[6] J. Regehr and A. Reid and K. Webb and M. Parker and J. Lepreau,
Evolving Real-Time Systems using Hierarchical Scheduling and Concur-
rency Analysis, In Proc. of the 24th IEEE Real-Time Systems Symposium,
December 2003.

[7] L. George and N. Rivierre and M. Spuri, Preemptive and Non-
Preemptive Real-Time Uni-Processor Scheduling, INRIA RECQUEN-
COURT, September 1996.

[8] N. Fisher, M. Bertogna, and S. Baruah, Resource-locking durations in edf-
scheduled systems, In Proc. of the 13th IEEE Real-Time and Embedded
Technology and Applications Symposium, April 2007.

[9] L. E. Leyva-del-Foyo and P. Mejia-Alvarez and D. de Niz, Predictable
Interrupt Scheduling with Low Overhead for Real-Time Kernels, In Proc.
of the 12th IEEE International Conference on Embedded and Real-Time
Computing System and Applications, August 2006.

[10] Y. Zhang and R. West, Process-Aware Interrupt Scheduling and Account-
ing, In Proc. of the 27th IEEE Real-Time Systems Symposium, December
2006.

[11] K. Jeffay and D. L. Stone, Accounting for Interrupt Handling Costs in
Dynamic Priority Task Systems, In Proc. of the 14th IEEE Real-Time
Systems Symposium, December 1993.

[12] ITRON, µITRON 4.0 Specification Ver.4.03.00, 2007.
[13] TOPPERS Project. http://www.toppers.jp/


