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Abstract— The purpose of this paper is to create risk manage-
ment system that multi-agent patrols for maintaining security.
We consider that maintaining security is equal to relieving
uncertainty. Therefore, we formulate uncertainty of places

Since uncertaintyis
high at CP3,
I should visit there

CP5

needed to maintain security by the entropy in an information

theory. We call these places "check point i(i=1,2,.,n)". Agents %

patrol and observe check point’s condition value with updating

patrol schedule on the basis of estimating uncertainty of check cp3 ﬁ Since uncertaintyis
points in real time. We propose the method "Earliest Deadline low at CP3,
First Scheduling with Adaptive Risk Estimation(EDFRE)” to I should visit there

relieve uncertainty. Then we compare the proposaled method
with simpleEDF(Earliest Deadline First) scheduling. The result
indicated that our proposal method was effective for dynamic
situation. Fig. 1. Optimized patrol scheduling

more rarely.

I. INTRODUCTION

An environment where human and robots move in is
always full of uncertainty. When moving in an environmentpatrol interval to CPi adaptive uncertainty level, agents opti-
like this, it becomes necessary to know how to move whilenize the patrol scheduling with satisfying permissible range
decreasing its uncertainty. Generally, it is calledRisk of uncertainty risk of system(Fig.1). This is our purpose.
Management the dicrease of its uncertainty and the con-Agents do not know CPi’s uncertainty level(rate of increase
sideration of the handling of actualized risk, for examplef entropy). This paper proposes an algorithm that CPi's
natural disasters. In our work, we define the former agncertainty level is estimated and updated by observation
“ Risk Managemerit and discuss it. As an example ofby agents. It is realized that the patrol scheduling method
such Risk Management, we can mention the observation ahdlances the valiable uncertainty risk with observational
patrol by police or guard. This work have the intention ofesources by updating optimized ideal patrol interval to CPi.
always knowing the status of observation points or keepinghe patrol scheduling problem we treat considers un-
it prediction horizon. In other words, their intention is tocertainty risk of CP to be classified into two classes.
discrease the risk of observational uncertainty. For automati®ne is multiple Traveling Saleseman Problem with Time
ing this action by robots, our paper treats a patrol scheduling/indow(mTSPTW)[1]. The other is the realtime schedul-
problem considering uncertainty risk of observational pointsng problem[4]. mTSPTW is a benchmark problem of
Each agent keeps patrolling and sensing a condition value@mbination optimization algorithm and have a convergent
observational points(check point:CP) in the environment. Weolution[2][3]. However, the problem we treat does not
propose a model that each CP(ith CP:CPi)’s uncertainty ridkave a convergent solution, since patrol scheduling is al-
about the condition value is becames zero right after sensim@ys updated. So, these are alike but essentially differ-
by agent and increases with time after sensing by agent. Wet problems. On the other hand, the realtime schedul-
propose entropy of Gaussian distribution changing with timimg is entirely used to task scheduling of CPU[5]. The
as an indicador of uncertainty risk changing with time(detailscheduling is executed by feeding parameters (start time,
in next section). And this uncertainty risk is defined as &ost, deadline and cycle time) by user. Recently this is
risk of the system. Agents need to evaluate the uncertainégtively used to task scheduling of robots[9]. There are
risk about CPi and decide a patrol interval according to thRM(Rate Monotonic)[6][7],DM(Deadline Monotonic) and
acceptable risk about CPi. If CPi’s uncertainty is estimateBDF(Earliest Deadline First)[8] scheduling as major algo-
high, rate of increase of entropy would be fast. So, agemithms. In past task scheduling of robots, the parameters of
needs to patrol and sense frequently the CPi. On the othitie task is given from the outside and is already-known[10].
hand, if CPi’s uncertainty is estimated low, rate of increasé/hen applying it to the present study, the outside is an initial
of entropy would be slow. So, agent is allowed to patrolalue that the person gives and the task scheduling based on
and sense rarely the CPi. Additionally, it is expected thahe initial estimation of uncertainty given by the person. The
excessive patrol to low uncertainty CP is inhibited for savingerson’s estimation might be appropriate to some degree.
observational resources. In this way, while agents adjustHowever, accuracy cannot be garanteed if uncertainty factors



increase. The present study proposes adding adaptive Risk CP6
Estimation function to update the patrol interval automati-
cally to the EDF scheduling(EDFRE). The EDF scheduling
is the scheduling method for paying attention to deadline.
Since we should consider the patrol interval is defined as
the tolerance by the observation uncertainty risk of increase
with time, we improve the EDF scheduling. The research of
the patrol problem considering the observation uncertainty
risk is scarce so far. The attempt of self-generating the patrol
interval from the observational uncertainty risk estimation by g
robot is unparalleled. CP8  (p3
The simulation was developed to evaluate the proposed
method. First, the performance of proposed method(EDFRE)
was checked. Next, it was simulated on the condition of
increasing uncertainty of initial estimated uncertainty one
by one. Finally simpleEDF, which is the ooptimum patrol

Fig. 2. Patrol map of Check Point

TABLE |
DEFINITION OF PARAMETERS

. . . . . x; condition value of CP
interval for initial estimated uncertainty, was given as com- 2| threshhold of condition variable of CP
parison with the proposed method, showing that the proposed vin | nth observation value of GP
method is excellent in adaptability to uncertainty of initial Tin | Observation interval whe;, was gotten
estimated uncertainty. Zin | converted value oy, andrin____
oo uncertainty of initial estimated uncertainty
o; uncertainty of CP
Il. MODELING OF RISK MANAGEMENT PROBLEM Gi0 | initial estimated uncertainty of GP
. Fi estimated uncertainty of C®y Agent
A. Abstract of Risk Managemem Problem T elapsed time of CPafter last observation by Agent
o . H,; isk of observational rtainty of CP
In the present study, it is defined that agents keep pa- i R sgz:wé:{:;yn; heerEny
trolling some observational points in the environment(Fig.2) A+, | ideal observational interval of GP
to decrease the observational uncertainty risk Rgsk Man- Aty | real observational interval of CP

agement . Each agent keeps patrolling, sensing a condition
value of CP. We propose a model that CPi's uncertainty risk

about the cond_ition value b_eca_mes zero right_after sensirzgi shows the Brownian motion and is a probabilistic swing-
by agent and increases with time after sensing by agenty according to Gaussian distribution. This Gaussian dis-

We propose entropy of Gaussian distribution changing Withip, ion has a variance; each CP have especialy. Eq.(2)
time as an indicator of uncertainty risk changing with timep..omes it above as follows if it shows in the stochastic
And this uncertainty risk is defined as the risk of systemyitarential equation:

Agents need to evaluate the uncertainty risk about CPi and
decide a patrol interval according to the acceptable risk about dz;
CPi. The state variable that changes stochastically for a fide

dB; 3)

time is set as the condition value of CP. The state variab ?mzm\'ll'lrr:g,z;lgf\?ec?smsehsov(\?gl;)sgtig g'sar;?i%tr'](_)n changing with
has a probabilistic swinging. Therefore, the model in which™ ™ y q '
the existence probability distribution extends with time was

1 i
proposed. It is synonymous with the rise of the probability, pla:) = V2o b {_2(aiTi)2} )

the state variable exceed the threshold, that the observatllgg a result, a probabilistic swinging joins the condition value

un(?ertair_ny _risk has risen. Therefore, always keeping the Stgi¢ op 4 it hecomes the model that the existence probability
variable inside a safe level(the threshold) becomes a concrefe. ibution extends with time

purpose of agents.

2

C. Setting of function of Agent and estimated model of check
B. Modeling of observation point having uncertainty point

First of all, state variabler; is defined as the condition 1) Function of Agent:The moving speed is the same for
value of CPi of the environment:; has thresholdr;;,. It  all agents and the map of the field is assumed to be known.
is equal to exceeding dof z; | x;, that CPi deviates from Moreover, the specified communication between agents is not
the safety standard. Agents assume it to be dangeigus. done and the exchange of information uses the blackboard
changed by every fixed timér. z; at timer; is madez;(r;), model. Agents can observe the condition valiyeof CPi
andz; at; + dr is madexz;(r; + dr) and the conversion by visiting CPi. Also agents can adjust the condition value

equation fromz;(7;) to z;(m; + dr) is made as follows: to x;(0) and the observational uncertainty risk to 0 (make
7; = 0). Agents estimate and updaig in the CP estimation
zi(0) = 0 (1) model shown by the next paragraph from an observational

xi(ri+dr) = xi()+ B; (2) data. Also, agents can know when exceedsr;, and the



estimation of the uncertainty is changed along with it. Under I1l. EDF SCHEDULING WITH ADAPTIVE RISK
such a condition, agents estimate the observational fisk EsTIMATION(EDFRE)
of CPi based on estimated uncertainty of GRifrom the A Apstract of EDFRE
observation for the condition value of CPi not to exceeq The proposed EDFRE consists greatly of three parts. One
the threshold. Therefore, agents update the patrol scheduhnga L . " .
. ) : istan estimation algorithm of the uncertainty of CPi that uses
in real time and do the risk management. Also, each agegt : S : :
: S ayesian estimation from the observational data of CPi. The
executes the algorithm individually. second formulates the observational uncertainty risk of CPi
2) Estimated model of check poinfthe Gaussian dis- y

tribution changing with time is applied to the estimationfrom the estimated uncertainty by using entropy and is a

model of CP. The Gaussian distribution changing with timgecjsion algqrith_m of the ideal patrql interva! of CPi based
have a temporary variandé,r;)2. It is given by multiplying on it. The third is a patrol sch'edullng algorithm that uses
elapsed time of CP¥; from the observation by agent at theEDF based on the ideal patrol_ interval. _The_behawor model
end by the estimated uncertainty of C&i. In a word, 7; of agent that mounts EDFRE is shown in Fig.3,
rises,(6;7;)? rises, and the probability for the condition valueB. Method to estimate uncertainty

x; to exceed the threshold rises with it. Therefafg,is an Agents estimate and updatein the above-mentioned CPi
estimation i_n.crease rate of the probability far; | to exceed astimated model by online Bayesian estimation[11], [12],
i, In addition, because agent makes= 0 at the same [13], [14]. First, to do Bayesian estimation, the observational
time as visiting and observing CPi, becorftg7;)> = 0. In §at3 is standardizedy;,, according to N(0, (5;7:)%) is
addition, the condition value will return to initial valug(0)  converted intoz;,, according toN (0, (;)2) by usingy»(an

as aresult. An important parameter in the present study is thé, observed valuer; of CPi) and 7;,,(; when an nth
uncertaintyo;. But the initial valuer; (0) is not so important. opserved value; of CPi is obtained):

So, it is not an excessive assumption makin¢0) = 0 of Yin
eq.(2) for the simplification of the calculation. The above is Yin = (10)

shown by the equation: o 7iin )
L 9 Moreover, z;,, similarly output fromN (0, 62)(the Gaussian
;) = ——expl——=t 5) distribution atr; = 1) is standardized:
#) = T\ gep) O Z .
’ wm
Zin = (11)

In this way, z; is estimated to be a random variable accord-

ing to N(Q, (O’ZATZ).). AIsp, initial esumated uncertainty is \ypap P

defined asr,o. 6,9 is decided stochastically by Gaussian dis- ”

tribution having uncertainty of initial estimated uncertainty Zin = m (12)

oo as variance(eq.(6)). bo = 0, it would becomes;y = ;. o m ) )

But the probability, that o; — 6,0 | grows, rises as, grows. This is assumed to be an observational data, and Bayesian
estimation is done. Bayesian estimation theorem is shown

%

p(6i0) = 1 exp {_(‘710_2‘71)2} (6) by the following equation when a population parametef is
V2o 205 and a data is::
In addition, in the present study, the observation uncertainty 1(0]z)p(0)
risk is formulated by the entropy in the information theory. p(b]z) = - r (13)
Entropy H; is calculated for eq.(5): p (0|z) is a posteriori distributioni. (4|z) is a likelihood. The
o o— /°° p(xs) log p(as)da likelihood is the value that shows plausibility that guesses
' I ! what the precondition was from the observational datd)
— log V2redm; @) is a prior distributionk is a constant because the integration

value of the numerator becomes anef{ [ (numerator)df).
According to eq.(7), it is understood thAt depends o, In the present studyy = 62, and z = z;,. First, the
that shows the uncertainty, and increases with time. Morgkelihood is decided. Since the estimated model of CP is
over, when the threshold of the condition value is defineghe Gaussian distribution,
Ty, agents judge that estimated existence probability,pf 9
over 0.1% is dangerous. The user can set this estimated (62 |z,) = (27r&fn)‘5exp{— ng } (14)
existence probability ofc;;,. When the temporary variance 205,
(6,7:)% is replaced bys? when this estimated existenceNext, the prior distribution is decided. First time uses the
probability of z;;, is 0.1%, natural conjugate prior distribution and the following uses
posteriori distributiorp(&f(n_l)|zi(n_1)) obtained from the

Oth = OiTs ) Jast estimation(eq.(16)):
H;, = logV2meoyy,. 9) = =
. . . p(6;,) = p(Ui(nfl)lzi(nfl))
It becomes synonymous with the estimated existence prob-
ability of z;, 0.1%. H; at this time becomes threshold;;, _ 1(&?, . )Wﬂ exp (n—1) 15)
of the observational uncertainty risk. e in=h) 265-2@,1)
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Fig. 3. Behavior model of agent

wherev;,_1y = n—10X;,—1) = 22;11 22 . When eq.(14) D. Method to decide patrol scheduling

(15) is substituted for eq.(13), Agents want to patrol so thafl; should not exceed
.2 1(67,|2in)P(67,) H,;, and to suppress total moved distance to the minimum.
P(Giulzin) = -k Efficiency is expected to be optimized because the agent does
1, o\ vin Xin not move until H; approachesd,;, which reduces moved
= E(Um) 2 exp { 252 } - (16)  gistance and, therefore, excessive observations. The decision

) ) method of the time that stands by is described. When a
wherevi, = Vigm—1) + 10 Ain = Xitn—1) + 25, IN IS WAY,  nymper of CPs is. and a number of agentsis,, a number
the posteriori distribution o2, becomes the reverse-Kay ¢ cps that one agent will bear is definedcas n,/n,. The

square distributiony™*(vin, Ain ). Average of this distribu- tave| ime between CP that is the longest is definet},as.
tion —~— is assumed to be a point-estimate valuespf t; .. is defined as follows:

Vin —
and updates? and the estimated model of CPi. tirest = AT, — ctmaz (21)
C. Method to decide ideal patrol interval Agents will stand by when; ,...; is positive. The flow of

Entropy H; is calculated for the Gaussian distribution ofEDFRE that integrates the above-mentioned three algorithms
CPi N(0, (64, 7in)?) obtained in the foregoing paragraph.Byis shown.

eq.(7), (1) visiting to CPi
Hi = logv2reom. 17) (2) olb_talnlng the condltlop value and reseting the con-
dition value and the risk
Moreover, the entropy of a Gaussian distributidif0, o2, ) (3) estimating and updating uncertainty of CPi
whose existence probability of;, is 0.1% becomes thresh- (4)  sorting CPs other agents will not go to in ascending
old H,, of the observational uncertainty risk: order of A1; — 75
Hy = logZreom (18) (5) searching the closest agent to CP in the order

(6) when | am the nearest to CPi, next destination is
From the above, a timAr; to the excess ofi;;, by H; can decided CPi
be calcuated. This becomes an ideal patrol interval of CPi. (7)  standing by until becoming ,..s: < 0, and moving
Hyy, is substituted at the left of eq.(17). And, in addition, (8) return to (1)

both sides are assumed to be multipliers of Napier’s censt
IV. SIMULATION

Hen
A1 = L} (20) Two kinds of simulations are done. The condition of sim-
V2meo; ulation 1 is fixing uncertainty of initial estimated uncertainty

Here,+1 at the right of eq.(19) is a measure to mdkg, > oy and changing the number of agents. The purpose of
0. This Ar; becomes the ideal patrol interval addr; — 7;  simulation 1 is to confirm that the proposed method works
becomes the remainder time to the ideal patrol interval. Theffectively and to discover the best number of agents to
patrol scheduling is decided by using these for EDF. the given condition(field, threshold ang)). The condition
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of simulation 2 is changing uncertainty of initial estimated 20 S
uncertaintyo, and fixing the number of agents. The simula- 10 -
tion 2 is done by EDFRE and simpleEDF respectively, and 00 ‘ ‘ ‘ ‘
compared. The purpose of simulation 2 is to confirm that 0 100 200 300 400 500

Time

EDFRE is excelling in adaptability to uncertainty of initial

estimated uncertainty. (a)Transition of estimated uncertainty

10.0

B. Simulation 1 ggé 7
1) Condition of simulation 1:The setting ofo; does 80 Cre i
in Tablell andoy = 1.0. Thresholdzx,; of the condition v
value z; is defined asz;, = 33. This 33 is a value of g eor 1
existence probability 0.1% itV (0, 10.5%). The threshold of g wl
the risk(entropy) can be obtained here: g T i
Hy, = logV2meoy, 201 o 1
‘V\"t o/ ﬂm/* HA TN WAL N"V +f YV AT
= log(v2me x 10.5) f | h | | "M”‘”‘“/ﬁf v
~ 38 (22) 00 0 100 200 300 400 500
Time
The simulation 1 is executed until = 500 in the above (b)Transition of patrol interval
conditions. It is done ten times by fixing. = 9 and Fig. 4. Correlation between estimated variance and patrol interval

changingn, from 2 to 8 about each value. The estimated
uncertaintys; and actual patrol interval\r;” is plotted for
the time axis and the correlation betweén and A7 is
confirmed. Moreovern,, (frequency forz; to exceedx;;)
andd(sum total of moved distance of all agents) is obtained, 1400000
evaluation functionD is made as follows: 1200000

1800000 T T T T T T T

1600000

1000000

D = 500n:t — 10000n,, — 300n.t — 0.75d (23)

800000

Performance D

This average and standard deviation are made a bar chart and

the change according to the number of agents is confirmed.
2) Result: From Fig.4, the correlation betweeny and

AT} is confirmed. A7} is short for CPi thats; is high.

Oppositely A7;* is long for CPi thats; is low. Therefore, 0 > 3 4 5 & 7 8

it can be confirmed that the proposed algorithm functions Number of agents n,

effectively.

From Fig.5, it is understood thab is the highest when

ne = 3. Whenn, = 2, the risk management is not success

since the number of agents are insufficient. Whgn> 4,

D decreases since the number of agents is tedious. It Wagriable byo, and the patrol scheduling is done based on
able to be discovered tha, = 3 was the most suitable in jt. Moreover, since CPi is clustered in three groups based
this condition. on the initial condition, the best patrol scheduling is led
in the conditions¢, = 3, n. = 9 and 6;y). The change
in performanceP by the change in uncertainty of initial

1) Condition of simulation 2:The simulation 2 is exe- estimated uncertainty is compared between EDFRE and the
cuted untilt = 500 in the same conditions af;, ando; with  gptimum solution a#;, by simpleEDF. The moving speed of
simulation 1. Alson. =9, n, = 3. It is done ten times by agent is defined as(= 160). The interval when CP changes

changingo, from O to 2 about each value at intervals of 0.1the condition value is defined ak (= 0.25). In this time,
by using EDFRE and simpleEDF respectively. Performance
Pis given by the next equation, and the average and standard ~ ,, _ 100 tong (24)

deviation are plotted. In simpleEDF; is given to random Prox d (1 + exp {nm — mtglﬁ})

600000

400000

200000

Fig. 5. Optimal number of agents in 9 CPs angl= 1.0

C. Simulation 2
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Fig. 6. Comparison between EDFRE and simpleEDF
00=0.58
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Fig. 7. Performance ratio curve F(a)

Here, —tn./1000At in eq.(24) is a frequency for; to
exceedz,;, that corresponds to 0.1% &at= 500.
2) Result:In Fig.6, the approximation curve to EDFRE is

defined asy; and the approximation curve to simpleEDF is

defined agy;. The performancé” has fallen ony; by rising
of uncertainty of the initial estimated uncertainty. This

shows that the mistake increases as the time, that approachl(i

correct estimation, increases. Also, singe= y- is solved,
it is understood that; and y, intersect atoy, = 0.321.

Therefore, it was shown that EDFRE was more effective

when oy > 0.321 though the optimum scheduling 0
by simpleEDF was effective whes, < 0.321. Moreover,
by seeing ratioF(a) of values @A(a)1, A(a)2) in which
each approximation curve is integrated within the range
0 < gy < a, the evaluations of expectation performance

Ala)r _ Jo yrdoo
Aa)y [ yodog
From Fig.7, it was understood to becomie= 1 at oy =

F(a) = (25)

0.58. Moreover, it was shown that EDFRE was 2.1 times

more effective than simpleEDF in the range(of o < 2.

We confirmed that EDFRE was excelling in adaptability to

uncertainty initial estimated uncertainty.

V. CONCLUSION

In the present study, the patrol to reduce the observational

o

the proposal method to uncertain initial values are compared:

assumed to be risk management. It is a purpose to develop
the system to which the autonomous robot group where
each one has the decision-making mechanism automatically
does it. Then, in the beginning, we modeled check point
that existed in the environment with uncertainty. Next, the
estimated model of check point was constructed. Moreover,
we proposed the algorithm to which it was estimated and
updated by online Bayesian estimation by the observation.
Next, the allowable limit of the observational uncertainty
risk formulated by entropy was set and the ideal patrol
interval was decided. Finally, we proposed EDFRE to which
the patrol scheduling was in real time updated by using
EDF based on the ideal patrol interval by self-generating.
As resalt, we succeeded in the risk management in the
condition having uncertainty of initial estimated uncertainty
and the effectiveness of the proposed method was shown.
By comparing between EDFRE and the optimum solution at
&0, we showed that EDFRE was excelling in adaptability to
uncertainty of initial estimated uncertainty.
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An environment where human and robots move in is always full of uncertainty. Generally, it is called
“Risk Management” the dicrease of its uncertainty and the consideration of the handling of actualized risk,
our paper treats a patrol scheduling problem considering uncertainty risk of observational points. Each agent
keeps patrolling and sensing a condition value at check point:CP in the environment. We propose a model
that each CP(ith CP:CPi)'s uncertainty risk about the condition value is becames zero right after sensing by

]

Since uncertaintyis
high at CP3,

I should visit there

more frequently.

CP5

agent and increases with time after sensing by agent. We propose entropy of Gaussian distribution changing

with time as an indicador of uncertainty risk changing with time. Agents need to evaluate the uncertainty risk QE

about CPi and decide a patrol interval according to the acceptable risk about CPi. While agents adjust a :

patrol interval to CPi adaptive uncertainty level, agents optimize the patrol scheduling with satisfying CP3 “ Since uncertaintyis
permissible range of uncertainty risk of system. Therefore, the present study proposes adding adaptive Risk low at CP3,
Estimation function to update the patrol interval automatically to the EDF scheduling(EDFRE). A simulation Ishould visit there

was developed to evaluate the proposed method. We showed that the proposed method is excellent in more rarely.

adaptability to uncertainty of initial estimated uncertainty.
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