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Abstract— The purpose of this paper is to create risk manage-
ment system that multi-agent patrols for maintaining security.
We consider that maintaining security is equal to relieving
uncertainty. Therefore, we formulate uncertainty of places
needed to maintain security by the entropy in an information
theory. We call these places ”check point i(i=1,2,…,n)”. Agents
patrol and observe check point’s condition value with updating
patrol schedule on the basis of estimating uncertainty of check
points in real time. We propose the method ”Earliest Deadline
First Scheduling with Adaptive Risk Estimation(EDFRE)” to
relieve uncertainty. Then we compare the proposaled method
with simpleEDF(Earliest Deadline First) scheduling. The result
indicated that our proposal method was effective for dynamic
situation.

I. I NTRODUCTION

An environment where human and robots move in is
always full of uncertainty. When moving in an environment
like this, it becomes necessary to know how to move while
decreasing its uncertainty. Generally, it is called“ Risk
Management” the dicrease of its uncertainty and the con-
sideration of the handling of actualized risk, for example
natural disasters. In our work, we define the former as
“ Risk Management” and discuss it. As an example of
such Risk Management, we can mention the observation and
patrol by police or guard. This work have the intention of
always knowing the status of observation points or keeping
it prediction horizon. In other words, their intention is to
discrease the risk of observational uncertainty. For automatiz-
ing this action by robots, our paper treats a patrol scheduling
problem considering uncertainty risk of observational points.
Each agent keeps patrolling and sensing a condition value at
observational points(check point:CP) in the environment. We
propose a model that each CP(ith CP:CPi)’s uncertainty risk
about the condition value is becames zero right after sensing
by agent and increases with time after sensing by agent. We
propose entropy of Gaussian distribution changing with time
as an indicador of uncertainty risk changing with time(details
in next section). And this uncertainty risk is defined as a
risk of the system. Agents need to evaluate the uncertainty
risk about CPi and decide a patrol interval according to the
acceptable risk about CPi. If CPi’s uncertainty is estimated
high, rate of increase of entropy would be fast. So, agent
needs to patrol and sense frequently the CPi. On the other
hand, if CPi’s uncertainty is estimated low, rate of increase
of entropy would be slow. So, agent is allowed to patrol
and sense rarely the CPi. Additionally, it is expected that
excessive patrol to low uncertainty CP is inhibited for saving
observational resources. In this way, while agents adjust a

Fig. 1. Optimized patrol scheduling

patrol interval to CPi adaptive uncertainty level, agents opti-
mize the patrol scheduling with satisfying permissible range
of uncertainty risk of system(Fig.1). This is our purpose.
Agents do not know CPi’s uncertainty level(rate of increase

of entropy). This paper proposes an algorithm that CPi’s
uncertainty level is estimated and updated by observation
by agents. It is realized that the patrol scheduling method
balances the valiable uncertainty risk with observational
resources by updating optimized ideal patrol interval to CPi.
The patrol scheduling problem we treat considers un-
certainty risk of CP to be classified into two classes.
One is multiple Traveling Saleseman Problem with Time
Window(mTSPTW)[1]. The other is the realtime schedul-
ing problem[4]. mTSPTW is a benchmark problem of
combination optimization algorithm and have a convergent
solution[2][3]. However, the problem we treat does not
have a convergent solution, since patrol scheduling is al-
ways updated. So, these are alike but essentially differ-
ent problems. On the other hand, the realtime schedul-
ing is entirely used to task scheduling of CPU[5]. The
scheduling is executed by feeding parameters (start time,
cost, deadline and cycle time) by user. Recently this is
actively used to task scheduling of robots[9]. There are
RM(Rate Monotonic)[6][7],DM(Deadline Monotonic) and
EDF(Earliest Deadline First)[8] scheduling as major algo-
rithms. In past task scheduling of robots, the parameters of
the task is given from the outside and is already-known[10].
When applying it to the present study, the outside is an initial
value that the person gives and the task scheduling based on
the initial estimation of uncertainty given by the person. The
person’s estimation might be appropriate to some degree.
However, accuracy cannot be garanteed if uncertainty factors



increase. The present study proposes adding adaptive Risk
Estimation function to update the patrol interval automati-
cally to the EDF scheduling(EDFRE). The EDF scheduling
is the scheduling method for paying attention to deadline.
Since we should consider the patrol interval is defined as
the tolerance by the observation uncertainty risk of increase
with time, we improve the EDF scheduling. The research of
the patrol problem considering the observation uncertainty
risk is scarce so far. The attempt of self-generating the patrol
interval from the observational uncertainty risk estimation by
robot is unparalleled.
The simulation was developed to evaluate the proposed
method. First, the performance of proposed method(EDFRE)
was checked. Next, it was simulated on the condition of
increasing uncertainty of initial estimated uncertainty one
by one. Finally simpleEDF, which is the ooptimum patrol
interval for initial estimated uncertainty, was given as com-
parison with the proposed method, showing that the proposed
method is excellent in adaptability to uncertainty of initial
estimated uncertainty.

II. M ODELING OF RISK MANAGEMENT PROBLEM

A. Abstract of Risk Management Problem

In the present study, it is defined that agents keep pa-
trolling some observational points in the environment(Fig.2)
to decrease the observational uncertainty risk as“Risk Man-
agement”. Each agent keeps patrolling, sensing a condition
value of CP. We propose a model that CPi’s uncertainty risk
about the condition value becames zero right after sensing
by agent and increases with time after sensing by agent.
We propose entropy of Gaussian distribution changing with
time as an indicator of uncertainty risk changing with time.
And this uncertainty risk is defined as the risk of system.
Agents need to evaluate the uncertainty risk about CPi and
decide a patrol interval according to the acceptable risk about
CPi. The state variable that changes stochastically for a fixed
time is set as the condition value of CP. The state variable
has a probabilistic swinging. Therefore, the model in which
the existence probability distribution extends with time was
proposed. It is synonymous with the rise of the probability,
the state variable exceed the threshold, that the observation
uncertainty risk has risen. Therefore, always keeping the state
variable inside a safe level(the threshold) becomes a concrete
purpose of agents.

B. Modeling of observation point having uncertainty

First of all, state variablexi is defined as the condition
value of CPi of the environment.xi has thresholdxth. It
is equal to exceeding of| xi | xth that CPi deviates from
the safety standard. Agents assume it to be dangerous.xi is
changed by every fixed timedτ . xi at timeτi is madexi(τi),
and xi at τi + dτ is madexi(τi + dτ) and the conversion
equation fromxi(τi) to xi(τi + dτ) is made as follows:

xi(0) = 0 (1)

xi(τi + dτ) = xi(τi) + Bi (2)

Fig. 2. Patrol map of Check Point

TABLE I

DEFINITION OF PARAMETERS

xi condition value of CPi
xth threshhold of condition variable of CP
yin nth observation value of CPi
τin observation interval wheyin was gotten
zin converted value fromyin andτin

σ0 uncertainty of initial estimated uncertainty
σi uncertainty of CPi
σ̂i0 initial estimated uncertainty of CPi
σ̂i estimated uncertainty of CPi by Agent
τi elapsed time of CPi after last observation by Agent
Hi risk of observational uncertainty of CPi
Hth threshhold of risk of observational uncertainty
∆τi ideal observational interval of CPi
∆τ∗

i real observational interval of CPi

Bi shows the Brownian motion and is a probabilistic swing-
ing according to Gaussian distribution. This Gaussian dis-
tribution has a varianceσi each CP have especialy. Eq.(2)
becomes it above as follows if it shows in the stochastic
differential equation:

dxi = dBi (3)

In solving, it becomes Gaussian distribution changing with
time. The above is shown by the equation:

p(xi) =
1√

2πσiτi

exp
{
− x2

i

2(σiτi)2

}
(4)

As a result, a probabilistic swinging joins the condition value
of CP and it becomes the model that the existence probability
distribution extends with time.

C. Setting of function of Agent and estimated model of check
point

1) Function of Agent:The moving speed is the same for
all agents and the map of the field is assumed to be known.
Moreover, the specified communication between agents is not
done and the exchange of information uses the blackboard
model. Agents can observe the condition valuexi of CPi
by visiting CPi. Also agents can adjust the condition value
to xi(0) and the observational uncertainty risk to 0 (make
τi = 0). Agents estimate and updateσ̂i in the CP estimation
model shown by the next paragraph from an observational
data. Also, agents can know whenxi exceedsxth and the



estimation of the uncertainty is changed along with it. Under
such a condition, agents estimate the observational riskH
of CPi based on estimated uncertainty of CPiσ̂i from the
observation for the condition value of CPi not to exceed
the threshold. Therefore, agents update the patrol scheduling
in real time and do the risk management. Also, each agent
executes the algorithm individually.

2) Estimated model of check point:The Gaussian dis-
tribution changing with time is applied to the estimation
model of CP. The Gaussian distribution changing with time
have a temporary variance(σ̂iτi)2. It is given by multiplying
elapsed time of CPiτi from the observation by agent at the
end by the estimated uncertainty of CPiσ̂i. In a word, τi

rises,(σ̂iτi)2 rises, and the probability for the condition value
xi to exceed the threshold rises with it. Therefore,σ̂i is an
estimation increase rate of the probability for| xi | to exceed
xth. In addition, because agent makesτi = 0 at the same
time as visiting and observing CPi, become(σiτi)2 = 0. In
addition, the condition value will return to initial valuexi(0)
as a result. An important parameter in the present study is the
uncertaintyσi. But the initial valuexi(0) is not so important.
So, it is not an excessive assumption makingxi(0) = 0 of
eq.(2) for the simplification of the calculation. The above is
shown by the equation:

p̂(xi) =
1√

2πσ̂iτi

exp
{
− x2

i

2(σ̂iτi)2

}
(5)

In this way,xi is estimated to be a random variable accord-
ing to N(0, (σ̂iτi)2). Also, initial estimated uncertainty is
defined aŝσi0. σ̂i0 is decided stochastically by Gaussian dis-
tribution having uncertainty of initial estimated uncertainty
σ0 as variance(eq.(6)). Ifσ0 = 0, it would becomêσi0 = σi.
But the probability, that| σi− σ̂i0 | grows, rises asσ0 grows.

p(σ̂i0) =
1√

2πσ0

exp
{
− (σ̂i0 − σi)2

2σ2
0

}
(6)

In addition, in the present study, the observation uncertainty
risk is formulated by the entropy in the information theory.
EntropyHi is calculated for eq.(5):

Hi = −
∫ ∞

−∞
p̂(xi) log p̂(xi)dx

= log
√

2πeσ̂iτi (7)

According to eq.(7), it is understood thatHi depends on̂σi,
that shows the uncertainty, and increases with time. More-
over, when the threshold of the condition value is defined
xth, agents judge that estimated existence probability ofxth

over 0.1% is dangerous. The user can set this estimated
existence probability ofxth. When the temporary variance
(σ̂iτi)2 is replaced byσ2

th when this estimated existence
probability of xth is 0.1%,

σth = σ̂iτi (8)

Hi = log
√

2πeσth. (9)

It becomes synonymous with the estimated existence prob-
ability of xth 0.1%.Hi at this time becomes thresholdHth

of the observational uncertainty risk.

III. EDF SCHEDULING WITH ADAPTIVE RISK

ESTIMATION(EDFRE)

A. Abstract of EDFRE

The proposed EDFRE consists greatly of three parts. One
is an estimation algorithm of the uncertainty of CPi that uses
Bayesian estimation from the observational data of CPi. The
second formulates the observational uncertainty risk of CPi
from the estimated uncertainty by using entropy and is a
decision algorithm of the ideal patrol interval of CPi based
on it. The third is a patrol scheduling algorithm that uses
EDF based on the ideal patrol interval. The behavior model
of agent that mounts EDFRE is shown in Fig.3.

B. Method to estimate uncertainty

Agents estimate and updateσ̂i in the above-mentioned CPi
estimated model by online Bayesian estimation[11], [12],
[13], [14]. First, to do Bayesian estimation, the observational
data is standardized.yin according toN(0, (σ̂iτin)2) is
converted intozin according toN(0, (σ̂i)2) by usingyin(an
nth observed valuexi of CPi) and τin(τi when an nth
observed valuexi of CPi is obtained):

ýin =
yin

σiτin
(10)

Moreover,zin similarly output fromN(0, σ̂2
i )(the Gaussian

distribution atτi = 1) is standardized:

´zin =
zin

σi
(11)

When ´zin = ýin,

zin =
yin

τin
. (12)

This is assumed to be an observational data, and Bayesian
estimation is done. Bayesian estimation theorem is shown
by the following equation when a population parameter isθ
and a data isx:

p (θ|x) =
l (θ|x) p (θ)

k
(13)

p (θ|x) is a posteriori distribution.l (θ|x) is a likelihood. The
likelihood is the value that shows plausibility that guesses
what the precondition was from the observational data.p (θ)
is a prior distribution.k is a constant because the integration
value of the numerator becomes one(k =

∫
(numerator)dθ).

In the present study,θ = σ̂2
in and x = zin. First, the

likelihood is decided. Since the estimated model of CP is
the Gaussian distribution,

l(σ̂2
in|zin) = (2πσ̂2

in)−
1
2 exp

{
− z2

in

2σ̂2
in

}
. (14)

Next, the prior distribution is decided. First time uses the
natural conjugate prior distribution and the following uses
posteriori distributionp(σ̂2

i(n−1)|zi(n−1)) obtained from the
last estimation(eq.(16)):

p(σ̂2
in) = p(σ̂2

i(n−1)|zi(n−1))

=
1
k

(σ̂2
i(n−1))

−νi(n−1)
2 −1 exp

{
−λi(n−1)

2σ̂2
i(n−1)

}
(15)



Fig. 3. Behavior model of agent

whereνi(n−1) = n−1，λi(n−1) =
∑n−1

k=1 z2
ik. When eq.(14)

(15) is substituted for eq.(13),

p(σ̂2
in|zin) =

l(σ̂2
in|zin)p(σ̂2

in)
k

=
1
k

(σ̂2
in)−

νin
2 −1 exp

{
− λin

2σ̂2
in

}
. (16)

whereνin = νi(n−1) + 1，λin = λi(n−1) + z2
in. In this way,

the posteriori distribution of̂σ2
in becomes the reverse-Kay

square distributionχ−2(νin, λin). Average of this distribu-

tion
λin

νin − 2
is assumed to be a point-estimate value ofσ̂2

i ,

and updatêσ2
i and the estimated model of CPi.

C. Method to decide ideal patrol interval

EntropyHi is calculated for the Gaussian distribution of
CPi N(0, (σ̂inτin)2) obtained in the foregoing paragraph.By
eq.(7),

Hi = log
√

2πeσ̂iτi. (17)

Moreover, the entropy of a Gaussian distributionN(0, σ2
th)

whose existence probability ofxth is 0.1% becomes thresh-
old Hth of the observational uncertainty risk:

Hth = log
√

2πeσth (18)

From the above, a time∆τi to the excess ofHth by Hi can
be calcuated. This becomes an ideal patrol interval of CPi.
Hth is substituted at the left of eq.(17). And, in addition,
both sides are assumed to be multipliers of Napier’s conste:

eHth = 1 +
√

2πeσ̂i∆τi (19)

∆τi =
eHth − 1√

2πeσ̂i

(20)

Here,+1 at the right of eq.(19) is a measure to makeHth >
0. This ∆τi becomes the ideal patrol interval and∆τi − τi

becomes the remainder time to the ideal patrol interval. The
patrol scheduling is decided by using these for EDF.

D. Method to decide patrol scheduling

Agents want to patrol so thatHi should not exceed
Hth and to suppress total moved distance to the minimum.
Efficiency is expected to be optimized because the agent does
not move untilHi approachesHth, which reduces moved
distance and, therefore, excessive observations. The decision
method of the time that stands by is described. When a
number of CPs isnc and a number of agents isna, a number
of CPs that one agent will bear is defined asc = nc/na. The
travel time between CP that is the longest is defined astmax.
ti,rest is defined as follows:

ti,rest = ∆τi − ctmax (21)

Agents will stand by whenti,rest is positive. The flow of
EDFRE that integrates the above-mentioned three algorithms
is shown.

(1) visiting to CPi
(2) obtaining the condition value and reseting the con-

dition value and the risk
(3) estimating and updating uncertainty of CPi
(4) sorting CPs other agents will not go to in ascending

order of∆τi − τi

(5) searching the closest agent to CP in the order
(6) when I am the nearest to CPi, next destination is

decided CPi
(7) standing by until becomingti,rest < 0, and moving
(8) return to (1)

IV. SIMULATION

A. Purpose

Two kinds of simulations are done. The condition of sim-
ulation 1 is fixing uncertainty of initial estimated uncertainty
σ0 and changing the number of agents. The purpose of
simulation 1 is to confirm that the proposed method works
effectively and to discover the best number of agents to
the given condition(field, threshold andσ0). The condition



TABLE II

UNCERTAINTY σi FOR EACH CHECK POINT

of simulation 2 is changing uncertainty of initial estimated
uncertaintyσ0 and fixing the number of agents. The simula-
tion 2 is done by EDFRE and simpleEDF respectively, and
compared. The purpose of simulation 2 is to confirm that
EDFRE is excelling in adaptability to uncertainty of initial
estimated uncertainty.

B. Simulation 1

1) Condition of simulation 1:The setting ofσi does
in TableII andσ0 = 1.0. Thresholdxth of the condition
value xi is defined asxth = 33. This 33 is a value of
existence probability 0.1% inN(0, 10.52). The threshold of
the risk(entropy) can be obtained here:

Hth = log
√

2πeσth

= log(
√

2πe × 10.5)
≃ 3.8 (22)

The simulation 1 is executed untilt = 500 in the above
conditions. It is done ten times by fixingnc = 9 and
changingna from 2 to 8 about each value. The estimated
uncertaintyσ̂i and actual patrol interval∆τ∗

i is plotted for
the time axis and the correlation betweenσ̂i and ∆τ∗

i is
confirmed. Moreover,nm(frequency forxi to exceedxth)
andd(sum total of moved distance of all agents) is obtained,
evaluation functionD is made as follows:

D = 500nct − 10000nm − 300nat − 0.75d (23)

This average and standard deviation are made a bar chart and
the change according to the number of agents is confirmed.

2) Result: From Fig.4, the correlation between̂σi and
∆τ∗

i is confirmed.∆τ∗
i is short for CPi thatσ̂i is high.

Oppositely∆τ∗
i is long for CPi thatσ̂i is low. Therefore,

it can be confirmed that the proposed algorithm functions
effectively.
From Fig.5, it is understood thatD is the highest when
na = 3. Whenna = 2, the risk management is not success
since the number of agents are insufficient. Whenna ≥ 4,
D decreases since the number of agents is tedious. It was
able to be discovered thatna = 3 was the most suitable in
this condition.

C. Simulation 2

1) Condition of simulation 2:The simulation 2 is exe-
cuted untilt = 500 in the same conditions ofxth andσi with
simulation 1. Also,nc = 9, na = 3. It is done ten times by
changingσ0 from 0 to 2 about each value at intervals of 0.1
by using EDFRE and simpleEDF respectively. Performance
P is given by the next equation, and the average and standard
deviation are plotted. In simpleEDF,̂σi0 is given to random
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Fig. 4. Correlation between estimated variance and patrol interval
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variable byσ0 and the patrol scheduling is done based on
it. Moreover, since CPi is clustered in three groups based
on the initial condition, the best patrol scheduling is led
in the conditions(na = 3, nc = 9 and σ̂i0). The change
in performanceP by the change in uncertainty of initial
estimated uncertainty is compared between EDFRE and the
optimum solution at̂σi0 by simpleEDF. The moving speed of
agent is defined asv(= 160). The interval when CP changes
the condition value is defined asdτ(= 0.25). In this time,

P =
100

Pmax
· tvna

d
(
1 + exp

{
nm − tnc

1000dτ

}) (24)
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Here, −tnc/1000∆t in eq.(24) is a frequency forxi to
exceedxth that corresponds to 0.1% att = 500.

2) Result: In Fig.6, the approximation curve to EDFRE is
defined asy1 and the approximation curve to simpleEDF is
defined asy2. The performanceP has fallen ony1 by rising
of uncertainty of the initial estimated uncertaintyσ0. This
shows that the mistake increases as the time, that approach to
correct estimation, increases. Also, sincey1 = y2 is solved,
it is understood thaty1 and y2 intersect atσ0 = 0.321.
Therefore, it was shown that EDFRE was more effective
when σ0 ≥ 0.321 though the optimum scheduling in̂σi0
by simpleEDF was effective whenσ0 ≤ 0.321. Moreover,
by seeing ratioF (a) of values (A(a)1, A(a)2) in which
each approximation curve is integrated within the range of
0 ≤ σ0 ≤ a, the evaluations of expectation performance of
the proposal method to uncertain initial values are compared:

F (a) =
A(a)1
A(a)2

=

∫ a

0
y1dσ0∫ a

0
y2dσ0

(25)

From Fig.7, it was understood to becomeF = 1 at σ0 =
0.58. Moreover, it was shown that EDFRE was 2.1 times
more effective than simpleEDF in the range of0 ≤ σ0 ≤ 2.
We confirmed that EDFRE was excelling in adaptability to
uncertainty initial estimated uncertainty.

V. CONCLUSION

In the present study, the patrol to reduce the observational
uncertainty risk to observation points with uncertainty was

assumed to be risk management. It is a purpose to develop
the system to which the autonomous robot group where
each one has the decision-making mechanism automatically
does it. Then, in the beginning, we modeled check point
that existed in the environment with uncertainty. Next, the
estimated model of check point was constructed. Moreover,
we proposed the algorithm to which it was estimated and
updated by online Bayesian estimation by the observation.
Next, the allowable limit of the observational uncertainty
risk formulated by entropy was set and the ideal patrol
interval was decided. Finally, we proposed EDFRE to which
the patrol scheduling was in real time updated by using
EDF based on the ideal patrol interval by self-generating.
As resalt, we succeeded in the risk management in the
condition having uncertainty of initial estimated uncertainty
and the effectiveness of the proposed method was shown.
By comparing between EDFRE and the optimum solution at
σ̂i0, we showed that EDFRE was excelling in adaptability to
uncertainty of initial estimated uncertainty.
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about CPi and decide a patrol interval according to the acceptable risk about CPi. While agents adjust a 
patrol interval to CPi adaptive uncertainty level, agents optimize the patrol scheduling with satisfying 
permissible range of uncertainty risk of system. Therefore, the present study proposes adding adaptive Risk 
Estimation function to update the patrol interval automatically to the EDF scheduling(EDFRE). A simulation 
was developed to evaluate the proposed method. We showed that the proposed method is excellent in 
adaptability to uncertainty of initial estimated uncertainty. 
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